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ABSTRACT

The problem of finding a global minimum cut in an undirected graph is fundamental to

combinatorial optimization. It has numerous applications including network reliability, clus-

tering, and the Travelling Salesman Problem. In addition to this computational problem,

structural and enumerative aspects of minimum cuts are also foundational to representation

and algorithmic results. The number of constant-approximate global minimum cuts in a

connected graph is polynomial in the number of vertices. This structural result has applica-

tions in constructing cut sparsifiers, sketching and streaming algorithms, and approximation

algorithms for TSP.

In this thesis we consider various generalizations of the minimum cut problem. We focus

on solving these variants and on counting and enumerating optimum solutions. Our results

include:

• A new and faster algorithm for computing connectivity in hypergraphs,

• The first deterministic polynomial time algorithm for enumerating hypergraph min-k-

cut-sets,

• The first polynomial bound on the number of Multiobjective Min-cuts for a constant

number of cost functions as well as the first polynomial time algorithm for enumerating

all of them, and

• Inapproximability results for representing symmetric submodular functions using hy-

pergraph cut functions.
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CHAPTER 1: INTRODUCTION

The global min-cut problem in undirected graphs is central to combinatorial optimization

with a rich history and many applications. A cut in an undirected graph is a partition of the

vertices into two non-empty parts. The value of a cut is the sum of the costs of the edges

with end-vertices in both parts. A min-cut is a cut with minimum value among all cuts in a

graph. Closely related to the global min-cut problem is the min (s, t)-cut problem, where the

input includes a (directed or undirected) graph as well as two special vertices s and t, and the

goal is to find a cut separating s and t with minimum value. Min (s, t)-cuts are an important

component in some of the results we will present. The min (s, t)-cut problem was studied as

early as the 1950s, when Harris and Ross used it to model the problem of interdicting the

soviet rail network, and Ford and Fulkerson gave a polynomial time algorithm for solving

the problem by finding a maximum flow [1, 2, 3, 4]. The earliest algorithms for the global

min-cut problem were based on algorithms for min (s, t)-cut. For a fixed vertex s, a min-

cut must separate s from some other vertex t. Thus, computing the min (s, t)-cut between

a fixed vertex s and every other vertex t and returning whichever of these cuts has the

least value gives a global min-cut of an n-vertex graph in n− 1 min (s, t)-cut computations

[5, 6]. Min (s, t)-cuts have also been used in modern algorithms for global min-cut. In

particular, Li and Panigrahi devised a minimum isolating cuts technique to show that the

global min-cut problem can be solved deterministically using a polylogarithmic number of

min (s, t)-cut computations [7]. The global min-cut problem has applications in numerous

areas including network reliability [8], clustering [9], and image segmentation [10]. Min-cut

algorithms are also used as subroutines in algorithms for other problems in graph theory and

combinatorial optimization, such as the traveling salesman problem [11]. Because of these

motivations, designing fast algorithms for solving global min-cut has been an active area of

research [7, 12, 13, 14].

In addition to algorithms for finding a min-cut, research has also focused on understanding

the structure of all min-cuts in a graph. In 1976, Dinitz, Karzanov, and Lomonosov [15]

designed a concise representation of all min-cuts in a connected graph, known as the cactus

representation. Using the cactus representation, they showed that the number of min-cuts

in an n-vertex connected graph is at most
(
n
2

)
. Moreover, their proof leads to an algorithm

to enumerate all min-cuts in a given graph in deterministic polynomial time. The upper

bound of
(
n
2

)
on the number of min-cuts in a connected graph is tight, as illustrated by

the cycle-graph on n vertices. While [15] resolves counting and enumeration questions for

min-cuts in graphs, subsequent works have considered generalizations of these counting and
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enumeration questions, such as counting the number of approximate min-cuts [16].

Combinatorial results on the number of min-cuts and the number of approximate min-

cuts have been the crucial ingredients of several algorithmic and representation results in

graphs. On the representation front, these counting results are foundational to algorithms

for constructing compact representations of a graph, such as cut sparsifiers, which have

applications in sketching and streaming [17, 18, 19, 20]. On the algorithmic front, these

counting results allow for fast randomized construction of graph skeletons, which play a

crucial role in fast algorithms to solve min-cut [21]. Furthermore, a polygon representation

of the family of 6/5-approximate min-cuts in graphs was given by Benczur and Goemans [22,

23, 24]—this representation was used in the recent groundbreaking (3/2− ϵ)-approximation

for metric TSP [25].

Hypergraphs generalize graphs, and have applications in modern areas such as VLSI design

and clustering [26, 27]. A hypergraph is specified by a set of vertices and a set of hyperedges,

where each hyperedge is a subset of vertices. The rank of a hypergraph is the size of

the largest hyperedge. Rank 2 hypergraphs correspond to graphs. Hyperedges can model

relationships between more than two vertices and consequently, hypergraphs have more

powerful modeling capability than graphs. This makes them useful for modeling structures

such as social networks [28, 29] and satisfiability problems [30]. Algorithms for solving

hypergraph min-cut have been known since the 1990s [31, 32, 33], and developing faster

algorithms for this problem is an active research area, both for arbitrary rank hypergraphs

[34, 35, 36] as well as for the special case where the rank is constant [20, 36]. Counting

and enumeration results have also been extended to hypergraphs. In particular, the cactus

representation of all min-cuts in a graph can be generalized to hypergraphs [37, 38], and leads

to a deterministic polynomial time algorithm for enumerating all min-cut-sets in hypergraphs

(the set of hyperedges intersecting both parts of a min-cut is called a min-cut-set).

Besides being of independent interest from both theoretical and practical perspectives,

hypergraphs act as a natural bridge between graphs and symmetric submodular functions.

A function f : 2V → R, defined over a finite ground set V , is symmetric if f(S) = f(V \ S)
for every S ⊆ V . The function f is submodular if for every A,B ⊆ V , we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (1.1)

Equivalently, f is submodular if for every A,B ⊆ V with A ⊂ B and every v ∈ V \ B we

have

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B). (1.2)
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Inequality (1.2) represents the diminishing marginal returns property. Because of this di-

minishing marginal returns property, submodular functions arise naturally in economics [39]

and game theory [40, 41], as well as in combinatorial optimization. Optimization over sub-

modular functions also has applications in information theory [42], queuing theory [43],

clustering [44], machine learning [45, 46], and computer vision [47]. An important exam-

ple of a symmetric submodular function is the cut function of a graph/hypergraph. The

cut function d : 2V → R of a graph G = (V,E) with edge costs given by c : E → R≥0

is defined as d(X) :=
∑

e∈δ(X) c(e) where δ(X) is the set of edges with one end-vertex in

X and one end-vertex in V \ X. Another important submodular function in combinato-

rial optimization is the matroid rank function. We note that the matroid rank function is

not symmetric. A central problem related to submodular functions is submodular function

minimization. In the submodular function minimization problem, we are given a finite set

V and a submodular function f : 2V → R given via an oracle that returns f(X) for every

given X ⊆ V . The goal is to find an X ⊆ V which minimizes f(X). The ubiquity of

submodular functions in combinatorial optimization has motivated the design of algorithms

for submodular function minimization that are fast while also using few function evaluation

queries [48, 49, 50, 51, 52, 53, 54, 55].

In this thesis we consider several generalizations of graph min-cut. We present both algo-

rithmic as well as combinatorial results. For some problems we design faster algorithms, while

for other problems we design the first polynomial time algorithm and the first deterministic

polynomial time algorithm. We also use algorithms to understand the combinatorics of op-

timal solutions. All our algorithmic results are based on new structural properties of graphs

and hypergraphs. In Chapter 2, we consider the generalization of the min-cut problem to

hypergraphs. In Chapter 3, we consider the problem of counting the number of min-k-cuts in

a hypergraph and of enumerating them. In Chapter 4, we consider the problem of counting

and enumerating multicriteria variants of min-cut in graphs and hypergraphs. In Chapter

5, we consider the problem of representing arbitrary symmetric submodular functions using

hypergraph cut functions. 1

1.1 PRELIMINARIES

The set of positive integers less than or equal to n is denoted [n]. For functions f(n) and

g(n) of n, we say that f(n) = Õ(g(n)) if f(n) = O(g(n)polylog(n)) and f(n) = Ô(g(n)) if

1The research in this thesis was supported in part by NSF grants CCF-1814613 and CCF-1907937. I
was also supported by the Saburo Muroga Endowed Fellowship and by the Computer Science Department
at UIUC.
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f(n) = O(g(n)1+o(1)), where the o(1) is with respect to n. We say that f(n) = Or(g(n)) if

f(n) = O(g(n)h(r)) for some function h.

1.1.1 Graphs and Hypergraphs

We define notation that is common between graphs and hypergraphs. For further details

on concepts related to graphs, we refer the reader to standard textbooks (e.g. see [56]). A

hypergraph G = (V,E) is specified by a finite set V of vertices and a set E of hyperedges

where each hyperedge e ∈ E is a subset of V . The rank r of a hypergraph is defined as

maxe∈E |e|. If a hypergraph has rank 2, then it is a graph. We note that the space needed to

represent a hypergraph is proportional to the sum of the sizes of all its hyperedges. Thus, we

use p :=
∑

e∈E |e| to denote the size of the hypergraph. If the hypergraph is weighted, then

it has an associated cost function c : E → R+. We will assume throughout that edge costs

are positive or at least non-negative—if negative costs are allowed, then solving min-cut

becomes equivalent to solving the NP-hard max-cut problem. If all edges have cost 1, then

we will refer to the hypergraph as unweighted or simple.

1.1.2 Cuts and Partitions

Let G = (V,E) be a hypergraph. For every ∅ ⊊ X ⊊ V we call the 2-partition {X, V \X}
a cut, and we call the set of hyperedges intersecting both parts of this partition a cut-set.

For a subset X ⊆ V of vertices, we define

δG(X) := {e ∈ E : e ∩X ̸= ∅ and e ∩ (V \X) ̸= ∅}. (1.3)

We say that δG(X) is the cut-set corresponding to the cut {X, V \ X}. The cut function

dG : 2
V → R≥0 (with the subscript omitted when the hypergraph is clear from context) is

defined by dG(X) :=
∑

e∈δG(X) c(e). The value of a cut {X, V \ X} is dG(X). A min-cut

is a cut with minimum value among all cuts, and a min-cut-set is the set of hyperedges

intersecting both parts of a min-cut. We use λG := min∅⊊X⊊V dG(X) to denote the min-cut

value of G.

For k ∈ [|V |] , we call a partition {V1, . . . , Vk} of V into k non-empty parts a k-cut. We

define

δG(V1, . . . , Vk) := {e ∈ E : ∃i, j ∈ [k], i ̸= j, e ∩ Vi ̸= ∅ and e ∩ Vj ̸= ∅}. (1.4)

We call δG(V1, . . . , Vk) a k-cut-set. The value of the k-cut {V1, . . . , Vk} is
∑

e∈δG(V1,...,Vk)
c(e).

A min-k-cut is a cut with minimum value among all k-cuts. If {V1, . . . , Vk} is a min-k-cut,
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then δG(V1, . . . , Vk) is called a min-k-cut-set.

1.2 THESIS CONTRIBUTIONS AND ORGANIZATION

The remainder of this thesis consists of four chapters, each of which is self-contained. We

now discuss the contributions in each of these chapters.

1.2.1 Hypergraph Connectivity

In Chapter 2, we consider the problem of finding a min-cut in simple hypergraphs, which

is also known as the hypergraph connectivity problem. In the hypergraph connectivity

problem, we are given as input a simple (i.e. all hyperedges have unit cost, and there are

no parallel hyperedges) hypergraph G = (V,E) with n vertices and m edges, and the goal

is to find a 2-partition of V such that the sum of the costs of hyperedges which cross this

partition is minimized.

This problem is a generalization of the graph connectivity problem, which received recent

attention after Kawarabayashi and Thorup [57] showed a structural theorem which led to a

deterministic algorithm for graph connectivity that was faster than the known algorithms for

weighted graphs. Several successive papers improved on this runtime for graph connectivity

[58, 59]. Of particular relevance to our work is the simple almost linear time algorithm

due to Saranurak, which was based on expander decomposition [60]. These results motivate

the study of hypergraph connectivity, and the question of whether the structural theorem

of Kawarabayashi and Thorup can be generalized to hypergraphs, or even constant rank

hypergraphs. We show that, while the Kawarabayashi-Thorup structural theorem does not

hold for hypergraphs, a weaker version of the theorem does hold and leads to a faster

algorithm for hypergraph connectivity in low rank hypergraphs.

Our main result is the following theorem showing that hypergraph connectivity in constant

rank hypergraphs can be solved faster than previously known.

Theorem 1.1. Let G be an r-rank n-vertex simple hypergraph of size p. Then, there exists

a randomized algorithm that takes G as input and runs in time

Ôr

(
p+min

{
λ

r−3
r−1n2,

nr

λ
r

r−1

, λ
5r−7
4r−4n

7
4

})
to return the connectivity λ of G with high probability. Moreover, the algorithm returns a

min-cut in G with high probability.
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Additionally, we give a deterministic version of our algorithm which improves on the

runtime of the previous fastest known deterministic algorithm. Table 1.1 compares the run-

times of our randomized and deterministic algorithms with the previous state of the art.

We observe that our deterministic algorithm is faster than known algorithms when r ≥ 3

is a constant and λ = Ω(n(r−2)/2), while our randomized algorithm is faster than known

algorithms if r ≥ 3 is a constant and λ = nΩ(1). These results are based on joint work with

Chandrasekaran, Mukhopadhyay, and Nanongkai and appeared in IPCO 2022 [61].

Deterministic Randomized

Previous
run-time

O(p+ λn2) [38]
Õ(p+min{λn2, nr,

√
pn(m+ n)1.5}})

[36, 38, 62]

Our
run-time

Ôr

(
p+min

{
λn2, λ

r−3
r−1n2 + nr

λ

})
Ôr

(
p+min

{
λ

r−3
r−1n2, nr

λ
r

r−1
, λ

5r−7
4r−4n

7
4

})
Table 1.1: Comparison of results to compute hypergraph connectivity (simple r-rank n-
vertex m-hyperedge p-size hypergraphs with connectivity λ).

Subsequent to our work, Chen, Kyng, Liu, Peng, Gutenberg, and Sachdeva developed

an almost linear time algorithm for max flow [63]. This algorithm, combined with the

isolating cuts technique developed in [7] and generalized to hypergraphs by [64] and [62],

gives an almost linear time randomized algorithm for hypergraph min-cut (even in weighted

hypergraphs), which improves upon our result.

1.2.2 Enumerating Min-Cut-Sets and Min-k-Cut-Sets in Hypergraphs

In Chapter 3, we focus on the problem of enumerating min-cut-sets and min-k-cut-sets

in hypergraphs. In the Hypergraph-k-Cut problem, we are given as input a hypergraph

G = (V,E) with n vertices and m edges, possibly with costs c : E → R+ on the hyperedges,

and the goal is to find a min-k-cut. We note that Hypergraph-MinCut is the case of

Hypergraph-k-Cut where k = 2. Graph-k-Cut is the special case of Hypergraph-

k-Cut in graphs. For constant k ≥ 2, the number of min-k-cuts in an n-vertex connected

graph is O(nk)—this bound is tight and is a consequence of a recent improved analysis

of a random contraction algorithm to solve Graph-k-Cut [65, 66, 67]; the same random

contraction algorithm can also be used to enumerate all min-k-cuts in connected graphs in

randomized polynomial time. Deterministic polynomial-time algorithms to enumerate all

min-k-cuts in connected graphs are also known [68, 69, 70, 71]. While a polynomial time

algorithm for Graph-k-Cut has been known for almost 30 years [72], the first polynomial
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time randomized [35] and deterministic [73] algorithms for Hypergraph-k-Cut for fixed

constant k were developed only recently.

When discussing enumeration problems in hypergraphs, we focus on enumerating min-k-

cut-sets rather than min-k-cuts. This is because, in contrast to graphs, where the number

of min-k-cuts in a connected graph is polynomial for fixed k, the number of min-k-cuts in a

connected hypergraph can be exponential. In fact, the number of min-2-cuts in a connected

hypergraph can be exponential: Consider an n-vertex hypergraph which has a single hyper-

edge containing all of the vertices—we call this hypergraph the spanning hyperedge example.

In the spanning hyperedge example, every cut is a min-cut, and thus the number of min-cuts

is 2n−1. Thus, we cannot hope to enumerate all min-k-cuts in a hypergraph. However, the

spanning hyperedge example has only a single min-cut-set (the set containing the single

hyperedge). It was recently shown that the number of min-k-cut-sets in a hypergraph is

polynomial for every fixed constant k, and they can all be enumerated in randomized poly-

nomial time [35]. In this thesis, we focus on deterministically enumerating min-k-cut-sets.

Our main result is the following theorem.

Theorem 1.2. There is a deterministic polynomial-time algorithm for hypergraph min-k-

cut-set enumeration for every fixed k.

The algorithm presented in this thesis is the first deterministic algorithm for hypergraph

min-k-cut-set enumeration. It runs in time pnO(k2). These results are based on joint work

with Chandrasekaran and Wang and appeared in SODA 2022 [74]. Subsequently, in joint

work with Chandrasekaran and Wang, we improved the deterministic runtime for hypergraph

min-k-cut-set enumeration to pnO(k) [75].

1.2.3 Multicriteria Min-Cut

In Chapter 4, we consider multicriteria versions of the min-cut problem and show new

counting and enumeration results in both graphs and constant rank hypergraphs. In mul-

ticriteria min-cut problems, instead of having a single cost function, each hyperedge has t

different costs associated with it. For a hypergraph G = (V,E), let c1, . . . , ct : E → R≥0

be the t different cost functions. There are several ways to extend the definition of a min-

cut to this setting. We describe three of them in Section 4.1. Multicriteria variants have

been studied for a wide variety of combinatorial optimization problems [76]. Many of these

variants are intractable [77]. For example, in a natural multicriteria extension of the min

(s, t)-cut problem we are given budgets b1, . . . , bt−1 and asked to find an (s, t)-cut with min-

imum ct-cost from among those which have ci-cost at most bi, for each 1 ≤ i ≤ t − 1.
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This problem is NP-hard even for t = 2 criteria via a reduction from Knapsack. Similar

hardness results can be shown for multicriteria generalizations of problems such as shortest

path, minimum spanning tree, and maximum weight matching [77]. In contrast, certain

multicriteria versions of the global min-cut problem are known to be solvable in polynomial

time [78, 79].

For multicriteria optimization problems, the number of optimal solutions/points on the

pareto-front is a commonly studied complexity measure and substantial work has focused

on enumerating these solutions [77, 79, 80, 81, 82]. In Chapter 4 we focus on counting the

number of optimal solutions to multicriteria min-cut problems in graphs and hypergraphs.

We recall that the number of min-cuts in a hypergraph can be exponential, even with only a

single cost function (recall the spanning hyperedge example). Hence, we focus on counting

multicriteria cut-sets since we will be dealing mainly with hypergraphs. However, our results

when specialized to graphs are equivalent to counting multicriteria cuts. We present several

combinatorial and algorithmic results for different variants of multicriteria min-cut. We refer

the reader to Chapter 4 for a description of the problems we consider and our results. These

results are based on joint work with Chandrasekaran and Xu and appeared in Mathematical

Programming [83].

1.2.4 Approximate Representation of Symmetric Submodular Functions using
Hypergraph Cut Functions

In Chapter 5, we consider the problem of approximating symmetric submodular functions

using hypergraph cut functions. For a parameter α ≥ 1, we say that a set function g : 2V →
R≥0 α-approximates a set function f : 2V → R≥0 if

g(A) ≤ f(A) ≤ αg(A) ∀ A ⊆ V. (1.5)

Given the prevalence of submodular functions in combinatorial optimization, a natural ques-

tion that has been studied is whether an arbitrary submodular set function can be well-

approximated by a concisely representable function. We distinguish between structural and

algorithmic variants of this question: the structural question asks whether submodular func-

tions can be well-approximated via concisely representable functions while the algorithmic

question asks whether such a concise representation can be constructed using a polynomial

number of function evaluation queries (note that the algorithmic question is concerned with

the number of function evaluation queries as opposed to run-time). Concise representations

with small-approximation factor are useful in learning, testing, streaming, and sketching
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algorithms. Consequently, concise representations with small-approximation factor for sub-

modular functions (and their generalizations and subfamilies of submodular functions) have

been studied from all these perspectives with most results focusing on monotone submodular

functions [84, 85, 86, 87, 88, 89, 90, 91].

In this thesis, we focus on approximating symmetric submodular functions. Balcan, Har-

vey, and Iwata [85] showed that for every symmetric submodular function f : 2V → R≥0,

there exists a function g : 2V → R≥0 defined by g(S) :=
√

χ(S)TMχ(S), where χ(S) ∈
{0, 1}V is the indicator vector of S ⊆ V and M is a symmetric positive definite matrix such

that g
√
n-approximates f . We note that such a function g has a concise representation—

namely, the matrix M . Is it possible to improve on the approximation factor for symmetric

submodular functions using other concisely representable functions? The concisely repre-

sentable family of functions that we study in this thesis is the family of hypergraph cut

functions.

Our main result in Chapter 5 shows that arbitrary symmetric submodular functions cannot

be well approximated by hypergraph cut functions. For a paramter α ≥ 1, we say that

a symmetric submodular function f : 2V → R≥0 is α-hypergraph approximable if there

exists a hypergraph on vertex set V with non-negative hyperedge costs whose cut function

d : 2V → R≥0 α-approximates f . We show the following theorem.

Theorem 1.3. For every sufficiently large positive integer n, there exists a symmetric sub-

modular function f : 2[n] → Z≥0 such that f is not α-hypergraph-approximable for

α = o

(
n

1
3

log2 n

)
.

We note that our proof of Theorem 1.3 is non-constructive. In addition to this main result,

we also prove a positive result showing that certain symmetric submodular functions can be

constant-factor approximated by hypergraph cut functions.

Theorem 1.4. Symmetrized rank functions of uniform matroids and partition matroids are

64-hypergraph-approximable.

There exist uniform matroids whose symmetrized rank functions cannot be (n/4 − ϵ)-

approximated by a graph cut function for all constant ϵ > 0 [88]. Thus, Theorem 1.4 shows

a strong separation between the representation power of graph and hypergraph cut functions.

The results in Chapter 5 are based on joint work with Chandrasekaran, Chekuri, and Xu

and appeared in FSTTCS 2022 [92].
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CHAPTER 2: HYPERGRAPH CONNECTIVITY

In this chapter we design an algorithm for computing the connectivity of a hypergraph

which runs in time Ôr(p + min{λ
r−3
r−1n2, nr/λ

r
r−1 , λ

5r−7
4r−4n

7
4}), where p is the size, n is the

number of vertices, r is the rank (size of the largest hyperedge), and λ is the connectivity

of the input hypergraph. Our algorithm also finds a minimum cut in the hypergraph. Our

algorithm is faster than existing algorithms if r = O(1) and λ = nΩ(1). The heart of our

algorithm is a structural result showing a trade-off between the number of hyperedges taking

part in all minimum cuts and the minimum size of the smaller side of a minimum cut. This

structural result can be viewed as a generalization of a well-known structural theorem for

simple graphs [57]. We extend the framework of expander decomposition to hypergraphs

to prove this structural result. In addition to the expander decomposition framework, our

faster algorithm also relies on a new near-linear time procedure to compute connectivity

when one of the sides in a minimum cut is small. The results in this chapter are based on

joint work with Chandrasekaran, Mukhopadhyay, and Nanongkai and appeared in IPCO ’22

[61]. The research in this chapter was supported in part by NSF grants CCF-1814613 and

CCF-1907937.

2.1 INTRODUCTION

A hypergraph G = (V,E) is specified by a vertex set V and a collection E of hyperedges,

where each hyperedge e ∈ E is a subset of vertices. In this chapter, we address the problem of

computing connectivity/global min-cut in hypergraphs with low rank (e.g., constant rank).

The rank of a hypergraph, denoted r, is the size of the largest hyperedge—in particular,

if the rank of a hypergraph is 2, then the hypergraph is a graph. In the global min-cut

problem, the input is a hypergraph with hyperedge weights w : E → R+, and the goal is

to find a minimum weight subset of hyperedges whose removal disconnects the hypergraph.

Equivalently, the goal is to find a partition of the vertex set V into two non-empty parts

(C, V \C) so as to minimize the weight of the set of hyperedges intersecting both parts. For

a subset C ⊆ V , we will denote the weight of the set of hyperedges intersecting both C and

V \ C by d(C), the resulting function d : V → R+ as the cut function of the hypergraph,

and the weight of a min-cut by λ(G) (we will use λ when the graph G is clear from context).

If the input hypergraph is simple—i.e., each hyperedge has unit weight and no parallel

copies—then the weight of a min-cut is also known as the connectivity of the hypergraph.

We focus on finding connectivity in hypergraphs. We emphasize that, in contrast to graphs
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whose representation size is the number of edges, the representation size of a hypergraph

G = (V,E) is p :=
∑

e∈E |e|. We note that p ≤ rm, where r is the rank and m is the number

of hyperedges in the hypergraph, and moreover, r ≤ n, where n is the number of vertices.

We emphasize that the number of hyperedges m in a hypergraph could be exponential in

the number of vertices.

Previous work. Since the focus of our work is on simple unweighted hypergraphs, we

discuss previous work for computing global min-cut in simple unweighted hypergraphs (i.e.,

computing connectivity) here (see Section 2.1.3 for a discussion of previous works on com-

puting global min-cut in weighted hypergraphs/graphs). The current fastest algorithms

to compute graph connectivity (i.e., when r = 2) are randomized and run in time Õ(m)

[12, 13, 21, 57, 58, 59]. In contrast, algorithms to compute hypergraph connectivity are

much slower. Furthermore, for hypergraph connectivity/global min-cut, the known random-

ized approaches are not always faster than the known deterministic approaches. There are

two broad algorithmic approaches for global min-cut in hypergraphs: vertex-ordering and

random contraction. We discuss these approaches now.

Nagamochi and Ibaraki [93] introduced a groundbreaking vertex-ordering approach to

solve global min-cut in graphs in time O(mn). In independent works, Klimmek and Wagner

[31] as well as Mak and Wong [32] gave two different generalizations of the vertex-ordering

approach to compute hypergraph connectivity in time O(pn). Queyranne [33] generalized the

vertex-ordering approach further to solve non-trivial symmetric submodular minimization.2

Queyranne’s algorithm can be implemented to compute hypergraph connectivity in time

O(pn). Thus, all three vertex-ordering based approaches to compute hypergraph connectiv-

ity have a run-time of O(pn). This run-time was improved to O(p + λn2) by Chekuri and

Xu [38]: They designed an O(p)-time algorithm to construct a min-cut-sparsifier, namely a

subhypergraph G′ of the given hypergraph with size p′ = O(λn) such that λ(G′) = λ(G).

Applying the vertex-ordering based algorithm to G′ gives the connectivity of G within a

run-time of O(p+ λn2).

We emphasize that all algorithms discussed in the preceding paragraph are deterministic.

Karger [16] introduced the influential random contraction approach to solve global min-cut in

graphs which was adapted by Karger and Stein [65] to design an O(n2 log3) time algorithm.

Kogan and Krauthgamer [20] extended the random contraction approach to solve global min-

2The input here is a symmetric submodular function f : 2V → R via an evaluation oracle and the
goal is to find a partition of V into two non-empty parts (C, V \ C) to minimize f(C). We recall that a
function f : 2V → R is symmetric if f(A) = f(V \ A) for all A ⊆ V and is submodular if f(A) + f(B) ≥
f(A ∩ B) + f(A ∪ B) for all A,B ⊆ V . The cut function of a hypergraph d : V → R+ is symmetric and
submodular.
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cut in r-rank hypergraphs in time Õr(mn2) 3. Ghaffari, Karger, and Panigrahi [34] suggested

a non-uniform distribution for random contraction in hypergraphs and used it to design an

algorithm to compute hypergraph connectivity in Õ((m+λn)n2) time. Chandrasekaran, Xu,

and Yu [35] refined their non-uniform distribution to obtain an O(pn3 log n) time algorithm

for global min-cut in hypergraphs. Fox, Panigrahi, and Zhang [36] proposed a branching

approach to exploit the refined distribution leading to an O(p + nr log2 n) time algorithm

for hypergraph global min-cut, where r is the rank of the input hypergraph. Chekuri and

Quanrud [62] designed an algorithm based on isolating cuts which achieves a runtime of

Õ(
√
pn(m+ n)1.5) for global min-cut in hypergraphs.

Thus, prior to our work, the fastest known algorithm to compute hypergraph connectivity

was a combination of the algorithms of Chekuri and Xu [38], Fox, Panigrahi, and Zhang

[36], and Chekuri and Quanrud [62] with a run-time of

Õ
(
p+min

{
λn2, nr,

√
pn(m+ n)1.5

})
. (2.1)

2.1.1 Our Results

In this chapter, we improve the run-time to compute hypergraph connectivity in low rank

simple hypergraphs.

Theorem 2.1. [Algorithm] Let G be an r-rank n-vertex simple hypergraph of size p. Then,

there exists a randomized algorithm that takes G as input and runs in time

Ôr

(
p+min

{
λ

r−3
r−1n2,

nr

λ
r

r−1

, λ
5r−7
4r−4n

7
4

})
to return the connectivity λ of G with high probability. Moreover, the algorithm returns a

min-cut in G with high probability.

See Section 2.4.5 for the run-time of our algorithm in the O-notation. Our techniques can

also be used to obtain a deterministic algorithm that runs in time

Ôr

(
p+min

{
λn2, λ

r−3
r−1n2 +

nr

λ

})
. (2.2)

Our deterministic algorithm is faster than Chekuri and Xu’s algorithm when r is a constant

and λ = Ω(n(r−2)/2), while our randomized algorithm is faster than known algorithms if r is

3For functions f(n) and g(n) of n, we say that f(n) = Õ(g(n)) if f(n) = O(g(n)polylog(n)) and f(n) =
Ô(g(n)) if f(n) = O(g(n)1+o(1)), where the o(1) is with respect to n. We say that f(n) = Or(g(n)) if
f(n) = O(g(n)h(r)) for some function h. We define Õr(f(n)) and Ôr(f(n)) analogously.
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a constant and λ = nΩ(1). We summarize the previous fastest algorithms and our results in

Table 2.1.

Deterministic Randomized

Previous
run-time

O(p+ λn2) [38]
Õ(p+min{λn2, nr,

√
pn(m+ n)1.5}})

[36, 38, 62]

Our
run-time

Ôr

(
p+min

{
λn2, λ

r−3
r−1n2 + nr

λ

})
Ôr

(
p+min

{
λ

r−3
r−1n2, nr

λ
r

r−1
, λ

5r−7
4r−4n

7
4

})
Table 2.1: Comparison of results to compute hypergraph connectivity (simple unweighted
r-rank n-vertex m-hyperedge p-size hypergraphs with connectivity λ).

Our algorithm for Theorem 2.1 proceeds by considering two cases: either (i) the hyper-

graph has a min-cut where one of the sides is small or (ii) both sides of every min-cut in

the hypergraph are large. To account for case (i), we design a near-linear time algorithm

to compute a min-cut; to account for case (ii), we perform contractions to reduce the size

of the hypergraph without destroying a min-cut and then run known algorithms on the

smaller-sized hypergraph leading to savings in run-time. Our contributions in this chapter

are twofold: (1) On the algorithmic front, we design a near-linear time algorithm to find a

min-cut where one of the sides is small (if it exists); (2) On the structural front, we show a

trade-off between the number of hyperedges taking part in all minimum cuts and the mini-

mum size of the smaller side of a minimum cut (see Theorem 2.2). This structural result is

a generalization of the acclaimed Kawarabayashi-Thorup graph structural theorem [57, 94]

(Fulkerson prize 2021). We use the structural result to reduce the size of the hypergraph in

case (ii). We elaborate on this structural result now.

Theorem 2.2. [Structure] Let G = (V,E) be an r-rank n-vertex simple hypergraph with

m hyperedges and connectivity λ. Suppose λ ≥ r(4r2)r. Then, at least one of the following

holds:

1. There exists a min-cut (C, V \ C) such that

min{|C|, |V \ C|} ≤ r −
log ( λ

4r
)

log n
,

2. The number of hyperedges in the union of all min-cuts is

O

(
r9r

2+2

(
6r2

λ

) 1
r−1

m log n

)
= Õr

(
m

λ
1

r−1

)
.
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The Kawarabayashi-Thorup structural theorem for graphs [57, 94] states that if every min-

cut is non-trivial, then the number of edges in the union of all min-cuts is O(m/λ), where

a cut is defined to be non-trivial if it has at least two vertices on each side. Substituting

r = 2 in our structural theorem recovers this known Kawarabayashi-Thorup structural

theorem for graphs. We emphasize that the Kawarabayashi-Thorup structural theorem for

graphs is the backbone of the current fastest algorithms for computing connectivity in graphs

and has been proved in the literature via several different techniques [57, 58, 59, 60, 95].

Part of the motivation behind our work was to understand whether the Kawarabayashi-

Thorup structural theorem for graphs could hold for constant rank hypergraphs and if not,

then what would be an appropriate generalization. We discovered that the Kawarabayashi-

Thorup graph structural theorem does not hold for hypergraphs: There exist hypergraphs

in which (i) the min-cut capacity λ is Ω(n), (ii) there are no trivial min-cuts, and (iii) the

number of hyperedges in the union of all min-cuts is a constant fraction of the number of

hyperedges—see Lemma 2.11 in Section 2.7 for such an example. The existence of such

examples suggests that we need an alternative definition of trivial min-cuts if we hope

to extend the Kawarabayashi-Thorup structural theorem for graphs to r-rank hypergraphs.

Conclusion 1 of Theorem 2.2 can be viewed as a way to redefine the notion of trivial min-cuts.

We denote the size of a cut (C, V \C) to be min{|C|, |V \C|}—we emphasize that the size

of a cut refers to the size of the smaller side of the cut as opposed to the capacity of the cut.

A min-cut is small-sized if the smaller side of the cut has at most r− log(λ/4r)/ log n many

vertices. With this definition, Conclusion 2 of Theorem 2.2 can be viewed as a generalization

of the Kawarabayashi-Thorup structural theorem to hypergraphs which have no small-sized

min-cuts: it says that if no min-cut is small-sized, then the number of hyperedges in the

union of all min-cuts is Õr(m/λ
1

r−1 ).

We mention that the factor λ−1/(r−1) in Conclusion 2 of Theorem 2.2 cannot be improved:

There exist hypergraphs in which every min-cut has at least
√
n vertices on both sides

and the number of hyperedges in the union of all min-cuts is Θ(m · λ−1/(r−1))—see Lemma

2.10 in Section 2.6. We also note that the structural theorem holds only for simple hyper-

graphs/graphs and is known to fail for weighted graphs. As a consequence, our algorithmic

techniques are applicable only in simple hypergraphs and not in weighted hypergraphs.

Subsequent to our work, Chen, Kyng, Liu, Peng, Gutenberg, and Sachdeva [63] developed

an almost-linear time algorithm for min-cost max-flow. Min (s, t)-cut in hypergraphs can

be solved by computing a maximum flow in the bipartite representation of the hypergraph,

which has m + n vertices and p edges. Thus, the algorithm of [63] gives an O(p1+o(1))

algorithm for hypergraph min (s, t)-cut. Furthermore, the isolating cut approach of Li

and Panigrahi [7] gives a randomized algorithm for solving Hypergraph-MinCut using
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a polylogarithmic number of hypergraph min (s, t)-cut computations [62, 64]. Thus, the

algorithm of [63] gives a randomized algorithm for Hypergraph-MinCut in arbitrary

rank hypergraphs with a runtime of O(p1+o(1)). This algorithm is asymptotically faster than

our algorithm for all values of r and λ.

2.1.2 Technical Overview

Concepts used in the proof strategy of Theorem 2.2 will be used in the algorithm of

Theorem 2.1 as well, so it will be helpful to discuss the proof strategy of Theorem 2.2 before

the algorithm. We discuss this now. We define a cut (C, V \ C) to be moderate-sized if

min{|C|, |V \C|} ∈ (r−log(λ/4r)/ log n, 4r2) and to be large-sized if min{|C|, |V \C|} ≥ 4r2;

we recall that the cut (C, V \ C) is small-sized if min{|C|, |V \ C|} ≤ r − log (λ/4r)/ log n.

Proof strategy for the structural theorem (Theorem 2.2). We assume that λ >

r(4r2)r as in the statement of Theorem 2.2. The first step of our proof is to show that

every min-cut in a hypergraph is either large-sized or small-sized but not moderate-sized—

in particular, we prove that if (C, V \C) is a min-cut with min{|C|, |V \C|} < 4r2, then it is

in fact a small-sized min-cut (Lemma 2.1 with the additional assumption that λ > r(4r2)r).

Here is the informal argument: For simplicity, we will show that if (C, V \ C) is a min-cut

with min{|C|, |V \ C|} < 4r2, then min{|C|, |V \ C|} ≤ r. For the sake of contradiction,

suppose that min{|C|, |V \ C|} > r. The crucial observation is that since the hypergraph

has rank r, no hyperedge can contain the smaller side of the min-cut entirely. The absence

of such hyperedges means that even if we pack hyperedges in G as densely as possible while

keeping (C, V \ C) as a min-cut, we cannot pack sufficiently large number of hyperedges

to ensure that the degree of each vertex is at least λ. A more careful counting argument

extends this proof approach to show that min{|C|, |V \ C|} ≤ r − log λ/ log n.

Now, in order to prove Theorem 2.2, it suffices to prove Conclusion 2 under the assumption

that all min-cuts are large-sized, i.e., min{|C|, |V \ C|} ≥ 4r2 for every min-cut (C, V \ C).

Our strategy to prove Conclusion 2 is to find a partition of the vertex set V such that (i)

every hyperedge that is completely contained in one of the parts does not cross any min-cut,

and (ii) the number of hyperedges that intersect multiple parts (and therefore, possibly cross

some min-cut) is small, i.e., Õr(m·λ−1/(r−1)). To this end, we start by partitioning the vertex

set of the hypergraphG intoX1, . . . , Xk such that the total number of hyperedges intersecting

more than one part of the partition is Õr(m · λ−1/(r−1)) and the subhypergraph induced by

each Xi has conductance Ωr(λ
−1/(r−1)) (see Section 2.2 for the definition of conductance)—

such a decomposition is known as an expander decomposition. An expander decomposition
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immediately satisfies (ii) since the number of hyperedges intersecting more than one part is

small. Unfortunately, it may not satisfy (i); yet, it is very close to satisfying (i)—we can

guarantee that for every min-cut (C, V \C) and every Xi, either C includes very few vertices

fromXi, or C includes almost all the vertices ofXi i.e., min{|Xi∩C|, |Xi\C|} = Or(λ
1/(r−1)).

We note that if min{|Xi ∩ C|, |Xi \ C|} = 0 for every min-cut (C, V \ C) and every part Xi

then (i) would be satisfied; moreover, if a part Xj is a singleton vertex part (i.e., |Xj| = 1),

then min{|Xj ∩ C|, |Xj \ C|} = 0 holds. So, our strategy, at this point, is to remove some

of the vertices from Xi to form their own singleton vertex parts in the partition in order to

achieve min{|Xi∩C|, |Xi\C|} = 0 while controlling the increase in the number of hyperedges

that cross the parts. This is achieved by a Trim operation and a series of Shave operations.

The crucial parameter underlying Trim and Shave operations is the notion of degree

within a subset: We will denote the degree of a vertex v as d(v) and define the degree

contribution of a vertex v inside a vertex set X, denoted by dX(v), to be the number of

hyperedges containing v that are completely contained in X. The Trim operation on a

part Xi repeatedly removes from Xi vertices with small degree contribution inside Xi, i.e.

dXi
(v) < d(v)/2r, until no such vertex can be found. Let X ′

i denote the set obtained from

Xi after the Trim operation. We note that our partition now consists of X ′
1, . . . , X

′
k as well

as singleton vertex parts for each vertex that we removed with the Trim operation. This

operation alone makes a lot of progress towards our goal—we show that min{|X ′
i ∩C|, |X ′

i \
C|} = O(r2), while the number of hyperedges crossing the partition blows up only by an O(r)

factor (see Claims 2.1 and 2.3). The little progress that is left to our final goal is achieved by

a series of (O(r2) many) Shave operations. The Shave operation finds the set of vertices

in each X ′
i whose degree contribution inside X ′

i is not very large, i.e., dX′
i
(v) ≤ (1− r−2)d(v)

and removes this set of vertices from X ′
i in one shot—such vertices are again declared as

singleton vertex parts in the partition. We show that the Shave operation strictly reduces

min{|X ′
i ∩ C|, |X ′

i \ C|} without adding too many hyperedges across the parts (see Claims

2.2 and 2.4)—this argument crucially uses the assumption that all min-cuts are large-sized

(i.e., min{|C|, |V \C|} ≥ 4r2). Because of our guarantee from the Trim operation regarding

min{|X ′
i ∩ C|, |X ′

i \ C|}, we need to perform the Shave operation O(r2) times to obtain a

partition that satisfies conditions (i) and (ii) stated in the preceding paragraph.

Algorithm from structural theorem (Theorem 2.1). We now describe how to use

the structural theorem (Theorem 2.2) to design an algorithm for hypergraph connectivity

with run-time guarantee as stated in Theorem 2.1. If the min-cut capacity λ is small, then

existing algorithms are already fast, so we assume that the min-cut capacity λ is sufficiently

large. With this assumption, we consider the two conclusions mentioned in Theorem 2.2.
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We design a near-linear time algorithm for finding small-sized min-cuts if the first conclusion

holds. If the first conclusion fails, then the second conclusion holds; now, in order to obtain

an algorithm for min-cut, we make our proof of Theorem 2.2 constructive—we obtain a small-

sized hypergraph which retains all hyperedges that participate in min-cuts; we run existing

min-cut algorithms on this small-sized hypergraph. We note here that, in a recent result,

Saranurak [60] used a constructive version of a similar theorem to design an algorithm for

computing connectivity in simple graphs in almost linear time (with a run-time of m1+o(1)).

Since our structural theorem is meant for hypergraph connectivity (and is hence, more

complicated than what is used by [60]), we have to work more.

We now briefly describe our algorithm: Given an r-rank hypergraph G, we estimate the

connectivity λ to within a constant factor in O(p) time using an algorithm of Chekuri and

Xu [38]. Next, we run the sparsification algorithm of [38] in time O(p) to obtain a new

hypergraph G′ with size p′ = O(λn) such that all min-cuts are preserved. The rest of the

steps are run on this new hypergraph G′. We have two possibilities as stated in Theorem 2.2.

We account for these two possibilities by running two different algorithms: (i) Assuming that

some min-cut has size less than r−log(λ/4r)/ log n, we design a near-linear time algorithm to

find a min-cut (see Theorem 2.10). This algorithm is inspired by recent vertex connectivity

algorithms, in particular the local vertex connectivity algorithm of [96, 97] and the sublinear-

time kernelization technique of [98]. This algorithm runs in Õr(p) time. (ii) Assuming that

every min-cut is large-sized, we design a fast algorithm to find a min-cut (see Theorem 2.14).

For this, we find an expander decomposition X of G′, perform a Trim operation followed

by a series of O(r2) Shave operations, and then contract each part of the trimmed and

shaved expander decomposition to obtain a hypergraph G′′. This reduces the number of

vertices in G′′ to Or(n/λ
1/(r−1)) and consequently, running the global min-cut algorithm of

either [36] or [38] or [62] (whichever is faster) on G′′ leads to an overall run-time of Ôr(p +

min{λ(r−3)/(r−1)n2, nr/λr/(r−1), λ(5r−7)/(4r−4)n7/4}) for step (ii). We return the cheaper of the

two cuts found in steps (i) and (ii). The correctness of the algorithm follows by the structural

theorem and the total run-time is Ôr(p+min{nr/λr/(r−1), λ(r−3)/(r−1)n2, λ(5r−7)/(4r−4)n7/4}).
We note here that the expander decomposition framework for graphs was developed in a

series of works for the dynamic connectivity problem [99, 100, 101, 102]. Very recently, it

has found applications for other problems [103, 104, 105]. Closer to our application, Saranu-

rak [60] used expander decomposition to give an algorithm to compute edge connectivity in

graphs via the use of Trim and Shave operations. The Trim and Shave operations were

introduced by Kawarabayashi and Thorup [57] to compute graph connectivity in determin-

istic O(m log12 n) time. Our line of attack is an adaptation of Saranurak’s approach.
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Organization. In Section 2.1.3, we discuss algorithms for the more general problem of

weighted hypergraph min-cut. In Section 2.2, we introduce the necessary preliminaries. In

Section 2.3, we prove our structural theorem (Theorem 2.2). In Section 2.4, we present our

hypergraph min-cut algorithm and prove Theorem 2.1. In Section 2.5, we give a deterministic

variant of our min-cut algorithm from Section 2.4.1 for small-sized min-cut—this is necessary

for the (slightly slower) deterministic version of our min-cut algorithm. In Section 2.6, we

provide a tight example for our structural theorem (i.e., Theorem 2.2). In Section 2.7, we

provide an example to justify the modified notion of non-triviality while considering min-

cuts in hypergraphs. In Section 2.8 we conclude by discussing further work on hypergraph

connectivity and some related open problems. For the technical sections, we encourage the

reader to consider r = O(1) during first read.

2.1.3 Relevant Work

We briefly describe the approaches known for global min-cut in weighted graphs and

hypergraphs. We begin by discussing the case of graphs. On the deterministic front, until

recently, the fastest known algorithm for global min-cut was O(mn) due to Nagamochi and

Ibaraki [93]. This was recently improved to Õ(m·min{
√
m,n2/3}) by Li and Panigrahi [7] and

then to O(m1+o(1)) by Li [14]. We now discuss the randomized approaches. As mentioned

earlier, Karger introduced the influential random contraction approach for graphs leading to

a randomized algorithm that runs in time Õ(mn2). Karger and Stein refined this approach

to obtain a run-time of Õ(n2). Subsequently, Karger gave a tree-packing approach that

runs in time O(m log3 n). The tree-packing approach has garnered much attention recently

leading to run-time improvements [12, 13] and extensions to solve more general partitioning

problems [71, 106].

We now discuss the case of hypergraphs. We first focus on bounded rank hypergraphs.

Fukunaga [107] generalized the tree-packing approach to r-rank hypergraphs to design an

algorithm that runs in time Õr(m
2n2r−1). As mentioned earlier, Kogan and Krauthgamer [20]

generalized the random contraction approach to r-rank hypergraphs to design an algorithm

that runs in time Or(mn2). Fox, Panigrahi, and Zhang [36] gave a randomized algorithm that

runs in time O(p + nr log2 n). We now turn to arbitrary rank hypergraphs. As mentioned

earlier, the approach of Nagamochi and Ibaraki was generalized in three different directions

for arbitrary rank hypergraphs [31, 32, 33] with all of them leading to a deterministic run-time

of O(pn). Chekuri and Xu improved this deterministic run-time to O(p+λn2) for unweighted

hypergraphs. In a series of works [34, 35, 36], the random contraction approach was refined

and extended leading to a randomized run-time of O(mn2 log3 n). Interestingly, randomized

18



approaches are slower than deterministic approaches for arbitrary rank hypergraphs.

Motivated towards improving the log3 n factor in the deterministic run-time for global

min-cut in graphs, as well as obtaining a faster (randomized) algorithm, Kawarabayashi and

Thorup [57, 94] initiated the study of global min-cut in simple unweighted graphs (i.e., com-

puting connectivity). They gave a deterministic algorithm for computing connectivity that

runs in time O(m log12 n). Henzinger, Rao, and Wang [58] improved the deterministic run-

time to O(m log2 n log log2 n). Ghaffari, Nowicki, and Thorup [59] improved the randomized

run-time to O(m log n) and O(m+ n log3 n). Saranurak [60] illustrated the use of expander

decomposition to compute graph connectivity in time m1+o(1) time. All these algorithms

are based on novel structural insights on graph cuts. As mentioned earlier, our work was

motivated by the question of how to generalize the structural insights for graphs to constant

rank hypergraphs.

2.2 PRELIMINARIES

Let G = (V,E) be a hypergraph. Let S, T ⊆ V be subsets of vertices. We define

E[S] := {e ∈ E : e ⊆ S}, (2.3)

E(S, T ) := {e ∈ E : e ⊆ S ∪ T and e ∩ S, e ∩ T ̸= ∅}, and (2.4)

Eo(S, T ) := {e ∈ E : e ∩ S, e ∩ T ̸= ∅}. (2.5)

We note that E[S] is the set of hyperedges completely contained in S, E(S, T ) is the set

of hyperedges contained in S ∪ T and intersecting both S and T , and Eo(S, T ) is the set

of hyperedges intersecting both S and T . With this notation, if S and T are disjoint,

then E(S, T ) = E[S ∪ T ] − E[S] − E[T ] and moreover, if the hypergraph is a graph, then

E(S, T ) = Eo(S, T ). A cut is a partition (S, V \ S) where both S and V \ S are non-empty.

Let δ(S) := E(S, V \ S). For a vertex v ∈ V , we let δ(v) represent δ({v}). We define the

capacity of (S, V \ S) as |δ(S)|, and call a cut a min-cut if it has minimum capacity among

all cuts in G. The connectivity of G is the capacity of a min-cut in G.

We recall that the size of a cut (S, V \S) is min{|S|, |V \S|}. We emphasize the distinction

between the size of a cut and the capacity of a cut: size is the cardinality of the smaller side

of the cut while capacity is the number of hyperedges crossing the cut.

For a vertex v ∈ V and a subset S ⊆ V , we define the degree of v by d(v) := |δ(v)|
and its degree inside S by dS(v) := |e ∈ δ(v) : e ⊆ S|. We define δ := minv∈V d(v) to

be the minimum degree in G. We define vol(S) :=
∑

v∈S d(v) and volS(T ) :=
∑

v∈T dS(v).

We define the conductance of a set X ⊆ V as min∅≠S⊊X{ |Eo(S,X\S)|
min{vol(S),vol(X\S)}}. For positive
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integers, i < j, we let [i, j] represent the set {i, i+1, . . . , j− 1, j}. The following proposition

will be useful while counting hyperedges within nested sets.

Proposition 2.1. Let G = (V,E) be an r-rank n-vertex hypergraph and let T ⊆ S ⊆ V .

Then,

|E(T, S \ T )| ≥
(

1

r − 1

)
(volS(T )− r |E[T ]|) .

Proof. For a vertex v ∈ V and a hyperedge e ∈ E, let Yv,e := 1 if v ∈ e and e ⊆ S, and 0

otherwise. We note that

volS(T ) =
∑
v∈T

dS(v) =
∑
v∈T

∑
e∈E

Yv,e =
∑
e∈E

∑
v∈T

Yv,e =
∑

e∈E(T,S\T )

∑
v∈T

Yv,e +
∑
e⊆T

∑
v∈T

Yv,e (2.6)

≤
∑

e∈E(T,S\T )

(r − 1) +
∑
e⊆T

r = (r − 1) |E(T, S \ T )|+ r |E[T ]| . (2.7)

Rearranging this inequality gives the statement of the claim. QED.

For the structural theorem, we need the following folklore result showing the existence of

an expander decomposition in graphs (e.g., see [101]).

Theorem 2.3 (Existential graph expander decomposition). Let G = (V,E) be an n-vertex

graph (possibly multigraph) with m edges and let ϕ ≤ 1 be a positive real value. Then,

there exists a partition {X1, . . . , Xk} of the vertex set V such that the following hold:

1.
∑k

i=1 |δ(Xi)| = O(ϕm log n) and

2. For every i ∈ [k] and every non-empty set S ⊆ Xi, we have that

|E(S,Xi \ S)| ≥ ϕ ·min{vol(S), vol(Xi \ S)}.

Our algorithm for min-cut uses several other algorithms from the literature as subrou-

tines. We state these algorithms and their guarantees here. To begin with, we will need a

constructive version of Theorem 2.3 that we state below.

Theorem 2.4 (Algorithmic graph expander decomposition [102]). Let G = (V,E) be a

graph (possibly multigraph) with m edges, and let ϕ ≤ 1 be a positive real value. Then,

there exists a deterministic algorithm GraphExpanderDecomp which takes G and ϕ as

input and runs in time O(m1+o(1)) to return a partition {X1, . . . , Xk} of the vertex set V

such that the following hold:

1.
∑k

i=1 |δ(Xi)| = O(ϕm1+o(1)) and
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2. For every i ∈ [k] and every nonempty set S ⊆ Xi, we have that |E(S,Xi \ S)| ≥
ϕ ·min{vol(S), vol(Xi \ S)}.

Throughout this work, o(1) is with respect to the number of vertices n. The following result

summarizes the vertex-ordering based algorithms for computing connectivity in hypergraphs.

Theorem 2.5. [31, 32, 33] Let G be an n-vertex hypergraph of size p (possibly multihyper-

graph). Then, there exists a deterministic algorithm SlowMinCut that takes G as input

and runs in time O(pn) to compute the min-cut capacity λ of G (and also return a min-cut).

We need a fast estimator for connectivity in hypergraphs: Matula [108] designed a linear-

time (2+ ϵ)-approximation for min-cut in graphs. Chekuri and Xu [38] generalized Matula’s

approach to hypergraphs.

Theorem 2.6. [38] Let G be a hypergraph of size p (possibly multihypergraph). Then,

there exists an algorithm CXApproximation that takes G as input and runs in time O(p)

to return a positive integer k such that λ < k ≤ 3λ, where λ is the capacity of a min-cut in

G.

For most graph optimization algorithms, it is helpful to reduce the size of the input graph

without losing an optimum before running slow algorithms. A k-certificate reduces the

size of the hypergraph while ensuring that every cut capacity |δ(C)| does not fall below

min{k, |δ(C)|}. The following result on k-certificates was shown by Guha, McGregor, and

Tench [109]. The size of the k-certificate was subsequently improved by Chekuri and Xu via

trimming hyperedges, but the Chekuri-Xu k-certificate could be a multihypergraph. Since

we need a simple hypergraph as a k-certificate, we rely on the weaker result of [109].

Theorem 2.7. [38, 109] Let G = (V,E) be an n-vertex hypergraph (possibly multihy-

pergraph) of size p, and let k be a positive integer. Then, there exists an algorithm

Certificate that takes G and k as input and runs in time O(p) to return a subhyper-

graph G′ = (V,E ′) with
∑

e∈E′ |e| = O(rnk) such that for every cut (C, V \C) in G, we have

|δG′(C)| ≥ min{k, |δG(C)|}.

Chekuri and Xu [38] noted that the slow min-cut algorithm of Theorem 2.5 can be sped

up by using the k-certificate of Theorem 2.7. We illustrate their approach in Algorithm 2.1.

Our algorithm can be viewed as an improvement of Algorithm 2.1—we replace the call to

SlowMinCut with a call to a faster min-cut algorithm.

We briefly discuss the correctness and run-time of Algorithm 2.1. By Theorem 2.6, we

have that k > λ, so Theorem 2.7 guarantees that the min-cuts of G′ will be the same as the

21



CXMinCut(G)
k ← CXApproximation(G)
G′ ← Certificate(G, k)
Return SlowMinCut(G′)

Algorithm 2.1: Chekuri and Xu’s min-cut algorithm

min-cuts of G. Thus, SlowMinCut(G′) will find a min-cut for G and the algorithm will

return it. We now bound the run-time: By Theorem 2.6, CXApproximation runs in O(p)

time to return an estimate k that is at most 3λ. By Theorem 2.7, Certificate runs in O(p)

time to return a subhypergraph G′ = (V,E ′) with size p′ =
∑

e∈E′ |e| = O(rkn) = O(rλn).

Consequently, SlowMinCut runs in time O(rλn2). Thus, the run-time of Algorithm 2.1 is

O(p+ rλn2).

Corollary 2.1. [38] Let G be an n-vertex hypergraph of size p (possibly multihypergraph).

Then, there exists a deterministic algorithm CXMinCut that takes G as input and runs in

time O(p+ rλn2) to compute the min-cut capacity λ of G (and also return a min-cut).

The next result summarizes the random contraction based algorithm for computing global

min-cut in low-rank hypergraphs.

Theorem 2.8. [36] Let G be an r-rank n-vertex hypergraph of size p (possibly multihyper-

graph). Then, there exists a randomized algorithm FPZMinCut that takes G as input and

runs in time Õ(p+ nr) to return a global min-cut of G with high probability.

The next result summarizes another recent algorithm for computing global min-cut in

hypergraphs via the isolating cuts technique.

Theorem 2.9. [62] Let G be an r-rank n-vertex hypergraph of size p with m hyperedges

(possibly multihypergraph). Then, there exists a randomized algorithm CQMinCut that

takes G as input and runs in time Õ(
√
pn(m+ n)1.5) to return a global min-cut of G with

high probability.

2.3 STRUCTURAL THEOREM

We prove Theorem 2.2 in this section. We call a min-cut (C, V \ C) moderate-sized if

its size min{|C|, |V \ C|} is in the range (r − log (λ/4r)/ log n, (λ/2)1/r). In Section 2.3.1,

we show that a hypergraph has no moderate-sized min-cuts. In Section 2.3.2 we show that

every hypergraph has an expander decomposition—–i.e., a partition of the vertex set into

parts which have good expansion such that the number of hyperedges intersecting multiple
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parts is small. In Section 2.3.3, we define Trim and Shave operations and prove properties

about these operations.

We prove Theorem 2.2 in Section 2.3.4 as follows: We assume that there are no min-cuts of

small size (i.e., of size at most r− log (λ/4r)/ log n) and bound the number of hyperedges in

the union of all min-cuts. For this, we find an expander decomposition and apply the Trim

and Shave operations to each part of the decomposition. Since a hypergraph cannot have

moderate-sized min-cuts, and there are no small-sized min-cuts by assumption, it follows

that every min-cut has large size. We use this fact to show that the result of the Trim and

Shave operations is a partition of V such that (1) none of the parts intersect both sides

of any min-cut and (2) the number of hyperedges crossing the parts satisfies the bound in

Condition 2 of the theorem.

2.3.1 No Moderate-Sized Min-Cuts

The following lemma is the main result of this section. It shows that there are no moderate-

sized min-cuts.

Lemma 2.1. LetG = (V,E) be an r-rank n-vertex hypergraph with connectivity λ such that

λ ≥ r2r+1. Let (C, V \C) be an arbitrary min-cut. If min{|C|, |V \C|} > r−log(λ/4r)/ log n,
then min{|C|, |V \ C|} ≥ (λ/2)1/r.

Proof. Without loss of generality, let |C| = min{|C|, |V \ C|}. Let t := |C| and s :=

r − log (λ/4r)/ log n. We know that s < t. Suppose for contradiction that t < (λ/2)1/r. We

will show that there exists a vertex v with |δ(v)| < λ, thus contradicting the fact that λ is

the min-cut capacity. We classify the hyperedges of G which intersect C into three types as

follows:

E1 := {e ∈ E : e ⊆ C}, (2.8)

E2 := {e ∈ E : C ⊊ e}, and (2.9)

E3 := {e ∈ E : ∅ ≠ e ∩ C ̸= C and e ∩ (V \ C) ̸= ∅}. (2.10)

We note that E1 is the set of hyperedges that are fully contained in C, E2 is the set of

hyperedges which contain C as a proper subset, and E3 is the set of hyperedges that intersect

C but are not in E1 ∪ E2. We distinguish two cases.

Case 1: Suppose t < r. Then, the number of hyperedges that can be fully contained in C is

at most 2r, so |E1| ≤ 2r. Since (C, V \C) is a min-cut, we have that λ = |δ(C)| = |E2|+ |E3|.
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We note that the number of hyperedges of size i that contain all of C is at most
(
n−t
i−t

)
. Hence,

|E2| ≤
r∑

i=t+1

(
n− t

i− t

)
=

r−t∑
i=1

(
n− t

i

)
≤

r−t∑
i=1

ni ≤ 2nr−t. (2.11)

Since each hyperedge in E3 contains at most t − 1 of the vertices of C, a uniform random

vertex of C is in such a hyperedge with probability at most (t− 1)/t. Therefore, if we pick

a uniform random vertex from C, the expected number of hyperedges from E3 incident to

it is at most ( t−1
t
)|E3|. Hence, there exists a vertex v ∈ C such that

|δ(v) ∩ E3| ≤
(
t− 1

t

)
|E3| ≤

(
t− 1

t

)
|δ(C)| ≤

(
r − 1

r

)
λ. (2.12)

Combining the bounds for E1, E2, and E3, we have that

|δ(v)| = |δ(v) ∩ E1|+ |E2|+ |δ(v) ∩ E3| (2.13)

≤ |E1|+ |E2|+ |δ(v) ∩ E3| (2.14)

≤ 2r + 2nr−t +

(
r − 1

r

)
λ (2.15)

< 2r + 2nr−s +

(
r − 1

r

)
λ (since t > s) (2.16)

= 2r +
λ

2r
+

(
r − 1

r

)
λ (since λ = 4rnr−s) (2.17)

= λ+
r2r+1 − λ

2r
(2.18)

≤ λ. (since λ ≥ r2r+1) (2.19)

Consequently, |δ(v)| < λ, contradicting the fact that λ is the min-cut capacity.

Case 2: Suppose t ≥ r. Then, no hyperedge can contain C as a proper subset, so |E2| = 0.

For each v ∈ C, the number of hyperedges e of size i such that v ∈ e ⊆ C is at most
(
t−1
i−1

)
.

Hence,

|δ(v) ∩ E1| ≤
r∑

i=2

(
t− 1

i− 1

)
=

r−1∑
i=1

(
t− 1

i

)
≤

r−1∑
i=1

ti ≤ 2tr−1. (2.20)

Since each hyperedge in E3 contains at most r − 1 of the vertices of C, a random vertex

of C is in such a hyperedge with probability at most (r − 1)/t. Therefore, if we pick a

random vertex from C, the expected number of hyperedges from E3 incident to it is at most
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( r−1
t
)|E3|. Hence, there exists a vertex v ∈ C such that

|δ(v) ∩ E3| ≤
(
r − 1

t

)
|E3| ≤

(
r − 1

t

)
λ. (2.21)

Since t < (λ/2)1/r and t ≥ r, we have that 2tr/λ < t − r + 1. Combining this with our

bounds on |δ(v) ∩ E1| and |δ(v) ∩ E3|, we have that

|δ(v)| = |δ(v) ∩ E1|+ |δ(v) ∩ E3| ≤ 2tr−1 +

(
r − 1

t

)
λ =

(
r − 1 +

2tr

λ

)
λ

t
< λ. (2.22)

Consequently, |δ(v)| < λ, contradicting the fact that λ is the min-cut capacity. QED.

2.3.2 Hypergraph Expander Decomposition

In this section, we prove the existence of an expander decomposition and also design an

algorithm to construct it efficiently in constant rank hypergraphs.

Lemma 2.2 (Existential hypergraph expander decomposition). For every r-rank n-vertex

hypergraph G = (V,E) with p :=
∑

e∈E |e| and every positive real value ϕ ≤ 1/(r−1), there

exists a partition {X1, . . . , Xk} of the vertex set V such that the following hold:

1.
∑k

i=1 |δ(Xi)| = O(rϕp log n), and

2. For every i ∈ [k] and every non-empty set S ⊂ Xi, we have that

|Eo(S,Xi \ S)| ≥ ϕ ·min{vol(S), vol(Xi \ S)}.

Remark 2.1. We note that for ϕ = 1, the trivial partition of vertex set where each part is

a single vertex satisfies both conditions.

Proof. We prove this by reducing to multigraphs and then using the existence of expander

decomposition in multigraphs as stated in Theorem 2.3. We create a graph G′ = (V,E ′)

from G as follows: For each e ∈ E, pick v ∈ e arbitrarily, and replace e with the set of edges

{{u, v} : u ∈ e \ {v}}. That is, we replace each hyperedge of G with a star. Consequently,

each hyperedge e is replaced by |e| − 1 edges. Therefore, |E ′| ≤
∑

e∈E |e| = p. Furthermore,

for every X ⊆ V , we have that volG(X) ≤ volG′(X) and |δG(X)| ≤ |δG′(X)|. Also, for every
S ⊆ X, we have that |Eo

G(S,X \ S)| ≥ 1
r−1
|EG′(S,X \ S)|.
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Now, let {X1, . . . , Xk} be the partition obtained by using Theorem 2.3 on input graph G′

with parameter ϕ′ = (r − 1)ϕ. Then,

k∑
i=1

|δG(Xi)| ≤
k∑

i=1

|δG′(Xi)| = O(ϕ′|E ′| log n) = O(rϕp log n). (2.23)

Moreover, for every i ∈ [k] and every non-empty set S ⊂ Xi, we have that

|Eo
G(S,Xi \ S)| ≥

(
1

r − 1

)
|EG′(S,Xi \ S)| (2.24)

≥
(

ϕ′

r − 1

)
min{volG′(S), volG′(Xi \ S)} (2.25)

≥ ϕmin{volG(S), volG(Xi \ S)}. (2.26)

QED.

Next, we show that it is possible to efficiently find an expander decomposition with almost

the same guarantees as in the existential theorem.

Lemma 2.3 (Algorithmic hypergraph expander decomposition). There exists a determin-

istic algorithm that takes as input an r-rank n-vertex hypergraph G = (V,E) with p :=∑
e∈E |e| and a positive real value ϕ ≤ 1/(r − 1) and runs in time O(p1+o(1)) to return a

partition {X1, . . . , Xk} of the vertex set V such that the following hold:

1.
∑k

i=1 |δ(Xi)| = O(rϕp1+o(1)), and

2. For every i ∈ [k], and for every non-empty set S ⊂ Xi, we have that |Eo(S,Xi \ S)| ≥
ϕ ·min{vol(S), vol(Xi \ S)}.

Proof. The proof is similar to that of Lemma 2.2—via a reduction to graphs and using the

result of [102] mentioned in Theorem 2.4 (which is a constructive version of Theorem 2.3).

We note that Theorem 2.4 gives a worse guarantee on
∑k

i=1 |δG(Xi)| than that in Theorem

2.3. Hence, we revisit the calculations for Condition 1 below. The notations that we use

below are borrowed from the proof of Lemma 2.2.

Let {X1, . . . , Xk} be the partition returned by algorithm GraphExpanderDecomp

(from Theorem 2.4) on input graph G′ with parameter ϕ′ = (r − 1)ϕ. Then,

k∑
i=1

|δG(Xi)| ≤
k∑

i=1

|δG′(Xi)| ≤= O
(
ϕ′|E ′|1+o(1)

)
= O

(
rϕp1+o(1)

)
. (2.27)
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The graph G′ in the proof of Lemma 2.2 (also used in this proof) can be constructed in

time O(p). The algorithm GraphExpanderDecomp from Theorem 2.4 on input graph G′

runs in time O(p1+o(1)). Hence, the total running time of this algorithm is O(p1+o(1)). QED.

2.3.3 Trim and Shave Operations

In this section, we define the Trim and Shave operations and prove certain useful prop-

erties about them.

Definition 2.1. Let G = (V,E) be an r-rank hypergraph. For X ⊆ V , let

1. Trim(X) be the set obtained by repeatedly removing from X a vertex v with dX(v) <

d(v)/2r until no such vertices remain,

2. Shave(X) := {v ∈ X : dX(v) > (1− 1/r2)d(v)}, and

3. Shavek(X) := Shave(Shave · · · (Shave(X))) be the result of applying k consecutive

Shave operations to X.

We emphasize thatTrim is an adaptive operation while Shave is a non-adaptive operation

and Shavek(X) is a sequence of Shave operations. We now prove certain useful properties

about these operations. In the rest of this section, let G = (V,E) be an r-rank n-vertex

hypergraph with minimum degree δ and min-cut capacity λ. The following claim shows that

the Trim operation on a set X that has small intersection with a min-cut further reduces

the intersection.

Claim 2.1. Let (C, V \ C) be a min-cut. Let X be a subset of V and X ′ := Trim(X). If

min{|X ∩ C|, |X ∩ (V \ C)|} ≤ (δ/6r2)1/(r−1), then

min{|X ′ ∩ C|, |X ′ ∩ (V \ C)|} ≤ 3r2.

Proof. Without loss of generality, we assume that |X ∩ C| = min{|X ∩ C|, |X ∩ (V \ C)|}.
We have that

δ ≥ λ (2.28)

≥ |E(X ′ ∩ C,X ′ ∩ (V \ C))| (2.29)

≥
(

1

r − 1

)
(volG[X′](X

′ ∩ C)− r|E(X ′ ∩ C,X ′ ∩ C)|) (By Proposition 2.1) (2.30)

≥
(

1

r − 1

)(
1

2r
δ|X ′ ∩ C| − r|X ′ ∩ C|r

)
. (2.31)
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The last inequality above is by definition of Trim. Rearranging the above, we obtain that

r|X ′ ∩ C|r ≥
(

1

2r
|X ′ ∩ C| − (r − 1)

)
δ. (2.32)

Dividing by |X ′ ∩ C|, we have that

r|X ′ ∩ C|r−1 ≥
(

1

2r
− (r − 1)

|X ′ ∩ C|

)
δ. (2.33)

We note that |X ′ ∩C| ≤ |X ∩C| = min{|X ∩C|, |X ∩ (V \C)|} ≤ (δ/6r2)1/(r−1). Therefore,

δ

6r
≥
(

1

2r
− r − 1

|X ′ ∩ C|

)
δ. (2.34)

Dividing by δ and rearranging, we obtain that

|X ′ ∩ C| ≤ 3r(r − 1) ≤ 3r2. (2.35)

QED.

The following claim shows that the Shave operation on a set X which has small intersec-

tion with a large-sized min-cut further reduces the intersection.

Claim 2.2. Suppose λ ≥ r(4r2)r. Let (C, V \C) be a min-cut with min{|C|, |V \C|} ≥ 4r2.

Let X ′ be a subset of V and X ′′ := Shave(X ′). If 0 < min{|X ′ ∩C|, |X ′ ∩ (V \C)|} ≤ 3r2,

then

min{|X ′′ ∩ C|, |X ′′ ∩ (V \ C)|} ≤ min{|X ′ ∩ C| , |X ′ ∩ (V \ C)|} − 1.

Proof. Without loss of generality, we assume that |X ′ ∩C| = min{|X ′ ∩C|, |X ′ ∩ (V \C)|}.
Since X ′′ ⊆ X ′, we have that |X ′′ ∩ C| ≤ |X ′ ∩ C|. Thus, we only need to show that this

inequality is strict. Suppose for contradiction that |X ′′ ∩ C| = |X ′ ∩ C|. We note that

0 < |X ′′ ∩ C| ≤ 3r2.

Let Z := X ′ ∩ C = X ′′ ∩ C, and let C ′ := C −X ′. Since |C| ≥ min{|C|, |V \ C|} ≥ 4r2

and |Z| ≤ 3r2, we know that C ′ is nonempty.

We note that Z ⊆ X ′′. By definition of Shave, we have that

volX′(Z) =
∑
v∈Z

dX′(v) >
∑
v∈Z

(
1− 1

r2

)
d(v) =

(
1− 1

r2

)
vol(Z). (2.36)

We note that |E(Z, V \ C)| ≥ |E(Z,X ′ \ C)| = |E(Z,X ′ \ Z)|, so by Proposition 2.1, we
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have that

|E(Z, V \ C)| ≥ |E(Z,X ′ \ Z)| (2.37)

≥
(

1

r − 1

)
(volX′(Z)− r|E[Z]|) (2.38)

>

(
1

r − 1

)((
1− 1

r2

)
vol(Z)− r|Z|r

)
. (2.39)

We also know from the definition of Shave that

|E(Z,C \ Z)| ≤
∑
v∈Z

|E({v}, C \ Z)| ≤
∑
v∈Z

1

r2
d(v) =

vol(Z)

r2
. (2.40)

Therefore, using our assumption that λ ≥ r(4r2)r, we have that

|E(Z, (V \ C))| >
(

1

r − 1

)((
1− 1

r2

)
vol(Z)− r|Z|r

)
(2.41)

=

(
r2 − 1

r2(r − 1)

)
vol(Z)−

(
r

r − 1

)
|Z|r (2.42)

=
vol(Z)

r2
+

vol(Z)

r
−
(

r

r − 1

)
|Z|r (2.43)

=
vol(Z)

r2
+

∑
v∈Z d(v)

r
− r|Z|r (2.44)

≥ vol(Z)

r2
+
|Z|λ
r
− r|Z|r (2.45)

≥ vol(Z)

r2
+ (4r2)r|Z| − r|Z|r (2.46)

≥ vol(Z)

r2
+ (4r2)|Z|r − r|Z|r (2.47)

≥ vol(Z)

r2
(2.48)

≥ |E(Z,C \ Z)|. (2.49)

We note that E(Z, (V \ C)) is the set of hyperedges which are cut by C but not C ′, while

E(Z,C \ Z) is the set of hyperedges which are cut by C ′ but not C. Since we have shown

that |E(Z, V \ C)| > |E(Z,C \ Z)|, we conclude that |δ(C)| > |δ(C ′)|. Since (C, V \C) is a

min-cut and ∅ ≠ C ′ ⊆ C ⊊ V , this is a contradiction. QED.

The following claim shows that the Trim operation increases the cut capacity by at most

a constant factor.
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Claim 2.3. Let X be a subset of V and X ′ := Trim(X). Then,

1. |E[X]− E[X ′]| ≤ |δ(X)|, and

2. |δ(X ′)| ≤ 2|δ(X)|.

Proof. We will prove the first part of the claim. The second part follows from the first part.

For a set S ⊆ V , we define a potential function f(S) :=
∑

e∈δ(S) |e ∩ S|. Since every

hyperedge in δ(S) must include at least 1 and at most r − 1 vertices of S, we have that

|δ(S)| ≤ f(S) ≤ (r − 1)|δ(S)|. We note that the removal of a vertex v from X during the

Trim process decreases f(X) by at least (1− 1
2r
)d(v)− (r−1)

2r
d(v) = 1

2
d(v). This is because,

from the definition of Trim, at least a 1 − 1
2r

fraction of v’s hyperedges were part of δ(X)

before v was removed, and each of these hyperedges losing a vertex causes f(X) to decrease

by one, while v’s removal can add at most 1
2r
d(v) new hyperedges to δ(X), and each of these

hyperedges can contribute at most r − 1 to f(X). We also note that when v is removed,

the cut capacity |δ(X)| increases by at most |E({v}, X \ {v})| ≤ 1
2r
d(v). Therefore, the

removal of a vertex v from X during the Trim process increases the cut capacity |δ(X)|
by at most 1

2r
d(v) and decreases the potential function f(X) by at least 1

2
d(v). Thus, for

every additional hyperedge added to δ(X), the potential function must decrease by at least
d(v)/2
d(v)/2r

= r. Before the Trim operation, we have f(X) ≤ (r − 1)|δ(X)|, so the number

of hyperedges that can be removed from X at the end of the Trim operation is at most
1
r
(r − 1)|δ(X)| ≤ |δ(X)|. QED.

The following claim shows that the Shave operation increases the cut capacity by at most

a factor of r3.

Claim 2.4. Let X ′ be a subset of V and X ′′ := Shave(X ′). Then

1. |E[X ′]− E[X ′′]| ≤ r2(r − 1)|δ(X ′)|, and

2. |δ(X ′′)| ≤ r3|δ(X ′)|.

Proof. We will prove the first part of the claim. The second part follows from the first part.

We note that the removal of a vertex v from X ′ during the Shave process decreases

the number of hyperedges fully contained in X by at most d(v). We also know that if v

is removed, we must have |δ(v) ∩ δ(X ′)| ≥ d(v)/r2, and therefore d(v) ≤ r2|δ(v) ∩ δ(X ′)|.
Thus, the total number of hyperedges removed from X ′ in a single Shave operation is at

most r2
∑

v∈X′ |δ(v) ∩ δ(X ′)| ≤ r2(r − 1)|δ(X ′)|. QED.
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2.3.4 Proof of Theorem 2.2

In this section, we restate and prove Theorem 2.2.

Theorem 2.2. [Structure] Let G = (V,E) be an r-rank n-vertex simple hypergraph with

m hyperedges and connectivity λ. Suppose λ ≥ r(4r2)r. Then, at least one of the following

holds:

1. There exists a min-cut (C, V \ C) such that

min{|C|, |V \ C|} ≤ r −
log ( λ

4r
)

log n
,

2. The number of hyperedges in the union of all min-cuts is

O

(
r9r

2+2

(
6r2

λ

) 1
r−1

m log n

)
= Õr

(
m

λ
1

r−1

)
.

Proof. Suppose the first conclusion does not hold. Then, by Lemma 2.1, the smaller side of

every min-cut has size at least (λ/2)1/r ≥ 4r2. Let (C, V \ C) be an arbitrary min-cut. We

use Lemma 2.2 with ϕ = (6r2/λ)1/(r−1) to get an expander decomposition X = {X1, . . . , Xk}.
We note that ϕ ≤ 1/(r − 1) holds by the assumption that λ ≥ r(4r2)r. For i ∈ {1, . . . , k},
let X ′

i := Trim(Xi) and X ′′
i := Shave3r2(X

′
i).

Let i ∈ [k]. By the definition of the expander decomposition and our choice of ϕ =

(6r2/λ)1/(r−1), we have that

λ ≥ |Eo(Xi ∩ C,Xi ∩ (V \ C))| (2.50)

≥
(
6r2

λ

) 1
r−1

min{vol(Xi ∩ C), vol(Xi \ C)} (2.51)

≥
(
6r2

λ

) 1
r−1

δmin{|Xi ∩ C|, |Xi \ C|}. (2.52)

Thus, min{|Xi ∩ C|, |Xi \ C|} ≤ (λ/δ)(λ/6r2)1/(r−1) ≤ (λ/6r2)1/(r−1) ≤ (δ/6r2)1/(r−1).

Therefore, by Claim 2.1, we have that min{|X ′
i ∩C|, |X ′

i ∩ (V \C)|} ≤ 3r2. We recall that

λ ≥ r(4r2)r and every min-cut has size at least 4r2. By 3r2 repeated applications of Claim

2.2, we have that min{|X ′′
i ∩ C|, |X ′′

i ∩ (V \ C)|} = 0.

Let X ′′ := {X ′′
1 , . . . , X

′′
k}. Since min{|X ′′

i ∩ C|, |X ′′
i ∩ (V \ C)|} = 0 for every min-cut

(C, V \ C) and every X ′′
i ∈ X ′′, it follows that no hyperedge crossing a min-cut is fully
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contained within a single part of X ′′. Thus, it suffices to show that |E −
⋃k

i=1 E[X ′′
i ]| is

small—i.e., the number of hyperedges not contained in any of the parts of X ′′ is Õr(m/λ
1

r−1 ).

By Claim 2.3, we have that |E[Xi]−E[X ′
i]| ≤ 2|δ(Xi)| and |δ(X ′

i)| ≤ 2|δ(Xi)| for each i ∈
[k]. By the second part of Claim 2.4, we have that |δ(Shavej+1(X

′
i))| ≤ r3|δ(Shavej(X

′
i))|

for every non-negative integer j. Therefore, by repeated application of the second part of

Claim 2.4, for every j ∈ [3r2], we have that |δ(Shavej(X
′
i))| ≤ 2r3j|δ(Xi)|. By the first

part of Claim 2.4, for every j ∈ [3r2], we have that |E[Shavej−1(X
′
i)] − E[Shavej(X

′
i)]| ≤

r3|δ(Shavej−1(X
′
i))| ≤ 2r3j|δ(Xi)|. Therefore,∣∣∣∣∣E −

k⋃
i=1

E[X ′′
i ]

∣∣∣∣∣ (2.53)

≤

∣∣∣∣∣E −
k⋃

i=1

E[Xi]

∣∣∣∣∣+
k∑

i=1

|E[Xi]− E[X ′′
i ]| (2.54)

=

∣∣∣∣∣E −
k⋃

i=1

E[Xi]

∣∣∣∣∣+
k∑

i=1

(
|E[Xi]− E[X ′

i]|+
3r2∑
j=1

|E[Shavej−1(X
′
i)]− E[Shavej(X

′
i)]|

)
(2.55)

≤

∣∣∣∣∣E −
k⋃

i=1

E[Xi]

∣∣∣∣∣+
k∑

i=1

(
2|δ(Xi)|+

3r2∑
j=1

2r3j|δ(Xi)|

)
(2.56)

=

∣∣∣∣∣E −
k⋃

i=1

E[Xi]

∣∣∣∣∣+
k∑

i=1

|δ(Xi)|

(
2 +

3r2∑
j=1

2r3j

)
(2.57)

≤

∣∣∣∣∣E −
k⋃

i=1

E[Xi]

∣∣∣∣∣+
k∑

i=1

3r9r
2|δ(Xi)| (2.58)

≤

∣∣∣∣∣E −
k⋃

i=1

E[Xi]

∣∣∣∣∣+ 3r9r
2

k∑
i=1

|E(Xi, V \Xi)| (2.59)

≤4r9r2
k∑

i=1

|E(Xi, V \Xi)| . (2.60)

By Lemma 2.2, since X is an expander decomposition for ϕ = (6r2/λ)1/(r−1) and since

p =
∑

e∈E |e| ≤ mr, we have that

k∑
i=1

|E(Xi, V \Xi)| = O(rϕp log n) = O(r)

(
6r2

λ

) 1
r−1

p log n = O(r2)

(
6r2

λ

) 1
r−1

m log n.

(2.61)

Thus, |E−
⋃k

i=1E[X ′′
i ]| = O(r9r

2+2(6r2/λ)1/(r−1)m log n), thus proving the second conclusion.
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QED.

2.4 ALGORITHM

In this section, we prove Theorem 2.1. In Section 2.4.1, we give an algorithm to find a

min-cut in hypergraphs where some min-cut has small size. This algorithm uses either the

algorithm we give in Section 2.4.2, or the algorithm that we give in Section 2.4.3, depending

on the min-cut value of the input hypergraph. In Section 2.4.4, we give an algorithm which

uses the expander decomposition and the Trim and Shave operations defined in Section

2.3.3 to find a min-cut if the size of every min-cut is large. In Section 2.4.5, we apply the

sparsification algorithm of Chekuri and Xu, followed by a combination of our two algorithms

in order to prove Theorem 2.1.

2.4.1 Small-Sized Hypergraph Min-Cut

We recall that the size of a cut is the number of vertices on the smaller side of the cut. In

this section, we give a randomized algorithm to find connectivity in hypergraphs in which

some min-cut has size at most s. The following is the main result of this section.

Theorem 2.10. Let s be a positive integer and let G = (V,E) be an r-rank hypergraph of

size p that has a min-cut (C, V \C) with |C| ≤ s. Then, there exists a randomized algorithm

SmallSizeMinCut which takes G and s as input and runs in time Õr(s
6rp) to return a

min-cut of G with high probability.

Remark 2.2. We note that the above result gives a randomized algorithm. In contrast, we

give a simple but slightly slower deterministic algorithm for this problem in Section 2.5.

We prove Theorem 2.10 using one of two possible algorithms based on the connectivity λ

of the input hypergraph: By Theorem 2.6, we can find a k such that λ ≤ k ≤ 3λ in O(p)

time. If k ≤ 2700sr log n, then we use the algorithm from Section 2.4.2 to find a min-cut in

time Õr(s
3rp+ s6r) and if k > 2700sr log n (i.e., λ > 900sr log n), then we use the algorithm

from Section 2.4.3 to find a min-cut in time Õr(s
3rp). These two algorithms exploit two

slightly different ways of representing the hypergraph as a graph.

2.4.2 Small-Sized Min-Cut for Small λ

This section is devoted to proving the following theorem, which allows us to find a min-cut

in a hypergraph with a small-sized min-cut. The algorithm is fast if the min-cut capacity is
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sufficiently small.

Theorem 2.11. Let s be a positive integer and let G = (V,E) be an r-rank hypergraph of

size p that has a min-cut (C, V \C) with |C| ≤ s. Then, there exists a randomized algorithm

which takes G and s as input and runs in time Õr(pλ
2rsr + λ4r2s2r) to return a min-cut of

G with high probability.

In the rest of this section, let s be a positive integer and let G = (V,E) be an r-rank

n-vertex hypergraph of with m hyperedges and size p that has a min-cut (C, V \ C) with

|C| ≤ s. Let λ be the min-cut capacity of G and let k be the approximation of λ obtained

by running the algorithm from Theorem 2.6. If p ≤ 512k2rsr, then n ≤ p ≤ 512k2rsr. In

this case, we run the algorithm SlowMinCut from Theorem 2.5 to compute the min-cut

in G in time O(np) = Õ(λ4r2s2r). Henceforth, we assume that p > 512k2rsr.

We construct an arc-weighted directed graph DG = (VD, ED) as follows: The vertex and

arc sets of DG are given by VD := UV ∪ UEin
∪ UEout and ED := E1 ∪E2 respectively, where

UV , UEin
, UEout , E1, and E2 are defined next. The vertex set UV has a vertex uv for each

v ∈ V . The vertex set UEin
has a vertex ein for every hyperedge e ∈ E, and the vertex set

UEout has a vertex eout for every hyperedge e ∈ E. The arc set E1 has an arc (ein, eout) for

every e ∈ E. The arc set E2 has arcs (v, ein) and (eout, v) for every e ∈ E and v ∈ e. We

assign a weight of 1 to each arc in E1 and a weight of ∞ to each arc in E2. We note that

|VD| = n + 2m, and |ED| = m + 2p. Furthermore, DG can be constructed from G in Õ(p)

time.

Definition 2.2. A directed cut in DG is an ordered partition of the vertices into two parts

(C, VD \ C) such that ∅ ̸= C ∩ UV ̸= UV , and its weight is the total weight of arcs outgoing

from C.

The following proposition relates min-cut in G to min-weight directed cut in DG.

Proposition 2.2. An algorithm that runs in time Õ(f(p, s, r, λ)) to find a min-weight

directed cut in DG, for some function f , can be used to find a min-cut in G in time

Õ(p+ f(p, s, r, λ)).

Proof. We first note that every cut (C, V \ C) in G has a corresponding cut in DG, namely

(C ′, VD \ C ′) where C ′ := {uv : v ∈ C} ∪ {ein : e ∩ C ̸= ∅} ∪ {eout : e ⊆ C}. The arcs cut by

(C ′, VD \ C ′) will be arcs of the form (ein, eout) where e ∩ C ̸= ∅, but e is not contained in

C, and the number of such arcs is exactly the number of hyperedges in δ(C). Therefore, the

min-weight of a directed cut in DG is at most the min-cut capacity in G.
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Next, let (C ′, VD \ C ′) be a min-weight directed cut in DG. Let C := {v : uv ∈ C ′}. We

will show that C ′ ∩ UEin
= {ein : e ∩ C ̸= ∅} and C ′ ∩ UEout = {eout : e ⊆ C}. We note that

a min-cut in DG does not cut any infinite cost hyperedges. Therefore, C ′ contains every

vertex ein such that e ∩ C ̸= ∅. Similarly, C ′ can contain a vertex eout only if e ⊆ C. Thus,

(C ′, VD \C ′) cuts all arcs (ein, eout) where e ∈ δ(C). Therefore, the min-weight of a directed

cut in DG is at least the min-cut capacity in G.

The above arguments imply that the min-weight of a directed cut in DG is equal to the

min-cut capacity in G and moreover, given a min-weight directed cut in DG, we can recover

a min-cut in G immediately. The run-time guarantees follow.

QED.

By Proposition 2.2, in order to prove Theorem 2.11, it suffices to design an algorithm that

runs in time Õr(pλ
2rsr+λ4r2s2r) to find a min-weight directed cut (C, VD\C) in the directed

graph DG corresponding to G, under the assumptions that |C ∩ UV | ≤ s and p ≥ 512k2rsr.

In Algorithm 2.2 we give a randomized algorithm to find a min-weight directed cut under

these assumptions. This algorithm is inspired by an algorithm of Forster, Nanongkai, Yang,

Saranurak and Yingchareonthawornchai [96]. We show in Theorem 2.12 that if x ∈ C for

some min-weight directed cut (C, VD \C) in DG with |C ∩UV | ≤ s, then running Algorithm

2.2 on (DG, x, k, s) will return a min-weight directed cut with constant probability. Thus,

running Algorithm 2.2 on (DG, x, k, s) for each x ∈ UV and returning the best cut found

will indeed return a min-weight directed cut in DG with constant probability; repeating this

process log n times and taking the best cut found will return a min-weight directed cut with

high probability. We also show in Theorem 2.12 that Algorithm 2.2 can be implemented to

run in time O(λ3rsr). Thus, running SmallSizeSmallMinCut O(log n) times for each

x ∈ UV and returning the best cut found takes time Õ(nk3rsr) = Õ(pk2rsr). Adding in the

time for the base case where p ≤ 512k2rsr, we get a total running time of Õ(pλ2rsr+λ4r2s2r),

thus proving Theorem 2.12.

Theorem 2.12. Let (C, VD \ C) be a min-weight directed cut in DG with |C ∩ UV | ≤ s

and p ≥ 512k2rsr. For x ∈ C, Algorithm 2.2 returns a min-weight directed cut in DG with

probability at least 3
4
. Moreover, the algorithm can be implemented to run in time O(λ3rsr).

Proof. We begin by showing the following claim.

Claim 2.5. If Algorithm 2.2 returns V (T ) in iteration j of its for-loop, then (V (T ), VD \
V (T )) is a directed cut in DG with weight at most j − 1.

Proof. We note that whenever we flip the arcs in an x− y path, the weight of every directed

cut (C, VD \C) with x ∈ C either decreases by 1 (if y ∈ VD \C) or stays the same. We also
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SmallSizeSmallMinCut(DG, x, k, s)
Set all arcs as unmarked
For i from 1 to k + 1

y ← NIL
Run a new iteration of BFS from x to get a BFS tree T as follows:
While the BFS algorithm still has an arc (u, v) to explore

If (u, v) is not marked
Mark (u, v)
If at least 512k2rsr arcs are marked

Return ⊥
With probability 1

8r(4sr+k) , stop BFS and set y ← v

If y = NIL
Return V (T )

Flip the orientation of all arcs on the x− y path in T
Return ⊥

Algorithm 2.2: Algorithm to find a min-weight directed cut

note that if the algorithm eventually returns V (T ), then the last iteration must have explored

all arcs reachable from x without exploring 512k2rsr arcs. Since |ED| ≥ p > 512k2rsr, this

means that not all arcs of DG are reachable from x, and therefore (V (T ), VD \ V (T )) is a

directed cut in DG. The weight of the cut (V (T ), VD \ V (T )) has decreased by at most 1 in

each previous iteration of BFS run, since this is the only time when the algorithm flips the

arcs of a path. Therefore, if V (T ) is returned in iteration j of the algorithm’s for-loop, the

corresponding cut in DG has weight at most j − 1. QED.

By Claim 2.5, it suffices to show that with constant probability, Algorithm 2.2 returns

V (T ) after λ+ 1 iterations of BFS. By Claim 2.5, the algorithm cannot return V (T ) within

λ iterations of BFS (since this would imply that there exists a directed cut with weight less

than λ). Therefore, since λ ≤ k, the algorithm will always run at least λ + 1 iterations of

BFS if it does not terminate because of marking 512k2rsr arcs. If x ∈ C, then whenever the

algorithm flips the orientations of all arcs of an x− y path where y ∈ VD \ C, the weight of

the cut (C, VD \C) in the resulting graph decreases by 1. Thus, if x ∈ C and the algorithm

fails to return a min-cut after λ+ 1 iterations, either the first λ+ 1 iterations marked more

than 512k2rsr arcs, or one of the choices for vertex y chosen within the first λ iterations is

in C.

Claim 2.6. The probability that Algorithm 2.2 returns ⊥ due to marking at least 512k2rsr

arcs within the first λ+ 1 iterations of BFS is at most 1/8.

Proof. The expected number of arcs marked by a single iteration of BFS is 8r(4sr + k), so
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the expected number of arcs marked by λ+ 1 iterations of BFS is

8(λ+ 1)r(4sr + k) ≤ 8(k + 1)r(4sr + k) ≤ 64rk2sr. (2.62)

Therefore, by Markov’s inequality, the probability that at least 512k2rsr arcs are marked in

the first λ+ 1 iterations is at most 1/8. QED.

Claim 2.7. The probability that Algorithm 2.2 picks a vertex from C as y in some iteration

of its execution is at most 1/8.

Proof. If the algorithm never terminates a BFS iteration on an arc with an endpoint in C,

then it will always choose the vertex y from VD \C. We recall that |C ∩UV | ≤ s. Therefore,

|C ∩ Ueout| ≤ 2sr, since the number of hyperedges of size at most r over a subset of vertices

of size s is at most(
s

r

)
+

(
s

r − 1

)
+

(
s

r − 2

)
+ · · ·+

(
s

2

)
≤ sr + · · ·+ s2 ≤ 2sr. (2.63)

Since C is a min-weight directed cut, we also have that |C ∩ Uein | ≤ |C ∩ Ueout| + λ ≤
|C ∩ Ueout| + k. Also, since C is a min-weight directed cut, we know that for an arbitrary

vertex v in C ∩ UV , all of v’s neighbors are also in C (since the arcs between vertices in

UV and VD \ UV have infinite weight). Thus, every arc which is incident to a vertex in C

is incident to a vertex in C ∩ (Uein ∪ Ueout). Since each vertex in Uein ∪ Ueout has degree

at most r, this means that the total number of arcs which touch vertices in C is at most

r(|C ∩Uein |+ |C ∩Ueout|) ≤ r(4sr+k). Each of these arcs is marked at most once during the

execution of the algorithm, and has a 1/(8r(4sr + k)) chance of causing BFS to terminate

when it is marked. Thus, by union bound, the probability that one of these arcs causes the

BFS to terminate (and potentially not flip an arc from the min-cut) is at most 1/8. QED.

Combining Claim 2.6 with Claim 2.7, and by union bound, the total probability that the

algorithm returns an incorrect answer is at most 1/4.

Finally, we analyze the runtime of Algorithm 2.2. The runtime is dominated by the

breadth first searches. There are at most k+1 searches, and each breadth first search visits

at most 512k2rsr arcs, so the runtime of Algorithm 2.2 is O(λ3rsr). QED.

2.4.3 Small-Sized Min-Cut for Large λ

In this section, we prove the following theorem which allows us to find min-cut in hyper-

graphs where some min-cut has small size. The algorithm is fast if the min-cut capacity is

37



sufficiently large.

Theorem 2.13. Let s be a positive integer, and let G = (V,E) be an n-vertex r-rank

hypergraph of size p with n ≥ 2r that has a min-cut (C, V \ C) with |C| ≤ s and min-cut

capacity λ ≥ 900sr log n. Then, there exists a randomized algorithm which takes G and s

as input and runs in time Õr(s
3rp) to return a min-cut of G with high probability.

In the rest of this section, let s be a positive integer and let G = (V,E) be an r-rank

n-vertex hypergraph of with m hyperedges and size p that has a min-cut (C, V \ C) with

|C| ≤ s and min-cut capacity λ ≥ 900sr log n. We construct a vertex-weighted bipartite

graph B = (VB, EB) as follows: The vertex set of B is given by VB := UV ∪ UE, and the

edge set of B is EB, where UV , UE, EB are defined next. The vertex set UV has a vertex uv

for every vertex v ∈ V . The vertex set UE has a vertex ue for every hyperedge e ∈ E. The

edge set EB has an edge {uv, ue} for every v ∈ V , e ∈ E such that the hyperedge e contains

the vertex v in G. We assign a weight of ∞ to each vertex in UV and a weight of 1 to each

vertex in UE. We note that |VB| = m + n and |EB| = p. Furthermore, the graph B can be

constructed from G in Õ(p) time.

We call a 3-partition (L, S,R) of the vertices of B a separator if removing S from B

disconnects L from R. We define the weight of the separator as the weight of S. Throughout

this section, for a vertex u ∈ VB, we use N(u) to denote {v ∈ UV ∪ UE : {u, v} ∈ EB} and
N [u] to denote N(u) ∪ {u}. By the weights that we have assigned to vertices of B, we have

the following observation:

Observation 2.1. Every min-weight separator (L, S,R) in B has S ⊆ UE.

The following proposition relates min-cuts in G to minimum weight separators in B and

translates our assumption that the min-cut (C, V \C) in G has |C| ≤ s into a constraint on

a min-weight separator in B.

Proposition 2.3. The following hold:

1. If (L, S,R) is a min-weight separator in B, then ({v : uv ∈ L}, {v : uv ∈ R}) is a

min-cut in G.

2. If (C, V \ C) is a min-cut in G, then for

L := {uv : v ∈ C} ∪ {ue : e ∈ E and e ⊆ C},

S := {ue : e ∈ δ(C)}, and

R := {uv : v ∈ V \ C} ∪ {ue : e ∈ E and e ⊆ V \ C},
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the tuple (L, S,R) is a min-weight separator in B; moreover, if |C| ≤ s, then |L| ≤ 3sr.

Moreover, an algorithm that runs in time Õ(f(p, s, r, λ)) to find a min-weight separator in

B, for some function f , can be used to find a min-cut in G in time Õ(p+ f(p, s, r, λ)).

Proof. Let (L, S,R) be a min-weight separator in B. By Observation 2.1 we have that

S ⊆ UE, and therefore ({v : uv ∈ L}, {v : uv ∈ R}) is a partition of V . Observation 2.1 also

implies that L∩UV and R∩UV are both nonempty, and therefore ({v : uv ∈ L}, {v : uv ∈ R})
is a cut in G. Every hyperedge e crossing this cut must contain two vertices x, y ∈ e, where

ux ∈ L and uy ∈ R. For such a hyperedge e, the vertex ue is adjacent to vertices in both L

and R, and therefore, by the definition of a separator, we have that ue ∈ S. Thus, we have

that the weight of the cut ({v : uv ∈ L}, {v : uv ∈ R}) is at most |S|.
Next, let (C, V \ C) be a min-cut in G, and let the sets L, S,R be as defined in the

proposition. We note that, by the definition of B, removing S will disconnect L from R.

Thus, (L, S,R) is indeed a separator. Furthermore, since S ⊆ UE, the weight of (L, S,R) is

|S| = |δ(C)|.
The arguments in the previous two paragraphs imply that the min-cut capacity in G is

at most the weight of a min-weight separator in B, and the weight of a minimum weight

separator in B is at most the min-cut capacity in G. Thus, the min-cut capacity in G is

equal to the weight of a min-weight separator in B.

Next, we show that if |C| ≤ s, then |L| ≤ 3sr. We note that L = {uv : v ∈ C} ∪ {ue : e ∈
E and e ⊆ C}. We have that |{uv : v ∈ C}| ≤ s, and

|{ue : e ∈ E and e ⊆ C}| ≤
(
s

r

)
+

(
s

r − 1

)
. . .

(
s

2

)
≤ sr + . . . s2 ≤ 2sr. (2.64)

Thus, |L| ≤ s+ 2sr ≤ 3sr.

The run-time to obtain a min-cut of G from a min-weight separator of B follows from the

fact that B can be constructed in Õ(p) time. QED.

By Proposition 2.3, in order to prove Theorem 2.13, it suffices to design an algorithm that

runs in time Õr(s
3rp) to find a min-weight separator (L, S,R) in the bipartite graph B, under

the assumption that there exists a min-weight separator (L, S,R) in B with |L| ≤ 3sr. To

achieve this, we use a slightly modified version of on algorithm of Li, Nanongkai, Panigrahi,

Saranurak, and Yingchareonthawornchai [98] to obtain a minor of B, which we call a kernel,

which has the following two properties with high probability:

1. A min-weight separator in the kernel can be used to find a min-weight separator in B

in Õ(p) time.
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2. The kernel has at most 9rsr vertices from UV .

The first property helps in reducing the problem of finding a min-weight separator in B to the

problem of finding a kernel and of finding a min-weight separator in the kernel. The second

property allows us to design an algorithm which finds a min-weight separator in a kernel in

time Õ(λr2s3r). In Algorithm 2.3, we give a randomized procedure that takes B, a setX ⊆ V

such that X ∩ L ̸= ∅, and an integer ℓ with |L|/2 ≤ ℓ ≤ |L| as inputs and returns a kernel.

Running this algorithm O(log n) times with X = UV for each ℓ ∈ {1, 2, 4, . . . , 2⌈log(3sr)⌉} will
return a kernel. We show the correctness of Algorithm 2.3 in Lemma 2.5. Unfortunately,

the runtime of Algorithm 2.3 is Õ(|EH | · |X|), which is too slow for our purposes. In Lemma

2.7, we show that there is a faster algorithm that returns the same kernel as Algorithm

2.3. Finally, in Lemma 2.8 we obtain an Õ(s3rp) time algorithm for finding a min-weight

separator in B by combining the algorithm for finding a kernel with an algorithm due to

Dinitz [110] which finds a min-weight separator in a kernel.

We will need the following definitions (we recall that the graph B has m+ n vertices):

Definition 2.3 ([98]). 1. For X, Y ⊆ VB, we say that a separator (L, S,R) is an (X, Y )-

separator if X ⊆ L, Y ⊆ R.

2. A minimum weight (X, Y )-separator will be denoted as a min (X, Y )-separator.

3. For a positive integer t, we say that a separator (L, S,R) is a t-scratch if |S| ≤ t,

|L| ≤ t/(100 log(m + n)), and |Slow| ≥ 300|L| log(m + n), where Slow := {v ∈ S :

deg(v) ≤ 8t}.

Definition 2.4. Let x ∈ VB. We say that (Bx, Zx, x, tx) is a kernel if the following hold:

1. Bx is a subgraph of the graph obtained fromB by contracting some subset Tx ⊆ VB\{x}
into the single vertex tx such that Bx contains x and tx.

2. Zx is a subset of VB such that (L, S,R) is a min ({x}, {tx})-separator in Bx iff (L′, S ∪
Zx, R

′) is a min ({x}, Tx)-separator in B, where L′ is the component of VB \ (S ∪ Zx)

containing x, and R′ := VB \ (L′ ∪ S ∪ Zx).

Let (L, S,R) be a min-weight separator in B, and let x ∈ L. The following lemma gives

us a way to choose a set Tx so that with constant probability ∅ ̸= Tx ⊊ R. For such a Tx,

we have that (L, S,R) is a min ({x}, Tx)-separator, which means that we can potentially

recover (L, S,R) from the min-weight separator in a kernel.
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Lemma 2.4. Let (L, S,R) be a min-weight separator in B with |L| ≤ 3sr. Let x ∈ L and let

ℓ be a positive integer with |L|/2 ≤ ℓ ≤ |L|. Let T be a subset of V (B) chosen by sampling

each vertex with probability 1/(8ℓ), and let Tx = T \N [x]. Then, we have that ∅ ≠ Tx ⊊ R

with probability Ω(1).

Proof. By the hypothesis of Theorem 2.13, we have that |S| = λ ≥ 900sr log n. We also have

that |L| ≤ 3sr ≤ |S|/2. We also note that a random separator consisting of the neighbors

of a single vertex of UV has expected size at most r|UE|/|UV |, so |S| ≤ (r/n)|UE| ≤ |UE|/2.
Consequently, we have that

|(UV ∪ UE) \N [x]| ≥ |UE| − |S| − |L| ≥ |UE| − (|UE|/2)− (|UE|/4) ≥ |UE|/4 ≥ |S|/4 ≥ sr.

(2.65)

Since each vertex of V (B)\N [x] is included in Tx with probability 1/(8ℓ) ≥ 1/24sr, it follows

that at least one of them will be included in Tx with at least constant probability.

Now we note that since N(x) is a separator in B, |N(x)| ≥ λ. Thus, |(L ∪ S) \ N [x]| ≤
(|L| + λ) − λ = |L|. Since each of these vertices is included in Tx with probability at most

1/(8(|L|/2)) = 1/(4|L|), the probability that none of them are included is at least a constant.

Since |R| ≥ 1 by the definition of a separator, and since each vertex of R is included in

Tx with probability 1/(8ℓ) ≤ 1/8, the probability that at least one vertex of R is excluded

from Tx is also at least a constant. QED.

Our technique to find a min-weight separator in B is to find, for each x ∈ UV , a kernel

with O(λrs2r) edges. Algorithm 2.3 is a slightly modified version of an algorithm of Li,

Nanongkai, Panigrahi, Saranurak, and Yingchareonthawornchai [98] for computing a small

kernel. The difference is that while our algorithm contracts T ′
x := Tx ∪ (N(Tx) ∩ UV ),

their algorithm merely contracts Tx. We need this additional contraction in order to prove

Lemma 2.6, which bounds the size of the kernel. This bound on the size of the kernel

that we obtain is necessary to prove Claim 2.9, which shows that we can find a min-weight

separator in a kernel efficiently. Additionally, while Li, Nanongkai, Panigrahi, Saranurak,

and Yingchareonthawornchai [98] analyzed the algorithm only for an unweighted graph, we

run it on the graph B, which has vertex weights (of a special kind).

Now we show the correctness of Algorithm 2.3.

Lemma 2.5. Consider executing Algorithm 2.3 on input (B,X, ℓ) for some positive integer ℓ

such that |L|/2 ≤ ℓ ≤ |L|, where X is a subset of UV and (L, S,R) is a min-weight separator

in B. For x ∈ X ∩ L, if the set Tx chosen by the algorithm satisfies ∅ ≠ Tx ⊊ R, then the

tuple (Bx, Zx, x, tx) returned by the algorithm is a kernel.
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FindKernel(B,X, ℓ):
T ← ∅
For v in V (B)

Add v to the set T with probability 1/(8ℓ)
For x ∈ X

Tx ← T \N [x]
T ′
x ← Tx ∪ (N(Tx) ∩ UV )

Obtain B′ from B by contracting the vertices of T ′
x into a single vertex tx

Zx ← {v ∈ V (B′) : {x, v}, {v, tx} ∈ E(B′)}
Obtain B′′ from B′ by deleting the vertices of Zx and all edges fully contained in N(tx)
Obtain B′′′ from B′′ by deleting all vertices that are disconnected from x in B′′ \N [tx]
Obtain Bx from B′′′ by deleting from B′′′ all neighbors of tx with degree one

Return {(Bx, Zx, x, tx) : x ∈ X}

Algorithm 2.3: FindKernel

Proof. Suppose that ∅ ≠ Tx ⊊ R. Then, (L, S,R) is a min ({x}, Tx)-separator, and contract-

ing Tx cannot destroy (L, S,R) (or any other min ({x}, Tx)-separator). Let R′ be R with

the vertices of T ′
x = Tx ∪ (N(Tx)∩UV ) contracted into the single vertex tx. By Observation

2.1 we have that S ⊆ UE, which means that since Tx ⊆ R then N(Tx) ∩ UV ⊆ R as well.

Thus, (L, S,R′) is a min-weight separator in B′. Therefore, (B′, ∅, x, tx) is a kernel.

By Observation 2.1, we have that the weight of the separator (L, S,R) is |S|. Consequently,
we have the following observation:

Observation 2.2. There exist |S| vertex-disjoint x − tx paths in B′, each of which visits

exactly one vertex from N(x) and exactly one vertex from N(tx).

Since every edge in B′[N(x)] or B′[N(tx)] is not present in any of these paths, removing

all of these edges does not affect the weight of a min ({x}, {tx})-separator in B′. On the

other hand, every vertex v ∈ N(x) ∩N(tx) is included in every ({x}, {tx})-separator in B′.

Therefore, (B′′, Zx, x, tx) is a kernel.

By Observation 2.2, removing from B′′ vertices which are disconnected from x in B′′\N [tx]

cannot affect the size of a min ({x}, {tx})-separator, since such vertices cannot participate

in any s − tx paths which use only a single vertex of N(tx). Thus, (B′′′, Zx, x, tx) is also a

kernel.

Finally, we note that degree one neighbors of tx cannot participate in any x − tx paths

using only one vertex from B′′′[N [tx]]. Thus, again by Observation 2.2, removing such

vertices does not affect the weight of a min ({x}, {tx})-separator, and thus (Bx, Zx, x, tx) is

a kernel. QED.

By Lemmas 2.4 and 2.5, running Algorithm 2.3 O(log n) times with X = UV for each

42



ℓ ∈ {1, 2, 4, 8, ..., 2⌈log(3sr)⌉} will return a kernel (Bx, Zx, x, tx) for some x ∈ L with high

probability, where (L, S,R) is a min-weight separator of B with |L| ≤ 3sr. We next show

that the kernel computed by Algorithm 2.3 is not too large.

Lemma 2.6. Consider executing Algorithm 2.3 on input (B,X, ℓ) for some positive integer ℓ

such that |L|/2 ≤ ℓ ≤ |L|, where X is a subset of UV and (L, S,R) is a min-weight separator

in B with |L| ≤ 3sr. For x ∈ X∩L, if the set Tx chosen by the algorithm satisfies ∅ ≠ Tx ⊊ R

and the tuple (Bx, Zx, x, tx) returned by the algorithm is a kernel, then Bx contains at most

9rsr vertices from UV with high probability.

Proof. Consider (L′, S ′, R′) where S ′ := S \ Zx, L
′ is the component of V [Bx] \ S ′ which

contains x, and R′ := V [Bx] \ (L′ ∪S ′). Since Tx ⊆ R and (Bx, Zx, x, tx) is a kernel, we have

that (L′, S ′, R′) is a min-weight (x, tx) separator. We know that |L′ ∩UV | ≤ |L| ≤ 3sr ≤ rsr

and that S ′ ⊆ UE, so it suffices to show that |R′ ∩ UV | ≤ 8rsr.

Consider an arbitrary vertex v ∈ R′ ∩ UV . Since v was not contracted into tx, it must

be the case that v was not in Tx, and none of v’s neighbors were in Tx. If v had more

than 8ℓ log n neighbors in V (B) \ N(x), then with high probability, one of the neighbors

of v would be in Tx. Therefore, with high probability, v has at most 8ℓ log n neighbors in

V (B) \N(x). We know, however, that v has at least λ neighbors in B. Therefore, v has at

least λ− 8ℓ log n neighbors in N(x).

Since x ∈ L, we have that |N(x)| ≤ |L| + λ ≤ 3sr + λ. Since x ∈ UV , we also have that

N(x) ⊆ UE. Since G has rank r, it follows that each vertex in N(x) has degree at most r.

Thus, the vertices of N(x) collectively have at most r(3sr+λ) edges incident to them. Since

each vertex of R′ ∩ UV is incident to at least λ− 8ℓ log n of those edges, we have that

|R′ ∩ UV | ≤
r(3sr + λ)

λ− 8ℓ log n
. (2.66)

From the hypothesis of Theorem 2.13, we have that λ ≥ 900sr log n. From the hypothesis

of the claim we are proving, we have that ℓ ≤ 3sr. Therefore, λ− 8ℓ log n ≥ λ/2, so

r(3sr + λ)

λ− 8ℓ log n
≤ 2r(3sr + λ)

λ
≤ 2r(3sr + 1) ≤ 8rsr. (2.67)

QED.

The following lemma will be useful in showing that the kernel generated by Algorithm 2.3

can be obtained efficiently.

Lemma 2.7. There is a randomized algorithm that takes as input the bipartite graph

B, a subset X ⊆ UV , and positive integers ℓ, t, chooses a subset T of V (B) by sampling
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each vertex with probability 1/(8ℓ), and runs in time Õ(|E(H)| + |X|tℓ) to return a tuple

(Bx, Zx, x, tx) for every x ∈ X. Additionally, the returned collection satisfies the following

with high probability:

• For x ∈ X, if B contains a t-scratch (L, S,R) with x ∈ L, |L|/2 ≤ ℓ ≤ |L|, and
∅ ̸= T \N [x] ⊆ R, then the tuple (Bx, Zx, x, tx) returned by the algorithm is a kernel

with |E(Bx)| = O(tℓ log p) and Bx contains at most 9rsr vertices from UV .

Proof. This follows directly from the results of [98]. They design an algorithm (Algorithm 1

in [98]) which chooses a set T according to the same distribution as Algorithm 2.3, but uses

linear sketching and BFS-like computations starting from x to compute a tuple (Bx, Zx, x, tx)

more efficiently than Algorithm 2.3; moreover, if B contains a t-scratch (L, S,R) with x ∈
L, |L|/2 ≤ ℓ ≤ |L|, and ∅ ≠ T \N [x] ⊆ R, then with high probability the tuple (Bx, Zx, x, tx)

returned by their algorithm is a kernel with |E(Bx)| = O(tℓ log p), and this kernel is the tuple

that would be output by their version of Algorithm 2.3 when run on the same input with

the same source of randomness.

We obtain an algorithm with the guarantees given in the statement of the lemma by

applying the modifications described in [98] to our version of Algorithm 2.3. There are only

two differences between Algorithm 2.3 and the corresponding algorithm in [98]. First, their

algorithm is only for unweighted graphs, while we run Algorithm 2.3 on the weighted graph

B. Second, we contract T ′
x := Tx ∪ (N(Tx) ∩ UV ) rather than just Tx. We now show that

neither of those differences affects the correctness or runtime of the modified algorithm.

We note that since Algorithm 2.3 does not even look at the weights on the vertices, the

fact that B is weighted does not affect the runtime of our algorithm.

The additional contraction of N(Tx)∩UV into tx can be performed without increasing the

runtime of the algorithm, and as shown in Lemma 2.5 the resulting algorithm still finds a

kernel whenever ∅ ≠ Tx ⊊ R. Furthermore, by Lemma 2.6, this kernel contains at most 9rsr

vertices from UV with high probability. We skip the detailed description and analysis of the

faster algorithm for finding kernels, since it is identical to [98]. QED.

The following lemma completes the proof of Theorem 2.13.

Lemma 2.8. There exists a randomized algorithm that runs in time Õ(s3rp) to find a

min-weight separator in B with high probability.

Proof. Let k be the approximation of λ obtained by running the algorithm from Theorem

2.6. To find a min-weight separator in B, we run the algorithm from Lemma 2.7 on B with

t = k+ r+300sr log n, and X = UV for Θ(log n) times for each ℓ ∈ {1, 2, 4, 8, . . . , 2⌈log(3sr)⌉}.
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Then, for each tuple (Bx, Zx, x, tx) returned, if Bx contains at most 9rsr vertices from UV

then we compute a min ({x}, {tx})-separator in Bx. For each such separator (L, S,R),

we compute a corresponding separator (L′, S ′, R′) in B by setting S ′ := S ∪ Zx, L
′ to be

the component of VB \ S ′ which contains x, and R′ := VB \ (L′ ∪ S ′). By Definition 2.4,

if (Bx, Zx, x, tx) is a kernel then (L′, S ′, R′) is a min-weight ({x}, Tx)-separator in B. We

return the cheapest among all computed separators.

We first analyze the correctness of our procedure. We will need the following claim:

Claim 2.8. Let (L, S,R) be a min-weight separator in B with |L| ≤ 3sr. Then, (L, S,R) is

a t-scratch.

Proof. Since each min-weight separator in B corresponds to a min-cut in G, we know that

|S| = λ ≤ k ≤ t. By assumption and by our choice of t, we have that |L| ≤ 3sr ≤
t/(100 log n). By Observation 2.1, we have that S ⊆ UE. Also, by the definition of B, every

vertex in UE has degree at most r, which is less than 8t. Therefore, we have that Slow = S.

Thus, |Slow| = |S| = λ ≥ 900sr log n ≥ 300|L| log n, so (L, S,R) is a t-scratch. QED.

Let (L, S,R) be a min-weight separator in B with |L| ≤ 3sr. By Claim 2.8, (L, S,R)

is a t-scratch. Since we run the algorithm of Lemma 2.7 Θ(log n) times for each ℓ =

1, 2, 4, 8, . . . , 2⌈log(3s
r)⌉, we will run the algorithm Θ(log n) times for some ℓ ∈ [|L|/2, |L|].

By Lemma 2.4, for each x ∈ L, each time we run the algorithm, the set T that is chosen

satisfies ∅ ≠ Tx ⊊ R with constant probability, so with high probability this occurs for

some x ∈ L at least once. Lemma 2.7 tells us that when the algorithm chooses such a T ,

then with high probability it will return a kernel (Bx, Zx, x, tx) where Bx has at most 9rsr

vertices from UV . By Definition 2.4, a min ({x}, {tx})-separator (L, S,R) in this kernel gives

a min ({x}, Tx)-separator (L
′, S ∪ Zx, R

′) in B, where L′ is the component of VB \ (S ∪ Zx)

containing x, and R′ = VB \ (L′ ∪ S ∪ Zx). Since Tx ⊆ R, a min ({x}, Tx)-separator in B is

in fact a min-weight separator in B. Thus, the algorithm finds a min-weight separator in B

with high probability.

We now analyze the runtime of our procedure. The algorithm from Lemma 2.7 runs in time

Õ(|EB|+ |UV |(k+ r+300sr)(3sr)) = Õ(p+n(λ+ r+ sr)sr) = Õ(p+ psr + rns2r) = Õ(psr +

rns2r). Running the algorithm Θ(log n) times each for log(3sr) different values of ℓ increases

the running time by a factor of O(log(3sr) log n) = O(r(log s)(log n)) = O(r log2 n) giving

us a total runtime of Õ(prsr + r2ns2r). To bound the time to compute a min ({x}, {tx})-
separator in each kernel we use the following claim.

Claim 2.9. If (Bx, Zx, x, tx) is a tuple returned by the algorithm from Lemma 2.7 with at

most 9rsr vertices from UV and O(λrs2r) edges, then a min ({x}, {tx})-separator in Bx can
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be computed in time Õ(λr2s3r).

Proof. Since B is bipartite, every path of length d in B visits at least ⌈d/2⌉ vertices in UV .

The graph Bx is obtained from a bipartite graph by contracting some subset of vertices.

Therefore, except for the vertex tx created by the contraction, every vertex in Bx which

is not in UV must have all of its neighbors in UV . This means that for every path in d,

every pair of consecutive vertices in the path not including the vertex generated by the

contraction has at least one vertex from UV . Therefore, every path of length d in Bx visits

at least ⌈(d − 2)/2⌉ vertices from UV . By the assumption of the claim, Bx contains O(rsr)

vertices from UV . Thus, every path in Bx has length O(rsr).

Therefore, we can use Dinitz’s algorithm to efficiently find a min ({x}, {tx})-separator in
Bx [110]. Since the lengths of paths in Bx are bounded by O(rsr), the number of blocking

flows found by Dinitz’s algorithm is also O(rsr). Each blocking flow can be found in time

proportional to the number of edges in Bx, and by assumption this is Õ(λrs2r). Therefore,

the total runtime of Dinitz’s algorithm on a Bx is Õ(λr2s3r). QED.

Let (Bx, Zx, x, tx) be a kernel returned by the algorithm from Lemma 2.7. By Lemma

2.7, we have that Bx contains at most 9rsr vertices from UV and O(λrssr) edges with high

probability. By Claim 2.9, we can compute a min-weight separator for a single Bx with at

most 9rsr vertices from UV and O(λrssr) edges in time Õ(λr2s3r). Thus, we can compute a

min-weight separator for all Bx with at most 9rsr vertices from UV and O(λrssr) edges in

time Õr(s
3rλn) = Õr(s

3rp).

QED.

2.4.4 Expander Decomposition Based Min-Cut

In this section, we give an algorithm to find connectivity in hypergraphs in which every

min-cut has large size. In order to analyze the run-time of our algorithm, we need to bound

the run-time to implement Trim and Shave operations. This is summarized in the following

claim.

Claim 2.10. Let G = (V,E) be an n-vertex r-rank hypergraph of size p with p ≥ n,

and let X = {X1, . . . , Xk} be a collection of disjoint subsets of V . Then, there exists a

deterministic algorithm which takes as input G and X , and runs in time O(pr) to return

{Trim(X1), . . . ,Trim(Xk)} and {Shave(X1), . . . ,Shave(Xk)}.

Proof. For v ∈ V , let part(v) := i if v ∈ Xi and 0 otherwise. For e ∈ E, let epart(e) := i if

e ⊆ Xi and 0 otherwise. Let dX (v) := dXi
(v) if v ∈ Xi and 0 otherwise and δX (v) := δXi

(v)
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if v ∈ Xi and ∅ otherwise. We also recall that the degree of a vertex in G is denoted by d(v).

The functions part : V → {0, . . . , k}, d : V → Z+, dX : V → Z≥0, and δX : V → 2E can be

computed in O(p) time using Algorithm 2.4.

TrimShaveHelper(G = (V,E),X = {X1, . . . , Xk}):
For all v ∈ V

part(v), d(v), dX (v)← 0
δX (v)← ∅

For i = 1, . . . , k
For all v ∈ Xi

part(v)← i
For all e ∈ E

v ← an arbitrary vertex of e
epart(e)← part(v)
For all u ∈ e \ {v}

If part(u) ̸= part(v)
epart(e)← 0

If epart(e) ̸= 0
For all v ∈ e

dX (v)← dX (v) + 1
Add e to δX (v)

Return part, d, dX , δX

Algorithm 2.4: TrimShaveHelper

We claim that Algorithm 2.4 can be implemented to run in time O(p). We note that

looping over all of the vertices takes time O(n). Since the sets Xis are disjoint, looping over

all the vertices of each Xi also takes time O(n). Looping over all edges and within each

edge looping over all vertices in the edge takes time O(
∑

e∈E |e|) = O(p). Since n ≤ p, the

complete algorithm can be implemented to run in time O(p).

We use Algorithm 2.5 to perform the Shave operation. Since the sets Xis are disjoint,

iterating over all vertices of each Xi takes time O(n), so the portion of the algorithm outside

of the call to TrimShaveHelper can be implemented to run in time O(p), and therefore

the whole algorithm can be as well.

We use Algorithm 2.6 to perform the Trim operation. Here the set F stores vertices that

the algorithm has yet to examine, and T stores vertices that the algorithm has determined

must be trimmed. The values of dX (v) and δX (v) are updated as vertices are trimmed, and

whenever dX (v) changes for a vertex v, the algorithm verifies whether that vertex v should

be trimmed. Removing vertices from Xi cannot increase dXi
(v) for any vertex v ∈ Xi.

Therefore, if a vertex v satisfies dXi
(v) < d(v)/2r when v is added to T , v will still satisfy

this inequality when it is actually removed from Xi. We note that each vertex is chosen at
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ShaveAlgorithm(G = (V,E),X = {X1, . . . , Xk}:
part, d, dX , δX ← TrimShaveHelper(G,X )
For i = 1, . . . , k

For all v ∈ Xi

If dX (v) ≤ (1− 1/r2)d(v)
Remove v from Xi

Return X

Algorithm 2.5: ShaveAlgorithm

most once as the arbitrary vertex from F , since whenever a vertex is chosen from F it is

removed from F and never added back to it. Whenever a vertex v is chosen from T , it is

removed from T , and part(v) is set to 0. Since the algorithm only adds a vertex v to T only

if part(v) ̸= 0, each vertex is chosen at most once as the arbitrary vertex from T .

The case of choosing a vertex from F can be implemented to run in constant time since

we perform an arithmetic comparison and a constant number of set additions and removals.

When the algorithm selects a vertex from T , it iterates over all hyperedges of that vertex

which are currently in Xpart(v). For each of these hyperedges e, all iterations of the innermost

for loop can be implemented to run in time O(|e|). Thus, the total time spent processing

a vertex v from T is O(
∑

e∈δ(v) |e|). Since each vertex is processed in T at most once, the

total time to process all of the vertices is O(
∑

v∈V
∑

e∈δ(v) |e|) = O(pr). QED.

The following theorem is the main result of this section.

Theorem 2.14. Let G = (V,E) be an n-vertex r-rank simple hypergraph of size p with

connectivity λ such that λ ≥ r(4r2)r and every min-cut (C, V \ C) in G has min{|C|, |V \
C|} > r − log(λ/4r)/ log n. Then, there exists a randomized algorithm which takes G as

input and runs in time

Õr

(
p+ (λn)1+o(1) +min

{
λ

r−3
r−1

+o(1)n2+o(1),
nr+r·o(1)

λ
r

r−1

, λ
5r−7
4r−4

+o(1)n
7
4
+o(1)

})
,

to return a min-cut of G with high probability.

Proof. We will use algorithms from Theorems 2.6, 2.7, 2.8, and 2.9, Corollary 2.1, and

Lemma 2.3 to find a min-cut. We use CXApproximation to find a constant-approximation

k for the min-cut capacity. Next, we use Certificate(G, k) to get a graph G′ with size

p1 = O(rkn) = O(rλn). Next, we find an expander decomposition X of G′ with respect

to the parameter ϕ := (6r2/δ)1/(r−1). We then apply the Trim operation on X followed by

3r2 Shave operations to obtain a collection X ′′ of disjoint subsets of V . We contract all
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TrimAlgorithm(G = (V,E),X = {X1, . . . , Xk}):
x, y, d, dX , δX ← TrimShaveHelper(G,X )
T ← ∅
F ← V
While T ∪ F ̸= ∅

If T ̸= ∅
Let v ∈ T be arbitrary
Remove v from T and from Xpart(v)

part(v)← 0
For all e ∈ δX (v)

For u ∈ e \ {v}
Remove e from δX (u)
dX (u)← dX (u)− 1
If dX (u) < d(u)/2r and u ̸∈ T

Add u to T
Else

Let v ∈ F be arbitrary
remove v from F
If dX (v) < d(v)/2r and part(v) ̸= 0

Add v to T
Return X

Algorithm 2.6: TrimAlgorithm

these subsets and run either FPZMinCut or CXMinCut or CQMincut on the resulting

hypergraph to find a min-cut. We present the pseudocode of our approach in Algorithm 2.7.

We now prove the correctness of ExpDecompMinCut. By hypothesis, we know that

every min-cut (C, V \ C) has min{|C|, |V \ C|} > r − log (λ/4r)/ log n. Hence, by Lemma

2.1, every min-cut (C, V \C) has min{|C|, |V \C|} > (λ/2)1/r ≥ 4r2 (by assumption on λ).

By Theorem 2.6, we have that k > λ. Therefore, by Theorem 2.7, the subhypergraph G′

is a simple hypergraph with connectivity λ and the min-cuts in G′ are exactly the min-cuts

of G. Consequently, the min-degree δ′ in G′ is at least the connectivity λ. Let (C, V \C) be

an arbitrary min-cut in G′ and let X = (X1, . . . , Xt) be the expander decomposition of G′

for the parameter ϕ. By definition, ϕ ≤ 1/(r − 1). Hence, by Lemma 2.3, for every i ∈ [t],

we have that

δ′ ≥ λ ≥ |Eo
G′(Xi ∩ C,Xi ∩ (V \ C))| (2.68)

≥ min

{(
6r2

δ′

) 1
r−1

,
1

r − 1

}
min{volG′(Xi ∩ C), volG′(Xi \ C)} (2.69)

≥ min

{(
6r2

δ′

) 1
r−1

,
1

r − 1

}
δ′min{|Xi ∩ C|, |Xi \ C|}. (2.70)
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ExpDecompMinCut(G):
k ← CXApproximation(G)
G′ ← Certificate(G, k)
δ′ ← minv∈V dG′(v)

ϕ← min{(6r2/δ′)1/(r−1), 1/(r − 1)}
X ← ExpanderDecomposition(G′, ϕ)
X ′ ← TrimAlgorithm(G′,X )
X ′′ ← X ′

For i = 1, . . . , 3r2

X ′′ ← ShaveAlgorithm(X ′′)
Let G′′ be the hypergraph obtained by contracting each set X ′′ ∈ X ′′ into a single vertex
Run CXMinCut(G′′), FPZMinCut(G′′), and CQMinCut(G′′) simultaneously,

return the output of the earliest terminating among the three, and terminate

Algorithm 2.7: ExpDecompMinCut

Thus, min{|Xi ∩ C|, |Xi \ C|} ≤ max{(δ′/6r2)1/(r−1), r − 1} for every i ∈ [t].

If max{(δ′/6r2)1/(r−1), r − 1} = r − 1, then min{|X ′
i ∩ C|, |X ′

i \ C|} ≤ r − 1 ≤ 3r2 for every

i ∈ [t] and if max{(δ′/6r2)1/(r−1), r − 1} = (δ′/6r2)1/(r−1), then by Claim 2.1, we have that

min{|X ′
i ∩ C|, |X ′

i \ C|} ≤ 3r2 for every i ∈ [t]. We recall that λ ≥ r(4r2)r and every min-

cut has size at least 4r2. Hence, by 3r2 repeated applications of Claim 2.2, we have that

min{|X ′′
i ∩C|, |X ′′

i ∩(V \C)|} = 0 for every i ∈ [t]. In particular, this means that contracting

each X ′′
i does not destroy (C, V \ C), so δ(C) is still a min-cut set in G′′. Since contraction

cannot decrease the capacity of any cut, this implies that every min-cut in G′′ is a min-cut

in G′, and thus, Algorithm 2.7 returns a min-cut.

We now bound the run-time of Algorithm 2.7. By Theorem 2.6, CXApproximation

runs in time O(p) to return k ≤ 3λ. By Theorem 2.7, Certificate also runs in time O(p)

to return a hypergraph G′ = (V,E ′) of size p1 :=
∑

e∈E′ |e| = O(rkn) = O(rλn) and having

min-degree δ′ ≥ λ. By Lemma 2.3, we obtain an expander decomposition X of G′ in time

O
(
p
1+o(1)
1

)
such that the number of hyperedges of G′ intersecting multiple parts of X is

O(rϕp
1+o(1)
1 ). By Claim 2.10, we can implement a Trim operation followed by 3r2 Shave

operations to obtain a collection X ′′ of disjoint subsets of V in time O(p1r · 3r2) = O(p1r
3).

By Claim 2.3 and 3r2 repeated applications of Claim 2.4 (similar to the proof of Theorem

2.2), we have that |E ′′| = O(4r9r
2+1ϕp

1+o(1)
1 ). Since contraction cannot decrease the degree

of any vertex, every vertex in G′′ = (V ′′, E ′′) has degree at least δ′. Therefore, the number

of vertices n2 in G′′ satisfies n2δ
′ ≤
∑

v∈V ′′ dG′′(v) =
∑

e∈E′′ |e| ≤ r|E ′′|, which implies that

n2 = O

(
4r9r

2+2ϕp
1+o(1)
1

δ′

)
= O

(
4r9r

2+2ϕp
1+o(1)
1

λ

)
. (2.71)
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Let p2 :=
∑

e∈E′′ |e|. Since contraction cannot increase the size of the hypergraph, we have

that p2 ≤ p1. Moreover, contraction does not increase the rank and hence, the rank of G′′ is

at most r. Therefore, the run-time of CXMinCut on G′′ is

O(p2 + rλn2
2) = O

(
p1 +

16r18r
2+4ϕ2p

2+o(1)
1

λ

)
(2.72)

= O

(
rλn+

r19r
2
(λn)2+o(1)ϕ2

λ

)
(2.73)

= O
(
rλn+ r19r

2

λ1+o(1)n2+o(1)ϕ2
)

(2.74)

= O
(
rλn+ r20r

2

λ
r−3
r−1

+o(1)n2+o(1)
)
. (2.75)

The second equation is by the bound on p1, and the last equation is by the setting of ϕ and

the fact that δ′ ≥ λ.

The run-time of FPZMinCut on G′′ is

Õ (p2 + nr
2) = Õ

(
p1 +

(
4r9r

2+2ϕp
1+o(1)
1

λ

)r)
(2.76)

= Õ

(
λn+

r11r
3
(λn)r(1+o(1)ϕr

λr

)
(2.77)

= Õ
(
λn+ r11r

3

λr·o(1)nr(1+o(1))ϕr
)

(2.78)

= Õ

(
λn+

r15r
3
nr(1+o(1))

λ
r

r−1
−r·o(1)

)
. (2.79)

Again, the second equation is by the bound on p1, and the last equation is by the setting of

ϕ and using the fact that δ′ ≥ λ.

Let m2 be the number of edges in G′′. We assume that G′′ is connected (otherwise the

problem is trivial). Thus we have that n2 ≤ p2, and therefore (m2 + n2) ≤ 2p2. Since

p2 ≤ rm2, this bound is tight, up to a factor of r. Therefore, the run-time of CQMinCut

51



on G′′ is

Õ
(√

p2n2(m2 + n2)1.5
)
= Õ

(√
p2n2(2p2)1.5

)
(2.80)

= Õ

(√
p2.51 n2

)
(2.81)

= Õ
(
p1.251 n0.5

2

)
(2.82)

= Õ

(λn)1.25

(
4r9r

2+2ϕ(λn)1+o(1)

λ

)0.5
 (2.83)

= Õ

(
r4.5r

2+1λ1.25+o(1)n1.75+o(1)

(
6r2

λ

) 1
2(r−1)

)
(2.84)

= Õ
(
r4.5r

2+2λ
5r−7
4r−4

+o(1)n1.75+o(1)
)
. (2.85)

The fourth equation is by the bound on p1, and the second-to-last equation is by the setting

of ϕ and the fact that δ′ > λ.

Since the algorithm runs the fastest algorithm among CXMinCut, FPZMinCut, and

CQMinCut, the overall runtime is

Õ

(
p+ p

1+o(1)
1 + r3p1 +

min

{
rλn+ r20r

2

λ
r−3
r−1

+o(1)n2+o(1), λn+
r15r

3
nr(1+o(1))

λ
r

r−1
−r·o(1) , r4.5r

2+2λ
5r−7
4r−4

+o(1)n
7
4
+o(1)

})
(2.86)

= Õ

(
p+ (rλn)1+o(1) + r3λn+

min

{
r20r

2

λ
r−3
r−1

+o(1)n2+o(1),
r15r

3
nr(1+o(1))

λ
r

r−1
−r·o(1) , r4.5r

2+2λ
5r−7
4r−4

+o(1)n
7
4
+o(1)

})
. (2.87)

The run-time bound stated in the theorem follows by observing that λn ≤ δn ≤ p, where δ

is the min-degree of the input graph. QED.

Remark 2.3. We can obtain a deterministic counterpart of Theorem 2.14 by modifying the

last step of Algorithm 2.7 to only run CXMinCut. The resulting algorithm has a run-time

of

Õr

(
p+ (λn)1+o(1) + λ

r−3
r−1

+o(1)n2+o(1)
)
.
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2.4.5 Proof of Theorem 2.1

In this section we restate and prove Theorem 2.1.

Theorem 2.1. [Algorithm] Let G be an r-rank n-vertex simple hypergraph of size p. Then,

there exists a randomized algorithm that takes G as input and runs in time

Ôr

(
p+min

{
λ

r−3
r−1n2,

nr

λ
r

r−1

, λ
5r−7
4r−4n

7
4

})
to return the connectivity λ of G with high probability. Moreover, the algorithm returns a

min-cut in G with high probability.

Proof. We use the algorithm CXApproximation from Theorem 2.6 to obtain a value k

such that λ < k ≤ 3λ in O(p) time. If k ≤ 3r(4r2)r, then the result follows by first

obtaining a k-certificate of the hypergraph with the algorithm Certificate from Theorem

2.7 and then running Chekuri and Quanrud’s algorithm CQMincut from Theorem 2.9 on

the k-certificate. Henceforth, we assume that k > 3r(4r2)r and consequently, λ > r(4r2)r.

Our algorithm finds an approximation for the min-cut capacity, then uses the k-certificate

from Theorem 2.7 to reduce the size of the hypergraph to O(λn). At this point, we either

run the min-cut algorithm from Theorem 2.5 or use the two algorithms we have described in

sections 2.4.1 and 2.4.4, whichever is faster on the smaller hypergraph. We give a pseudocode

of our approach in Algorithm 2.8. This algorithm uses the algorithms from Theorems 2.6,

2.7, 2.10 and 2.14.

MinCut(G):
k ← CXApproximation(G)
G′ ← Certificate(G, k)
(C1, V \ C1)← SmallSizeMinCut(G′, r − log(k/12r)/ log n)
(C2, V \ C2)← ExpDecompMinCut(G′)
C ← argmin{|δG(C1)|, |δG(C2)|}
Return (C, V \ C)

Algorithm 2.8: MinCut

We first show that Algorithm 2.8 returns a min-cut. By Theorem 2.6, we have that

λ < k ≤ 3λ. Therefore, by Theorem 2.7, the subhypergraph G′ is a simple hypergraph and

every min-cut in G has capacity λ in G′ and every other cut has capacity greater than λ

in G′. Thus, the set of min-cuts in G′ is exactly the same as the set of min-cuts in G. It

remains to show that the cut (C, V \ C) returned by the algorithm is a min-cut in G′. We

distinguish two cases: (i) Suppose some min-cut in G′ has size at most r− log(λ/4r)/ log n.
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We have that r − log(λ/4r)/ log n ≤ r − log(k/12r)/ log n. Therefore, by Theorem 2.10,

the call to SmallMinCut returns a min-cut in G′, and thus (C, V \ C) is a min-cut in

G′. (ii) Suppose that every min-cut in G′ has size greater than r − log(λ/4r)/ log n. Then,

by Theorem 2.14, the algorithm ExpDecompMinCut returns a min-cut in G′ and thus,

(C, V \ C) is a min-cut in G′.

We now analyze the runtime of Algorithm 2.8. By Theorems 2.6 and 2.7, the computation

of k and G′ can be done in O(p) time. Also by Theorem 2.7, the algorithm Certificate

returns a hypergraph G′ = (V,E ′) with volG′(V ) =
∑

e∈E′ |e| = O(rkn). By Theorem 2.10,

the runtime of SmallSizeMinCut(G′, r − log(k/12r)/ log n) is

Õr

(r − log
(

k
12r

)
log n

)6r

kn

 = Õr(λn) = Õr(p). (2.88)

By Theorems 2.6 and 2.7, the min-cut capacity in G′ is still λ. Therefore, by Theorem 2.14,

the runtime of ExpDecompMinCut(G′) is

Õr

(
p+ (λn)1+o(1) +min

{
λ

r−3
r−1

+o(1)n2+o(1),
nr+r·o(1)

λ
r

r−1

, λ
5r−7
4r−4

+o(1)n
7
4
+o(1)

})
(2.89)

= Ôr

(
p+min

{
λ

r−3
r−1n2,

nr

λ
r

r−1

, λ
5r−7
4r−4n

7
4

})
. (2.90)

Thus, the overall runtime of the algorithm is

O(p)+(rλn)1+o(1)+rO(r3) min

{
λ

r−3
r−1

+o(1)n2+o(1),

(
nr

λ
r

r−1

)
logO(1) n, λ

5r−7
4r−4

+o(1)n
7
4
+o(1) logO(1) n

}
(2.91)

= Ôr

(
p+min

{
λ

r−3
r−1n2,

nr

λ
r

r−1

, λ
5r−7
4r−4n

7
4

})
. (2.92)

QED.

Remark 2.4. We obtain the deterministic counterpart of Theorem 2.1 by using the deter-

ministic version of ExpDecompMinCut in Algorithm 2.8 (that was discussed in Remark

2.3) and by using the deterministic algorithm for SmallMinCut described in Section 2.5

instead of the algorithm from section 2.4.1. The resulting algorithm has a run-time of

Ôr

(
p+min

{
λn2, λ

r−3
r−1n2 + nr

λ

})
.
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2.5 DETERMINISTIC ALGORITHM FOR FINDING SMALL-SIZED MIN-CUT

In this section, we consider the problem of finding a min-cut subject to an upper bound

on the size of the smaller side of the cut. In particular, we prove the following algorithmic

result, which can be viewed as a deterministic version of Theorem 2.10.

Lemma 2.9. Let s ≤ r be a positive integer, and let G = (V,E) be an r-rank n-vertex

hypergraph withm hyperedges that has a min-cut (C, V \C) with |C| ≤ s. Then, there exists

a deterministic algorithm which takes G and s as input and runs in time O(22sns + 2rm) to

return a min-cut of G.

Proof. We begin by defining some functions that will be useful in our algorithm and analysis.

For S ′ ⊆ S ⊆ V , let

g(S) := |{e ∈ E : S ⊆ e}|, (2.93)

g′(S) :=

1 if S ∈ E

0 otherwise
(2.94)

gS(S
′) := |{e ∈ E : e ∩ S = S ′}|, and (2.95)

hS(S
′) := |{e ∈ E : e ∩ S = S ′ and e \ S ̸= ∅}|. (2.96)

We first show that we can compute g(S) and g′(S) for all subsets S ⊆ V of size at most

s in time O(ns + 2sm) using Algorithm 2.9.

MinCutHelper(G, s):
For all S ⊆ V : |S| ≤ s

g[S]← 0
g′[S]← 0

For all e ∈ E
For all S ⊆ e : |S| ≤ s

g[S]← g[S] + 1
If |e| ≤ s

g′[e]← 1
Return (g, g′)

Algorithm 2.9: MinCutHelper

We note that Algorithm 2.9 correctly computes g(S) for each S since g[S] will be incre-

mented exactly once for each e containing S. It also correctly computes g′(S), since g′[S]

will be set to 1 for an S of size at most s if and only if e ∈ E. Furthermore the algorithm

spends O(ns) time initializing the arrays g and g′ and O(2rm) iterating over subsets of the
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hyperedges (since a hyperedge of size at most r has at most 2r subsets). Therefore, the

algorithm runs in time O(ns + 2rm).

Next, we solve the min s-sized cut problem using Algorithm 2.10.

SmallMinCut(G, s):
(g, g′)←MinCutHelper(G,s)
For all S ⊆ V : |S| ≤ s

For all S′ ⊂ S

gS [S
′] =

∑|S|−|S′|
j=0 (−1)j

∑
S′′ : S′⊆S′′⊆S and |S′′|=|S′|+j g[S

′′]

hS [S
′] = gS [S

′]− g′[S′]
r[S]←

∑
S′⊆S hS [S

′]

C ← argminS⊆V : |S|≤sr[S]

Return (C, V \ C)

Algorithm 2.10: SmallMinCut

To see that Algorithm 2.10 is correct, we note that, by the principle of inclusion-exclusion,

it correctly computes gS(S
′). To argue this, we show that a hyperedge e with e∩S = T ⊃ S ′

will not be counted in our summation for gS(S
′). Let t = |T | − |S ′|. A set S ′′ such that

S ′ ⊆ S ′′ ⊆ S counts e in gS(S
′′) if and only if S ′′ ⊆ T . For every j ∈ {0, . . . , t}, the number

of sets S ′′ of size |S ′|+ j such that S ′ ⊆ S ′′ ⊆ T is
(
t
j

)
. Thus, the total contribution of e to

our summation for gS[S
′] is

t∑
j=0

(−1)j
(
t

j

)
= 0. (2.97)

A similar argument shows that the hyperedges which need to be counted in gS(S
′) are

counted exactly once by the expression. Since hS(S
′) is gS(S

′) if S ′ ̸∈ e and gS(S
′) − 1

otherwise, the algorithm correctly computes hS(S
′) as well. We note that every hyperedge

e ∈ δ(S) must be counted in hS(S
′) for exactly one set S ′ ⊆ S (namely hS(e∩S)). Therefore,

|δ(S)| =
∑

S′⊆S hS(S
′). Thus, we have that r[S] correctly stores δ(S) for each S ⊆ V of size

at most s. Therefore, since the algorithm returns a set S with minimum r[S], it returns a

min s-sized cut.

The algorithm’s outer for loop iterates over all subsets of V of size at most s. The number

of such subsets is ns. The inner for loop iterates over the subsets of a subset S of size at

most s. The number of such subsets is at most 2s. Thus, the inner for loop is executed

O(2sns) times. Each iteration of the inner loop can be implemented to run in O(2s) time,

since this is an upper bound on the number of sets S ′′ with S ′ ⊆ S ′′ ⊆ S, and thus on the

number of terms in the double summation. Therefore, the total runtime of the outer loop

is O(22sns). Adding this to the runtime we computed for Algorithm 2.9 gives us an overall

runtime of O(22sns + 2rm). QED.
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2.6 TIGHT EXAMPLE FOR THE STRUCTURAL THEOREM

In this section, we show a tight example for Conclusion 2 in Theorem 2.2. Our example

shows that there is no room to improve the factor λ−1/(r−1) in Conclusion 2 of Theorem 2.2.

We prove the following lemma.

Lemma 2.10. There is a r-uniform simple hypergraph G = (V,E) on n vertices and m

hyperedges that satisfies the following conditions:

1. λ(G) > n > r(4r2)r,

2. the smaller side of every min-cut has size
√
n, and

3. the number of hyperedges in the union of all min-cuts is Θ(m/λ1/(r−1)).

Proof. Consider the complete r-uniform hypergraph G1 = (V1, E1) on
√
n vertices. The

degree of each vertex is Θ(n
r−1
2 ). We make the following claim about G1.

Claim 2.11. Every min-cut in G1 has the smaller side to be a single vertex. Moreover, the

capacity of the min-cut λ(G1) = Θ(n
r−1
2 ).

Proof. Consider a cut which has (say) t vertices on one side and
√
n− t vertices on the other

side. The capacity of this cut is

∑
a>0,b>0:a+b=r

(
t

a

)(√
n− t

b

)
. (2.98)

The above quantity is minimized when t = 1. Hence, the capacity of a min-cut is
(√

n−1
r−1

)
=

Θ(n
r−1
2 ). QED.

Now, we replace each vertex u ∈ V1 with a set Qu of
√
n vertices. We do this in a way

such that every vertex v ∈ Qu has degree Θ(n
r−2
2 ) induced by the edges in E1. This can be

done as the total number of hyperedges incident on u is λ(G1). Because Qu has
√
n many

vertices, we can replace u by a vertex v ∈ Qu in λ(G1)/
√
n = Θ(n

r−2
2 ) hyperedges. This

ensures that each vertex v ∈ Qu has degree Θ(n
r−2
2 ) induced by the hyperedges in E1.

Having done so, we add all r-uniform hyperedges inside Qu to make each Qu a complete

r-uniform hypergraph. We call this set of hyperedges as EQu . This completes the description

of G = (V,E) on vertex set V =
⋃

u∈V1
Qu of size n and E = E1 ∪

(⋃
u∈V1

EQu

)
. Now we

make the following claim.

Claim 2.12. Every min-cut in G is of the form (Qu, V \Qu) for some u ∈ V1.

57



Proof. By a similar argument as in Claim 2.11, we see that the min-cut in the hypergraph

Gu = (Qu, EQu) is obtained when a single vertex is cut from the set Qu, and the capacity of

the min-cut λ(Gu) = λ(G1) = Θ(n
r−1
2 ). By our construction of G, every cut of G that cuts

Gu has capacity at least λ(Gu) + Θ(n
r−2
2 ) > λ(G1). However, as proven in Claim 2.11, the

capacity of a cut of the form (Qu, V \Qu) is λ(G1). QED.

Claim 2.12 implies that λ := λ(G) = λ(G1) = Θ(n
r−1
2 ). The number of hyperedges in

G1 is m1 =
(√

n
r

)
. The number of hyperedges in Gu is m′

2 =
(√

n
r

)
. Thus, the number of

hyperedges in G is

m = m1 +m′
2

√
n =

(√
n

r

)
(1 +

√
n) = Θ

(
n

r+1
2

)
. (2.99)

Claim 2.12 also implies that the number of hyperedges in the union of all min-cuts is exactly

m1. Now, we observe that

m1 = Θ
(
n

r
2

)
= Θ

(
m

λ
1

r−1

)
. (2.100)

Moreover, in this graph G, we have that λ > n > r(4r2)r by picking n to be large enough

and r ≥ 3.

QED.

2.7 MIN-CUT NON-TRIVIALITY FOR HYPERGRAPHS

In this section, we construct an example where λ > |V | and even though every min-cut

is non-trivial, the total number of hyperedges that take part in the union of all min-cuts is

only a constant fraction of the total number of hyperedges.

If we consider a complete graph on n vertices, we see that every edge takes part in a min-

cut. Hence the total number of edges that take part in the union of min-cuts is m = Θ(n2).

The issue with this example is that all min-cuts here are trivial, i.e., every min-cut has a

single vertex as one side. We extend this example to hypergraphs such that (i) the capacity

of the min-cut is Ω(n), (ii) all min-cuts are non-trivial, i.e., each min-cut has at least two

vertices on each side, and (iii) the number of hyperedges taking part in the union of min-cuts

is approximately m. We prove the following lemma.

Lemma 2.11. Let n ≥ 100 be an even integer. Then, there is a simple hypergraph G =

(V,E) with n+ 3 vertices and m = Θ(n2) hyperedges such that

1. λ(G) ≥ n+ 4,
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2. every min-cut has at least two vertices on both sides, and

3. the number of hyperedges in the union of all min-cuts is Θ(m).

Proof. We construct such a hypergraph G now. The vertex set V consists of n+ 3 vertices:

n/2 vertices {u1, . . . , un/2}, n/2 vertices {v1, . . . , vn/2}, and three special vertices {a, b, c}.
We add the following 5-uniform hyperedges: For every pair of integers 1 ≤ i < j ≤ n/2 , we

add the three hyperedges {ui, vi, uj, vj, a}, {ui, vi, uj, vj, b} and {ui, vi, uj, vj, c}. We also add

edges {ui, vi} for each i ∈ [n/2]. The next three claims complete the proof of the lemma.

QED.

Claim 2.13. The number of hyperedges in G is Θ(n2).

Proof. For every two distinct pairs {ui, vi} and {uj, vj}, there are three 5-uniform hyperedges.

Hence the total number of 5-uniform hyperedges is Θ(n2). The number of edges is O(n).

Hence the total number of hyperedges is m = Θ(n2). QED.

Claim 2.14. The min-cut is of size λ > n + 3. Moreover, each min-cut contains a pair

{ui, vi} on one side, and the rest of the vertices on the other side.

Proof. Let (C, V \ C) be a min-cut in G. We first note that for every i ∈ [n/2], the cut set

δ(C) cannot contain the edge {ui, vi}. To see this, suppose ui ∈ C, vi ∈ V \ C, and assume

without loss of generality that |C| ≤ |V \ C|. We note that V \ C \ {vi} is non-empty since

|C| ≤ |V \ C|, and therefore (C ∪ {vi}, V \ C \ {vi}) is a cut. Furthermore, this cut has

strictly smaller capacity than (C, V \ C), since it cuts no new hyperedges and it does not

cut the edge {ui, vi}. Thus, we conclude that (C, V \ C) does not cut any edges.

We note that one side of the min-cut (C, V \C) must include at most 1 vertex from among

{a, b, c}. Without loss of generality assume that |C ∩ {a, b, c}| ≤ 1. We consider two cases.

We will show that if |C ∩ {a, b, c} = 0, then C must contain only a single pair {ui, vi} and
|δ(C)| > n + 3. Then we will show that the case where |C ∩ {a, b, c}| = 1 cannot actually

occur, because C is a min-cut.

Case 1: Suppose |C ∩ {a, b, c}| = 0. Let k be the number of pairs {ui, vi} with ui, vi ∈ C.

Every hyperedge intersecting one of these pairs is cut by (C, V \ C). The number of such

hyperedges is minimized when k = 1. We note that for every pair {ui, vi}, there are n/2− 1

pairs {uj, vj} that share a 5-uniform hyperedge with {ui, vi}, and each pair shares three such

hyperedges. Hence, |δ(C)| = |δ({vi, vi+1})| = 3(n/2− 1) = 3n/2− 3 > n+ 3.

Case 2: Suppose |C ∩ {a, b, c}| = 1. Without loss of generality, assume a ∈ C. Let k be

the number of pairs {ui, vi} with ui, vi ∈ C. We note that every hyperedge containing a pair

{ui, vi} ⊆ C and containing either vertex b or vertex c is in δ(C). There are k(k− 1)/2 ways
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to pick two pairs inside C and k(n/2− k) ways to pick a pair inside C and a pair outside C.

Hence, δ(C) has 2(k(n/2−k)+k(k−1)/2) hyperedges which contain b or c. We also note that

every hyperedge containing a pair {ui, vi} with ui, vi ∈ V \C as well as the vertex a is in δ(C).

Thus, δ(C) has k(n/2−k)+(n/2−k)(n/2−k−1)/2 hyperedges which contain a. Therefore,

we have that |δ(C)| = 2(k(n/2− k) + k(k − 1)/2) + k(n/2− k) + (n/2− k)(n/2− k − 1)/2

We note that for every 0 ≤ k ≤ n/2, max{k(k−1)/2, (n/2−k)(n/2−k−1)/2} ≥ (n/4)(n/4−
1)/2 = (n2 − 4n)/32 > 3n/2 − 3. Thus, we have that |δ(C)| > 3n/2 − 3. Since we showed

in the previous paragraph that there is a cut in G of capacity 3n/2− 3, this contradicts the

fact that (C, V \ C) is a min-cut, and we conclude that this case cannot occur. QED.

Claim 2.15. The number of edges in the union of all min-cuts is Θ(n2).

Proof. This follows from the proof of Claims 2.13 and 2.14. The hyperedges which take

part in min-cuts are the 5-uniform hyperedges, and every such hyperedge takes part in some

min-cut. Hence the claim follows. QED.

2.8 CONCLUSION AND OPEN PROBLEMS

Our runtime for hypergraph connectivity still falls short of the near-linear time that is

known for graph min-cut. Thus, computing hypergraph connectivity in Õ(p) time remains

an open problem. Substantial progress on this problem has been made very recently. As we

noted in Section 2.1.1, there is a randomized algorithm for computing hypergraph min-cut

using a polylogarithmic number of max flow computations [7, 62, 64], and so, using the

recent almost-linear time max flow algorithm of Chen, Kyng, Liu, Peng, Gutenberg, and

Sachdeva [63], hypergraph min-cut (in arbitrary rank weighted hypergraphs) can be solved

in time O(p1+o(1)).

Another avenue for future research is designing efficient algorithms for Hypergraph-

MinCut in alternative models of computation. In the rest of this section we consider

Hypergraph-MinCut in the cut query and communication models, and discuss the dif-

ficulties in extending the approaches that work for Graph-MinCut in these models to

hypergraphs.

Alternative computation models. The complexity of algorithms for submodular func-

tion minimization is measured not just in terms of their runtime but also in terms of

the number of function evaluation queries they must perform. Therefore, when viewing

Hypergraph-MinCut as a special case of submodular function minimization, it is natural

to consider the query complexity of Hypergraph-MinCut. In the cut query model, the
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input is a hypergraph G given by an oracle for the cut function dG of the hypergraph. The

cut query complexity of an algorithm in this model is simply the number of calls that the

algorithm makes to the oracle for dG, regardless of how much additional computation it

performs.

Another computation model that is closely related to the cut query model is the commu-

nication model. In the communication model, there are two agents, Alice and Bob. Alice

is given a hypergraph G1 = (V,E1) and Bob is given a hypergraph G2 = (V,E2), where

E1 ∩ E2 = ∅. Their goal is to solve some problem P (e.g. min-cut) in the hypergraph

G := (V,E1 ∪ E2) using as few bits of communication between the two of them as pos-

sible (regardless of the amount of additional computation that this requires each of them

to perform). The deterministic communication complexity of P is the number of bits of

information that Alice and Bob must exchange to solve P . The randomized communication

complexity of P is the number of bits of information that Alice and Bob must exchange to

compute an answer to P which is correct with probability at least 2/3. The following lemma

relating the two models can be proved via a simple simulation argument.

Lemma 2.12 (Reduction from communication to cut query model). For every function

f(n, r), if Hypergraph-MinCut can be computed in O(f(n, r)) cut queries in an n-vertex

r-rank hypergraph, then Hypergraph-MinCut can be computed in Õ(f(n, r)) bits of

communication.

In graphs, the query complexity and communication complexity of min-cut are both Õ(n)

[95], and this result is tight up to logarithmic factors [54, 111]. For hypergraphs, the best up-

per bound known on the query complexity as well as the communication complexity comes

from work on submodular function minimization. There is an algorithm for submodular

function minimization which makes O(n2 log n) queries to the evaluation oracle [52], which

implies that the query complexity of Hypergraph-MinCut is Õ(n2). Therefore, the fol-

lowing question is of interest (Note that, by Lemma 2.12, an algorithm using o(n2) cut

queries would immediately imply an algorithm using o(n2) communication. The reverse is

not true.):

Question 2.1. Can Hypergraph-MinCut be solved in o(n2) cut queries or bits of com-

munication?

In fact, for arbitrary rank weighted hypergraphs, it is not even known how to obtain a

constant factor approximation for Hypergraph-MinCut in o(n2) bits of communication.

Thus, the following weaker question is also of interest.
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Question 2.2. Can an O(1) approximation for Hypergraph-MinCut be computed in

o(n2) cut queries or bits of communication?

Known result for graphs and barriers for hypergraphs. Rubinstein, Schramm, and

Weinberg gave a randomized algorithm which finds a min-cut in a simple graph in Õ(n)

cut-queries [95]. Their result shows that the query complexity of graph min-cut is Õ(n),

and therefore so is the communication complexity. The proof from [95] does not seem

to generalize to hypergraphs for two reasons: Firstly, their proof relies on the following

structural result which does not hold for hypergraphs:

Lemma 2.13. [95] Let G = (V,E) be an unweighted graph with minimum degree d and

min-cut value c. Let ϵ < 1 be a constant. Let C be the set of all non-singleton approximate-

minimum cuts in the graph, with cut value at most c+ ϵd. Then the total number of edges

that participate in cuts in C is O(n).

We note that this lemma fails to hold even for exact min-cuts in rank 3 hypergraphs.

Consider a rank 3 hypergraph formed by taking two complete 3-uniform hypergraphs X and

Y , each on n/2 vertices, and then adding n1.5 size 3 hyperedges each of which intersects

both X and Y (this is possible, since the number of potential rank 3 hyperedges intersecting

X and Y is n
(
n/2
2

)
). We note that (for sufficiently large n) (X, Y ) is the only min-cut in

this hypergraph, since every cut which splits X or Y must cut at least
(
n/2−1

2

)
= Ω(n2)

hyperedges. But the cut (X, Y ) cuts Ω(n1.5) hyperedges by definition, so it is not true that

the number of hyperedges that participate in min-cuts is O(n). We note that the cut (X, Y )

in this example is perfectly balanced, meaning that even if we exclude cuts where one side

of the cut has a constant number of vertices (rather than just excluding singleton cuts), the

lemma would still not hold.

The second reason that [95]’s approach fails is that their algorithm involves learning all

of the edges in the graph (after subsampling and contracting) which is not possible with

hypergraph cut queries. In particular, we show the following theorem:

Theorem 2.15. For every n ≥ 50, there exist two distinct n-vertex hypergraphs G and H

with the same vertex set V such that dG(δ(S)) = dH(δ(S)) for every S ⊆ V .

This theorem follows via an information theoretic argument from the following lemma,

which says that all cut queries in 3-uniform hypergraphs can be expressed in terms of sin-

gleton and pair queries:

Lemma 2.14. Let H be a 3-uniform hypergraph. Then, knowing the cut function values

of all singletons and pairs of vertices of H allows one to compute the cut function value on

all subsets of vertices with no additional queries to the cut function.
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Proof. Let H = (V,E) be a 3-uniform hypergraph, let S ⊆ V be arbitrary such that |S| ≥ 3,

and let k := |S|. We will show that d(S) = (
∑

u,v∈S d({u, v}))− (k − 2)
∑

v∈S d({v})
We consider the hyperedges of H based on how many vertices of S they intersect.

• Hyperedges that contain no vertices from S make no contribution to

(
∑

u,v∈S d({u, v}))− (k − 2)
∑

v∈S d({v}), and these edges are not in δ(S).

• Hyperedges that contain exactly one vertex from S, call it x, are counted k − 1 times

in
∑

{u,v}⊆S d({u, v}) (because there are k− 1 ways to choose a vertex to pair x with).

These hyperedges are counted once in
∑

v∈S d({v}) (because the only single vertex cut

from S they cross is the one containing just x), and thus they are also counted exactly

once in (
∑

u,v∈S d({u, v}))− (k−2)
∑

v∈S d({v}), and this is appropriate, because each

of these edges is in δ(S).

• Hyperedges that contain exactly two vertices from S, call them x and y, are counted

2k − 3 times in
∑

{u,v}⊆S d({u, v}), because there k − 2 pairs of the form {x, z} such
that z ∈ S \ {x, y}, k − 2 pairs of the form {y, z} such that z ∈ S \ {x, y}, and one

pair {x, y}, and these 2k − 3 pairs are all the ones which involve x, y, or both (and

since H is 3-uniform, d({u, v}) will count every hyperedge containing u, v or both).

These hyperedges are counted twice in
∑

v∈S d({v}), once in d({x}) and once in d({y}).
Thus, each of these hyperedges is counted exactly once in (

∑
u,v∈S d({u, v})) − (k −

2)
∑

v∈S d({v}), which again is correct, since each of these edges is in δ(S).

• Hyperedges with all three vertices, call them x, y, and z, in S are counted 3k−6 times

in
∑

{u,v}⊆S d({u, v}), because there are 3(k− 3) ways to pick one of the three vertices

and pair it with a vertex not in this hyperedge, plus 3 ways to pair the vertices in the

hyperedge with each other. On the other hand, each of these edges is counted 3 times

in
∑

v∈S d({v}), once for each of their vertices, and thus such edges do not contribute

to (
∑

u,v∈S d({u, v}))− (k− 2)
∑

v∈S c({v}) at all. This matches the fact that edges of

this type are not in δ(S), since they are fully contained in S.

Thus, we have concluded that each hyperedge in δ(S) is counted exactly once in the formula

(
∑

u,v∈S d({u, v}))− (k− 2)
∑

v∈S c({v}), and hyperedges not in δ(S) are not counted at all

in this formula, meaning that this formula correctly gives d(S), as desired. QED.

We now prove Theorem 2.15 using Lemma 2.14.

Proof of Theorem 2.15. Let n ≥ 50 be a positive integer, and let G be the set of all simple

3-uniform hypergraphs on vertex set [n]. Let D := {dG : G ∈ G} be the set of all cut
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functions corresponding to hypergraphs in G. By Lemma 2.14, each function in D is uniquely

determined by its outputs on subsets of [n] of size 1 or 2. The number of such subsets is

n+
(
n
2

)
= n(n+1)

2
< n2. A 3-uniform hypergraph can have at most n−2+2

(
n−2
2

)
= (n−2)2 <

n2 hyperedges intersecting a given subset of size at most 2. Thus, since the hypergraphs in G
are simple, their cut functions can take on at most n2 distinct values for a given subset of [n]

of size at most 2, and there are fewer than (n2)n
2
ways to choose a value for the cut function

for every subset of [n] of size 1 or 2. Thus, |D| ≤ n2n2
= 22n

2 logn. The number of 3-uniform

hypergraphs on vertex set [n] is exactly 2(
n
3). Since n ≥ 50, we have that

(
n
3

)
> 2n2 log n,

and thus |G| = 2(
n
3) > 22n

2 logn > |D|. Since there are more simple 3-uniform hypergraphs on

n vertices than cut functions for these hypergraphs, we conclude that two of the hypergraphs

in G must share the same cut function. QED.
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CHAPTER 3: ENUMERATING MIN-CUT-SETS AND MIN-k-CUT-SETS
IN HYPERGRAPHS

In this chapter we consider the problem of deterministically enumerating all minimum

k-cut-sets in a given hypergraph for a fixed k. The input here is a hypergraph G = (V,E)

with non-negative hyperedge costs. A subset F ⊆ E of hyperedges is a k-cut-set if the

number of connected components in G − F is at least k and it is a minimum k-cut-set

if it has the least cost among all k-cut-sets. For fixed k, we call the problem of finding

a minimum k-cut-set Hypergraph-k-Cut and the problem of enumerating all minimum

k-cut-sets Enum-Hypergraph-k-Cut. The special cases of Hypergraph-k-Cut and

Enum-Hypergraph-k-Cut restricted to graph inputs are well-known to be solvable in

(randomized as well as deterministic) polynomial time [65, 68, 72, 106]. In contrast, it

is only recently that polynomial-time algorithms for Hypergraph-k-Cut were developed

[35, 36, 73]. The randomized polynomial-time algorithm for Hypergraph-k-Cut that

was designed in 2018 [35] showed that the number of minimum k-cut-sets in a hypergraph is

O(n2k−2), where n is the number of vertices in the input hypergraph, and that they can all be

enumerated in randomized polynomial time, thus resolving Enum-Hypergraph-k-Cut in

randomized polynomial time. A deterministic polynomial-time algorithm for Hypergraph-

k-Cut was subsequently designed in 2020 [73], but it is not guaranteed to enumerate all

minimum k-cut-sets. In this chapter, we give the first deterministic polynomial-time al-

gorithm to solve Enum-Hypergraph-k-Cut (this is non-trivial even for k = 2). Our

algorithm is based on new structural results that allow for efficient recovery of all minimum

k-cut-sets by solving minimum (S, T )-terminal cuts. Our techniques give new structural

insights even for enumerating all minimum cut-sets (i.e., minimum 2-cut-sets) in a given

hypergraph. The results in this chapter are based on joint work with Chandrasekaran and

Wang and appeared in SODA ’22 [74]. The research in this chapter was supported in part

by NSF grants CCF-1814613 and CCF-1907937.

3.1 INTRODUCTION

A hypergraph G = (V,E) consists of a finite set V of vertices and a finite set E of

hyperedges where each hyperedge e ∈ E is a subset of V . We consider the problem of

enumerating all optimum solutions to the Hypergraph-k-Cut problem when k is a fixed

constant. In Hypergraph-k-Cut, the input consists of a hypergraph G = (V,E) with

non-negative hyperedge-costs c : E → R+ and a positive integer k. The objective is to

find a minimum-cost subset of hyperedges whose removal results in at least k connected
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components. We will call a subset of hyperedges whose removal results in at least k connected

components a k-cut-set and we will call a minimum-cost k-cut-set a minimum k-cut-set ; for

k = 2, we will refer to a 2-cut-set as simply a cut-set and a minimum-cost cut-set as a

minimum cut-set. The central problem of interest to this chapter is that of enumerating

all minimum k-cut-sets in a given hypergraph with non-negative hyperedge-costs—we will

denote this problem as Enum-Hypergraph-k-Cut. Throughout, we will consider k to

be a fixed constant integer (e.g., k = 2, 3, 4, ...). We will denote Hypergraph-k-Cut and

Enum-Hypergraph-k-Cut for graph inputs asGraph-k-Cut and Enum-Graph-k-Cut

respectively. We note that the case of k = 2 corresponds to global minimum cut which will

be discussed shortly.

Partitioning formulation. Even for k = 2, there is a fundamental structural differ-

ence between Hypergraph-k-Cut and Graph-k-Cut, which is especially evident when

attempting to enumerate all optimum solutions. In order to illustrate this difference, we

discuss an equivalent partitioning formulation of Hypergraph-k-Cut. In this equivalent

formulation, the objective is to find a partition of the vertex set V into k non-empty sets

V1, V2, . . . , Vk so as to minimize the cost of hyperedges that cross the partition. A hyperedge

e ∈ E is said to cross a partition V1, V2, . . . , Vk if it has vertices in at least two parts, that

is, there exist distinct i, j ∈ [k] such that e ∩ Vi ̸= ∅ and e ∩ Vj ̸= ∅. We will denote a

partition of V into k non-empty parts as a k-partition and a 2-partition as a cut. The cost of

a k-partition is the sum of the cost of hyperedges crossing the partition. A k-partition with

minimum cost is said to be a minimum k-partition. We will denote the cost of a 2-partition

as its cut value and a minimum 2-partition as a minimum cut.

By definition, the number of minimum k-cut-sets is at most the number of minimum k-

partitions. Moreover, for a connected graph, the number of minimum k-partitions is O(nk)

for constant k, where n is the number of vertices (i.e., the number of minimum k-partitions

is polynomial since k is a constant) [65, 66, 67]. However, for a connected4 hypergraph,

the number of minimum k-partitions could be exponential while the number of minimum

k-cut-sets is only polynomial. For example, consider the spanning-hyperedge-example: this

is the n-vertex hypergraph G = (V,E) that consists of only one hyperedge e where e =

V with the cost of the hyperedge e being one. This hypergraph is connected and has

only one minimum k-cut-set but Θ(kn) minimum k-partitions (i.e., an exponential number

of minimum k-partitions even for k = 2). Thus, if we are hoping for polynomial-time

algorithms to enumerate all optimum solutions to Hypergraph-k-Cut, then we cannot

aim to enumerate all minimum k-partitions (in contrast to connected graphs). This is the

4A hypergraph is defined to be connected if the every cut has at least one hyperedge crossing it.
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reason for defining Enum-Hypergraph-k-Cut as the problem of enumerating all minimum

k-cut-sets as opposed to enumerating all minimum k-partitions. For connected graphs, the

two definitions are indeed equivalent.

Graph-k-Cut for k = 2 is the minimum cut problem in graphs which is well-known to

be solvable in polynomial time. Although the minimum cut problem in graphs has been

extensively studied, enumerating all minimum cut-sets in a graph in deterministic poly-

nomial time is already non-trivial. Dinitz, Karzanov, and Lomonosov [15] constructed a

compact representation for all minimum cuts in a connected graph (known as the cactus

representation) which showed that the number of minimum cuts in a connected graph is

at most
(
n
2

)
and that they can all be enumerated in deterministic polynomial time. For

constant k ≥ 3, the number of minimum k-partitions in a connected graph is O(nk)—this

bound is tight and is a consequence of a recent improved analysis of a random contrac-

tion algorithm to solve Graph-k-Cut [65, 66, 67]; the same random contraction algorithm

can also be used to enumerate all minimum k-partitions in connected graphs in random-

ized polynomial time. Deterministic polynomial-time algorithms to enumerate all minimum

k-partitions in connected graphs are also known. We discuss other techniques—both ran-

domized and deterministic—for enumerating minimum cuts and minimum k-partitions in

graphs in Section 3.1.2.

Hypergraph-k-Cut is a natural generalization of Graph-k-Cut. Hypergraph-k-

Cut for k = 2 is the minimum cut problem in hypergraphs which is well-known to be solvable

in polynomial time [112]. Once again, enumerating all minimum cut-sets in a hypergraph in

deterministic polynomial-time is already non-trivial. We encourage the reader to pause and

think briefly about possible approaches to enumerate all minimum cut-sets in a hypergraph

before reading further. There exists a compact representation of all minimum cut-sets in a

hypergraph [38]—namely the hypercactus representation—which can be used to show that

the number of minimum cut-sets in a hypergraph is at most
(
n
2

)
and that they can all be

enumerated in deterministic polynomial time. To the best of the authors’ knowledge, this is

the only known technique for efficient deterministic enumeration of all minimum cut-sets in

a hypergraph.

Hypergraph-k-Cut is a special case of Submodular-k-Partition (e.g., see [27, 73,

113, 114]). Owing to this connection, the complexity of Hypergraph-k-Cut for every

fixed k ≥ 3 has been an intriguing open question until recently. A randomized polynomial-

time algorithm for Hypergraph-k-Cut was designed in 2018 by Chandrasekaran, Xu, and

Yu [35]. The analysis of this algorithm showed that the number of minimum k-cut-sets is

O(n2k−2), where n is the number of vertices in the input hypergraph (i.e., the number of
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minimum k-cut-sets is polynomial), and that they can all be enumerated in randomized

polynomial time (also see [36]). Subsequently, Chandrasekaran and Chekuri designed a

deterministic polynomial-time algorithm for Hypergraph-k-Cut in 2020 [73]. However,

their deterministic algorithm is guaranteed to identify only one minimum k-cut-set and

not all. The next natural question is whether all minimum k-cut-sets can be enumerated

in deterministic polynomial time—namely, can we solve Enum-Hypergraph-k-Cut in

deterministic polynomial time?

As mentioned earlier, the only known technique for Enum-Hypergraph-k-Cut for k = 2

is via the hypercactus representation which does not seem to generalize to k ≥ 3 (in fact,

it is unclear if cactus representation generalizes to k ≥ 3 even in graphs). Moreover, all

deterministic techniques for Enum-Graph-k-Cut address the problem of enumerating all

minimum k-partitions in connected graphs—see Section 3.1.2; hence, all these techniques

fail for Enum-Hypergraph-k-Cut (as seen from the spanning-hyperedge-example). For

hypergraphs, we necessarily have to work with minimum k-cut-sets as opposed to minimum

k-partitions. Working with minimum k-cut-sets as opposed to minimum k-partitions in

the deterministic setting is a technical challenge that has none of the previous works have

undertaken (even for graphs). We overcome this technical challenge in this work. We

adapt Chandrasekaran and Chekuri’s deterministic approach for Hypergraph-k-Cut and

augment it with structural results for minimum k-cut-sets to prove our main result stated

below.

Theorem 3.1. For every fixed k, there is a deterministic polynomial-time algorithm for

Enum-Hypergraph-k-Cut.

Although we chose to highlight the above algorithmic result in this introduction, we em-

phasize that the structural theorems that form the backbone of the algorithmic result are

our main technical contributions (see Theorems 3.2 and 3.3). We discuss these structural

theorems in the technical overview section. By tightening the proof technique of one of our

structural theorems for k = 2, we obtain an arguably elegant structural explanation for the

number of minimum cut-sets in a hypergraph being at most
(
n
2

)
—see Theorem 3.4. The-

orem 3.4 leads to an alternative deterministic polynomial-time algorithm to enumerate all

minimum cut-sets in a hypergraph (that is relatively simpler than computing a hypercactus

representation). We believe that our structural theorems are likely to be of independent

interest in the theory of hypergraphs.
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3.1.1 Technical Overview and Main Structural Results

We focus on the unit-cost variant of Enum-Hypergraph-k-Cut in the rest of this chap-

ter for the sake of notational simplicity. Throughout, we will allow multigraphs and hence,

this is without loss of generality. Our algorithms extend in a straightforward manner to

arbitrary hyperedge costs. They rely only on minimum (s, t)-terminal cut computations and

hence, they are strongly polynomial-time algorithms.

A key algorithmic tool will be the use of terminal cuts. We need some notation. Let

G = (V,E) be a hypergraph. Throughout this chapter, n will denote the number of vertices

in G and p :=
∑

e∈E |e| will denote the representation size of G. We will denote a partition

of the vertex set into h non-empty parts by an ordered tuple (V1, . . . , Vh). For a non-empty

proper subset U of vertices, we will use U to denote V \ U , δ(U) to denote the set of

hyperedges crossing the 2-partition (U,U), and d(U) := |δ(U)|. We recall that δ(U) =

δ(U), so we will use d(U) to denote the cost of the cut (U,U). More generally, given

a partition P = (V1, V2, . . . , Vh), we denote the set of hyperedges crossing the partition

by δ(V1, V2, . . . , Vh) (also by δ(P) for brevity) and the number of hyperedges crossing the

partition by cost(V1, V2, . . . , Vh) := |δ(V1, V2, . . . , Vh)| (also by cost(P) for brevity). Let S,

T be disjoint non-empty subsets of vertices. A 2-partition (U,U) is an (S, T )-terminal cut

if S ⊆ U ⊆ V \ T . Here, the set U is known as the source set and the set U is known as

the sink set. A minimum-cost (S, T )-terminal cut is known as a minimum (S, T )-terminal

cut. Since there could be multiple minimum (S, T )-terminal cuts, we will be interested in

source minimal minimum (S, T )-terminal cuts and source maximal minimum (S, T )-terminal

cuts: a minimum (S, T )-terminal cut (U,U) is a source minimal minimum (S, T )-terminal

cut if there does not exist a minimum (S, T )-terminal cut (U ′, U ′) such that U ′ ⊊ U and is

a source maximal minimum (S, T )-terminal cut if there does not exist a minimum (S, T )-

terminal cut (U ′, U ′) with U ⊊ U ′. For every pair of disjoint non-empty subsets S and T

of vertices, there exists a unique source minimal minimum (S, T )-terminal cut and it can

be found in deterministic polynomial time via standard maxflow algorithms; a similar result

holds for source maximal minimum (S, T )-terminal cuts.

Our algorithm is inspired by the divide and conquer approach introduced by Goldschmidt

and Hochbaum forGraph-k-Cut [72]. This approach was generalized by Kamidoi, Yoshida,

and Nagamochi to solve Enum-Graph-k-Cut [68] and by Chandrasekaran and Chekuri to

solve Hypergraph-k-Cut [73], both in deterministic polynomial time. The techniques

of [72] and [68] are not applicable to Enum-Hypergraph-k-Cut since they are tailored

to graphs and do not extend to hypergraphs. We describe the details of the divide and

conquer approach for Hypergraph-k-Cut due to Chandrasekaran and Chekuri [73]. The
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goal here is to identify one part of some fixed minimum k-partiton (V1, V2, . . . , Vk), say V1

without loss of generality, and then recursively find a minimum (k − 1)-partition in the

subhypergraph G[V1], where G[V1] is the hypergraph obtained from G by discarding the

vertices in V1 and by discarding all hyperedges that intersect V1. Now, how does one find

such a part V1? Chandrasekaran and Chekuri proved a key structural theorem for this:

Suppose (V1, . . . , Vk) is a V1-maximal minimum k-partition—i.e., there is no other minimum

k-partition (V ′
1 , . . . , V

′
k) such that V1 is a proper subset of V ′

1 . Then, they showed that for

every subset T ⊆ V1 such that T ∩ Vj ̸= ∅ for all j ∈ {2, . . . , k}, there exists a subset S ⊆ V1

of size at most 2k−2 such that (V1, V1) is the source maximal minimum (S, T )-terminal cut.

A consequence of this structural theorem is that if we compute the collection C consisting

of the source side of the source maximal minimum (S, T )-terminal cut for all possible pairs

(S, T ) of disjoint subsets of vertices S and T with |S| ≤ 2k − 2 and |T | ≤ k − 1, then the

set V1 will be in this collection C (by applying the structural theorem to a set T of size

k − 1 with |T ∩ Vj| = 1 for all j ∈ {2, . . . , k}). Moreover, the size of the collection C is only

O(n3k−3). Hence, recursing on G[U ] for each set U in the collection C will identify a minimum

k-partition within a total run-time of nO(k2) source maximal minimum (S, T )-terminal cut

computations.

The limitation of the structural theorem of Chandrasekaran and Chekuri [73] is that it

aims to recover a minimum k-partition and in particular, a V1-maximal minimum k-partition.

For the purposes of enumerating all minimum k-cut-sets, this is insufficient as we have seen

from the spanning-hyperedge-example. In particular, their structural theorem cannot be

used to even enumerate all minimum cut-sets in a hypergraph. We prove two structural

theorems that will help in enumerating minimum k-cut-sets. We describe these structural

theorems now.

Our goal is to deterministically enumerate a polynomial-sized family F of k-cut-sets such

that F contains all minimum k-cut-sets. Let F be an arbitrary minimum k-cut-set. Since

F is a minimum k-cut-set, there exists a minimum k-partition (V1, . . . , Vk) such that F =

δ(V1, . . . , Vk). We note that d(V1) ≤ |F | by definition of the hypergraph cut function d :

2V → R. We distinguish two cases:

Case 1. Suppose d(V1) < |F |. In order to identify minimum k-cut-sets F that have this

property, we show the following structural theorem.

Theorem 3.2. Let G = (V,E) be a hypergraph and let OPTk be the value of a minimum k-

cut-set in G for some integer k ≥ 2. Suppose (U,U) is a 2-partition of V with d(U) < OPTk.

Then, for every pair of vertices s ∈ U and t ∈ U , there exist subsets S ⊆ U \ {s} and

T ⊆ U \ {t} with |S| ≤ 2k − 3 and |T | ≤ 2k − 3 such that (U,U) is the unique minimum
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(S ∪ {s}, T ∪ {t})-terminal cut in G.

The advantage of this structural theorem is that it allows for a recursive approach to enu-

merate a polynomial-sized family of minimum k-cut-sets containing F under the assumption

that d(V1) < |F | = OPTk (similar to the approach of Chandrasekaran and Chekuri).

The drawback of this structural theorem is that it only addresses the case of d(V1) < |F |.
It is possible that the minimum k-cut-set F satisfies d(V1) = |F |. For example, consider the

problem of enumerating all minimum cut-sets in a hypergraph (i.e., Enum-Hypergraph-

k-Cut for k = 2)—Theorem 3.2 does not help in this case since there will be no cut (U,U)

with d(U) < OPT2. This motivates the second case.

Case 2. Suppose d(V1) = |F |. In this case, we need to enumerate a polynomial-sized family

of k-cut-sets containing F , but we cannot hope to enumerate all minimum k-partitions

(V ′
1 , . . . , V

′
k) for which F = δ(V ′

1 , . . . , V
′
k) (e.g., again consider the spanning-hyperedge-

example for k = 2 for which the unique minimum cut-set F has |F | = d(V1) for exponentially

many minimum cuts (V1, V2) and hence, we cannot hope to enumerate all minimum cuts).

We observe that if d(V1) = |F |, then the set F of hyperedges should be equal to the set of hy-

peredges crossing (V1, V1), i.e., δ(V1) = F = δ(V1, . . . , Vk). We show the following structural

theorem to exploit this observation.

Theorem 3.3. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer, and P = (V1, . . . , Vk)

be a minimum k-partition such that δ(V1) = δ(P). Then, for all subsets T ⊆ V1 such that

T ∩ Vj ̸= ∅ for all j ∈ {2, 3, . . . , k}, there exists a subset S ⊆ V1 with |S| ≤ 2k− 1 such that

the source minimal minimum (S, T )-terminal cut (A,A) satisfies δ(A) = δ(V1) and A ⊆ V1.

We recall that for fixed disjoint subsets S, T ⊆ V , the source minimal minimum (S, T )-

terminal cut is unique. We emphasize the main feature of Theorem 3.3: it aims to recover

only the hyperedges crossing the cut (V1, V1) but not the cut (V1, V1) itself. It shows the

existence of a small-sized witness which allows us to recover δ(V1)—namely a pair (S, T ) with

|S|, |T | = O(k) for which δ(V1) is the cut-set of the source minimal minimum (S, T )-terminal

cut. In this sense, Theorem 3.3 addresses the drawback of Theorem 3.2.

Theorems 3.2 and 3.3 can be used to design a recursive algorithm that enumerates all

minimum k-cut-sets in deterministic polynomial time (along the lines of the algorithm of

Chandrasekaran and Chekuri described above). Here, we describe a more straightforward

non-recursive deterministic polynomial-time algorithm. For each pair of subsets of vertices

S, T of size at most 2k−1, we compute the source minimal minimum (S, T )-terminal cut VS,T ;

if G − δ(VS,T ) has at least k connected components, then we add δ(VS,T ) to the candidate

family F ; otherwise, we add VS,T to the collection C. Next, we consider all possible k-

partitions (U1, . . . , Uk) of the vertex set where all sets U1, . . . , Uk are in the collection C and
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add the set δ(U1, . . . , Uk) of hyperedges to the family F . We now sketch the argument to

show that the family F contains the (arbitrary) minimum k-cut-set F . Recall that there

exists a minimum k-partition (V1, . . . , Vk) such that F is the set of hyperedges crossing this

k-partition, i.e., F = δ(V1, . . . , Vk). We have two possibilities: (1) if d(Vi) < |F | for every

i ∈ [k], then by Theorem 3.2, every set Vi is in the collection C (by applying Theorem 3.2 to

(U = Vi, U = Vi) and arbitrary vertices s ∈ Vi, t ∈ Vi), and hence F ∈ F ; (2) if d(Vi) = |F |
for some i ∈ [k], then by Theorem 3.3, one of the sets VS,T has δ(VS,T ) = δ(Vi) = F and

hence, once again F ∈ F . We can prune the family F to return the subfamily of minimum

k-cut-sets in it. The size of the collection C is O(n4k−2) and the size of the family F is

O(n4k2). The run-time is O(n4k−2)T (n, p) + O(n4k2), where T (n, p) is the time complexity

for computing the source minimal minimum (s, t)-terminal cut in a n-vertex hypergraph of

size p.

Additional consequence of Theorem 3.3. Theorem 3.3 is the technical novelty of this

work. We emphasize another structural consequence of Theorem 3.3 by using it to bound the

number of minimum cut-sets in a hypergraph. Let t be an arbitrary vertex in the hypergraph

G = (V,E). Consider the sets

H := {U ⊆ V \ {t} : (U,U) is a minimum cut in G} and (3.1)

M := {δ(U) : U ∈ H}. (3.2)

We note that M is the family of all minimum cut-sets in the hypergraph. By applying

Theorem 3.3 for k = 2 and T = {t}, we obtain that for every set U ∈ H, there exists a

subset S ⊆ U with |S| ≤ 3 such that the source minimal minimum (S, {t})-terminal cut

(A,A) satisfies δ(A) = δ(U). Consequently, the size of the set M is at most the number

of possible ways to choose a non-empty subset S ⊆ V \ {t} of size at most 3 which is(
n−1
1

)
+
(
n−1
2

)
+
(
n−1
3

)
= O(n3), where n := |V |. Thus, we have concluded that the number

of minimum cut-sets in a n-vertex hypergraph is O(n3).

We recall that the number of minimum cut-sets in a n-vertex hypergraph is known to

be at most
(
n
2

)
[34, 38]. So, the O(n3) upper bound on the number of minimum cut-sets

that we obtained above based on Theorem 3.3 appears to be weak. We show the following

strengthening of Theorem 3.3 for k = 2 to get the tighter bound.

Theorem 3.4. Let G = (V,E) be a hypergraph and P = (V1, V2) be a minimum cut. Then,

for all non-empty subsets T ⊆ V2, there exists a subset S ⊆ V1 with |S| ≤ 2 such that the

source minimal minimum (S, T )-terminal cut (A,A) satisfies δ(A) = δ(V1) and A ⊆ V1.

By applying Theorem 3.4 for T = {t}, we obtain that for every set U ∈ H, there exists
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a subset S ⊆ U with |S| ≤ 2 such that the source minimal minimum (S, {t})-terminal cut

(A,A) satisfies δ(A) = δ(U). Hence, the size of the setM is at most the number of possible

ways to choose a non-empty subset S ⊆ V \{t} of size at most 2 which is
(
n−1
1

)
+
(
n−1
2

)
=
(
n
2

)
.

Thus, we have obtained a structural explanation (based on Theorem 3.4) for the number

of minimum cut-sets in a hypergraph being at most
(
n
2

)
. Theorem 3.4 can also be used to

enumerate all minimum cut-sets in a given hypergraph using
(
n
2

)
source minimal minimum

(S, T )-terminal cut computations.

Theorem 3.4 should be compared with a similar-looking structural theorem for graphs

that was shown by Goemans and Ramakrishnan [115]. Goemans and Ramakrishnan showed

that (Theorem 15 in [115]) if G is a connected graph, then for every set U ∈ H, there exists a
subset S ⊆ V1 with |S| ≤ 2 such that (U,U) is the source minimal minimum (S, {t})-terminal

cut. This leads to a structural explanation for the number of minimum cuts in a connected

graph being at most
(
n
2

)
. Our Theorem 3.4 can be seen as a counterpart of Goemans and

Ramakrishnan’s result for hypergraphs, but it differs from their result in two aspects: (1)

their result does not hold for hypergraphs—the number of minimum cuts in a connected

hypergraph could be exponential as we have seen from the spanning-hyperedge-example and

(2) the proof of their result is based on the submodular triple inequality which holds only

for the graph cut function but fails for the hypergraph cut function. So, our Theorem 3.4 is

more general as it handles minimum cut-sets in hypergraphs and moreover, needs a different

proof technique compared to [115]. We mention that Goemans and Ramakrishnan’s result

for connected graphs was our inspiration for Theorem 3.4, which in turn, was our starting

point for Theorem 3.3.

We conclude this section with a table summarizing known techniques for solving enumer-

ation problems in graphs and hypergraphs in polynomial time (see Table 3.1). We refer the

reader to Section 3.1.2 for a more elaborate discussion of related work.

Organization. In Section 3.1.2, we discuss special cases of Enum-Hypergraph-k-Cut

that have been addressed in the literature. In Section 3.1.3, we recall properties of the

hypergraph cut function that will be useful to prove our structural theorems. This section

contains a strengthening of a partition uncrossing theorem from [73] whose proof appears in

Section 3.7. In Section 3.2, we formally describe and analyze the deterministic polynomial-

time algorithm for Enum-Hypergraph-k-Cut that utilizes our two structural theorems

(Theorems 3.2 and 3.3). In Section 3.3, we prove Theorem 3.2. In Section 3.4, we prove

Theorem 3.3. In Section 3.5, we prove the strengthening of Theorem 3.3 for k = 2—namely

Theorem 3.4. In Section 3.6, we give an alternative proof of Theorem 3.4 based on a novel

three-cut-set lemma. In Section 3.7, we prove Theorem 3.5. In Section 3.8, we conclude with
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Techniques Graph Hypergraph Graph-k-cut Hypergraph-k-cut
Min-Cut Min-Cut

Random [16, 65] [34, 35, 36] [65, 66, 67, 116] [35, 36]
Contraction

Cactus [15] [37, 38, 117] ? ?
Representation
Min (S, T )-cuts [115] Our Work [68, 70] Our Work

(Thm 3.4) (Thms 3.2 and 3.3)
Edge Splitting [118, 119] ? ? ?
Tree Packing [21] ? [71, 106] ?

Table 3.1: Summary of known techniques to solve enumeration problems in graphs and
hypergraphs in polynomial time. The random contraction technique leads to a randomized
algorithm while techniques listed in the rest of the rows lead to deterministic algorithms.
Entries with a question mark indicate that we do not yet know if the technique leads to a
polynomial time algorithm for the corresponding enumeration problem.

a few open problems.

3.1.2 Related Work

In this section, we discuss known techniques for the enumeration problem in the special

case of k = 2 and the special case of graphs along with challenges involved in adapting these

techniques to hypergraphs for k ≥ 3.

Graph min-k-cut enumeration for k = 2. Graph-k-Cut for k = 2 is the global min-

imum cut problem (denoted Graph-MinCut) which has been extensively studied. How-

ever, efficient deterministic enumeration of all minimum cut-sets in a given connected graph

is already non-trivial. Dinitz, Karzanov, and Lomonosov [15] showed that the number of

minimum cuts in a connected graph is at most
(
n
2

)
, where n is the number of vertices in

the input graph, and they can all be enumerated in deterministic polynomial time. In par-

ticular, they designed a compact data structure, namely a cactus graph, to represent all

minimum cuts in a connected graph. The upper bound of
(
n
2

)
on the number of minimum

cuts in a connected graph is tight as illustrated by the cycle-graph on n vertices. Using

the seminal random contraction technique, Karger [16] showed a stronger result that the

number of α-approximate minimum cuts in a connected graph is O(n2α) and they can all be

enumerated in randomized polynomial time for constant α. Karger’s tree packing technique

[21] also leads to a deterministic polynomial-time algorithm to enumerate all α-approximate

minimum cuts in a connected graph for constant α. Nagamochi, Nishimura, and Ibaraki
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[119] tightened Karger’s bound for a particular value of α via the edge splitting operation:

the number of (4/3− ϵ)-approximate minimum cuts in a connected graph is at most
(
n
2

)
for

every ϵ > 0. This fact was also shown by Goemans and Ramakrishnan [115] via a structural

result (see discussion after Theorem 3.4 above). Henzinger and Williamson [118] extended

Nagamochi, Nishimura, and Ibaraki’s edge splitting technique to show that the number of

(3/2 − ϵ)-approximate minimum cuts in a connected graph is O(n2) for every ϵ > 0. The

results of Nagamochi, Nishimura, and Ibaraki, Goemans and Ramakrishnan, and Henzinger

and Williamson are all constructive and deterministic (i.e., lead to deterministic polynomial-

time algorithms to enumerate the respective approximate minimum cuts) and they bound

the number of minimum cuts in a connected graph (as opposed to minimum cut-sets).

Polynomial-delay algorithms. An alternative line of work aims to enumerate all cuts in hy-

pergraphs in non-decreasing order of cut value with polynomial time delay between outputs.

Such algorithms are known as polynomial-delay algorithms in the literature. Polynomial-

delay algorithms have been designed based on polynomial-time solvability of minimum (s, t)-

terminal cut and using the Lawler-Murty schema [81, 120, 121, 122]. Since we know that the

number of minimum cuts in a connected graph is polynomial, the existence of a polynomial-

delay algorithm immediately implies a polynomial-time algorithm to solve Enum-Graph-

k-Cut for k = 2. This approach does not extend to Enum-Hypergraph-k-Cut for k = 2

since the number of minimum cuts in a hypergraph can be exponential (e.g., recall the

spanning-hyperedge-example).

Hypergraph min-k-cut-set enumeration for k = 2. Hypergraph-k-Cut for k = 2

is the global minimum cut problem (denoted Hypergraph-MinCut) which has also been

extensively studied. We note that the number of minimum cuts in a connected hypergraph

could be exponential (e.g., consider the spanning-hyperedge-example). But, how about the

number of minimum cut-sets? The number of minimum cut-sets in a hypergraph is at most(
n
2

)
via decomposition theorems of Cunningham and Edmonds [123], Fujishige [124], and

Cunningham [117] on submodular functions. Cheng [37] designed an explicit hypercactus

representation for all minimum cut-sets in a hypergraph. Chekuri and Xu [38] designed

a faster deterministic polynomial-time algorithm to obtain a hypercactus representation

(along with all minimum cut-sets) of a given hypergraph. Ghaffari, Karger, and Panigrahi

[34] (also see [35, 36]) introduced a random contraction technique to solve Hypergraph-

MinCut which also implied that the number of minimum cut-sets in a hypergraph is at

most
(
n
2

)
and that they can all be enumerated in randomized polynomial time.

We mention that in contrast to graphs, the number of constant-approximate minimum cut-

sets in a hypergraph can be exponential. In fact, the number of (1+ϵ)-approximate minimum
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cut-sets in a connected hypergraph can be exponential5 for every ϵ ∈ (0, 1). Moreover,

the techniques of Nagamochi, Nishimura, and Ibaraki, Goemans and Ramakrishnan, and

Henzinger andWilliamson even when restricted to minimum cuts (as opposed to approximate

minimum cuts) cannot extend to hypergraphs: This is because, their techniques are tailored

to enumerate all minimum cuts in a connected graph as opposed to all minimum cut-sets; we

have already seen that the spanning-hyperedge-example has exponential number of minimum

cuts and hence, all of them cannot be enumerated in polynomial time.

Multiterminal variants for k-cut: We mention that Graph-k-Cut and Hypergraph-k-

Cut have natural variants involving separating specified terminal vertices s1, s2, . . . , sk.

These variants are NP-hard for k ≥ 3 even in graphs and hence, these variants are not

viable lines of attack for Graph-k-Cut and Hypergraph-k-Cut. We refer the reader to

[73] for a discussion of approximation algorithms for these variants.

Graph min-k-cut enumeration. Graph-k-Cut for k ≥ 3 has a rich literature with

substantial recent work [65, 66, 67, 68, 71, 72, 106, 116, 125, 126, 127, 128, 129, 130].

Goldschmidt and Hochbaum (1988) [72] initiated the study on Graph-k-Cut by showing

that it is NP-hard when k is part of the input and that it is polynomial-time solvable

when k is a fixed constant (polynomial-time solvability is not obvious even for k = 3).

Recall that we consider k to be a fixed constant throughout this chapter. Goldschmidt and

Hochbaum introduced a divide-and-conquer approach for Graph-k-Cut which resulted in

a deterministic polynomial-time algorithm. However, their result did not guarantee a bound

on the number of minimum k-partitions or minimum k-cut-sets in connected graphs. Karger

and Stein [65] gave a randomized polynomial-time algorithm for Graph-k-Cut via the

random contraction technique. In addition, they showed that the number of minimum k-

partitions in a connected graph is O(n2k−2) and they can all be enumerated in randomized

polynomial time. The bound on the number of minimum k-partitions in a connected graph

has recently been improved to O(nk) [66, 67]. We mention that the upper bound of O(nk)

on the number of minimum k-partitions in a connected graph is tight as illustrated by the

cycle-graph on n vertices.

There are two known approaches to solve Enum-Graph-k-Cut in deterministic poly-

nomial time: (1) Thorup [106] showed that the tree packing approach can be used to ob-

tain a polynomial-time algorithm for Graph-k-Cut; this approach also extends to solve

Enum-Graph-k-Cut (also see [71]). (2) Kamidoi, Yoshida, and Nagamochi [68] extended

Goldschmidt and Hochbaum’s divide and conquer approach to solve Enum-Graph-k-Cut

5Consider the n-vertex hypergraph G = (V,E) where E consists of all size-2 hyperedges each of cost
δ = ϵ(

(
n
2

)
−(1+ϵ)(n−1))−1 and a hyperedge e = V of cost 1. The cost of a minimum cut is λ := 1+δ(n−1).

The cost of every cut is at most 1 + δ
(
n
2

)
≤ (1 + ϵ)λ.
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(also see [70]).

Hypergraph-k-Cut. The complexity of Hypergraph-k-Cut was open since the work

of Goldschmidt and Hochbaum for Graph-k-Cut (1988) [72] until recently. Although

certain special cases of Hypergraph-k-Cut were known to be solvable in polynomial time

[107, 131], considerable progress on Hypergraph-k-Cut happened only in the last 3 years.

Chandrasekaran, Xu, and Yu (2018) [35] designed the first randomized polynomial-time

algorithm for Hypergraph-k-Cut; their Monte Carlo algorithm runs in Õ(pn2k−1) time

where p =
∑

e∈E |e| is the representation size of the input hypergraph. Fox, Panigrahi,

and Zhang [36] improved the randomized run-time to Õ(mn2k−2), where m is the number of

hyperedges in the input hypergraph. Both these randomized algorithms are based on random

contraction of hyperedges and are inspired partly by earlier work in [34] for Hypergraph-

MinCut. These randomized algorithms also imply that the number of minimum k-cut-

sets is O(n2k−2) and that all of them can be enumerated in randomized polynomial time.

Chandrasekaran and Chekuri (2020) [73] designed a deterministic polynomial-time algorithm

for Hypergraph-k-Cut via a divide and conquer approach. We emphasize that their

algorithm finds a minimum k-partition and did not have the tools to find all minimum

k-cut-sets.

A polynomial bound on the number of minimum k-cut-sets along with the existence of

a randomized polynomial-time algorithm to enumerate all of them raises the possibility

of a deterministic algorithm for Enum-Hypergraph-k-Cut. As we mentioned earlier,

there are two deterministic approaches for Enum-Graph-k-Cut—tree packing and divide-

and-conquer. The tree packing approach does not seem to extend to hypergraphs (even

for Hypergraph-MinCut). This leaves the divide-and-conquer approach. Notably, this

approach also led to the first deterministic algorithm for Hypergraph-k-Cut in the work

of Chandrasekaran and Chekuri [73]. As mentioned earlier, we adapt Chandrasekaran and

Chekuri’s divide-and-conquer approach and augment it with structural results for minimum

k-cut-sets to prove our main result stated in Theorem 3.1.

3.1.3 Preliminaries

Let G = (V,E) be a hypergraph. Throughout, we will follow the notation mentioned

in the second paragraph of Section 3.1.1. We will repeatedly rely on the fact that the

hypergraph cut function d : 2V → R+ is symmetric and submodular. We recall that a set

function f : 2V → R is symmetric if f(U) = f(U) for all U ⊆ V and is submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) for all subsets A,B ⊆ V .
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We will need a partition uncrossing theorem that is a strengthening of a result from [73].

We state the strengthened version below. See Figure 3.1 for an illustration of the sets

that appear in the statement of Theorem 3.5. We emphasize that the second conclusion in

the statement of Theorem 3.5 is the strengthening. The proof of the second conclusion is

similar to the proof of the first conclusion which appears in [73]—we present a proof of both

conclusions for the sake of completeness in Section 3.7.

Theorem 3.5. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer and ∅ ̸= R ⊊ U ⊊ V .

Let S = {u1, . . . , up} ⊆ U \R for p ≥ 2k− 2. Let (Ai, Ai) be a minimum ((S ∪R) \ {ui}, U)-

terminal cut. Suppose that ui ∈ Ai \ (∪j∈[p]\{i}Aj) for every i ∈ [p]. Then, the following two

hold:

1. There exists a k-partition (P1, . . . , Pk) of V with U ⊊ Pk such that

cost(P1, . . . , Pk) ≤
1

2
min{d(Ai) + d(Aj) : i, j ∈ [p], i ̸= j}.

2. Moreover, if there exists a hyperedge e ∈ E such that e intersects W := ∪1≤i<j≤p(Ai ∩
Aj), e intersects Z := ∩i∈[p]Ai, and e is contained in W ∪Z, then the inequality in the

previous conclusion is strict.

Figure 3.1: Illustration of the sets that appear in the statement of Theorem 3.5.

3.2 ENUMERATION ALGORITHM

We will use Theorems 3.2 and 3.3 to design a deterministic polynomial-time algorithm for

Enum-Hypergraph-k-Cut in this section. We describe the formal algorithm in Figure

3.2. It enumerates nO(k) source minimal minimum (S, T )-terminal cuts and considers the
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cut-set crossing each cut in this collection. If the removal of the cut-set leads to at least k

connected components, then it adds such a cut-set to the candidate family F ; otherwise, it
adds the source set of the cut into a candidate collection C. Next, the algorithm considers

all possible k-partitions that can be formed using the sets in the collection C and adds the

set of hyperedges crossing the k-partition to the family F . Finally, it prunes the family F
to return all minimum k-cut-sets in it. The run-time guarantee and the cardinality of the

family of k-cut-sets returned by the algorithm are given in Theorem 3.6. Theorem 3.1 follows

from Theorem 3.6 by observing that the source minimal minimum (S, T )-terminal cut in a

hypergraph can be computed in deterministic polynomial time—e.g., it can be computed in

a n-vertex hypergraph of size p in O(np) time [38].

Algorithm Enum-Cuts(G = (V,E), k)
Input: Hypergraph G = (V,E) and an integer k ≥ 2
Output: Family of all minimum k-cut-sets in G
Initialize C ← ∅, F ← ∅
For each pair (S, T ) such that S, T ⊆ V with S ∩ T = ∅ and |S|, |T | ≤ 2k − 1

Compute the source minimal minimum (S, T )-terminal cut (U,U)
If G− δ(U) has at least k connected components
F ← F ∪ {δ(U)}

Else
C ← C ∪ {U}

For each k-partition (U1, . . . , Uk) of V with U1, . . . , Uk ∈ C
F ← F ∪ {δ(U1, . . . , Uk)}

Among all k-cut-sets in the family F , return the subfamily of cheapest ones

Figure 3.2: Algorithm to enumerate hypergraph minimum k-cut-sets

Theorem 3.6. Let G = (V,E) be a n-vertex hypergraph of size p and let k be an integer.

Then, Algorithm Enum-Cuts(G, k) in Figure 3.2 returns the family of all minimum k-cut-sets

in G and it can be implemented to run in O(n4k−2)T (n, p)+O(n4k2−2kp) time, where T (n, p)

denotes the time complexity for computing the source minimal minimum (s, t)-terminal cut

in a n-vertex hypergraph of size p. Moreover, the cardinality of the family returned by the

algorithm is O(n2k(2k−1)).

Proof. We begin by showing correctness. The last step of the algorithm considers only k-

cut-sets in the family F , so the algorithm returns a subfamily of k-cut-sets. We only have

to show that every minimum k-cut-set is in the family F ; this will also guarantee that every

k-cut-set in the returned subfamily is indeed a minimum k-cut-set.

Let F ⊆ E be a minimum k-cut-set in G and let (V1, . . . , Vk) be a minimum k-partition

such that F = δ(V1, . . . , Vk). We will show that F is in the family F . We know that

d(Vi) ≤ OPTk for every i ∈ [k]. We distinguish two cases:
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1. Suppose d(Vi) < OPTk for every i ∈ [k].

Consider an arbitrary part Vi where i ∈ [k]. By Theorem 3.2, there exist disjoint

subsets S, T ⊆ V with |S|, |T | ≤ 2k − 2 such that (Vi, Vi) is the unique minimum

(S, T )-terminal cut. Hence, the set Vi is in the collection C. Consequently, all parts

V1, . . . , Vk are in the collection C. Hence, the set F = δ(V1, . . . , Vk) is added to the

family F in the second for-loop.

2. Suppose there exists i ∈ [k] such that d(Vi) = OPTk.

In this case, we have δ(Vi) = F = δ(V1, . . . , Vk). By Theorem 3.3, there exist disjoint

subsets S, T ⊆ V with |S|, |T | ≤ 2k−1 such that the source minimal minimum (S, T )-

terminal cut (A,A) satisfies δ(A) = δ(Vi) = F . Therefore, the set F is added to the

family F in the first for-loop.

Thus, in both cases, we have shown that the set F is contained in the family F . Since

the algorithm returns the subfamily of hyperedge sets in F that correspond to minimum

k-cut-sets, the set F is in the family returned by the algorithm.

Next, we bound the run time and the number of minimum k-cut-sets returned by the

algorithm. The first for-loop can be implemented using O(n4k−2) source minimal minimum

(s, t)-terminal cut computations. Moreover, the size of the collection C is O(n4k−2). The

number of tuples (U1, . . . , Uk) ∈ Ck is O(n4k2−2k). Verifying if a tuple (U1, . . . , Uk) forms a k-

partition takes O(n) time. For a tuple which forms a k-partition, computing the hyperedges

crossing that partition takes O(p) time. Thus, the second for-loop can be implemented to

run in time O(n4k2−2kp). The size of the family F is O(n4k2−2k). Each k-cut-set in F has

representation size at most p. Hence, computing the size of each k-cut-set in F and returning

the cheapest ones can be implemented to run in time O(n4k2−2kp). Thus, the overall run-time

is O(n4k−2)T (n, p) +O(n4k2−2kp). QED.

3.3 PROOF OF THEOREM 3.2

We prove Theorem 3.2 in this section. We will use the following theorem to prove Theorem

3.2.

Theorem 3.7. Let G = (V,E) be a hypergraph and let OPTk be the value of a minimum k-

cut-set in G for some integer k ≥ 2. Suppose (U,U) is a 2-partition of V with d(U) < OPTk.

Then, for every vertex s ∈ U , there exists a subset S ⊆ U\{s} with |S| ≤ 2k − 3 such that

(U,U) is the unique minimum (S ∪ {s}, U)-terminal cut.
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Proof. Let s ∈ U . Consider the collection

C := {Q ⊆ V \{s} : U ⊊ Q, d(Q) ≤ d(U)}. (3.3)

Let S be an inclusion-wise minimal subset of U \ {s} such that S ∩Q ̸= ∅ for all Q ∈ C, i.e.,
the set S is completely contained in U\{s} and is a minimal transversal of C. Proposition

3.1 and Lemma 3.1 complete the proof of Theorem 3.7 for this choice of S. QED.

Proposition 3.1. The 2-partition (U,U) is the unique minimum (S ∪{s}, U)-terminal cut.

Proof. For the sake of contradiction, suppose (Y, Y ) is a minimum (S ∪{s}, U)-terminal cut

with Y ̸= U . This implies that S ∪ {s} ⊆ Y and U ⊊ Y . Moreover, we have d(Y ) ≤ d(U)

because (U,U) is a (S ∪{s}, U)-terminal cut. Consequently, the set Y is in the collection C.
Since S is a transversal of the collection C, we have that S ∩ Y ̸= ∅. This contradicts the

fact that S is contained in Y . QED.

Lemma 3.1. The size of the subset S is at most 2k − 3.

Proof. For the sake of contradiction, suppose |S| ≥ 2k − 2. Our proof strategy is to show

the existence of a k-partition with cost smaller than OPTk, thus contradicting the definition

of OPTk. Let S := {u1, u2, . . . , up} for some p ≥ 2k − 2. For each i ∈ [p], let (Ai, Ai) be the

source minimal minimum ((S ∪ {s})\{ui}, U)-terminal cut. The following claim will allow

us to show that the cuts (Ai, Ai) satisfy the hypothesis of Theorem 3.5.

Claim 3.1. For every i ∈ [p], we have d(Ai) ≤ d(U) and ui ∈ Ai.

Proof. Let i ∈ [p]. Since S is a minimal transversal of the collection C, there exists a set

Bi ∈ C such that Bi ∩ S = {ui}. Hence, (Bi, Bi) is a ((S ∪ {s})\{ui}, U)-terminal cut.

Therefore,

d(Ai) ≤ d(Bi) ≤ d(U). (3.4)

We will show that Ai is in the collection C. By definition, Ai ⊆ V \ {s} and U ⊆ Ai.

If Ai = U , then the above inequalities are equations implying that (Bi, Bi) is a minimum

((S ∪ {s})\{ui}, U)-terminal cut, and consequently, (Bi, Bi) contradicts source minimality

of the minimum ((S ∪ {s})\{ui}, U)-terminal cut (Ai, Ai). Therefore, U ⊊ Ai. Hence, Ai is

in the collection C.
We recall that the set S is a transversal for the collection C and moreover, none of the

elements of S \ {ui} are in Ai by definition of Ai. Therefore, the vertex ui must be in

Ai. QED.
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Using Claim 3.1, we observe that the sets U , R := {s}, S, and the partitions (Ai, Ai) for

i ∈ [p] satisfy the conditions of Theorem 3.5. By the first conclusion of Theorem 3.5 and

Claim 3.1, we obtain a k-partition (P1, . . . , Pk) of V such that

cost(P1, . . . , Pk) ≤
1

2
min{d(Ai) + d(Aj) : i, j ∈ [p], i ̸= j} ≤ d(U) < OPTk. (3.5)

The last inequality above is by the assumption in the theorem statement. Thus, we have

obtained a k-partition whose cost is smaller than OPTk, a contradiction.

QED.

Applying Theorem 3.7 to (U,U) yields the following corollary.

Corollary 3.1. Let G = (V,E) be a hypergraph and let OPTk be the value of a minimum k-

cut-set in G for some integer k ≥ 2. Suppose (U,U) is a 2-partition of V with d(U) < OPTk.

Then, for every vertex t ∈ U , there exists a subset T ⊆ U\{t} with |T | ≤ 2k − 3 such that

(U,U) is the unique minimum (U, T ∪ {t})-terminal cut.

We now restate Theorem 3.2 and prove it using Theorem 3.7 and Corollary 3.1.

Theorem 3.2. Let G = (V,E) be a hypergraph and let OPTk be the value of a minimum k-

cut-set in G for some integer k ≥ 2. Suppose (U,U) is a 2-partition of V with d(U) < OPTk.

Then, for every pair of vertices s ∈ U and t ∈ U , there exist subsets S ⊆ U \ {s} and

T ⊆ U \ {t} with |S| ≤ 2k − 3 and |T | ≤ 2k − 3 such that (U,U) is the unique minimum

(S ∪ {s}, T ∪ {t})-terminal cut in G.

Proof. Let s ∈ U and t ∈ U . By Theorem 3.7, there exists a subset S ⊆ U \ {s} such that

|S| ≤ 2k − 3 and (U,U) is the unique minimum (S ∪ {s}, U)-terminal cut. By Corollary

3.1, there exists a subset T ⊆ U such that |T | ≤ 2k − 3 and (U,U) is the unique minimum

(U, T ∪ {t})-terminal cut.

We now show that (U,U) is the unique minimum (S ∪ {s}, T ∪ {t})-terminal cut. Let

(Y, Y ) be a minimum (S ∪ {s}, T ∪ {t})-terminal cut. Suppose Y ̸= U . We have the

following observations:

1. Since (U,U) is a (S ∪ {s}, T ∪ {t})-terminal cut, we have that d(U) ≥ d(Y ).

2. Since (U ∩ Y, U ∩ Y ) is a (S ∪ {s}, U)-terminal cut, we have that d(U ∩ Y ) ≥ d(U).

3. Since (U ∪ Y, U ∪ Y ) is a (U, T ∪ {t})-terminal cut, we have that d(U ∪ Y ) ≥ d(U).
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Moreover, since Y ̸= U , we have that either U ∩ Y ̸= U or U ∪ Y ̸= U . Since (U,U) is

the unique minimum (S ∪ {s}, U)-terminal cut and also the unique minimum (U, T ∪ {t})-
terminal cut, it follows that either d(U ∩Y ) > d(U) or d(U ∪Y ) > d(U). These observations

in conjunction with the submodularity of the hypergraph cut function imply that

2d(U) ≥ d(U) + d(Y ) ≥ d(U ∩ Y ) + d(U ∪ Y ) > 2d(U), (3.6)

a contradiction. Hence, Y = U . QED.

3.4 PROOF OF THEOREM 3.3

We prove Theorem 3.3 in this section. We begin with the following useful containment

lemma. Variants of this containment lemma have appeared in the literature before under

slightly different hypothesis (e.g., see [72, 73, 114, 132]).

Lemma 3.2. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer, P = (V1, . . . , Vk) be a

minimum k-partition such that δ(P) = δ(V1), and S ⊆ V1, T ⊆ V1 such that T ∩ Vj ̸= ∅ for
all j ∈ {2, 3, . . . , k}. Suppose that (U,U) is the source minimal minimum (S, T )-terminal

cut. Then, U ⊆ V1 and (U,U) is a minimum (S, V1)-terminal cut.

Proof. We note that S ⊆ U ∩V1, so (U ∩V1, U ∩ V1) is a (S, T )-terminal cut. Thus, we have

d(U ∩ V1) ≥ d(U). (3.7)

Figure 3.3: Uncrossing in the proof of Lemma 3.2.

Now consider P ′ = (W1 := U ∪ V1,W2 := V2 \ U, . . . ,Wk := Vk \ U) (see Figure 3.3). For

each i ∈ {2, 3, . . . , k}, we have ∅ ≠ T ∩Vi ⊆ Vi\U , so P ′ is a k-partition. Since δ(P) = δ(V1),

every hyperedge which crosses P must intersect V1. Consequently, every hyperedge which
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crosses P ′ must intersect U ∪ V1. Therefore

d(U ∪ V1) = cost(P ′) ≥ cost(P) = d(V1). (3.8)

By submodularity of the hypergraph cut function and inequalities (3.7) and (3.8), we have

that

d(U) + d(V1) ≥ d(U ∩ V1) + d(U ∪ V1) ≥ d(U) + d(V1). (3.9)

Therefore, inequality (3.7) is in fact an equation and hence, (U ∩ V1, U ∩ V1) is a minimum

(S, T )-terminal cut. If U \ V1 ̸= ∅, then (U ∩ V1, U ∩ V1) contradicts source minimality of

the minimum (S, T )-terminal cut (U,U). Hence, U \ V1 = ∅ and consequently, U ⊆ V1.

Since U ⊆ V1, we have that (U,U) is a (S, V1)-terminal cut. Furthermore, since T ⊆ V1,

every (S, V1)-terminal cut is also a (S, T )-terminal cut. Therefore, every (S, V1)-terminal cut

must have weight at least d(U), and hence (U,U) is a minimum (S, V1)-terminal cut. QED.

We now restate and prove Theorem 3.3.

Theorem 3.3. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer, and P = (V1, . . . , Vk)

be a minimum k-partition such that δ(V1) = δ(P). Then, for all subsets T ⊆ V1 such that

T ∩ Vj ̸= ∅ for all j ∈ {2, 3, . . . , k}, there exists a subset S ⊆ V1 with |S| ≤ 2k− 1 such that

the source minimal minimum (S, T )-terminal cut (A,A) satisfies δ(A) = δ(V1) and A ⊆ V1.

Proof. Let us fix an arbitrary T ⊆ V1 such that T ∩ Vj ̸= ∅ for all j ∈ {2, . . . , k}. For a

subset X ⊆ V1, we denote the source minimal minimum (X,T )-terminal cut by (HX , HX).

By Lemma 3.2, for all X ⊆ V1 we have that HX ⊆ V1 and d(HX) ≤ d(V1). If |V1| ≤ 2k − 1,

then choosing S = V1 proves the theorem. So, we will assume henceforth that |V1| > 2k− 1.

We will show that there exists a subset S ⊆ V1 with |S| ≤ 2k − 1 such that the source

minimal minimum (S, T )-terminal cut (HS, HS) satisfies δ(HS) = δ(V1). This suffices since

we have that HS ⊆ V1 for all subsets S ⊆ V1 (by Lemma 3.2).

For the sake of contradiction, suppose that for every S ⊆ V1 with |S| ≤ 2k − 1, the

source minimal minimum (S, T )-terminal cut (HS, HS) does not satisfy δ(HS) = δ(V1). Our

proof strategy is to obtain a cheaper k-partition than (V1, . . . , Vk), thereby contradicting the

optimality of (V1, . . . , Vk).

Let S ⊆ V1 be a set of size 2k−1 such thatHS is maximal—i.e., there does not exist S ′ ⊆ V1

of size 2k − 1 such that HS′ ⊋ HS. Let S := {u1, u2, . . . , u2k−1}. By assumption, we have

that δ(HS) ̸= δ(V1), but since (V1, V1) is a (S, T )-terminal cut, we have that d(HS) ≤ d(V1).

Therefore, δ(V1) \ δ(HS) is non-empty. Let us fix a hyperedge e ∈ δ(V1) \ δ(HS). Let

u2k ∈ e ∩ V1. Let C := S ∪ {u2k} = {u1, . . . , u2k−1, u2k}. For notational convenience we will
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use C − ui to denote C \ {ui} and C − ui − uj to denote C \ {ui, uj} for all i, j ∈ [2k]. The

choice of the hyperedge e is crucial to our proof—its properties will be used much later in

our proof. We summarize the properties of the hyperedge e here.

Observation 3.1. The hyperedge e has the following properties:

1. e ∩ V1 ̸= ∅,

2. u2k ∈ e, and

3. e ⊆ HS.

Our strategy to arrive at a cheaper k-partition than (V1, . . . , Vk) is to apply the second

conclusion of Theorem 3.5. The next few claims will set us up to obtain sets that satisfy the

hypothesis of Theorem 3.5.

Claim 3.2. For every i ∈ [2k], we have ui ̸∈ HC−ui
.

Proof. If i = 2k, then by Observation 3.1 we have u2k ∈ e and e ⊆ HS so u2k ̸∈ HS = HC−u2k
.

Suppose i ∈ [2k − 1]. Our proof will rely on the choice of S.

Suppose for contradiction that ui ∈ HC−ui
for some i ∈ [2k − 1]. Then, we have that

S ⊆ HC−ui
, so (HC−ui

∩HS, HC−ui
∩HS) is a (S, T )-terminal cut. Therefore,

d(HC−ui
∩HS) ≥ d(HS). (3.10)

Also, since (HC−ui
∪HS, HC−ui

∪HS) is a (C − ui, T )-terminal cut, we have that

d(HC−ui
∪HS) ≥ d(HC−ui

). (3.11)

By submodularity of the hypergraph cut function and inequalities (3.10) and (3.11), we have

that

d(HS) + d(HC−ui
) ≥ d(HC−ui

∩HS) + d(HC−ui
∪HS) ≥ d(HS) + d(HC−ui

). (3.12)

Therefore, inequality (3.10) is an equation, and consequently, (HC−ui
∩HS, HC−ui

∩HS) is

a minimum (S, T )-terminal cut. If HC−ui
∩ HS ⊊ HS, then (HC−ui

∩ HS, HC−ui
∩HS)

contradicts source minimality of the minimum (S, T )-terminal cut (HS, HS). Therefore

HC−ui
∩ HS = HS and hence, HS ⊆ HC−ui

. Also, the vertex u2k is in C − ui but not

in HS and hence, HS ⊊ HC−ui
. However, |C − ui| = 2k − 1. Therefore, the set C − ui

contradicts the choice of S. QED.

85



The following claim will help in showing that ui, uj ̸∈ HC−ui−uj
, which in turn, will be

used to show that the hypothesis of Theorem 3.5 is satisfied by suitably chosen sets.

Claim 3.3. For every i, j ∈ [2k], we have HC−ui−uj
⊆ HC−ui

.

Proof. We may assume that i ̸= j. We note that (HC−ui−uj
∩HC−ui

, HC−ui−uj
∩HC−ui

) is

a (C − ui − uj, T )-terminal cut. Therefore

d(HC−ui−uj
∩HC−ui

) ≥ d(HC−ui−uj
). (3.13)

Also, (HC−ui−uj
∪HC−ui

, HC−ui−uj
∪HC−ui

) is a (C − ui, T )-terminal cut. Therefore

d(HC−ui−uj
∪HC−ui

) ≥ d(HC−ui
). (3.14)

By submodularity of the hypergraph cut function and inequalities (3.13) and (3.14), we have

that

d(HC−ui−uj
) + d(HC−ui

) ≥ d(HC−ui−uj
∩HC−ui

) + d(HC−ui−uj
∪HC−ui

) (3.15)

≥ d(HC−ui−uj
) + d(HC−ui

). (3.16)

Therefore, inequality (3.13) is an equation, and consequently, we have that (HC−ui−uj
∩

HC−ui
, HC−ui−uj

∩HC−ui
) is a minimum (C−ui−uj, T )-terminal cut. If HC−ui−uj

\HC−ui
̸=

∅, then (HC−ui−uj
∩HC−ui

, HC−ui−uj
∩HC−ui

) contradicts source minimality of the minimum

(C − ui − uj, T )-terminal cut (HC−ui−uj
, HC−ui−uj

). Hence, HC−ui−uj
\ HC−ui

= ∅ and

consequently, HC−ui−uj
⊆ HC−ui

.

QED.

Claim 3.3 implies the following Corollary.

Corollary 3.2. For every i ∈ [2k], we have ui, uj ̸∈ HC−ui−uj
.

Proof. By Claim 3.2, we have that ui ̸∈ HC−ui
and uj ̸∈ HC−uj

. Therefore, ui, uj ̸∈ HC−ui
∩

HC−uj
. By Claim 3.3, HC−ui−uj

⊆ HC−ui
and HC−ui−uj

⊆ HC−uj
. Therefore, HC−ui−uj

⊆
HC−ui

∩HC−uj
, and thus, ui, uj ̸∈ HC−ui−uj

. QED.

The next claim will help in controlling the cost of the k-partition that we will obtain by

applying Theorem 3.5.

Claim 3.4. For every i, j ∈ [2k], we have d(HC−ui
) = d(V1) = d(HC−ui−uj

).
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Proof. Let a, b ∈ [2k]. Since (V1, V1) is a (C −ua, T )-terminal cut, we have that d(HC−ua) ≤
d(V1). Since (HC−ua , HC−ua) is a (C−ua−ub, T )-terminal cut, we have that d(HC−ua−ub

) ≤
d(HC−ua) ≤ d(V1). Thus, in order to prove the claim, it suffices to show that d(HC−ua−ub

) ≥
d(V1).

Suppose for contradiction that d(HC−ua−ub
) < d(V1). Let ℓ ∈ [2k] \ {a, b} be an arbitrary

element (which exists since k ≥ 2). Let R := {uℓ}, U := V1, S ′ := C − ua − uℓ, and

Ai := HC−ua−ui
for every i ∈ [2k] \ {a, ℓ}. We note that |S ′| = 2k − 2. By Lemma 3.2, we

have that (Ai, Ai) is a minimum (C − ua − ui, V1)-terminal cut for every i ∈ [2k] \ {a, ℓ}.
Moreover, by Corollary 3.2, we have that ui ∈ Ai \ (∪j∈[2k]\{a,i,ℓ}Aj) for every i ∈ [2k]\{a, ℓ}.
Hence, the sets U , R, and S ′, and the cuts (Ai, Ai) for i ∈ [2k] \ {a, ℓ} satisfy the conditions

of Theorem 3.5. Therefore, by the first conclusion of Theorem 3.5, there exists a k-partition

P ′ with

cost(P ′) ≤ 1

2
min{d(HC−ua−ui

) + d(HC−ua−uj
) : i, j ∈ [2k] \ {a, ℓ}}. (3.17)

By assumption, d(HC−ua−ub
) < d(V1) and b ∈ [2k] \ {a, ℓ}, so min{d(HC−ua−ui

) : i ∈ [2k] \
{a, ℓ}} < d(V1). Since (V1, V1) is a (C−ua−ui, T )-terminal cut, we have that d(HC−ua−ui

) ≤
d(V1) for every i ∈ [2k] \ {a, ℓ}. Therefore,

1

2
min{d(HC−ua−ui

) + d(HC−ua−uj
) : i, j ∈ [2k] \ {a, ℓ}} < d(V1) = cost(P). (3.18)

Thus, we have that cost(P ′) < cost(P), which is a contradiction, since P is a minimum

k-partition. QED.

The next two claims will help in arguing properties about the hyperedge e which will allow

us to use the second conclusion of Theorem 3.5. In particular, we will need Claim 3.6. The

following claim will help in proving Claim 3.6.

Claim 3.5. For every i, j ∈ [2k], we have

d(HC−ui
∩HC−uj

) = d(V1) = d(HC−ui
∪HC−uj

).

Proof. Since (HC−ui
∩ HC−uj

, HC−ui
∩HC−uj

) is a (C − ui − uj, T )-terminal cut, we have

that d(HC−ui
∩HC−uj

) ≥ d(HC−ui−uj
). By Claim 3.4, we have that d(HC−ui−uj

) = d(V1) =

d(HC−ui
). Therefore,

d(HC−ui
∩HC−uj

) ≥ d(HC−ui
). (3.19)

Since (HC−ui
∪HC−uj

, HC−ui
∪HC−uj

) is a (C − uj, T )-terminal cut, we have that

d(HC−ui
∪HC−uj

) ≥ d(HC−uj
). (3.20)
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By submodularity of the hypergraph cut function and inequalities (3.19) and (3.20), we have

that

d(HC−ui
)+d(HC−uj

) ≥ d(HC−ui
∩HC−uj

)+d(HC−ui
∪HC−uj

) ≥ d(HC−ui
)+d(HC−uj

). (3.21)

Therefore, inequalities (3.19) and (3.20) are equations. Thus, by Claim 3.4, we have that

d(HC−ui
∩HC−uj

) = d(HC−ui
) = d(V1), (3.22)

and

d(HC−ui
∪HC−uj

) = d(HC−uj
) = d(V1). (3.23)

QED.

Claim 3.6. For every i, j, ℓ ∈ [2k] with i ̸= j, we have HC−uℓ
⊆ HC−ui

∪HC−uj
.

Proof. If ℓ = i or ℓ = j the claim is immediate. Thus, we assume that ℓ ̸∈ {i, j}. Let

Q := HC−uℓ
\ (HC−ui

∪ HC−uj
). We need to show that Q = ∅. We will show that

(HC−uℓ
\ Q,HC−uℓ

\Q) is a minimum (C − uℓ, T )-terminal cut. Consequently, Q must

be empty (otherwise, HC−uℓ
\ Q ⊊ HC−uℓ

and hence, (HC−uℓ
\ Q,HC−uℓ

\Q) contradicts

source minimality of the minimum (C − uℓ, T )-terminal cut (HC−uℓ
, HC−uℓ

)).

We now show that (HC−uℓ
\Q,HC−uℓ

\Q) is a minimum (C − uℓ, T )-terminal cut. Since

HC−uℓ
\ Q = HC−uℓ

∩ (HC−ui
∪ HC−uj

), we have that C − ui − uj − uℓ ⊆ HC−uℓ
\ Q. We

also know that ui and uj are contained in both HC−uℓ
and HC−ui

∪ HC−uj
. Therefore,

C − uℓ ⊆ HC−uℓ
\Q. Thus, (HC−uℓ

\Q,HC−uℓ
\Q) is a (C − uℓ, T )-terminal cut. Therefore,

d(HC−uℓ
∩ (HC−ui

∪HC−uj
)) = d(HC−uℓ

\Q) ≥ d(HC−uℓ
). (3.24)

We also have that (HC−uℓ
∪ (HC−ui

∪ HC−uj
), HC−uℓ

∪ (HC−ui
∪HC−uj

)) is a (C − ui, T )-

terminal cut. Therefore, d(HC−uℓ
∪ (HC−ui

∪HC−uj
)) ≥ d(HC−ui

). By Claims 3.4 and 3.5,

we have that d(HC−ui
) = d(V1) = d(HC−ui

∪HC−uj
). Therefore,

d(HC−uℓ
∪ (HC−ui

∪HC−uj
)) ≥ d(HC−ui

∪HC−uj
). (3.25)

By submodularity of the hypergraph cut function and inequalities (3.24) and (3.25), we have
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that

d(HC−uℓ
) + d(HC−ui

∪HC−uj
) (3.26)

≥ d(HC−uℓ
∩ (HC−ui

∪HC−uj
)) + d(HC−uℓ

∪ (HC−ui
∪HC−uj

)) (3.27)

≥ d(HC−uℓ
) + d(HC−ui

∪HC−uj
). (3.28)

Therefore, inequalities (3.24) and (3.25) are equations, so (HC−uℓ
\Q,HC−uℓ

\Q) is a mini-

mum (C − uℓ, T )-terminal cut. QED.

Let R := {u2k}, U := V1, and let (Ai, Ai) := (HC−ui
, HC−ui

) for every i ∈ [2k − 1]. By

Lemma 3.2, we have that (Ai, Ai) is a minimum (C−ui, V1)-terminal cut for every i ∈ [2k−1].
Moreover, by Claim 3.2, we have that ui ∈ Ai \ (∪j∈[2k−1]\{i}Aj). Hence, the sets U , R, and

S, and the cuts (Ai, Ai) for i ∈ [2k − 1] satisfy the conditions of Theorem 3.5. We will use

the second conclusion of Theorem 3.5. We now show that the hyperedge e that we fixed

at the beginning of the proof satisfies the conditions mentioned in the second conclusion of

Theorem 3.5. We will use Claim 3.6 to prove this. Let W := ∪1≤i<j≤2k−1(Ai ∩ Aj) and

Z := ∩i∈[2k−1]Ai as in the statement of Theorem 3.5.

Claim 3.7. The hyperedge e satisfies the following conditions:

1. e ∩W ̸= ∅,

2. e ∩ Z ̸= ∅, and

3. e ⊆ W ∪ Z.

Proof. 1. By Lemma 3.2, for every i ∈ [2k − 1] we have V1 ⊆ Ai, and therefore V1 ⊆ W .

Thus, by Observation 3.1, we have that ∅ ≠ e ∩ V1 ⊆ e ∩W .

2. By definition, for every i ∈ [2k− 1], we have u2k ∈ HC−ui
= Ai, and therefore u2k ∈ Z.

Thus, by Observation 3.1, we have that e ∩ Z ̸= ∅.

3. For every i ∈ [2k−1], let Yi := Ai\W . We note that (Y1, . . . , Y2k−1,W, Z) is a partition

of V . Therefore, in order to show that e ⊆ W ∪ Z, it suffices to show that e ∩ Yi = ∅
for every i ∈ [2k − 1]. By Observation 3.1, we know that e ⊆ HS. We will show that

HS ∩ Yi = ∅ for every i ∈ [2k − 1] which implies that e ∩ Yi = ∅ for every i ∈ [2k − 1].
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Let us fix an index i ∈ [2k − 1]. We note that

Yi = Ai \W = Ai \

( ⋃
1≤a<b≤2k−1

(Aa ∩ Ab)

)
= Ai \

( ⋃
1≤a<b≤2k−1

((Aa ∩ Ab) ∩ Ai)

)
(3.29)

= Ai \

 ⋃
j∈[2k−1]\{i}

(Aj ∩ Ai)

 = Ai \

 ⋃
j∈[2k−1]\{i}

Aj

 = Ai ∩

 ⋃
j∈[2k−1]\{i}

Aj


(3.30)

= Ai ∩

 ⋂
j∈[2k−1]\{i}

Aj

 =

 ⋂
j∈[2k−1]\{i}

Aj

 \ Ai. (3.31)

Therefore,

Yi ∩HS =

 ⋂
j∈[2k−1]\{i}

Aj

 \ Ai

 ∩HS =

 ⋂
j∈[2k−1]\{i}

Aj

 \ Ai

 \HS (3.32)

=

 ⋂
j∈[2k−1]\{i}

HC−uj

 \ (HC−ui
∪HC−u2k

) . (3.33)

By Claim 3.6, we have that HC−uj
⊆ HC−ui

∪ HC−u2k
for every j ∈ [2k − 1] \ {i}.

Therefore, HC−uj
\ (HC−ui

∪HC−u2k
) = ∅ for every j ∈ [2k − 1] \ {i}, and hence, ⋂

j∈[2k−1]\{i}

HC−uj

 \ (HC−ui
∪HC−u2k

) = ∅. (3.34)

Thus, we have Yi ∩HS = ∅.
QED.

By Claim 3.7, the hyperedge e satisfies the conditions of the second conclusion of Theorem

3.5. Therefore, by Theorem 3.5, there exists a k-partition P ′ with

cost(P ′) <
1

2
min{d(Ai) + d(Aj) : i, j ∈ [2k − 1], i ̸= j} (3.35)

= d(V1) (By Claim 3.4) (3.36)

= cost(P). (By assumption of the theorem) (3.37)
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Thus, we have obtained a k-partition P ′ with cost(P ′) < cost(P), which is a contradiction

since P is a minimum k-partition. QED.

3.5 STRONGER STRUCTURAL THEOREM FOR k = 2

We prove the stronger version of Theorem 3.3 for k = 2—namely Theorem 3.4—in this

section. We were able to prove Theorem 3.4 via two more techniques that are different from

the one presented in this section—one technique is via a novel three-cut-set-lemma while

the second technique is via the canonical decomposition of hypergraphs [38, 117, 123, 124].

It is unclear how to generalize both these techniques to k ≥ 3. Here, we present a proof of

Theorem 3.4 that closely resembles the proof of Theorem 3.3. We give an alternative proof

of this theorem based on the three-cut-set-lemma in Section 3.6.

We will again use the containment lemma (Lemma 3.2) in our proof. We mention how we

obtain the stronger statement relative to Theorem 3.3 in the proof below. We restate and

prove Theorem 3.4 now.

Theorem 3.4. Let G = (V,E) be a hypergraph and P = (V1, V2) be a minimum cut. Then,

for all non-empty subsets T ⊆ V2, there exists a subset S ⊆ V1 with |S| ≤ 2 such that the

source minimal minimum (S, T )-terminal cut (A,A) satisfies δ(A) = δ(V1) and A ⊆ V1.

Proof. Let us fix an arbitrary non-empty subset T ⊆ V1 = V2. For a subset X ⊆ V1, we

denote the source minimal minimum (X,T )-terminal cut by (HX , HX). By Lemma 3.2, for

all X ⊆ V1 we have that HX ⊆ V1. If |V1| ≤ 2, then choosing S = V1 proves the theorem.

So, we will assume henceforth that |V1| ≥ 3. We will show that there exists a subset S ⊆ V1

with |S| ≤ 2 such that the source minimal minimum (S, T )-terminal cut (HS, HS) satisfies

δ(HS) = δ(V1). This suffices since we have that HS ⊆ V1 for all subsets S ⊆ V1 (by Lemma

3.2).

We begin with the following useful claim. We note that Claim 3.8 crucially relies on the

fact that V1 is a part of a minimum cut (i.e, it crucially relies on k = 2)—it does not hold

if V1 is a part of a minimum k-partition for k ≥ 3. Claim 3.8 serves a similar role in our

proof to that of Claim 3.4 in the proof of Theorem 3.3. Unlike Claim 3.4, Claim 3.8 places

no restriction on the size of the sets involved. This is important for obtaining the stronger

structural result of Theorem 3.4.

Claim 3.8. For every X ⊆ V1, we have that d(HX) = d(V1).

Proof. Since X ⊆ V1 and T ⊆ V2, we have that (V1, V2) is a (X,T )-terminal cut. Since

(HX , HX) is a minimum (X,T )-terminal cut, we have that d(HX) ≤ d(V1). Since (HX , HX)
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is a cut, and (V1, V2) is a minimum cut, we have that d(HX) ≥ d(V1). Thus, d(HX) =

d(V1). QED.

For the sake of contradiction, suppose that for every S ⊆ V1 with |S| ≤ 2, the source

minimal minimum (S, T )-terminal cut (HS, HS) does not satisfy δ(HS) = δ(V1). Our proof

strategy is to obtain a cheaper cut than (V1, V2), thereby contradicting the optimality of

(V1, V2).

Let S ⊆ V1 be a set of size 2 such that HS is maximal—i.e., there does not exist S ′ ⊆ V1

of size 2 such that HS′ ⊋ HS. In contrast to the proof of Theorem 3.3, where subsets S

of size 3 had to be considered, here we only consider subsets S of size 2. We will see that

this suffices to arrive at a contradiction. Let S := {u1, u2}. By assumption, we have that

δ(HS) ̸= δ(V1), but by Claim 3.8, we have that d(HS) = d(V1). Therefore, δ(V1) \ δ(HS) is

non-empty. Let e ∈ δ(V1) \ δ(HS). Let u3 ∈ e ∩ V1. Let C := {u1, u2, u3}. For notational

convenience we will use C − ui to denote C \ {ui} and C − ui − uj to denote C \ {ui, uj}
for all i, j ∈ [3]. The choice of the hyperedge e is crucial to our proof—its properties will be

used much later in our proof. We summarize the properties of the hyperedge e here.

Observation 3.2. The hyperedge e has the following properties:

1. e ∩ V2 ̸= ∅

2. u3 ∈ e, and

3. e ⊆ HS,

Our strategy to arrive at a cheaper cut than (V1, V2) is to apply the second conclusion of

Theorem 3.5. The next few claims will set us up to obtain sets that satisfy the hypothesis

of Theorem 3.5. We note that the following claim and its proof are identical to Claim 3.2

and its proof with 2k replaced by 3.

Claim 3.9. For every i ∈ [3], we have ui ̸∈ HC−ui
.

Proof. By Observation 3.2 we have u3 ∈ e and e ⊆ HS, so u3 ̸∈ HS = HC−u3 . Suppose

i ∈ [2]. Our proof will rely on the choice of S.

Suppose for contradiction that ui ∈ HC−ui
for some i ∈ [2]. Then we have that S ⊆ HC−ui

,

so (HC−ui
∩HS, HC−ui

∩HS) is a (S, T )-terminal cut. Therefore,

d(HC−ui
∩HS) ≥ d(HS). (3.38)
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Also, since (HC−ui
∪HS, HC−ui

∪HS) is a (C − ui, T )-terminal cut, we have that

d(HC−ui
∪HS) ≥ d(HC−ui

). (3.39)

By submodularity of the hypergraph cut function and inequalities (3.38) and (3.39), we have

that

d(HS) + d(HC−ui
) ≥ d(HC−ui

∩HS) + d(HC−ui
∪HS) ≥ d(HS) + d(HC−ui

). (3.40)

Therefore, inequality (3.38) is an equation, and consequently, (HC−ui
∩ HS, HC−ui

∩HS)

is a minimum (S, T )-terminal cut. If HC−ui
∩ HS ⊊ HS, then this contradicts the source

minimality of the minimum (S, T )-terminal cut (HS, HS). Therefore, HC−ui
∩HS = HS and

hence, HS ⊆ HC−ui
. Also, the vertex u3 is in C − ui but not in HS and hence, HS ⊊ HC−ui

.

However, |C − ui| = 2. Therefore, the set C − ui contradicts the choice of S. QED.

The next two claims will help in arguing properties about the hyperedge e which will

allow us to use the second conclusion of Theorem 3.5. We note the similarity of Claims 3.10

and 3.11 in this proof to Claims 3.5 and 3.6 in the proof of Theorem 3.3. In order to prove

Claims 3.5 and 3.6, we needed the size of C to be 2k in order to invoke Claim 3.4. Here, we

are able to prove Claims 3.10 and 3.11 with the size of C being 2k − 1 (for k = 2). This is

because we can use Claim 3.8 (which holds only for k = 2) instead of Claim 3.4, and Claim

3.8 does not require the size of C to be 2k.

Claim 3.10. For every i, j ∈ [3], we have

d(HC−ui
∩HC−uj

) = d(V1) = d(HC−ui
∪HC−uj

).

Proof. Since (HC−ui
∩ HC−uj

, HC−ui
∩HC−uj

) is a (C − ui − uj, T )-terminal cut, we have

that d(HC−ui
∩HC−uj

) ≥ d(HC−ui−uj
). By Claim 3.8, we have that d(HC−ui−uj

) = d(V1) =

d(HC−ui
). Therefore,

d(HC−ui
∩HC−uj

) ≥ d(HC−ui
). (3.41)

Since (HC−ui
∪HC−uj

, HC−ui
∪HC−uj

) is a (C − uj, T )-terminal cut, we have that

d(HC−ui
∪HC−uj

) ≥ d(HC−uj
). (3.42)

By submodularity of the hypergraph cut function and inequalities (3.41) and (3.42), we have
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that

d(HC−ui
)+d(HC−uj

) ≥ d(HC−ui
∩HC−uj

)+d(HC−ui
∪HC−uj

) ≥ d(HC−ui
)+d(HC−uj

). (3.43)

Therefore, inequalities (3.19) and (3.20) are equations. Thus, by Claim 3.8 we have that

d(HC−ui
∩HC−uj

) = d(HC−ui
) = d(V1), (3.44)

and

d(HC−ui
∪HC−uj

) = d(HC−uj
) = d(V1). (3.45)

QED.

The next claim follows from Claim 3.10 similar to the proof of Claim 3.6 from Claim 3.5

earlier. We include the proof for the sake of completeness.

Claim 3.11. For every i, j, ℓ ∈ [3] with i ̸= j, we have HC−uℓ
⊆ HC−ui

∪HC−uj
.

Proof. If ℓ = i or ℓ = j the claim is immediate. Thus, we assume that ℓ ̸= i, j. Let

Q := HC−uℓ
\ (HC−ui

∪ HC−uj
). We need to show that Q = ∅. We will show that

(HC−uℓ
\ Q,HC−uℓ

\Q) is a minimum (C − uℓ, T )-terminal cut. Consequently, Q must

be empty (otherwise, HC−uℓ
\ Q ⊊ HC−uℓ

and hence, (HC−uℓ
\ Q,HC−uℓ

\Q) contradicts

source minimality of the minimum (C − uℓ, T )-terminal cut (HC−uℓ
, HC−uℓ

)).

We now show that (HC−uℓ
\Q,HC−uℓ

\Q) is a minimum (C − uℓ, T )-terminal cut. Since

HC−uℓ
\ Q = HC−uℓ

∩ (HC−ui
∪ HC−uj

), we have that C − ui − uj − uℓ ⊆ HC−uℓ
\ Q. We

also know that ui and uj are contained in both HC−uℓ
and HC−ui

∪ HC−uj
. Therefore,

C − uℓ ⊆ HC−uℓ
\Q. Thus, (HC−uℓ

\Q,HC−uℓ
\Q) is a (C − uℓ, T )-terminal cut. Therefore,

d(HC−uℓ
∩ (HC−ui

∪HC−uj
)) = d(HC−uℓ

\Q) ≥ d(HC−uℓ
). (3.46)

We also have that (HC−uℓ
∪ (HC−ui

∪ HC−uj
), HC−uℓ

∪ (HC−ui
∪HC−uj

)) is a (C − ui, T )-

terminal cut. Therefore, d(HC−uℓ
∪ (HC−ui

∪HC−uj
)) ≥ d(HC−ui

). By Claims 3.8 and 3.10,

we have that d(HC−ui
) = d(V1) = d(HC−ui

∪HC−uj
). Therefore,

d(HC−uℓ
∪ (HC−ui

∪HC−uj
)) ≥ d(HC−ui

∪HC−uj
). (3.47)

By submodularity of the hypergraph cut function and inequalities (3.46) and (3.47), we have
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that

d(HC−uℓ
) + d(HC−ui

∪HC−uj
) (3.48)

≥ d(HC−uℓ
∩ (HC−ui

∪HC−uj
)) + d(HC−uℓ

∪ (HC−ui
∪HC−uj

)) (3.49)

≥ d(HC−uℓ
) + d(HC−ui

∪HC−uj
). (3.50)

Therefore, inequalities (3.46) and (3.47) are equations, so (HC−uℓ
\Q,HC−uℓ

\Q) is a mini-

mum (C − uℓ, T )-terminal cut. QED.

Let R := {u3}, U := V1, and for every i ∈ [2], let (Ai, Ai) := (HC−ui
, HC−ui

). By Lemma

3.2, we have that (Ai, Ai) is a minimum (C−ui, V2)-terminal cut for every i ∈ [2]. Moreover,

by Claim 3.9, we have that ui ∈ Ai \ A3−i. Hence, the sets U , R, and S, and the cuts

(Ai, Ai) for i ∈ [2] satisfy the conditions of Theorem 3.5. We will use the second conclusion

of Theorem 3.5. We now show that the hyperedge e that we fixed at the beginning of the

proof satisfies the conditions mentioned in the second conclusion of Theorem 3.5. We will

use Claim 3.11 to prove this. Let W := A1 ∩ A2 and Z := A1 ∩ A2 as in the statement of

Theorem 3.5.

Claim 3.12. The hyperedge e satisfies the following conditions:

1. e ∩W ̸= ∅,

2. e ∩ Z ̸= ∅, and

3. e ⊆ W ∪ Z.

Proof. 1. By Lemma 3.2, for every i ∈ [2] we have V2 ⊆ Ai, and therefore V2 ⊆ W . Thus,

by Observation 3.2, we have that ∅ ≠ e ∩ V2 ⊆ e ∩W .

2. By definition, for every i ∈ [2], we have u3 ∈ HC−ui
= Ai, and therefore u3 ∈ Z. Thus,

by Observation 3.2, we have that e ∩ Z ̸= ∅.

3. For every i ∈ [2], let Yi := Ai \W . We note that (Y1, Y2,W, Z) is a partition of V .

Therefore, in order to show that e ⊆ W ∪Z, it suffices to show that e∩Y1 = e∩Y2 = ∅.
By Observation 3.2, we know that e ⊆ HS. We will show that HS ∩ Yi = ∅ for every
i ∈ [2] which implies that e∩Yi = ∅ for every i ∈ [2]. Let us fix a i ∈ [2]. We note that

Yi = Ai \W = Ai \ (A1 ∩ A2) = Ai \ A3−i = Ai ∩ A3−i = A3−i \ Ai. (3.51)
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Therefore,

Yi ∩HS =
(
A3−i \ Ai

)
∩HS =

(
A3−i \ Ai

)
\HS = HC−u3−i

\ (HC−ui
∪HC−u3) . (3.52)

By Claim 3.11, we have that HC−u3−i
⊆ HC−ui

∪HC−u3 . Therefore,

HC−u3−i
\ (HC−ui

∪HC−u3) = ∅. (3.53)

Thus, for every i ∈ [2], we have Yi ∩HS = ∅.
QED.

By Claim 3.12, the hyperedge e satisfies the conditions of the second conclusion of Theorem

3.5. Therefore, by Theorem 3.5, there exists a cut (V ′
1 , V

′
2) with

cost(V ′
1 , V

′
2) = d(V ′

1) <
1

2
(d(A1) + d(A2)) = d(V1). (3.54)

The last equality above is by Claim 3.8. Thus, we have obtained a cut (V ′
1 , V

′
2) with d(V ′

1) <

d(V1), which is a contradiction since (V1, V2) is a minimum cut. QED.

3.6 ALTERNATIVE PROOF OF STRONGER STRUCTURAL THEOREM FOR k = 2

In this section we give an alternative proof of Theorem 3.4. This alternative proof was

the first proof that we discovered for Theorem 3.4, however we are unable to generalize its

proof technique to k ≥ 2 (i.e., to prove theorem 3.3). We present this alternative proof since

we believe that it is based on a novel 3-cut-set lemma which may be of independent interest.

Moreover, it is self-contained and does not rely on Theorem 3.5 (as opposed to the proof

presented in Section 3.5).

Notation. Let G = (V,E) be a hypergraph and let R, S, T, U ⊆ V be subsets of vertices.

We define

E[S] := {e ∈ E : e ⊆ S}, (3.55)

E(S, T ) := {e ∈ E : e ⊆ S ∪ T and e ∩ S, e ∩ T ̸= ∅}, (3.56)

E(S, T, U) := {e ∈ E : e ⊆ S ∪ T ∪ U and e ∩ S, e ∩ T, e ∩ U ̸= ∅}, and (3.57)

E(R, S, T, U) := {e ∈ E : e ⊆ R ∪ S ∪ T ∪ U and e ∩R, e ∩ S, e ∩ T, e ∩ U ̸= ∅}. (3.58)

Our proof approach is similar to the one used in [115] to prove an analogous structural
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theorem for graphs. Their proof relies on the submodular triple inequality which states that

for every graph G = (V,E) and every X, Y, Z ⊆ V , we have

d((Y ∩Z)\X)+d((X∩Z)\Y )+d((X∩Y )\Z)+d(V \(X∪Y ∪Z)) ≤ d(X)+d(Y )+d(Z). (3.59)

Unfortunately, the submodular triple inequality fails to hold in hypergraphs (e.g., consider a

hypergraph G = (V,E) where V = {1, 2, 3, 4}, and E = {V }, with X = {1, 2}, Y = {1, 3},
and Z = {2, 3}). Our proof of Theorem 3.4 instead relies on the following novel Hypergraph

3-cut-set lemma.

Lemma 3.3 (Hypergraph 3-cut-set lemma). Let G = (V,E) be a hypergraph, and let

X, Y, Z ⊆ V be non-empty and pairwise disjoint sets such that (X,X), (Y, Y ), (Z,Z), (X ∪
Y,X ∪ Y ), (X ∪ Z,X ∪ Z), (Y ∪ Z, Y ∪ Z), and (X ∪ Y ∪ Z,X ∪ Y ∪ Z) are all minimum

cuts. Then,

δ(X) = δ(Y ) = δ(Z). (3.60)

Proof. Let W := X ∪ Y ∪ Z. Since (X ∪ Y ∪ Z,X ∪ Y ∪ Z) is a minimum cut, W ̸= ∅.
Since (X,X) and (X ∪ Y,X ∪ Y ) are both minimum cuts, we have that d(X) = d(X ∪ Y ).

The hyperedges which are in δ(X) but not δ(X ∪ Y ) are the hyperedges of E(X, Y ). The

hyperedges which are in δ(X ∪Y ) but not δ(X) are the hyperedges of E(Y, Z), E(Y,W ) and

E(Y, Z,W ). Thus, we have that

|E(X, Y )| = |E(Y, Z)|+ |E(Y,W )|+ |E(Y, Z,W )|. (3.61)

We can symmetrically derive versions of Equation (3.61) for |E(X,Z)|, |E(Y,X)|, |E(Y, Z)|,
|E(Z,X)|, and |E(Z, Y )|. Summing these six equations together we have that

∑
A,B∈{X,Y,Z},A ̸=B

|E(A,B)| =

 ∑
A,B∈{X,Y,Z},A ̸=B

|E(A,B)|

+

∑
A,B∈{X,Y,Z},A ̸=B

(|E(A,W )|+ |E(A,B,W )|) . (3.62)

Thus, we have that ∑
A,B∈{X,Y,Z},A ̸=B

(|E(A,W )|+ |E(A,B,W )|) = 0. (3.63)

Therefore we have that for every A,B ∈ {X, Y, Z} with A ̸= B, E(A,W ) = E(A,B,W ) = ∅.
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Therefore, we have that

d(X) = |E(X, Y )|+ |E(X,Z)|+ |E(X,W )|+ (3.64)

|E(X, Y, Z)|+ |E(X, Y,W )|+ |E(X,Z,W )|+ |E(X, Y, Z,W )| (3.65)

= |E(X, Y )|+ |E(X,Z)|+ |E(X, Y, Z)|+ |E(X, Y, Z,W )|. (3.66)

We also have that

d(X ∪ Y ∪ Z) = |E(X,W )|+ |E(Y,W )|+ |E(Z,W )|+ (3.67)

|E(X, Y,W )|+ |E(X,Z,W )|+ |E(Y, Z,W )|+ |E(X, Y, Z,W )| (3.68)

= |E(X, Y, Z,W )|. (3.69)

Since (X ∪ Y ∪ Z,X ∪ Y ∪ Z) is a minimum cut, we have that d(X) = d(X ∪ Y ∪ Z).

Thus, by the two equations above, we have that

|E(X, Y )|+ |E(X,Z)|+ |E(X, Y, Z)|+ |E(X, Y, Z,W )| = |E(X, Y, Z,W )|. (3.70)

Thus,

|E(X, Y )|+ |E(X,Z)|+ |E(X, Y, Z)| = 0. (3.71)

Therefore we have that E(X, Y ) = E(X,Z) = E(X, Y, Z) = ∅. By a symmetric argument,

we can conclude that E(Y, Z) = ∅. Then, we have that

δ(X) = δ(Y ) = δ(Z) = δ(X ∪ Y ∪ Z) = E(X, Y, Z,W ). (3.72)

QED.

We will repeatedly use the well-known uncrossing result given in Lemma 3.4 below. We

present a proof for the sake of completeness. We emphasize that the lemma relies only on

the submodularity of the hypergraph cut function and in fact, holds even for submodular

functions. We say that two sets A,B cross if A ∩ B, A ∩ B, A ∩ B, and A ∩ B are all

non-empty.

Lemma 3.4. Let G = (V,E) be a hypergraph. Let A,B ⊆ V and ∅ ⊊ S ⊆ A ∩ B,

∅ ⊊ T ⊆ A ∩ B be sets such that (A,A) and (B,B) are minimum (S, T )-terminal cuts. If

A and B cross, then (A ∩ B,A ∩B) and (A ∪ B,A ∪B) are also minimum (S, T )-terminal

cuts.

Proof. Since S ⊆ A∩B and T ⊆ A∩B, we have that (A∩B,A ∩B) and (A∪B,A ∪B) are
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(S, T )-terminal cuts. Since (A,A) and (B,B) are minimum (S, T )-terminal cuts, we have

that

d(A) + d(B) ≤ d(A ∩B) + d(A ∪B). (3.73)

Since the cut function of a hypergraph is submodular, we also have that

d(A ∩B) + d(A ∪B) ≤ d(A) + d(B). (3.74)

Thus, we conclude that

d(A ∩B) + d(A ∪B) = d(A) + d(B), (3.75)

and therefore (A ∩ B,A ∩B) and (A ∪ B,A ∪B) are both minimum (S, T )-terminal cuts.

QED.

Corollary 3.3. Let A,B ⊆ V be sets such that (A,A) and (B,B) are minimum cuts. If A

and B cross, then (A ∩B,A ∩B) and (A ∪B,A ∪B) are also minimum cuts.

We now restate and prove Theorem 3.4.

Theorem 3.4. Let G = (V,E) be a hypergraph and P = (V1, V2) be a minimum cut. Then,

for all non-empty subsets T ⊆ V2, there exists a subset S ⊆ V1 with |S| ≤ 2 such that the

source minimal minimum (S, T )-terminal cut (A,A) satisfies δ(A) = δ(V1) and A ⊆ V1.

Proof. Let T ⊆ V be arbitrary and let H := {U ⊆ V \ T : (U,U) is a minimum cut in G}.
Suppose for contradiction that the theorem does not hold for some V1 ∈ H. For every

a, b ∈ V1, let Hab be the minimal set in H such that a, b ∈ Hab and δ(Hab) ̸= δ(V1) (a set

Hab with a, b ∈ Hab and δ(Hab) ̸= δ(V1) exists since we have assumed that the theorem does

not hold for V1).

Claim 3.13. Hab ⊆ V1 for every a, b ∈ V1.

Proof. Suppose for contradiction that there exist a, b ∈ V1 such that Hab ̸⊆ V1. Then

Hab ∩ V1 ̸= ∅. If Hab ∩ V1 = ∅, then V1 ⊆ Hab, and hence, V1 contradicts the minimality of

Hab. So, Hab ∩ V1 ̸= ∅. Since a ∈ Hab ∩ V1, and T ⊆ Hab ∩ V1, the sets Hab and V1 cross.

Consequently, by Corollary 3.3, the partition (Hab ∩ V1, Hab ∩ V1) is also a minimum cut,

and thus Hab ∩ V1 ∈ H. This contradicts the minimal choice of Hab. QED.

Claim 3.14. There exist distinct vertices x, y, z ∈ V1 such that x ̸∈ Hyz, y ̸∈ Hxz, z ̸∈ Hxy,

and the three hyperedge sets δ(Hxy ∩Hxz), δ(Hxy ∩Hyz), and δ(Hxz ∩Hyz) are not all equal.
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Proof. Let a, b ∈ V1 be vertices such that |Hab| is maximum. By the definition ofHab, we have

that δ(Hab) ̸= δ(V1), and since (Hab, Hab) is a minimum cut we must have d(Hab) = d(V1).

Therefore, δ(V1)\ δ(Hab) ̸= ∅, so let e ∈ δ(V1)\ δ(Hab), and let z ∈ e∩V1. By Claim 3.13, we

have that Hab ⊆ V1. Since z ∈ e and e ∈ δ(V1) \ δ(Hab), we have that z ̸∈ Hab. Let p ∈ Hab

be a vertex such that |Hpz ∩Hab| is maximum. Since z ∈ Hpz \Hab, we have that Hab ̸= Hpz.

Thus, by the choice of a and b, we have that Hab ̸⊆ Hpz. Therefore, Hab \ Hpz ̸= ∅.
Let y ∈ Hab \ Hpz. By our choice of p, we have that |Hpz ∩ Hab| ≥ |Hyz ∩ Hab|. Since

y ∈ (Hyz ∩Hab)\ (Hpz ∩Hab), we have that (Hpz ∩Hab)\Hyz ̸= ∅. Let x ∈ (Hpz ∩Hab)\Hyz.

We now analyze relationships between some of the sets that we have defined.

Proposition 3.2. y ̸∈ Hxz.

Proof. Suppose for contradiction that y ∈ Hxz. Then, since y ̸∈ Hpz, we have that Hxz ∩
Hpz ̸= ∅. By the choice of p, we have that |Hpz ∩Hab| ≥ |Hxz ∩Hab|. Since y ∈ (Hxz ∩Hab) \
Hpz, we have that (Hpz ∩Hab)\Hxz ̸= ∅. Thus, Hxz ∩Hpz ̸= ∅. Since z ∈ Hxz ∩Hpz, we have

Hxz ∩Hpz ̸= ∅. By Claim 3.13, we have Hxz ∩Hpz ̸= ∅. Thus, Hxz and Hpz cross. Therefore,

by Corollary 3.3, we have Hxz ∩Hpz ∈ H. Since Hxz ∩Hpz ⊊ Hxz and x, z ∈ Hxz ∩Hpz, by

the choice of x and z, the set Hxz ∩ Hpz contradicts the minimality of Hxz. Therefore, we

conclude that y ̸∈ Hxz. QED.

Proposition 3.3. Hxy ⊆ Hab.

Proof. Suppose for contradiction that Hxy ̸⊆ Hab. By our choice of a, b, we cannot have

Hab ⊆ Hxy either. We know that x, y ∈ Hxy ∩Hab, and since Hxy, Hab ⊆ V1 (by Claim 3.13),

we have that Hxy ∩Hab ̸= ∅. Therefore, Hxy and Hab cross. Thus, by Corollary 3.3, we have

that Hab ∩ Hxy ∈ H. Since Hxy ∩ Hab ⊊ Hxy and x, y ∈ Hab ∩ Hxy, we have that the set

Hab ∩Hxy contradicts the minimality of Hxy. Thus, we conclude that Hxy ⊆ Hab. QED.

We now show that x ̸∈ Hyz, y ̸∈ Hxz, and z ̸∈ Hxy. We have the following facts:

1. By our choice of x, we have that x ̸∈ Hyz.

2. By Proposition 3.2, we have that y ̸∈ Hxz.

3. By our choice of z, we have that z ̸∈ Hab, and therefore by Proposition 3.3, we have

that z ̸∈ Hxy.

Finally we note that the hyperedge e which we selected when choosing z contains both

z and some vertex r in V1. By definition, we have that z ∈ Hxz, Hyz. By Claim 3.13,

Hxz, Hyz ⊆ V1. Therefore, e ∈ δ(Hxz ∩ Hyz). By Claim 3.13, we have that Hab ⊆ V1, and
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hence, r ̸∈ Hab. However, by choice of e, we have that e ̸∈ δ(Hab), and hence e ∩Hab = ∅.
Therefore, by Proposition 3.3, we have that e ∩ Hxy = ∅, and hence e ∩ (Hxy ∩ Hxz) = ∅.
Thus, e ̸∈ δ(Hxy ∩ Hxz). Therefore, we conclude that δ(Hxz ∩ Hyz) ̸= δ(Hxy ∩ Hxz), and

hence the sets δ(Hxy∩Hxz), δ(Hxy∩Hyz), and δ(Hxz∩Hyz) are not all equal. This completes

the proof of Claim 3.14. QED.

Claim 3.15. Let x, y, z ∈ V1 be such that x ̸∈ Hyz, y ̸∈ Hxz, and z ̸∈ Hxy. Then

Hxy \ (Hxz ∪Hyz) = Hxz \ (Hxy ∪Hyz) = Hyz \ (Hxy ∪Hxz) = ∅.

Proof. We will prove that Hxy \ (Hxz ∪Hyz) = ∅. The arguments for Hxz \ (Hxy ∪Hyz) and

Hyz \ (Hxy ∪Hxz) are similar.

Let Q := Hxy \ (Hxz ∪ Hyz). We note that x ∈ Hxy ∩ Hxz, and therefore Hxy \ Q is

non-empty. Therefore (Hxy \ Q,Hxy \Q) is a cut. Since (Hxy, Hxy) is a minimum cut, this

means that

d(Hxy) ≤ d(Hxy \Q). (3.76)

The hyperedges which are in δ(Hxy) but not in δ(Hxy \Q) are the hyperedges in E(Q,Hxy).

The hyperedges which are in δ(Hxy \Q) but not δ(Hxy) are the hyperedges in E(Q,Hxy \Q).

Thus, inequality (3.76) implies that

|E(Q,Hxy)| ≤ |E(Q,Hxy \Q)|. (3.77)

Next we note that x ∈ Hxz \ Hyz, y ∈ Hyz \ Hxz, z ∈ Hxz ∩ Hyz, and, by Claim 3.13,

V1 ⊆ Hxz ∩ Hyz. Therefore, Hxz and Hyz cross. Thus, by Corollary 3.3, we have that

Hxz ∪Hyz ∈ H. If Q = ∅ we are done. Otherwise, we have that Hxy ∩ (Hxz ∪Hyz) = Q ̸= ∅,
y ∈ Hxy ∩ (Hxz ∪Hyz), z ∈ Hxy ∩ (Hxz ∪Hyz), and V1 ⊆ Hxy ∩ (Hxz ∪Hyz). Thus, Hxy and

Hxz ∪Hyz cross. Therefore, by Corollary 3.3, we have that Hxy ∪Hxz ∪Hyz ∈ H. Therefore,
we have that

d(Hxz ∪Hyz) = d(Hxy ∪Hxz ∪Hyz) = d(Q ∪ (Hxz ∪Hyz)). (3.78)

Since Q andHxz∪Hyz are disjoint, we have that the hyperedges which are in δ(Hxz∪Hyz) but

not in δ(Q∪ (Hxz ∪Hyz)) are the hyperedges of E(Q,Hxz ∪Hyz), and the hyperedges which

are in δ(Q∪(Hxz∪Hyz)), but not δ(Hxz∪Hyz) are the hyperedges of E(Q,Hxy ∪Hxz ∪Hyz).

Thus, Equation (3.78) implies that

|E(Q,Hxz ∪Hyz)| = |E(Q,Hxy ∪Hxz ∪Hyz)|. (3.79)
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Therefore, we have that

|E(Q,Hxy)| ≥ |E(Q,Hxy ∪Hxz ∪Hyz)| (3.80)

= |E(Q,Hxz ∪Hyz)| (3.81)

≥ |E(Q, (Hxz ∪Hyz) ∩Hxy)| (3.82)

= |E(Q,Hxy \Q)| (3.83)

≥ |E(Q,Hxy)|. (3.84)

Here the equation on the second line comes from Equation (3.79) and the inequality on the

last line comes from Inequality (3.77). Since the first and last terms in the inequality chain

are the same, equality holds throughout. Therefore, |E(Q,Hxy)| = |E(Q,Hxy \ Q)|, and
so d(Hxy) = d(Hxy \ Q). Thus, Hxy \ Q ∈ H. Since x, y ∈ Hxz ∪ Hyz, x, y ∈ Hxy \ Q.

Furthermore Hxy \ Q ⊆ Hxy. Since Hxy is a minimial element of H containing x and y, it

must be that Hxy \Q = Hxy, and thus Q = ∅. QED.

The next claim completes the proof of Theorem 3.4, because the conclusion of this claim

is in direct contradiction with the conclusion of Lemma 3.3. QED.

Claim 3.16. There exist non-empty and pairwise disjoint sets X, Y, Z ⊆ V1 such that

X, Y, Z,X ∪ Y,X ∪ Z, Y ∪ Z,X ∪ Y ∪ Z ∈ H, and δ(X), δ(Y ), δ(Z) are not all equal.

Proof. Let x, y, z ∈ V1 be such that x ̸∈ Hyz, y ̸∈ Hxz, and z ̸∈ Hxy, and the three hyperedge

sets δ(Hxy ∩ Hxz), δ(Hxy ∩ Hyz), and δ(Hxz ∩ Hyz) are not all equal. Such x, y, z exist by

Claim 3.14. Let

X ′ := Hxy ∩Hxz, (3.85)

Y ′ := Hxy ∩Hyz, and (3.86)

Z ′ := Hxz ∩Hyz. (3.87)

By Claim 3.15, we have that Hxy \ (Hxz ∪Hyz), Hxz \ (Hxy ∪Hyz), and Hyz \ (Hxy ∪Hxz)

are all empty, and hence Hxy = X ′ ∪ Y ′, Hxz = X ′ ∪ Z ′, and Hyz = Y ′ ∪ Z ′. Let

U := Hxy ∩Hxz ∩Hyz, (3.88)

W := Hxy ∪Hxz ∪Hyz, (3.89)

X := X ′ \ U, (3.90)

Y := Y ′ \ U, and (3.91)

Z := Z ′ \ U. (3.92)
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Since Hxy and Hxz cross (because x ∈ Hxy ∩Hxz, y ∈ Hxy \Hxz, and z ∈ Hxz \Hxy), we

have that X ′ ∈ H. Since x ̸∈ Hyz, we have that x ̸∈ U , and hence x ∈ X, so (X,X) is a

cut. Therefore,

d(X) ≥ d(X ′). (3.93)

The hyperedges which are in δ(X) but not δ(X ′) are the hyperedges of E(X,U). The hy-

peredges which are in δ(X ′) but not δ(X) are the hyperedges of E(U, Y ), E(U,Z), E(U,W ),

E(U, Y, Z), E(U, Y,W ), E(U,Z,W ), and E(U, Y, Z,W ). Thus, Equation (3.93) implies that

|E(X,U)| ≥ |E(U, Y )|+ |E(U,Z)|+ |E(U,W )|+

|E(U, Y, Z)|+ |E(U, Y,W )|+ |E(U,Z,W )|+ |E(U, Y, Z,W )|. (3.94)

We can derive symmetric inequalities for |E(Y, U)| and |E(Z,U)| by exchanging variable

names in the preceding argument. Summing these three inequalities together, we have that∑
A∈{X,Y,Z}

|E(A,U)| ≥ 2
∑

A∈{X,Y,Z}

(|E(A,U)|+ |E(A,U,W )|) + 3|E(U,W )|+

|E(U,X, Y )|+ |E(U,X,Z)|+ |E(U, Y, Z)|+

|E(U,X, Y,W )|+ |E(U,X,Z,W )|+ |E(U, Y, Z,W )|. (3.95)

Subtracting |E(X,U)| + |E(Y, U)| + |E(Z,U)| from both sides of this inequality, we have

that the sets E(U,X), E(U, Y ), E(U,Z), E(U,W ), E(U, Y, Z), E(U, Y,W ), E(U,Z,W ), and

E(U, Y, Z,W ) are all empty. Thus, δ(X) = δ(X ′), so X ∈ H. Similarly, all of the hyperedges

in δ(X ′ ∪ Y ′) which are not in δ(X ∪ Y ) are from sets that we have concluded are empty, so

δ(X ∪Y ) = δ(X ′ ∪Y ′) = δ(Hxy). Thus, X ∪Y ∈ H. Symmetrically, Y, Z,X ∪Z, and Y ∪Z
are all in H as well. Since X ∪Y and Y ∪Z cross, we have that X ∪Y ∪Z ∈ H, by Corollary

3.3. Since x ∈ X, y ∈ Y , z ∈ Z, X, Y, and Z are all non-empty. By definition, X, Y, and

Z are disjoint. Since {δ(X), δ(Y ), δ(Z)} = {δ(X ′), δ(Y ′), δ(Z ′)} = {δ(Hxy ∩ Hxz), δ(Hxy ∩
Hyz), δ(Hxz∩Hyz)}, we have that the three hyperedge sets δ(X), δ(Y ), δ(Z) are not all equal,

by the guarantee that we obtained from Claim 3.14. Thus, X, Y, Z satisfy the conditions of

the claim we are proving. QED.

3.7 PROOF OF THEOREM 3.5

We prove Theorem 3.5 in this section. We will need certain partition uncrossing and

partition aggregation results from [73] that rely on more careful counting of hyperedges
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than simply employing the submodularity inequality. We begin with some notation that

will help in such careful counting—our notation will be identical to the notation in [73].

Let (Y1, . . . , Yp,W, Z) be a partition of V . We recall that cost(Y1, . . . , Yp,W, Z) denotes the

number of hyperedges that cross the partition. We define the following quantities:

1. Let cost(W,Z) := |{e | e ⊆ W ∪Z, e∩W ̸= ∅, e∩Z ̸= ∅}| be the number of hyperedges

contained in W ∪ Z that intersect both W and Z.

2. Let α(Y1, . . . , Yp,W, Z) be the number of hyperedges that intersect Z and at least two

of the sets in {Y1, . . . , Yp,W}.

3. Let β(Y1, . . . , Yp, Z) be the number of hyperedges that are disjoint from Z but intersect

at least two of the sets in {Y1, . . . , Yp}.

For a partition (Y1, . . . , Yp,W, Z), we will be interested in the sum of cost(Y1, . . . , Yp,W, Z)

with the three quantities defined above which we denote as σ(Y1, . . . , Yp,W, Z), i.e.,

σ(Y1, . . . , Yp,W, Z) :=cost(Y1, . . . , Yp,W, Z) + cost(W,Z)

+ α(Y1, . . . , Yp,W, Z) + β(Y1, . . . , Yp, Z). (3.96)

The precise interpretation of the quantity σ(Y1, . . . , Yp,W, Z) will not be important for our

purposes—see [73] for the interpretation.

The following result from [73] shows that a collection of sets can be uncrossed to obtain

a partition with small σ-value. We note the similarity of the hypothesis of Lemma 3.5 with

the hypothesis of Theorem 3.5 and once again, refer to Figure 3.1 for an illustration of the

sets that appear in the statement of Lemma 3.5.

Lemma 3.5. [73]. Let G = (V,E) be a hypergraph and ∅ ≠ R ⊊ U ⊊ V . Let S =

{u1, . . . , up} ⊆ U \R for p ≥ 2. Let (Ai, Ai) be a minimum ((S ∪R) \ {ui}, U)-terminal cut.

Suppose that ui ∈ Ai \ (∪j∈[p]\{i}Aj) for every i ∈ [p]. Let

Z := ∩p
i=1Ai, W := ∪1≤i<j≤p(Ai ∩ Aj), and Yi := Ai −W ∀i ∈ [p].

Then, (Y1, . . . , Yp,W, Z) is a (p+ 2)-partition of V with

σ(Y1, . . . , Yp,W, Z) ≤ min{d(Ai) + d(Aj) : i, j ∈ [p], i ̸= j}.

Moreover, if p = 2, then the above inequality is an equation.
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The next lemma from [73] will help in aggregating the parts of a ℓ-partition P where

ℓ ≥ 2k to a k-partition K while controlling the cost of K.

Lemma 3.6. [73]. Let G = (V,E) be a hypergraph, let k ≥ 2 be an integer, and let

(Y1, . . . , Yp,W, Z) be a partition of V for some integer p ≥ 2k− 2. Then, there exist distinct

i1, . . . , ik−1 ∈ [p] such that

2cost
(
Yi1 , . . . , Yik−1

, V \ (∪k−1
j=1Yij)

)
≤cost(Y1, . . . , Yp,W, Z) + α(Y1, . . . , Yp,W, Z)

+ β(Y1, . . . , Yp, Z).

We now restate and prove Theorem 3.5.

Theorem 3.5. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer and ∅ ̸= R ⊊ U ⊊ V .

Let S = {u1, . . . , up} ⊆ U \R for p ≥ 2k− 2. Let (Ai, Ai) be a minimum ((S ∪R) \ {ui}, U)-

terminal cut. Suppose that ui ∈ Ai \ (∪j∈[p]\{i}Aj) for every i ∈ [p]. Then, the following two

hold:

1. There exists a k-partition (P1, . . . , Pk) of V with U ⊊ Pk such that

cost(P1, . . . , Pk) ≤
1

2
min{d(Ai) + d(Aj) : i, j ∈ [p], i ̸= j}.

2. Moreover, if there exists a hyperedge e ∈ E such that e intersects W := ∪1≤i<j≤p(Ai ∩
Aj), e intersects Z := ∩i∈[p]Ai, and e is contained in W ∪Z, then the inequality in the

previous conclusion is strict.

Proof. For the first conclusion of the theorem, we will use the same proof that appeared in

[73]. We need the details of this proof to prove the second conclusion of the theorem.

We begin by proving the first conclusion. By applying Lemma 3.5, we obtain a (p + 2)-

partition (Y1, . . . , Yp,W, Z) such that

σ(Y1, . . . , Yp,W, Z) ≤ min{d(Ai) + d(Aj) : i, j ∈ [p], i ̸= j} (3.97)

and moreover, U ⊆ W , where Yi = Ai −W for all i ∈ [p], W = ∪1≤i<j≤p(Ai ∩ Aj), and

Z = ∩i∈[p]Ai. We recall that p ≥ 2k − 2. Hence, by applying Lemma 3.6 to the (p + 2)-

partition (Y1, . . . , Yp,W, Z), we obtain a k-partition (P1, . . . , Pk) of V such that W ∪Z ⊆ Pk
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and

cost(P1, . . . , Pk)

≤ 1

2
(cost(Y1, . . . , Yp,W, Z) + α(Y1, . . . , Yp,W, Z) + β(Y1, . . . , Yp, Z)) (3.98)

≤ 1

2
(cost(Y1, . . . , Yp,W, Z) + cost(W,Z) + α(Y1, . . . , Yp,W, Z) + β(Y1, . . . , Yp, Z)) (3.99)

=
1

2
σ(Y1, . . . , Yp,W, Z) (3.100)

≤ 1

2
min{d(Ai) + d(Aj) : i, j ∈ [p], i ̸= j}. (3.101)

We note that U is strictly contained in Pk since U ∪ Z ⊆ W ∪ Z ⊆ Pk and Z is non-empty.

We now prove the second conclusion of the theorem. If there exists a hyperedge e ∈ E

such that e intersects W , e intersects Z, and e is contained in W ∪ Z, then cost(W,Z) > 0.

Consequently, inequality (3.99) in the above sequence of inequalities should be strict. QED.

3.8 CONCLUSION AND OPEN PROBLEMS

Several works in the literature have approached global cut and partitioning problems via

minimum (S, T )-terminal cuts (e.g., see [72, 73, 115, 133, 134]). Our work adds to this rich

literature by showing that Enum-Hypergraph-k-Cut can be solved via minimum (S, T )-

terminal cuts. In addition to the first deterministic polynomial-time algorithm for solving

Enum-Hypergraph-k-Cut, one of the main contributions of this chapter is an elegant

explanation for the number of minimum cut-sets in an n-vertex hypergraph being at most(
n
2

)
and a simple approach to enumerate all of them in a given hypergraph in deterministic

polynomial time based on min (S, T )-cuts.

We note that our deterministic run-time to solve Enum-Hypergraph-k-Cut is nO(k2)p,

where p is the size of the input hypergraph. Subsequent to the present work, we improved

the deterministic run-time to nO(k)p in a separate paper [75]. In that paper, we strengthened

Theorem 3.3 in a way that allowed it to solve Enum-Hypergraph-k-Cut as well as to

enumerate all minmax k-cut-sets (a k-cut-set F ⊆ E of a hypergraph H = (V,E) is a

minmax k-cut-set if there exists a partition V1, V2, . . . , Vk of V such that maxi∈[k] |δ(Vi)| ≤
maxi∈[k] |δ(Pi)| for every partition P1, P2, . . . , Pk of V and F = δ(V1, . . . , Vk)).

We mention an open question raised by our work. For a long time, the known upper bound

on the number of minimum k-partitions in connected graphs was O(n2k−2) [65, 71, 106] while

the known lower bound was Ω(nk) (cycle), where n is the number of vertices in the input

graph. A recent result improved the upper bound to O(nk) for fixed k which also resulted in a
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faster randomized algorithm to solve Graph-k-Cut for fixed k [66, 67]. We currently know

that the number of minimum k-cut-sets in hypergraphs is O(n2k−2) and is Ω(nk) (the lower

bound comes from graphs). Can we improve the upper bound on the number of minimum

k-cut-sets in hypergraphs to O(nk)?
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CHAPTER 4: MULTICRITERIA MIN-CUT

In this chapter we address counting and optimization variants of multicriteria global min-

cut and size-constrained min-k-cut in hypergraphs.

1. For an r-rank n-vertex hypergraph endowed with t hyperedge-cost functions, we show

that the number of multiobjective min-cuts is O(r2trn3t−1). In particular, this shows

that the number of parametric min-cuts in constant rank hypergraphs for a constant

number of criteria is strongly polynomial, thus resolving an open question by Aissi,

Mahjoub, McCormick, and Queyranne [81]. In addition, we give randomized algo-

rithms to enumerate all multiobjective min-cuts and all pareto-optimal cuts in strongly

polynomial-time.

2. We also address node-budgeted multiobjective min-cuts: For an n-vertex hypergraph

endowed with t vertex-weight functions, we show that the number of node-budgeted

multiobjective min-cuts is O(r2rnt+2), where r is the rank of the hypergraph, and the

number of node-budgeted b-multiobjective min-cuts for a fixed budget-vector b ∈ Rt
≥0

is O(n2).

3. We show that min-k-cut in hypergraphs subject to constant lower bounds on part sizes

is solvable in polynomial-time for constant k, thus resolving an open problem posed

by Queyranne [135]. Our technique also shows that the number of optimal solutions

is polynomial.

All of our results build on the random contraction approach of Karger [16]. Our tech-

niques illustrate the versatility of the random contraction approach to address counting and

algorithmic problems concerning multiobjective min-cuts and size-constrained k-cuts in hy-

pergraphs. The results in this chapter are based on joint work with Chandrasekaran and Xu

and appeared in Mathematical Programming in 2021 [83]. The research in this chapter was

supported in part by NSF grants CCF-1814613 and CCF-1907937.

4.1 INTRODUCTION

Cuts and partitioning play a central role in combinatorial optimization and have numer-

ous theoretical as well as practical applications. We consider multicriteria cut problems in

hypergraphs. Let G = (V,E) be an n-vertex hypergraph and c1, . . . , ct : E → R≥0 be t non-

negative hyperedge-cost functions, where t is a fixed constant and the hypergraph induced
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by hyperedges of positive ct cost is connected. The cost of a set of hyperedges F ⊆ E under

criterion i ∈ [t] is ci(F ) :=
∑

e∈F ci(e). For a partition X = (X1, . . . , Xk) of V , we use δ(X)

to denote the set of hyperedges that intersect at least two parts of X. For a subset U of

vertices, we will use U to denote V \ U and δ(U) to denote δ((U,U)). For a vertex v, we

will use δ(v) to denote δ({v}). A subset F of hyperedges is a k-cut if there exists a partition

X = (X1, . . . , Xk) of V such that F = δ(X). We refer to a 2-cut simply as a cut. We recall

that the rank of a hypergraph G is the size of the largest hyperedge in G (the rank of a

graph is 2).

Since we have several criteria, there may not be a single cut that is best for all criteria.

In multicriteria optimization, there are three important notions to measure the quality of a

cut: (i) parametric min-cuts, (ii) pareto-optimal cuts, and (iii) multiobjective min-cuts. We

define these notions now.

Definition 4.1. A cut F is a parametric min-cut if there exist multipliers µ1, . . . , µt ∈ R+

such that F is a min-cut in the hypergraph G with hyperedge costs given by cµ(e) :=∑t
i=1 µici(e) for all e ∈ E.

Definition 4.2. A cut F dominates another cut F ′ if ci(F ) ≤ ci(F
′) for every i ∈ [t] and

there exists i ∈ [t] such that ci(F ) < ci(F
′). A cut F is pareto-optimal if it is not dominated

by any other cut.

Definition 4.3. For a budget-vector b ∈ Rt−1
≥0 , a cut F is a b-multiobjective min-cut if

ci(F ) ≤ bi for every i ∈ [t− 1] and ct(F ) is minimum subject to these constraints. A cut F

is a multiobjective min-cut if there exists a non-negative budget-vector b ∈ Rt−1
≥0 for which

F is a b-multiobjective min-cut.

These three notions satisfy the following relationship with the containment being possibly

strict (see Section 4.5 for a proof):

Parametric min-cuts ⊆ Pareto-optimal cuts ⊆ Multiobjective min-cuts. (4.1)

There is also a natural notion of min-cuts under node-weighted budget constraints. Let

w1, . . . , wt : V → R≥0 be vertex-weight functions and c : E → R+ be a hyperedge-cost

function. For a budget-vector b ∈ Rt
≥0, a subset F ⊆ E of hyperedges is a node-budgeted

b-multiobjective min-cut if F = δ(U) for some subset ∅ ̸= U ⊊ V with
∑

u∈U wi(u) ≤ bi

for all i ∈ [t] and c(F ) is minimum among all such subsets of E. A cut F is a node-

budgeted multiobjective min-cut if there exists a non-negative budget-vector b for which F is

a node-budgeted b-multiobjective min-cut. In this chapter, we address the following natural

questions concerning multiobjective min-cuts and min-k-cuts:
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1. Multiobjective min-cuts: Is the number of multiobjective min-cuts at most strongly

polynomial?

2. Node-budgeted multiobjective min-cuts: Is the number of node-budgeted multiobjec-

tive min-cuts at most strongly polynomial?

3. Size-constrained min-k-cut: For fixed positive integers k and s1, . . . , sk (all constants),

a vertex-weight function w : V → Z+, and a hyperedge-cost function c : E → R+,

can we compute a k-cut F with minimum c(F ) subject to the constraint that F is the

set of hyperedges crossing some k-partition (U1, . . . , Uk) of V where
∑

u∈Ui
w(u) ≥ si

for every i ∈ [k] in polynomial-time? Is the number of optimal solutions strongly

polynomial?

Previous work. For single criterion, a classic result of Dinitz, Karzanov, and Lomonosov

[15] shows that the number of min-cuts in an n-vertex graph is O(n2) (also see Karger

[16]). The same upper bound was shown to hold for constant-rank hypergraphs by Kogan

and Krauthgamer [20] and for arbitrary-rank hypergraphs by Chekuri and Xu [38] and by

Ghaffari, Karger, and Panigrahi [34] via completely different techniques. For t = 2 criteria

in graphs, Mulmuley [136] showed an O(n19) upper bound on the number of parametric

min-cuts. For t criteria in constant-rank hypergraphs, Aissi, Mahjoub, McCormick, and

Queyranne [81] showed that the number of parametric min-cuts is Õ(mtn2), where m is the

number of hyperedges, using the fact that the number of approximate min-cuts in constant-

rank hypergraphs is polynomial. Karger [82] improved this bound to O(nt+1) by a clever and

subtle argument based on his random contraction algorithm; we will describe his argument

later. Karger also constructed a graph that exhibited Ω(nt/2) parametric min-cuts.

Armon and Zwick [78] showed that all pareto-optimal cuts in graphs can be enumer-

ated in pseudo-polynomial time. For t = 2 criteria in constant-rank hypergraphs, Aissi,

Mahjoub, McCormick, and Queyranne [81] showed an upper bound of Õ(n5) on the num-

ber of pareto-optimal cuts—this was the first result showing a strongly polynomial upper

bound. These authors raised the question of whether the number of pareto-optimal cuts is

strongly polynomial for a constant number t of criteria in constant-rank hypergraphs (or

even in graphs). Note that, by containment relationship (4.1), answering our first question

affirmatively would also answer their open question. On a related note, Aissi, Mahjoub,

and Ravi [79] designed a random contraction based algorithm to solve the b-multiobjective

min-cut problem in graphs. The correctness analysis of their algorithm also implies that the

number of b-multiobjective min-cuts in graphs for a fixed budget-vector b ∈ Rt−1
+ is O(n2t).
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We emphasize the subtle, but important, distinction between the number of b-multiobjective

min-cuts for a fixed budget-vector b and the number of multiobjective min-cuts.

Node-budgeted multiobjective min-cut has a rich literature extending nicely to submod-

ular functions. For graphs, Armon and Zwick [78] gave a polynomial-time algorithm to

find a minimum valued cut with at most b vertices in the smaller side. Goemans and Soto

[137] addressed the more general problem of minimizing a symmetric submodular function

f : 2V → R over a downward-closed family I. Recall that the hypergraph cut function

is symmetric submodular and the family of vertex subsets satisfying node-weighted budget

constraints is in fact downward-closed. Goemans and Soto extended Queyranne’s submodu-

lar minimization algorithm to enumerate all the O(n) minimal minimizers in I using O(n3)

oracle calls to the function f and the family I. Their result implies that the number of

minimal minimizers is O(n), but it is straightforward to see that the total number of mini-

mizers could be exponential. For the special case of node-budgeted multiobjective min-cuts

in graphs, Aissi, Mahjoub, and Ravi [79] gave a faster algorithm than that of Goemans and

Soto—their algorithm is based on random contraction, runs in Õ(n2)-time, and shows that

the number node-budgeted b-multiobjective min-cuts in graphs for a fixed budget-vector

b ∈ Rt
≥0 is O(n2).

For size-constrained min-k-cut, if we allow arbitrary sizes (i.e., arbitrary lower bounds),

then the problem becomes NP-hard even for k = 2 as it captures the well-studied min-

bisection problem in graphs. If we consider constant sizes but arbitrary k, then the problem

is again NP-hard in graphs [72]. So, our focus is on constant k and constant sizes. Guinez

and Queyranne [135] raised size-constrained min-k-cut with unit vertex-weights as a sub-

problem towards resolving the complexity of the submodular k-partitioning problem. In

submodular k-partitioning, we are given a submodular function f : 2V → R (by value ora-

cle) and a fixed constant integer k (e.g., k = 2, 3, 4, 5, . . .) and the goal is to find a k-partition

(U1, . . . , Uk) of the ground set V so as to minimize
∑k

i=1 f(Ui). The complexity of even spe-

cial cases of this problem are open: e.g., if the submodular function f is the cut function

of a given hypergraph, then its complexity is unknown.6 Guinez and Queyranne showed

surprisingly strong non-crossing properties between optimum solutions to size-constrained

(k − 1)-partitioning (constant size lower bounds on the parts) and optimum solutions to

k-partitioning. This motivated them to study the size-constrained min-k-cut problem in

hypergraphs for unit vertex-weights as a special case. They showed that size-constrained

6We note that if the submodular function f is the cut function of a given hypergraph, then the submodular
k-partition problem is not identical to hypergraph k-cut as the two objectives are different. However, if the
submodular function is the cut function of a given graph, then the submodular k-partition problem coincides
with the graph k-cut problem which is solvable in polynomial-time.

111



min-k-cut for unit vertex-weights is solvable in polynomial-time in constant-rank hyper-

graphs (with exponential run-time dependence on the rank) and mention the open problem

of designing an algorithm for it in arbitrary-rank hypergraphs. The size-constrained min-k-

cut problem for unit sizes (i.e., all size lower-bounds s1, . . . , sk are equal to one) is known

as the hypergraph k-cut problem. The hypergraph k-cut problem was shown to admit a

polynomial-time algorithm only recently [138] via a non-uniform random contraction algo-

rithm.

4.1.1 Our Contributions

Our high-level contribution is in showing the versatility of the random contraction tech-

nique to address algorithmic and counting problems concerning multiobjective min-cuts and

size-constrained min-k-cuts in hypergraphs. All of our results build on the random contrac-

tion technique with additional insights.

Our first result is a strongly polynomial upper bound on the number of multiobjective

min-cuts in constant-rank hypergraphs.

Theorem 4.1. The number of multiobjective min-cuts in an r-rank, n-vertex hypergraph

with t hyperedge-cost functions is O(r2rtn3t−1).

We emphasize that our upper bound is over all possible non-negative budget-vectors (in

contrast to the number of b-multiobjective min-cuts for a fixed budget-vector b). Theorem

4.1 and containment relationship (4.1) imply that the number of pareto-optimal cuts in

constant-rank hypergraphs is O(n3t−1) and hence, is strongly polynomial for constant number

of criteria. This answers the main open question posed by Aissi, Mahjoub, McCormick,

and Queyranne [81]. We also design randomized polynomial time algorithms to enumerate

all multiobjective min-cuts and all pareto-optimal cuts in constant-rank hypergraphs (see

Section 4.2.3). Independent of our work, Rico Zenklusen has also shown Theorem 4.1 using a

different approach. We learned after the conference submission of this work that his approach

also leads to deterministic polynomial time algorithms to enumerate all multiobjective min-

cuts and all pareto-optimal cuts in constant-rank hypergraphs. We will outline his proof

approach in the technical section.

Given the upper bound in Theorem 4.1, a discussion on the lower bound is in order.

We recall that Karger [82] constructed a graph with t edge-cost functions that exhibited

Ω(nt/2) parametric min-cuts. This is also a lower bound on the number of pareto-optimal

cuts and multiobjective min-cuts by (4.1). We improve this lower bound for pareto-optimal

cuts by constructing a graph with t edge-cost functions that exhibits Ω(nt) pareto-optimal
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cuts (see Section 4.2.4). Our instance also exhibits the same lower bound on the number of

b-multiobjective min-cuts for a fixed budget-vector b.

Our next result is an upper bound on the number of node-budgeted multiobjective min-

cuts and node-budgeted b-multiobjective min-cuts.

Theorem 4.2. Let G be an r-rank, n-vertex hypergraph with t vertex-weight functions.

Then, the following two hold:

1. The number of node-budgeted multiobjective min-cuts in G is O(r2rnt+2).

2. For a fixed budget-vector b ∈ Rt
≥0, the number of node-budgeted b-multiobjective

min-cuts in G is O(n2).

We draw the reader’s attention to the distinction between the two parts in Theorem 4.2.

The first part implies that the number of node-budgeted multiobjective min-cuts is strongly

polynomial in constant-rank hypergraphs for constant number of vertex-weight functions.

The second part implies that the number of node-budgeted b-multiobjective min-cuts for

any fixed budget-vector b ∈ Rt
≥0 is strongly polynomial in arbitrary-rank hypergraphs for

any number t of vertex-weight functions.

Our final result shows that the size-constrained min-k-cut problem can be solved in poly-

nomial time for constant k and constant sizes (in arbitrary-rank hypergraphs).

Theorem 4.3. Let k ≥ 2 be a fixed positive integer and let 1 ≤ s1 ≤ s2 ≤ . . . ≤ sk be fixed

positive integers. Let G = (V,E) be an n-vertex hypergraph with hyperedge-cost function

c : E → R+. Then, there exists a polynomial-time algorithm that takes (G, c) as input

and returns a fixed w-weighted s-size-constrained min-k-cut for any choice of vertex-weight

function w : V → Z+ with probability

Ω

(
1

n2σk−1+1

)
,

where σk−1 :=
∑k−1

i=1 si.

Theorem 4.3 resolves an open problem posed by Guinez and Queyranne [135]. A structural

consequence of Theorem 4.3 is that the number of size-constrained min-k-cuts (over all

possible node-weight functions w : V → Z+) in a given hypergraph is polynomial for constant

sizes and constant k.

We refer the reader to Table 4.1 for a comparison of known results and our contributions.
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Problem Graphs r-rank Hypergraphs
Hypergraphs

# of Parametric Min-Cuts O(nt+1) [82] O(2rnt+1) [82] OPEN
Ω(nt/2) [82]

# of Pareto-Optimal Cuts Õ(n5) for t = 2 [81] O(r2rtn3t−1) OPEN
O(n3t−1) [Thm 4.1] [Thm 4.1]
Ω(nt) [Thm 4.7]

# of b-Multiobjective O(n2t) [79] O(r2rtn2t) OPEN
Min-Cuts Ω(nt) [Thm 4.7] [Thm 4.4]

# of Multiobjective O(n3t−1) [Thm 4.1] O(r2rtn3t−1) OPEN
Min-Cuts Ω(nt) [Thm 4.7] [Thm 4.1]

# of Node-Budgeted O(n2) [79] O(n2) O(n2)
b-Multiobjective Min-Cuts [Thm 4.2] [Thm 4.2]

# of Node-Budgeted O(nt+2) [Thm 4.2] O(r2rnt+2) OPEN
Multiobjective Min-Cuts [Thm 4.2]

Node-Weighted Poly-time [135] Poly-time [135] Poly-time
s-Size-Constrained k-cut [Thm 4.3]

(const. k and const. s ∈ Zk)

Table 4.1: Here, t denotes the number of criteria (i.e., the number of hyperedge-cost/vertex-
weight functions), r denotes the rank of the hypergraph, and n denotes the number of
vertices.

4.1.2 Technical Overview

As mentioned earlier, all our results build on the random contraction technique introduced

by Karger [16] to solve the global min-cut problem in graphs. Here, a uniform random edge

of the graph is contracted in each step until the graph has only two nodes; the set of edges

between the two nodes is returned as the cut. Karger showed that this algorithm returns a

fixed global min-cut with probability Ω(n−2). As a consequence, the number of min-cuts in an

n-vertex graph is O(n2). The algorithm extends naturally to r-rank hypergraphs, however

the naive analysis will only show that the algorithm returns a fixed global min-cut with

probability Ω(n−r). Kogan and Krauthgamer [20] introduced an LP-based analysis thereby

showing that the algorithm indeed succeeds with probability Ω(2−rn−2). As a consequence,

the number of global min-cuts in constant-rank hypergraphs is also O(n2).

In a recent work, Karger observed that uniform random contraction can also be used to

bound the number of parametric min-cuts in constant-rank hypergraphs. We describe his

argument for graphs since two of our theorems build on it. Suppose we fix the multipliers

µ1, . . . , µt in the parametric min-cut problem, then a fixed min cµ-cost cut can be obtained

with probability Ω(n−2) by running the random contraction algorithm with respect to the
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edge-cost function cµ. Karger suggested an alternative viewpoint of the execution of the

algorithm for the edge-cost function cµ. For simplicity, we assume parallel edges instead of

costs, i.e., ci(e) ∈ {0, 1} for every edge e and every criterion i ∈ [t]. Let Ei be the set of

edges with non-zero weight in the i’th criterion. The execution of the random contraction

algorithm wrt cµ can alternatively be specified as follows: a permutation πi of the edges

in Ei for each i ∈ [t] and an interleaving indicating at each step whether the algorithm

contracts the next edge from π1 or π2 or . . . or πt. Critically, the sequences πi for every

i ∈ [t] can be assumed to be uniformly random. Thus, we can move all randomness upfront,

namely pick a uniform random permutation πi for each criterion i ∈ [t]. Now, instead

of returning one cut, we return the collection of cuts produced by contracting along all

possible interleavings. This modified algorithm no longer depends on the specific multipliers

µ1, . . . , µt and hence, a parametric min-cut for any fixed choice of multipliers µ1, . . . , µt will be

in the output collection with probability at least Ω(n−2). It remains to bound the number of

interleavings since that determines the number of cuts in the returned collection: the crucial

observation here is that the number of interesting interleavings is only nt−1. This is because

interleaved contractions produce the same final graph as performing a certain number of

contractions according to π1 (until the number of vertices is, say, n1), then a certain number

of contractions based on π2 (until the number of vertices is, say, n2), and so on. So, the order

of contractions becomes irrelevant and only the numbers of vertices n1, . . . , nt are relevant.

Overall, this implies that the number of parametric min-cuts is O(nt+1). We emphasize that

this interleaving argument relies crucially on the basic random contraction algorithm picking

edges to contract according to a uniform distribution (allowing the permutations π1, . . . , πt

to be uniform random permutations).

Next, we describe our approach underlying the proof of Theorem 4.1, but for graphs. In

order to bound the number of multiobjective min-cuts through the interleaving argument,

we first need a random contraction based algorithm to solve the b-multiobjective min-cut

problem. Indeed, Aissi, Mahjoub, and Ravi [79] designed a random contraction based algo-

rithm to solve the b-multiobjective min-cut problem in graphs. Their algorithm proceeds as

follows: For each i ∈ [t−1], let Ui be the set of vertices u ∈ V −∪i−1
j=1Uj for which ci(δ(u)) > bi

(known as the set of i-infeasible vertices), and let Ut := V −∪t−1
j=1Uj. In each step, they pick

i ∈ [t] with probability proportional to the number of i-infeasible vertices (i.e., |Ui|) and

pick a random edge e among the ones incident to Ui with probability proportional to ci(e),

contract e, and repeat. Unfortunately, this algorithm does not have the uniform distribution

that is crucially necessary to apply Karger’s interleaving argument. To introduce uniformity

to the distribution, we modify this algorithm in two ways:
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1. At each step we deterministically choose the criterion i corresponding to the largest

Ui (as opposed to picking i randomly with probability proportional to |Ui|).

2. Next, we choose a uniform random edge e from among all edges in the graph with

probability proportional to ci(e) (as opposed to picking an edge only from among the

edges incident to Ui). We contract this chosen edge e.

These two features bring a uniform distribution property to the algorithm, which in turn,

allows us to apply the interleaving argument. With these two features, we show that the al-

gorithm returns a fixed b-multiobjective min-cut for a fixed budget-vector b with probability

Ω(n−2t). Armed with the two features, we move all randomness upfront using the interleav-

ing argument. As a consequence, we obtain that the total number of multiobjective min-cuts

(irrespective of the choice of budget-vector b) is O(n3t−1). For constant-rank hypergraphs,

we perform an LP-based analysis of our algorithm for b-multiobjective min-cut (thus, ex-

tending Kogan and Krauthgamer’s analysis) to arrive at the same success probability. The

interleaving argument for constant-rank hypergraphs proceeds similarly.

We emphasize that the interleaving argument does not extend to arbitrary-rank hyper-

graphs. This is because the currently known random contraction based algorithms for min-

cut in arbitrary-rank hypergraphs crucially require non-uniform contractions (the next hy-

peredge to contract is chosen from a distribution that depends on the current sizes of all

hyperedges), so we cannot assume that the permutations π1, π2, . . . , πt are uniformly ran-

dom. Consequently, we do not even know if the number of parametric min-cuts in a hyper-

graph is at most strongly polynomial. Another interesting open question here is whether

the b-multiobjective min-cut problem in hypergraphs is solvable in polynomial-time even for

t = 2 criteria. We have arrived at hypergraph instances (with large rank) for which Aissi,

Mahjoub, and Ravi’s approach (as well as our modified approach) will never succeed, even

with non-uniform random contractions.

Next, we outline the proof of Theorem 4.2. The approach is to again design a random con-

traction algorithm that returns a fixed node-budgeted b-multiobjective min-cut with prob-

ability Ω(n−2) (in both constant-rank and arbitrary-rank hypergraphs). Such an algorithm

would imply the second part of the theorem immediately while the first part would follow

if we can apply an interleaving-like argument (i.e., the designed algorithm performs uni-

form random contractions). Our approach is essentially an extension of the approach by

Goemans and Soto who suggested contracting the infeasible vertices together (a vertex u

is infeasible if wi(u) > bi for some i ∈ [t]). Aissi, Mahjoub, and Ravi show that doing

this additional step after each random contraction step returns a fixed node-budgeted b-

multibjective min-cut with probability Ω(n−2) in graphs. Our main contribution is showing
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that this additional “contracting infeasible vertices together” step in conjunction with (1)

uniform random contractions for constant-rank hypergraphs and (2) non-uniform random

contractions for arbitrary hypergraphs succeeds with the required probability. Next, a naive

interleaving-like argument can be applied for constant-rank hypergraphs to conclude that the

number of node-budgeted multiobjective min-cuts is O(nt+3). We improve this to O(nt+2)

with a more careful argument.

Finally, we outline our approach for Theorem 4.3. Guinez and Queyranne address size-

constrained k-cut in constant-rank hypergraphs for unit vertex-weights by performing uni-

form random contractions until the number of nodes in the hypergraph is close to
∑k

i=1 si

at which point they return a uniform random cut. Their success probability has exponen-

tial dependence on the rank. The key technical ingredient to bring down the exponential

dependence on rank is the use of non-uniform contractions. For the special case of unit sizes

and unit vertex-weights (i.e., the hypergraph k-cut problem), Chandrasekaran, Xu, and Yu

[138] introduced an explicit non-uniform distribution that leads to a success probability of

Ω(n−2(k−1)). Our algorithm extends the non-uniform distribution to arbitrary but constant

sizes (as opposed to just unit sizes), yet without depending on vertex-weights. Our analysis

takes care of the vertex-weight function through weight tracking, i.e., by declaring the weight

of a contracted node to be the sum of the weight of the vertices in the hyperedge being con-

tracted. We note that our algorithm’s success probability when specialized to the case of

unit vertex-weights and unit sizes is weaker than the success probability of the algorithm by

Chandrasekaran, Xu, and Yu (by a factor of n). We leave it as an open question to improve

this. On the other hand, our algorithm has the added advantage that it does not even take

the vertex-weight function w as input and yet succeeds in returning a w-vertex-weighted

s-size-constrained k-cut for any choice of w with inverse polynomial probability.

Organization. In Section 4.2, we bound the number of multiobjective min-cuts (and prove

Theorem 4.1), give efficient algorithms to enumerate all multiobjective min-cuts and all

pareto-optimal cuts, and present lower bounds on the number of pareto-optimal cuts and

the number of b-multiobjective min-cuts. In Section 4.3, we address node-budgeted multi-

objective min-cuts and prove Theorem 4.2. In Section 4.4, we give an algorithm to solve

size-constrained min-k-cut, thereby proving Theorem 4.3. In Section 4.5 we show some re-

lationships between the different kinds of multicriteria cuts that we consider. In Section 4.6

we conclude by discussing some open problems.
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4.1.3 Preliminaries

We define the random contraction procedure that is central to all of our algorithms. Let

G = (V,E) be a hypergraph, and let U ⊆ V be a set of vertices in G. We define G contract

U , denoted G/U , to be a hypergraph on the vertex set (V \ U) ∪ {u}, where u is a newly

introduced vertex. The hyperedges of G/U are defined as follows. For each hyperedge e ∈ E

of G, such that e ̸⊆ U , G/U has a corresponding hyperedge e′, where e′ := e if e ⊆ V \ U
and e′ := (e \ U) ∪ {u} otherwise, and ci(e

′) = ci(e) for every i ∈ [t]. If w is a vertex-weight

function for G, then we will also use w as a vertex-weight function for G/U . We define the

weight of the newly introduced vertex u as w(u) :=
∑

v∈U w(v).

We will need the following lemma that will be used in the analysis of two of our algorithms.

Lemma 4.1. Let r, γ, n be positive integers with n ≥ γ ≥ r + 1 > 2. Let f : N→ R+ be a

positive-valued function defined over the natural numbers. Then, the optimum value of the

linear program defined below is min2≤j≤r(1− j
γ−r+j

)f(n− j + 1).

minimize
x2,...,xr,y2,...,yr

r∑
j=2

(xj − yj)f(n− j + 1)

subject to 0 ≤ yj ≤ xj ∀j ∈ {2, . . . , r}
r∑

j=2

xj = 1

γ
r∑

j=2

yj ≤
r∑

j=2

j · xj

Proof. Setting x2 = 1 and the rest of the variables to zero gives a feasible solution to the

linear program (LP). Thus, the LP is feasible. Let j ∈ {2, . . . , r}. Since yj ≥ 0 and xj ≤ 1,

we have that xj − yj ≤ 1. Since f is positive valued, we have that f(n − j + 1) ≥ 0 for

every j ∈ [2, r], so it follows that (xj − yj)f(n − j + 1) ≤ f(n − j + 1). Therefore, we

have
∑r

j=2(xj − yj)f(n− j + 1) ≤
∑r

j=2 f(n− j + 1). Thus, the objective value of this LP

is bounded. Since the LP is feasible and bounded, there exists an extreme point optimum

solution to this LP. The LP has 2r − 2 variables and 2r equations, so every extreme point

optimum will have at least 2r − 2 tight constraints and at most 2 non-tight constraints.

We now show that the final constraint of the LP is tight for every optimal solution (x, y).

Let (x, y) be an optimal solution. We first note that xj > 0 for some j ∈ {2, . . . , r}, by the

third constraint. Therefore it is impossible that yj = 0 for every j ∈ {2, . . . , r}, since, if
this were the case, we could choose some j ∈ {2, . . . , r} such that xj > 0 and then increase
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yj by a small amount to improve the value of the objective function without violating any

constraints, contradicting optimality. Now, since γ ≥ r + 1, we have

γ

r∑
j=2

yj ≥
r∑

j=2

(r + 1)yj >
r∑

j=2

j · yj. (4.2)

This implies that we cannot have yj = xj for all j, otherwise (x, y) would violate the final

constraint of the LP. Hence, at least one of the yj ≤ xj constraints must be slack. Let

j ∈ {2, . . . , r} be such that yj < xj. If the final constraint was slack, increasing the value of

yj by a very small amount would improve the objective value of (x, y) without violating any

constraints. Therefore, since (x, y) is optimal, the final constraint must be tight.

Let (x, y) be an extreme point optimal solution. Since we know that
∑r

j=2 xj = 1 and

xj ≥ 0 for every j ∈ {2, . . . , r}, we have
∑r

j=2 j · xj > 0. Since the final constraint is tight

for (x, y), we must have γ
∑r

j=2 yj > 0. This implies that there exists j ∈ [2, r] such that

yj > 0. Thus, we conclude that the two slack constraints must be 0 ≤ yj1 and yj2 ≤ xj2 for

some j1, j2 ∈ {2, . . . , r}. We consider two cases.

Case 1: Suppose j1 = j2. Then we have that 0 < yj < xj = 1 for some j ∈ {2, . . . , r}, and
xj′ , yj′ = 0 for every j′ ∈ {2, . . . , r} \ {j}. Therefore, we can simplify our LP to

minimize
yj

(1− yj)f(n− j + 1) (4.3)

subject to 0 ≤ yj ≤ 1 (4.4)

γyj = j. (4.5)

The only (and therefore optimal) solution to this LP is yj =
j
γ
, which achieves an objective

value of (
1− j

γ

)
f(n− j + 1). (4.6)

Case 2: Suppose j1 ̸= j2. Then we have that 0 < yj1 = xj1 , and 0 = yj2 < xj2 . We note

that xj2 = 1− xj1 , and therefore we can simplify the LP to

minimize
xj1

(1− xj1)f(n− j2 + 1) (4.7)

subject to 0 ≤ xj1 ≤ 1 (4.8)

γxj1 = j1 · xj1 + j2 · (1− xj1). (4.9)

Solving the second constraint for xj1 yields xj1 =
j2

γ−j1+j2
, and therefore our optimum value
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is (
1− j2

γ − j1 + j2

)
f(n− j2 + 1). (4.10)

We conclude that the optimum value of the LP is equal to the minimum of the values

from these two cases, that is,

min

{
min

j∈{2,...,r}

{(
1− j

γ

)
f(n− j + 1)

}
, min

j1,j2∈{2,...,r}

{(
1− j2

γ − j1 + j2
)f(n− j2 + 1)

)}}
.

(4.11)

Since (1− j2
γ−j1+j2

) is decreasing in j1 and f(n− j2 + 1) is always positive, we have

min
j1,j2∈{2,...,r}

{(
1− j2

γ − j1 + j2

)
f(n− j2 + 1)

}
= min

j∈{2,...,r}

{(
1− j

γ − r + j

)
f(n− j + 1)

}
.

(4.12)

Thus, since j ≤ r, the optimum value of the LP is equal to

min
j∈{2,...,r}

{
min

{
1− j

γ
, 1− j

γ − r + j

}
f(n− j + 1)

}
(4.13)

= min
j∈{2,...,r}

{(
1− j

γ − r + j

)
f(n− j + 1)

}
. (4.14)

QED.

4.2 MULTIOBJECTIVE MIN-CUTS AND PARETO-OPTIMAL CUTS

In this section, we give upper and lower bounds on the number of multiobjective min-cuts

and pareto-optimal cuts and prove Theorem 4.1 (see Definitions 4.3 and 4.2).

Let G = (V,E) be an r-rank hypergraph and let c1, . . . , ct : E → R≥0 be cost functions

on the hyperedges of G such that the hypergraph induced by hyperedges of positive ct cost

is connected. We note that the assumption that the hypergraph induced by hyperedges of

positive ct cost is connected is required to say that the number of b-multiobjective min-cuts

in G is polynomial, since a complete graph where every edge has zero ct cost will have

exponentially many b-multiobjective min-cuts for sufficiently large b.

We begin with a randomized algorithm for the b-multiobjective min-cut problem in Section

4.2.1. We take an alternative viewpoint of this randomized algorithm in Section 4.2.2 to prove

Theorem 4.1. Since all pareto-optimal cuts are multiobjective min-cuts, Theorem 4.1 also

implies that the number of pareto-optimal cuts in an r-rank n-vertex hypergraph G with t

hyperedge-cost functions is O(r2rtn3t−1). In Section 4.2.3, we give randomized polynomial-

time algorithms to enumerate all pareto-optimal cuts and all multiobjective min-cuts. In
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Section 4.2.4, we show a lower bound of Ω(nt) on the number of pareto-optimal cuts and on

the number of b-multiobjective min-cuts.

4.2.1 Finding b-Multiobjective Min-Cuts

In this section, we design a randomized algorithm for the b-multiobjective min-cut prob-

lem, which is formally defined below.

b-Multiobjective Min-Cut

Given: A hypergraph G = (V,E) with hyperedge-cost functions
c1, . . . , ct : E → R≥0, such that the hypergraph induced by hyper-
edges of positive ct cost is connected, and a budget-vector b ∈ Rt−1

≥0 .

Goal: A b-multiobjective min-cut.

Problem 4.1: b-Multiobjective Min-Cut

We use Algorithm 4.1. We summarize its correctness and run-time guarantees in Theorem

4.4.

b-Multiobjective-Min-Cut(G, r, t, c, b):
Input: An r-rank hypergraph G = (V,E), hyperedge-cost functions

c1, . . . , ct : E → R≥0 and a budget-vector b ∈ Rt−1
≥0 .

If |V | ≤ rt:
X ← a random subset of V
return δ(X)

For i = 1, . . . , t− 1:

Ui ← {v ∈ V \ (
⋃i−1

j=1 Uj) : ci(δ(v)) > bi}}
Ut ← V \

⋃t−1
j=1 Uj

i← argmaxj∈[t] |Uj |
e← a random hyperedge chosen according to Pr[e = e′] = ci(e

′)
ci(E)

G′ ← G/e
Return b-Multiobjective-Min-Cut(G′, r, t, c, b)

Algorithm 4.1: b-Multiobjective Min-Cut

Theorem 4.4. Let G = (V,E) be an r-rank n-vertex hypergraph with hyperedge-cost

functions c1, . . . , ct : E → R≥0, such that the hypergraph induced by hyperedges of positive ct

cost is connected, and let b ∈ Rt−1
≥0 be a budget-vector. Let F be an arbitrary b-multiobjective

121



min-cut. Then, Algorithm 4.1 outputs F with probability at least Qn, where

Qn :=

 1
2rt

if n ≤ rt, and

2t+1
2rt(rt+1)

(
n−t(r−2)

2t

)−1
if n > rt.

Moreover, the algorithm can be implemented to run in polynomial time.

Proof. We note that the sets Ui can be computed in polynomial time, and the algorithm

recomputes them at most n times. Random contraction can also be implemented in polyno-

mial time, and therefore the overall run-time of the algorithm is polynomial. We also note

that whenever we contract a hyperedge, ci(E) > 0. This is because, if i < t, then in order

for Ui to be the largest of U1, . . . , Ut, some vertex v must have ci(δ(v)) > bi ≥ 0, and if i = t,

then ct(E) > 0 since the hypergraph induced by hyperedges of positive ct cost is connected.

We now bound the correctness probability by induction on n. For the base case, we

consider n ≤ rt. In this case, the algorithm returns δ(X) for a random X ⊆ V . There are

2n possible values for X, and F = δ(X) for at least one of them. Thus, the probability that

the algorithm returns F is at least 1
2n
≥ 1

2rt
= Qn.

Next, we prove the induction step. Let n > rt and assume that the theorem holds for all

hypergraphs with at most n − 1 vertices and rank at most r. We will need the following

claim.

Claim 4.1. The algorithm outputs F with probability at least the optimum value of the

following linear program.

minimize
x2,...,xr,y2,...,yr

r∑
j=2

(xj − yj)Qn−j+1

subject to 0 ≤ yj ≤ xj ∀j ∈ {2, . . . , r}
r∑

j=2

xj = 1

|Ui|
r∑

j=2

yj ≤
r∑

j=2

j · xj

Proof. Since n > rt, when the algorithm is executed on G it will contract a randomly chosen

hyperedge and recurse. Let e′ be the random hyperedge chosen by the algorithm. If e′ ̸∈ F ,

then F will still be a b-multiobjective min-cut in G/e′. We observe that G/e′ is a hypergraph

with n− |e′|+1 vertices and the rank of G/e′ is at most the rank of G. Therefore, if e′ ̸∈ F ,

then the algorithm will output F with probability at least Qn−|e′|+1.
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Let i ∈ [t] be the index of the cost function chosen by the algorithm. Let

Ej := {e ∈ E : |e| = j}, (4.15)

xj := Pr[e′ ∈ Ej] =
ci(Ej)

ci(E)
, and (4.16)

yj := Pr[e′ ∈ Ej ∩ F ] =
ci(Ej ∩ F )

ci(E)
. (4.17)

As we noted above, ci(E) > 0 always, so these values are well-defined. We note that Ej

is the set of hyperedges of size j, xj is the probability of picking a hyperedge of size j to

contract, and yj is the probability of picking a hyperedge of size j from F to contract. We

know that

Pr[Algorithm returns the cut F ] ≥
r∑

j=2

(xj − yj)Qn−j+1. (4.18)

The values of xj and yj will depend on the structure of G. However we can deduce some

relationships between them. Since 0 ≤ ci(Ej ∩F ) ≤ ci(Ej) for every j ∈ {2, . . . , r}, we know
that

0 ≤ yj ≤ xj for every j ∈ {2, . . . , r}. (4.19)

Moreover, xj is the probability of picking a hyperedge of size j. Hence,

r∑
j=2

xj = 1. (4.20)

Next, we show that for every i ∈ [t] and every v ∈ Ui, we have

ci(F ) ≤ ci(δ(v)). (4.21)

If i < t, then ci(F ) ≤ bi < ci(δ(v)) for every v ∈ Ui. Let i = t. We recall that F is a

b-multiobjective min-cut. Since every cut induced by a single vertex in Ut satisfies all of the

budgets, no such cut can have a better ct-cost than F , so ct(F ) ≤ ct(δ(v)) for every v ∈ Ut.

From inequality (4.21), we conclude that

ci(F ) ≤
∑

v∈Ui
ci(δ(v))

|Ui|
≤
∑

v∈V ci(δ(v))

|Ui|
=

∑
e∈E |e|ci(e)
|Ui|

=

∑r
j=2 j · ci(Ej)

|Ui|
. (4.22)

123



Therefore
r∑

j=2

yj = Pr[e′ ∈ F ] =
ci(F )

ci(E)
≤ 1

|Ui|

r∑
j=2

j · xj. (4.23)

Thus, we have that

|Ui|
r∑

j=2

yj ≤
r∑

j=2

j · xj. (4.24)

The minimum value of our lower bound in equation (4.18) over all choices of xj and yj

that satisfy inequalities (4.19), (4.20), and (4.24) is a lower bound on the probability that

the algorithm outputs F . QED.

Let Ui be the largest among the sets U1, . . . , Ut that the algorithm generates when executed

on input (G, r, t, c, b). Claim 4.1 tells us that the algorithm outputs F with probability at

least the optimum value of the linear program from the claim.

The linear program in Claim 4.1 is exactly the linear program from Lemma 4.1 with

γ = |Ui| and f(n) := Qn. To apply Lemma 4.1, we just need to show that n ≥ |Ui| ≥ r + 1.

We recall that Ui is the largest of the t sets that the algorithm constructs. Each of these sets

is a subset of V , so we can conclude that |Ui| ≤ |V | = n. We also know from the construction

of the sets U1, . . . , Ut that they partition V . This means that
∑t

j=1 |Uj| = n. Since Ui is the

largest of the sets, we must have |Ui| ≥ n
t
. Since n > rt, this means |Ui| ≥ rt+1

t
> r. Thus

|Ui| > r, and since r and |Ui| are integers, we conclude that |Ui| ≥ r + 1. Therefore, we can

apply Lemma 4.1 with γ = |Ui| to conclude that

Pr[Algorithm returns the cut F ] ≥ min
2≤j≤r

(
1− j

|Ui| − r + j

)
Qn−j+1. (4.25)

The following claim completes the proof of the theorem. QED.

Claim 4.2. For every j ∈ {2, . . . , r}, we have(
1− j

|Ui| − r + j

)
Qn−j+1 ≥ Qn

Proof. Let j ∈ {2, . . . , r}. The given inequality is equivalent to
Qn−j+1

Qn
≥ |Ui|−r+j

|Ui|−r
. Since Ui

is the largest among U1, . . . , Ut which together partition V , we have |Ui| ≥ n
t
. Consequently,

|Ui|−r+j
|Ui|−r

= 1 + j
|Ui|−r

≤ 1 + jt
n−rt

. Therefore, it suffices to prove that
Qn−j+1

Qn
≥ 1 + jt

n−tr
. We

case on the value of n− j + 1.
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Case 1: Suppose that n− j + 1 > rt. Then, we have

Qn−j+1

Qn

=

(
n−t(r−2)

2t

)(
n−j+1−t(r−2)

2t

) =
2t−1∏
ℓ=0

n− t(r − 2)− ℓ

n− j + 1− t(r − 2)− ℓ
. (4.26)

We consider two sub-cases based on the value of j.

Case 1.a: Suppose that j > 2t. Then, we observe that

2t−1∏
ℓ=0

n− t(r − 2)− ℓ

n− j + 1− t(r − 2)− ℓ
≥
(

n− t(r − 2)

n− j + 1− t(r − 2)

)2t

(4.27)

=

(
1 +

j − 1

n− j + 1− t(r − 2)

)2t

(4.28)

≥ 1 +
2t(j − 1)

n− j + 1− t(r − 2)
(4.29)

≥ 1 +
jt+ (j − 2)t

n− rt
(4.30)

≥ 1 +
jt

n− rt
. (4.31)

We use j > 2t in the second to last inequality and j ≥ 2 in the final inequality.

Case 1.b: Suppose that j ≤ 2t. Then we can cancel additional terms from the right hand

side of equation (4.26) to obtain that

2t−1∏
ℓ=0

n− t(r − 2)− ℓ

n− j + 1− t(r − 2)− ℓ
=

j−2∏
ℓ=0

n− t(r − 2)− ℓ

n− tr − ℓ
(4.32)

≥
(
n− t(r − 2)

n− tr

)j−1

(4.33)

=

(
1 +

2t

n− rt

)j−1

(4.34)

≥ 1 +
2t(j − 1)

n− rt
(4.35)

≥ 1 +
jt

n− rt
. (4.36)

Thus, in either subcase, our desired inequality holds.

Case 2: Suppose that n− j + 1 ≤ rt. Now the expression for Qn−j+1 is different. Since we
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still know that n ≥ rt+ 1 and j ≤ r, we conclude that

Qn−j+1

Qn

=
(rt+ 1)

(
n−t(r−2)

2t

)
2t+ 1

(4.37)

≥
(rt+ 1)

(
rt+1−t(r−2)

2t

)
2t+ 1

(4.38)

= rt+ 1 (4.39)

≥ 1 + jt (4.40)

≥ 1 +
jt

n− rt
. (4.41)

Thus, our desired inequality holds in all cases. QED.

4.2.2 Finding Multiobjective Min-Cuts

In this section, we present Algorithm 4.2, which does not take a budget-vector as input, yet

outputs any multiobjective min-cut (for any choice of budget-vector) with inverse polynomial

probability. This is accomplished by returning a collection of cuts.

In contrast to Algorithm 4.1, all of the randomness in Algorithm 4.2 (except for the selec-

tion of a random cut in the base case) occurs upfront through the selection of a permutation

of the hyperedges. Theorem 4.5 summarizes the guarantees of Algorithm 4.2.

Theorem 4.5. Let G be an r-rank, n-vertex hypergraph with t hyperedge-cost functions.

Then, a fixed multiobjective min-cut F is in the collection returned by Algorithm 4.2 with

probability
Ω(n−2t)

r2rt
.

Moreover, the algorithm outputs at most nt−1 cuts.

Proof. We begin by showing the second part of the theorem. The algorithm outputs at most

one cut for each choice of n1, . . . , nt−1 ∈ [n] (or just one cut if |V | ≤ rt). Hence, it outputs

at most nt−1 cuts. We now argue that the algorithm retains the same success probability

as Algorithm 4.1, for any fixed budget-vector b. Suppose n ≤ rt. Then both Algorithm 4.2

and Algorithm 4.1 return δ(X) for a random subset X of the vertices of G. Thus, for any

cut F , the two algorithms have the same probability of returning F . Henceforth, we assume

n > rt.

We will view Algorithm 4.1 from a different perspective. In that algorithm, whenever we

contract a hyperedge e, we choose, for some i ∈ [t], a hyperedge according to the probability
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Multiobjective-Min-Cut(G, r, t, c1, . . . , ct):
Input: An r-rank hypergraph G = (V,E) and

hyperedge-cost functions c1, . . . , ct : E → R≥0.

If |V | ≤ rt:
Pick a random subset X of V and return δ(X)

For i = 1, . . . , t:
Ei ← {e ∈ E : ci(e) > 0}
πi ← a permutation of Ei generated by repeatedly choosing a not yet

chosen hyperedge e with probability proportional to ci(e)
R← ∅
For each sequence n1, . . . nt with n ≥ n1 ≥ n2 ≥ · · · ≥ nt−1 ≥ nt = rt:

G′ ← G
For i = 1, . . . , t:

While |V (G′)| > ni and some hyperedge from πi is present in G′:
e← the first hyperedge from πi that is still present in G′

G′ ← G′/e
X ← a random subset of V (G′)
Add δ(X) to R if it is not already present

Return R

Algorithm 4.2: Multiobjective Min-Cut

distribution Pr[e = e′] = ci(e
′)

ci(E)
. In particular, the choice of i depends on which contractions

have been made so far, but the choice of a particular hyperedge, given the choice of i, does not

depend on our previous contractions, except for the fact that we do not contract hyperedges

which have already been reduced to singletons. We note that allowing the contraction of

singletons would not change the success probability of the algorithm. Therefore, we could

modify Algorithm 4.1 so that it begins by selecting permutations π1, . . . , πt of E1, . . . , Et

(where Ei = {e ∈ E : ci(e) > 0}) as in Algorithm 4.2, and then whenever the algorithm asks

to contract a random hyperedge with probability proportional to its weight under ci, we

instead contract the next hyperedge from πi which is still present in the current hypergraph.

This modification does not change at any step the probability that a particular hyperedge

is the next contraction of a non-singleton hyperedge, and therefore the success probability

of the algorithm remains exactly the same.

Viewing Algorithm 4.1 in this way, we note that when we reach the base case of n ≤ rt, we

will have contracted the first mi hyperedges of each πi, for some m1, . . . ,mt ∈ {0, . . . |E|}.
The crucial observation now is that interleaved contractions can be separated. That is, if we

know mi for every i ∈ [t], the order in which we do the contractions is irrelevant: we will get

the same resulting hypergraph if we contract the first m1 hyperedges from π1, then contract

the firstm2 hyperedges from π2, and so on up through the firstmt hyperedges from πt instead
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of the interleaved contractions. Let n1 be the number of vertices in the hypergraph obtained

after contracting the first m1 hyperedges from π1, subsequently, let n2 be the number of

vertices in the hypergraph obtained after contracting the first m2 hyperedges from π2 and

so on.

When we view Algorithm 4.1 in this way, it is only the choice of the values n1, . . . , nt

that depends on the budgets, while the choice of the permutation πi does not depend on the

budgets. Algorithm 4.2 is running exactly the version of Algorithm 4.1 that we have just

described, except that instead of choosing n1, . . . , nt based on the budgets, it simply tries all

possible options (which will certainly include whichever n1, . . . , nt Algorithm 4.1 would use

for the given input budget-vector). Therefore for every fixed choice of budget-vector b, and

every fixed b-multiobjective min-cut F , the probability that F is in the collection R output

by the algorithm is at least as large as the probability that F is the cut output by Algorithm

4.1. By Theorem 4.4, this probability is Ω(n−2t)
r2rt

, as desired. QED.

We derive Theorem 4.1 from Theorem 4.5 now.

Theorem 4.1. The number of multiobjective min-cuts in an r-rank, n-vertex hypergraph

with t hyperedge-cost functions is O(r2rtn3t−1).

Proof. Let x be the number of multiobjective min-cuts in the hypergraph. By Theorem

4.5, the expected number of multiobjective min-cuts output by our algorithm Multiobjec-

tive Min-Cut (i.e., Algorithm 4.2) is (x/r2rt)Ω(n−2t). Theorem 4.5 also tells us that the

algorithm outputs at most nt−1 cuts. Therefore, x = r2rt ·O(n3t−1). QED.

4.2.3 Enumerating Multiobjective Min-Cuts and Pareto-Optimal Cuts

In this section, we give algorithms to enumerate all multiobjective min-cuts and pareto-

optimal cuts in polynomial time.

We first give a polynomial time algorithm to enumerate all multiobjective min-cuts. We

execute our algorithm for Multiobjective Min-Cut (i.e., Algorithm 4.2) a sufficiently

large number of times so that it succeeds with high probability (i.e., with probability at

least 1− 1/n): In particular, executing it r2t2rtO(n2t log n) many times gives us a collection

C that is a superset of the collection CMO of multiobjective min-cuts with high probability.

Moreover, the size of the collection C is r2t2rtO(n3t−1 log n). We can prune C to identify CMO

in polynomial-time as follows: remove every cut F ∈ C for which there exists a cut F ′ ∈ C
with ct(F

′) < ct(F ) and ci(F
′) ≤ ci(F ) for every 1 ≤ i ≤ t− 1.

Next, we give a polynomial time algorithm to enumerate pareto-optimal cuts. By con-

tainment relation (4.1), it suffices to identify all pareto-optimal cuts in the collection C. For
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this, we only need a polynomial-time procedure to verify if a given cut F is pareto-optimal.

Algorithm 4.3 gives such a procedure. It essentially searches for a cut that dominates the

given cut F by running our algorithm for b-Multiobjective Min-Cut with t different

budget-vectors.

Verify-Pareto-Optimality(G, r, t, c1, . . . , ct, F ):
Input: An r-rank hypergraph G = (V,E), cost functions c1, . . . , ct : E → R≥0,

and a cut F in G

For i = 1, . . . , t:
c⃗← (c1, . . . ci−1, ci+1, . . . , ct, ci)

b⃗← (c1(F ), . . . , ci−1(F ), ci+1(F ), . . . , ct(F ))
For j = 1, . . . , r2rtO(n2t log n):

F ′ ← b-Multiobjective-Min-Cut(G, r, t, c⃗, b⃗)
If F ′ is a b-multiobjective cut in (G, c⃗) and ci(F

′) < ci(F ):
Return FALSE

Return TRUE

Algorithm 4.3: Verify pareto-optimality of a given cut

Theorem 4.6. Let G be an r-rank, n-vertex hypergraph G with t hyperedge-cost functions

c1, . . . , ct : E(G) → R≥0 such that the hypergraph induced by hyperedges of positive ci

cost is connected for every i ∈ [t], and let F be a cut in G. If F is a pareto-optimal cut,

then Algorithm 4.3 returns TRUE, and if F is not a pareto-optimal cut, then the algorithm

returns FALSE with high probability. Moreover, the algorithm can be implemented to run

in polynomial time.

Proof. The run-time of the algorithm is polynomial since Algorithm 4.1 runs in polynomial

time. Algorithm 4.3 returns false only if it finds a cut that dominates the input cut F . If F

is pareto-optimal, no such cut will exist, and therefore the algorithm will return true.

Next, suppose the input cut F is not pareto-optimal. Then F must be dominated by some

other cut F ′. Let i ∈ [t] be such that ci(F
′) < ci(F ) (such an i is guaranteed to exist by the

definition of domination). Let b be a budget-vector of the costs of F under the cost functions

other than ci and let c′ be c with ci moved to the end of the vector of cost functions. Then

F will not be a b-multiobjective min-cut in (G, c′), since F ′ also satisfies b, but has a lower

ci-cost. Therefore, any b-multiobjective min-cut will dominate F (since it will also satisfy

b and cannot have higher ci cost than F ′). Thus, if any of our r2rtn2t log n calls to our

algorithm for b-Multiobjective-Min-Cut (i.e., Algorithm 4.1) for this value of i returns

a multiobjective min-cut, then the algorithm will return false. We recall that the hypergraph

induced by hyperedges of positive ci cost is connected. By Theorem 4.4, our algorithm for b-

Multiobjective Min-Cut returns a b-multiobjective min-cut with probability 1
r2rt

Ω( 1
n2t ).
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Figure 4.1: An illustration of our lower bound construction for t = 3.

Therefore, if we run this algorithm r2rtO(n2t log n) times, a b-multiobjective min-cut will

be returned at least once with high probability, and our algorithm will correctly return

false. QED.

4.2.4 Lower Bounds

In this section, we discuss lower bounds on the number of distinct pareto-optimal cuts

in n-vertex hypergraphs. Karger gave a family of graphs with nt/2 parametric min-cuts

[82]. We recall that every parametric min-cut is a pareto-optimal cut by the containment

relation (4.1). Thus, nt/2 is also a lower bound on the number of pareto-optimal cuts in

n-vertex hypergraphs. To the best of the authors’ knowledge, this is the best lower bound

on the number of pareto-optimal cuts that is known in the literature. We give an Ω(nt) (for

constant t) lower bound on the number of pareto-optimal cuts in a graph. Our lower bound

construction is different from that of Karger.

Theorem 4.7. For all positive integers t and n such that n ≥ t+2, there exists an n-vertex

graph G with associated edge-cost functions c1, . . . , ct : E(G)→ R+ such that G has at least(
n−2
t

)t
distinct pareto-optimal cuts.

Proof. For fixed n and t, construct a graph G as follows. The graph G has two special

vertices u and v. The rest of the vertices are used to form t distinct paths between u and v

with each path consisting of at least ⌊n−2
t
⌋ + 1 > n−2

t
distinct edges. We assign edge costs

as follows: If e is an edge in the i’th path, then ci(e) = 1, while cj(e) = 1/(t + 1) for every

j ∈ [t] \ {i}. See Figure 4.1 for an example.
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We will show that any cut which contains exactly one edge from each path is pareto-

optimal. The number of such cuts is at least
(
n−2
t

)t
, since each path has at least (n− 2)/t

edges, so this will suffice to prove the theorem.

We observe that any cut contains either exactly one edge from each path or at least two

edges from some path. Any cut F which contains exactly one edge from each path will

have ci(F ) = 2t/(t + 1) for every i ∈ [t]. Any cut F ′ that contains at least two edges from

some path i ∈ [t] will have ci(F
′) = 2 > 2t/(t + 1). Therefore no cut which contains two

edges from the same path can dominate a cut which contains exactly one edge from each

path. Furthermore, if two different cuts each contain exactly one edge from all paths, then

they both have the same cost under every cost function, and thus neither can dominate

the other. We conclude that every cut which contains exactly one edge from each path is

pareto-optimal. QED.

Remark 4.1 The lower bound of
(
n−2
t

)t
from Theorem 4.7 is still significantly smaller than

the O(n3t−1) upper bound from Theorem 4.1. We believe that this gap comes from the slack

in the analysis of our randomized algorithms.

Remark 4.2 We note that the construction in Theorem 4.7 also shows that there exists a

budget-vector b ∈ Rt−1
+ such that the number of b-multiobjective min-cuts is Ω(nt): consider

budget values bi = (2t)/(t + 1) for every i ∈ [t − 1]. We emphasize that since not every

multiobjective min-cut is pareto-optimal, this lower bound does not imply the one from

Theorem 4.7. Since distinct pareto-optimal cuts need not be b-multiobjective min-cuts for

the same vector b, the bound in Theorem 4.7 does not immediately imply this bound either.

4.2.5 Alternative Proof of a Strongly Polynomial Bound on the Number of Multiobjective
Min-Cuts

In this section, we give an alternative proof due to Zenklusen showing that the number of

multiobjective min-cuts in constant rank hypergraphs for constant many objective functions

(i.e., when both r and t are O(1)) is strongly polynomial. The proof is constructive and

leads to a deterministic algorithm to enumerate all multiobjective min-cuts/pareto-optimal

cuts in strongly polynomial time.

Let G = (V,E) be an r-rank, n-vertex hypergraph with t hyperedge-cost functions

c1, . . . , ct : E → R≥0, such that the hypergraph induced by hyperedges of positive ct cost is

connected, where r, t = O(1). For a subset F ⊆ E, we will write c(F ) = (c1(F ), . . . , ct(F )) to

denote the vector of cost function values. A cut F is supported if there exists µ1, . . . , µt ≥ 0
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such that any cut F ′ that is minimum with respect to the cost function given by cµ(e) :=∑t
i=1 µici(e) for all e ∈ E satisfies ci(F ) = ci(F

′) for every i ∈ [t].

Let

P = convex-hull({(c1(δ(S)), . . . , ct(δ(S))) : ∅ ≠ S ⊊ V }) + Rt
≥0 ⊂ Rt (4.42)

be the dominant (or up-closure) of the convex-hull of cost-vectors corresponding to cuts.

Thus, P can equivalently be defined as the dominant of the convex-hull of all supported

pareto-optimal cuts. Hence, the vertices of the polyhedron P are precisely the vectors c(F ),

where F is a supported pareto-optimal cut.

We now give an algorithm to enumerate all multiobjective min-cuts/pareto-optimal cuts.

We note that P is full-dimensional because it is up-closed and the graph G is connected

with |V | ≥ 2. Aissi, Mahjoub, McCormick, and Queyranne [81] showed that the number

of supported pareto-optimal cuts is Õ(nrt) and they can all be enumerated in time Õ(nrt).

Hence, P only has a strongly polynomial number of vertices, i.e., it has Õ(nrt) many vertices.

Consequently, the number of facets of P is Õ(nrt2) (since each facet is uniquely defined by

t−1 linearly independent edge directions of the facet, each of which is either the difference of

two vertices or one of the axis-parallel directions e1, . . . , et—stronger bounds can be obtained,

for example, by using known bounds on the number of facets as a function of the number of

vertices [139]). Let F be the set of facets of P . By the result of Aissi, Mahjoub, McCormick,

and Queyranne, we have that |F| = Õ(nrt2) and all these facets can be enumerated in Õ(nrt2)

time. For each facet F ∈ F , there is a parameteric cost cF , which is a conic combination of

the costs c1, . . . , ct such that F is the set of all points of P that minimize the linear objective

cF . Since the hypergraph induced by hyperedges of positive ct cost is connected, no cut

has zero cost with respect to ct, and therefore, it follows that the origin 0 is not in P , and

the minimum-cost cut with respect to any function cF for F ∈ F has strictly positive value.

The central idea behind the enumeration of all multiobjective min-cuts is the following result

showing that every multiobjective min-cut is a t-approximate min-cut with respect to one

of the cost functions in {cF : F ∈ F}.

Theorem 4.8. Let R ⊆ E be a multiobjective min-cut such that ct(R) > 0. Then, there

exists F ∈ F such that

cF (R) ≤ tmin{cF (δ(S)) : ∅ ≠ S ⊊ V }.

A strongly polynomial bound of Õ(nrt2) on the number of multiobjective min-cuts follows

from Theorem 4.8, since for each F ∈ F , there are O(nt2) many t-approximate min-cuts
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with respect to cF (which follows by the results of Kogan and Krauthgamer [20]).

Proof of Theorem 4.8. Let R be a b-multiobjective min-cut for some b ∈ Rt−1 and let x :=

c(R) ∈ Rt
≥0. Consider the segment between x and the origin 0. Since the origin is not in

P , the segment from x to 0 will leave P at some point. Let λ > 0 be the smallest value

such that λx ∈ P , and let y = λx. Hence, y is the point where the segment from x to 0 is

about to leave the polyhedron P . Let F ∈ F be a facet of P containing y and certifying

that µx ̸∈ P for any µ < λ. Hence, {µx : µ ∈ R} crosses the facet F when going from µ > λ

to µ < λ. Formally, this is equivalent to choosing F to be a facet on which y lies and such

that cTFy > 0.

Let Γ be the vertices of P , which correspond to cost-vectors of cuts. By definition of P ,

and the fact that y ∈ P , we can write y as a convex combination of vectors in Γ and a vector

with non-negative entries. Formally,

y =
ℓ∑

i=1

βizi +
t∑

i=1

γiei, (4.43)

where zi ∈ Γ and βi > 0 for every i ∈ [ℓ],
∑ℓ

i=1 βi = 1, γi ≥ 0 for every i ∈ [t], and ei is the

all-zeroes vector with a single 1 in the i’th component. By Carathéodory’s Theorem, we can

choose ℓ ≤ t since y is on a face of P of dimension at most t− 1.

Let

j := argmax{βi : i ∈ [ℓ]}. (4.44)

Since the βis are non-negative and sum to 1, and ℓ ≤ t, we have

βj ≥
1

t
. (4.45)

Moreover, by expression (4.43), we have that βjzj ≤ y. Hence,

1

λ
βjzj ≤

1

λ
y = x. (4.46)

Suppose βj/λ > 1. Then zj(i) < (βj/λ)zj(i) ≤ x(i) for every i ∈ [t] satisfying zj(i) > 0.

Thus, the cut R′ whose cost-vector is zj = c(R′) is also a b-multiobjective min-cut with

smaller objective value than R (i.e., ct(R
′) < ct(R)), a contradiction to optimality of R.

Hence, βj/λ ≤ 1. Consequently,

λ ≥ βj ≥
1

t
, (4.47)
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and we get

cTFx =
1

λ
cTFy ≤ t · cTFy ≤ t ·min{cF (δ(S)) : ∅ ≠ S ⊊ V }. (4.48)

The last inequality above is because y lies on F and is therefore a minimizer of P along the

direction cF . QED.

4.3 NODE-BUDGETED MULTIOBJECTIVE MIN-CUTS

In this section, we give algorithms to find min-cuts that satisfy node-weighted budget

constraints. Theorem 4.2 will be a consequence of these algorithms. We begin by formally

defining the problem.

LetG = (V,E) be a hypergraph with hyperedge-cost function c : E → R+. Let w1, . . . , wt :

V → R≥0 be vertex-weight functions. Let c(F ) =
∑

e∈F c(e) for F ⊆ E, and wi(U) =∑
v∈U wi(v) for U ⊆ V . The following definition will be useful in defining node-budgeted

multiobjective min-cuts.

Definition 4.4. For a budget-vector b ∈ Rt
≥0,

1. a vertex v ∈ V is feasible if wi(v) ≤ bi for all i ∈ [t] and infeasible otherwise and

2. a set of vertices S ⊆ V is feasible if wi(S) =
∑

v∈S wi(v) ≤ bi for all i ∈ [t] and

infeasible otherwise.

We recall the definition of node-budgeted multiobjective min-cuts.

Definition 4.5. For a budget-vector b ∈ Rt
≥0, a set F ⊆ E is a node-budgeted b-multiobjective

min-cut if F = δ(X) for some feasible set ∅ ⊊ X ⊊ V , and c(F ) is minimum among all

such subsets of E. A set F ⊆ E is a node-budgeted multiobjective min-cut if there exists a

budget-vector b ∈ Rt
≥0 for which F is a node-budgeted b-multiobjective min-cut.

The following will be a central problem of interest in this section.

Node-Budgeted b-Multiobjective Min-Cut

Given: A hypergraph G = (V,E) with vertex-weight functions
w1, . . . , wt : V → R≥0, a hyperedge-cost function c : E → R+, and
a budget-vector b ∈ Rt

≥0.

Goal: A node-budgeted b-multiobjective min-cut.

Problem 4.2: Node-Budgeted b-Multiobjective Min-Cut
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4.3.1 Constant-Rank Hypergraphs

In this section, we design an algorithm to find node-budgeted b-multiobjective min-cuts in

constant-rank hypergraphs in polynomial-time and then prove the first part of Theorem 4.2.

We use Algorithm 4.4 to solve node-budgeted b-multiobjective min-cuts in constant-rank

hypergraphs. It essentially runs the standard random contraction algorithm for min-cut

with an additional step that deterministically contracts all infeasible vertices together. We

summarize the guarantees of this algorithm in Theorem 4.9. We will subsequently use

Theorem 4.9 to prove the first part of Theorem 4.2.

Node-Budgeted-b-Multiobjective-Min-Cut-Constant-Rank(G, r, t, w, c, b):
Input: An r-rank hypergraph G = (V,E), a positive integer t,

a vector w of vertex-weight functions with wi : V → R+ for i ∈ [t],
a cost function c : E → R+, and budget-vector b ∈ Rt

+

Contract all infeasible vertices of G into a single vertex
If |V | ≤ r + 1:

X ← a random subset of V
Return δ(X)

e← a random hyperedge chosen according to Pr[e = e′] = c(e′)
c(E)

(G,w)← (G,w)/e
Return Node-Budgeted-b-Multiobjective-Min-Cut-Constant-Rank(G, r, t, w, c, b)

Algorithm 4.4: Node-Budgeted b-Multiobjective Min-Cut in constant-rank hyper-
graphs

Theorem 4.9. Let G = (V,E) be an r-rank n-vertex hypergraph with hyperedge-cost

function c : E → R+ and vertex-weight functions w1, . . . , wt : V → R≥0 and a budget-

vector b ∈ Rt
≥0. Let F be an arbitrary node-budgeted b-multiobjective min-cut in G. Then

Algorithm 4.4 returns F with probability at least 1

2r+1(n2)
. Moreover, the algorithm can be

implemented to run in polynomial time.

Proof. We first analyze the run-time. Each recursive call reduces the number of vertices, so

the total number of recursive calls is at most n. Apart from the recursion, the algorithm

only performs contractions and returns a random cut, all of which can be done in polynomial

time.

Now we analyze the success probability. Let Qn := 1
2r+1

(
n
2

)−1
. We will show that the

algorithm returns F with probability at least Qn. We prove this by induction on n. Let

∅ ⊊ X ⊊ V be a feasible set with δ(X) = F . We first note that all vertices in X must be

feasible. Therefore, the cut X cannot be destroyed when all infeasible vertices are contracted

together. This means that if G has multiple infeasible vertices, they will simply be contracted
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to yield a smaller hypergraph with at most one infeasible vertex where F is still a node-

budgeted b-multiobjective min-cut. Therefore, we will assume without loss of generality that

G contains at most one infeasible vertex.

For the base case, we consider n ≤ r + 1. In this case, the algorithm returns δ(X) for a

random X ⊆ V . There are 2n possible choices for X, and F for at least one of them. Thus,

the probability that the algorithm returns F is at least 1
2n
≥ 1

2r+1 ≥ Qn.

We now prove the induction step. Let n > r + 1 and assume that the theorem holds for

all hypergraphs with at most n − 1 vertices and rank at most r. We begin by showing the

following claim.

Claim 4.3. The algorithm outputs F with probability at least the optimum value of the

following linear program.

minimize
x2,...,xr,y2,...,yr

r∑
j=2

(xj − yj)Qn−j+1

subject to 0 ≤ yj ≤ xj ∀j ∈ {2, . . . , r}
r∑

j=2

xj = 1

(n− 1)
r∑

j=2

yj ≤
r∑

j=2

j · xj

Proof. Since n > r+1, the algorithm will contract a randomly chosen hyperedge and recurse.

Let e′ be the random hyperedge chosen by the algorithm. If e′ ̸∈ F , then F will still be a

node-budgeted b-multiobjective min-cut in G/e′. We observe that G/e′ is a hypergraph with

n− |e′|+ 1 vertices and that the rank of G/e is at most the rank of G. Therefore, if e′ ̸∈ F ,

the algorithm will output F with probability at least Qn−|e′|+1

Let

Ej :={e ∈ E : |e| = j}, (4.49)

xj :=Pr[e′ ∈ Ej] =
c(Ej)

c(E)
, and (4.50)

yj :=Pr[e′ ∈ Ej ∩ F ] =
c(Ej ∩ F )

c(E)
. (4.51)

We note that Ej is the set of hyperedges of size j, xj is the probability of picking a

hyperedge of size j to contract, and yj is the probability of picking a hyperedge of size j

from F to contract. We know that
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Pr[Algorithm returns the cut F ] ≥
r∑

j=2

(xj − yj)Qn−j+1 (4.52)

The values of xj and yj will depend on the structure of G. Nevertheless, we can deduce

some relationships between them. Since 0 ≤ c(Ej ∩ F ) ≤ c(Ej) for every j ∈ {2, . . . , r}, we
know that

0 ≤ yj ≤ xj for every j ∈ {2, . . . , r}. (4.53)

Moreover, xj is the probability of picking a hyperedge of size j. Hence,

r∑
j=2

xj = 1. (4.54)

By the definition of a node-budgeted b-multiobjective min-cut, we have that c(F ) ≤ c(δ(X))

for every feasible set X with ∅ ̸= X ⊊ V . In particular, for every feasible vertex v, we have

that c(F ) ≤ c(δ(v)). Since we have assumed that G has at most 1 infeasible vertex, it has

at least n− 1 feasible vertices, and thus,

c(F ) ≤
∑

v :v is feasible c(δ(v))

|{v : v is feasible}|
≤
∑

v∈V c(δ(v))

n− 1
=

∑
e∈E |e|c(e)
n− 1

=

∑r
j=2 j · c(Ej)

n− 1
. (4.55)

Thus we have that,

r∑
j=2

yj = Pr[e′ ∈ F ] =
c(F )

c(E)
≤ 1

n− 1

r∑
j=2

j · xj. (4.56)

The minimum value of our lower bound in equation (4.52) over all choices of xj and yj that

satisfy inequalities (4.53), (4.54), and (4.56) is a lower bound on the probability that the

algorithm outputs F . QED.

Claim 4.3 tells us that the algorithm outputs F with probability at least the optimum value

of the linear program from the claim. This linear program is exactly the linear program from

Lemma 4.1 with γ = n−1 and f(n) := Qn. Since n > r+1, we have that n ≥ n−1 ≥ r+1.

Therefore, we can apply Lemma 4.1 to conclude that

Pr[Algorithm returns the cut F ] ≥ min
j∈{2,...,r}

((
1− j

n− 1− r + j

)
Qn−j+1

)
. (4.57)
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It remains to show that minj∈{2,...,r}((1− j
n−1−r+j

)Qn−j+1) ≥ Qn. Let j ∈ {2, . . . , r}. Then
it suffices to show that

Qn−j+1

Qn
≥ n−1−r+j

n−1−r
= 1 + j

n−1−r
. We have

Qn−j+1

Qn

=

(
n
2

)(
n−j+1

2

) =
n(n− 1)

(n− j + 1)(n− j)
≥
(

n

n− j + 1

)2

=

(
1 +

j − 1

n− j + 1

)2

, (4.58)

and (
1 +

j − 1

n− j + 1

)2

≥ 1 +
2(j − 1)

n− j + 1
≥ 1 +

j

n− j + 1
≥ 1 +

j

n− 1− r
. (4.59)

The last two inequalities follow from the fact that 2 ≤ j ≤ r. QED.

We now restate and prove the first part of Theorem 4.2. At a high level, our approach will

be similar to the proof of Theorem 4.1. We will modify the algorithm for Node-Budgeted

b-Multiobjective Min-Cut to obtain Algorithm 4.5 which outputs a collection C of

r · O(nt)-many cuts such that every node-budgeted multiobjective min-cut is in C with

probability 1
2r
· Ω( 1

n2 ). The analysis has a few subtleties that distinguish it from the edge-

budgeted version, so we include the full details.

Node-Budgeted-Multiobjective-Min-Cut-Constant-Rank(G, r, t, w, c):
Input: An r-rank hypergraph G = (V,E), a positive integer t,

a vector w of vertex-weight functions with wi : V → R≥0 for i ∈ [t],
and a cost function c : E → R+

π ← a permutation of E generated by repeatedly choosing a not yet
chosen hyperedge with probability proportional to c(e)

R← ∅
T ← ∅
For n′ = 2, . . . , n:

G′ ← G
Contract hyperedges from G′ in the order given by π until G′ has at most n′ vertices
For each x1, . . . , xt such that xi = ci(v) for some v ∈ G′ for all i ∈ [t]:

G′′ ← G′

Contract together all vertices v in G′′ which have ci(v) > xi for some i
If r + 2 > |V (G′′)| > 1 and V (G′′) ̸∈ T :

S ← a random subset of V (G′) with ∅ ⊂ S ⊂ V (G′)
Add V (G′′) to T
Add δ(S) to R if it is not already present

Return R

Algorithm 4.5: Node-Budgeted Multiobjective Min-Cut in constant-rank hyper-
graphs
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Theorem 4.10. The number of node-budgeted multiobjective min-cuts in an r-rank, n-

vertex hypergraph with t vertex-weight functions is O(r2rnt+1).

Proof. Let G = (V,E) be an r-rank n-vertex hypergraph with vertex-weight functions

w1, . . . , wt : V → R≥0. We will denote w = (w1, . . . , wt) and the hypergraph with the

vertex-weight functions by the tuple (G,w) for conciseness. We first show that for any cut

F ⊆ E which is a node-budgeted b-multiobjective min-cut in (G,w) for some budget-vector

b ∈ Rt
≥0, the cut F is among the cuts returned by Algorithm 4.5 with probability Ω(2−rn−2).

We will view Algorithm 4.4 from a different perspective. That algorithm alternates be-

tween contracting together infeasible vertices and contracting random hyperedges until the

hypergraph has at most r+1 vertices. We note that the probability that a given hyperedge

e is the next one contracted depends only on the cost of e relative to the other hyperedges.

In particular it does not depend on which infeasible vertices have been contracted together.

Therefore, we could modify Algorithm 4.4 so that it contracts random hyperedges until the

hypergraph resulting from contracting all infeasible vertices together has at most r + 1 ver-

tices, at which point, it contracts all infeasible vertices together and returns a random cut

in the resulting hypergraph. This modified version of the algorithm would retain the same

success probability as the original version. In this modified algorithm, the next contraction

does not depend at all on the previous contractions, so we can choose a uniform random

permutation of the hyperedges at the start of the algorithm and simply contract hyperedges

from that permutation until we can contract all infeasible vertices to obtain a hypergraph

containing at most r + 1 vertices.

Let U be the set of all feasible vertices in G, and for each i ∈ [t], let xi = maxu∈U wi(u).

Since all vertices in U are feasible, we know that for every u ∈ U , we have wi(u) ≤ xi ≤ bi

for every i ∈ [t]. Now consider an infeasible vertex v in G. Since v violates the budget-vector

b, there must be some i ∈ [t] such that wi(v) > bi ≥ xi. Therefore, if we wish to contract

together all infeasible vertices in G, it suffices to find, for each i ∈ [t], the feasible vertex ui

with maximum weight under wi, and then contract together all vertices whose wi weight is

greater than that of ui for some i ∈ [t]. In particular, we can further modify our modified

version of Algorithm 4.4 to use this method of contracting all infeasible vertices, and the

success probability will still remain Ω(2−rn−2).

Algorithm 4.5 is running exactly the version of the algorithm that we have just described,

with two additional modifications: (1) Instead of contracting hyperedges from π until the

contraction of infeasible vertices would yield a hypergraph with at most r + 1 vertices, it

simply tries all possible stopping points for the contraction of hyperedges from π, and (2)

instead of choosing the values x1, . . . , xt based on a budget-vector b, it simply tries all possible
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values for x1, . . . , xt. This means that, for any budget-vector b, Algorithm 4.5 will try the

values of n′ and x1, . . . , xt that the modified version of Algorithm 4.4 would use.

Therefore, by Theorem 4.9, we know that for any fixed budget-vector b and every fixed

node-budgeted b-multiobjective min-cut F , the probability that F is among the cuts output

by the algorithm is Ω(2−rn−2).

Now we bound the number of cuts returned by the algorithm. We note that the algorithm

only adds a new cut toR if the set of vertices that the algorithm ends up with after performing

all contractions has size between 2 and r + 1 and is different from every set the algorithm

has already obtained from previous combinations of parameters. We will show that, for a

fixed G and π, the number of distinct sets of size between 2 and r + 1 that we can obtain

by contracting vertices in the way specified by the algorithm is at most rnt.

There are at most n ways to choose the value of n′, and also at most n choices for the

values of x1, . . . , xt−1. For fixed values of n′ and x1, . . . , xt−1, the choice of xt determines

the final set of vertices after contraction. Decreasing xt can cause more vertices to become

contracted (because some new vertex v may now have wt(v) > xt), but it cannot cause any

vertex that was previously being contracted to no longer be contracted. Thus, there are

most r distinct sets of vertices of size between 2 and r + 1 that we could obtain by varying

the value of xt. Therefore the total number of distinct sets of size between 2 and r + 1 that

could result from contracting vertices in the way described in the algorithm is at most rnt.

To finish the proof, let N be the number of node-budgeted multiobjective min-cuts in G.

We have shown that our algorithm outputs Ω( N
2rn2 ) of these cuts in expectation. But since

our algorithm outputs at most rnt cuts, we conclude that the number N of multiobjective

min-cuts must be O(r2rnt+2). QED.

4.3.2 Arbitrary-Rank Hypergraphs

In this section, we present a polynomial-time algorithm for node-budgeted b-multiobjective

min-cut in arbitrary-rank hypergraphs. The second part of Theorem 4.2 will follow from the

correctness analysis of this algorithm.

We recall that global min-cut (without node-budgets) in arbitrary-rank hypergraphs al-

ready requires the non-uniform random contraction technique. We extend the non-uniform

contraction technique of [138] for the node-budgeted variant. In addition, our algorithm

will use the non-uniform contraction algorithm for global min-cut by [138] as a subroutine.

We reproduce their algorithm for completeness in Algorithm 4.6 and state its guarantee in

Theorem 4.11.
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Hypergraph-Min-Cut(G, c):
Input: A hypergraph G = (V,E), and a cost function c : E → R+

Compute βe :=
|V |−|e|
|V | · c(e) for every hyperedge e ∈ E

If βe = 0 for every hyperedge e ∈ E(G), then return E(G)
e← a random hyperedge of G chosen with probability proportional to βe
Return Hypergraph-Min-Cut(G/e, c)

Algorithm 4.6: Hypergraph Min-Cut

Theorem 4.11. [138] Algorithm 4.6 runs in polynomial time and returns any fixed min-cut

of an n-vertex hypergraph G with hyperedge-cost function c with probability at least
(
n
2

)−1
.

Now we describe our algorithm for solving node-budgeted b-multiobjective min-cut in

arbitrary-rank hypergraphs. We recall that a vertex v is feasible if wi(v) ≤ bi for all i ∈ [t].

Let U be the set of all feasible vertices in G. We emphasize that U is the set of all feasible

vertices, but U may not be a feasible set—see Definition 4.4. Our algorithm chooses a

hyperedge e to contract with probability proportional to

αe :=

(
|U | − |e ∩ U |

|U |

)
· c(e) =

(
|U \ e|
|U |

)
· c(e). (4.60)

and recurses on the contracted graph. Our algorithm performs an additional step of con-

tracting all infeasible vertices after each contraction step. The description of our algorithm

is presented in Algorithm 4.7. We summarize the correctness probability and the run-time

of Algorithm 4.7 in Theorem 4.12.

Theorem 4.12. Let G = (V,E) be an n-vertex hypergraph, for some n ≥ 2 with vertex-

weight functions w1, . . . , wt : V → R≥0, cost function c : E → R+ and budget-vector b ∈
Rt

≥0. Then Algorithm 4.7 outputs a fixed node-budgeted b-multiobjective min-cut in G with

probability at least

Qn :=

1 if n = 2,

1
3

(
n−1
2

)−1
if n ≥ 3.

Moreover, the algorithm can be implemented to run in polynomial time.

Proof. We first analyze the run-time. Each recursive call in the algorithm reduces the number

of vertices, so the total number of recursive calls is at most n. Apart from the recursion, the

algorithm, verifies the feasibility of each vertex and of U , computes αe for each hyperedge,

and either performs a contraction or calls the algorithm for the ordinary hypergraph min-cut

problem. All of these can be done in polynomial time.
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Node-Budgeted-b-Multiobjective-Min-Cut-Arbitrary-Rank(G, t, w, c, b):
Input: A hypergraph G = (V,E), a positive integer t,

a vector w of vertex-weight functions with wi : V → R≥0 for i ∈ [t],
a cost function c : E → R+, and a budget-vector b ∈ Rt

≥0

U ← {v ∈ V : v is feasible}
If U = ∅:

Return INFEASIBLE

Compute αe :=
|U\e|
|U | · c(e) for every hyperedge e ∈ E

If αe = 0 for every hyperedge e ∈ E:
If U is feasible:

Return δ(U)
Return E

Contract together all infeasible vertices in G
If U is feasible:

Return Hypergraph-Min-Cut(G, c)
e← a random hyperedge of G chosen with probability proportional to αe

Return Node-Budgeted-b-Multiobjective-Min-Cut-Arbitrary-Rank(G, t, w, c, b)

Algorithm 4.7: Node-Budgeted b-Multiobjective Min-Cut in arbitrary-rank hyper-
graphs.

Now we analyze the correctness probability. Let Gn be the set of all tuples (G, t, w, c, b)

where G is an n-vertex hypergraph, t ∈ Z+, w1, . . . , wt : V (G)→ R≥0, c : E(G)→ R+, and

b ∈ Rt
≥0. That is, Gn is the set of all valid inputs to Algorithm 4.7 where the hypergraph

has n vertices. For an input tuple T in the form just described, let M(T ) be the collection

of b-multiobjective min-cuts for the input instance. Define

qn := min
T∈Gn

min
F∈M(T )

Pr[Algorithm returns F on input T ]. (4.61)

We will show that qn ≥ Qn for all n ≥ 2. We proceed by induction on n. As a base case,

when n = 2, we have αe = 0 for every e, and the algorithm outputs the unique cut with

probability 1, so q2 = 1 = Q2.

We now show the induction step. Let G be a hypergraph on n ≥ 3 vertices with associated

costs, weights, and budgets, and let F be a b-multiobjective min-cut in G. Assume that

qn′ ≥ Qn′ for 2 ≤ n′ < n. We will show that the algorithm returns F with probability at

least Qn = 1
3

(
n−1
2

)−1
.

Suppose αe = 0 for every e ∈ E. This means that every hyperedge contains all of the

feasible vertices. Let ∅ ⊊ X ⊊ V be a feasible set (one which does not violate the budgets).

Then, every vertex inX must be feasible. Since every hyperedge contains all feasible vertices,

δ(X) will either be all of the hyperedges (if X does not contain all feasible vertices) or all
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hyperedges which contain infeasible vertices (if X contains all feasible vertices). The latter

is cheaper, so if the set U of all feasible vertices is still feasible, then we must have F = δ(U),

and the algorithm always returns F . Otherwise, every feasible cut contains all hyperedges,

so F = E and again the algorithm always returns F . We hereafter assume that αe > 0 for

some hyperedge e.

We note that if G has multiple infeasible vertices, the algorithm will contract them to-

gether to yield a hypergraph G′ with n′ < n vertices and only one infeasible vertex. The

probability that the algorithm returns F on input G will be the same as the probability

that the algorithm returns F on input G′. From our induction hypothesis we know that this

probability is at least Qn′ ≥ Qn. We hereafter assume that G has at most one infeasible

vertex.

Next we consider the case where the set U is feasible. (We emphasize that although

wi(v) ≤ bi for every v ∈ U , i ∈ [t], by the definition of feasible vertices, it need not be the

case that
∑

v∈U wi(v) ≤ bi for every i ∈ [t]. So this case does not occur always.) Since

our vertex weights are all non-negative, if U is feasible, then every subset of U must be

feasible as well. Any cut can be written as δ(X) = δ(X) for some X ⊆ V . Since G has at

most one infeasible vertex, either X or X must be a subset of U . This means that every

cut in G must be feasible. Thus, in this case, the budgets are irrelevant and finding a

node-budgeted b-multiobjective min-cut is the same as just finding an ordinary minimum

cut with respect to the cost function c. In particular, this means that F is not only a node-

budgeted b-multiobjective min-cut in G, but it is also a regular min-cut as well. Therefore

by Theorem 4.11, the algorithm for Hypergraph Min-Cut (i.e., Algorithm 4.6) outputs

F with probability at least
(
n
2

)−1
. Consequently, Algorithm 4.7 outputs F with probability

at least
(
n
2

)−1
. Since n ≥ 3, we have that

(
n
2

)−1 ≥ 1
3

(
n−1
2

)−1
= Qn.

Finally, suppose that G has at most one infeasible vertex and that U is not feasible in G.

Then, the algorithm contracts a hyperedge with probability proportional to αe. Let e
′ be a

random variable for the contracted hyperedge. Using the induction hypothesis, we obtain

that

Pr[Alg. 4.7 returns F on input G] =
∑

e∈E\F

Pr[e′ = e] · Pr[Alg. 4.7 returns F on input G/e]

(4.62)

≥
∑

e∈E\F

αe∑
f∈E αf

· qn−|e|+1 (4.63)

≥ 1∑
e∈E αe

∑
e∈E\F

αeQn−|e|+1. (4.64)
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Now, Claims 4.4 and 4.5 complete the proof of the theorem. QED.

Claim 4.4. For every hyperedge e ∈ E \ F , we have

αeQn−|e|+1 ≥ c(e)Qn.

Proof. Suppose |e| = n − 1. Then Qn−|e|+1 = 1. Since U is not feasible, we know that F

must contain every hyperedge that spans U . Since e ∈ E \ F , it follows that |U \ e| > 0.

Therefore, αe ≥ c(e)
n
. We conclude that αeQn−|e|+1 = αe ≥ c(e)

n
≥ c(e)

3

(
n−1
2

)−1
= c(e)Qn.

Next, suppose |e| < n− 1. Then Qn−|e|+1 =
1
3

(
n−|e|

2

)−1
, and we have

αeQn−|e|+1 =
|U \ e|c(e)
|U |

· 1
3

(
n− |e|

2

)−1

(4.65)

≥ |U | − |e|
|U |

· 1
3

(
n− |e|

2

)−1

· c(e) (4.66)

≥ n− 1− |e|
n− 1

· 2

3(n− |e|)(n− |e| − 1)
· c(e) (since |U | ≥ n− 1) (4.67)

≥ 2

3(n− 1)(n− |e|)
· c(e) (4.68)

≥ 2

3(n− 1)(n− 2)
· c(e) (4.69)

= c(e)Qn. (4.70)

QED.

Claim 4.5.
c(E \ F )∑

e∈E αe

≥ 1.

Proof. We consider the cut induced by a uniformly random feasible vertex. A hyperedge e

belongs to such a cut with probability |U∩e|
|U | = 1 − |U\e|

|U | . Thus, the expected value of such

a cut is
∑

e∈E(1 −
|U\e|
|U | )c(e) = c(E) −

∑
e∈E αe. Since the value of the cut induced by a

random feasible vertex is an upper bound on the value of a node-budgeted b-multiobjective

min-cut, this means that c(F ) ≤ c(E)−
∑

e∈E αe. Rewriting this inequality gives
∑

e∈E αe ≤
c(E)− c(F ) = c(E \ F ), and the desired inequality follows. QED.

4.4 SIZE-CONSTRAINED MIN-k-CUT IN ARBITRARY-RANK HYPERGRAPHS

In this section, we consider the problem of finding a minimum cost k-cut subject to con-

stant lower bounds on the weights of the partition classes and prove Theorem 4.3. Through-
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out this section, we assume that k is a constant. We focus on the cardinality case (i.e.,

unit-cost variant) for the sake of simplicity of exposition and mention that our algorithm

also extends to arbitrary non-negative hyperedge costs.

We begin by formally defining the terminology. Let G = (V,E) be a hypergraph. For a

weight function w : V → Z+, we call (G,w) a vertex-weighted hypergraph. We now define

our main object of study, namely size-constrained minimum cuts.

Definition 4.6. Let G = (V,E) be a hypergraph, w : V → Z+ be a vertex-weight function,

k ≥ 2 be an integer, and s ∈ Zk
+ be a vector. A k-partition X of V is an s-size-constrained

k-partition if w(Xi) ≥ si for every i ∈ [k]. A set of hyperedges F ⊆ E is an s-size-constrained

k-cut if F = δ(X) for some s-size-constrained k-partition X. An s-size-constrained k-cut of

minimum cardinality is said to be an s-size-constrained min-k-cut. We will refer to s as the

size-constraint vector.

The following is the central problem of interest in this section.

s-Size-Constrained Min-k-Cut

Given: A vertex-weighted hypergraph (G,w), a positive integer k, and
a size-constraint vector s ∈ Zk

+.

Goal: An s-size-constrained min-k-cut.

Problem 4.3: s-Size-Constrained Min-k-Cut

We give a random contraction based algorithm for this problem. Given a hypergraph

G = (V,E) and a size-constraint vector s ∈ Zk
+, let n = |V |. We define σj :=

∑j
i=1 si, and

αe :=

(
n−|e|
σk−1

)(
n

σk−1

) . (4.71)

With these definitions, we solve s-size-constrained min-k-cut using Algorithm 4.8. We prove

Theorem 4.3 using this algorithm.

Theorem 4.3. Let k ≥ 2 be a fixed positive integer and let 1 ≤ s1 ≤ s2 ≤ . . . ≤ sk be fixed

positive integers. Let G = (V,E) be an n-vertex hypergraph with hyperedge-cost function

c : E → R+. Then, there exists a polynomial-time algorithm that takes (G, c) as input

and returns a fixed w-weighted s-size-constrained min-k-cut for any choice of vertex-weight

function w : V → Z+ with probability

Ω

(
1

n2σk−1+1

)
,
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s-Size-Constrained-Min-k-Cut(G, k, s):
Input: An n-vertex hypergraph G = (V,E), an integer k ≥ 2

and size-constraint vector s = (s1, . . . , sk) ∈ Zk
+

If n ≤ max{2σk−1, σk}
Pick a random k-partition X of V and return δ(X)

S ← a random subset of V of size 2σk−1

Xi ← ∅ for i ∈ {1, . . . , k}
For each v ∈ S:

Pick a random integer i ∈ {1, . . . , k} and add v to Xi

Xk ← Xk ∪ (V \ S)
X ← (X1, . . . , Xk)
If X is a k-partition of V :

R← δ(X)
Else:

R← E

Compute αe :=
(n−|e|
σk−1

)

( n
σk−1

)
for every e ∈ E

If αe = 0 for every hyperedge e ∈ E(G):
Return R

e← a random hyperedge of G chosen with probability proportional to αe

R′ ← s-Size-Constrained-Min-k-Cut(G/e, k, s)
Return R with probability 1

n and R′ with probability n−1
n

Algorithm 4.8: s-Size-Constrained Min-k-Cut

where σk−1 :=
∑k−1

i=1 si.

Proof. We consider Algorithm 4.8. We first analyze its run-time. Each recursive call reduces

the number of vertices in the hypergraph. Thus, the algorithm makes at most n recursive

calls. Apart from the recursion steps, the algorithm only selects random partitions and

performs contractions, both of which can be implemented to run in polynomial time.

Now we analyze the success probability. Let Gn be the set of all vertex-weighted n-vertex

hypergraphs which contain an s-size-constrained k-cut. For a vertex-weighted hypergraph

(G,w), let M(G,w) be the set of all s-size-constrained min-k-cuts in (G,w). Define

qn := min
(G,w)∈Gn

min
F∈M(G,w)

Pr[Algorithm returns F on input (G,w, k, s)], and (4.72)

Qn :=


(
kmax{2σk−1,σk}

)−1
if n ≤ max{2σk−1, σk},(

kmax{2σk−1,σk}n
(

n
2σk−1

))−1

if n > max{2σk−1, σk}.
(4.73)

We note that Qn = Ω(k−σk−1−σkn−2σk−1−1), so it suffices to show that qn ≥ Qn for all n ≥ k

(for smaller n, there are no k-cuts).
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We proceed by induction on n. Let F be an s-size-constrained min-k-cut in (G,w). Let Y

be an s-size-constrained k-partition with F = δ(Y ). We assume that |Y1| ≤ |Y2| ≤ · · · ≤ |Yk|.
This assumption is without loss of generality because we can relabel the parts of an s-size-

constrained k-partition so that they are in increasing order of size and the resulting partition

will still be an s-size-constrained k-partition (since we have assumed that the size vector s

is in increasing order).

For the base case, suppose n ≤ max{2σk−1, σk}. In this case, the algorithm returns δ(X)

where X is a k-partition of V chosen uniformly at random. Since F = δ(Y ), the probability

that F = δ(X) for the X randomly chosen by the algorithm is at least Pr[X = Y ]. The

number of k-partitions of V is at most kn, the number of ways to assign each of the n vertices

to one of k labeled sets. Thus, Pr[X = Y ] ≥ k−n ≥ k−max(2σk−1,σk) = Qn.

Now we will prove the induction step. Assume that n > max{2σk−1, σk}. By the induction

hypothesis, we have qn′ ≥ Qn′ for all n′ ∈ {k, . . . , n− 1}. We will show that qn ≥ Qn.

Suppose |Yk| ≥ n− 2σk−1. Let T be an arbitrary subset of Yk of size n− 2σk−1. Consider

the set S chosen by the algorithm. The probability that S is equal to V − T is
(

n
2σk−1

)−1
.

Next, consider the sets Xi created by the algorithm. The probability that Xi = Yi for every

i ∈ [k] conditioned on S = V − T , is k−2σk−1 . Thus, the probability that the k-partition X

obtained in the algorithm is identical to Y is at least k−2σk−1
(

n
2σk−1

)−1
. Since the last step of

the algorithm returns R = δ(X) with probability 1/n, it follows that the algorithm returns

F with probability at least
(
nkmax{2σk−1,σk}

(
n

2σk−1

))−1

= Qn.

Henceforth, we assume that |Yk| < n− 2σk−1. We will call a hyperedge large if it contains

at least n − 2σk−1 vertices. Since Yk is the largest part of the k-partition Y , every large

hyperedge must be contained in the k-cut F . In particular, if αe = 0 for a hyperedge e,

then
(
n−|e|
σk−1

)
= 0, which implies that n− |e| < σk−1, and hence e is large and consequently, e

cannot be in F .

Next, suppose that αe = 0 for every hyperedge e. Then every hyperedge is a large

hyperedge and therefore, F = E. In this case, the algorithm will return R. We note that

R = E if X is not a k-partition. We lower bound the probability that X is not a k-partition

now. If all vertices in S are assigned to Xk, then X is not a k-partition. The probability

that all vertices in S are assigned to Xk is k−2σk−1 . Thus, the probability that the algorithm

returns F = R = E is at least k−2σk−1 ≥ Qn.

Henceforth, we assume that αe > 0 for some hyperedge e ∈ E. This means that the

algorithm will contract some hyperedge and then recurse on the resulting hypergraph. Let

e′ be a random variable for the hyperedge chosen to be contracted. Let w′ be the weight

function defined on the vertices of G/e′ as follows: w′(v) := w(v) for each v ∈ V \ e′ and
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w′(v) :=
∑

u∈e′ w(u) where v is the new vertex resulting from the contraction. If e′ ̸∈ F ,

then F will be an s-size-constrained min-k-cut in (G/e′, w′). Therefore, we have that

Pr[R′ = F on input (G, k, s)] (4.74)

=
∑

e∈E\F

Pr[e′ = e] · Pr[Algorithm returns F on input (G/e, k, s)] (4.75)

≥
∑

e∈E\F

αe∑
f∈E αf

· qn−|e|+1. (4.76)

Let e be a hyperedge that is not in the k-cut F . Then, e cannot be a large hyperedge and

hence, |e| < n− 2σk−1. Consequently, n− |e| + 1 > 2σk−1 + 1 ≥ k. Therefore, by applying

the induction hypothesis, we have qn−|e|+1 ≥ Qn−|e|+1. Hence,

Pr[R′ = F on input (G, k, s)] ≥ 1∑
f∈E αf

∑
e∈E\F

αe ·Qn−|e|+1. (4.77)

We need the following two claims. We defer their proofs to complete the proof of the

theorem.

Claim 4.6. For every hyperedge e ∈ E \ F , we have αeQn−|e|+1 ≥ nQn

n−1
.

Claim 4.7. |E\F |∑
f∈E αf

≥ 1.

By Claim 4.6, we have that

Pr[R′ = F on input (G, k, s)] =
1∑

f∈E αf

∑
e∈E\F

αe ·Qn−|e|+1 (4.78)

≥ 1∑
f∈E αf

∑
e∈E\F

nQn

n− 1
(4.79)

=
|E \ F |∑

f∈E αf

· nQn

n− 1
. (4.80)

Thus, Claim 4.7 implies that

Pr[R′ = F on input (G, k, s)] ≥ nQn

n− 1
. (4.81)

Finally, we note that since we have assumed n > max{2σk−1, σk} and αe > 0 for some

e, the probability that the algorithm returns R′ is (n − 1)/n. Thus, we conclude that

Pr[Algorithm returns F ] ≥ Qn. QED.

Proof of Claim 4.6. Let e ∈ E\F . We recall that F contains all large hyperedges and hence,
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|e| < n− 2σk−1. (4.82)

First, suppose that n−|e|+1 ≤ max{2σk−1, σk}. Then, we have Qn−|e|+1 = k−max{2σk−1,σk}.

We consider two subcases.

Case 1: Suppose n ≥ 3σk−1. Then

(
n−|e|
σk−1

)(
n

σk−1

)Qn−|e|+1 ≥
Qn−|e|+1(

n
σk−1

) ≥ (kmax{2σk−1,σk}
(

n

2σk−1

))−1

= nQn ≥
nQn

n− |e|+ 1
. (4.83)

The first inequality follows from inequality (4.82), and the last inequality follows from the

fact that
(

n
σk−1

)
≤
(

n
2σk−1

)
for n ≥ 3σk−1.

Case 2: Suppose n < 3σk−1. We recall that n > 2σk−1. By inequality (4.82), n−|e| > 2σk−1.

Letting n = 2σk−1 + x for some x ∈ {1, . . . σk−1}, we have(
n−|e|
σk−1

)(
n

σk−1

) ≥ (
2σk−1

σk−1

)(
2σk−1+x
σk−1

) =
(2σk−1)!(σk−1 + x)!

(2σk−1 + x)!σk−1!
=

x∏
i=1

σk−1 + i

2σk−1 + i
≥
(
1

2

)x

. (4.84)

We also know that(
n

2σk−1

)−1

=

(
2σk−1 + x

2σk−1

)−1

=
(2σk−1)!x!

(2σk−1 + x)!
=

x∏
i=1

i

2σk−1 + i
≤
(
1

2

)x

. (4.85)

Therefore, (
n−|e|
σk−1

)(
n

σk−1

)Qn−|e|+1 ≥
(
1

2

)x

Qn−|e|+1 (4.86)

≥
Qn−|e|+1(

n
2σk−1

) (4.87)

=

(
kmax{2σk−1,σk}

(
n

2σk−1

))−1

(4.88)

= nQn (4.89)

≥ nQn

n− |e|+ 1
. (4.90)
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Next, suppose that n− |e|+ 1 > max{2σk−1, σk}. We have that

αeQn−|e|+1 =

(
n−|e|
σk−1

)(
n

σk−1

)Qn−|e|+1 (4.91)

=

(
n−|e|
σk−1

)(
n

σk−1

) · 1(
n−|e|+1
2σk−1

) · ((n− |e|+ 1)kmax{2σk−1,σk}
)−1

(4.92)

=

(
n−|e|
σk−1

)(
n

σk−1

) · 1(
n−|e|+1
2σk−1

) · n

n− |e|+ 1

(
n

2σk−1

)
·Qn (4.93)

≥

(
n−|e|
σk−1

)(
n

σk−1

) · 1(
n−|e|+1
2σk−1

) · ( n

2σk−1

)
· nQn

n− 1
. (4.94)

The following proposition completes the proof. QED.

Proposition 4.1. For positive integers n, e, σ with e ≥ 2 and n− e+ 1 > 2σ, we have(
n−e
σ

)(
n
σ

) · 1(
n−e+1

2σ

) ≥ ( n

2σ

)−1

.

Proof. We note that(
n−e
σ

)(
n
σ

) · 1(
n−e+1

2σ

) =
(n− e)!(n− σ)!

n!(n− e− σ)!
· (2σ)!(n− e− 2σ + 1)!

(n− e+ 1)!
(4.95)

=

(
σ−1∏
i=0

n− e− i

n− i

)
· (2σ)!∏2σ−1

i=0 (n− e+ 1− i)
. (4.96)

To lower bound this expression, we case on the value of e.

Case 1: Suppose e > σ. Then we can lower bound expression (4.96) by

1∏σ−1
i=0 (n− i)

· (2σ)!

(n− e+ 1)
∏σ−2

i=0 (n− e− σ − i)
≥ (2σ)!∏2σ−1

i=0 (n− i)
=

(
n

2σ

)−1

. (4.97)

Case 2: Suppose e ≤ σ. We note that

(2σ)!
2σ−1∏
i=0

(n− e+ 1− i)

=
(2σ)!

2σ−1∏
i=0

(n− i)

·
e−2∏
i=0

n− i

n− 2σ − i
=

(
n

2σ

)−1

·
e−2∏
i=0

n− i

n− 2σ − i
. (4.98)
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Thus, expression (4.96) is equal to

(
n

2σ

)−1

·

(
σ−1∏
i=0

n− e− i

n− i

)(
e−2∏
i=0

n− i

n− 2σ − i

)
. (4.99)

We will show that
(∏σ−1

i=0
n−e−i
n−i

) (∏e−2
i=0

n−i
n−2σ−i

)
≥ 1. We note that(

σ−1∏
i=0

n− e− i

n− i

)(
e−2∏
i=0

n− i

n− 2σ − i

)
=

∏σ−1
i=0 (n− e− i)∏σ−1
i=e−1(n− i)

· 1∏e−2
i=0 (n− 2σ − i)

=

∏e+σ−1
i=σ (n− i)

(n− e+ 1)
∏e−2

i=0 (n− 2σ − i)
. (4.100)

We claim that expression (4.100) is minimized when e = 2. To see this, we note that

(e+1)+σ−1∏
i=σ

(n− i)

(n− (e+ 1) + 1)
(e+1)−2∏

i=0

(n− 2σ − i)

=

e+σ−1∏
i=σ

(n− i)

(n− e+ 1)
e−2∏
i=0

(n− 2σ − i)

· (n− e− σ)(n− e+ 1)

(n− 2σ − e+ 1)(n− e)
.

(4.101)

Since e ≤ σ, we know that n − e − σ ≥ n − 2σ + 1. From this, along with the fact that

n− e+1 > n− e, we conclude that (n−e−σ)(n−e+1)
(n−2σ−e+1)(n−e)

> 1. This means that expression (4.100)

increases when we increment e. Thus∏e+σ−1
i=σ (n− i)

(n− e+ 1)
∏e−2

i=0 (n− 2σ − i)
≥ (n− σ)(n− σ − 1)

(n− 1)(n− 2σ)
=

n2 − (2σ + 1)n+ (σ + 1)σ

n2 − (2σ + 1)n+ 2σ
≥ 1.

(4.102)

The last inequality follows from the fact that σ ≥ 1.

Thus, we have shown that
(∏σ−1

i=0
n−e−i
n−i

) (∏e−2
i=0

n−i
n−2σ−i

)
≥ 1, and therefore, combining the

above inequalities, we have that (
n−e
σ

)(
n
σ

) · 1(
n−e+1

2σ

) ≥ ( n

2σ

)−1

. (4.103)

QED.

Proof of Claim 4.7. Let Z = (Z1, . . . , Zk) be a random k-partition obtained by picking dis-

joint sets Z1, . . ., Zk−1 with |Zi| = si and setting Zk = V \
⋃k−1

i=1 Zi. Since n > σk and

every vertex has weight at least 1, the k-partition Z is an s-size-constrained k-partition.
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Therefore, |δ(Z)| is an upper bound on |F |. In particular,

|F | ≤ E(|δ(Z)|) =
∑
e∈E

Pr(e ∈ δ(Z)). (4.104)

Negating the inequality and adding |E| to both sides gives

|E \ F | ≥
∑
e∈E

(1− Pr(e ∈ δ(Z))) (4.105)

=
∑
e∈E

Pr(e ̸∈ δ(Z)) (4.106)

=
∑
e∈E

k∑
i=1

Pr(e ⊆ Zi) (4.107)

≥
∑
e∈E

(
n−|e|
σk−1

)(
n

σk−1

) (4.108)

=
∑
e∈E

αe. (4.109)

Thus, |E \ F |/
∑

f∈E αf ≥ 1. QED.

Remark 4.3 Since our algorithm does not even take the vertex-weights as input, it could

trivially be extended to handle a version of the problem where we have multiple weight

functions on the vertices (as in the previous sections) each with their own minimum sizes.

If we have t vertex-weight functions, w1, . . . , wt : V → Z+ and each function wj has an

associated list of lower bounds sj,1, . . . , sj,k, then we can find a min-k-cut satisfying all of

these lower-bound constraints with at least inverse polynomial probability by simply running

our algorithm with si = maxj∈[t] sj,i for every i ∈ [k].

4.5 COMPARISON OF PARAMETRIC, PARETO-OPTIMAL, AND
MULTIOBJECTIVE CUTS

We prove the containment relationship (4.1) here.

Proposition 4.2. The following containment relationship holds, possibly with the contain-

ment being strict:

Parametric min-cuts ⊆ Pareto-optimal cuts ⊆ Multiobjective min-cuts.

Proof. We first show that parametric min-cuts are pareto-optimal cuts: If a cut F ′ dominates
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a cut F , then w(F ′) < w(F ) for all positive multipliers, and therefore F cannot be a

parametric min-cut. On the other hand, not every pareto-optimal cut is a parametric min-

cut (see Figure 4.2 for an example).

Next, we show that pareto-optimal cuts are multiobjective min-cuts: If a cut F is pareto-

optimal, then it is a b-multiobjective min-cut for the budget-vector b obtained by setting

bi := ci(F ) for every i ∈ [k − 1]. On the other hand, not every multiobjective min-cut is a

pareto-optimal cut (see Figure 4.3 for an example).

Figure 4.2: The cut δ(z) is a pareto-optimal
cut but not a parametric min-cut.

Figure 4.3: For b = 2, the bold edge is a b-
multiobjective min-cut but it is not a pareto-
optimal cut.

QED.

4.6 CONCLUSION AND OPEN PROBLEMS

In this chapter, we illustrated the versatility of the random contraction technique by

addressing multicriteria versions of min-cut and size-constrained min-k-cut problems. There

are several interesting open questions in this area. We conclude by stating a few:

1. For the number of pareto-optimal cuts and multiobjective min-cuts, there is still a gap

between our lower bound (which is Ω(nt)) and our upper bound (which is O(n3t−1)).

Can we improve either of these bounds? We believe that improving our bounds for

the number of b-multiobjective min-cuts for a fixed budget-vector b ∈ Rt−1
≥0 would be

a first-step towards this goal.

2. We gave a polynomial-time algorithm to solve the b-multiobjective min-cut problem

in constant-rank hypergraphs. How about arbitrary-rank hypergraphs? Is the b-

multiobjective min-cut problem in arbitrary rank hypergraphs (even for t = 2 criteria)

solvable in polynomial-time or is it NP-hard?
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CHAPTER 5: APPROXIMATE REPRESENTATION OF SYMMETRIC
SUBMODULAR FUNCTIONS USING HYPERGRAPH CUT FUNCTIONS

Submodular functions are fundamental to combinatorial optimization. Many interesting

problems can be formulated as special cases of problems involving submodular functions. In

this chapter, we consider the problem of approximating symmetric submodular functions ev-

erywhere using hypergraph cut functions. Devanur, Dughmi, Schwartz, Sharma, and Singh

[88] showed that symmetric submodular functions over n-element ground sets cannot be

approximated within a factor of n/8 using a graph cut function and raised the question of

approximating them using hypergraph cut functions. Our main result is that there exist

symmetric submodular functions over n-element ground sets that cannot be approximated

within a factor of o(n1/3/ log2 n) using a hypergraph cut function. On the positive side, we

show that symmetrized concave linear functions and symmetrized rank functions of uniform

matroids and partition matroids can be constant-approximated using hypergraph cut func-

tions. The results in this chapter are based on joint work with Chandrasekaran, Chekuri,

and Xu and appeared in FSTTCS ’22 [92]. The research in this chapter was supported in

part by NSF grants CCF-1814613 and CCF-1907937.

5.1 INTRODUCTION

A set function f : 2V → R≥0 defined over a ground set V is submodular if f(A) + f(B) ≥
f(A ∩ B) + f(A ∪ B) for all subsets A,B ⊆ V and is symmetric if f(A) = f(V − A) for

all subsets A ⊆ V . Submodular functions have the diminishing marginal returns property

which arises frequently in economic and game theoretic contexts. Well-known examples of

submodular functions include matroid rank functions and graph/hypergraph cut functions.

Owing to these connections, submodular functions play a fundamental role in combinatorial

optimization.

Throughout this work, we will be interested in non-negative set functions f : 2V → R≥0

with f(∅) = 0. We use n to denote the size of the ground set V . Describing a submodular

function by listing out f(S) for every S ⊆ V requires a string of Ω(2n) bits, even if f only

outputs values in {0, 1}. Given the prevalence of submodular functions in combinatorial

optimization, a natural question is whether there exists a concise representation—i.e. using

2o(n) bits—for arbitrary symmetric submodular functions. Unfortunately, it is impossible to

construct such a representation using 2o(n) function evaluation queries [140], and in fact con-

cise representations for arbitrary symmetric submodular functions do not exist. In Section

5.1.3 we give a short proof that exact representation of symmetric submodular functions
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(whose outputs are non-negative integers bounded by n) using 2o(n) bits is impossible.

For a parameter α ≥ 1, a set function g : 2V → R≥0 is said to α-approximate a set function

f : 2V → R≥0 if

g(A) ≤ f(A) ≤ αg(A) ∀ A ⊆ V. (5.1)

Given that exactly representing a submodular function requires a string of Ω(2n) bits, the

next natural question which has been studied is whether an arbitrary submodular set func-

tion can be well-approximated by a concisely representable function. We distinguish between

structural and algorithmic variants of this question: the structural question asks whether

submodular functions can be well-approximated via concisely representable functions while

the algorithmic question asks whether such a concise representation can be constructed us-

ing polynomial number of function evaluation queries (note that the algorithmic question is

concerned with the number of function evaluation queries as opposed to run-time). Concise

representations with small-approximation factor are useful in learning, testing, streaming,

and sketching algorithms. Consequently, concise representations with small-approximation

factor for submodular functions (and their generalizations and subfamilies of submodular

functions) have been studied from all these perspectives with most results focusing on mono-

tone submodular functions [84, 85, 86, 87, 88, 89, 90, 91].

In this chapter, we focus on approximating symmetric submodular functions. Balcan,

Harvey, and Iwata [85] showed that for every symmetric submodular function f : 2V → R≥0,

there exists a function g : 2V → R≥0 defined by g(S) :=
√

χ(S)TMχ(S), where χ(S) ∈
{0, 1}V is the indicator vector of S ⊆ V and M is a symmetric positive definite matrix such

that g
√
n-approximates f . We note that such a function g has a concise representation—

namely, the matrix M . Is it possible to improve on the approximation factor for symmetric

submodular functions using other concisely representable functions?

The concisely representable family of functions that we study in this chapter is the family

of hypergraph cut functions. A hypergraph H = (V,E) consists of a vertex set V and

hyperedges E where each hyperedge e ∈ E is a subset of vertices. If every hyperedge has

size 2, then the hypergraph is simply a graph. For a subset A of vertices, we use δ(A) to

denote the set of hyperedges e such that e has non-empty intersection with both A and

V \ A. The cut function d : 2V → R+ of a hypergraph H = (V,E) with hyperedge weights

w : E → R+ is given by

d(A) :=
∑

e∈E: e∈δ(A)

we ∀ A ⊆ V. (5.2)

A function g : 2V → R+ is a hypergraph cut function if there exists a weighted hypergraph

with vertex set V whose cut function is g. We will say that a function f : 2V → R+ is
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α-hypergraph-approximable (α-graph approximable) if there exists a hypergraph (graph) cut

function g such that g α-approximates f . We note that although a hypergraph could have

exponential number of hyperedges, every n-vertex hypergraph admits a (1+ ϵ)-approximate

cut-sparsifier with O(n logn
ϵ2

) hyperedges (see Theorem 5.4 for a formal definition of cut-

sparsifier), and hence, hypergraph cut functions have a concise representation (with a con-

stant loss in approximation factor).

The structural approximation question of whether every symmetric submodular function

is constant-hypergraph-approximable was raised by Devanur, Dughmi, Shwartz, Sharma,

and Singh [88]. They showed that every symmetric submodular function on a ground set of

size n is O(n)-graph-approximable and that this factor is tight for graph-approximability: in

fact, the cut function of the n-vertex hypergraph containing a single hyperedge that contains

all vertices cannot be (n/4− ϵ)-approximated by a graph cut function for all constant ϵ > 0.

This example naturally raises the following intriguing conjecture:

Conjecture 5.1. Every symmetric submodular function is O(1)-hypergraph-approximable.

The conjecture is further fueled by the fact that there are no natural examples of symmet-

ric submodular functions besides hypergraph cut functions (although arbitrary submodular

functions can be symmetrized while preserving submodularity).

We emphasize that the algorithmic variant of Conjecture 5.1 is false. In particular, there

does not exist an algorithm that makes a polynomial number of function evaluation queries

to a symmetric submodular function f and constructs a hypergraph cut function g such

that g O(
√

n/ lnn)-approximates f . We outline a proof of this observation now. Suppose

that there exists an algorithm that uses polynomial number of function evaluation queries

to a given symmetric submodular function f to construct a weighted hypergraph whose cut

function α-approximates f ; then we can obtain an α-approximation to the symmetric sub-

modular sparsest cut problem by constructing such a hypergraph and solving the sparsest

cut on that hypergraph exactly (using exponential run-time). However, Svitkina and Fleis-

cher [86] have shown that the best possible approximation for the symmetric submodular

sparsest cut problem using polynomial number of function evaluation queries is Ω(
√
n/ lnn)

(even if exponential run-time is allowed). Hence, the algorithmic version of hypergraph-

aproximability has a strong lower bound of Ω(
√
n/ lnn). This leaves the structural question

open while perhaps, hinting that it may also have a strong lower bound.

156



5.1.1 Our Results

The symmetrization of a set function f : 2V → R is the function fsym : 2V → R obtained

as

fsym(A) := f(A) + f(V \ A)− f(V )− f(∅). (5.3)

We note that if f : 2V → R is submodular, then its symmetrization fsym : 2V → R is sym-

metric submodular. A matroid rank function is a non-negative integer valued submodular

set function r : 2V → Z satisfying r(A) ≤ r(A∪{e}) ≤ r(A)+1 for every subset A ⊆ V and

element e ∈ V . As a step towards understanding Conjecture 5.1, we observe that it suffices

to focus on symmetrized matroid rank functions (see Section 5.1.4 for a proof).

Proposition 5.1. If the symmetrization of every matroid rank function is α-hypergraph-

approximable, then every rational-valued symmetric submodular function is α-hypergraph-

approximable.

Next, we refute Conjecture 5.1 by showing the following result.

Theorem 5.1. For every sufficiently large positive integer n, there exists a matroid rank

function r : 2[n] → Z≥0 such that rsym is not α-hypergraph-approximable for

α = o

(
n

1
3

log2 n

)
.

Our proof of Theorem 5.1 is an existential argument and it does not construct an explicit

matroid rank function that achieves the lower bound.

Next, we prove positive approximation results for certain subfamilies of symmetric sub-

modular functions. The subfamilies that we consider are inspired by Proposition 5.1 and by

previous work on approximating symmetric submodular functions and matroid rank func-

tions.

We call a set function f : 2V → R≥0 a concave linear function if there exist weights w :

V → R≥0 and an increasing concave function h : R≥0 → R≥0 such that f(S) = h(
∑

v∈S wv)

for every S ⊆ V . We note that concave linear functions are submodular. Goemans, Harvey,

Iwata, and Mirrokni [84] showed that every matroid rank function over a n-element ground

set can be
√
n-approximated by the square-root of a linear function, i.e., by a concave

linear function. Balcan, Harvey and Iwata [85] showed that every symmetric submodular

function f : 2V → R≥0 is
√
n-approximated by a function g : 2V → R≥0 of the form

g(S) :=
√
χ(S)TMχ(S) for all S ⊆ V , where χ(S) ∈ {0, 1}V is the indicator vector of S and

M is a symmetric positive definite matrix. In particular, if M is a diagonal matrix, then
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the function g is the square root of a linear function, i.e., a concave linear function. Given

the significant role of concave linear functions, we consider the hypergraph-approximability

of such functions.

Theorem 5.2. Symmetrized concave linear functions are 128-hypergraph-approximable.

As a special case of Theorem 5.2, we obtain that the symmetrized rank functions of

uniform matroids are constant-hypergraph-approximable. Thus, symmetrized rank functions

of uniform matroids act as a starting point for identifying subfamilies of symmetrized matroid

rank functions that are constant-hypergraph-approximable. We consider a generalization

of the uniform matroid, namely the partition matroid, and show that it is also constant-

hypergraph-approximable. We refer the reader to Section 5.1.2 for formal definitions of

uniform and partition matroids.

Theorem 5.3. Symmetrized rank functions of uniform matroids and partition matroids are

64-hypergraph-approximable.

Theorem 5.3 gives a concrete class of functions for which there is a large gap between the

approximation capabilities of graph cut functions and hypergraph cut functions. Consider

the uniform matroid where the independent sets are those of size at most 1. The symmetrized

rank function of this matroid is the same as the cut function of a hypergraph with a single

hyperedge spanning all vertices. As mentioned above, this function cannot be (n/4 − ϵ)-

approximated by a graph cut function for all constant ϵ > 0 [88]. Thus, symmetrized rank

functions of uniform and partition matroids cannot be better than n/4 approximated by

graph cut functions, but can be constant factor approximated by hypergraph cut functions.

While our lower bound result in Theorem 5.1 rules out α-hypergraph-approximability for

symmetric submodular functions for α = o(n1/3/ log2 n), our positive results suggest broad

families of symmetric submodular functions which are constant-hypergraph-approximable.

It would be interesting to characterize the family of symmetric submodular functions that

are constant-hypergraph-approximable. We also do not know if our lower bound result in

Theorem 5.1 is tight. We only know that every symmetric submodular function is (n− 1)-

graph-approximable. It would be interesting to show that every symmetric submodular

function is Õ(n1/3)-hypergraph-approximable—we believe that Proposition 5.1 and Theorem

5.2 should help towards achieving this approximation factor.

5.1.2 Preliminaries

A set function f : 2V → R≥0 is submodular if f(A) + f(B) ≥ f(A∩B) + f(A∪B) for all

subsets A,B ⊆ V , symmetric if f(A) = f(V − A) for all subsets A ⊆ V , and monotone if
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f(B) ≥ f(A) for all subsets A ⊆ B ⊆ V .

A matroidM = (V, I) is specified by a ground set V and a collection I ⊆ 2V , known as

independent sets, satisfying the three independent set axioms: (1) ∅ ∈ I, (2) if B ∈ I, then
A ∈ I for every A ⊆ B, and (3) if A,B ∈ I with |B| > |A|, then there exists an element

v ∈ B \A such that A∪ {v} ∈ I. The rank function r : 2V → Z≥0 of a matroidM = (V, I)
is defined as

r(A) := max{|S| : S ⊆ A, S ∈ I} ∀ A ⊆ V. (5.4)

The definition of matroid rank functions that we presented in Section 5.1.1 is equivalent

to this definition [141]. It is well-known that the rank function of a matroid is monotone

submodular.

We consider two matroids over the ground set V . A uniform matroid is a matroid in

which the independent sets are exactly the sets containing at most k elements of the ground

set V , for some fixed integer k—we call it as the uniform matroid over ground set V with

budget k. Partition matroids generalize uniform matroids: the independent sets of the

partition matroid associated with a partition P1, . . . , Pt of the ground set V with budgets

b1, . . . , bt ∈ Z≥0 are those subsets A ⊆ V for which |A ∩ Pi| ≤ bi for every i ∈ [t].

The proof of our lower bound will use the following theorem showing the existence of

cut-sparsifiers.

Theorem 5.4. [142] For every positive constant ϵ and for every weighted n-vertex hyper-

graph H, there exists another weighted hypergraph H ′ (called a cut-sparsifier) on the same

vertex set with Õ(n/ϵ2) hyperedges such that the cut function of H ′ (1 + ϵ)-approximates

the cut function of H.

5.1.3 Impossibility of Exact Concise Representation of Symmetric Submodular Functions

In this section we motivate our focus on approximate representation by showing that

symmetric submodular functions which take on non-negative integer values bounded by n

do not admit an exact representation of size 2o(n), where n is the size of the ground set.

In particular, we prove Theorem 5.5. Theorem 5.5 implies that it is impossible to exactly

represent arbitrary symmetric submodular functions over ground set [n] which take on non-

negative integer values at most n using 2o(n) bits, because the number of 2o(n)-bit strings

is 22
o(n)

, while the number of distinct symmetric submodular functions over ground set [n]

which take on non-negative integer values at most n is 22
Ω(n)

.

Theorem 5.5. For every even integer n ≥ 2, there exists a family F of 22
Ω(n)

symmetric
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submodular functions from 2[n] to {0, . . . , n} such that for every f, g ∈ F , there exists a set

S ⊆ [n] such that f(S) ̸= g(S).

Proof. Let V := [n]. Let U := {S ⊆ [n] : |S| = n/2}. Let G be the set of all symmetric

functions g : U → {0, 1}. We note that |G| is 2|U |/2. For every function g ∈ G, we define a

function fg : 2
V → {0, . . . , n} by

fg(S) =

min{|S|, |V \ S|} if |S| ≠ n/2

n/2− g(S) otherwise.
(5.5)

Claim 5.1. For every g ∈ G, fg is symmetric and submodular.

Proof. Let g ∈ G be arbitrary. We first show that fg is symmetric. If |S| ̸= n/2 then

fG(S) = fG(V \ S) = min{|S|, |V \ S|}. If |S| = n/2 then, because g is symmetric, we

have that fg(S) = n/2 − g(S) = n/2 − g(V \ S) = fg(V \ S). Therefore, for every S ⊆ V ,

fg(S) = fg(V \ S), so fg is symmetric.

Now we show that fg is submodular. We note that for every x ∈ V and every S ⊆ V \{x},
we have that

fg(S ∪ {x})− fg(S) =



1 if |S| < n/2− 1

0 or 1 if |S| = n/2− 1

0 or − 1 if |S| = n/2

−1 if |S| > n/2.

(5.6)

Thus, for any two sets S, T ⊆ V \ {x} with |S| < |T | we have that fg(S ∪ {x}) − fg(S) ≥
fg(T ∪ {x})− fg(T ). In particular, this inequality holds whenever S ⊊ T ⊆ V \ {x}, so we

conclude that fg is submodular. QED.

Let F := {fg : g ∈ G}. By Claim 5.1, we have that F is a family of symmetric submodular

functions from 2[n] to [n]. Furthermore, for every two distinct functions g1, g2 ∈ G, there
exists some S ⊆ V such that g1(S) ̸= g2(S). For this same S we have that fg1(S) ̸= fg2(S),

so all of the functions in F are distinct. Finally, we observe that

|F| = |G| = 2
1
2(

n
n/2) = 22

Ω(n)

. (5.7)

QED.
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5.1.4 Proof of Proposition 5.1

In this section, we prove Proposition 5.1. We need the notion of contraction of set functions

and hypergraphs. For a set function f : 2V → R≥0 and a subset A, the function g : 2V−A+a →
R≥0 obtained by contracting f with respect to A is defined as

g(S) :=

f(S) if a ̸∈ S,

f(S − a+ A) if a ∈ S.
(5.8)

If f : 2V → R≥0 is a symmetric submodular function and A ⊆ V , then the function obtained

by contracting f with respect to A is also symmetric submodular. Let H = (V,E) be a

hypergraph with hyperedge weights w : E → R≥0 and A ⊆ V . Then, the hypergraph

obtained by contracting H with respect to A is defined as H ′ = (V − A+ a,E ′) where a is

a new vertex not present in V and

E ′ := {e− A+ a : e ∈ E, e ∩ A ̸= ∅} ∪ {e : e ∈ E, e ∩ A = ∅}. (5.9)

We note that E ′ could have self-loops and that there is a surjection ϕ : E → E ′ mapping each

hyperedge to the hyperedge it is contracted into (which could be the same as the original

hyperedge). We use this surjection to define the weight w′ : E ′ → R≥0 of hyperedges in E ′ as

w′(e′) =
∑

e∈E : ϕ(e)=e′ w(e). We note that if f is the cut function of a weighted hypergraph

H = (V,E) with hyperedge weights w : E → R≥0 and A ⊆ V , then the contraction of f with

respect to A corresponds to the cut function of the weighted hypergraph (H ′, w′) obtained

by contracting H with respect to A. This leads to the following observation:

Observation 5.1. The contraction of a α-hypergraph-approximable function f : 2V → R≥0

with respect to a subset A ⊆ V is also α-hypergraph-approximable.

Proposition 5.1. If the symmetrization of every matroid rank function is α-hypergraph-

approximable, then every rational-valued symmetric submodular function is α-hypergraph-

approximable.

Proof. It suffices to consider integer-valued symmetric submodular functions (multiply all

function values by the product of the denominators of their rational expressions). Hence,

we will focus on approximating integer-valued symmetric submodular functions.

Let f : 2V → Z≥0 be an integer-valued symmetric submodular function. It is known that

there exists a vector w ∈ RV such that the function g : 2V → R≥0 defined by

g(S) := f(S) +
∑
u∈S

wu ∀ S ⊆ V (5.10)
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is integer-valued, monotone, and submodular [143, Section 3.3] (e.g., for our purposes, we

can simply choose wu := max{f(S) : S ⊆ V } for every u ∈ V ). Since f(V ) = 0, we have

that g(V ) =
∑

u∈V wu. Consequently, (1/2)gsym(S) = (1/2)(g(S) + g(V − S) − g(V )) =

(1/2)(f(S) + f(V − S)) = f(S) for every S ⊆ V since f is symmetric. Thus, f(S) =

(1/2)gsym(S) for every S ⊆ V .

Next, consider the integer-valued monotone submodular function g : 2V → Z≥0 obtained

as above. Helgason [144] showed that there exists a matroid on a ground set U with rank

function r : 2U → Z≥0 and a partition (Uv : v ∈ V ) of U such that g(S) = r(∪v∈SUv) for

every S ⊆ V . Equivalently, the function g is obtained from the rank function r by repeatedly

contracting with respect to Uv for each v ∈ V (the order of processing v ∈ V is irrelevant).

Moreover, f(S) = (1/2)gsym(S) = (1/2)rsym(∪v∈SUv) for every S ⊆ V . Hence, the function

f is half times the contraction of a symmetrized matroid rank function. Thus, if every

symmetrized matroid rank function is α-hypergraph-approximable, then by Observation

5.1, the function f is also α-hypergraph-approximable. QED.

5.2 LOWER BOUND

In this section, we prove Theorem 5.1. In our first lemma, we show that it suffices to

consider only hypergraphs with Õ(n) hyperedges if we are willing to tolerate a constant loss

in the approximation factor.

Lemma 5.1 (Few hyperedges suffice). Let f : 2[n] → R≥0 be a symmetric submodular func-

tion and β ≥ 1 be a positive real number. Suppose that there exists a weighted hypergraph

H whose cut function β-approximates f . Then, there exists a weighted hypergraph H ′ with

Õ(n) hyperedges whose cut function 2β-approximates f .

Proof. Applying Theorem 5.4 to H with ϵ = 1 gives us that there exists a weighted hy-

pergraph H ′ with Õ(n) hyperedges whose cut function 2-approximates the cut function of

H. Since the cut function of H β-approximates f , this means that the cut function of H ′

2β-approximates f . QED.

Next we show that it suffices to restrict our attention to hypergraphs with rational hyper-

edge weights while again losing only a constant in the approximation factor (since we will

be considering only hypergraphs with O(n) hyperedges).

Lemma 5.2 (Bounded rational weights suffice). Let r : 2V → R+ be a matroid rank function

on ground set V = [n]. Suppose that there exists a hypergraph H = (V,E) with hyperedge

weights w : E → R+ with |E| = Õ(n) whose cut function d : 2[n] → R≥0 β-approximates rsym
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for some β = o(n). Then, there exist hyperedge weights w′ : E → Q+ which assign to each

hyperedge of H a positive rational weight p/q where p, q ≤ n3 such that d′ 2β-approximates

rsym, where d′ : 2[n] → R≥0 is the cut function induced by the weight function w′.

Proof. Since r is the rank function of a matroid on ground set V = [n], we have that r(S) ≤ n

for all S ⊆ [n], and therefore rsym(S) ≤ n for all S ⊆ [n]. Consequently, if w(e) > n for

some e ∈ E then we have d(S) > n ≥ rsym(S) for some S ⊆ [n], a contradiction. Thus, we

conclude that w(e) ≤ n for every e ∈ E.

We define the new weight function w′ : E → R≥0 by

w′(e) :=
⌊n2w(e)⌋

n2
∀ e ∈ E. (5.11)

For every e ∈ E, the weight w′(e) is a rational number p/q with q = n2 and p ≤ n2w(e) ≤ n3.

Next, we show that the cut function d′ : 2[n] → R≥0 induced by this weight function w′

satisfies the required bounds for every subset S ⊆ [n].

For every e ∈ E, we have that w′(e) ≤ w(e). Thus, for every S ⊆ [n], we have that

d′(S) ≤ d(S) ≤ rsym(S). Moreover, for every e ∈ E, we have that w′(e) ≥ w(e) − 1/n2.

Therefore, for every S ⊆ [n], we have that

d′(S) ≥ d(S)− |E|/n2. (5.12)

Let S ⊆ [n]. If rsym(S) = 0, then d′(S) ≤ d(S) = 0, and so rsym(S) ≤ 2βd′(S). Suppose

rsym(S) > 0. Since rsym(S) is an integer, this means that rsym(S) ≥ 1, and therefore

1/β ≤ rsym(S)/β ≤ d(S). Since |E| = Õ(n), we have that |E|/n2 = Õ( 1
n
), and since

β = o(n), we conclude that |E|/n2 < 1/2β ≤ d(S)/2. Hence, Inequality (5.12) gives us that

d′(S) ≥ d(S)/2, and therefore, rsym(S) ≤ βd(S) ≤ 2βd′(S).

QED.

We will show the existence of our desired matroid rank function using the following theo-

rem of Balcan and Harvey [91].

Theorem 5.6. [91] For every positive integer n and k ≥ 8 with k = 2o(n
1/3), there exists a

family of sets A ⊆ 2[n] and a family of matroidsM = {MB : B ⊆ A} on the ground set [n]

with the following properties:

1. |A| = k and |A| = ⌊n1/3⌋ for every A ∈ A.
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2. For every B ⊆ A and every A ∈ A, we have

rankMB(A) =

8⌊log k⌋ (if A ∈ B)

|A| = ⌊n1/3⌋ (if A ∈ A \ B)
.

3. For every A1, A2 ∈ A with A1 ̸= A2, we have |A1 ∩ A2| ≤ 4 log k.

4. For every B ⊊ A, we have rankMB([n]) = ⌊n1/3⌋.

We note that the version of the theorem given in [91] does not include the third and fourth

properties. However, the proof for the variant of Theorem 5.6 with the first two properties

given in [91] shows that the third and fourth properties also hold. We are now ready to

prove Theorem 5.1. The following is a restatement of Theorem 5.1.

Theorem 5.7. For every sufficiently large positive integer n, there exists a symmetrized

matroid rank function rsym : 2[n] → Z≥0 on ground set [n] such that rsym is not α-hypergraph-

approximable for α = o(n1/3/ log2 n).

Proof. For simplicity, we will assume that n = 8x for some positive integer x, so that log n

and n1/3 are both integers. If the theorem holds for n of this form, it holds for all sufficiently

large n, since for any 8x ≤ n < 8x+1 we can extend a matroid M on ground set [8x] to a

matroid M ′ on ground set [n] which has the same independent sets.

For k = nlogn, let A be a collection of subsets of [n] and M = {MB : B ⊆ A} be the

family of matroids on ground set [n] with the properties guaranteed by Theorem 5.6. We

note that |M| = 2n
logn

. For each B ⊆ A, let rBsym be the symmetrized rank function of MB

and let F := {rBsym : MB ∈ M} be the family of symmetrized rank functions of matroids in

the family M. We note that F is a family of 2n
logn

symmetrized matroid rank functions

over the ground set [n]. We will prove that there exists rBsym ∈ F which is not α-hypergraph-

approximable. Suppose for contradiction that for every function rBsym ∈ F there exists a

hypergraph HB such that the cut function dB of HB satisfies dB(S) ≤ rBsym(S) ≤ α(n)dB(S)

for all S ⊆ [n].

Let rBsym ∈ F . By Lemma 5.1, there exists a weighted hypergraph H ′
B with Õ(n) hyper-

edges such that its cut function d′ : 2[n] → R≥0 satisfies

d′(S) ≤ rBsym(S) ≤ 2αd′(S) ∀ S ⊆ [n]. (5.13)

Applying Lemma 5.2 to the rank function rankB : 2[n] → Z≥0 of the matroid MB and the

hypergraphH ′
B gives a hypergraphH ′′

B with Õ(n) hyperedges all of whose weights are rational
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values p/q with p, q ≤ n3 such that the cut function d′′ : 2[n] → R≥0 of H ′′
B satisfies

d′′(S) ≤ rBsym(S) ≤ 4αd′′(S) ∀ S ⊆ [n]. (5.14)

Let H be the family of weighted hypergraphs {H ′′
B : rBsym ∈ F}.

We now count the number of weighted hypergraphs in H. Each hypergraph in H has Õ(n)

hyperedges with each hyperedge having rational weight p/q where p, q ≤ n3. The number of

potential hyperedges in a n-vertex hypergraph is 2n − 1, so for every m ∈ Z+ the number

of simple n-vertex hypergraphs with m hyperedges is
(
2n−1
m

)
= O(2nm). Consequently, the

number of possible simple hypergraphs with Õ(n) hyperedges is 2Õ(n2). The number of

positive rational numbers p/q with p, q ∈ [n3] is at most n6, so the number of ways to assign

a weight of this kind to each hyperedge of a hypergraph with Õ(n) hyperedges is nÕ(n).

Therefore the number of hypergraphs with Õ(n) hyperedges each of which has a positive

rational weight p/q where p, q ∈ [n3] is 2Õ(n2)nÕ(n) = 2Õ(n2) = 2o(n
logn). Hence, |H| = 2o(n

logn).

Let F ′ := {rBsym ∈ F : |B| ≤ |A| − 2}. Since |F| = 2n
logn

and |A| = nlogn, we have that

|F ′| = Ω(2n
logn

). Since |F ′| = Ω(2n
logn

) while |H| = 2o(n
logn), there must exist two distinct

functions rB1
sym, r

B2
sym ∈ F ′ such that there is a single weighted hypergraph H ∈ H whose cut

function d : 2[n] → R≥0 satisfies

d(S) ≤ rB1
sym(S) ≤ 8αd(S) ∀ S ⊆ [n] and (5.15)

d(S) ≤ rB2
sym(S) ≤ 8αd(S) ∀ S ⊆ [n]. (5.16)

Since B1 ̸= B2, at least one of B1 \ B2 and B2 \ B1 must be non-empty. We assume

without loss of generality that B1 \ B2 ̸= ∅. Let S ∈ B1 \ B2. By Theorem 5.6, we have

that rankMB1
(S) = 8 log2 n and rankMB2

(S) = n1/3. Since rB1
sym, r

B2
sym ∈ F ′, we have that

|B1|, |B2| ≤ |A|− 2, and thus |B1 ∪ {S}|, |B2 ∪ {S}| ≤ |A|− 1. Therefore A\ (B1 ∪ {S}),A\
(B2∪{S}) ̸= ∅, so there exist sets T1 ∈ A\ (B1∪{S}), T2 ∈ A\ (B2∪{S}). By Theorem 5.6,

we have that rankMB1
(T1), rankMB2

(T2) = n1/3 and |S ∩ T1|, |S ∩ T2| ≤ 4 log2 n. Therefore,

rankMB1
(T1\S), rankMB2

(T2\S) ≥ n1/3−4 log2 n, and so rankMB1
([n]\S), rankMB2

([n]\S) ≥
n1/3 − 4 log2 n. Furthermore, since T1, T2 ⊆ [n] we have that rankMB1

([n]), rankMB2
([n]) ≥
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n1/3, and so by Theorem 5.6, we have rankMB1
([n]), rankMB2

([n]) = n1/3. Thus, we have that

rB1
sym(S) = rankMB1

(S) + rankMB1
([n] \ S)− rankMB1

([n]) (5.17)

≤ 8 log2 n+ n1/3 − n1/3 = 8 log2 n and (5.18)

rB2
sym(S) = rankMB2

(S) + rankMB2
([n] \ S)− rankMB2

([n]) (5.19)

≥ n1/3 + (n1/3 − 4 log2 n)− n1/3 = n1/3 − 4 log2 n. (5.20)

Therefore, by inequalities (5.15) and (5.16), we have that d(S) ≤ rB1
sym(S) ≤ 8 log2 n, and

8αd(S) ≥ rB2
sym(S) ≥ n1/3 − 4 log2 n. Hence, α = Ω(n1/3/ log2 n). This contradicts the

assumption that α = o(n1/3/ log2 n). QED.

5.3 UPPER BOUNDS

In this section, we show that certain subfamilies of symmetric submodular functions are

constant-hypergraph-approximable. In particular, we show how to approximate concave lin-

ear functions and symmetrized rank functions of uniform and partition matroids using hyper-

graph cut functions. We recall that a set function f : 2V → R≥0 is a concave linear function

if there exist weights w : V → R≥0 and an increasing concave function h : R≥0 → R≥0 such

that f(S) = h(
∑

v∈S wv). If all weights are one, then fsym is symmetric submodular and

moreover, the precise value of f(S) depends only on the size |S| and does not depend on

the precise identify of the elements in S, so we call such functions f as anonymized con-

cave linear functions. In Section 5.3.1, we consider the special case of anonymized concave

linear functions and show that these are constant-hypergraph-approximable. We extend

these ideas in Section 5.3.2 to show that symmetrized concave linear functions are constant-

hypergraph-approximable. In Section 5.3.3 we use our result on approximating anonymized

concave linear functions to show that the symmetrized rank functions of uniform and parti-

tion matroids are constant-hypergraph-approximable, proving Theorem 5.3.

5.3.1 Anonymized Concave Linear Functions

The main result of this section is Theorem 5.8, which states that anonymized concave

linear functions are constant-hypergraph-approximable. We first show a few combinatorial

inequalities that will be useful for our proof.

Claim 5.2. For every integer n ≥ 2, k ∈ {1, . . . , n
2
}, and r ∈ {2, . . . , n− k}, we have that

1.
(
1− r

n−k

)k ≤ (n−k
r )
(nr)
≤
(
1− r

n

)k
.
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2.
(
1− k

n−r

)r ≤ (n−k
r )
(nr)

Proof. 1. We note that (
n−k
r

)(
n
r

) =
(n− k)!/(r!(n− k − r!))

n!/(r!(n− r)!)
(5.21)

=
(n− k)!

n!
· (n− r)!

(n− k − r)!
(5.22)

=
k−1∏
i=0

n− r − i

n− i
. (5.23)

We get the upper bound on
(
n−k
r

)
/
(
n
r

)
by upper bounding every element of this product

with n−r
n
, and the lower bound by lower bounding every term of the product with n−k−r

n−k
.

2. We note that (
n−k
r

)(
n
r

) =
(n− k)!/(r!(n− k − r!))

n!/(r!(n− r)!)
(5.24)

=
(n− k)!

(n− k − r)!
· (n− r)!

n!
(5.25)

=
r−1∏
i=0

n− k − i

n− i
. (5.26)

We obtain the lower bound by lower bounding every term of the product with n−k−r
n−r

.

QED.

Claim 5.3. For every integer n ≥ 2, k ∈ {1, . . . , n
2
}, and r ∈ {2, . . . , n}, we have that(

k
r

)(
n
r

) ≤ (k

n

)r

.

Proof. If k < r, the bound trivially holds, because
(
k
r

)
= 0. Otherwise, we have(

k
r

)(
n
r

) =
k!/(r!(k − r)!)

n!/(r!(n− r)!)
(5.27)

=
k!

(k − r)!
· (n− r)!

n!
(5.28)

=
r−1∏
i=0

k − i

n− i
. (5.29)
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Upper bounding every term in the product with k
n
gives the desired bound. QED.

The following lemma is useful for proving the main theorem of this section.

Lemma 5.3. For every integer n ≥ 2, r ∈ {2, . . . , n}, and X ⊆ [n] with 1 ≤ |X| ≤ n
2
, the

set of hyperedges δ(X) that cross X in a complete r-uniform n-vertex hypergraph has the

following size bound:

1

4
min

{
|X|r
n

, 1

}
≤ |δ(X)|(

n
r

) ≤ 4min

{
|X|r
n

, 1

}
.

Proof. Let k := |X|. We note that the hyperedges which cross X are exactly those which

are neither fully contained in X, nor fully contained in V \X. Thus, the number of rank r

hyperedges in δ(X) is exactly
(
n
r

)
−
(
n−k
r

)
−
(
k
r

)
.

Suppose r > n − k. Then, since k ≤ n/2, we have that r > k as well, so |δ(X)| =(
n
r

)
−
(
n−k
r

)
−
(
k
r

)
=
(
n
r

)
, and so we have |δ(X)|

(nr)
= 1. Thus, we immediately have that

1
4
min

{
|X|r
n
, 1
}
≤ |δ(X)|

(nr)
. Furthermore, we have that kr > k(n − k) = kn − k2, so kr

n
>

kn−k2

n
= k− k2

n
≥ k− k

2
= k

2
, so we have that |δ(X)|

(nr)
≤ 4min

{
|X|r
n
, 1
}
. Henceforth we assume

r ≤ n− k.

We case on the value of k.

• Case 1: k ≥ n/r. Then min
{

|X|r
n
, 1
}
= 1. Since |δ(X)|

(nr)
is the fraction of the hyperedges

which are in δ(X), it is trivially upper bounded by 1, and thus by 4min
{

kr
n
, 1
}
.

Therefore, it remains to show the lower bound. We have that

|δ(X)|(
n
r

) =

(
n
r

)
−
(
n−k
r

)
−
(
k
r

)(
n
r

) (5.30)

≥ 1−
(
1− r

n

)k
−
(
k

n

)r

(5.31)

≥ 1− e−kr/n −
(
k

n

)r

(5.32)

≥ 1− 1

e
− 1

4
(5.33)

≥ 1

4
(5.34)

= 0.25min

{
kr

n
, 1

}
. (5.35)

Here the second line follows from the upper bound in the first conclusion of Claim 5.2
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and the upper bound in Claim 5.3, and the fourth follows from our assumptions that

n/r ≤ k ≤ n/2 and r ≥ 2.

• Case 2: k < n/r. Then min
{

|X|r
n
, 1
}

= kr
n
. Once again, we need to show a lower

bound and an upper bound. We begin with the lower bound:

|δ(X)|(
n
r

) =

(
n
r

)
−
(
n−k
r

)
−
(
k
r

)(
n
r

) (5.36)

≥ 1−
(
1− r

n

)k
−
(
k

n

)r

(5.37)

≥ 1− e−kr/n −
(
k

n

)r

(5.38)

≥ 1−
(
1− kr

2n

)
−
(
k

n

)r

(5.39)

=
kr

2n
−
(
k

n

)r

(5.40)

≥ kr

2n
−
(
kr

2n

)2

(5.41)

=
kr

2n

(
1− kr

2n

)
(5.42)

≥ kr

4n
. (5.43)

Here the second line follows from the upper bound in the first conclusion of Claim 5.2

and the upper bound in Claim 5.3, the fourth from the Taylor expansion of ex, the

sixth from the fact that r ≥ 2, and the last line from the assumption that k < n/r.

Now we show the upper bound. Since the total number of hyperedges in the graph

is
(
n
r

)
, we have that |δ(X)| ≤

(
n
r

)
. Hence, |δ(X)|/

(
n
r

)
≤ 1. It remains to show that

|δ(X)|/
(
n
r

)
≤ 4|X|r/n = 4rk/n. We consider 3 subcases based on the values of r and

k:

– Subcase 1: r ≥ n/4. Since r ≥ n/4 and |X| ≥ 1, we have that |X|r
n
≥ 1

4
. Therefore

|δ(X)|(
n
r

) ≤ 1 ≤ 4
|X|r
n

(5.44)
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– Subcase 2: r < n/4 and k < r. In this case, we have that
(
k
r

)
= 0. Therefore,

|δ(X)|(
n
r

) =

(
n
r

)
−
(
n−k
r

)
−
(
k
r

)(
n
r

) (5.45)

=

(
n
r

)
−
(
n−k
r

)(
n
r

) (5.46)

= 1−
(
n−k
r

)(
n
r

) (5.47)

≤ 1−
(
1− r

n− k

)k

(5.48)

≤ 1− e−2rk/(n−k) (5.49)

≤ 1−
(
1− 2rk

n− k

)
(5.50)

=
2rk

n− k
(5.51)

≤ 4rk

n
. (5.52)

The fourth line follows from the lower bound in the first conclusion of Claim 5.2.

The fifth line follows from observing that 0 < k/(n−r) ≤ 2/3 (since k ≤ n/2 and

r ≤ n/4) and ln(1− x) ≥ −2x for every x ∈ (0, 2/3]. The sixth line follows from

the Taylor expansion of ex, and the last line follows from the fact that k ≤ n/2.
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– Subcase 3: r < n/4 and k ≥ r. In this case we have that

|δ(X)|(
n
r

) =

(
n
r

)
−
(
n−k
r

)
−
(
k
r

)(
n
r

) (5.53)

≤
(
n
r

)
−
(
n−k
r

)(
n
r

) (5.54)

= 1−
(
n−k
r

)(
n
r

) (5.55)

≤ 1−
(
1− k

n− r

)r

(5.56)

≤ 1− e−2rk/(n−r) (5.57)

≤ 1−
(
1− 2rk

n− r

)
(5.58)

=
2rk

n− r
(5.59)

≤ 2rk

3n/4
(5.60)

≤ 4rk

n
. (5.61)

The fourth line follows from the lower bound in the second conclusion of Claim

5.2. The fifth line follows from observing that 0 < k/(n−r) ≤ 2/3 (since k ≤ n/2

and r ≤ n/4) and ln(1 − x) ≥ −2x for every x ∈ (0, 2/3]. The sixth line follows

from the Taylor expansion of ex. The second to last line follows from the fact

that r < n/4.

QED.

The following is the main theorem of this section.

Theorem 5.8. Let n be a positive real number and h : R≥0 → R≥0 be a function such that h

is concave on [0, n] and h(x) = h(n−x) for every x ∈ [0, n]. Then, the symmetric submodular

function f : 2V → R≥0 over the ground set V = [n] defined by f(S) := h(|S|) ∀ S ⊆ V is

64-hypergraph-approximable.

Proof. To simplify our notation, we define ax := h(x) − h(x − 1) for x ∈ {1, . . . , ⌈n/2⌉}.
A hypergraph is uniform if all its hyperedges have the same size and a complete t-uniform

hypergraph consists of all hyperedges of size t. We define H as the union of ⌈n/2⌉ different
hypergraphs, G0, . . . , G⌈n/2⌉, each of which is a uniform hypergraph over the vertex set V

and each of whose hyperedges are weighted uniformly. Formally, H is the union of:
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1. A complete ⌈n
x
⌉-uniform hypergraph Gx, with a total weight of (ax−ax+1)(x/8) equally

distributed among its hyperedges for each x ∈ {1, . . . , ⌈n/2⌉ − 1}, i.e., w(e) = (ax −
ax+1)(x/8)/

(
n

⌈n
x
⌉

)
for every hyperedge e ∈ E(Gx) (we note that ax − ax+1 ≥ 0 since h

is concave).

2. A complete 2-uniform hypergraph G⌈n/2⌉, with a total weight of a⌈n/2⌉(n/32) equally

distributed among its hyperedges.

3. A hypergraph G0 consisting of a single n-vertex hyperedge of weight h(0)/64.

Let d be the cut function of the hypergraph H we have just defined. In order to show

that d 64-approximates f , we will consider an arbitrary subset C of size k and bound its

cut value in H. Since we know that d and f are both symmetric, we assume without loss of

generality that 1 ≤ k ≤ n/2.

We now compute the weight of hyperedges crossing C in H. We recall that |C| = k ≤ n/2.

We begin with the easy cases. δ(C) will certainly cut the single hyperedge of G0 for a weight

of exactly h(0)/64. The hyperedges in G⌈n/2⌉ have rank 2. Therefore, by Lemma 5.3, the

number of hyperedges crossing C in G⌈n/2⌉ is at least a
k
2n

fraction and at most a 8k
n
fraction

of the hyperedges in G⌈n/2⌉, for a total weight between a⌈n/2⌉k/64 and a⌈n/2⌉k/4.

Next, we compute the weight of hyperedges crossing C in G1, . . . , Gk. Let us consider Gx

for a fixed x ∈ {1, . . . , k}. Let r := ⌈n
x
⌉. We have that r ≥ n

x
≥ n

k
, so kr

n
≥ 1. Therefore,

by Lemma 5.3, the number of hyperedges crossing C in Gx is at least a quarter of the

hyperedges of Gx. We also know that even if all hyperedges in Gx cross C, the weight of

those hyperedges is only (ax − ax+1)(x/8). Therefore, the weight of hyperedges crossing C

in Gx is between (ax − ax+1)(x/32) and (ax − ax+1)(x/8).

Next, we compute the weight of hyperedges crossing C in Gk+1, . . . , G⌈n/2⌉−1. Let us

consider Gx for a fixed x ∈ {k + 1, . . . , ⌈n
2
⌉ − 1}. Let r := ⌈n

x
⌉. Then, 2 ≤ r ≤ 2n

x
< 2n

k
.

Therefore, kr
n
≤ 2, and hence,

k

2x
≤ kr

2n
≤ min

(
kr

n
, 1

)
≤ kr

n
≤ 2k

x
. (5.62)

From these inequalities and Lemma 5.3, we conclude that the number of hyperedges crossing

C in Gx is at least a
k
8x

fraction and at most a 8k
x
fraction of hyperedges of Gx. Therefore, the

weight of hyperedges crossing C in Gx is at least (ax− ax+1)k/64 and at most (ax− ax+1)k.
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Therefore, if d(C) is the weight of hyperedges crossing C in H, then

1

64

h(0) + a⌈n/2⌉k +
k∑

x=1

(ax − ax+1)x+

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k

 (5.63)

≤ 1

64

h(0) + a⌈n/2⌉k +
k∑

x=1

2(ax − ax+1)x+

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k

 (5.64)

≤ d(C) (5.65)

≤ h(0)

64
+ a⌈n/2⌉

k

4
+

k∑
x=1

(ax − ax+1)
x

8
+

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k (5.66)

≤ h(0) + a⌈n/2⌉k +
k∑

x=1

(ax − ax+1)x+

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k. (5.67)

Here, expression (5.67) is 64 times expression (5.63), so our proof is complete if we can show

that expression (5.67) evaluates to h(k) (recall that h(k) = f(C). The next claim completes

the proof by showing this. QED.

Claim 5.4. For every k ∈ {0, 1, 2, . . . , ⌈n/2⌉}, we have that

h(k) = h(0) + a⌈n/2⌉k +
k∑

x=1

(ax − ax+1)x+

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k

Proof. To show this, we simplify the two summations appearing on the RHS. The second

summation telescopes to yield (ak+1 − a⌈n/2⌉)k. To simplify the first summation, we note

that
∑j

x=1(ax− ax+1)x =
∑j

x=1(2h(x)− h(x+ 1)− h(x− 1))x. For every x from 1 to j − 1,

h(x) is added 2x times and subtracted 2x times in this summation, so it does not contribute

at all. Therefore, we conclude that
∑j

x=1(ax − ax+1)x = (j + 1)h(x)− jh(x+ 1)− h(0).

Using the simplifications we have derived for each of the summations on the RHS, we find

that the RHS is

h(0) + a⌈n/2⌉k + ((k + 1)h(k)− kh(k + 1)− h(0)) + (ak+1 − a⌈n/2⌉)k (5.68)

= kak+1 + (k + 1)h(k)− kh(k + 1) (5.69)

= k(h(k + 1)− h(k)) + (k + 1)h(k)− kh(k + 1) (5.70)

= h(k). (5.71)

QED.
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5.3.2 Symmetrized Concave Linear Functions

In this section, we prove Theorem 5.2—i.e., symmetrized concave linear functions are

constant-hypergraph-approximable. Our approach is to first construct a hypergraph on a

much larger vertex set than the ground set V , using the result of Theorem 5.8, and then

contract subsets of the vertices of this hypergraph to obtain a hypergraph on the vertex set

V with the desired property.

Theorem 5.9. Let V be a ground set, w : V → R+, and h : R≥0 → R≥0 be an increasing

concave function. Then, the symmetric submodular function f : 2V → R+ defined by

f(S) := h

(∑
v∈S

w(v)

)
+ h

 ∑
v∈V \S

w(v)

− h

(∑
v∈V

w(v)

)
− h(0) ∀ S ⊆ V

is 128-hypergraph-approximable.

Proof. Let n := |V |. For ease of notation, we will use w(S) :=
∑

v∈S w(v) for all S ⊆ V . Let

g : R≥0 → R≥0 be defined by g(x) := h(x)+h(w(V )−x)−h(w(V ))−h(0) for all x ≥ 0. Then

f(S) = g(w(S)). Since h is concave, and h(w(V )−x) is h(x) reflected over a vertical line at

x = w(V )/2, the function h(w(V )−x) is also concave. We also note that −h(w(V ))−h(0) is

a constant, and constant functions are concave. Therefore, g is a sum of concave functions,

and hence, g is concave as well. Since g is concave, it is also continuous. Therefore, for

every x ∈ R+ such that g(x) ̸= 0, there exists a positive real number εx such that for

every real number y with x − εx < y < x + εx, we have g(x)/
√
2 ≤ g(y) ≤

√
2g(x). Let

εmin = min{εw(S) : ∅ ≠ S ⊂ V }. Let q := ⌈2nw(V )/εmin⌉. We note that w(V )/q ≤ εw(S)/2n

for every S ⊂ V .

Claim 5.5. There exist positive integers pv for each v ∈ V such that:

1. For every v ∈ V , we have that w(v)− εmin

n
< pvw(V )

q
< w(v) + εmin

n
.

2.
∑

v∈V pv = q.

Proof. By our choice of q, for every v ∈ V , we have that w(v) − w(V )/q > w(v) − εmin

n
.

Therefore, for each v ∈ V we can choose a positive integer pv such that w(v) − εmin

n
<

pvw(V )/q ≤ w(v), and thus we can choose a collection of integers pv which satisfies the first

condition of the claim as well as
∑

v∈V pv ≤ q.

Consider a collection of positive integers pv for each v ∈ V which maximizes
∑

v∈V pv

subject to satisfying the first condition of the claim and the inequality
∑

v∈V pv ≤ q. Suppose

for contradiction that these integers do not satisfy the second condition of the claim. Then,
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∑
v∈V pv < q, so

∑
v∈V pvw(V )/q < w(V ), so there must exist some u ∈ V for which

puw(V )/q < w(u). By our choice of q, we have that

(pu + 1)w(V )

q
=

puw(V )

q
+

w(V )

q
< w(u) +

w(V )

q
≤ w(u) +

εmin

2n
< w(u) +

εmin

n
. (5.72)

Thus, we can increase pu by 1 while still satisfying the first condition of the claim. Also, since∑
v∈V pv < q, we have that 1 +

∑
v∈V pv ≤ q, so we can increase pu by 1 while maintaining

that the sum of all the integers pv is at most q. This contradicts our assumption that the

integers pv maximized
∑

v∈V pv subject to satisfying the first constraint of the claim and the

inequality
∑

v∈V pv ≤ q. Thus, a collection of positive integers satisfying the conditions of

the claim exists. QED.

Choose a positive integer pv for each v ∈ V such that the chosen integers satisfy the

conditions of Claim 5.5. For each v ∈ V , we create a set Uv containing pv new vertices, and we

define U :=
⋃
v∈V

Uv. We note that |U | =
∑

v∈V pv = q. We define functions h1 : R≥0 → R≥0,

f1 : [0, q] → R+, and f2 : [0, q] → R+ by h1(x) = h(xw(V )/q), f1(x) = h1(x) + h1(q − x) −
h1(q)− h1(0), and f2(x) = f1(x)/

√
2. We note that h1 is concave since it is a rescaling of h

by a constant factor, and h1(q − x) is concave, since it is h1 reflected over the vertical line

at x = q/2. Thus, f1 is the sum of concave functions, and hence, f1 is concave. Finally,

f2 is a constant multiple of a concave function, so f2 is concave as well. Furthermore, by

definition, f2(q − x) = f2(x). Applying Theorem 5.8 to q and f2, we conclude that there

exists a hypergraph H ′ with vertex set U whose cut function d′ satisfies

d′(S) ≤ f1(|S|)/
√
2 ≤ 64d′(S) ∀ S ⊆ U, (5.73)

Let H be the hypergraph obtained from H ′ by contracting each set Uv of vertices into a

vertex v ∈ V . Let d be the cut function of H. To complete the proof, we will show that

d(S) ≤ f(S) ≤ 128d(S) for every S ⊆ V . We first consider the special cases of S = ∅ and
S = V . For both these cases, we have that f(S) = 0 = d(S) by definition. Next, let us

consider an arbitrary non-empty set S ⊂ V . Let US :=
⋃
v∈S

Uv be the corresponding set of

vertices in H ′. We note that by construction of H, we have that d(S) = d′(US). Therefore,

d(S) ≤ f1(|US|)/
√
2 ≤ 64d(S). (5.74)

We note that

|US| =
∑
v∈S

|Uv| =
∑
v∈S

pv. (5.75)
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Therefore, by definition,

f1 (|US|) = f1

(∑
v∈S

pv

)
(5.76)

= h1

(∑
v∈S

pv

)
+ h1

(
q −

∑
v∈S

pv

)
− h1(q)− h1(0) (5.77)

= h

(∑
v∈S

pvw(V )

q

)
+ h

(
w(V )−

∑
v∈S

pvw(V )

q

)
− h(w(V ))− h(0) (5.78)

= g

(∑
v∈S

pvw(V )

q

)
. (5.79)

For each v ∈ S, we have that w(v)− εmin/n < pvw(V )/q < w(v) + εmin/n. We also have

that |S| ≤ n . Therefore,

w(S)− εw(S) ≤ w(S)− εmin (5.80)

≤ w(S)− |S|εmin

n
(5.81)

<
∑
v∈S

pvw(V )

q
(5.82)

< w(S) +
|S|εmin

n
(5.83)

≤ w(S) + εmin (5.84)

≤ w(S) + εw(S). (5.85)

So by definition of εw(S), we have that

f(S)√
2

=
g(w(S))√

2
≤ g

(∑
v∈S

pvw(V )

q

)
≤
√
2g(w(S)) =

√
2f(S). (5.86)

Thus f(S)/
√
2 ≤ f1(|US|) ≤

√
2f(S), and so by inequality (5.74) we have that

d(S) ≤ f1(|US|)/
√
2 ≤ f(S) ≤

√
2f1(|US|) ≤ 128d(S). (5.87)

QED.
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5.3.3 Symmetrized Matroid Rank Functions

In this section, we prove Theorem 5.3 which states that symmetrized rank function of

uniform and partition matroids are constant-hypergraph-approximable (see Section 5.1.2 for

definitions of uniform and partition matroids). We begin with uniform matroids.

Lemma 5.4. The symmetrized rank function of a uniform matroid is 64-hypergraph-

approximable.

Proof. Let r : 2V → R≥0 be the rank function of the uniform matroid on ground set V

with budget k and rsym : 2V → R≥0 be the symmetrized rank function. We note that

r(S) = min{|S|, k} for every S ⊆ V . If k > |V |, then rsym(S) = 0 for every S ⊆ V and

hence, rsym is 1-hypergraph-approximable using the empty hypergraph. So, we may assume

that k ≤ |V |. Then, for every S ⊆ V , we have that

rsym(S) = r(S) + r(V \ S)− r(V ) (5.88)

= min{|S|, k}+min{|V \ S|, k} −min{|V |, k} (5.89)

= min{|S|, |V \ S|, k, |V | − k}. (5.90)

Let n := |V | and consider the function h : R≥0 → R≥0 defined by

h(x) = min{x, n− x, k, n− k}. (5.91)

Then, h is concave on [0, n] and h(x) = h(n − x) for every x ∈ [0, n] and rsym(S) =

h(|S|) for every S ⊆ V . Therefore, by Theorem 5.8, we have that rsym is 64-hypergraph-

approximable. QED.

Next, we show that the symmetrized rank functions of partition matroids are constant-

hypergraph-approximable.

Theorem 5.10. The symmetrized rank function of a partition matroid is 64-hypergraph-

approximable.

Proof. Let M = (V, I) be a partition matroid on ground set V with rank function r :

2V → Z≥0 that is associated with the partition V1, . . . , Vt of the ground set V and budgets

b1, . . . , bt ∈ Z≥0. For i ∈ [t], we define a function fi : 2
Vi → Z≥0 by fi(S) := ri(S)+ri(Vi\S)−

ri(Vi) where ri is the rank function of the uniform matroid on ground set Vi with budget

bi. Then, the symmetrized rank function of the partition matroid M can be written as

rsym(S) =
∑t

i=1 fi(S ∩ Vi). Moreover, each fi is the symmetrized rank function of a uniform
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matroid. By Lemma 5.4, for each i ∈ [t], there exists a weighted hypergraph Gi with cut

function di such that

di(S) ≤ fi(S) ≤ 64di(S) ∀ S ⊆ Pi. (5.92)

Let G be the hypergraph on V formed by taking the union of the hypergraphs Gi for each

i ∈ [t]. Since the vertex sets of the hypergraphs Gi are pairwise disjoint, the cut function

d : 2V → R≥0 of G satisfies d(S) =
∑t

i=1 di(S∩Vi), and therefore G is a weighted hypergraph

which fulfills the requirements of the theorem. QED.

5.4 CONCLUSION AND OPEN PROBLEMS

In this chapter, we investigated the approximability of symmetric submodular functions

using hypergraph cut functions. We proved that it suffices to understand the approximability

of symmetrized matroid rank functions.

On the upper bound side, we showed that symmetrized concave linear functions and

symmetrized rank functions of uniform and partition matroids are constant-approximable

using hypergraph cut functions. Our upper bounds for uniform and partition matroids raise

the question of whether symmetrized rank functions of constant-depth laminar matroids

are constant-approximable using hypergraph cut functions. Laminar matroids generalize

partition matroids. A family L of subsets is said to be laminar if for every pair of sets

A,B ∈ L, we have that either A ⊆ B or B ⊆ A or A ∩ B = ∅. Suppose that we have a

laminar family L and a function b : L → Z≥0. Then, the independent sets of the laminar

matroid associated with L and b are those subsets A ⊆ V for which |A∩S| ≤ b(S) for every

S ∈ L. The laminar matroid is said to have depth d, if the longest nested sequence of sets

in the laminar family L has exactly d sets.

On the lower bound side, we showed that there exist symmetrized matroid rank functions

on n-element ground sets that cannot be o(n1/3/ log2 n)-approximated using hypergraph cut

functions, thus ruling out constant-approximability of symmetric submodular functions using

hypergraph cut functions. Our results raise the natural open question of whether every sym-

metric submodular function on n-element ground set is O(
√
n)-hypergraph approximable.
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[22] A. A. Benczúr, “A representation of cuts within 6/5 times the edge connectivity with
applications,” in Proceedings of the 36th Annual IEEE Foundations of Computer Sci-
ence, ser. FOCS, 1995, pp. 92–102.
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