
© 2023 Hyun Bin Lee

LOGS AND SIDE CHANNELS

BY

HYUN BIN LEE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Carl Gunter, Co-Chair
Assistant Professor Christopher Fletcher, Co-Chair
Professor Nikita Borisov
Professor Adam Bates
Research Assistant Professor Timothy Pierson, Dartmouth College

ABSTRACT

While system administrators would prefer to configure their systems so that their loggers

capture as much details as possible, such details may include sensitive information. In par-

ticular, system audit logs aim to record information about system events that are triggered

during any incident. Hence they inevitably contain sensitive information that needs to be

kept secret. Redacting and obfuscating such information may help when such information is

written explicitly on logs, but implicit information, content that is seemingly not secret but

indirectly leaks secret information, cannot be handled with such measures. Unfortunately,

researchers have overlooked risks of leaking implicit secret content.

This thesis first introduces Termite attacks, a new class of side channel attack that exploits

such implicit content to learn secret information. We demonstrate how logs can be used to

create both membership inference attacks and keystroke timing attacks, and show practical

exploits against a common setup: a LEMP (Linux, ENginx, MySQL, PHP) webserver with

SSH daemon that is audited by the Linux Audit System (LAS). Then we demonstrate how

to launch a concurrency-based timing side channel attack. Contrary to the belief that log

information is too coarse-grained to be exploited against modern microarchitectural side

channel attacks, we demonstrate how adversaries can craft timing side channels that are as

fine as 100s of nanoseconds through system audit logs.

To address such vulnerabilities associated with logs leaking sensitive information via mi-

croarchitectural side channels, we propose two different countermeasure schemes. First

scheme involves data-oblivious computation and Trusted Execution Environments (TEEs)

against adversarial systems. We demonstrate how to produce a side-channel resistant log by

instrumenting a complex programming environment (like R) to produce a Data-Oblivious

Transcript (DOT). The DOT is designed so that any sensitive data from computation is

decoupled from the transcript. Such transcript is later evaluated on a TEE containing the

sensitive data using a small trusted computing base called the Data-Oblivious Virtual Envi-

ronment (DOVE).

While DOVE allows us to protect logs, deploying DOVE requires several prerequisites. In

particular, another countermeasure is needed when one cannot completely decouple timing

information from logs. As we have shown how to exploit such timing information to steal

secrets from Termite attacks, our last study investigates how to mitigate such attack vector

against aforementioned system audit logs stored on honest system that adversaries tem-

porarily break-in. This study observes tradeoffs between the number of timestamps in logs

ii

versus the utility of audit logs. We analyze existing utility functions associated with audit

logs and choose a reachability function as a utility standard for this study. We use DARPA’s

Trusted Computing Dataset for this study to conduct experiments. In order to guarantee

complete security against timing side channels, the logs must not contain any timing infor-

mation such that no timestamp exists and the ordering of all log entries are randomized. We

call such logs Timeless Logs. Unfortunately our reachability analysis showed such extreme

measures lead to very poor utility according to our experiments against the dataset. Hence,

we introduce an alternative method, Batched Timeless Logs. This method divides logs into

n batches and make each batch timeless. We preserve ordering among batches, so there

are n different time information stored in the logs. The size of each batch is randomized

to augment security against clock-edge attacks between batches. Our experimentation on

a public dataset shows that when batches are sufficiently small (batch size of around 1,000

entries or smaller), there is only an 1.47 percent increase in the number of false positive

reachable nodes from randomly picked source nodes on average.

We argue that side-channel attacks against logs can leak very fine-grained information

across any vulnerable application but such threats have been overlooked. Our study on

such attacks and proposed countermeasures highlights some future work that should to be

addressed.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

First I would like to thank Prof. Carl Gunter and Prof. Chris Fletcher for advising through-

out my Ph.D. When I made a big decision to change my research interests from differential

privacy to side channels, Carl encouraged me to a new research problem that supported my

decisions, and Chris provided valuable guidance on this unfamiliar topic. I had doubts about

my research directions, but their advice helped me overcome such doubts and make valuable

scientific contributions throughout my Ph.D. program.

Second, I am grateful to have Prof. Carl Gunter, Prof. Chris Fletcher, Prof. Nikita Borisov,

Prof. Adam Bates and Prof. Timothy Pierson in my thesis committee. I would like to thank

them for their insightful questions, helpful suggestions, and valuable feedback.

In addition, I thank Tushar Jois who collaborated with me on most of my research projects.

His summer visit to UIUC was the most crucial turning point of my Ph.D. program, and

it was a great pleasure to work with him on various research projects. I also would like to

thank members of Security and Privacy Research at Illinois (SPRAI) and SPLICE (Security

and Privacy in the Lifecycle of IoT for Consumer Environments). It was an honor to work

with these great talents.

Next, I would like to thank Prof. Grigore Rosu and Prof. Michael Bailey. Prof. Rosu

was my undergraduate mentor and gave me words of courage during a mentorship meeting.

Thanks to his advice, I did not give up my dream. I began my graduate program with a

teaching assistanceship under Prof. Bailey. While working with him, I learned what it means

to be a security researcher.

Finally, I thank my parents for their continuous trust and support. With unconditional

love and sacrifice, they gave me an opportunity to study in Illinois. I was able to successfully

finish this journey with their continuous support.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Contributions and Roadmap . 3
1.2 Background . 4
1.3 Related Works . 11

CHAPTER 2 TERMITE ATTACKS . 16
2.1 Introduction . 16
2.2 Threat Model . 16
2.3 Coarse-Grained Side Channel Attacks . 21
2.4 Fine-Grained Side Channel Attacks against Ordering of Log Entries 29
2.5 Conclusion . 37

CHAPTER 3 DOVE: DATA-OBLIVIOUS VIRTUAL ENVIRONMENT 38
3.1 Introduction . 38
3.2 Threat Model . 39
3.3 Attack Examples . 40
3.4 Design . 45
3.5 Implementation . 55
3.6 Security Evaluation . 57
3.7 Experimental Evaluation . 60
3.8 Conclusion . 66

CHAPTER 4 TIMELESS LOGS . 67
4.1 Introduction . 67
4.2 Threat Model . 68
4.3 Reachability . 68
4.4 Timeless Logs . 71
4.5 Batched Timeless Logs . 74
4.6 Conclusion . 79

CHAPTER 5 CONCLUSIONS . 80
5.1 Discussion and Future Works . 80

REFERENCES . 83

vi

CHAPTER 1: INTRODUCTION

Logging is an act of recording a sequence of events that occur in a computer system [1].

For example, system audit logging involves collecting information about system events for

purposes ranging from post-mortem incident reconstruction to system diagnosis and trou-

bleshooting. Such information is usually sensitive, so research focus has been on preventing

loss of confidentiality using one of two techniques: encryption and redaction. Encryption-

based techniques [2, 3, 4] rely on cryptography and specialized trusted hardware or remote

trusted servers to protect log data. However, encryption-based schemes can be hard to

implement due to performance overheads and interoperability issues with third-party log

analysis applications [5]. Redaction-based schemes [6, 7], including obfuscation [8, 9], pro-

tect when secrets are written directly to logs. Redaction-based schemes force an inherent

utility-security tradeoff. But, more critically, existing redaction-based schemes are not de-

signed for blocking implicit flows from logs where where seemingly nonsensitive contents

leak important system secrets [10]. In the past, the implicit information provided by audit

logs has been studied for anomaly detection [11, 12, 13] and causality inference [14, 15, 16].

We posit that it can also be used for exploitation by enabling side channel attacks.

Attacking logs brings unique opportunities and challenges to side-channel research. On

one hand, logs persist after the victim application runs. There is, in fact, incentive to

maintain logs long after they are generated so as to better serve forensic analyses. Unlike

traditional side channels, e.g.,, power attacks generating ephemeral power traces, this allows

the attacker to learn ephemeral secret information even if said attacker is not actively mon-

itoring the victim’s execution as it runs. Such a characteristic adds big concerns associated

with forward secrecy, a security feature that usually is not prioritized against micoarchitec-

tural side-channel attacks due to ephemeral nature of execution traces. On the other hand,

logs typically capture only coarse-grained information. For example, log entries typically

correspond to major system-relevant events such as system calls. This makes it difficult

to use log-based side channels to extract fine-grained information about a victim’s execu-

tion (e.g.,, fine-grained hardware-resource usages) that is the foundation of many traditional

side-channel attacks (e.g.,, microarchitectural attacks).

Thesis Statement: Logs are overlooked persistent sources of execution traces

that are vulnerable against fine-grained side channel attacks, but appropriate

countermeasures can mitigate risks against the attacks.

1

In this thesis, we exploit the above strengths and overcome the above weaknesses to repro-

duce several disparate attacks ranging from keystroke detection to fine-grained microarchi-

tectural side channels. Our most surprising result is that, despite the fact that logs capture

only coarse-grain information, they can still encode extremely fine-grain events (on the order

of 100s of nanoseconds to microseconds). We call these side channel attacks against logs as

the Termite attacks1.

To address concerns associated with Termite attacks against logs, we introduce two coun-

termeasures. Our first countermeasure, the Data-Oblivious Virtual Environment (DOVE) [17]

leverages Trusted Execution Environment (TEE) and data-oblivious programming to close

microarchitectural side channel attacks against logs or transcripts that record computation

of high level language interpreters. This work is originally designed to provide a secure

programming environment for high-level programming languages against untrusted soft-

ware including operating systems and hypervisors. The DOVE architecture is composed

of two steps where a frontend instruments the high-level programming stack by recording

computation done on input scripts into a execution log called “Data-Oblivious Transcript

(DOT)”. This log does not carry any sensitive data as these are replaced with stand-ins

called “pseudonyms”, and all operations recorded on the DOT are data-oblivious primitives.

Such logs are then replayed by a backend with actual data supplied via a secure channel.

The backend is composed only of data-oblivious functions such that computation itself is

secured.

DOVE provides a strong security guarantee against a strong threat model, but its deploy-

ment may not always be suitable. In particular, DOVE assumes several attributes to be

public including ordering of operations, but a clock-edge timing attack in Termite attacks

exploit such “seemingly-public” information to extract system secrets. Our second coun-

termeasure is designed under a different threat model compared to that of DOVE where

we assume the system is honest but at some point is compromised by an adversary. This

countermeasure is mainly designed against clock-edge attacks using a post-processing mech-

anism on logs. We propose a new scheme called Timeless Logs, a solution that started with

a naive thought on removing every timing information from logs to protect logs from timing

side-channel attacks. This can obviously make logs useless, but how can we quantify such

utility loss? Our study begins with answering such questions with utility functions offered

by prior work on log reduction techniques. Then, we introduce Batched Timeless Logs, a

sequence of Timeless Log segments which offers reasonable utility-security tradeoffs based

on our quantitative analysis against a public log dataset.

1Full title of the original paper that introduces these attacks is called “Termite Attacks: Gnawing on
Logs to Extract Secret Information.”

2

1.1 CONTRIBUTIONS AND ROADMAP

Overall, these are our contributions of this thesis:

• We introduce Termite attacks: side channel attacks that exploit implicit information

contained in logs.

– We systematize a threat model of possible attack vectors against system audit

logs, and provide examples of potential Termite attacks that illustrate our threat

model.

– We illustrate how implicit contents written by system audit loggers may leak

secrets with three scenarios.

– We show how design of the Linux Audit System (LAS) is vulnerable to a concur-

rent execution side channel under normal system conditions.

– We demonstrate a proof-of-concept NetSpectre attack with our concurrent timing

side-channel against LAS to show that Termite attacks can encode extremely fine-

grain events.

• We design DOVE, the first architecture that runs existing high-level interpreted lan-

guages and is demonstrably resistant to microarchitectural side channels.

– We identify a number of subtle side-channel vulnerabilities in the R language.

– We provide an implementation of DOVE for R, creating the first side-channel

resistant R programming stack.

– We evaluate the security and performance of DOVE against evaluation programs

drawn from the genomics literature. Relative runtime overheads of DOVE against

vanilla R on these programs range from 12.74× to 341.62×.

• We introduce Timeless Logs, a post-processing scheme to address concurrent timing

attacks against logs.

– We study various log reduction techniques and assess utility functions suitable to

quantify utility losses associated with our post-processing countermeasure scheme.

– We conduct removal of timestamps on a public log dataset and analyze utility

loss based on a reachability function, the utility function that we choose based

on prior works.

– We introduce Batched Timeless Logs that provide good utility-security tradeoffs

on the same dataset under the same utility function.

3

1.2 BACKGROUND

This section contains background information required to understand ideas and concepts

introduced throughout this thesis. We first begin this section with background on the topic

of logging to give readers understanding of how modern logging systems are designed and

implemented. Then, we explain key ideas associated with microarchitectural side channel

attacks, the fundamental building blocks that comprises our thesis. Finally, we end with

some background on R and Trusted Execution Environments to give readers important

information to understand Chapter 3.

1.2.1 Logging

Application logging. System applications commonly include logging facilities that record

events that occur while the application is running. Applications such as web servers [18] and

databases [4, 19] all use logging to alert administrators to events. Typical events include

errors in the application as it runs, as well as any security incidents. Logging informa-

tion varies between applications, but usually includes a timestamp alongside the actual log

message.

System audit logging. In addition to the logging frameworks of individual applications,

the operating system retains its own logging functionality. Examples include Linux Audit

System (LAS) on Linux [20] DTrace on FreeBSD [21] and ETW on Windows [22]. Sys-

tem audit logs provide a chronological record of all events that happened on an operating

system at the granularity of system calls. These logs typically are stored for long peri-

ods of time as an intrusion prolongs over 188 days before the detection [23]. Functionality

varies between logging frameworks, but typically they log interactions between applications

and the operating system, such as user commands, file accesses, security events, and net-

work accesses [20, 24]. System logs typically interleave logging information from different

processes [25].

Linux Audit System. Linux Audit System (LAS) [20] is a system logger for Linux that

is mainly comprised of two parts: a userspace daemon, and the kernel’s audit subsystem that

processes system calls. The architecture of LAS is denoted in Figure 1.1. Audit rules dictate

what LAS monitors, and rules can be specified to capture system calls, file system behaviors,

and LAS behavior itself. In system call monitoring, when a userspace application requests

a system call, the framework sends information about the system call to a kernelspace

4

system call

A
pp
lic
at
io
n

Kernel

Exit Filter

System call
processing and

handling

Netlink IPC

auditd

response

kauditd

Logs
Buffer

Figure 1.1: Syscall auditing in the Linux Audit System (LAS).

daemon, kauditd. This daemon asynchronously processes the entries in a buffer, first-

in, first-out. kauditd then uses a Netlink IPC socket to communicate information to the

userspace component, auditd, which in turn stores the information on disk for a user to

recover. LAS logs the time a system call was executed, its syscall number, its parameters,

and information about the application that executed it. It also records the raw pointer values

(e.g.,, void *) and other primitive values (e.g.,, int) in system call parameters. Note that

this architecture introduces some latency, as LAS handles the logging of system calls at

filters that intercept system call control flow and checks whether the call matches with audit

rules.

Listing 2.2 contains a LAS entry for the system call recvfrom when PHP receives a

MySQL response.The system call recvfrom(2) is depicted in each entry. Some important

aspects include:

• The type of event, which is a SYSCALL.

• The timestamp, in the msg field. This is a UNIX epoch time with millisecond granu-

larity, followed by a serial number for the log entry.

• The system call number, syscall, which is 45, or recvfrom(2).

• The exit code, exit, which is the return value of the system call. For recvfrom(2),

this is the number of bytes received.

• The system call parameters, in fields a0 through a3. All of them are in hexadecimal.

5

-a exit,always -F exe=/usr/sbin/php-fpm7.2 -F arch=b64 -S read -S readv -S write

-S writev -S sendto -S recvfrom -S sendmsg -S recvmsg -S mmap -S mprotect -S

link -S symlink -S clone -S fork -S vfork -S execve -S open -S close -S creat

-S openat -S mknodat -S mknod -S dup -S dup2 -S dup3 -S bind -S accept -S

accept4 -S connect -S rename -S setuid -S setreuid -S setresuid -S chmod -S

fchmod -S pipe -S pipe2 -S truncate -S ftruncate -S sendfile -S unlink -S

unlinkat -S socketpair -S splice

↪→

↪→

↪→

↪→

↪→

↪→

Listing 1.1: LAS rule to log forensically-relevant system calls.

• The process identifier, pid, along with several user and group identifiers, *uid, *gid

of the process. This is not only useful in the context of an individual system’s config-

uration: what is running, and who is running it, but also useful for an attacker to find

a log entry of interest.

LAS is configured by rules that determine its behavior [26]. The rule can filter system

calls with fields, such as executable path, system architecture, system call of interest, users,

and more. Listing 1.1 contains the LAS rule used in the generation of the log in Listing 2.2.

In this example, the system calls of interest are those deemed forensically-relevant by prior

work on provenance auditing, one of which is recvfrom. We explain how these works utilize

LAS in next subsection.

1.2.2 Provenance Auditing and Rule Configurations

Provenance auditing serves to understand the entire view of system execution so that

it assists causal analysis of system activities. Provenance-based works primarily focus on

reconstructing the chain of events that led to an attack (backward tracing) as well as the

ramifications of the attack (forward tracing). Thus, most works on provenance auditing first

converts logs into dependency graphs to find relationships between events. [27]

Provenance auditing serves a crucial role in attack detection and investigation against

enterprise environments [28]. The Controlled Access Protection Profile common criteria

requires audit trails for systems used by U.S. Government agencies [29]. LAS was introduced

in Linux version 2.6 to achieve certification of the common criteria for Linux systems [5, 30].

Hence, many works on provenance auditing use LAS for collecting system logs.

Provenance auditing has been used for forensic analysis [31, 32] and attack detection [33,

34, 35]. Other applications tackle the dependency explosion problem of LAS [14, 36, 37].

Provenance auditing has also been applied for less traditional systems, such as the Linux

components of distributed systems [38] and Android devices [39]. Finally, several works

6

address integrity of audit frameworks [5, 30, 40].

The aforementioned related works collect system logs from LAS and their LAS configura-

tions are consistent with that of ours (Listing 1.1).

1.2.3 Microarchitectural Side Channels

Microarchitectural (shortened as “µArch”) side-channel attacks are a class of privacy-

related vulnerabilities where a sensitive program’s hardware resource usage leaks sensitive

information to an adversary co-located to the same (or a nearby) physical machine [41]. Over

the years, numerous hardware structures—a variety of cache architectures [42, 43, 44, 45],

branch predictors [46, 47], pipeline components [48, 49, 50] and other structures [51, 52,

53, 54, 55, 56]—have been found to leak information in this way. Many of these attacks

require that the attacker only share physical resources with the victim (e.g., Prime+Probe

and the cache [42, 57] or Drama and the DRAM row buffer [55]), as opposed to sharing

virtual memory with the victim (e.g. [43]).

In a timing side channel attack, the attacker uses the time it takes a victim to perform a

certain task to infer functions of the victim’s data [58]. µArch timing side channel attacks

are a specific type of timing side channel attack where the attacker monitors when, for how

long and how the victim uses different microarchitectural resources. Such resources include

the cache [45, 59, 60, 61], arithmetic units [62, 63], etc.

Speculative execution attacks. The Meltdown [64] and Spectre [65] attacks introduced

the speculative execution class of attack, which uses the processor speculation to create a

side channel. In particular, these types of attack rely on the processor mispredicting an event

(e.g.,, a memory access or branch) and exploiting this misprediction to extract data. The

NetSpectre [62] attack allows for such an attack to be executed over the network. This attack

is an active remote attack that requires attacker to actively interact with victim machine

via network in order to open a Spectre-style side channel into a process. Furthermore, the

attack requires a very fine-grained measurement of latency between departure and arrival of

network packets to infer latency incurred by data-dependent operations from the victim.

The NetSpectre attack requires two Spectre gadgets. The leak gadget is manipulated by

the adversary such that a malicious array offset would lead to accessing a secret bit. Then

the bit is compared with a public parameter in a branch where if the branch holds true,

a change in µArch state occurs. Listing 1.2 is an example of a leak gadget. First, the

attacker sends multiple packets to victim that runs the leak gadget for packet processing.

These packets are crafted by the attacker ensure that the packets pass bound checks on x.

7

This would train the branch predictor to predict future x values to be within the bounds.

Then, attacker would send a packet where 1) the value x is larger than array_length and

2) array[x] is the secret bit that attacker is interested in. Due to speculative execution,

the branch is mistrained to assume that x would be in bounds, allowing the memory access

on array[x] to be speculatively executed. As a result, if the value of secret bit is 1,

the array2[1 * 1024] would be speculatively accessed such that memory block associated

with address of array2[1024] is cached. However, if the bit is 0, array2[0] would be

speculatively accessed. This change in µArch state due to speculative execution won’t be

resolved.

A transmit gadget is where latency of running the gadget depends on the µArch state

that is “leaked” by the leak gadget. A common example of such gadget would be accessing

index 0 or 1024 of aforementioned array2 that is tainted by the leak gadget to cause latency

associated with the leaked µArch state. The attacker would exploit such a gadget to measure

the latency and infer the µArch state changes to steal the secret bit.

if (x < array_length) {

secret = array[x] & 0x1;

array2[secret * 1024];

}

Listing 1.2: A leak gadget for the NetSpectre attack Bounds-Check Bypass.

Clock-edge attacks. While timing attacks measure time, they fundamentally only re-

quire the attacker to be able to measure whether a secret-dependent event occurs before or

after a secret-independent reference event or clock edge [66]. For example, while a cache

timing attack measures the time it takes an attacker’s accesses to return from the cache,

fundamentally the attacker need only determine whether its accesses exceed a threshold (the

cache hit latency).

Reference events/clocks can be built using a variety of mechanisms. For example, through

the use of explicit coarse-grained [66] or fine-grained [59] timer operations/instructions, or

through the use of implicit clocks [66] such as measuring another reference program’s execu-

tion time [67, 68]. Timeless Timing Attacks [68] run two processes concurrently (a sensitive

process and a reference process) and checks which completes first to deduce information

about how long it took the sensitive process to run.

8

1.2.4 Programming in R

R is a statistical language that provides convenient interfaces for computations on arrays

and matrices. Most function calls including primitive operators like addition and subtraction

perform element-wise operations on array-like values. Figure 3.1 is an R code example from

our evaluation programs that includes such operations.

Computation in R. R is an interpreted language [69], and its interpreter is written mostly

in C and to a lesser extent Fortran and R itself. Every object is represented with a symbolic

expression (S-expression) [70] such that interpreter parses R statements into S-expressions.

The S-expressions are then evaluated and dispatched to the corresponding library functions

written in C. Each C function runs on hardware as a compiled binary object. Thus, analyzing

code written in R is more complex than analyzing code that is directly compiled and run on

hardware (e.g. C, C++).

Not Applicable (NA). R represents null-like, empty values with NA, the representation

of which depends on the datatype. A real-valued S-expression in R is represented with a

IEEE 754 double; NA_REAL is defined with the special double value NaN with a specific lower

word (1954). The interpreter treats NA differently from other values, even from NaN. Integer

and logical (i.e., boolean) S-expressions are implemented with an int type, so R reserves

the lowest integer value INT_MIN for the representation of NA_INTEGER and NA_LOGICAL.

S3 method dispatch. The most common object-oriented programming system in R is

S3 method dispatch. For each function call on an object, the S3 object system calls the

correct method associated with that object. For example, for print(x), when x is a scalar,

S3 calls print.numeric(x); when x is a matrix, S3 calls print.matrix(x) instead. A

programmer who wishes to add their custom type myObject to print would define a function

print.myObject(x). This paradigm makes it easy to supply new types of objects to existing

functions, making the differences in implementation transparent to the end user. S3 is the

OOP system used in the base R, making it especially useful to override commonly used

functions.

1.2.5 Enclave Execution and Intel SGX

Enclave execution [71], such as with Intel SGX [72], protects sensitive applications from

direct inspection or tampering from supervisor software. That is, the OS, hypervisor and

other software are considered to be the attacker [53, 73, 74, 75, 76, 77, 78, 79, 80, 81], who

9

will be referred to as the SGX adversary. To use SGX, users partition their applications into

enclaves at some interface boundary. For example, prior work has shown how to run whole

applications with a LibOS [82, 83], containers [84], and data structure abstractions [73]

within enclaves. At boot, hardware uses attestation via digital signatures to verify the

user’s expected program and input data are loaded correctly into each enclave. Isolation

mechanisms implemented in virtual memory protect enclave integrity and confidentiality

during execution.

SGX uses the Enclave Page Cache (EPC) to store enclave application code and data.

The EPC is stored in a protected region of memory known as Processor-Reserved Memory

(PRM). The processor prevents other system components from reading the PRM with the

help of another component, the Memory Encryption Engine (MEE), that provides encryp-

tion and integrity protection for the PRM [85]. The EPC has a fixed size of 64 or 128 MB,

shared among all enclaves [86]. For applications requiring more memory, SGX uses an EPC

paging mechanism supported by the SGX OS driver. Specifically, the OS can move pages out

of/into the EPC and manipulate them as if they were regular pages from a demand-paging

perspective. For security, pages moved out of/into the EPC are transparently encrypted/de-

crypted and integrity checked by the SGX hardware [72, 85].

Side-channel amplification. Despite providing strong virtual isolation, SGX enclave

code is still managed by untrusted software. Prior work has shown how this exacerbates the

side-channel problem described in Section 1.2.3.

First, SGX does not provide any physical isolation. Thus, nearly all of the µArch side-

channel attacks discussed in Section 1.2.3 immediately apply in the SGX setting.

Second, importantly, the OS-level attacker has significant control over the enclave’s ex-

ecution and the processor hardware and thus can orchestrate finer-grain, lower-noise at-

tacks than would otherwise be possible. For example, controlled side-channel attacks [52]

and follow-on work [53] provide a zero-noise mechanism for an attacker to learn a vic-

tim’s memory access pattern at page (or sometimes finer) granularity. A line of work has

further shown how the attacker can effectively single-step, and even replay, the victim to

measure fine-grain information such as cache access pattern and arithmetic unit port con-

tention [77, 78, 79, 80, 81, 87, 88].

1.2.6 Data-Oblivious Programming

Data-oblivious (sometimes called “constant-time” in the hardware setting) programming

is a way to write programs that makes program behavior independent of sensitive data, with

10

respect to the side channels discussed in Section 1.2.3 [48, 73, 75, 76, 89, 90, 91, 92, 93,

94, 95, 96, 97, 98, 99, 100, 101, 102, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111]. In

the hardware setting, what constitutes data-oblivious execution depends on the intended

adversary. In the SGX setting, we must assume a powerful adversary that can monitor

potentially any µArch side channel as described in Section 1.2.5.

Thus, prior works that try to achieve data obliviousness in an SGX context [73, 75,

76, 92, 93, 94, 95, 96, 98] implement computation using only a carefully chosen subset

of arithmetic operations (e.g., bitwise operations), conditional moves, branches with data-

independent outcomes, jumps with non-sensitive destinations, and memory instructions with

data-independent addresses. For example, an if statement with a sensitive predicate is

implemented as straight line code that executes both sides of the if and uses a data-oblivious

ternary operator (such as the x86 cmov instruction or the CSWAP operation) to choose which

result to keep.

1.3 RELATED WORKS

This section encompasses related works that cover one or more chapters of this thesis.

While majority of works are directly related with one chapter, several works cover multiple

chapters so that we outline these works in this introductory chapter.

1.3.1 Program Behavior Analysis

Researchers have studied the topic of understanding implicit information stored in system

audit logs for various reasons. System logs often serve as forensic artifacts, so there has

been several works that focus on causality inferences. Authors analyze system calls tran-

scribed in logs [14, 15, 16]. Our work, on the other hand, focuses on exploiting such events

to extract secret information through side channels. Logs with system call vectors are also

explored by previous works on outlier detection. Proposed solutions include process moni-

toring [13], malware detection [112], intrusion detection [11, 12], and data mining algorithms

for application systems [113].

1.3.2 Log Confidentiality

Most researchers are well aware of rich information provided by system logs such that

many works prioritize preserving integrity of system logs against tampering attacks [30, 114].

Nonetheless, several works address preservation of log confidentiality. These works mainly

11

work on encryption-based schemes [2, 115] or on trusted hardware [3, 116]. Overall, we

believe this line of work is orthogonal to our Termite attacks. Alternative solutions target

on redacting [6, 7] or obfuscating [8, 9] secret data written on the logs. Some of the data

that is redacted from system logs are IP addresses [117, 118, 119, 120] and timestamps.

Google released traces from their cluster management software and systems [121, 122] where

these traces have their actual timestamps converted to relative timestamps such that exact

time of events are hidden but the order is preserved. However, Termite attacks that exploit

concurrency (Section 2.4) are resilient against such protection measures since the clock-

edge attack succeeds only with information on the ordering of two concurrent events. Reiss

et al. [123] introduced Google’s guidelines on releasing production logs to public. While

their work introduces several obfuscation techniques to achieve log confidentiality, their

techniques are solely designed for Google’s production cluster traces such that implementing

their solutions may not be plausible for other systems. Furthermore, their work does not

provide a quantitative analysis on the effectiveness of their obfuscation techniques.

1.3.3 Implicit Secrets from Logs

While aforementioned works try to achieve confidentiality for system logs, most works fail

to account for risks associated with implicit secret information contained in the logs. Those

works focus on protecting contents for each log entry such that they overlook secret leaking

through log perturbations of multiple log entries. A few works, however, do address this

problem. Long et al. [10] proposed a software testing-based approach to achieve the property

of data-obliviousness [124] for shared logs. Their works offer game-based definition of the

risk of exposing sensitive information through released logs. Meanwhile, their framework

enforces strict restrictions such that it may be considered infeasible in practice. Dangwal et

al. [125] proposes an approach of “wringing” program traces where authors propose ways of

formalizing bounds of leaked information from compressed traces. Their evaluation showed

that such approach is plausible against a class of existing side-channel attacks against AES.

1.3.4 Log Reduction Techniques

While provenance auditing’s top priority is to capture behavior of entire system for poten-

tial future analysis, such auditing would often lead to generation of enormous volume of logs,

gigabytes per day on a single machine [27]. Such sheer volume can reduce efficiency of audit

log analysis, so there has been multiple works that focus on reducing volume of logs. As

mentioned in Section 1.2.2, recent provenance auditing mostly focuses on converting logs into

12

provenance graphs for analysis. Thus, recent log reduction work often focuses on construct-

ing such graphs and removing events, represented as edges, from the graphs. We summarize

some of those works that are particularly related with our objectives in Chapter 4.

Causality Preserving Reduction (CPR) [126] is one of first works on log reduction topic.

This work preserves information flows in provenance graphs but removes redundant events

mainly caused by performing I/O related activities. CPR examines interleaved flows, a

presence of new input flow between two output flows. If there exists such interleaving event

pattern, then events are categorized as non-redundant (i.e. two output flows represent two

different information flows).

Reachability analysis on a dependency graph checks whether a source node can reach a

destination node by checking whether 1) there is a path from the source node to the des-

tination node and 2) timestamps of edges on the path are sorted in increasing order. Such

analysis ensures utility of logs for forward and backward tracing that we mentioned in Sec-

tion 1.2.2. We discuss reachability analysis further in Section 4.3. Authors of CPR takes

a step further from CPR and proposes an approximation-based reduction technique called

Process-centric Causality Approximation Reduction (PCAR) [126]. In addition to aforemen-

tioned check of interleaved flows, this method approximates bursty processes (processes that

handle a large of system calls in short interval of time) by aggregating such events. Authors

test their method against naive aggregation that aggregates events within 10-second interval

and runs reachability (authors use term connectivity instead in their paper) analysis from

20,000 randomly chosen nodes. This study is very similar to what we conduct in Section 4.5,

so we explain this more in detail in that section.

Dependency Preserved Reduction (DPR) [127] is motivated from CPR but takes a step

beyond CPR. This work checks global reachability between any two nodes in dependency

graph to make reachability checks. Once such reachability is confirmed, then other edges

that also constitute such path are considered redundant and are reduced.

Aforementioned works focus on reachability as the main reduction criteria, but Forensic

Validity [128] augments systematic assessment of log utility. The authors of the work provide

three criteria to evaluate the utility of reduction techniques. The first criteria is called lossless

forensics that naively measures the number of log entries reduced from original log. This

is motivated by a conservative view that any loss of log events leads to loss in semantics.

The second criteria is called causality-preserving forensics and is motivated by CPR. This

metric counts the number of “distinct” information flows and check if edges that constitute

each flow still remain in reduced log. The final criteria is called attack-preserving forensics.

This criteria assumes that there is a ground truth about events that actually constitute an

attack. Then, it checks whether those events have been removed by log reduction techniques

13

or not.

While all metrics proposed by Forensic validity work well for log reduction utility, our

goal is to measure utility for timing information and we found none of these metrics to be

applicable for our work.

1.3.5 SGX Programming

Our work on DOVE is related to prior efforts in running/partitioning/managing general

purpose applications in SGX [73, 82, 83, 84, 93, 129, 130, 131, 132, 133, 134]. The four

most relevant axes for comparison are: (i) whether the application running is untrusted,

(ii) whether the proposal runs interpreted code such as R, (iii) what is the threat model

(in particular, does it include defense against µArch side channels) and (iv) whether the

proposal requires a new custom programming language. We show a comparison along these

axes in Table 1.1. The takeaway is that no prior proposal, to our knowledge, simultane-

ously runs (i) untrusted code, (ii) high-level interpreted code such as R, (iii) provides broad

protection against µArch side-channel attacks, (iv) supports existing languages. Moreover,

our work makes a distinct conceptual- and design-level contribution, namely to orchestrate

computation through existing high-level languages without exposing the sensitive data.

The work most similar to our proposal are TrustJS [131] and SGXBigMatrix [93]. The

former runs untrusted JavaScript code but assumes a weaker adversary that cannot monitor

fine-grain application behavior over side channels. The latter provides a data-oblivious

matrix API, but requires programmers to adopt a custom scripting language for performing

computation. We view this work as complementary: our work strives to enable general-

purpose data oblivious computing on existing high-level languages, but could benefit from

the performance optimizations made to matrix computations in SGXBigMatrix.

1.3.6 Data-Oblivious Programming

There is a rich literature that studies how to write and run different applications in

a data-oblivious fashion on today’s Instruction Set Architectures (ISAs). For example,

application-centric works propose data-oblivious cryptography [89, 90], machine learning [75,

93], databases [94, 95, 96], memory and datastructures [73, 98], general purpose code [76, 91,

99, 134, 135], utilities [97] and floating point functions [48]. Many of these [73, 75, 76, 92,

93, 94, 95, 96, 134, 135] were designed for SGX-enabled applications to block the µArch side

channels discussed in Section 1.2.3 and 1.2.5. Programming language, compiler and runtime

works study how to write (e.g., [100, 101]) and compile (e.g., [102, 103, 109]) programs to

14

Table 1.1: Related works on application partitioning/management in SGX.

Name Untrusted Apps? Interpreted Code? Blocks µarch Side
Channels?

Supports existing
languages?

Haven [82] ✗ ✓ ✗ ✓
Graphene-
SGX [83]

✗ ✓ ✗ ✓

Scone [129] ✗ ✓ ✗ ✓
Panoply [84] ✗ ✗ ✗ ✓
Glamdring [130] ✗ ✗ ✗ ✓
TrustJS [131] ✓ ✓ ✗ ✓
ScriptShield [132] ✗ ✓ ✗ ✓
Ryoan [133] ✓ ✗ ✗ ✓
SGXBigMatrix [93] ✓ ✓ ✓ ✗
ZeroTrace [73] ✗ ✗ ✓ N/A
Felsen et al. [134] ✓ ✗ ✓ N/A
DOVE [17] ✓ ✓ ✓ ✓

software circuits. ISA abstractions study how to design interfaces usable by both software

designers and hardware architects to uphold data-oblivious security guarantees [74]. These

efforts are backed on the theory side by studies on how to run different algorithms and data

structures in the circuit model [102, 104, 105, 106, 107, 108, 109, 110, 111].

Our work differs from these application-centric works by targeting high-level interpreted

programming stacks such as R as opposed to low-level C. As discussed in Section 3.3, R

introduces significant new challenges in establishing confidence that code is actually data-

oblivious. Our work differs from the PL, runtime, compiler work because it focuses on

hardening mostly-unmodified R code, as opposed to creating a new end-to-end stack with

a custom language; our work differs from ISA work, such as the Data-Oblivious ISA exten-

sions [74] (OISA), by not requiring ISA-level changes to the underlying machine. Finally,

our work is complementary to data-oblivious algorithm and data structure design, as our

backend can leverage these algorithms to implement specific operations.

1.3.7 Privacy-Preserving Genomics

Our case study for DOVE is based on the genomic dataset of honeybees collected from

three different locations [136]. Genomics has been a promising test case for privacy-preserving

application of SGX in prior work. These include at least the privacy-preserving computa-

tion of admixtures [137], Genome Wide Association Studies (GWAS) [138], and analysis of

rare diseases (viz. Kawasaki disease) [139]. There is also an SGX-based study of privacy-

preserving queries on genomic data [140]. Additionally, a survey discusses approaches to

genomic privacy based on SGX, on cryptography, and on a hybrid of both [141].

15

CHAPTER 2: TERMITE ATTACKS

2.1 INTRODUCTION

This chapter introduces Termite attacks, a new class of side-channel attack that exploits

implicit information contained in logs. We show how attackers can steal system secrets

by using a rich existing body of work on side-channel analysis, in several disparate attack

scenarios. This chapter starts with a reproduction of two prior coarse-grained side channel

attacks. The first attack is a membership inference attack against MySQL databases by

inferring communication details between Nginx and the MySQL process by return values of

system calls made by both processes. Then, we port a classic keystroke detection attack [142]

against the SSH process with a timing side-channel attack. Finally we demonstrate first

fine-grained microarchitectural side-channel attack against system audit logs. The key idea

for this fine-grained microarchitectural side channels is inspired by clock-edge attacks [66,

68]; although log events themselves correspond to coarse-grain events, the order in which

log entries are written to the log can be a function of fine-grain timing behavior across

concurrent processes. We characterize the extent to which this idea can be used to enable

prior microarchitectural attacks such as NetSpectre [62] and remote memory deduplication

attacks [143]. In particular, our NetSpectre proof-of-concept (PoC) attack shows that our

timing side-channel attack is capabled of steal a secret bit in 470 seconds with 81.25% success

rate when an adversary can craft 12 memory loads [144].

Chapter outline. Since our attack is based on a potentially-unfamiliar threat model, we

explain the threat model of our work in Section 2.2. Then, Section 2.3 introduces two side-

channel attacks to illustrate how to exploit coarse-grained information contained in audit

logs. The first attack is a membership inference attack against a LEMP (Linux, ENginx,

MySQL, PHP) webserver’s MySQL database and second attack is a keystroke inference

attack against a server when an administrator victim remotely connects to the server via

SSH. Finally, we demonstrate how to create a fine-grained timing channel in Section 2.4.

2.2 THREAT MODEL

We wish to categorize the different types of attacks that arise from logs. Assume a system

with processes running concurrently, at least one of which interacts with some secret data x.

We define a system log L as a series of log entries, each of which is a tuple including various

16

Logs

Target Server
Attacker

1. Offline
Learning

2. Remote Interaction

3. Log Disclosure

Log events
generated

4. Analysis

Figure 2.1: Workflow for a Termite attack.

pieces of metadata along side the log content. Exact metadata depends on the logger, but

can include the process identifier and timestamp. There is a timer oracle that the logger

queries to generate timestamps. The timestamps faithfully represent the order in which the

timer oracle was queried, but events can later be written to the log in a different order.

If log entries are written to disk out-of-order, we can use the timestamps to reorder them.

Loggers track coarse-grained events, such that if two events sequentially happen in very short

duration of time, they may share the same timestamp due to the coarse-grained timer. This

means that it may be difficult to directly extract fine-grained information from log entries.

As such, the model puts no requirements on log granularity.

When viewed in this fashion, logs share similar characteristics to program execution

traces [74, 145]. Both are depictions of a program’s behavior. If a program interacts with a

secret, then information about the secret—or the secret itself—can be leaked by analyzing

the output of the log or trace. In other words, logs are a side channel, just as execution

traces are.

If we view logs like execution traces, the system’s interactions with the secret x will project

some information about x into the system log. The attacker’s analysis of the system log leaks

P , a set of possible values of secret x that can be inferred from L. The attacker’s goal is to

gather a sufficient number of logs from the system such that the range of P can be reduced:

ideally for the attacker, |P | = 1. However, noise from system execution may cause outlier

17

measurements such that an intersection is infeasible in practice. Thus, we instead formulate

this problem into a probability analysis, Pr(secret = x | L) ≥ τ : the attacker wishes to find

the probability of secret being x for a given log L is greater than a threshold τ .

Attack scenario. We assume a system that runs a public-facing application of some sort

as well as a system logger configured to record forensically-relevant system calls (Listing 1.1)

such that we configure our logs to have comparable configurations to the audit logs generated

by works described in Section 1.2.2. These logs are stored in the system for long periods of

time (Section 1.2.1). The applications may have their own logger, but we will focus on the

system logger. This application operates on secret data, and the attacker’s goal is to gain

access to the secret.

Generally, Termite attacks follow four phases, depicted in Figure 2.1. In the first phase,

offline learning, the attacker locally initializes a server with similar configuration as the

target and some value x′ in place of the true secret. The attacker uses this local setup to

measure and characterize the logs L′ to develop a plan of attack for the target. This gives

the attacker the insights necessary to find f and infer the true secret x. Prior literature in

de-anonymization [146, 147] terms this “fingerprinting”: comparing attributes of one object

to those of an object the adversary knows.

After offline training, the attacker is able to connect to the server over its public interface

during the remote interaction phase. Importantly, the server may or may not respond to the

attacker’s remote queries. For example, the server may display an identical error message

on its public interface for any invalid input. However, the server will record log events that

may contain additional information beyond its response.

At some point, remote interaction stops. Next, during log disclosure, the attacker receives

the logs. Finally, the attacker proceeds to the analysis phase and can use the logs to attempt

to infer the secret. The attacker uses their knowledge of application behavior to determine

secret information from the disclosed logs.

2.2.1 Disclosure Assumptions

We assume that the log the attacker receives has been redacted according to some system

policy to eliminate any explicit leakage of secrets not the log2. As such, we focus on implicit

leakage, in which information about a secret is encoded in the sequence of log events. We

assume that the secret is not directly disclosed to the attacker, i.e., not directly written

2We compare log confidentiality techniques in Section 1.3

18

to somewhere accessible by an attacker. We further assume that the only information the

attacker has available is the log and knowledge of the victim program and target platform.

We now discuss two possible forms of log disclosure.

Disclosure via privilege escalation. Since logs are typically stored in a protected di-

rectory (e.g.,, /var/log/ for LAS), privilege escalation may be necessary to extract them.

However, any privilege used to extract log data could be used to extract the secret directly,

making log analysis unnecessary. Logs are useful when the secret is ephemeral, i.e., only

available during a process and not after. If this were not the case, then An ephemeral secret,

on the other hand, is not disclosed with privilege escalation, because it no longer exists at

the time of log disclosure.

For example, consider the case of a user inputting secret commands into an interpreter

(e.g.,, [142, 148]). Even if an adversary were able to escalate privilege and access the user’s

system, the adversary would not be able to recover the commands inputted after the execu-

tion of the interpreter. However, the logs related to the user’s session may contain implicit

information about the commands.

A similar situation can arise, for example, when a remote resource is available during

execution (e.g.,, [149]) but not after. In general, any temporarily-available secret information

can be considered an ephemeral secret. We assume that if privilege escalation is used for log

disclosure, the secret must be ephemeral to necessitate a Termite attack.

Disclosure via shared logs. An organization’s log data can be used by other parties for

scientific purposes. For example, enterprise logs [123, 150, 151] help guide academic research

into systems architecture and security. Parties can share their logs among one another

after applying obfuscation techniques (e.g.,, [10, 123, 146]), but this sharing can also act

as log disclosure for a malicious party. If an attacker gains access to even obfuscated log

data shared under such a model, they can still execute a Termite attack, without requiring

privilege escalation on the target server.

2.2.2 Attacker Interaction

We define the types of interaction an attacker can perform prior to log disclosure. The

most obvious is an the passive setting, in which the attacker cannot interfere with the normal

operation of the system. Since log content is user-controlled, the attacker must use the offline

learning phase to identify what relevant user data sequences in L look like. This in addition

to the analysis required to reverse the log entry itself. The complement is the active attacker

19

Cloud Environment

Linux Instance

Nginx PHP

MySQL Database

login_db
SSH

HTTP/2
Requests

LAS

Figure 2.2: The architecture of our target system: a simple login application using the LEMP
stack. The relevant system calls of Nginx, PHP, and SSH are logged using LAS.

setting. The attacker injects data into the system to influence what data is logged, in an

attempt to add more information about the secret to the log.

Non-adaptive attack. Active Termite attacks are inherently similar to the non-adaptive

adversary used in Ind-CCA1 models [152]. Critically, the attacker only gets the logs after

the attack, and cannot continue to interact with the server once its logs are disclosed. Unlike

most attacks (e.g.,, [62]), the attacker gains no feedback from the log channel until after the

attack is executed. This means the attacker cannot modify parameters while the attack is

in progress. Known attacks do not immediately translate to the log setting; it is non-trivial

to apply adaptive attacks to the non-adaptive model.

Process view. Because a system logger is operating onm concurrent processes, potentially

from different users, it may include entries not relevant to the attacker. This can lead to

log entry interleaving between processes, i.e., for entries li, li+1, process identifiers pi ̸= pi+1.

This can result in noise that impedes the attacker, and, given sufficiently large m, slow down

the system logger. However, this multi-process view can also provide additional information

useful in deducing a secret shared by multiple applications.

2.2.3 Target System

To better describe Termite attacks, we develop a target system. Our attacks are general,

and can be applied to any system logger running against a service. The example serves

to build intuition about the impact of Termite attacks and show their practicality against

realistic deployments.

20

Consider an Nginx HTTP/2 web server running on a Linux cloud instance. The server is

configured to run PHP applications via its FastCGI process manager (PHP-FPM), which is

a standard setup for using PHP on Nginx. Additionally, the server can connect to a remote

MySQL database inside the cloud via PHP. This combination is commonly referred to as

a “LEMP” stack. For system administration, the cloud instance is accessible over SSH.

The cloud instance is configured to record forensically-relevant system calls for provenance

auditing using LAS (Section 1.2.2) with rules such as the one in Listing 1.1. LAS monitors

key system daemons, such as Nginx (nginx), PHP (php-fpm7.2), and SSH (sshd). A

diagram of our target system can be found in Figure 2.2.

The web server implements a simple login service as a PHP application, with a username

and password input field. When a user attempts to log in, the PHP application requests the

password hash for a provided username from a database, using the SQL query in Listing 2.1.

The resulting hash, if found, is a 60-byte value that is returned to the login application. If

the hashed password matches the database hash, the login is successful. However, our

application displays “Login failed.” to the user either if the password does not match the

hash (i.e., is incorrect) or if no hash was returned (i.e., the user is not found).

2.3 COARSE-GRAINED SIDE CHANNEL ATTACKS

Before we dive into a demonstration of fine-grained timing side channel attacks, we first

present two coarse-grained side-channel attacks to explain how implicit information in logs

can be leveraged to steal sensitive information. The first attack is membership inference

attack that infers whether an entry is included in the MySQL database based on system

calls made during communications between MySQL and Nginx. Then, our second attack

demonstrates porting a classical keystroke timing attack [142] against SSH. This attack

not only demonstrates a plausible timing side-channel attacks against audit logs, but also

explains workflow of system audit logger so that readers can fully understand the sources

of timing-related noises associated with logging. Then in Section 2.4, we show how we fully

leverage such information to launch clock-edge timing attacks.

2.3.1 Attacking Log Content

We start by showing how log content can be used to extract secrets. We build an active

membership inference attack against a database. In particular, we examine how LAS entries

for socket interactions contain fields that leak the presence or absence of a value in a database.

21

SELECT hash FROM login_db.login_table WHERE username = ? LIMIT 1

Listing 2.1: SQL statement executed by our PHP login application. The ? is replaced with
a user-supplied value.

type=SYSCALL msg=audit(1651701011.121:54441): arch=c000003e syscall=45

success=yes exit=87 a0=5 a1=7f8ce6a73067 a2=58 a3=40 items=0 ppid=3055

pid=3056 auid=4294967295 uid=33 gid=33 euid=33 suid=33 fsuid=33 egid=33

sgid=33 fsgid=33 tty=(none) ses=4294967295 comm="php-fpm7.2"

exe="/usr/sbin/php-fpm7.2"

↪→

↪→

↪→

↪→

Listing 2.2: Full LAS log entry for recvfrom when PHP receives a MySQL response that
does not include a password hash.

The attacker’s goal is to identify if the members of some set S are included in a column

of a database table. In the context of our target system, S would be a set of usernames

potentially in the login application’s database. The attacker, in this case, is interested if

the users of S are registered with our example service. While not traditionally considered a

secret, the registration status of user is still potentially sensitive. For example, the service

could be subversive (e.g.,, [153]) or taboo (e.g.,, [154]), and the attacker could use this

knowledge against the user as extortion or blackmail.

A conventional attack against our target system would be to launch a credential stuffing

attack [155], logging in with the usernames in S using the web interface (with random

passwords) and reading back the server’s response. The issue with this attack is the nature

of the “Login failed.” message, as described in Section 2.2.3. The attacker is unable to

discern if the login failed due to the username not being in the login database, or if the

username was in the database but the password was incorrect. Naive credential stuffing,

therefore, fails to infer registration status.

Implementation. We now show how a Termite attack on log content successfully infers

database membership.

Importantly, the SQL in Listing 2.1 will return the password hash only if the user is

actually in the database. Thus, for an invalid user response r, and valid user response r′,

the lengths have relationship |r| < |r′|. Moreover, since the lengths of password hashes are

fixed values [156], the difference between the lengths is |r′| − |r| = lh + lm, the length of the

password hash lh plus the length of any metadata lm different between the responses.

Since the php-fpm daemon is monitored by LAS, the log will contain information about

socket reads and writes, including those of its communication with the MySQL database.

22

type=SYSCALL msg=audit(1651701013.701:54492): arch=c000003e syscall=45

success=yes exit=88 a0=5 a1=7f8ce6a73067 a2=58 a3=40 [snip]

exe="/usr/sbin/php-fpm7.2"

↪→

↪→

type=SYSCALL msg=audit(1651701013.701:54493): arch=c000003e syscall=45

success=yes exit=64 a0=5 a1=7f8ce6a73060 a2=5f a3=40 [snip]

exe="/usr/sbin/php-fpm7.2"

↪→

↪→

Listing 2.3: Abridged LAS log entries for recvfrom when PHP receives a MySQL response
that does include a password hash. The total number of bytes received is 88 + 64 = 152.

LAS records return values of system calls in its exit= field; for the recvfrom system call,

this is the number of bytes read from a socket for a response.

With the above in mind, membership in the database is associated with either a larger or

a smaller response length; we can use this fact to infer it from LAS logs.

Offline learning. We first set up a local version of the login application and MySQL

database, inserting some users from S and random hash values with a fixed length lh into

the database. We can then perform login actions against this local instance.

First, we send a value not in our local database. The associated LAS entry for the

response r can be found in Listing 2.2. It is a recvfrom call (syscall=45) that reads 87

bytes (exit=87) from the socket associated with MySQL (a0=5 in hex) into a buffer. This

means an “empty” response |r| is 87 bytes long.

We then send a value that is in the database. LAS records two entries for the response

r′, as seen in Listing 2.3, abridged for clarity. There are two recvfrom calls, one reading 88

bytes (exit=87), and the other reading 64 bytes (exit=64), for a total response length |r′|
of 152 bytes. We have two log entries because the first recvfrom call reads only up to its

maximum buffer size of 88 bytes (a2=58 in hex).

The difference in bytes between the two cases is |r′| − |r| = 65: 60 bytes of the found

hash value (lh), and 5 bytes of metadata (lm). Thus, we now know that a value from S is

not a member of the database when we see a response recvfrom of |r| = 87 bytes, and is a

member when we see two response recvfroms of a total of |r′| = 152 bytes.

Remote interaction. With this information in mind, we attempt login for all of the

usernames s ∈ S, and recording a timestamp ts when we do. This timestamp will be

relevant in our analysis phase.

23

Log disclosure and analysis. After log disclosure occurs, we begin our analysis. We

apply our knowledge from the local training phase to look for recvfrom calls for MySQL’s

responses to PHP: an 87 byte entry for a username s means that it is not in the database,

while an 88 byte and 64 byte entry means that it is.

As discussed at the end of Section 2.2.1, the log entries of multiple processes could in-

terleave, creating noise for our analysis. This is where our timestamp ts for each username

attempted s helps. Each log entry li has some timestamp ti, and in LAS this is represented

by the msg=audit(...) field, as seen in Listing 2.2 and 2.3. Additionally LAS entries have

process identifier fields pi, exe=.... We can then attempt to line up timestamps, searching

for li such that ts ≊ ti and pi is our target process, php-fpm.

2.3.2 Attacking Log Timestamps

Our next attack utilizes the timestamp information embedded in logs to passively recon-

struct the keystrokes a user inputted into their SSH session. To best of our knowledge, this

is the first keystroke timing attack using only LAS logs.

Our attacker wishes to extract secret information that users type while remotely logged

in via SSH, such as passwords [142, 148, 157, 158]. We assume that forensically-relevant

system calls are logged for SSH on the server. We additionally assume the users of the

interest to the attacker have already performed their SSH session before logs are disclosed.

In other words, user keystroke information is already in the log. The attacker wishes to use

the timing between keystrokes to reconstruct the original typed information.

D E

Log entry
enqueued

auditd
receives entry

Log entry
dequeued

C

Kernel

A

Userspace

Syscall
finishes

Context
switch

Audit filter
checks the

syscall at exit

Serial number
generated

Log entry
created

Audit record
is generated

B

Syscall
begins

Syscall
exits

F

Figure 2.3: A workflow of system call logging, separated between userspace and the kernel.
The timeline shows relative times associated with selected event to show delays associated
with system call logging. For example, the delay and noise associated with timestamp
generation is B −A, those of serial number is D −A, and those of log entry orders in a file
F − A.

24

type=SYSCALL msg=audit(1651937384.644:1075): arch=c000003e syscall=0 success=yes

exit=36 a0=3 a1=7ffc41df88e0 a2=4000 a3=7ffc41dfc850 [snip]

exe="/usr/sbin/sshd"

↪→

↪→

type=SYSCALL msg=audit(1651937384.644:1076): arch=c000003e syscall=1 success=yes

exit=1 a0=9 a1=56064ad23020 a2=1 a3=7ffc41dfc850 [snip] exe="/usr/sbin/sshd"↪→

type=SYSCALL msg=audit(1651937384.644:1077): arch=c000003e syscall=0 success=yes

exit=1 a0=b a1=7ffc41df87b0 a2=4000 a3=7ffc41dfc850 [snip]

exe="/usr/sbin/sshd"

↪→

↪→

type=SYSCALL msg=audit(1651937384.644:1078): arch=c000003e syscall=1 success=yes

exit=36 a0=3 a1=56064ad0f370 a2=24 a3=7ffc41dfc850 [snip]

exe="/usr/sbin/sshd"

↪→

↪→

Listing 2.4: Abridged LAS log entries generated for a keypress of v over SSH.

Timestamps in LAS. A keystroke attack [142, 148, 157, 158] is fundamentally a timing

side-channel attack. As such, we must understand uncertainties associated with timing

measurements to ensure our channel is sufficient before we execute it. Our prior attack did

not require such an analysis, as it was not dependent on the timing of events to execute.

The lifecycle of an LAS log entry is shown in Figure 2.3. We focus our analysis on LAS’s

properties. However, the logging mechanism of the LAS is also found in other system audit

loggers [28, 159, 160, 161], so we believe our analysis on this logger can be generalized.

After a system call begins in userspace (time A in Figure 2.3), it makes a context switch

into the kernel. An audit record is is then generated (time B in Figure 2.3). This record

contains basic information like type of system call, values of system call registers, and a times-

tamp is polled from kernel’s timekeeping function called ktime_get_coarse_real_ts64().

This function provides a coarse-grained UNIX timestamp (≈ 3 milliseconds per tick) for

performance reasons.

The event we wish to analyze happens at A, when the system call begins; however, we

do not see a timestamp at B. Thus, For the purposes of building a timing attack, we must

consider the latency between the two: B − A. We analyze the function trace of the sys-

tem call entrypoint in the Linux kernel, do_syscall_64(). The first function entered is

syscall_trace_enter(), which leads to the function __audit_syscall_entry(), in which

the audit record and timestamp are generated. __audit_syscall_entry() is the first op-

eration that occurs once the kernel is entered, so latency between A and B is minimal, and

will not significantly impact our timing attack.

Implementation. Armed with our understanding of LAS timing, we can execute our

keystroke attack against our target system, as described in Section 2.2.3. The attacker is

25

specifically interested in the keystrokes a user inputs into their Bash shell when logged in

over SSH. Prior work has shown how operating system interfaces [158], network traffic [142]

or hardware side channels [148, 157, 162] can be used to extract keystrokes; we adapt it,

concretely, to the LAS setting.

The secret x in question is a user’s typed content into a terminal, such as a password.

This secret is ephemeral, and lasts only as long as the user’s session is active, making it an

attractive target for a Termite attack.

We must first understand how the log L is generated to extract the secret x. In an SSH

session, a remote user uses an SSH client to interact with an SSH server, which mirrors input

and commands from the client into a shell. When a user inputs a key, four key steps are

occurring:

1. The SSH server daemon receives a keystroke from the user’s SSH client as a network

packet.

2. The SSH server sends the user’s keystroke to the Bash shell interpreter that represents

the user’s remote login.

3. Bash, to provide the user with feedback, prints back the the keystroke as a character

to its standard output. This is immediately read back by the SSH server.

4. The SSH server provides a response to the user, sending this printed character back

to the SSH client.

All four of these steps require interaction with the kernel in the form of system calls, which

means each step generates an entry: l1, l2, l3, l4, with associated timestamps t1, t2, t3, t4. All

four steps are executed every time a key is pressed; thus, a subsequent keystroke may generate

log entries l′1, l
′
2, l

′
3, l

′
4 with timestamps t′1, t

′
2, t

′
3, t

′
4. It follows then that the inter-keystroke

timing is t′1 − t1, which can then be used to recover keystrokes [142]. The fingerprint is

the sequence l1, l2, l3, l4 that indicates a user typed a keystroke. We then use a timestamp

from this fingerprint, t1, to establish inter-keystroke timing. We choose t1 because the

original attack of [142] uses network timing to recover keystrokes, and t1 is related to network

processing; in practice, any of the entries’ timestamps can be chosen. In any case, inter-

keystroke timing recovers x, as required.

Offline learning. We first identify what LAS logs when a key is pressed over SSH. List-

ing 2.4 contains the four entries generated in sequence for a user keystroke. Each of the

four lines of Listing 2.4 corresponds to an entry l1, l2, l3, l4 from the workflow above. Step

26

(1) is represented by l1, which is a read (syscall=0) of 36-byte client packet (exit=36)

from the SSH server’s socket (a0=3 in hex). Step (2) is represented by l2, which is a write

(syscall=1) of the keystroke itself (exit=1) to Bash’s standard input (a0=9 in hex). Step

(3) is represented by l3, which is a read back of the now-printed keystroke (exit=1) from

Bash’s standard output (a0=b in hex). Finally, Step (4) is represented by l4, which sends 36

bytes (exit=36) representing the printed character back to the client over the network.

Each entry also contains a Unix timestamp in its msg=audit(...) field: t1, t2, t3, t4. As

discussed in Section 2.3.2, the LAS timestamp is relatively course grained – on the order

of milliseconds – but is actually sufficient granularity to launch the machine learning-style

analyses found in prior work [142, 157, 158, 162]. Intuitively, even advanced typists (e.g.,,

120 words per minute) need a few milliseconds to input a character, so LAS will record each

key press.

Remote interaction. As a passive attack, we do not interact with the server as an at-

tacker. To show the power of our attack, we instead design a experiment based on the classic

experiments from [142]: measuring the inter-keystroke timing between different pairs of key

presses, with the hope of distinguishing each key pair from another based on the timing

differences.

We perform two experiments. In the first, we measure the inter-keystroke timing of two

specific pairs – v-o and v-b – as done in [142]. Typically, v-o is typed with two different

fingers, leading to a smaller inter-keystroke timing than that of v-b. We perform the exper-

iment by logging into our server via SSH (as a user) and typing the character pair v-o 75

times. Then, we type the pair v-b 75 times. We will attempt to use our understanding of

the log to differentiate between the two.

Our second experiment attempts to generalize the first, assessing the timing properties of

several key pairs instead of just two. As a user, we once again login via SSH to our server.

This time, we type the sentence “the quick brown fox jumped over the lazy dog” 32 times.

This sentence is composed of 40 unique key pairs, each of which we hope to distinguish based

on log information.

Log disclosure and analysis. After we retrieve the LAS logs from the server, we must go

through the process of extracting timestamps from known keystroke log entries, as learned

from our local instance. We show the results of our first experiment in Figure 2.4. The

histograms show that LAS detects a clear difference in inter-keystroke timing between the

two pairs. This reproduces the original result of Song et al. [142], showing the potential of

LAS for this style of attack. Moreover, our attack did not require us to be collecting any

27

0 50 100 150 200 250 300
Inter-keystroke timing for v-o (milliseconds)

0

5

10

15

20

25

30
Fr

eq
ue

nc
y

0 50 100 150 200 250 300
Inter-keystroke timing for v-b (milliseconds)

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

Figure 2.4: Inter-keystroke timing for two keypairs, captured via LAS log entries for SSH.
Each keypair was typed 75 times.

data while the user is online; we can still extract keystroke timing well after the user has

completed their session.

The results of our second experiment can be found in Figure 2.5. Each curve in the

figure represents an estimated normal distribution over one of the 40 unique key pairs of the

sentence. We were able to record each key press in the LAS log with zero false positives and

zero false negatives. The distributions overlap, but are similar in form to the distributions

collected and analyzed by Song et al. [142]; this means that the techniques from that work

can be applied to LAS logs to reconstruct key press information.

We can consider an optimization to our attack when attempting to extract password

information only. In the naive case, we reconstruct all keystrokes and look for password

entries that way: for example, a password is likely entered after inferring the keystrokes

s-u-<RETURN>. This may be too much work if the log is sufficiently long.

Instead, we can use the following insight to focus our analysis: passwords are typically

not echoed back to a user, as a security measure. In practical terms, this means Bash writes

nothing back to its standard output when receiving a password input. In turn, Step (3)

in our interaction workflow does not happen, which means l3 in Listing 2.4 is not found

28

100 200 300 400 500
Inter-keystroke timing (milliseconds)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ili

ty

Figure 2.5: Estimated normal distributions for the unique key pairs of “the quick brown fox
jumped over the lazy dog”.

in a password keystroke’s log entry sequence.3 Thus, we know that if we see a sequence

that looks like l1, l2, l4, the user is likely entering a password; we can utilize our analysis

techniques against the timestamps of those associated log entries.

2.4 FINE-GRAINED SIDE CHANNEL ATTACKS AGAINST ORDERING OF LOG
ENTRIES

System auditing rarely requires that events have fine-grained timestamps. As such, logs

produced by audit frameworks like LAS have coarse temporal resolution. Secrets can still be

extracted from this coarse resolution, as the attack in Section 2.3.2 shows. Listing 2.2 shows

an example of LAS records; note that the Unix epoch timestamps are only in millisecond

granularity.

An intriguing question is if logs with such coarse timing can nevertheless be used to leak

secrets through finer-grained side channels. In this section we show how a Termite attack

can overcome the limits of coarse timestamps to construct a timing side channel based on mi-

crosecond or even nanosecond granularity. The demonstration is based on microarchitectural

3In our testing, Step (4) still occurs, regardless if there is a character to send or not.

29

side channels, and it is inspired by clock-edge attacks [66, 68]. The key idea in the attack

is to exploit the ordering between log events created by two processes where the ordering

leaks relative timing information between two events. This allows the attack to circumvent

the use of coarse timestamps in system auditing. We show how this works against LAS.

We focus on the active but non-adaptive scenario described in Section 2.2 for this attack:

the attacker can remotely interact with an application via the network and can influence

what is written by the system logger. This interaction model is common for remote timing

side-channel attacks [163]. Note that since the logs created by LAS are system-level logs,

the logs may contain information about any application running on the system, not just the

application of interest.

2.4.1 Attack Overview

We aim to build a timing side-channel attack to steal a secret bit. The attacker must

first ensure that a victim runs a data-dependent computation that leaks timing information

associated with the secret. For the remainder of this section, we call a code segment that

satisfies this a secret-dependent section. An example of a secret-dependent section would be

a branch on a secret flag bit (such as if(secret)). The secret flag determines whether the

branch is taken or not, and the computation time that corresponds to processing the branch

thus depends on the secret.

Prerequisites. Once such a vulnerability is found, the next step for the adversary is to

find methods to exploit latency differences caused by the secret-dependent section to in-

fer the secret bit. To successfully launch the clock-edge attack with audit logs, the attacker

must satisfy certain prerequisites. First, the attacker requires a pair of processes: a reference

process x, and a target process y that runs code in a secret-dependent section. The refer-

ence process has some characteristics that the attacker knows (or is able to learn offline),

and serves as the reference clock edge (or source of events that are generated at secret-

independent times). Second, the attacker should be able to actively control the concurrency

of two events. Ideally, attacker would remotely interact with the victim to ensure that the

two events start simultaneously. These match the prerequisites of a previous clock-edge

attack [68].

The logging setting, however, introduces an additional prerequisite. We assume that

each process should has a system call event that both happens after the secret-dependent

section and is logged by LAS. Preferably, a system call happens right after the secret-

dependent section to precisely measure the latency of the section, but any system call that

30

deterministically occurs after the secret-dependent region will suffice.

2.4.2 Clock-Edge Attacks against Logs

Our clock-edge attack aims to learn the system secret based on variations in system log

event orderings. There are two ways to infer ordering of system call events based on LAS

logs. The first way is to use the actual line orderings of two log event entry strings from the

log file to compare the ordering. The userspace daemon auditd simply writes each event

to an entry as it receives audit entries from the Netlink on a FIFO basis. Thus, if two log

entries are created at very similar times in the kernel, then whichever entry that is enqueued

faster will be ordered first. From Figure 2.3, the latency associated with this procedure is

from time A to time E.

However, there is an alternative way to find ordering of two events. Serial numbers for

log entries are implemented as incremental monotonic counters (like TCP sequence num-

bers); these numbers may also provide information on ordering of two events. The latency

associated with this procedure is from time A to time D in Figure 2.3; we can eliminate

uncertainties of further log processing in kernel after time D. Nonetheless, note that this

procedure occurs after the end of a system call execution at time C. Thus, our measurements

are inevitably affected by the behaviors of the system call being logged.

Prior work [68] performed a detailed analysis on effects of the jitter associated with con-

currency and processing time of requests. They concluded that this jitter can be reduced

with repeated measurements, assuming the measurements are normally distributed. To sup-

plement their analysis for our setting, we characterize the jitter associated with logging, and

measured the difference between the execution of a Linux system call and LAS receiving

the system call. From Figure 2.3, this is the time from time A to time D. We extended

LAS to include a cycle count (rdtsc) when an system call entry is processed. Then, we

executed system calls in userspace, logging cycle counts before their execution, and noted

the difference between userspace calls and kernelspace log entries. We specifically selected

system call parameters with error conditions, such as incorrect file descriptors, to limit noise

due to processing in the kernel. For example, we measured the close() system call on an

invalid file descriptor, and found a cycle count difference on average of only x̄ = 6420 cycles

(s = 728).

31

clock_nanosleep() write()

recvfrom()connect()

accept() write()

nginx

php-fpm

Figure 2.6: A workflow of system calls that are called during a request to the PHP endpoint.
System calls in red are those used for our attack. Solid arrows indicate two system calls
are directly related, while dotted arrows indicate they are not related but do happen in
sequential order.

2.4.3 Implementation

As described in Section 2.2.3, the victim runs a LEMP webserver, where Nginx uses PHP-

FPM for handling requests to PHP endpoints. Adversaries can remotely interact with the

webserver over these endpoints. Also, major browsers only allow HTTP/2 protocols over

TLS [68], so our victim webserver accepts secure connections via HTTPS.

The webserver is composed of two PHP endpoints where one endpoint sleeps for 100,000

nanoseconds (using PHP’s time_nanosleep()) where as another endpoint sleeps for 100,000

+ ∆ nanoseconds. The different duration of the sleep simulates the different computation

time of the aforementioned secret-dependent sections. The adversary’s goal is to send a pair

of concurrent requests to victim’s two endpoints and make a conclusion on whether the ∆ is

equal to zero. The smaller the ∆, the finer-grain the side channel that we create. For each

request pair, one request is sent to the 100,000 nanoseconds endpoint, and another is sent to

the remaining endpoint. In particular, our implementation is analogous to that of the prior

work [68] against HTTP/2.

Our evaluation machine runs a Intel Core i7-10750H CPU at 2.60GHz and has 16 GB of

RAM. Note that this processor has 6 cores and 12 threads; this multi-core setup works to

our advantage, as we are able to leverage concurrency [68] to execute our attack.

32

Offline learning. Before launching the attack, the adversary must investigate which sys-

tem calls could fulfill the prerequisites that we previously mentioned. A simplified workflow of

system calls that happen during request handling by our webserver is described in Figure 2.6.

After Nginx receives a request and processes its header, Nginx establishes a connection with

PHP-FPM for further request processing to a PHP endpoint. Then, PHP-FPM runs a

clock_nanosleep() system call to sleep the execution with nanosecond granularity. This is

the first system call event that is closest to the secret-dependent section as the system call

itself is secret-dependent with secret being the duration of sleep. While clock_nanosleep()

is not part of forensically-relevant system calls that we defined in Section 2.2, measurements

from this function can provide a baseline of our timing side channel since the log entry

would be created right after the secret-dependent section. In other words, the latency be-

tween actual event and serial number generation is minimal. This latency is expressed as

time between C to D in Figure 2.3.

A real-world system is unlikely to be recording clock_nanosleep() events, though. When

auditing the forensically-relevant system calls that occur after the secret-dependent section,

there are several other system call events that attacker can exploit, but we primarily focus

on two system calls closest to the secret-dependent section. The first event is write(). After

PHP-FPM finishes sleeping, it performs a write() to a stderr stream.

Then, PHP-FPM returns a response back to Nginx via writing to a file descriptor socket.

Nginx receives the data through socket with a recvfrom() call. This is the second forensic

event that we are interested in. When assessing distance from the secret-dependent section,

clock_nanosleep() is closest, write() is next and recvfrom() is furthest among the three.

The attacker must be able to adjust the delay between requests dy such that two requests

are processed concurrently. Prior work [68] has shown that an effective way of doing this

against PHP endpoints is to vary the number of request parameters: the more request param-

eters, the longer processing takes. We sent two requests at our PHP endpoints, setting ∆ = 0,

and modified the request parameters until both requests concurrently executed. When learn-

ing this parameter for each of three system call cases, we discovered that each case required

a different number of parameters. For our machine, attacking against clock_nanosleep()

at PHP required 105 parameters, write() at PHP required 55 parameters, and recvfrom()

at Nginx required 65 parameters.

Remote interaction. Our remote interaction mimics our offline learning setup. As men-

tioned previously, there are two endpoints in our webserver and for each request pair, we send

each request to each endpoint. The attacker varies request parameters to ensure concurrent

processing of the requests.

33

We forked the Python client of [68] that sends concurrent request pairs, but changed its

socket options. Instead of using TCP CORK to ensure two requests being sent concurrently with

Nagle’s Algorithm, we chose to utilize TCP QUICKACK for performance, following a suggestion

from John Nagle [164]. [68] also showed how jitter associated with network communication

does not affect measurement, so we conducted our experimentation in a localhost setting

for simplicity.

Log disclosure and analysis. We now evaluate this timing side channel created by log-

ging of concurrent system events in two aspects. First, we evaluate how fine-grained the

channel can be to reliably distinguish timing differences between two processes. The finer the

timing difference, the higher the probability existing remote timing attacks will be successful

with our channel. Second, we evaluate the effects of aforementioned sources of latency/noise

in our attack by quantifying the number of measurements required to reliably transmit secret

bits. The practicality of our attack is proportional to the number of log entries (the number

of requests made by adversary) it requires: the fewer log entries required, the better.

The resultant logs can be parsed into a series of binary Boolean vectors with size of n.

Each vector represents a binomial distribution of whether the request of longer sleep is

logged later than that of shorter sleep. If two requests sleep the same amount of time (i.e.

∆ = 0), the distribution will be uniform whereas if one request is supposed to take longer

than the other (i.e. ∆ ̸= 0), then the distribution will not be uniform. We consider the

uniform distribution to be the null hypothesis; we distinguish the timing difference ∆ with

95% confidence based on whether the distribution is uniform or not.

Table 2.1 shows the result of this experimentation for various different timing differences

that we are able to distinguish with 95% confidence. Note that all numbers represent the

number of request pairs – the actual number of requests are two times what the number

suggests. When the timing difference required more than 50,000 requests pairs to be dis-

tinguished, we concluded the timing difference to be effectively indistinguishable. Sending

50,000 request pairs and receiving responses took approximately 51 seconds when each re-

quest pair had 0.1 ms of delay. We observe that as the system call event moves further

from the secret-dependent section, the required number of request pairs increases. This

is expected as the jitter increases when system call events move further from the secret-

dependent section. More measurements are required to normalize the distribution of jitter.

Overall, when considering an ideal case with clock_nanosleep(), the timing channel we

create can distinguish timing differences in the 100s of nanoseconds.

34

Table 2.1: The number of minimum request pairs required in order to distinguish the timing
difference between two requests with 95% confidence. If the number of request-pairs is higher
than 50,000, then we mark it as -. We conduct measurements against three system calls where
clock_nanosleep(2) simulates secret dependent section, then write(2) to stderr stream,
and Nginx receives computation results from PHP with recvfrom(2).

Audited System Call
Events

100ns 200ns 500ns 1µs 2µs 5µs 10µs

clock_nanosleep(2) at
PHP-FPM

- 50,000 30,000 10,000 3,500 750 100

write(2) at PHP-FPM - - - - 12,000 4,000 200
recvfrom(2) at Nginx - - - - 50,000 25,000 200

2.4.4 Case Study: NetSpectre

The channel generated by the remaining (forensically-relevant) system calls, while more

coarse-grained, is still fine enough to mount a µArch side-channel attack. We demonstrate

this with our proof-of-concept (PoC) NetSpectre attack with multiple loads [144]. We imple-

ment our NetSpectre PoC on the same setup as Section 2.4.3, except we use FastCGI end-

points written in C++ instead of PHP endpoints. The server is consisted of two endpoints,

one reference endpoint that runs 16,500 iterations of empty loops and another endpoint with

leak gadget that is followed with transmit gadget. We use these empty loops as the reference

endpoint for simplicity, but, as mentioned in Section 2.4.3, the attacker can vary the number

of request parameters to the PHP endpoint to manipulate the endpoint execution time.

Each endpoint makes a system call close(2) where reference endpoint makes it after the

loop and endpoint with gadgets makes the call after the transmit gadget. Note that this

system call is one of aforementioned forensically-relevant system calls from Section 1.2.2.

We choose cache-induced gadgets for this PoC as we leverage a recent Spectre attack with

multiple loads [144]. Thus, our gadgets are consisted of multiple memory block accesses,

and we show how the number of accesses impact error rates of NetSpectre attack by testing

against gadgets with the number of memory blocks (N) = {1, 4, 8, 12}.
Each experiment is consisted of 20,000 batches where each batch begins with five training

requests-pairs to mistrain branch predictor associated with the leak gadget, and one test

request pair to measure latency due to cache hits or misses after running the transmit

gadget. Thus each experiment is consisted of 120,000 request pairs, resulting in 240,000 log

entries associated with the experiment. Sending these request pairs and receiving responses

took approximately 470 seconds when each request pair had 0.5 ms of delay, and each log

file after the experiment had size of around 110 MB.

We ran 20 experiments for each N with 10 rounds against cases when secret bit is 0 and

35

remaining rounds against cases when the bit is 1. Each N is associated with twenty log files

as a result. We used first four log files (two when secret bit is 0, the remaining when the

bit is 1) as our offline learning to find the threshold of distinguishing whether the ordering

of log entries follows the uniform distribution or not. Then this threshold was used against

remaining 16 log files to infer whether the secret bit was 0 or 1.

Under this setup, our PoC with N = 12 had error rate of 18.75% (3/16), and for N = 8

we had error rate of 25% (4/16). For N = 4 and N = 1, the error rate was around 50%

such that our attack was not able to distinguish whether secret bit is 0 or 1. Nonetheless,

we show that with our ostensibly coarse-grained log-based channel, we are able to extract

fine-grained information from µArch state. To our knowledge, this is the first attack that

successfully implements a µArch side-channel attack through system audit logs.

As an aside, we believe that our PoC shows that our timing side channel is fine enough

to conduct other attacks, such as the recent memory deduplication attack [143], where the

∆ of interest is in range of twenty microseconds. Furthermore, the authors of [143] conduct

an attack like that of Timeless Timing attack [68] in their work, so we believe reproducing

their work in our setting is highly plausible.

2.4.5 Limitations

Generally speaking, our threat model focuses on non-adaptive attacks, so a large number of

remote timing attacks cannot be trivially ported to the audit logs setting. Additionally, our

attack places an emphasis on attacker interaction by its nature: the attacker generates logs

through server interaction, and extracts data from the generated logs. A more sophisticated

analysis could elide this requirement, and consistently work against on passively-collected

logs. Building such an analysis is an interesting direction for future work.

We leverage concurrency to potentially extract µArch-level information from system logs.

While the attack introduces a novel threat vector, it has certain limitations derived from its

properties. As a concurrency-based attack, the attack requires training to understand the

baseline features of the system. However, as a log attack, we are in the non-adaptive setting,

and therefore this training must be performed on an attacker-controlled system, instead of

on the victim server. Thus, if an adversary were unable to perform baseline training offline,

this attack would be infeasible as presented.

36

2.5 CONCLUSION

We present Termite attacks, a new class of attack that reconstruct secret information

from implicit log information. Termites are non-adaptive, remote attacks that rely on system

loggers such as LAS to uncover secrets through data dependencies. We show how different log

content, timestamps, and ordering can be exploited to construct different types of attacks.

These attack parameters are general, and thus future research must be done to identify

barriers to prevent logs from being attacked by Termites. In following chapters, we propose

two countermeasure schemes to address aforementioned threats against logging.

37

CHAPTER 3: DOVE: DATA-OBLIVIOUS VIRTUAL ENVIRONMENT

3.1 INTRODUCTION

In this chapter, we demonstrate how to systematically decouple sensitive information from

logs. This work [17] is originally designed for outsourcing of secure computation.

Consider for example three competing drug companies investigating genomic factors for

bipolar disorder. These companies would like to share their proprietary genome data and

run a controlled study that releases only agreed-upon information to the three participants.

Trusted Execution Environments (TEEs) enable such use cases, without requiring trust in

remote administrator software stacks such as operating systems, using a combination of

hardware-level isolation and cryptographic mechanisms.

Here, we face a challenging problem. To achieve complete security from untrusted software,

it is well known that TEE software must be hardened to block a plethora of microarchitec-

tural side channels (e.g., [52, 53, 79, 81]). Yet, existing software-based techniques to block

these channels—coming from a rich line of research in data-oblivious/constant-time pro-

gramming [76, 89, 91, 99]—fall short of protecting existing high-level language stacks such

as R, Ruby and Python. Specifically, these techniques typically require experts to manually

code core routines [89, 90], require the use of custom domain-specific languages [93, 101],

or only apply to close-to-metal compiled languages [76, 91]. Modern high-level languages,

however, require complex stacks to support interpreted execution, just-in-time compilation,

etc. As a case-in-point, the popular R stack features almost a million lines of code written

in a combination of C, Fortran, and R itself [69]. Subtle issues in any of this code create

security holes.

In this chapter, we introduce a project that extends data-oblivious/constant-time tech-

niques to apply to existing high-level, interpreted languages, thus enabling TEE-level security

for non-experts. The key strategy and insight is this: if key observable features of a compu-

tation are truly independent of sensitive data, then that computation can be carried out with

a collection of stand-ins for the data. We call these stand-ins “pseudonyms”.

To exploit this idea, we design “Data-Oblivious Transcript (DOT)”, a log that serves as an

intermediate representation of original high-level language script. This DOT is transcribed

by DOVE frontend, which runs the target computation on pseudonyms (NOT on secret

data) in the chosen high-level language, like R or Python. Note that this log is akin to a

straight-line code representation of the original program, i.e., the transcript of operations

performed when the program is evaluated on the pseudonyms. Thus, DOT is only composed

38

of data-oblivious primitives and pseudonyms such that it contains no sensitive information

as a result. Then, the DOT is evaluated by the backend data-obliviously, on sensitive data

that backend received via a secure channel.

Putting it all together, we design and implement an instance of the above architecture,

called the “Data-Oblivious Virtual Environment (DOVE)”. As a proof-of-concept, we de-

velop a DOVE frontend that translates programs written in the R language to a DOT

representation and design a backend that evaluates the DOT on sensitive data inside of an

Intel SGX enclave.

To validate DOVE, we show how to support a third-party library of genomics analysis

algorithms written in R [165], which we call the evaluation programs. Out of 13 evaluation

programs, DOVE can run 11 of them, with these 11 totaling 326 lines of R code. For 10 of

the 11 above programs, our frontend can automatically convert the unmodified R program

into the DOT language; converting the remaining case required manual user intervention

because of a programming construct not yet supported by our frontend. We collect perfor-

mance benchmarks on these programs with a real-world genomic dataset consisting of three

populations of honeybees [136].

3.2 THREAT MODEL

In this chapter, we consider a setting where one or more users submit data to an untrusted

server that computes on said data in a high-level language such as R. The server hosts

SGX as well as a regular software stack outside of SGX. The user(s) and SGX hardware

mechanism are trusted. The program computing on user data, like the R interpreter and

evaluation programs, is assumed to be non-sensitive. No software running on the remote

host outside of an SGX enclave is trusted—this includes the supervisor software stack, disks,

the connection between client and server, and the other hardware components besides the

processor hosting SGX. Per the usual SGX threat model (Section 1.2.5), we assume the

OS is compromised and may run concurrently on the same hardware, such as in adjacent

hyperthread/SMT contexts, on neighboring physical cores, etc.

Security goal. Our goal is to prevent arbitrary non-SGX enclave software from learning

anything about the users’ data, other than non-sensitive information about the data such

as its bit length. Given SGX’s architecture, this implies protecting user data from leaking

over arbitrary non-speculative µArch side channels (Section 1.2.3), given the powerful SGX

adversary described in Section 1.2.5. This is formalized in our security analysis (Section 3.6).

39

1 geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA

2 geno <- as.matrix(geno)

3 n0 <- apply(geno==0,1,sum,na.rm=T)

4 n1 <- apply(geno==1,1,sum,na.rm=T)

5 n2 <- apply(geno==2,1,sum,na.rm=T)

Figure 3.1: R code snippet. geno is a sensitive diploid dataset.

Security non-goals. We do not defend against hardware attacks such as power analy-

sis [166], EM emissions [167], compromised manufacturing (e.g., hardware trojans [168]),

or denial of service attacks. Also, our current implementation does not have mechanisms

to mitigate speculative execution attacks [169] beyond default SGX protections (e.g., flush-

ing branch predictor state on context switches [170]). If additional protection is needed,

our backend (an SGX enclave) can be re-compiled with a software-level protection such as

speculative load hardening [171].

Functional correctness. While we designed DOVE to preserve semantic equivalence

(functional correctness) between the input high-level program and output DOT plus its

subsequent execution, we do not have a formal proof that our implementation does indeed

preserve semantic equivalence. This is in line with other data-oblivious compilation frame-

works (e.g., [102]) and we consider such end-to-end verified compilation to be important

future work. Note that even if the DOVE frontend has bugs, leading to functionality- or

security-related issues, our security guarantee in Section 3.6 still holds.

Note, when we refer to trusted computing base (TCB) we mean the DOVE software that

must function as intended—i.e., be free of logic bugs and control-flow hijacking vulnerabilities—

for security to hold.

3.3 ATTACK EXAMPLES

A major problem this chapter addresses is how to protect R programs from the SGX

adversary. As a starting point, imagine we try to run secure R code by moving the whole

R stack into the SGX enclave (which is the approach taken by prior work [82, 83]). We

demonstrate subtle µArch side-channel attack vectors that come up in this approach, using

the code snippet in Figure 3.1 as a guiding example. This code is found in 4 of 13 evaluation

programs that form a public repository of code for genomics research. Three additional

programs from these evaluation programs feature a similar snippet. We explain what these

programs are in Section 3.7.2. The program takes as input a set of samples made up of diploid

40

Single Nucleotide Polymorphisms (SNP) sequences and outputs the number of samples that

express a given genotype for each SNP position. We use R version 3.2.3 to illustrate these

attack examples.

3.3.1 Example Walkthrough

The program represents the database of samples as geno, an m by n matrix, where each

column is one of n samples, each of which has m SNP positions. Each position in the matrix

has a genotype, denoted as an integer 0, 1 or 2. The sensitive data is the contents of geno,

namely which genotype each SNP is for each sample. The matrix dimensions (m and n) are

non-sensitive.

Computationally, the code works as follows. Line 1 sanitizes the input database: any

entry that is not one of the three allowed genotypes is replaced with the special value NA

(Section 1.2.4). This occurs in real data due to noise in the sequencing process; in particular,

1.5% of the SNP entries in the honeybee dataset that we use in Section 3.7.2 are marked as

NA. The code first computes element-wise filters geno != 0, geno != 1, geno != 2, each of

which produces a matrix of booleans (a mask) indicating whether the condition is satisfied

for each SNP position in each sample. The logical AND (&) performs element-wise AND of

these 3 masks (producing a new mask) which is used to conditionally assign elements in geno

to NA. Then, the code in Lines 3–5 produces three vectors n0,n1,n2, where R “applies” the

sum() function on each row (specified by the second argument 1) such that each vector is

the count (sum on rows) of the number of samples that express each genotype.

Given the above code, the adversary’s goal is to learn the genotype at each SNP position—

that is, whether the value of each cell in geno is 0,1,2 or NA. Importantly, given no additional

information about R’s implementation, the R-level code in Figure 3.1 follows guidelines

for achieving data-obliviousness (Section 1.2.6), which would seemingly prevent leaking the

above information. For example, it applies simple arithmetic/logical operations element-

wise over matrices of non-sensitive size, performs a count over a subset of samples with a

non-sensitive length, etc. Yet, as we now show, this code nonetheless leaks privacy through

µArch side channels.

3.3.2 Logical Operators

We start with Line 1 in Figure 3.1, specifically the logical & operations performed be-

tween the masks. At the level of R code, these look like safe data-oblivious operations

(Section 1.2.6). Recall that the dimensions of geno are non-sensitive. Thus, combining each

41

mask with & entails performing a data-independent number of simple logical operations (&);

this is traditionally regarded as safe.

Yet, this code is not data-oblivious thanks to the transformations it undergoes in the R

stack before reaching hardware.

First, the code is transformed from R into C calls by the R interpreter, shown in Fig-

ure 3.2a. When R interprets &, it invokes the C routine given in Figure 3.2a. This snippet

takes different code paths, depending on the values of x1 and x2, which the SGX adversary

can detect by single-stepping [88] or by replaying the victim [81] and measuring time, branch

predictor state, etc. (see below). In this case, the attacker learns if one of x1 or x2 equals

0. Since this & is applied to each SNP position of each sample, this information is leaked for

every SNP position.

Second, the compiler compiles the resulting C into assembly, which leaks additional infor-

mation. Consider Figure 3.2b, which is the assembly for Lines 1 to 2 in Figure 3.2a, Note

that the C standard requires short-circuit evaluation for the logical || operator such that if

the left operand is true, the right operand is not evaluated. Depending on the outcome of the

left predicate x1 == 0, the code at the assembly level will again take different paths. Hence,

the attacker learns not only whether one of x1 or x2 equals 0, but also learns information

about which one of them equals 0.

Table 3.1 counts the number of instructions executed at the assembly level for each possible

input to &. Confirming the above explanation, we see that the instruction count equals 45 if

and only if x1 equals 0. Thus, the adversary learns whether this is the case if it can monitor

a function of the instruction count. Other cases leak other pieces of information such as

whether both x1 and x2 equal 1.

To test how small differences in instruction count translate into measurable effects, we

conduct a simple experiment. We measure the number of cycles taken to evaluate one

million iterations of expression 0 & 0 against those of 1 & 0. Note that the execution

length of these two expressions only differ by two x86-64 instructions in Table 3.1. Having

access to a large number of measurements may occur naturally, e.g., if the sensitive data is

accessed in a loop, or if the attacker performs a µArch replay attack [81]. We make 100 trials

of such measurements against R with the Intel Performance Counter Monitor (PCM) [172].

On average, it took µ00 = 73.9 million cycles (σ00 = 441K) for (0 & 0), but it took µ10 =

75.2 million cycles (σ10 = 416K) for (1 & 0) on average; the cycle count differences vary by

a noticeable margin in the evaluation of these two expressions.

Similar issues exist for other logical operators | and xor(). In fact, xor() is implemented

using R-level & and | operators. Even binary comparison operators such as == and != have

similar issues. For example, R’s implementation of both these operators uses branches at

42

1 if (x1 == 0 || x2 == 0)

2 pa[i] = 0;

3 else if (x1 == NA_LOGICAL || x2 == NA_LOGICAL)

4 pa[i] = NA_LOGICAL;

5 else

6 pa[i] = 1;

(a) C source code snippet of the & operator implementation.
; x1 in [rbp-0x58], x2 in [rbp-0x54]

a8: cmp DWORD PTR [rbp-0x58],0x0 ; x1==0

ac: je b4 ; if true, jump to pa[i]=0

ae: cmp DWORD PTR [rbp-0x54],0x0 ; x2==0

b2: jne cf ; if false, jump to else if

b4: mov rax,QWORD PTR [rbp-0x50]

b8: lea rdx,[rax*4+0x0]

c0: mov rax,QWORD PTR [rbp-0x8]

c4: add rax,rdx ; calc addr of pa[i]

c7: mov DWORD PTR [rax],0x0 ; pa[i]=0

cf: ...

(b) The Intel-syntax x86-64 assembly for Lines 1 and 2 of the C code in Figure 3.2a, lightly edited
for clarity.

Figure 3.2: The R interpreter implementation of the & operator.

Table 3.1: The associated x86-64 instruction counts for different permutations of x1 and x2

fed as input to & in R.

Expression Value Instruction Count
0 & 0 0 45
0 & 1 0 45
1 & 0 0 47
1 & 1 1 54
0 & NA 0 45
1 & NA NA 57
NA & 0 0 47
NA & 1 NA 53
NA & NA NA 53

the R level to first check if either operand is NA.

3.3.3 Functions

Aside from R-level primitive operators, R also has a large library of functions written in

either R or C. In Figure 3.1, we see base R functions as.matrix(), apply(), and sum(). The

as.matrix() function simply converts geno to a matrix object, similarly to dynamic_cast

in C++.

In Line 3, geno==0 produces a matrix of booleans (a mask) similar to those created on

43

Line 1. Then, apply() invokes the sum() function for each row (dimension 1) that counts

the occurrence of TRUE in each row of the argument matrix. Calls to apply() in Lines 4-5

have similar issues.

sum() for integers and booleans is implemented in C as isum() in the R source [173].

Interestingly, this code does perform accumulations data-obliviously; that is, each boolean is

treated as 0 or 1 and accumulated without a branch that checks if (TRUE) or if (FALSE).

Yet, the code does still branch based on whether the current value is NA before accumulation,

once again leaking which entries are NA.

3.3.4 Data-Dependent Constructs

Finally, any code construct that is not data-oblivious in C is more-than-likely not data-

oblivious in R. For example, an if statement in C with a sensitive predicate can reveal that

predicate to the SGX adversary [46, 47]. Likewise, an if statement in R with a sensitive

predicate causes an even larger (easier to measure) perturbation in program execution, due

to the additional steps taken to execute that branch on hardware.

3.3.5 Discussion

These examples are only a small subset of the parts of R that leak sensitive informa-

tion. R is a large code base comprising 992,564 lines of code with sophisticated runtime

mechanisms such as just-in-time compilation [174], and is composed of hundreds of API

functions and other features, implemented in a combination of R, C and Fortran [69].4

Not to mention, even when an R script makes it to assembly code, we must still worry

about microarchitecture-specific unsafe instructions that modulate hardware resources as a

function of their input operands (e.g., [48, 49, 74, 99]).

This presents a serious security problem. Many data scientists and statisticians use R to

compute on sensitive data every day. Clearly, it is not tractable for these users to understand

the security implications of the code they write. At the same time, R’s large code base

makes manually patching data leaks inherently haphazard and error prone, even for security

experts. As a result, experts have hitherto focused on replicating R’s functionality in a new

language/stack [93].

In the next section, we address this challenge by designing the first secure R stack, where

data scientists can program in (nearly) unchanged R, interact with the same R functionality

4Specifically, there are 388,141 lines of C, 345,547 lines of R and 258,876 lines of Fortran in the version
of the R source we used for this chapter.

44

with which they are familiar, and have strong confidence there are no latent side channels.

3.4 DESIGN

We now describe the Data-Oblivious Virtual Environment (DOVE). This begins with

a design overview and summary of design benefits (Sections 3.4.1, 3.4.2). Section 3.4.3

discusses the Data-Oblivious Transcript (DOT), which serves as the link between high-level

programming and data-oblivious execution. Section 3.4.4 discusses the DOVE frontend,

which is a set of classes that convert R code into the DOT, using pseudonyms instead of

sensitive data. Finally, Section 3.4.5 describes the DOVE backend, an SGX enclave that

converts the DOT operations on pseudonyms to data-oblivious computation on the actual

sensitive data.

3.4.1 Design Overview

As stated in the threat model (Section 3.2), DOVE’s security objective is to evaluate

programs written in high-level (e.g., interpreted) languages in a data-oblivious manner. The

key insight is that an operation that is truly data oblivious does not require the actual

data to be present. Instead, the operation can take place on a pseudonym of the data.

These pseudonyms have the same interface as normal data of the same type and support

the same operations. For example, matrices are replaced with matrix pseudonyms, and

matrix pseudonyms can be computed upon using the same operations as normal matrices

(e.g., element-wise addition, matrix multiplication). However, the pseudonym contains no

sensitive data, i.e., all of its data entries are replaced with ⊥. This pseudonym is constructed

solely through non-sensitive information specified for each pseudonym, such as, for matrices,

the number of rows and columns. However, since the pseudonym does not actually have the

data, any operation on the pseudonym is functionally equivalent to a NOP, i.e., ∗ ⊕⊥ → ⊥
where ∗ is a wildcard for any data value and ⊕ is an operation on the data. Instead,

the operation performed is appended to a log. This log, which we call a Data-Oblivious

Transcript (DOT), is thus akin to a straight-line representation of the execution of the input

program. The DOT can then be replayed on the actual data, executing the same operations

as the input program.

With this in mind we propose the following architecture, shown in Figure 3.3. Our ar-

chitecture is broken into two components, making up a frontend and backend. Each of N

clients runs the same input — a common (non-sensitive) high-level program — in their lo-

cal environment (“frontend”). The frontend replaces any references to sensitive data with

45

pseudonyms and generates a DOT of the input program. Although only a single DOT needs

to be generated for evaluation later on, each client can optionally compute its own DOT

for program integrity-checking purposes (see Section 3.4.4 for more information). This TEE

(“backend”) hosts the DOVE virtual machine, which is built with data-oblivious primitives.

The virtual machine checks that all DOTs are equivalent (optional, for integrity) and runs

the operations listed on the actual data.

Intuition for security comprises two parts. First, because the DOT is conceptually an

execution trace, the backend TEE evaluates the same operations in the same order as the

R program input to the frontend, regardless of the sensitive data provided to the backend.

Importantly, the DOT was not created using any sensitive data, so the functions listed in

the DOT are inherently independent/oblivious of that data. Second, we will architect the

backend to ensure each operation is data oblivious, using well-established techniques for

constant-time/data-oblivious execution.

The above architecture is general. The frontend can be adapted for different high-level

languages (e.g., R, Python, Ruby), and the backend can be implemented for a variety of

TEEs (e.g., SGX, TrustZone). For the rest of the section, we explain, design, and evaluate

ideas assuming the frontend input language is R and the TEE is SGX.

Sensitive & non-sensitive Data. Our goal is to make execution independent of sensitive

data from a µArch side channel perspective. However, like other systems enforcing a sim-

ilar information flow policy, DOVE allows for non-sensitive (i.e., public) data to influence

attacker-visible execution. This is an important performance optimization. For example,

matrix operations on rows and columns are common in our target domain; such operations’

performance is largely a function of the matrix dimensions, which are usually non-sensitive.

DOVE performs optimizations based on non-sensitive data during DOT construction (in

the frontend) by generating the DOT with concrete non-sensitive inputs. This includes

concretizing dimension arithmetic, loop bounds and control flow—when they are not a func-

tion of sensitive data. As we discuss in Section 3.4.4, certain constructs such as loops with

sensitive loop bounds are disallowed.

3.4.2 Benefits of Proposed Architecture

The above two-phase architecture has the following security, performance, and extensibil-

ity benefits.

• Small trusted computing base. The only part of the DOVE architecture that

actually handles sensitive data is the backend, which is made up of a relatively small

46

Figure 3.3: High-level overview of DOVE. Bold-face arrows between nodes represent com-
munication over (mutually-authenticated) TLS, while thinner ones are intra-process com-
munication within a component. Shading indicates the location of our trusted computing
base (TCB).

C/C++ codebase featuring 7,001 lines of code, 4,295 of which consist of a previously-

vetted, external data-oblivious fixed point library [48]. Importantly, the R stack (with

its almost 1 million lines of code [69]) is not in the trusted computing base.

• No use of cryptographic encrypted computation. Our design performs data-

oblivious computation without resorting to encrypted computation techniques (such

as homomorphic encryption and garbled circuits).

• Minimal changes to programmer-facing interface. The DOVE frontend per-

forms a set of automated transformations (e.g., if-conversion, converting loops with

early exits to guarded loops [99, 102]) to make input R code compatible with DOT se-

mantics. As we show in our evaluation, the client can typically submit their unmodified

R programs to the frontend and therefore is not required to learn a new language.

• Extensibility to other languages. Because the DOT decouples R semantics from

backend semantics, DOVE can in principle support additional languages by imple-

menting a new frontend without rewriting the backend.

• Extensibility to other threat models. Because the DOT decouples backend se-

mantics from R semantics, if a new µArch side channel is discovered that undermines

47

Figure 3.4: A DOT (left) and its associated R program (right). The matrix x corresponds to
the pseudonym $1 in the DOT, and the loop index i with \1. 1○ corresponds to line 1 of the
program, 2○ the for loop on line 3, 3○ the if statement on line 4, and 6○ the assignment in
line 5. Intermediate values are stored in variables marked with %, and constants are declared
using #.

backend security, the backend can be patched locally without necessarily making a

change to the frontend.

3.4.3 Data-Oblivious Transcript (DOT)

The Data-Oblivious Transcript, or DOT, forms the core of the DOVE architecture, bridg-

ing an input program written in a high-level language with data-oblivious execution on a

secure enclave. The DOT is designed to be built using only parameters related to the com-

putation that are non-sensitive (such as data size). Because DOTs in DOVE are generated

automatically, the client programmer does not need to learn the DOT language to write

data-oblivious code. Once generated, the DOT is sent to the backend, where it is used to

“replay” the same operations on the actual data (Section 3.4.5).

What to include in the DOT semantics strongly influences the TCB size in the backend and

DOVE’s overall performance. We designed the DOT semantics to follow the program counter

(PC) model [91], at the granularity of primitive operations supported by the DOT. That is,

the structure of the DOT is similar to straight-line code where every operation is evaluated

in the order it appears. Conditionals, data-dependent loops, etc. must be emulated with

predicated, bounded execution as described below. We chose this design because while it

can be difficult to transform normal programs to the PC model, it is generally much simpler

to turn PC model programs into constant-time/data-oblivious programs.5 For example, to

convert an if-else style conditional to the PC model, a compiler (or similar) needs to convert

5We note that our current implementation implements data memory-trace obliviousness [175] in a sim-
plistic fashion. For example, if a data memory access has a sensitive address, we implement that access as
a naive “scan memory” Oblivious RAM-style lookup. Depending on parameters, future work can improve
this using a poly-log overhead contant-time Oblivious RAM client [73, 76].

48

the conditional to a predicated execution abstraction, which can be complex depending

on whether the conditional is nested, etc. However, converting predicated code into data-

oblivious code usually entails simple transformations such as replacing point instructions

with other side channel-resistant instructions such as cmov. Thus, since the frontend is

not in the TCB and the backend is in the TCB, we have pushed the complex program

transformation tasks into the frontend, and therefore out of the TCB.

Then, what primitive operations to include in the DOT semantics becomes a security/per-

formance trade-off, because the cost to parse each operation in the DOT incurs non-negligible

overhead in our current implementation (Section 3.5). For example, DOVE might imple-

ment a transcendental function such as sin as a single primitive operation in the DOT or

as a sequence of simpler operations in the DOT (such as bitwise operations). The former

design is higher performance but requires a larger TCB: the backend parses a single DOT

operation and evaluates that operation using a dedicated data-oblivious implementation of

sin in the target Instruction Set Architecture (ISA), e.g., x86-64. The latter has the op-

posite characteristics: the backend parses each bitwise operation yet only needs dedicated

support to implement data-oblivious bitwise operations. In these situations, we decide what

operations to include in the DOT semantics on a case-by-case basis, described below and in

Section 3.4.4.

We now discuss DOT semantics in more detail, using Figure 3.4 as a running example.

We break the discussion into two parts, first describing data creation and operations on said

data, and second describing (data-oblivious) control flow. A formal EBNF grammar for the

DOT can be found in the DOVE paper’s extended version [176].

Data creation, types and operations. We first discuss variable declarations, types and

primitive operations.

Data types. When the frontend transcribes a program into a DOT, the DOT grammar

only allows program inputs to be (1) fixed, concrete values or (2) pseudonyms. For example,

in Figure 3.4, the input nrow(x) of an R program (right) is translated into a concrete value

10 by the frontend, used as a fixed-loop bound in 3○ for a DOT (left). This is possible

because nrow(x) is fixed as 10 in line 1 of the original R program. Likewise, a concrete

value 0 that is being assigned to x[i,1] is transcribed with a prefix # in 5○ in order to

indicate that it is a concrete value.

The two basic types of pseudonyms are matrices and scalars, with matrices being composed

ofm×n scalar (i.e., numeric) elements. 1○ in Figure 3.4 shows the definition of such a matrix,

with m = 10, n = 7. Matrices are indicated with $, scalars with %.

49

Operations on data. Core functions comprise the set of primitive operations available to

the DOT, including mathematical and logical operators (e.g. +, ==), common mathematical

functions (e.g. exp, sin), and summary operations (e.g. sum, prod).

There are two flavors of operations supported in the DOT, shown in first two rows of

Table 3.2. The Safe DOT/Core category contains operations deemed safe to operate on

sensitive data in the backend. Every operation in this set must be implemented data-

obliviously by a compliant backend, i.e., its evaluation must result in operand-independent

resource usage on the target microarchitecture (see Sections 3.2 and 3.6). Each operation in

this set has the following type signature: if at least one operand is a pseudonym, the result

is a pseudonym. This is similar to taint algebras in information flow [177, 178] where if one

operand is tainted, the result is tainted.

The Unsafe DOT/Core category contains operations which the DOT deems not safe to

operate on sensitive data. For example, the forloop construct. These operations are only

allowed to take non-pseudonyms as operands.

Importantly, the selection which operations are marked Unsafe is a design choice. An

alternate set of DOVE semantics can specify a Safe variant of any Unsafe operation, subject

to the constraint that the backend must support a data-oblivious implementation of said Safe

operation. Certain constructs, such as forloop, are difficult (and sometimes impossible) to

implement data-obliviously with respect to their arguments—which motivates why we place

them in the Unsafe category. Thus, the trade-offs in deciding whether each operation is Safe

vs. Unsafe are analogous to those for deciding which instructions should be made Safe vs.

Unsafe in the Data-Oblivious ISA [74].

To summarize, we have:

• Rule 1: If an operation’s operand(s) are pseudonyms, the result is a pseudonym.

• Rule 2: Safe operations may take pseudonyms or non-pseudonyms as inputs. Safe

operations must be implemented data obliviously by the DOVE backend.

• Rule 3: Unsafe operations may only take non-pseudonyms as inputs.

This is analogous to the Data-Oblivious ISA policy Confidential data↛Unsafe instruction,

which is analogous to the classic policy High↛Low in information flow. If a DOT follows

the above rules, we call it a valid DOT. Whether a DOT is valid is checked before the DOT

is evaluated by the backend (Sections 3.4.5, 3.5), and invalid DOTs are disallowed.

Control flow. For reasons discussed above, the DOT disallows traditional control-flow

constructs such as if, while, and goto, but supports predicated execution and bounded-

50

iteration loops (similar to the program counter model [91]).

Bounded iteration. The DOT provides a forloop iteration primitive that only allows

non-sensitive/non-pseudonym predicates. This primitive further does not support infinite

loops. 2○ in Figure 3.4 corresponds to the body of the loop. In the example, 3○ defines the

bounds of the loop (from 1 to 10 in steps of 1), along with the loop index, \1. Loop indices

are declared as non-pseudonyms.

We note that supporting forloop is purely a performance/DOT size optimization. Equiv-

alently, the loop could have been unrolled and the forloop construct removed.

Predicated conditionals. The DOT supports a select primitive that takes a pseudonym-

typed predicate and returns one of two pseudonym operands based on the value of the

predicate. select supports both scalar (i.e., logical 0 and 1) and matrix predicates. Ma-

trix predicates are transformed into element-wise select operations between the predicate

and result/operand matrices. Thus, the predicate and its operands must have the same

dimensions.

This flow is shown in 4○ in Figure 3.4. This predicated execution model, similar to that

used in prior work [76, 99], facilitates data-oblivious branching. That is, once conditionals

are re-written to select, it is relatively straightforward to further convert them to backend-

specific data-oblivious operators such as cmov (Section 1.2.6).

Going back to our example, in 4○, the condition is a < comparison between sensitive

at row \1 (loop index), column 1, with the scalar value 0. This condition is a pseudonym,

and thus it cannot be evaluated directly using the DOT alone. The select (5○) uses this

condition, and if it is true, returns a scalar 0. Otherwise, it returns the value already in

that location ($1@(\1,1)). This result value, stored in %3, is placed back into the [\1,1]

position (6○). In other words, the location is updated with either 0 or itself, based on the

condition, in a data-oblivious fashion.

3.4.4 Frontend

The frontend takes R program with non-sensitive parameters as input and outputs a

DOT. We develop our prototype frontend for R, but stress that the structure of the DOT is

language-agnostic. As in a traditional compiler stack, one could design a different frontend

for a different language that likewise compiles into the DOT representation.

Before initialization, clients share non-sensitive information, such as names and dimensions

of datasets, with each other. The data within each dataset is considered sensitive and is not

shared. To create a DOT, a client sources the DOVE frontend, which loads the names and

51

Table 3.2: DOVE functions/operations. Functions in group “DOT/Core” are implemented
directly in the DOVE backend and are included in the DOT semantics. Functions in the
group “Sup.” (Sup. stands for Supplemental) are implemented using operations in “DOT/-
Core” and exposed to the user as library functions. Safe functions require a data-oblivious
implementation in the backend as they may receive pseudonyms as operands. Unsafe func-
tions do not require a data-oblivious implementation, but can only take non-pseudonyms
(non-sensitive) data as operands.

Group Functions
Safe abs sqrt floor ceiling exp log cos

DOT/Core sin tan sign + - * /

(in TCB) ^ %% %/% > < >= <=

== != | & ! all any

sum prod min max range is.na is.nan

is.infinite select %*% cbind rbind

Unsafe forloop dim [[[

DOT/Core
(in TCB)
Sup. fisher.test pchisq mean colMeans colSums rowMeans rowSums

(not in is.finite as.numeric as.matrix apply lapply unlist which

TCB) data.frame matrix split pmin pmax nrow ncol

len t

dimensions for each sensitive input and creates a pseudonym for each in the R environment.

The client then runs their program, performing operations as normal. Instrumentation in

the R interpreter (see below) records each operation into the DOT, translating each dataset

to primitives supported by the DOT semantics (e.g., scalar and matrix types). Clients can

access elements, assign new values, apply operators, and run functions, all while dealing only

with pseudonyms. Because the frontend does not have the actual data, this transcription is

sensitive data-oblivious by design.

Our DOVE implementation ensures interface compatibility with base R in the imple-

mented functions of the frontend. We use R’s S3 method dispatch, as described in Sec-

tion 1.2.4 to overload functions in base R for pseudonyms. This requires no modification

to the R interpreter, as clients merely have to import the DOVE frontend in their existing

programs; in most cases, no programmer intervention is necessary.

Table 3.2 lists all functions available to programmers. The Safe and Unsafe “DOT/Core”

group of functions are those included in the DOT semantics (see previous section). To provide

a richer library for clients, we also provide a “Sup.” group of functions which are built using

only the operations in “DOT/Core”. For example, colSums calls the DOT function sum

in a loop over the columns of a matrix. We provide these functions to enhance the user

programming experience and to show that our DOT functions are sufficient primitives to

develop more complex functions. Note that the “Sup.” functions do not add to size of

52

the TCB. They do not require changes to DOT semantics and therefore do not change the

backend implementation.

Construct-specific handling. We now describe how the frontend translates different R

programming constructs to the DOT semantics from Section 3.4.3.

Bounded iteration. Native R’s for loop is not DOT-aware, so it just repeats the body

of the loop m times. The frontend will naively record repeated invocations of the loop

body every iteration; this results in the DOT size being proportional to complexity of the

loop. Instead, the frontend automatically transforms such bounded loops to use the forloop

DOT construct. As discussed in Section 3.4.3, explicitly defining the forloop is purely a

performance enhancement. In our testing, we observed a > 99% decrease in frontend runtime

using the DOT’s forloop loops over normal for loops for compute-heavy O(m2)-complexity

programs.

We also note that many loops are written with early termination (e.g., break) conditions.

When a break statement is encountered, the frontend first examines a predicate associ-

ated with the break condition and its associated operations. Then the frontend performs a

transformation to each statement in the loop to mask out architectural state updates, using

select, once the break condition has been tripped. This transformation is similar to those

of prior works [101, 102].

Predicated conditionals. The frontend must translate conventional if-then-else structures

into the predicated execution model supported by the DOT (Section 3.4.3). For this, we

implement an if-conversion transformation that is similar to prior works [76, 99]: an if-else

with a sensitive predicate is converted into straight-line code where both sides of the if-else

are unconditionally evaluated and a DOT select operator is used to choose the correct

results at the end.

Our frontend automatically converts R if statements to use the select primitive (dis-

cussed in Section 3.4.3) in the DOT. The branch in Figure 3.4 is converted to 4○ through this

process. Updating the matrix value at the current position with either 0 or itself retains the

semantics of the original if statement while making the operation explicitly data oblivious.

The whole expression is then recorded into the DOT directly; since the frontend does not

have access to the actual data, the DOT must necessarily record both sides of the condition.

Disallowed constructs. Overall, the frontend’s job is to translate R semantics into DOT

semantics. Sometimes this is not possible, in which case the frontend signals an error.

We explain two such cases (which are also common issues in related work). First, the

frontend does not allow loops where the predicate depends on a pseudonym. Second, the

53

frontend does not allow running operations with unimplemented types e.g., string-based

computation or symbol-based computation. For example, one genomic evaluation program

named geno_to_allelecnt in Section 3.7.2 receives a matrix of characters as a sensitive

input. This program calls string operations like substring search or string concatenation.

Importantly, mentioned before, the frontend may contain a bug that results in an invalid

DOT that contains an illegal construct such as those mentioned above. Such non-compliant

DOTs are checked at parse time in the backend and rejected before being run (Section 3.5).

Support for integrity protection. While our primary focus is privacy, DOVE can

achieve integrity through SGX’s attestation support. Specifically, each client can run the

frontend and generate the DOT locally. These DOTs, or their hashes, can be checked against

the DOT evaluated on the server side, by a DOVE backend that is attested to perform such

checks.

3.4.5 Backend

The backend is a trusted SGX enclave that runs the DOVE virtual machine that parses the

DOT and runs the instructions contained within on the clients’ sensitive data. Code in the

backend ensures that only valid DOTs are run (Section 3.4.3), and includes implementations

of all operations in the DOT semantics, i.e, those listed under Safe and Unsafe “DOT/Core”

in Table 3.2. Each client securely uploads (e.g., over TLS) the DOT of their R program.

All clients additionally upload their shares of the sensitive dataset to the backend as well,

in preparation for processing, as shown in Figure 3.3.

The scope of DOVE is to block all non-speculative µArch side channels (Section 3.2).

For this purpose, the backend provides a data-oblivious implementation for operations in

Safe “DOT/Core” of Table 3.2. To implement these operations, we rely on a subset of the

x86-64 ISA and well-established coding practices [99] for implementing constant-time/data-

oblivious functions (see Section 3.6 for details). For example, we implement the select

operation using the x86-64 cmov instruction, and all floating-point arithmetic functions are

implemented using libfixedtimefixedpoint (libFTFP), a constant-time fixed-point arithmetic

library created as a work-around for timing issues on floating-point hardware [48].

Importantly, what hardware operations (e.g., machine instructions) open µArch side chan-

nels depends on the µArch. For example, two x86-64 processors can implement cmov differ-

ently: one in a safe way, one in an unsafe way (e.g., by microcoding the cmov into a branch

plus a move [74]). DOVE is robust to new leakages found in specific µArch because to block

a newly discovered leakage, it is sufficient to make a backend change. For example, if a vul-

54

Figure 3.5: A simplified graph representing the flow of ecall_dispatch() for the addition
instruction +. The final, bold-face portion is the only block that dereferences sensitive data.

nerability is found in cmov, the backend can opt to implement the DOT select operation

using a CSWAP (bitwise operations) or other constructs.

3.5 IMPLEMENTATION

We now discuss the backend implementation, the C++ codebase that evaluates DOT op-

erations and forms the DOVE TCB. We will rely on this description during our security

analysis (Section 3.6). We eschew detailing our frontend implementation as it is outside the

TCB. As noted previously, the backend code runs in an SGX enclave. The three functions

that run in this secure enclave (or ECALLs in SGX parlance) are associated with the three

phases of the backend: loading sensitive data into secure memory (ecall_load_data), pars-

ing the DOT into an abstract syntax tree (ecall_parse), and evaluating DOT operations

55

based on said tree (ecall_dispatch).

Loading the data. The enclave loads client data, as it is received, into the SGX EPC

(Section 1.2.5). The binary blobs received consist of 8-byte, little-endian double values along

with metadata about the dataset format (e.g., tensor shape). The dataset is then copied

into enclave memory via memcpy, and converted into a fixed-point integer representation.

The dataset in memory is stored in a p_block data structure, which consists of a matrix of

pointers to the scalar data values in memory and the matrix dimensions it represents.

Parsing the DOT. This phase involves recursive-descent parsing of the DOT into an

abstract syntax tree (AST). Conceptually, this tree is akin to a list of instructions (see

Figure 3.4) to be interpreted by the enclave. Recall, the DOT is created by the frontend

without access to sensitive data. The AST, by extension, is not a function of sensitive data.

Importantly, the parsing process verifies that the DOT complies with DOT semantics.

Specifically, that no disallowed construct appears in the DOT (Section 3.4.4) and that each

DOT operation type checks (Section 3.4.3). The latter ensures that pseudonyms cannot be

downgraded to non-pseudonyms (Rule 1, Section 3.4.3) and that pseudonyms are not passed

as operands to Unsafe operations (Rule 3, Section 3.4.3).

Evaluating the DOT. After loading datasets and parsing the DOT, DOVE is ready to

run instructions from the DOT on the data. Broadly, this phase occurs in four steps per

instruction across four functions in the backend. Figure 3.5 depicts a simplified call graph

for the addition instruction (+). Running different instructions entails a similar call graph.

During instruction fetch (1○ in Figure 3.5), the ecall_dispatch() function is the top-

level call that fetches the next instruction from the DOT to be run and also allocates a

placeholder datatype for use with the results of the instruction: in our running example,

this is a matrix C of type p_block*. The argument loading step (2○) loads pointers to

instruction datatypes that form the arguments to the instruction. Our example loads two

matrices: p_block* A and p_block* B. The iteration step (3○) utilizes polymorphism to

dispatch the backend operation corresponding to the instruction.

When one or more operands are matrices, as in Figure 3.5, we must perform the addition

operation over all matrix elements. So, the final step is to iterate over all elements in the

matrices and pass each element’s pointer to a subcall to actually operate on the scalars in

the matrix.

In this final step, control reaches a leaf function, the highlighted, bottom level of the graph

in Figure 3.5. This is the only step when the scalar elements of the sensitive data matrix are

56

dereferenced and utilized in the operation. At this point in our example (4○), we use the

external libFTFP library to perform a data-oblivious operation, addition in our example, on

actual scalar values.

3.6 SECURITY EVALUATION

We first present our formal definition of security under the SGX adversary first discussed

in Section 3.2. We then argue that this security definition holds given our DOVE backend

implementation, for the setup and instruction execution phases.

3.6.1 Security Definition

In order to analyze the security properties of DOVE, we first formalize our security defini-

tion. We denote an execution of the R interpreter as R(S,D), where S is an R program, and

D is the data on which the program S is run. The SGX adversary’s view of R(S,D) (i.e., the

leakage trace) is denoted µArch. As discussed in Section 3.2, this view includes hardware

resource usage at a fine spatial- and temporal-granularity. For example, the attacker can

monitor contention for the cache or other hardware resources, the program runtime, etc.

However, due to the virtual isolation provided by the SGX TEE, the view does not include

the enclave memory itself.

From our analyses in Section 3.3, it is clear that µArch[R(S,D)] ̸= µArch[R(S,D′)] for

certain D and D′. That is, the adversary’s view of the µArch side channels of the execution

of the R interpreter on a program S is different for different datasets D,D′. In practice, this

means that the adversary can glean information from the datasets via these side channels,

implying the computation for the given view is data dependent.

Now, we consider the notation for DOVE. We define the frontend as A : S 7→ TS, a

compiler A that translates S into a DOT TS. This computation is vacuously data-oblivious,

since no data is passed as a parameter to A. We then define the backend as V (TS, D), a

virtual machine that runs the DOT on the data. We aim to show that DOVE is secure

against an SGX adversary, with the following definition.

Log Definition. We say a Data-Oblivious Virtual Machine backend V is secure in the SGX

adversary model if for any pair of datasets D, D′, and DOT TS compiled from a program S,

we have the following equation.

µArch[V (TS, D)] = µArch[V (TS, D
′)] (3.1)

57

where µArch denotes the adversary’s view in the SGX adversary model.

This is equivalent to a non-interference property, where high (sensitive) state is the backend

input data and low (non-sensitive) state is other architectural state in the processor (across

all running programs). We show that the DOVE implementation meets the above security

definition through an analysis of the flow of sensitive data through the backend and compiled

object code the backend uses.

3.6.2 Security Argument

Our evaluations were performed on a machine with an Intel Skylake Core i3-6100 CPU,

1 TB HDD, and 24 GB of RAM, of which 19.37 GB was allocated to the SGX enclave.

The machine was running Ubuntu 18.04.4 LTS and SGX software version 2.9.1 with EPC

paging support. Thus DOVE’s memory is not limited to EPC size, but this mechanism adds

performance overhead when it is required. We analyze this further in Section 3.7.

The frontend ran under R interpreter version 3.4.4, and the backend was compiled against

g++, toolchain version 7.5.0-3ubuntu1~18.04. For our security analysis, we ran DOVE

without SGX enabled for easier inspection of potential side channels. Our security eval-

uation related to side channels is independent of SGX, with the enclave technology being

an implementation choice to guard against direct introspection/tampering by supervisor

software. We provide a performance evaluation of DOVE in Section 3.7.

The backend forms our trusted computing base, and it consists of 7,001 lines of code,

of which 4,295 lines is the libFTFP library which we adopt from prior work [48]. Since

the frontend has no access to sensitive data, the security evaluation of DOVE reduces to

the evaluation on the remaining 2,706 lines of code in the backend. We now examine each

step of DOVE’s workflow prior to the leaf function call (described in Section 3.5). Finally,

Section 3.6.3 examines the leaf functions.

Creating the DOT. Each client runs their R program on their local frontend to produce

a DOT. The adversary can only learn non-sensitive information (e.g., dataset dimensions)

explicitly given to the frontend.

Transferring the data and DOT. After DOT creation, the DOT and sensitive data

is sent by the user to the server through a secure channel whose endpoint is within the

TEE [179]. The secure channel and SGX-provided attestation ensures that the correct DOT

is run and that the data is privacy/integrity-protected in transit. In the case of multiple

58

users submitting data and DOTs, this process is applied to each user, after which the DOTs

are hashed and compared to ensure the computation is consistent with that requested by

each user (also see Section 3.4.4).

Loading the data. Once datasets arrive, the SGX backend stores the data in the en-

clave by passing the datasets through ecall_load_data. As mentioned in Section 3.5, each

dataset is a binary blob which is copied into enclave memory via memcpy. This operation

consists of a sequence of data-oblivious mov operations. Prior to the copy, we convert float-

ing point values in each sensitive dataset to fixed point numbers (to be compatible with

libFTFP [48]). This conversion process is also data-oblivious; further, the number of bits in

the fixed-point representation is independent of the underlying value.

Parsing the DOT. As noted in Section 3.4.3, the DOT contains no sensitive information.

By extension, the DOT parsing phase—whereby the DOT is parsed into an AST—cannot

leak sensitive information. Recall that the parsing process also ensures the DOT complies

with DOT semantics (Section 3.5), which ensures that Rules 1 and 3 are enforced (Sec-

tion 3.4.3). The DOT grammar is simple, so type-checking the DOT is also simple.

Evaluating the DOT. This phase occurs in four steps, as shown in Figure 3.5: instruction

fetch, argument loading, matrix iteration and operation on dereferenced sensitive data. The

first three phases do not perform operations on the underlying sensitive data and only

operate based on the DOT, which is a function of non-sensitive information as discussed

above. Specifically, until the runtime reaches the operation in the leaf function, pointers to

the sensitive data are passed around, but the sensitive data values are never accessed.

3.6.3 Leaf Functions

Based on the above discussion, only leaf functions read and modify sensitive data. Thus,

we now scrutinize whether these leaf functions enable our security guarantee, i.e., uphold

Rule 2 from Section 3.4.3. For this, we manually disassemble and analyze every binary object

file associated with DOVE functions, and verify that the subset of instructions which operate

on sensitive data are instructions that do not create µArch side channels as a function of their

operands. The following analysis applies well-established principles for writing constant-time

and data-oblivious programs (Section 1.2.6).

We first analyze the leaf function instructions that take sensitive data as operands. These

instructions are shown in Table 3.3. We determined this set by inspecting instruction depen-

59

dencies in the objdump disassembly. All but one of the opcodes in Table 3.3 is considered

to be a data-oblivious instruction by libFTFP, our constant-time fixed-point arithmetic li-

brary. We refer to its authors’ analysis for its security [48]. The one instruction not found

in libFTFP, cmovne, is used for conditional moves of sensitive data in the backend. This

instruction is likewise shown to be data oblivious in [76]. We further verify that the above

instructions use the direct register addressing memory mode for each operand, if the value

stored in the register for that operand is sensitive (which also follows standard practice for

writing data-oblivious code).6 Thus, we conclude that the machine instructions operating

on sensitive data in the backend do not create µArch side channels.

Beyond the instructions in Table 3.3, there are other instructions in the leaf functions

that do not operate on sensitive data. Examples include jumps to implement loops with

non-sensitive iteration counts, checks to validate dimensions on operations, sanity checks

for nullptr, and instructions associated with implementing polymorphism. Some of these

are not data oblivious (e.g., jumps), but do not impact security because they operate on

non-sensitive data such as matrix dimensions.

To further corroborate our static security analysis, we also looked at runtime instruction

statistics. We used the branch-trace-store execution trace recording [180] of the DOVE

backend execution, varying the input data. We found that the sequence of non-speculative

dynamic instructions executed was independent of the data passed to the backend: that

is, the backend satisfies the PC model [91]. Security follows from these two analyses: (a)

that the backend follows the PC model and (b) that each individual instruction that op-

erates on sensitive data consumes operand-independent hardware resource usage (previous

paragraphs).

3.7 EXPERIMENTAL EVALUATION

We now turn to the experimental evaluation of DOVE in three areas: (1) correctness, (2)

expressiveness, and (3) computational efficiency. It is necessary to provide some evidence

that computed values are correct, at least for a basic collection of computations. Since

DOVE works with a subset of R, it is also important to demonstrate that it can code

enough interesting cases to be worthwhile. Moreover, DOVE computations must sufficiently

limit computational overhead. We carry out the validation via two case studies, using the

same machine configuration that we introduced in Section 3.6 for experimental evaluation.

6x86-64 operands can utilize one of several flavors. For example, rax denotes a register file read and
[rax] denotes a memory de-reference. The former is considered safe for use in constant-time/data-oblivious
programming, while the latter creates memory-based side channels.

60

Table 3.3: All x86-64 opcodes that operate on sensitive data in the leaf functions of DOVE.
Those marked with * are those not found in libFTFP.

add and cdqe cmovne* cmp imul

lea mov movabs movsd movsx movsxd

movzx mul neg not or pop

push sar sbb seta setae setbe

sete setg setl setle setne shl

shr sub test xor

The first echoes prior work [93] by coding and analyzing applications of the PageRank

algorithm [181]. The second examines a suite of programs [165] for genomic analysis and

a case study using it for the analysis of honeybee genomes [136]. It is easier to work with

this type of data than, say, genomic data of people with bipolar disorder, while it illustrates

similar issues of scale and the potential value of controlled data sharing.

For correctness, we confirm that what we get from DOVE is the same as what we would

get from R. That is, using the notation of Section 3.6.1: Q[V (TS, D)] = Q[R(S,D)] where

Q denotes the calculated output for a given execution. For expressiveness, we demonstrate

that we can conveniently create DOTs from R code for each case study. As such, we devote

most of the section to the evaluation of computational efficiency.

One run of our performance benchmark is as follows. We first record the runtime of

vanilla (insecure) R with data and a program. Then, we run the DOVE frontend on the

same program, generating the DOT and writing it to disk. We then initialize the backend,

read in the DOT, parse it, and execute the DOT instructions. Our evaluation of the DOVE

implementation discusses two measures. First, we wish to consider if our frontend primitives

are sufficient to express complex programs. Second, we examine the performance of DOVE

when compared to its base R counterpart.

To highlight the overheads inherent to SGX and libFTFP, the external data-oblivious

fixed point library, we ran performance benchmarks on three configurations of DOVE: (1)

backend outside an SGX enclave and without libFTFP, (2) backend outside an SGX enclave

and with libFTFP, and (3) backend inside an SGX enclave and with libFTFP (our default

configuration). SGX-related overheads include SGX’s memory encryption and access protec-

tions that isolate the enclave from the rest of the machine [182]. The libFTFP instructions’

relative performance overhead is measured against its Streaming SIMD Extensions (SSE)

counterpart; the overhead varies depending on the instruction, ranging from 1.2× for neg

61

Table 3.4: Runtimes for running PageRank algorithm on different configurations. All mea-
surements are in seconds, and the measurements are sums of frontend and backend runtimes.
The frontend took on average of 3.34 seconds.

Configurations WikiVote ca-AstroPh
Vanilla R 6.91 46.88
DOVE w/o libFTFP, w/o SGX 23.70 122.18
DOVE w/ libFTFP, w/o SGX 137.00 951.62
DOVE w/ libFTFP, w/ SGX 509.04 2,254.46

(operand negation) to 208× for exp (exponential function evaluation) [48].

3.7.1 PageRank

We begin with an introductory case study on the PageRank algorithm that is used as a

case study on a custom data-oblivious programming language [93]. A large proportion of

this algorithm is composed of matrix multiplications, which other works choose as primary

performance benchmarks [76, 183].

We use the Wikipedia vote network (WikiVote) [184] and Astro-Physics collaboration

network (ca-AstroPh) [185] datasets from the Stanford Network Analysis Project [186] for

this case study. Both datasets are converted to adjacency matrices, where WikiVote has

7,115 nodes (≈ 405 MB) and ca-AstroPh has 18,772 nodes (≈ 2.8 GB). Table 3.4 shows the

runtimes for the PageRank algorithm on two datasets where the DOVE frontend took on

average of 3.34 seconds for each dataset. Note that we evaluate several configurations for

the DOVE backend (SGX, libFTFP) as discussed before.

Vanilla R ran faster than DOVE, even without the SGX enclave and without libFTFP.

This is expected for several reasons. First, R uses the highly-optimized Fortran BLAS

library for matrix multiplication, while DOVE does not. Second, DOVE code (with or

without libFTFP) disables compiler vectorization for safety reasons. Finally, DOVE uses

the data-oblivious x86-64 cmov for any conditional statement on sensitive data whereas the

R interpreter is written with unsafe branch statements (Section 3.3).

Enabling libFTFP increases runtime overhead of DOVE by around 6×, and enabling SGX

on top of libFTFP incurs 3× additional overhead. The PageRank implementation shows that

DOVE is expressive enough to handle a common data-processing algorithm without severe

performance degradation.

62

Relative Overhead

hwe_chisq

neiFis_multispop

neiFis_onepop

wcFstats

wcFst_spop_pairs

LD*

0 5 10 15 20 25

Base DOVE Implementation Constant-Time Fixed Point SGX Enclave

(a) Programs with less than 25× relative overhead.

Relative Overhead

allele_sharing

EHHS*

iES*

hwe_fisher

snp_stats

0 100 200 300

(b) Programs with greater than 25× relative overhead.

Figure 3.6: Performance evaluation results for the evaluation programs. Each stacked bar
represents a measurement for each program. Each stack represents relative overhead of
DOVE against vanilla R caused by generic data-oblivious computation, libFTFP and SGX
from left to right. Programs marked with * run on reduced dataset due to machine limita-
tions.

3.7.2 Genomic Analysis

To further validate DOVE, we work with an application that performs a controlled study

on honeybee genomic data [136]. The study relies on R code drawn from a set of 13 genetics

research programs [165] that implement important statistical measurements found in the

literature [187, 188, 189, 190], totaling 478 lines of R code [165]. These programs, in addition

to the coding of PageRank, constitute a practical illustration of the expressiveness of DOVE.

The paper’s extended version [176] provides more details about the programs’ applications

to genomics.

Using DOVE, we were able to transform (in the frontend) and run (in the backend) 11 out

of the 13 evaluation programs, totaling 326 lines of R code. The first program that we could

63

not implement, geno_to_allelecnt, works on character data instead of numeric data, and

as such is not supported by the current types available in the DOT. The second program,

gwas_lm, performs a Genome-Wide Association Study (GWAS) using support in R for linear

models. We were not readily able to implement this; R provides parameters to models as

a formula of symbols, not values. DOVE currently does not support this paradigm, but we

believe that DOVE can be extended to do so in the future.

Ten of the remaining 11 evaluation programs were automatically transformed by the front-

end into data-oblivious code. Only one program, LD, required manual intervention, as it was

written entirely in a data-dependent style. For this program we: (1) replaced some func-

tions that are intrinsically data-dependent with data-oblivious primitives and (2) changed

lines that required sensitive data-dependent array indexing with worst-case array scans. Fu-

ture implementations could alternatively use an oblivious memory, e.g., [73], to avoid such

worst-case work.

We utilize the dataset from the honeybee study [136] to perform performance bench-

marking. We run the full 2,808,570 × 60 (≈ 1.3 GB) dataset for all programs with space

complexity of O(m ∗ n) where m is the number of rows and n is the number of columns.

However, some of the evaluation programs could not run on this dataset due to machine lim-

itations. Specifically, some programs with space complexity of O(m2) refuse to run even in

vanilla R at full size. To address these limitations, we run a subset of programs with the first

10,000 rows of the honeybee dataset. Some related work also runs performance benchmarks

on genomic data with similar sizes to that of our reduced dataset [138, 139, 140].

To normalize benchmark results run on datasets of different sizes, we present a relative

overhead metric: runtime for DOVE (DOT generation, disk reading/writing, DOT evalu-

ation) divided by runtime in vanilla R. This relative overhead metric is shown as stacked

bar graphs in Figure 3.6.7 Each part of the bar represents the overhead contributed by a

component of the backend, categorized by three factors: the DOVE runtime’s data-oblivious

implementation itself, constant-time fixed point operations (libFTFP), and the use of the

SGX enclave. Overall, each factor provides additional security at the cost of increased over-

head. We separate our programs into two bins: programs that run on the full honeybee

dataset, and programs that run on a reduced dataset due to machine limitations (marked

with * across the subfigures).

The min/avg/max size overhead of each DOT relative to its R script is 0.284x/10.8x/105x.

Note, the DOT may be smaller than the original program because of the DOT instruction

set. We expect that the DOT can be significantly compressed. Case in point, the current

7Numbers for each program’s absolute runtime are given in the paper’s extended version [176].

64

DOT is represented in ASCII which is space inefficient.

We now provide more detailed analysis for several programs with noteworthy performance

characteristics.

Programs with quadratic space complexity. The relative overhead with DOVE is

120.7× against vanilla R on average for programs EHHS, iES, and LD. These three programs

run statistics based on pairwise SNPs, i.e., a row is compared to each other row in the

dataset. They operate in O(m2) space, or, quadratic in the number of rows m. The large

relative overhead in the base DOVE implementation for iES and EHHS is due to data-oblivious

transformations. Namely, the vanilla R versions of these programs benefit from early breaks

in the loop body that occur depending on sensitive values. DOVE does not directly allow

such behavior for security reasons. Hence, the backend must iterate through the entire

matrix, regardless of the data, causing potentially high overhead.

Statistical programs. The programs hwe chisq and hwe fisher each call a base R statis-

tics function: pchisq (Chi-Square distribution) and fisher.test (Fisher’s exact test), re-

spectively. The program snp stats calls both functions. In base R, the implementation of

fisher.test is written in R itself whereas pchisq is written in C. We implement both as

supplemental group functions in R (Table 3.2), to provide a fair comparison and to reduce

TCB size. When called, the frontend will convert the call into a series of equivalent DOT

operations.

We note that, to achieve data obliviousness, our implementations of these functions are

somewhat different than their vanilla R counterparts. For instance, computing a factorial

of a sensitive value is intrinsically data dependent, but it is required to compute Fisher’s

exact test (in R, fisher.test). To implement factorial data obliviously, we implement

it as an oblivious table lookup over a pre-determined domain of inputs, noting that other

data-oblivious implementations are possible.

While hwe chisq has reasonable performance overhead given our data-oblivious imple-

mentation of pchisq, both hwe fisher and snp stats show large performance overheads.

These programs call the fisher.test function O(m) times. The insecure version of this

function takes O(n) time. Our data-oblivious implementation takes O(n2) time due to in-

efficient oblivious-memory reads. As mentioned before, a more efficient oblivious-memory

primitive would reduce overhead.

Remaining programs. The remaining programs do not incur a significant performance

penalty, as both the insecure and data-oblivious codes run in O(m) time. The average

65

overhead with DOVE is 28.3× relative to vanilla R for these programs. One program,

allele_sharing (in Figure 3.6b), has a notably larger performance overhead than oth-

ers when running inside the SGX enclave. We believe this is due to EPC paging costs.

Specifically, this program has a larger working set size than SGX has EPC/PRM (2 GB vs.

64-128 MB). It further makes column-major traversals for a matrix that is stored in row-

major order in memory, which leads to low spatial locality and therefore, we hypothesize, a

high EPC fault rate.

3.8 CONCLUSION

DOVE offers an approach to achieve data-oblivious computation within a TEE for pro-

grams originally written in languages with complex stacks such as R. The approach takes as

input a high-level program and transforms it to a log called DOT that can be more easily

reasoned about with respect to providing data obliviousness on a constrained TCB. This

gives the advantage of being able to program in a familiar and convenient language while

providing a very strong security guarantee. The trade-off for achieving these benefits, in

general, is limits on the high-level programs that can be processed. We have demonstrated

a design and implementation that can cover a significant range of programs with efficiency

that is an acceptable trade-off for the benefits. This provides a foundation for future study

using our methodology, such as expanding to richer high-level programming constructs and

languages.

66

CHAPTER 4: TIMELESS LOGS

4.1 INTRODUCTION

In the previous chapter, we have investigated how data-oblivious computation and TEE

can be applied to provide security against microarchitectural side-channel attacks. However,

such countermeasures may not be fully applicable for logging systems. In particular, what

if one cannot create a DOT without sensitive data? We assume in Section 3.2 that several

attributes of DOT to be public including ordering of operations. However, we showed in

Section 2.4 that an adversary can potentially exploit ordering of logs to launch timing side-

channel attacks. Furthermore, DOVE is designed against hostile operating systems such

that large performance loss due to deployment of TEE and of data-oblivious computation

are justified, whereas most log-confidentiality problems worry about an adversary who tem-

porarily breaks into the honest system. In such cases, an alternative solution to close timing

side channels from logs is to post-process the logs.

In this chapter, we provide a study of log timestamps in terms of security and utility. If we

take the same amount of security guarantee DOVE provides (i.e. offering completely data-

oblivious solution for logs against timing side channels), then we must remove any timing

information from logs. These not only include timestamps (Section 2.3.2) but also ordering

of log entries (Section 2.4). Unfortunately, removal of such information would result in a

huge utility loss. But how big is it? We investigate and quantify this loss based on a utility

function called reachability (also called connectivity in other works) that is introduced with

several log reduction techniques. Their objective is to remove semantically redundant log

entries. When viewing a log as a table, each log entry composes a row of the table whereas

each timestamp comprises a column of the table. Therefore, we view these works as works

that remove rows from a table whereas our works try to remove values of a column (or a

whole column in an extreme case).

We first show that there is a large increase in false positives in terms of reachability

when we remove all timing information for logs. Then, we assess security-utility tradeoffs

associated with the amount of timing information in logs by proposing batched logs as an

alternative countermeasure. Our case study on a public dataset shows that when batches are

sufficiently small (batch size of around 1,000 entries or smaller), there is only 0.05 percent

increase in the number of false positive reachable nodes.

67

4.2 THREAT MODEL

This chapter mainly focuses on proposing countermeasures against timing side-channel

attacks introduced in Section 2.4. The adversary that we model in this chapter is mostly

consistent with that of Chapter 2. However, because our work focuses on mitigating timing

side channels, side-channel attacks against log contents mentioned in Section 2.3.1 is out of

scope in this chapter. We assume that adversary only uses i) timestamps and/or ii) ordering

of log entries to learn about secrets in this chapter. It might be possible that an adversary

may learn about timing information of log entries based on their content. For example,

an application can make a system call where either its return value or its parameter leaks

information about timing of such a call. We do not consider such threats in this work, but

detection and mitigation of such leaks would be interesting future work.

This work proposes a post-processing mechanism as a solution. Thus, we assume that

the adversary can only access post-processed logs when he or she breaks into the system to

steal the logs. Preventing adversary from accessing raw log files can be achieved by deploying

orthogonal solutions like TEEs [5, 116]. Finding and mitigating possible side-channel attacks

against post-processing computation is also a future work.

4.3 REACHABILITY

As mentioned in Section 1.2.2, modern log analysis focuses on converting logs into prove-

nance graphs and performing graph traversal based algorithms such as forward and backward

tracking from chosen edge/node. Thus, for this chapter we choose reachability as a key utility

function to examine the utility of our countermeasure schemes.

We define a node and/or an edge of a provenance graph to be forward-reachable from a

designated node (e.g., hostile remote address or compromised process) or edge (e.g., alerted

event) if: 1) there is a path from the chosen node/edge to destination node/edge and 2)

timestamps for each edge along the path is sorted in increasing order so that the search

algorithm do not travel back in time as it traverses the graph. In other words, the traversal

can only occur if prior edge’s timestamp value is before than that of next edge. For example,

Figure 4.1a is a short log segment where a process p1 communicates with two remote hosts

x.x.x.x and y.y.y.y. The process also reads two files f0 and f1 where f1 contains sensitive

information.

This segment can be represented as a provenance graph shown in Figure 4.1b. System

admin might be interested in finding information flow from f1 to find potential information

leakage, so they may run a forward-reachability function from f1 on the graph. This function

68

t=1, send() to x.x.x.x by pid=1

t=2, recv() from x.x.x.x by pid=1

t=3, recv() from y.y.y.y by pid=1

t=4, read() from f1 by pid=1

t=5, send() to y.y.y.y by pid=1

t=6, read() from f0 by pid=1

(a) A simplified, timestamped log segment
that captures two remote connections (from
address x.x.x.x and y.y.y.y) made with
Process 1 (p1). p1 also reads file 0 (f0) and
file 1 (f1).

x.x.x.x

p1

f0 f1

y.y.y.y

recv
t=2

send
t=1

read
t=6

read
t=4

recv
t=3

send
t=5

(b) Provenance graph representation of Fig-
ure 4.1a with timestamps.

x.x.x.x1

p12

f00f10

y.y.y.y5

p13 p14 p16p10

y.y.y.y0

(c) Versioned counterpart of Figure 4.1b.
Dotted arrows represent version changes for
each node and solid arrows represent events.
On this graph, edge timestamps are dropped
whereas node versions (in subscripts) pro-
vide timestamp information.

x.x.x.x

p1

f0 f1

y.y.y.y

recv

send

read read

recv

send

(d) Timeless counterpart of Figure 4.1b.
Node x.x.x.x and edge from p1 to the re-
mote host are now reachable. These are false
positive reachable node and edge.

Figure 4.1: A simplified timestamped log segment and its provenance graph representations.
Orange nodes and edges are forward-reachable nodes/edges from f1.

would return edges and nodes colored orange as reachable nodes and edges. Note that an

edge from p1 to x.x.x.x and a node x.x.x.x are NOT reachable from f1 since the read

from p1 to x.x.x.x happened before the read from p1 to f1.

We can also define backward-reachable in the same manner by traversing from destination

node/edge to starting node/edge while requiring timestamps of edges on the path to be

decreasing order. For remainder of the chapter, we mainly focus on forward-reachability as

our main utility function and we simply call it reachability.

69

4.3.1 Log Reduction Techniques and Reachability

Log reduction techniques attempt to reduce volume of logs by finding and pruning “redun-

dant” events. Whether events are redundant largely depends on the type of utility functions

that examine log semantics. Log reduction techniques are interested in removing events such

that timing information of removed events are also reduced from logs. Thus we strictly ben-

efit from log reduction methods since reduction of a log entry means reduction of its timing

information as well. Reduced logs, unlike approximated logs, mentioned in Section 1.3.4 re-

tain full utility. Our attack prototypes demonstrated in Section 2.4 requires a large number

of measurements to infer a single bit. These repeated attack requests from an adversary

will be semantically “redundant” for auditing point of view so that log reduction works can

greatly deter such attacks by removing entries that logged such requests.

As mentioned in Section 1.3.4, there are multiple prior works that focus on reachability for

as their main utility function, but we focus on Dependency Preserving Reduction (DPR) [127]

in this chapter as this work aims to preserve global reachability of all nodes while constructing

a provenance graph. DPR is motivated by a prior work Causality Preserving Reduction [126]

(CPR), but reduces edges more aggressively than CPR does. CPR only examines reachability

based on each node’s perspective by counting incoming and outcoming edges. This will

ensure preservation of each information flow, but there can exist multiple flows between

source and destination nodes. DPR, on the other hand, tries to make a global assessment

of the whole provenance graph to reduce aforementioned redundant flows. While this may

impact other utility functions that require preservation of every information flow, in terms

of reachability, there is no effect on reducing such redundant edges.

However, making such global analysis can be very computationally expensive as the anal-

ysis may require a complete graph traversal. Thus, DPR leverages versioning to solve this

problem where the algorithm converts a standard provenance graph into a versioned graph.

Figure 4.1c is versioned graph representation of Figure 4.1b where dotted arrows indicate

version changes caused by an influx of information from another node. While in this example

their is no log reduction benefit by converting the simple graph from Figure 4.1b to Fig-

ure 4.1c as there is no redundant edge to remove, authors of DPR demonstrated effectiveness

of log reduction for DPR against large log datasets.

In this DPR representation, edge timestamps are not necessarily needed, since each node

version retains information about time written in subscripts. Furthermore, when solely

considering reachability, the versioned graph does not need to retain any timestamps.8 The

8Under original paper’s definition of forward reachability, removing all timestamps from the graph may
create false positive reachable nodes from the source since their reachability function also requires starting
time as one of inputs, but we do not consider such requirement for our utility analysis.

70

only timing information needed by this graph to run reachability analysis is the direction

of dotted arrows that indicate version changes of nodes. Applying DPR and storing logs as

forms of versioned graphs without timestamps can greatly reduce timing information by not

only removing redundant edges, but also potentially remove all timestamps from logs.

However, naively applying DPR or other log reduction techniques and expecting to close

all timing side channels unfortunately is not plausible. Binary information about direction

of dotted edges reveals the relative ordering of solid edges (i.e., log events) that cause ver-

sioning changes so that such timing information can be exploited against clock-edge attacks

mentioned in Section 2.4. These reductions are not fundamentally designed for protecting

against side channel attacks, so an adversary can easily evade these countermeasures if he

or she knows about them ahead. Even if we can remove all timestamps with DPR, we still

need to retain information about version changes for each node, and an adversary can exploit

such timing information to launch clock-edge attacks. In addition, some of log reduction

techniques [128, 191] are solely interested in reducing file I/O related syscalls, because those

comprise the majority of logged events. Unfortunately, our clock-edge attack prototypes

demonstrated in Section 2.4 exploit network-related events by making concurrent request to

an Nginx server. Removing these events are not considered in most log reduction works.

Nevertheless, reachability as utility function can help assess the utility of post-processed

logs for any countermeasure. In next section, we explain how redaction of all timestamps

and randomization of log entry ordering results in utility loss.

4.4 TIMELESS LOGS

In Chapter 3, we introduce data-obliviousness as key concept to close side-channel attacks.

In this section, we examine post-processed logs where we remove all timestamps and shuffle

log entries such that we remove any timing information. The result is “time-oblivious”;

data-oblivious in terms of timing information. We call these logs Timeless Logs. We assess

the utility loss associated with such post-processing with the reachability utility function

that we introduced in Section 4.3.

4.4.1 Reachability and Timestamps

Figure 4.1d is a time-oblivious provenance graph constructed from the log segment shown

in Figure 4.1a, illustrating the effect of removing timing information from logs. When for-

ward tracking from f1 to find reachable nodes and edges, there is a false positive reachable

node x.x.x.x and a false positive edge send() from p1 to x.x.x.x. As shown in Figure 4.1b,

71

this node and edge are not supposed to be reachable because the send() event happened at

t = 1 whereas a previous event read() happened at t = 4. Without timestamps, however,

such restriction no longer exists. This simple example shows what happens to logs when

timing information is removed. While removal of timestamps do not cause an increase in

false negative reachable nodes/edges, but it can cause an increase in false positive reach-

able nodes/edges. From a system admin’s perspective, the increase in the false positives

would make forward tracking tedious as he or she must examine and filter extra informa-

tion which are not related with Point of Interest (POI) events. Thus, it is crucial that our

countermeasure does not produce a large number of false positive reachable nodes.

4.4.2 Implementation

For this analysis, we use DARPA Transparent Computing (TC) Program datasets for

our evaluation. This DARPA Program intended to provide a transparent view of complex

systems and provide rich provenance data for researchers. This data has been used in prior

audit log research [128, 192, 193]. In particular, we choose a subset of datasets from host

Theia and Cadet where we use first three binary files of each dataset. This is approximately

2.98 million events collected over 4.5 hours for Theia and 5.15 million events collected over

48.7 hours for Cadet. Our experimentation machine configurations are consistent with that

of Section 2.4.3. We first the parse original DARPA Engagement data with a parser written

in Java. This parser has been used in prior works [192] for converting datasets stored in

binaries into LAS format. Then our analysis tool written in Python builds a provenance

graph from the datasets in memory using the NetworkX graph library [194]. Like previous

works, this graph is a MultiDiGraph, a directed graph with self loops and parallel edges where

nodes correspond to: 1) processes, 2) files or 3) network sockets, and edges correspond to

log entries audited by a system logger.

4.4.3 Utility Evaluation

To compare results of Timeless Logs against timestamped logs, our tool performs reach-

ability analysis on timestamped logs by first converting the logs into a versioned graph like

DPR [127]. For reachability analysis, we choose 100 random source nodes for the analysis

from each dataset.

Figure 4.2a is a scatterplot that shows the number of reachable nodes for the 100 source

nodes from dataset Theia. The red dots are measurements for source nodes from Timeless

Logs and blue dots are ones from timestamped logs. For this scatterplot, We identify 100

72

(a) The number of reachable nodes from 100 random source nodes for timestamped logs and
Timeless Logs for Theia.

(b) The number of reachable nodes from 100 random source nodes for timestamped logs and
Timeless Logs for Cadet.

Figure 4.2: Scatterplots that show the number of reachable nodes from 100 random source
nodes for timestamped logs and Timeless Logs. Red dots are measurements for Timeless
Logs and blue dots are those of timestamped logs. The distance between red and blue dot for
each source node illustrates the number of false positive reachable nodes created by removing
timing information from logs.

73

source nodes with a number from 1 to 100 and x-axis show such representation. The y-

axis shows the number of reachable nodes from each source node. The vertical distance

between two dots for the same source is the number of false positive reachable nodes for

the source node. As we previously explained, the removal of timing information fortunately

does not create any false negatives, but does create false positives. For Timeless Logs of

Theia, on average there is an increase of 36,600 percent false positive reachable nodes over

true positive nodes from these 100 source nodes. Furthermore, note that for Timeless Logs,

a lot of source nodes share the same number of reachable nodes. This phenomenon shows

how removal of timing information degraded the utility as most randomly-picked source

nodes gained no reachability information. Figure 4.2b is a scatterplot for dataset Trace

and we observe the same trends where on average there is an increase of 283,000 percent of

false positive reachable nodes over true positive nodes from these hundred source nodes. For

dataset Cadet, the result can be interpreted worse than that of Theia where for a majority of

source nodes, the number of true positive reachable nodes is only itself whereas the numbers

of reachable nodes for those of Timeless Logs are more than 80,000.

Thus, complete time-obliviousness does not provide plausible utility as shown with our

reachability analysis. In next section, we show an alternative approach we call Batched

Timeless Logs, that does not achieve complete time-obliviousness, but provides improved

security guarantees compared to that of timestamped logs while maintaining good utility

compared to that of Timeless Logs.

4.5 BATCHED TIMELESS LOGS

In last section we showed that a complete Timeless log does not retain much utility, but

if we cannot assure complete time-obliviousness against current threat model, then cannot

completely mitigate threats from the adversary. Thus, we instead propose a countermeasure

that does not completely eradicate all risks, but is able to: 1) minimize and quantify risks

associated with timing information and 2) retain good utility with respect to the reachability

function. Our solution is motivated by Trace Wringing [125], a work that proposes ‘wring-

ing” program traces by compressing traces and formalizes the bounds of leaked information

from such traces. For our case, our solution is akin to one of rudimentary aggregation al-

gorithms that a prior work suggested. Xu et al. [126] compared their reduction algorithm

CPR and approximation algorithm PCAR against a naive aggregation method where events

within 10-seconds time window are aggregated. While this study is very similar to what

we have designed, there are several major limitations that we must address. First, their

focus is mainly on log reduction so that their study did not test against various different

74

time windows. Second, their methods aggregated semantically repeated events within the

time window. In other words, only edges sharing the same source and destination nodes

were merged. In our case, we do not limit ourselves to unifying timestamps only for these

redundant edges. Instead, we aggregate the timestamps where events in the same time win-

dow (i.e., a batch) share one timestamp and ordering of events is randomized within each

batch. Finally, their methods simply attempt to coarsen the granularity of timestamps, a

method which is fundamentally vulnerable to clock-edge attacks. Recall that our clock-edge

attack from Section 2.4 created a timing side channel that exploits latency differences of

hundreds of nanoseconds even though timestamps written on logs were with a granularity

of milliseconds.

To address aforementioned limitations, we propose a post-processing mechanism that pro-

cesses logs into Batched Timeless Logs. This method divides a log file L into multiple smaller

log files {l0, ..., ln} (we call each log file as a batched log file) where each smaller log file li

shares one timestamp ti. Ordering of log events within each li is also randomized. As a

result, each li becomes a Timeless log, but there exists timing information between batched

log files since one timestamp shared within each batch reveal ordering of batches. This im-

plies that unfortunately adversary can potentially launch timing edge attacks mentioned in

Section 2.4 across batches by having one event on one batch and another event on another

batch. To minimize an adversary exploiting such vulnerabilities, we choose batch size x to

be the number of events instead of a time window interval. This change will greatly increase

uncertainty of each clock edge as we later show in Section 4.5.2. Furthermore, we choose a

random timestamp among x events to represent timing information for each batch.

Additionally, one can further increase protection against timing side-channel attacks by

injecting noise to the value of the timestamps for each batch. We choose not to implement

such a noise-injection method, because we primarily desiged this countermeasure against

clock-edge attacks. Randomizing batch size x for each batch can also benefit security, but

for consistency of evaluation (Section 4.5.1), we did not implement this feature. We discuss

potential threats associated with vulnerabilities of randomized batches in section 4.5.2. For

utility and security evaluation of Batched Timeless Logs, we use the same dataset and

machine configurations explained in Section 4.4.

4.5.1 Utility Evaluation

We now discuss utility impacts of batching. Because we use batches, we use two different

reachability functions to count false positive ratios. The first function is local reachability

that measures reachability within each batch. We construct a dependency graph for each

75

Table 4.1: Statistics on the ratio of the number of false positive reachable nodes over true
positive reachable nodes (false positive ratio) for Theia and Cadet. Q1 stands for 1st Quertile
and Q3 stands for 3rd Quartile.

(a) False positive ratio (%) statistics for local reachability for Theia

Batch Size Q1 Median Q3 Max Mean
100 0 0 14.3 1.85K 19.9
1K 0 10.81 62.3 3.65K 77.6
10K 3.42 39.1 110 15.5K 340
100K 12.4 50.0 243 168K 1.09K
1M 4.18 74.6 2.45K 1.22M 56K
L ≈ 2.98M 0.72 90.7 364 1.14M 36.6K

(b) False positive ratio (%) statistics for global reachability for Theia

Batch Size Q1 Median Q3 Max Mean
100 0 0.06 0.62 40.0 1.47
1K 0 0.76 2.26 4,730 61.7
10K 0.07 1.19 10.6 6,340 165
100K 0.45 4.42 49.4 156K 3.12K
1M 0.72 30.6 217 190K 8.72K
L ≈ 2.98M 0.72 90.7 364 1.14M 36.6K

(c) False positive ratio (%) statistics for local reachability for Cadet

Batch Size Q1 Median Q3 Max Mean
100 0 0 20 1K 22.8
1K 0 11.1 62.5 4.3K 79.4
10K 0 63.5 448 22.3K 492
100K 13.8 205 2.92K 79.5K 4.16K
1M 197 850 20.2K 571K 38.6K
L ≈ 5.15M 593 4.25K 96.2K 2.76M 283K

(d) False positive ratio (%) statistics for global reachability for Cadet

Batch Size Q1 Median Q3 Max Mean
100 0 3.32 8.33 13.2K 213
1K 0.0 6.35 27.3 857K 19.7K
10K 0.0 21.3 297K 2.10M 77.3K
100K 5.97 81.8 15.5K 2.11M 110K
1M 77.9 3.15K 59.7K 2.76M 177K
L ≈ 5.15M 593 4.25K 96.2K 2.76M 283K

batch, and we run reachability analysis on each batch. Because the size of provenance graph

is much smaller for each batch compared to a global provenance graph we used in Section 4.4,

we may have less than 100 nodes to choose from for each provenance depending on size

of the batch. In this case, we simply run reachability analysis on all nodes. Table 4.1a

76

displays experimentation results for various batch sizes for dataset Theia and Table 4.1c

displays those results for dataset Cadet. Note that when batch size is equal to that of log

size, then we have a complete Timeless Log from Section 4.4, so the experiment results are

consistent with that of the previous section. The false positive ratio is calculated as the

number of reachable nodes from a timeless batch over the number of reachable nodes from

a timestamped batch. To compare results across different batch sizes, we display results

in ratio of false positive reachable nodes. As mentioned in previously, we choose not to

randomize batch size for consistency across different batches. For Theia with the smallest

batch size of 100, more than half of batches have no false positive reachable nodes. However,

in the worst case a batch can have increase in 1850% of false positive reachable nodes over

true positive reachable nodes. After a batch size of 1,000, medians of false positive ratio

becomes too large, suggesting that even if graph is small, removing all timing information

results in a big utility loss.

The second function is global reachability that measures reachability across the whole

dataset. Provenance graph analysis mainly aims to track dependency of events for a long

period of time. However, experiment results from local reachability only considers reacha-

bility within a batch which has very small time window. (We go over relationship between

batch size and time window in Section 4.5.2) Thus, this global reachability function aims

to measure the effects of batch size against increase in false positive reachable nodes across

the entire dataset. This is done by first creating a provenance graph for each batch and

connecting each graph where duplicate nodes across batches are connected with edges that

are equivalent to dotted arrows for versioned graphs in Figure 4.1c. For this case, we do not

need to worry about problems associated with choosing 100 source nodes, so all batches use

the same 100 sources for consistency.

Table 4.1b and Table 4.1d shows that false positive ratio across different batch sizes in

terms of global reachability. For Theia with batch size of 100, more than 75 percent of source

nodes had less than 1 percent of increase in the number of false positive reachable nodes.

However, one thing that is not shown from this statistic is that the global provenance graph

is much larger than that of local provenance graph so that even if percentages increase are

small for some batch sizes, the actual increase in the number of false positive reachable nodes

can be very large. For Theia with a batch size of 100, the number of false positive nodes

on average is 7.6 for local reachability but that of global reachability is 172.3. In the next

subsection, we examine differences in time window intervals across different batch sizes for

security.

77

4.5.2 Security Evaluation

For Timeless Logs in Section 4.4, we do not require security evaluation since the logs

are time-oblivious. However, for Batched Timeless Logs, we must examine vulnerabilities

associated with clock-edge attacks across batches, so this section examines tradeoffs between

batch size and time windows. As shown previously, the smaller the batch size, the better

the utility . In the extreme case, one can set batch size to one and retain perfect utility no

timing information is lost. However, security risks against batched logs increases as batch

size decreases. Even if we randomize either representative timestamp or batch size as we

designed, if batch size is too small, then the timing window between batches can be smaller

than the timing latency of side-channel attack which makes clock-edge attacks across batches

significantly easier to perform.

Table 4.2: Statistics for an interval of time windows against different batch sizes.

(a) Results for Theia dataset.

Batch Size Num Batches Median Mean STD
100 29.3K 0.016 sec 0.548 sec 1.41 sec
1K 2.93K 1.46 sec 5.53 sec 9.67 sec
10K 293 44.5 sec 55.4 sec 44.5 sec
100K 30 524 sec 541 sec 231 sec
1M 3 79.9 min 90.1 min 15.5 min
L 1 4.51 hrs 4.51 hrs -

(b) Results for Cadet dataset.

Batch Size Num Batches Median Mean STD
100 51.5K 0.070 sec 3.369 sec 10.87 sec
1K 5.15K 29.5 sec 33.99 sec 30.9 sec
10K 516 370 sec 340 sec 216 sec
100K 52 56.3 min 56.2 min 25.5 min
1M 6 8.64 sec 8.11 hrs 195 min
L 1 48.7 hrs 48.7 hrs -

Table 4.2a shows the tradeoffs between batch size and interval of time window for each

batch for the Theia dataset and Table 4.2b shows results for the Cadet dataset. In addition

to multiple randomization schemes that we implemented, we choose batch sizes to be a fixed

number of events, not a time interval. As a result, we observe relatively large standard

deviation for time windows across batches. In case of Theia dataset, the median time

window interval across batches is 0.016 sec but the mean is 0.548 sec with a standard

deviation of 1.41 sec for a batch size of 100. For Cadet dataset, the median, the mean and

a standard deviation are 0.070 sec, 3.369 sec and 10.87 sec for the same batch size. This

78

will greatly affect an adversary trying to infer timing information, but this will not affect

an adversary if the timing window of timing side-channel attacks is much larger than the

intervals. For example, if adversary’s side-channel attack relies on timing window between

two events to be larger than one second, then a batch size of 100 would be too small even

with randomization. For such an adversary, the number of batches dictates the number of

bits leaked by the logs. If we decrease the number of batches by increasing batch sizes, then

the number of bits leaked decreases, but as we showed previously, the utility of resulting

logs degrades as a result. Therefore, system admins who apply Batched Timeless log as a

main countermeasure against clock-edge attacks must make tradeoffs between utility and

security. Fortunately, our attack prototypes demonstrated in Section 2.4 exploit very fine-

grained timing side channels in hundreds of nanoseconds such that even smallest batch size

of 100 would effectively mitigate all of our attack examples.

4.6 CONCLUSION

We introduce Timeless logs, an approach to mitigate clock-edge Termite attacks and we

study on utility-security tradeoffs associated with reachability functions against provenance

graphs. While a complete time-oblivious log provides very little utility value based on our

reachability analysis, Batched Timeless logs do exhibit reasonable tradeoffs when batch sizes

are sufficiently small. Batched Timeless logs also provide a way of quantifying risks against

Termite attacks where small batches provide good utility, but are potentially vulnerable

against possible coarse-grained side channel attacks.

79

CHAPTER 5: CONCLUSIONS

In this work, we have demonstrated and explored side-channel attacks against logs and

their countermeasures. We highlighted and discussed previously overlooked topics of exploit-

ing implicit information against logs to extract secrets. We then presented countermeasures

to mitigate against such threats under two different scenarios.

In Chapter 2, we demonstrate possibility of launching fine-grained side channel attacks

against seemly coarse-grained channel. Our first two attacks, membership inference attacks

against log contents and keystroke timing attacks against SSH, display how to extract coarse-

grained secrets through implicit information. Furthermore, we share surprising results where

it is possible to mount a fine-grained timing channel attack against a system logger. Our

experimentation showed that despite use of coarse-grained time sources, the logger nonethe-

less still retained accurate timing information that can be leveraged by remote clock-edge

attacks. Our PoC NetSpectre attacks show that these threats against system loggers cannot

be underestimated as the attack can steal any secret information stored in the system.

We show how to address threats associated with side-channel attacks against logs in Chap-

ter 3 and Chapter 4. In Chapter 3 we introduce a high-level programming stack that lever-

ages TEE and data-oblivious computation. This work is originally intended to provide a

secure programming environment against untrusted software including OS and hypervisor.

However, our analysis shows how our DOVE’s architecture can provide an interface for

side-channel resistant logging by introducing the concept of pseudonyms. Our design of

pseudonyms and DOT ensures confidentiality of secret information in original computation

by completely decoupling all secrets from logs that record operations for high-level language

interpreters.

Finally, in Chapter 4, we provide a detailed study that examines utility-security tradeoffs

with respect to timing information stored in logs. While there exits a prior work that

limitedly conducted such analysis, our work is the first to make a systematic analysis of

the impact of removal of timestamps. Then we designed Timeless logs where its batched

version provided good security guarantee with reasonable false positive ratios with respect

to reachability, a widely used utility function in the audit log research community.

5.1 DISCUSSION AND FUTURE WORKS

We conclude this thesis with a discussion and potential research opportunities associated

with side channels and logs.

80

5.1.1 Current DOVE Prototype Limitations

The DOT has been designed to provide functionality for real-world data science tasks.

Some features such as multi-threading and networking, that are present in general-purpose

languages, are not currently supported in either the DOT or DOVE more generally. This is

not fundamental. Additional functionality can be added to the DOT, as long as there exists

a data-oblivious implementation of said functionality.

In the current DOVE prototype, loop bounds (and related constructs such as recursion

depth) must be a function of non-sensitive data. For example, we consider matrix dimen-

sions to be non-sensitive and matrix dimensions determine loop bounds in our evaluation

scripts. An interesting direction for future work would be to add either static or dynamic

program analysis to enable such control-flow information to be a function of sensitive data.

For example, if a given loop iterates i1 or i2 times depending on a sensitive value, one would

like an analysis to discover i1 and i2, set the loop’s bound to max(i1, i2) and add the instru-

mentation from Section 3.4.4 to mask out architectural state updates when the actual input

requires fewer loop iterations.

5.1.2 Additional Countermeasure Suggestions

We now outline potential countermeasures for Termite attacks which we did not cover

in Chapter 4. Much like their namesake, however, Termite attacks, once found, are hard

to remove. Overall, we believe that there is no one-size-fits-all solution against Termite

attacks. A proper countermeasure will likely involve techniques from each of the areas

described above. Developing defenses against Termite attacks will be a productive avenue

for future work.

Reducing log content. A common security maxim is to not log secret data. As we have

seen, what constitutes secret data is quite complex. Thus, by paring down the logs’ content,

we would ostensibly be shrinking the attack surface; the attacker now has less data over

which to build an exploit. We have seen, however, that this is not sufficient. With the log

metadata of a single process, we can extract secret information, as seen in Section 2.3.1.

Moreover, the question of how much content to eliminate remains. Relatively coarse-grained

timestamps were enough to recover keystrokes in Section 2.3.2. The mere presence of logging

between two processes allowed us to build our timing side channel in Section 2.4.

Limiting log access. Our threat model (Section 4.2) expects log disclosure to occur, but

logs could potentially be encrypted [2, 115]. However, encryption could still leak information

81

about the underlying content. Logs of differing length could be encrypted to the same or

similar lengths, allowing for similar analysis. This type of length-based side channel has been

employed successfully against TLS-encrypted network traffic [195]. Encrypting the logs also

has questions of key management, as key principals still need access to the log. Too many

privileged users could be a security flaw, but not enough could slow incident recovery.

In the extreme case, a concerned administrator could disable LAS and logging entirely.

While this would close the side channel (vacuously), it would also make system adminis-

tration problematic. Without logs, debugging would be difficult and, potentially, security

events would remain undetected. This is akin to disabling processor speculation to close

speculative execution side channels [65]: secure against the attack, but impractical in the

real world.

5.1.3 Limitations and Future Works for Timeless Logs

Unfortunately, our current study was conducted in relatively small dataset and we have

not had a chance to run experiments on DARPA dataset collected by hosts other than Theia

and Cadet. We are interested in conducting future experiments on different datasets with

larger size.

While our work discusses potential of prior works (especially log reduction algorithms)

against Termite attacks as countermeasures, we choose not to implement any of these meth-

ods. In particular, DPR proposes storing logs as versioned graphs which can potentially

wash out a lot of timing information as we discussed in Section 4.3. We have not found a

systematic way to apply their works as countermeasures, but we believe there are poten-

tial opportunities associated with versioned graphs as countermeasures against timing side-

channel attacks. Furthermore, there has been a prior work that uses application logs [36]

to assist log analysis. This work aims to reduce size of provenance graph when making

reachability analysis by getting semantic information of processes that generate application

logs. This work if used in conjunction with our Batched Timeless logs may be able to reduce

false positives, but in order to do so, we need to justify our threat model that an adversary

does not learn any timing information from such application logs as well. In summary, it

would be interesting if prior works can be applied either solely or composed with Batched

Timeless logs to achieve better utility and stronger security guarantees.

As mentioned in threat model, this study does not consider threats associated with adver-

sary learning about timing information through means other than timestamps and relative

ordering of events. It would be interesting future work to find implicit timing information

in logs and assess if countermeasures we suggested are plausible.

82

REFERENCES

[1] Wikipedia contributors, “Logging (computing) — Wikipedia, the free encyclopedia,”
2023, [Online; accessed 15-June-2023]. [Online]. Available: https://en.wikipedia.org/
wiki/Logging (computing)

[2] I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram, “Secure logging as a
service—delegating log management to the cloud,” IEEE Systems Journal’13.

[3] B. Böck, D. Huemer, and A. M. Tjoa, “Towards more trustable log files for digital
forensics by means of “trusted computing”,” in IEEE AINA’10.

[4] SQLite, “The error and warning log,” https://www.sqlite.org/errlog.html.

[5] R. Paccagnella, P. Datta, W. Hassan, A. Bates, C. W. Fletcher, A. Miller, and D. Tian,
“Custos: Practical Tamper-Evident Auditing of Operating Systems Using Trusted
Execution,” in NDSS’20.

[6] J. Biskup and U. Flegel, “Transaction-based pseudonyms in audit data for privacy
respecting intrusion detection,” in International Workshop on Recent Advances in In-
trusion Detection. Springer, 2000, pp. 28–48.

[7] J. Biskup and U. Flegel, “On pseudonymization of audit data for intrusion detection,”
in Designing Privacy Enhancing Technologies. Springer, 2001, pp. 161–180.

[8] F. Brunton and H. Nissenbaum, “Vernacular resistance to data collection and analysis:
A political theory of obfuscation,” First Monday, 2011.

[9] R. Shokri, “Privacy games: Optimal user-centric data obfuscation,” arXiv preprint
arXiv:1402.3426, 2014.

[10] Y. Long, L. Xu, and C. A. Gunter, “A hypothesis testing approach to sharing logs
with confidence,” in CODASPY’20.

[11] K. Berlin, D. Slater, and J. Saxe, “Malicious behavior detection using windows audit
logs,” in Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security,
2015, pp. 35–44.

[12] W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer, “Towards scalable cluster
auditing through grammatical inference over provenance graphs,” in NDSS’18.

[13] M. Dymshits, B. Myara, and D. Tolpin, “Process monitoring on sequences of system
call count vectors,” in ICCST’17.

[14] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI: Multiple perspec-
tive attack investigation with semantic aware execution partitioning,” in (USENIX
Security’17).

83

https://en.wikipedia.org/wiki/Logging_(computing)
https://en.wikipedia.org/wiki/Logging_(computing)
https://www.sqlite.org/errlog.html

[15] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang, D. Xu, S. Jha,
G. F. Ciocarlie et al., “MCI: Modeling-based Causality Inference in Audit Logging for
Attack Investigation,” in NDSS’18.

[16] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, and S. Jha, “Kernel-Supported Cost-Effective audit logging
for causality tracking,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18). Boston, MA: USENIX Association, July 2018. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/ma-shiqing pp. 241–254.

[17] H. B. Lee, T. Jois, C. W. Fletcher, and C. A. Gunter, “DOVE: A Data-Oblivious
Virtual Environment,” in NDSS’21.

[18] Apache Software Foundation, “Log files - Apache HTTP server version 2.4,” https:
//httpd.apache.org/docs/2.4/logs.html.

[19] The PostgreSQL Global Development Group, “Error Reporting and Logging,” https:
//www.postgresql.org/docs/current/runtime-config-logging.html.

[20] Red Hat, Inc., “Auditing the system Red Hat Enterprise Linux 8,”
https://access.redhat.com/documentation/en-us/red hat enterprise linux/8/html/
security hardening/auditing-the-system security-hardening.

[21] FreeBSD, “DTrace,” https://wiki.freebsd.org/DTrace.

[22] Microsoft, “About Event Tracing,” https://docs.microsoft.com/en-us/windows/
win32/etw/about-event-tracing.

[23] P. Fei, Z. Li, Z. Wang, X. Yu, D. Li, and K. Jee, “{SEAL}: Storage-efficient causality
analysis on enterprise logs with query-friendly compression,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 2987–3004.

[24] Microsoft, “Microsoft Sysmon,” https://docs.microsoft.com/en-us/sysinternals/
downloads/sysmon, accessed: 2022-01-28.

[25] S. Grubb, auditctl(8) Linux manual page, July 2021.

[26] S. Grubb, audit.rules(7) Linux manual page, January 2019.

[27] M. A. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur, A. Bates,
and W. U. Hassan, “SoK: History is a Vast Early Warning System: Auditing the
Provenance of System Intrusions,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, 2022, pp. 307–325.

[28] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance tracing by
alternating between logging and tainting.” in NDSS’16.

84

https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://httpd.apache.org/docs/2.4/logs.html
https://httpd.apache.org/docs/2.4/logs.html
https://www.postgresql.org/docs/current/runtime-config-logging.html
https://www.postgresql.org/docs/current/runtime-config-logging.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/auditing-the-system_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/auditing-the-system_security-hardening
https://wiki.freebsd.org/DTrace
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

[29] National Security Agency, “Controlled Access Protection Profile, Version 1.d,” https:
//www.niap-ccevs.org/Profile/Info.cfm?PPID=14&id=14, 1999, accessed: 2022-08-
18.

[30] R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the danger zone: Race
condition attacks and defenses on system audit frameworks,” in CCS’20.

[31] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson: Abstracting
behaviors from audit logs via aggregation of contextual semantics.” in NDSS, 2021.

[32] M. A. Inam, W. U. Hassan, A. Ahad, A. Bates, R. Tahir, T. Xu, and F. Zaffar,
“Forensic analysis of configuration-based attacks,” in NDSS’22.

[33] J. Zengy, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L. Chua, “Shade-
watcher: Recommendation-guided cyber threat analysis using system audit records,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 489–506.

[34] H. Irshad, G. Ciocarlie, A. Gehani, V. Yegneswaran, K. H. Lee, J. Patel, S. Jha,
Y. Kwon, D. Xu, and X. Zhang, “Trace: Enterprise-wide provenance tracking for
real-time apt detection,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 4363–4376, 2021.

[35] S. Yoo, J. Jo, B. Kim, and J. Seo, “Longline: Visual analytics system for large-scale
audit logs,” Visual Informatics, vol. 2, no. 1, pp. 82–97, 2018.

[36] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omegalog: High-fidelity at-
tack investigation via transparent multi-layer log analysis,” in Network and distributed
system security symposium, 2020.

[37] C. Yagemann, M. A. Noureddine, W. U. Hassan, S. Chung, A. Bates, and W. Lee,
“Validating the integrity of audit logs against execution repartitioning attacks,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 3337–3351.

[38] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing in Distributed
Environments,” Middleware’12.

[39] N. Husted, S. Quresi, and A. Gehani, “Android provenance: diagnosing device disor-
ders,” in 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP
13), 2013.

[40] A. Ahmad, S. Lee, and M. Peinado, “Hardlog: Practical tamper-proof system auditing
using a novel audit device,” in 2022 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 2022, pp. 1554–1554.

[41] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware,” IACR’16.

85

https://www.niap-ccevs.org/Profile/Info.cfm?PPID=14&id=14
https://www.niap-ccevs.org/Profile/Info.cfm?PPID=14&id=14

[42] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: The
case of AES,” in CT-RSA’06.

[43] Y. Yarom and K. Falkner, “Flush+Reload: A high resolution, low noise, L3 cache
side-channel attack,” in USENIX Security’14.

[44] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A Timing Attack on OpenSSL
Constant Time RSA,” IACR’16.

[45] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas, “At-
tack Directories, Not Caches: Side Channel Attacks in a Non-Inclusive World,” in
IEEE S&P, 2019.

[46] O. Aciicmez, J.-P. Seifert, and C. K. Koc, “Predicting Secret Keys via Branch Predic-
tion,” IACR’06.

[47] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, “Branchscope: A new
side-channel attack on directional branch predictor,” in ASPLOS’18.

[48] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham, “On
subnormal floating point and abnormal timing,” in S&P’15.

[49] J. Großschädl, E. Oswald, D. Page, and M. Tunstall, “Side-channel analysis of cryp-
tographic software via early-terminating multiplications,” in ICISC’09.

[50] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garćıa, and N. Tuveri, “Port con-
tention for fun and profit,” IACR’18.

[51] A. Moghimi, T. Eisenbarth, and B. Sunar, “Memjam: A false dependency attack
against constant-time crypto implementations,” CoRR’17.

[52] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side
channels for untrusted operating systems,” in S&P’15.

[53] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and C. A.
Gunter, “Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX,” in CCS’17.

[54] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks,” in USENIX Security’18.

[55] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA: Exploiting
DRAM addressing for cross-cpu attacks,” in USENIX Security’16.

[56] D. Evtyushkin and D. Ponomarev, “Covert channels through random number genera-
tor: Mechanisms, capacity estimation and mitigations,” in CCS ’16.

[57] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in S&P’15.

86

[58] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems,” in Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings,
ser. Lecture Notes in Computer Science, vol. 1109. Springer, 1996, pp. 104–113.

[59] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the
case of aes,” in Cryptographers’ track at the RSA conference. Springer, 2006, pp.
1–20.

[60] Y. Yarom and K. Falkner, “{FLUSH+ RELOAD}: A high resolution, low noise, l3
cache {Side-Channel} attack,” in 23rd USENIX security symposium (USENIX security
14), 2014, pp. 719–732.

[61] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: a timing attack on openssl
constant-time rsa,” Journal of Cryptographic Engineering, vol. 7, no. 2, pp. 99–112,
2017.

[62] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Netspectre: Read
arbitrary memory over network,” in ESORICS’19.

[63] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garćıa, and N. Tuveri, “Port
contention for fun and profit,” Cryptology ePrint Archive, Report 2018/1060, 2018,
https://ia.cr/2018/1060.

[64] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin et al., “Meltdown: Reading kernel memory from user space,” in
27th {USENIX} Security Symposium ({USENIX} Security 18), 2018, pp. 973–990.

[65] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher et al., “Spectre attacks: Exploiting speculative execution,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[66] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain times,” in USENIX
Security’16.

[67] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers and where to
find them: High-resolution microarchitectural attacks in javascript,” in International
Conference on Financial Cryptography and Data Security. Springer, 2017, pp. 247–
267.

[68] T. Van Goethem, C. Pöpper, W. Joosen, and M. Vanhoef, “Timeless timing attacks:
Exploiting concurrency to leak secrets over remote connections,” in USENIX Secu-
rity’20.

[69] R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2019. [Online]. Available:
https://www.R-project.org/

87

https://ia.cr/2018/1060
https://www.R-project.org/

[70] J. McCarthy, “Recursive functions of symbolic expressions and their computation by
machine,” 1959.

[71] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia, “A formal
foundation for secure remote execution of enclaves,” in CCS’17.

[72] Intel®, “Intel® software guard extensions programming reference,” 2014.

[73] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace : Oblivious memory primitives
from intel sgx,” in NDSS’18.

[74] J. Yu, L. Hsiung, M. E. Hajj, and C. W. Fletcher, “Data oblivious isa extensions for
side channel-resistant and high performance computing,” in NDSS’19, https://eprint.
iacr.org/2018/808.

[75] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and
M. Costa, “Oblivious multi-party machine learning on trusted processors,” in USENIX
Security’16.

[76] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels through
obfuscated execution,” in USENIX Security’15.

[77] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on Intel SGX,” in
EuroSec’17.

[78] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels for untrusted
operating systems,” in USENIX ATC’17.

[79] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A. Sadeghi,
“Software Grand Exposure: SGX Cache Attacks Are Practical,” CoRR’17.

[80] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX amplifies the
power of cache attacks,” CoRR’17.

[81] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W. Fletcher,
“Microscope: Enabling microarchitectural replay attacks,” in ISCA’19.

[82] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted
cloud with haven,” ACM TOCS’15.

[83] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical library OS for
unmodified applications on SGX,” in USENIX ATC’17.

[84] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB linux applications
with sgx enclaves,” in NDSS’17.

[85] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,
and U. R. Savagaonkar, “Innovative instructions and software model for isolated exe-
cution.” HASP’13.

88

https://eprint.iacr.org/2018/808
https://eprint.iacr.org/2018/808

[86] Intel®, “Intel® software guard extensions sdk for linux os developer reference,” 2020.

[87] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing access-based cache
attacks on aes to practice,” in S&P’11.

[88] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A Practical Attack Framework
for Precise Enclave Execution Control,” in SysTEX’17.

[89] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in PKC’06.

[90] D. J. Bernstein, “The Poly1305-AES Message-Authentication Code,” in FSE’05.

[91] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program counter secu-
rity model: Automatic detection and removal of control-flow side channel attacks,”
IACR’05.

[92] B. A. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron: Functional
encryption using Intel SGX,” in CCS’17.

[93] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “SGX-BigMatrix: A practical en-
crypted data analytic framework with trusted processors,” in CCS’17.

[94] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica,
“Opaque: An Oblivious and Encrypted Distributed Analytics Platform,” in NSDI’17.

[95] S. Eskandarian and M. Zaharia, “An oblivious general-purpose SQL database for the
cloud,” CoRR’17.

[96] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An efficient
oblivious search index,” in S&P’18.

[97] S. Tople and P. Saxena, “On the trade-offs in oblivious execution techniques,” in
Detection of Intrusions and Malware, and Vulnerability Assessment, M. Polychronakis
and M. Meier, Eds. Springer’17.

[98] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A Data Oblivious Filesys-
tem for Intel SGX,” in NDSS’18.

[99] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter, “Practical mitigations
for timing-based side-channel attacks on modern x86 processors,” in S&P’09.

[100] D. Darais, C. Liu, I. Sweet, and M. Hicks, “A language for probabilistically oblivious
computation,” CoRR’17.

[101] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang, R. Jhala, and D. Stefan,
“Fact: A flexible, constant-time programming language,” SecDev’17.

[102] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A programming
framework for secure computation,” in S&P’15.

89

[103] S. Zahur and D. Evans, “Obliv-c: A language for extensible data-oblivious computa-
tion,” IACR’15.

[104] E. Stefanov, M. van Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: An extremely simple oblivious ram protocol,” CCS’13.

[105] M. Blanton, A. Steele, and M. Alisagari, “Data-oblivious graph algorithms for secure
computation and outsourcing,” in ASIA CCS’13.

[106] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi, “Graphsc:
Parallel secure computation made easy,” in S&P’15.

[107] J. Doerner, D. Evans, and abhi shelat, “Secure stable matching at scale,” IACR’16.

[108] T.-H. H. Chan, Y. Guo, W.-K. Lin, and E. Shi, “Cache-oblivious and data-oblivious
sorting and applications,” IACR’17.

[109] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and F. Koushanfar, “Tiny-
garble: Highly compressed and scalable sequential garbled circuits,” in S&P’15.

[110] S. Zahur and D. Evans, “Circuit structures for improving efficiency of security and
privacy tools,” in S&P’13.

[111] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and Y. Huang,
“Oblivious data structures,” IACR’14.

[112] M. Ring, D. Schlör, S. Wunderlich, D. Landes, and A. Hotho, “Malware detection on
windows audit logs using lstms,” Computers & Security, vol. 109, p. 102389, 2021.

[113] H. D. Kuna, R. Garćıa-Martinez, and F. R. Villatoro, “Outlier detection in audit logs
for application systems,” Information Systems, vol. 44, pp. 22–33, 2014.

[114] K. D. Bowers, C. Hart, A. Juels, and N. Triandopoulos, “Pillarbox: Combating next-
generation malware with fast forward-secure logging,” in International Workshop on
Recent Advances in Intrusion Detection. Springer, 2014, pp. 46–67.

[115] S. Zawoad, A. K. Dutta, and R. Hasan, “Towards building forensics enabled cloud
through secure logging-as-a-service,” IEEE Transactions on Dependable and Secure
Computing, vol. 13, no. 2, pp. 148–162, 2015.

[116] V. Karande, E. Bauman, Z. Lin, and L. Khan, “Sgx-log: Securing system logs with
sgx,” in ASIACCS’17.

[117] E. Lundin and E. Jonsson, “Privacy vs. intrusion detection analysis.” in Recent Ad-
vances in Intrusion Detection, 1999.

[118] C. Rath, “Usable privacy-aware logging for unstructured log entries,” in 2016 11th
International Conference on Availability, Reliability and Security (ARES). IEEE,
2016, pp. 272–277.

90

[119] J. Xu, J. Fan, M. Ammar, and S. B. Moon, “On the design and performance of prefix-
preserving ip traffic trace anonymization,” in Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement, 2001, pp. 263–266.

[120] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based scheme,”
in 10th IEEE International Conference on Network Protocols, 2002. Proceedings.
IEEE, 2002, pp. 280–289.

[121] J. Wilkes, “More Google Cluster Data,” https://ai.googleblog.com/2011/11/
more-google-cluster-data.html, accessed: 2022-03-29.

[122] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: format +
schema,” Google Inc., Mountain View, CA, USA, Technical Report, Nov. 2011, revised
2014-11-17 for version 2.1. Posted at https://github.com/google/cluster-data.

[123] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Obfuscatory obscanturism: making work-
load traces of commercially-sensitive systems safe to release,” in IEEE Network Oper-
ations and Management Symposium’12.

[124] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate indis-
tinguishability obfuscation and functional encryption for all circuits,” SIAM Journal
on Computing, vol. 45, no. 3, pp. 882–929, 2016.

[125] D. Dangwal, W. Cui, J. McMahan, and T. Sherwood, “Trace wringing for program
trace privacy,” ASPLOS’19.

[126] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and G. Jiang, “High
Fidelity Data Reduction for Big Data Security Dependency Analyses,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2976749.2978378 p. 504–516.

[127] M. N. Hossain, J. Wang, R. Sekar, and S. D. Stoller, “Dependence-Preserving Data
Compaction for Scalable Forensic Analysis,” in 27th USENIX Security Symposium
(USENIX Security 18). Baltimore, MD: USENIX Association, Aug. 2018. [Online].
Available: https://www.usenix.org/conference/usenixsecurity18/presentation/hossain
pp. 1723–1740.

[128] N. Michael, J. Mink, J. Liu, S. Gaur, W. U. Hassan, and A. Bates, “On the Forensic
Validity of Approximated Audit Logs,” in Annual Computer Security Applications
Conference, ser. ACSAC ’20. New York, NY, USA: Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3427228.3427272 p.
189–202.

[129] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,
P. Pietzuch, and C. Fetzer, “SCONE: Secure linux containers with intel SGX,” in
OSDI’16.

91

https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://github.com/google/cluster-data
https://doi.org/10.1145/2976749.2978378
https://www.usenix.org/conference/usenixsecurity18/presentation/hossain
https://doi.org/10.1145/3427228.3427272

[130] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin, F. Kelbert, T. Rei-
her, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer, and P. Pietzuch, “Glamdring:
Automatic application partitioning for intel SGX,” in USENIX ATC 17.

[131] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P. Pietzuch, and R. Kapitza,
“TrustJS: Trusted client-side execution of javascript,” in EuroSec’17.

[132] H. Wang, E. Bauman, V. Karande, Z. Lin, Y. Cheng, and Y. Zhang, “Running Lan-
guage Interpreters Inside SGX: A Lightweight,Legacy-Compatible Script Code Hard-
ening Approach,” in Asia CCS’19.

[133] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox for
untrusted computation on secret data,” in OSDI’16.

[134] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert, “Secure and private function evalu-
ation with Intel SGX,” in SIGSAC’19.

[135] Cybernetica, “Sharemind HI,” https://sharemind.cyber.ee/sharemind-hi/, 2020.

[136] A. Avalos, H. Pan, C. Li, J. P. Acevedo-Gonzalez, G. Rendon, C. J. Fields, P. J. Brown,
T. Giray, G. E. Robinson, M. E. Hudson et al., “A soft selective sweep during rapid
evolution of gentle behaviour in an Africanized honeybee,” Nature communications,
vol. 8, no. 1, p. 1550, 2017.

[137] F. Chen, M. Dow, S. Ding, Y. Lu, X. Jiang, H. Tang, and S. Wang, “PREMIX:
Privacy-preserving estimation of individual admixture,” in AMIA ASP’16.

[138] M. N. Sadat, M. M. A. Aziz, N. Mohammed, F. Chen, S. Wang, and X. Jiang,
“SAFETY: Secure GWAS in federated environment through a hybrid solution with
Intel SGX and homomorphic encryption,” arXiv preprint arXiv:1703.02577, 2017.

[139] F. Chen, S. Wang, X. Jiang, S. Ding, Y. Lu, J. Kim, S. C. Sahinalp, C. Shimizu, J. C.
Burns, V. J. Wright et al., “Princess: Privacy-protecting rare disease international net-
work collaboration via encryption through software guard extensions,” Bioinformatics,
vol. 33, no. 6, pp. 871–878, 2016.

[140] F. Chen, C. Wang, W. Dai, X. Jiang, N. Mohammed, M. M. Al Aziz, M. N. Sadat,
C. Sahinalp, K. Lauter, and S. Wang, “PRESAGE: privacy-preserving genetic testing
via software guard extension,” BMC medical genomics, vol. 10, no. 2, p. 48, 2017.

[141] M. M. A. Aziz, M. N. Sadat, D. Alhadidi, S. Wang, X. Jiang, C. L. Brown, and
N. Mohammed, “Privacy-preserving techniques of genomic data—a survey,” Briefings
in Bioinformatics, vol. 20, no. 3, pp. 887–895, 2017.

[142] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes and timing attacks
on {SSH},” in 10th USENIX Security Symposium (USENIX Security 01), 2001.

[143] M. Schwarzl, E. Kraft, M. Lipp, and D. Gruss, “Remote memory-deduplication at-
tacks,” in NDSS’22.

92

https://sharemind.cyber.ee/sharemind-hi/

[144] J. Wikner, C. Giuffrida, H. Bos, and K. Razavi, “Spring: Spectre Returning in the
Browser with Speculative Load Queuing and Deep Stacks,” in WOOT’22, 2022.

[145] B. Köpf and D. Basin, “An information-theoretic model for adaptive side-channel
attacks,” in Proceedings of the 14th ACM conference on Computer and communications
security, 2007, pp. 286–296.

[146] A. Slagell and W. Yurcik, “Sharing computer network logs for security and privacy:
a motivation for new methodologies of anonymization,” in Workshop of the 1st Inter-
national Conference on Security and Privacy for Emerging Areas in Communication
Networks, 2005., 2005, pp. 80–89.

[147] R. Pang and V. Paxson, “A high-level programming environment for packet trace
anonymization and transformation,” in Proceedings of the 2003 conference on Appli-
cations, technologies, architectures, and protocols for computer communications, 2003,
pp. 339–351.

[148] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring (s): Side channel attacks
on the {CPU}{On-Chip} ring interconnect are practical,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 645–662.

[149] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.

[150] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using the parallel work-
loads archive,” Journal of Parallel and Distributed Computing, vol. 74, no. 10, pp.
2967–2982, 2014.

[151] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman, and N. De-
Bardeleben, “Bigger, longer, fewer: what do cluster jobs look like outside google,”
2017.

[152] M. Naor and M. Yung, “Public-key cryptosystems provably secure against chosen
ciphertext attacks,” in Proceedings of the twenty-second annual ACM symposium on
Theory of computing, 1990, pp. 427–437.

[153] R. A. Clothey, E. F. Koku, E. Erkin, and H. Emat, “A voice for the voiceless: online
social activism in uyghur language blogs and state control of the internet in china,”
Information, Communication & Society, vol. 19, no. 6, pp. 858–874, 2016.

[154] B. Krebs, “Online cheating site ashleymadison hacked,” Krebs on security, 2015.

[155] S. Vinberg and J. Overson, “2021 credential stuffing report,” https://www.f5.com/
labs/articles/threat-intelligence/2021-credential-stuffing-report.

[156] The PHP Group, “password hash,” https://www.php.net/manual/en/function.
password-hash.php.

93

https://www.f5.com/labs/articles/threat-intelligence/2021-credential-stuffing-report
https://www.f5.com/labs/articles/threat-intelligence/2021-credential-stuffing-report
https://www.php.net/manual/en/function.password-hash.php
https://www.php.net/manual/en/function.password-hash.php

[157] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi, “Netcat:
Practical cache attacks from the network,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 20–38.

[158] K. Zhang and X. Wang, “Peeping tom in the neighborhood: Keystroke eavesdropping
on multi-user systems.” in USENIX Security Symposium, vol. 20, 2009, p. 23.

[159] Sysdig, “Sysdig – Open Source System Capturing.” https://sysdig.com/opensource/
inspect/, accessed: 2022-03-29.

[160] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy Whole-System prove-
nance for the Linux kernel,” in USENIX Security’15.

[161] Microsoft, “Process Monitor v3.89.” https://docs.microsoft.com/en-us/sysinternals/
downloads/procmon, accessed: 2022-03-29.

[162] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Mangard, “Prac-
tical keystroke timing attacks in sandboxed javascript,” in European Symposium on
Research in Computer Security. Springer, 2017, pp. 191–209.

[163] S. A. Crosby, D. S. Wallach, and R. H. Riedi, “Opportunities and limits of remote
timing attacks,” ACM Transactions on Information and System Security (TISSEC),
vol. 12, no. 3, pp. 1–29, 2009.

[164] Nagle, John, “The trouble with the Nagle algorithm,” https://developers.slashdot.
org/comments.pl?sid=174457&threshold=1&commentsort=0&mode=thread&cid=
14515105, accessed: 2022-05-08.

[165] E. K. Chan, “Handy R functions for genetics research,” https://github.com/ekfchan/
evachan.org-Rscripts, 2019.

[166] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in CRYPTO’99.

[167] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “EDDIE: EM-Based
Detection of Deviations in Program Execution,” in ISCA’17.

[168] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog Malicious
Hardware,” in S&P’16.

[169] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative
execution,” in S&P’19.

[170] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre: Stealing
Intel Secrets from SGX Enclaves Via Speculative Execution,” in EuroS&P‘19).

[171] Google/LLVM, “Speculative Load Hardening,” https://llvm.org/docs/
SpeculativeLoadHardening.html, 2018.

94

https://sysdig.com/opensource/inspect/
https://sysdig.com/opensource/inspect/
https://docs.microsoft.com/en-us/ sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/ sysinternals/downloads/procmon
https://developers.slashdot.org/comments.pl?sid=174457&threshold=1&commentsort=0&mode=thread&cid=14515105
https://developers.slashdot.org/comments.pl?sid=174457&threshold=1&commentsort=0&mode=thread&cid=14515105
https://developers.slashdot.org/comments.pl?sid=174457&threshold=1&commentsort=0&mode=thread&cid=14515105
https://github.com/ekfchan/evachan.org-Rscripts
https://github.com/ekfchan/evachan.org-Rscripts
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html

[172] I. Corporation, “Processor Counter Monitor,” https://github.com/opcm/pcm.

[173] R. core team, “R source, summary.c,” https://github.com/wch/r-source/blob/tags/
R-3-2-3/src/main/summary.c.

[174] T. Brennan, N. Rosner, and T. Bultan, “JIT leaks: Inducing timing side channels
through just-in-time compilation,” in S&P’20.

[175] C. Liu, M. Hicks, and E. Shi, “Memory trace oblivious program execution,” in CSF’13.

[176] H. B. Lee, T. Jois, C. W. Fletcher, and C. A. Gunter, “DOVE: A Data-Oblivious
Virtual Environment,” in Arxiv eprint.

[177] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure Program Execution via
Dynamic Information Flow Tracking,” in ASPLOS’04.

[178] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Jour-
nal on Selected Areas in Communications, vol. 21, no. 1, pp. 5–19, Jan 2003.

[179] P.-L. Aublin, F. Kelbert, D. O’keeffe, D. Muthukumaran, C. Priebe, J. Lind, R. Krahn,
C. Fetzer, D. Eyers, and P. Pietzuch, “TaLoS: Secure and transparent TLS termination
inside SGX enclaves,” Imperial College London, Tech. Rep, vol. 5, p. 2017, 2017.

[180] Intel®, “Intel® 64 and ia-32 architectures software developer’s manual volume 3b:
System programming guide,” 2020.

[181] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:
Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[182] V. Costan and S. Devadas, “Intel SGX explained,” IACR’16.

[183] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi, “Ghostrider: A hardware-
software system for memory trace oblivious computation,” SIGPLAN Not., vol. 50,
no. 4, pp. 87–101, Mar. 2015.

[184] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in social media,” in
SIGCHI’10.

[185] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and
shrinking diameters,” ACM TKDD’07.

[186] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,”
http://snap.stanford.edu/data, June 2014.

[187] K. Tang, K. R. Thornton, and M. Stoneking, “A new approach for using genome scans
to detect recent positive selection in the human genome,” PLoS biology, vol. 5, no. 7,
p. e171, 2007.

[188] X. Gao and J. Starmer, “Human population structure detection via multilocus geno-
type clustering,” BMC genetics, vol. 8, no. 1, p. 34, 2007.

95

https://github.com/opcm/pcm
https://github.com/wch/r-source/blob/tags/R-3-2-3/src/main/summary.c
https://github.com/wch/r-source/blob/tags/R-3-2-3/src/main/summary.c
http://snap.stanford.edu/data

[189] M. Nei, “F-statistics and analysis of gene diversity in subdivided populations,” Annals
of human genetics, vol. 41, no. 2, pp. 225–233, 1977.

[190] B. S. Weir and C. C. Cockerham, “Estimating F-statistics for the analysis of population
structure,” evolution, vol. 38, no. 6, pp. 1358–1370, 1984.

[191] K. H. Lee, X. Zhang, and D. Xu, “LogGC: garbage collecting audit log,” in CCS’13.

[192] M. A. Inam, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur, A. Bates, and
W. U. Hassan, “FAuST: Striking a Bargain between Forensic Auditing’s Security
and Throughput,” in Proceedings of the 38th Annual Computer Security Applications
Conference, ser. ACSAC ’22. New York, NY, USA: Association for Computing
Machinery, 2022. [Online]. Available: https://doi.org/10.1145/3564625.3567990 p.
813–826.

[193] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo, R. Sekar,
S. Stoller, and V. Venkatakrishnan, “SLEUTH: Real-time attack scenario
reconstruction from COTS audit data,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association, Aug. 2017. [Online].
Available: https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/hossain pp. 487–504.

[194] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics,
and function using networkx,” in Proceedings of the 7th Python in Science Conference,
G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 –
15.

[195] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web applications:
A reality today, a challenge tomorrow,” in 2010 IEEE Symposium on Security and
Privacy. IEEE, 2010, pp. 191–206.

96

https://doi.org/10.1145/3564625.3567990
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain

	CHAPTER 1 INTRODUCTION
	Contributions and Roadmap
	Background
	Logging
	Provenance Auditing and Rule Configurations
	Microarchitectural Side Channels
	Programming in R
	Enclave Execution and Intel SGX
	Data-Oblivious Programming

	Related Works
	Program Behavior Analysis
	Log Confidentiality
	Implicit Secrets from Logs
	Log Reduction Techniques
	SGX Programming
	Data-Oblivious Programming
	Privacy-Preserving Genomics

	CHAPTER 2 TERMITE ATTACKS
	Introduction
	Threat Model
	Disclosure Assumptions
	Attacker Interaction
	Target System

	Coarse-Grained Side Channel Attacks
	Attacking Log Content
	Attacking Log Timestamps

	Fine-Grained Side Channel Attacks against Ordering of Log Entries
	Attack Overview
	Clock-Edge Attacks against Logs
	Implementation
	Case Study: NetSpectre
	Limitations

	Conclusion

	CHAPTER 3 DOVE: DATA-OBLIVIOUS VIRTUAL ENVIRONMENT
	Introduction
	Threat Model
	Attack Examples
	Example Walkthrough
	Logical Operators
	Functions
	Data-Dependent Constructs
	Discussion

	Design
	Design Overview
	Benefits of Proposed Architecture
	Data-Oblivious Transcript (DOT)
	Frontend
	Backend

	Implementation
	Security Evaluation
	Security Definition
	Security Argument
	Leaf Functions

	Experimental Evaluation
	PageRank
	Genomic Analysis

	Conclusion

	CHAPTER 4 TIMELESS LOGS
	Introduction
	Threat Model
	Reachability
	Log Reduction Techniques and Reachability

	Timeless Logs
	Reachability and Timestamps
	Implementation
	Utility Evaluation

	Batched Timeless Logs
	Utility Evaluation
	Security Evaluation

	Conclusion

	CHAPTER 5 CONCLUSIONS
	Discussion and Future Works
	Current DOVE Prototype Limitations
	Additional Countermeasure Suggestions
	Limitations and Future Works for Timeless Logs

	REFERENCES

