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ABSTRACT

Neurodegenerative disorders (NDDs) are a significant public health issue, affecting 50

million people worldwide every year. The complexity of NDDs hinders progress in the de-

velopment of prevention and disease-modifying therapies. Despite numerous clinical trials,

the success rate for treating the condition remains less than 1%, with many trials failing

at the late stage leading to significant financial burden and negative outcomes. Challenges

presented by NDDs include disease heterogeneity, overlapping clinical syndromes, a long

asymptomatic phase, and incomplete understanding of disease mechanisms. A more sys-

tematic and efficient approach to the causes and diagnosis of these diseases is needed to

accelerate the growth of effective treatments and ultimately improve health outcomes.

In the current research landscape, there has been a remarkable upsurge in real-world

datasets dedicated to NDDs, characterized by a significant expansion in both sample size

and the inclusion of diverse data modalities. Leveraging machine learning techniques to ana-

lyze this data presents an exciting opportunity to address challenges presented by NDDs. We

have shown that a machine learning algorithm can delineate subgroups within Parkinson’s

disease by discovering hidden patterns from multi-modal symptomatic data in an unbiased

way. Given the longitudinal nature of NDDs, we illustrated the use of longitudinal dimen-

sional reduction approach to identify underlying trajectory patterns within large biomedical

datasets. We demonstrated that disease probability scores obtained by exposing brain imag-

ing and genomics data to machine learning tools are useful for risk stratification, prognosis

prediction, and monitoring disease progression. Our multi-modal approach on large ag-

gregates of real-world data, along with the contribution of our interactive data-driven web

applications, leads to a substantial enhancement in transparency, reproducibility, and acces-

sibility.

We anticipate that this dissertation will have a transformative impact on industry and

academia by advocating for and enabling data-driven methodologies to enhance medical

research. Our comprehensive evaluation and open-source deployment of research results

should reduce the friction between basic science research and its practical implementation

in clinical settings or drug development processes. As research evolves and produces more

complex datasets, we believe that the use of computational tools will become more prevalent

in the field. Research outputs of this work can serve as a reference for future research in

this area, as it showcases the potential of machine learning to assist medical research for

neurodegenerative disorders.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

A disease is a deviation from an organism’s normal structural and functional behavior.

These behaviors are called signs and symptoms of a disease. Diseases may often be classified

by cause, pathogenesis, or symptoms. Today, it is preferred to classify disease based on cause

if it is known. The disease classification scheme gets updated iteratively as more detailed

biological data is collected. Forming the diagnostic criteria for a disease is the first step in

the process of drug development.

Medicine is the science of restoring or preserving physical condition by managing, pre-

venting, and treating the disease using artifacts such as drugs or surgical appliances of

operations. Diseases are associated with fundamental processes that cause particular obser-

vations or phenotypes. These processes, more often, are defects in molecular and cellular

processes that constitute the triggers of specific pathology and are referred to as mechanisms

of disease. Understanding disease mechanisms is crucial to discovering and providing the

proper treatment to improve the healthcare of suffering patients.

Following disease classification, medical research is broadly classified into basic science

and translational research. Basic science focuses on the discovery of clinical therapeutic

candidates. Translational research is taking discovery from the laboratory into the clinic,

where it can ultimately help people. The procedures used in basic science research vary

based on the disease complexity or nature of the disease. Research for illnesses that are

caused primarily due to environmental effects is treated differently compared to genetic

diseases such as cancer or neurodegenerative disorders. Drugs addressing targets supported

by human genetic evidence are more likely to progress through clinical trials [1]. Two-thirds

of FDA-approved drugs in 2021 have shown genetic evidence [2]. Here we focus on the

pipeline for genetics-based drug discovery, focusing on the steps involving biological data.

• Basic science research includes:

– Genome-wide association study (GWAS) is an observational study of a genome-

wide set of genetic variants in different individuals to see if any variant is associ-

ated with a trait.

– Functional Genomics studies understanding gene functions and their interaction

with other genes or proteins that result in a particular trait. GWAS studies cannot

distinguish between causal and non-causal genes, but Functional genomics usually
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tests the “causal role” of the function. It also includes understanding genes’

interaction with environmental factors and cell biology.

– Once the potential therapeutic target is identified, drugs are being developed that

can interfere with the therapeutic target to correct defects in the pathology. The

drugs are validated in screenable assays and animal models before clinical trials.

• Translational research: Once a drug is developed and has shown promise in preclin-

ical research; it goes through clinical trials. First, a drug is tested on healthy people

for safety and toxicity (Phase 1 trial). Then, drugs are given to patients in a controlled

environment to test for efficacy and side effects (Phase 2 and Phase 3 trials). If ap-

proved, the drug is translated into practice and then applied to the community for the

actual benefit of society.

Machine learning is a branch of Artificial Intelligence (AI) that leverages vast amounts

of data to learn hidden patterns to improve performance on a given set of tasks. The

growth of high-quality large datasets and the emergence of neural network-based specialized

algorithms led to the prevalence of AI in society [3, 4, 5, 6]. In recent years, AI has achieved

tremendous success in medicinal applications outperforming expert humans on various tasks.

For instance, pneumonia diagnosis using chest X-rays [7, 8] or skin cancer detection using

skin images [9]. The success of machine learning algorithms is attributed to their ability

to deal with tasks whose complexity challenges the mental capacity of a human brain to

solve. The human body is a very complex system; biologists or clinicians can only analyze

a handful of observations. Another exciting area of research, multi-modal machine learning,

aims to build models that can process and relate information from multiple modalities [10].

Therefore, for a disease, we believe that machine learning can be a handy tool in medicine

and can improve medicinal science significantly.

Neurodegenerative disease is an overarching term for various progressive conditions that

affect the nervous system’s neurons, resulting in the damage and death of brain cells. This

abnormality causes deficiency related to cognitive and movement skills in the affected peo-

ple. We identified four critical characteristics of neurodegenerative disorders that contribute

to their complexity and can be addressed using data-driven studies: (1) disease hetero-

geneity, (2) overlapping clinical syndromes, (3) long asymptomatic phase, and (4)

understanding disease mechanisms. Disease heterogeneity refers to a medical condition

that shows substantial phenotypic variability or variability in the root cause of the disease

patients. Data-driven studies have identified significant variation in clinical manifestations

by age at onset, rate of progression, associated treatment complications, and the occurrence

and constellation of the motor/non-motor features for Alzheimer’s and Parkinson’s disease.
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The phenotypic heterogeneity within the diseased population poses a significant challenge

for clinical care and clinical trial design. The other important aspect of neurodegenerative

disorders is the overlap in clinical symptoms and risk factors [11]. For example, cognitive

deficits occur not only in Alzheimer’s disease (AD) but also in vascular dementia (VD),

frontotemporal dementia (FTD), mixed dementia, and dementia with Lewy bodies (LBD).

Similarly, the motor system is affected by amyotrophic lateral sclerosis (ALS), Huntington’s

disease (HD), Parkinson’s disease (PD), and spinocerebellar ataxias (SCAs). In addition,

aging is a significant factor common across NDDs. Recognizing shared pathways across

neurodegenerative disorders can lead us to potential therapeutic targets while reducing the

chances of related disorders at older ages [12]. Research shows that NDDs generally start

decades before symptom onset [13, 14]. Disease-modifying therapies are most effective during

this early stage of the disease, making early intervention a crucial factor [15]. Finally, even

though it is known that NDDs pathogenesis involves a complex concert of events and molec-

ular players, current strategies for therapeutic targets primarily focus on hypothesis-driven

approaches where single, predefined cellular readouts or genetic variants are targeted.

1.2 THESIS STATEMENT

Machine learning enhances therapeutic discovery of neurodegenerative disorders. Multi-

modal analysis of real-world biological datasets, including, multi-omics, clinical symptoms,

and cellular and brain imaging were used to demonstrate utility of machine learning.

1.3 DISSERTATION FOUNDATIONS

The objective of our thesis, entitled “ML-Assisted therapeutics for Neurodegenerative

Disorders” is to investigate the potential of Machine Learning to overcome the obstacles

that lead to the failure of clinical trials in NDDs. This thesis rests on two fundamental

pillars, which are: (1) the current body of research and observations in the field of NDDs,

(2) availability of datasets and machine learning algorithms. In the following sections, we

provide a more detailed explanation of each of these components.

1.3.1 Current body of research and observations in the field of NDDs

NDDs poses three significant and enduring challenges that hinder the development of

effective drugs. Here, we discuss these challenges and how addressing them can lead to

better clinical outcomes.
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• Within disease subgroups: The phenotypic heterogeneity that exists within the

neurodegenerative diseased population poses a major challenge for clinical care and

clinical trial design. A clinical trial has to be suitably tailored to account for inter-

individual variability, and as a consequence, trials are either large, long, expensive,

and/or only empowered to see large effects. This problem becomes particularly bur-

densome as we move increasingly towards early-stage trials when therapeutic interven-

tions are likely to be most effective. To that effect, defining subcategories of NDDs

and the ability to predict even a proportion of the disease course has the potential to

significantly improve cohort selection, inform clinical trial design, reduce the cost of

clinical trials, and increase the ability of such trials to detect treatment effects.

• Overlapping signs and symptoms: All NDDs have different clinical entities con-

cerning affected brain regions, progression, onset age, and behavior traits. However,

they share lot of similarities in clinical signs and symptoms. The distinction between

motor and cognitive skill deficiencies across NDDs is unclear. This leads to a high

rate of misdiagnosis and impacting clinical outcomes. To improve diagnostic accuracy,

it is crucial to move beyond signs and symptoms and incorporate more sophisticated

data modalities, such as brain imaging and genome sequencing. Further, these com-

monalities suggest that there might be an overlap between many of these disorders at

the gene level. It can provide insight into better drug targets and lead to fundamental

mechanisms behind neurodegenerative diseases. Understanding the differences/sim-

ilarities between these disorders can provide us with better recruitment criteria for

clinical trials.

• Long asymptomatic phase: Both Alzheimer’s disease (AD) and Parkinson’s disease

(PD) pathology starts decades before clinical symptoms appear. This long preclinical

phase of neurodegenerative disorders (NDDs) offers an opportunity for early inter-

vention with disease-modifying therapies, where chances of successful treatments are

high [16]. However, the lack of biomarkers for early diagnosis and disease progression

monitoring remains a significant obstacle to achieving this goal. Genomics and imag-

ing based predictive models can give early disease detection and precision medicine

tools [17].

• Insufficient disease understanding: As the need for treatment of complex disor-

ders such as NDDs grows, because of ageing population, we will need ways to quickly

model them using accurate phenotypes, validate them, and improve our understanding

of the disease’s genetic architecture. Data-driven methodologies can help in providing
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a better understanding of disease pathophysiology. Drug targets that show evidence

of potential treatment have a higher chance of moving to clinical trials and poten-

tially disease treatment [1, 2]. The availability of large-scale biomedical databases and

research resources, such as the UK biobank, containing in-depth genetic and health

information provides ample opportunities for data-driven analysis. In addition, inno-

vations in biological tools such as CRISPR and iPSC allow us to collect datasets in

vitro to understand complex diseases better. However, the optimal integration of mod-

ern machine learning methods and biological data focusing on NDDs is still lacking.

Integrating biological understanding of disease into machine learning models would be

better. Moreover, we need systematic and reproducible tools to take the discoveries

to translational science. We discuss our ideas to enhance the understanding of dis-

ease mechanisms by discovering novel disease risk genes and monitoring changes in cell

morphologies.

1.3.2 Availability of large scale datasets and machine learning algorithms

The second pillar of this work is based on the availability of comprehensive and carefully

maintained large-scale databases. Neurodegenerative diseases are complex and often affect

multiple dimensions of health, as seen in Parkinson’s disease, where both cognitive and motor

skills are impacted. Additionally, these disorders can begin developing decades before any

symptoms arise, making them especially challenging to treat. To address this, multiple study

cohorts have been established to gather as much data as possible in order to gain a deeper

understanding of these diseases. In addition to large number of sample, we also require large

number of features to address multidimensional nature of these disorders. This dissertation

builds upon these well-curated cohorts, including Alzheimer’s Disease Neuroimaging Initia-

tive, Parkinson’s Progression Markers Initiative, Parkinson’s Disease Biomarkers Program,

UK Biobank, and several multi-cohort data. We analyzed the datasets using different modal-

ities such as clinical signs, Magnetic Resonance Imaging, whole genome sequence, and blood

biomarkers. Table 1.1 provides a quick overview of the datasets we used in this work. It

is impossible to analyze or interpret this high-dimensional data without the use of machine

learning. We utilize machine learning techniques, that includes supervised, unsupervised,

and semi-supervised learning, to analyze the data and develop models. Unsupervised mod-

els are used for detecting subgroups and supervised models were used for risk, prognosis

prediction in NDDs.
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Table 1.1: Shows a list of all the datasets we used in our analysis from different biologi-
cal modalities. (NDD: Neurodegenerative disorders, PPMI: Parkinson’s Progression Mark-
ers Initiative, PDBP: Parkinson’s Disease biomarkers discovery, ADNI: Alzheimer’s Disease
Neuroimaging Initiative, UKBB: UK Biobank, iNDI: iPSC Neurodegenerative Disease Ini-
tiative, NIH: National Institutes of Health)

Aspect NDD Modalities Involved Participants (count) Study

Disease Heterogeneity HC Signs/Symptoms 154 PPMI

HC Signs/Symptoms 115 PDBP

PD Signs/Symptoms 294 PPMI

PD Signs/Symptoms 263 PDBP

HC Signs/Symptoms 180 ADNI

AD Signs/Symptoms 254 ADNI

Shared mechanisms HC Genomics (SNP variants) 4,027 Multi Cohort

PD Genomics (SNP variants) - Multi Cohort

AD Genomics (SNP variants) - Multi Cohort

ALS Genomics (SNP variants) 1,052 Multi Cohort

DLB Genomics (SNP variants) 2,590 Multi Cohort

FTD Genomics (SNP variants) 1,386 Multi Cohort

Disease mechanisms (GWAS) HC
Genomics (SNP variants)
Brain Imaging (MRI)

∼45000 PPMI, PDBP, ADNI, UKBB

AD
Genomics (SNP variants)
Brain Imaging (MRI)

∼3000 PPMI, PDBP, ADNI, UKBB

PD
Genomics (SNP variants)
Brain Imaging (MRI)

∼2000 PPMI, PDBP, ADNI, UKBB

Disease mechanisms
(Cell Morphology)

DLB Cell Microscopy Imaging 15 genes iNDI NIH

FTD Cell Microscopy Imaging 28 genes iNDI NIH

AD Cell Microscopy Imaging 8 genes iNDI NIH

1.4 RELATED WORKS

Here we discuss related works with respect to each of the challenges presented by NDDs

and how previous research has dealt with it.

1.4.1 Disease heterogeneity

• PD subtypes: Recently, subtyping studies using a variety of phenotypes across neu-

rodegenerative disorders have gained significant attention. The earlier works have

followed a path of clinical observation based on age at onset or categorization based

on the most observable features for PD subtypes [18, 19, 20]. This dichotomous sepa-

ration, while intuitive, does not faithfully represent the clinical features of the disease,

which are quantitative, complex, and interrelated. A more realistic representation of
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the disease and disease course requires a transition to a data-driven, multi-dimensional

schema that encapsulates the constellation of interrelated features and allows tracking

(and ultimately predicting) change. Previous studies used cluster analysis, a data-

driven approach, to define two to three clinical PD subtypes [21, 22, 23, 24]. Depth

of phenotypic information and longitudinal assessments in these studies were variable

and often limited to certain clinical features and short-term follow-ups.

• AD subtypes: Machine learning has successfully defined subtypes showing hetero-

geneity in affected brain regions and the progression [25, 26]. Progression-based sub-

types are also identified by exposing unsupervised machine learning algorithms to

cognitive symptoms and signs data [27].

• ALS subtypes: Given the importance of clinical heterogeneity within ALS, there

has been a considerable effort to develop classification systems for patients over time.

Examples include groupings based on family status [28], clinical milestones [29]),

neurophysiological measures [30], and diagnostic certainty [31]. Machine learning

algorithms have shown efficacy in delineating ALS subtypes [32].

1.4.2 Overlapping clinical syndromes

Although neurodegenerative disorders differ from one another with regard to core clinical

pathologies, they have fundamental commonalities at the genomics level as well as symp-

tomatic level [11]. For example, hexanucleotide repeat expansion mutations in intron 1 of

C9orf72 causes ALS in some family members and FTD in others [33, 34]. Attempts thus

far have focused on analyzing post hoc GWAS summary statistics, understanding shared

risk variants and comparing polygenic scores across distinct diseased subjects [35]. There

are studies doing pleiotropic analysis of linking easy to obtain phenotypes such as aging,

cognitive and shows associations with neurodegenerative disorders [12]. None of the previ-

ous studies have focused on utilizing ML based approaches to understand the brain regional

similarities between all these neurodegenerative disorders. The accurate diagnosis of NDD

types is challenging due to the presence of syndromes with similar phenotypes. For instance,

the most accurate method of determining dementia type is through brain biopsy for research

purposes.
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1.4.3 Disease mechanisms

Gene defects is the fundamental step towards understanding the cause of a disease at

the most basic level – the cell and the nucleotide [36]. Genetics has been identified to be

a significant contributor for neurodegenerative disorders [37]. The growth of genomic wide

sequencing technologies led GWAS studies for the identification of disease etiology for AD

[38], PD [39], ALS [40], FTD [41] and LBD [35]. Though these studies have utilized genomic

data from thousands of individuals, they are dependent on proxy cases and cannot address

heterogeneity within diseased individuals. Recently, GWAS have been applied on more

accurate phenotypes determined using machine learning techniques [42, 43]. Unsupervised

algorithms (PCA) have been applied to obtain COVID-19 severity measures [42]. ML based

phenotypes obtained from color fundus photographs have identified 93 novel loci for glaucoma

[43]. Despite the identification of any risk genes, the function of many genes and gene

regulatory elements remains poorly characterized, which limits our ability to apply these

insights towards disease treatment [44]. It becomes particularly challenging for NDDs as we

could not monitor the diseased cells due to their death, decades before symptom onset [45].

The advent of CRISPR, and iPSC allows for monitoring neuron changes under wild type

and mutated conditions [46]. With respect to phenotypes, high throughput screening using

confocal microscopy and cell painting allows us to capture morphological changes in disease

neurons [47, 48].

1.5 DISSERTATION CONTRIBUTIONS

1.5.1 Publications

1. Dadu, A., Satone, V., Kaur, R. et al. Identification and prediction of Parkinson’s disease

subtypes and progression using machine learning in two cohorts. npj Parkinsons Dis. 8,

172 (2022). https://doi.org/10.1038/s41531-022-00439-z [49]

2. Dadu, Anant, et al. ”Application of Aligned-UMAP to longitudinal biomedical studies.”

Patterns (2022). [50]

3. Prediction, prognosis and monitoring of neurodegeneration at biobank-scale via machine

learning and imaging. (Dadu, Anant, et al. In preparation for submission at The Lancet

Digital Health, 2023)

4. Faghri, Faraz, et al. Identifying and predicting amyotrophic lateral sclerosis clinical

subgroups: a population-based machine-learning study. The Lancet Digital Health 4.5
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(2022): e359-e369. [51]

5. Satone, Vipul K., et al. Predicting Alzheimer’s disease progression trajectory and clinical

subtypes using machine learning.” bioRxiv (2019): 792432.

6. Mathew J Koretsky and others, Genetic risk factor clustering within and across neurode-

generative diseases, Brain, 2023 [52]

7. Makarious, Mary B., et al. Multi-modality machine learning predicting Parkinson’s dis-

ease. npj Parkinson’s Disease 8.1 (2022): 35. [53]

8. Makarious, Mary B., et al. GenoML: automated machine learning for genomics. arXiv

preprint arXiv:2103.03221 (2021). [54]

9. Reilly, Luke, et al. A fully automated FAIMS-DIA proteomic pipeline for high-throughput

characterization of iPSC-derived neurons. bioRxiv (2021): 2021-11. [55]

1.5.2 Web dashboards

(a) Subtypes for Amyotrophic Lateral Sclerosis (ALS): http://bitly.ws/u5h7

(b) Subtypes for Alzheimer’s disease (AD): http://bitly.ws/u5h3

(c) Subtypes for Parkinson’s disease (PD): https://shorturl.at/fkvw3

(d) Longitudinal Aligned-UMAP: https://rb.gy/zf2xu

Our solutions provide a systematic approach to address the challenges presented by neu-

rodegenerative diseases using data-driven analysis. Our work on PD subtypes (1) involved

the development of machine learning models that delineate progression-based subgroups us-

ing clinical signs and symptoms. This work has been recognized in several medical news

articles12345. We have also applied a similar algorithm to tease apart subtypes of AD (5)

and contribute to the discovery of ALS subtypes with varying clinical manifestations (4).

Our use of unsupervised learning algorithms to identify hidden patterns from seven longi-

tudinal biomedical datasets has been illustrated in 2, and can also be used to detect batch

1https://www.healio.com/news/neurology/20221216/machine-learning-identifies-three-parkinsons-
subtypes-to-better-track-disease-progression

2https://newslanes.com/2022/12/16/machine-learning-identifies-three-parkinsons-subtypes-to-better/
3https://parkinsonsnewstoday.com/news/algorithm-able-predict-5-year-rate-parkinsons-progression/
4https://www.neurologyadvisor.com/topics/movement-disorders/machine-learning-models-identify-

subtypes-parkinson-disease/
5https://neuroderm.com/living-with-parkinson-s/info-center/machine-learning/
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effects in biological experiments (9). We have also made significant contributions towards

increasing interpretability of supervised models, providing insights into factors contributing

to Parkinson’s disease (7, 8). Analyzing whole genome sequencing data across neurodegen-

erative disorders yielded genomic-based clusters using an unsupervised learning approach

(6).

We have also applied supervised learning techniques to brain MRI data, developing early

detection tools for dementia and PD (3). When combined with genomic data, it provides

insights into the overlapping nature of neurodegenerative disorders (3). Finally, we have

put significant effort into increasing transparency, reproducibility, and accessibility of the

research output of this thesis (a, b, c, d). Refer to Table 1.2 for the summary of dissertation

contributions.

Table 1.2: Shows the summary of a list of challenges and the contributions of the dissertation.

Challenges Contributions

Within disease subgroups
C1: Identification of progression based PD subgroups
C2: Prediction of subgroups within 1-2 years of diagnosis using 20 features
C3: Replication in an independent cohort

Longitudinal pattern discovery C4: Visualize hidden patterns detecting batch effects, clusters

Early diagnosis
C5: Early detection for both Parkinson’s and Alzheimer using brain imaging
C6: Replication early detection in an independent cohort

Overlapping diseases
C7: Added insights into AD and PD overlaps using imaging
C8: Contributed to identification of common genes across NDDs

Disease understanding
C9: Top gene expression profiles associated to PD
C10: Top clinical features associated to PD, AD and ALS subgroups

Open-source tools
C11: Develop prototypical websites for exploring PD, AD and ALS subgroups
C12: Developed website showing patterns in longitudinal data

Aim Title Methods Post prelim Contributions

Chapter 2: Disease subgroups Subtype identification for PD Unsupervised ML, Latent space, Clustering
Published
npj Parkinson’s

C1,C2,C3,C11

Chapter 3: Disease subgroups Applications of Aligned-UMAP to biomedical studies Unsupervised ML, Longitudinal data, Webtool
Published
Cell Patterns

C4,C12

Chapter 4: Early diagnosis & overlaps Prediction and prognosis of neurodegeneration at biobank-scale Supervised ML, Mixed effects model, Image analysis
New results, Replication
In preparation

C5,C7,C8

Chapter 5: Open-source tools Transparency, reproducibility and accessibility of our research Feature interpretation, SHAP values, Webtool
MVPs
deployed

C11,C12

Disease subgroups Subtype identification for ALS Unsupervised ML, Latent space, Clustering
Published
Lancet digital

C10,C12

Disease subgroups Subtype identification for AD Unsupervised ML, Latent space, Clustering
In submission
Alz & Dementia

C10,C12

Overlaps Genetic clustering in neurodegeneration Unsupervised ML
Published
Brain

C8

Disease mechanisms Multi-modality machine learning predicting PD Ensemble ML
Published
npj Parkinson’s

C9

Disease mechanisms Automated proteomic pipeline for iPSC- neurons Unsupervised ML, Longitudinal data In submission C4
Methods GenoML: automated ML for genomics ML applied to genomics In submission C9

1.6 DISSERTATION OUTLINE

This dissertation started with analysis of signs and symptoms for neurodegenerative dis-

orders, followed by solutions to address more complex modalities such as genomics and brain

Magnetic Resonance Imaging (MRI) data. It is divided into multiple chapters and a brief

description below:

• Chapter 2 addresses the challenge of within disease heterogeneity for Parkinson’s

disease (PD). We discusses our work on discovery and prediction of progression based

subgroups to address Parkinson’s disease heterogeneity. The in-depth analysis of these

subgroups is conducted using biospecimen biomarkers and genetic data modalities.
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• Chapter 3 presents a deep insight into the application of Aligned-UMAP, a dimension-

ality reduction tool specifically designed for longitudinal datasets, in the biomedical

domain. We applied the algorithm on seven high-dimensional longitudinal biomedical

datasets. The datasets comprises of brain imaging, clinical signs and symptoms and

multi-omics data modalities. The approach yields interesting patterns that holds the

potential of identifying disease clusters, sub-structures, and outliers, detecting batch

effects, and quality control measures to perform reliable and accurate downstream

analyses.

• Chapter 4 highlights the potential of quantitative markers generated using machine

learning techniques for Alzheimer’s disease and related dementias (ADRD) and Parkin-

son’s disease (PD). We show that disease probability scores obtained from brain MRI

features are useful for risk stratification, prognosis prediction, and monitoring disease

progression. We anticipate that this approach represents a step towards developing

machine learning tools for early intervention and discover overlapping characteristics

of NDDs.

• Chapter 5 discusses about the role of transparent, reproducible and accessible re-

search. We highlights the features of the web dashboards we developed as part of this

dissertation. For supervised model, the feature interpretability using SHAP values

and model perturbation analysis using what if analysis were incorporated in the cloud

deployed web platforms. It includes lower dimensional space exploration dashboards

for unsupervised models.

• Finally, in Chapter 6 we conclude with the summary of contributions and future

prospects of this dissertation.
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CHAPTER 2: PARKINSON’S DISEASE PROGRESSION BASED
SUBTYPES

The clinical manifestations of Parkinson’s disease (PD) are characterized by heterogeneity

in age at onset, disease duration, rate of progression, and the constellation of motor ver-

sus non-motor features. There is an unmet need for the characterization of distinct disease

subtypes as well as improved, individualized predictions of the disease course. We used un-

supervised and supervised machine learning methods on comprehensive, longitudinal clinical

data from the Parkinson’s Disease Progression Marker Initiative (n = 294 cases) to identify

patient subtypes and to predict disease progression. The resulting models were validated in

an independent, clinically well-characterized cohort from the Parkinson’s Disease Biomarker

Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with

highly predictable progression rates, corresponding to slow, moderate, and fast disease pro-

gression. We achieved highly accurate projections of disease progression 5 years after initial

diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for

the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ±
0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as

a significant indicator of fast disease progression among other key biomarkers of interest.

We replicated these findings in an independent cohort, released the analytical code, and

developed models in an open science manner. Our data-driven study provides insights to

deconstruct PD heterogeneity. This approach could have immediate implications for clinical

trials by improving the detection of significant clinical outcomes. We anticipate that ma-

chine learning models will improve patient counseling, clinical trial design, and ultimately

individualized patient care.

2.1 INTRODUCTION

Parkinson’s disease (PD) is a complex, age-related neurodegenerative disease that is de-

fined by a combination of core diagnostic features, including bradykinesia, rigidity, tremor,

and postural instability [56, 57]. Substantial phenotypic heterogeneity is well recognized

within the disease, complicating the design and interpretation of clinical trials, and limiting

patients’ counseling about their prognosis. The clinical manifestations of PD vary by age at

onset, rate of progression, associated treatment complications, as well as the occurrence and

constellation of motor/nonmotor features.

The phenotypic heterogeneity that exists within the PD population poses a major chal-

lenge for clinical care and clinical trial design. A clinical trial has to be suitably powered
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to account for interindividual variability, and as a consequence, trials are either large, long,

expensive, and/or only powered to see large effects. This problem becomes particularly bur-

densome as we move increasingly towards early-stage trials when therapeutic interventions

are likely to be most effective. To that effect, defining subcategories of PD and the ability

to predict even a proportion of the disease course has the potential to significantly improve

cohort selection, inform clinical trial design, reduce the cost of clinical trials, and increase

the ability of such trials to detect treatment effects.

Attempts thus far at the characterization of disease subtypes have followed a path of

clinical observation based on age at onset or categorization based on the most observable

features [18]. Thus, the disease is often separated into early-onset versus late-onset dis-

ease, slowly-progressing “benign” versus fast-progressing “malignant” subtypes, PD with or

without dementia, or based on the most prominent clinical signs into a tremor-dominant

versus a postural instability with gait disorder subtype [19, 20]. This dichotomous separa-

tion, while intuitive, does not faithfully represent the clinical features of the disease, which

are quantitative, complex, and interrelated. A more realistic representation of the disease

and disease course requires a transition to a data-driven, multi-dimensional schema that

encapsulates the constellation of interrelated features and allows tracking (and ultimately

predicting) change [32, 58].

Previous studies used cluster analysis, a data-driven approach, to define two to three

clinical PD subtypes [21, 22, 23, 24]. Depth of phenotypic information and longitudinal

assessments in these studies were variable and often limited to certain clinical features and

short-term follow-ups. Moreover, many previous studies were limited by insufficient meth-

ods to capture longitudinal changes over multiple assessment visits. To this date, none of

the previous approaches to PD clustering were replicated in an independent cohort with

transparent code and analysis.

We have previously used multi-modal data to produce a highly accurate disease status

classification and to distinguish PD-mimic syndromes from PD [59]. These efforts demon-

strated the utility of data-driven approaches in the dissection of complex traits and have also

led us to the next logical step in disease prediction: supplementing the prediction of whether

a person has or will have PD also to include a prediction of the timing and directionality of

the course of their disease.

Here, we describe our work on delineating and predicting the clinical progression of PD and

for a workflow of the analysis, please refer to Figure 2.1. The first stage of this effort requires

creating a multi–dimensional space that captures the disease’s features and the progression

rate of these features (i.e., velocity). Rather than creating a space based on a priori concepts

of differential symptoms, we used data dimensionality reduction methods on the complex
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Figure 2.1: Workflow of analysis and model development.

clinical features observed 60 months after initial diagnosis to create a meaningful spatial

representation of each patient’s status at this time point. After creating this space, we used

unsupervised clustering to determine whether there were clear subtypes of disease within this

space. This effort identified three distinct clinical subtypes corresponding to three groups of

patients progressing at varying velocities (i.e., slow, moderate, and fast progressors). These

subtypes were validated and replicated in an independent cohort. Following the successful

creation of disease subtypes within a progression space, we created a baseline predictor

that accurately predicted an individual patient’s clinical group membership five years later.

Further, we examined the predictive capability of biospecimen biomarkers at baseline and the

genetic information in identifying the subtypes. Our work highlights the utility of machine

learning as an ancillary diagnostic tool to identify disease subtypes and project individualized

progression rates based on model predictions.

2.2 METHODS

2.2.1 Study design and participants

This study included clinical data from the Parkinson’s Progression Marker Initiative

(PPMI, http://www.ppmi-info.org/) and the Parkinson’s Disease Biomarkers Program (PDBP,

https://pdbp.ninds.nih.gov/). Both cohort’s data went through triage for missing data, 60-

month assessment (36-month in PDBP), and comprehensive phenotype collection. Only data
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from participants with 60 months of follow-up for PPMI and 36 months for PDBP were in-

cluded in the study. Overall, in the PPMI (n = 294 PD cases including 99 (34%) female;

154 controls including 58 (38%) female), and in the PDBP (n = 263 PD cases including 112

(43%) female; 115 controls including 64 (56%) female) passed the triage. The PPMI average

age at the screening of PD cases was 61 ± 9.7 years and 60.3 ± 11 years for controls. The

PDBP average age of PD cases was 64.3 ± 8.6 years and 63.6 ± 9.5 years for controls. The

PPMI data also included 28 patients with other enrollments (10 PRODROMA; 8 GENPD;

6 GENUN; 3 SWEDD; 1 REGPD), which were excluded. The PPMI and PDBP cohorts

consist of observational data from comprehensively characterized PD patients and matched

controls. All PD patients fulfilled the UK Brain Bank Criteria [60]. PD subjects enrolled in

PPMI were drug näıve (i.e., not much treated with dopaminergic medications) for at least

2-3 years after enrollment. Being drug näıve is beneficial as we propose to build a disease

progression tool for PD subtypes during early stages without complications from pharma-

cological interventions. Control subjects had no clinical signs suggestive of parkinsonism,

no evidence of cognitive impairment, and no first-degree relative diagnosed with PD. Age

and MDS-UPDRS Part III (objective motor symptom examination by a trained neurologist)

distribution of cohorts at baseline were investigated using Kernel Density Estimation (KDE)

to show that these independent cohorts are identically distributed and ensure the integrity

of replication and validation (Figure 2.2, Table 2.1). Each contributing study abided by

the institutional review boards’ ethics guidelines. All participants gave informed consent for

inclusion in their initial cohorts and subsequent studies. Figure 2.1 provides an overview of

the analyses and study design.

Table 2.1: Two-sample t-test for quantified replication cohort validation analysis. PPMI vs.
PDBP (selected participants with 3 years of data).

PPMI vs PDBP (after 3 years) t-value (95% CI) p-value (95% CI)

Age in 2019 -0.41 0.68

MDS UPDRS PartIII 0.29 0.77

2.2.2 Dataset construction

The discovery and replication cohorts include visit data collected every 12 months starting

from baseline to 60 months (36 months for PDBP) follow-up. In PPMI, visits at the 6

and 9-month time points from baseline were excluded in our analysis due to the high data

missingness rate (50%).
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Figure 2.2: Kernel Density Estimation (KDE) analysis of Age and MDS-UPDRS Part III
(objective motor symptom examination by a trained neurologist) in PPMI and PDBP co-
horts. (a) shows the density of Parkinson’s participant’s age in the 3-years PPMI, PDBP,
and 3-years PDBP datasets, and (b) shows the distribution of Parkinson’s participant’s
MDS-UPDRS Part III at baseline in the 3-years PPMI, PDBP, and 3-years PDBP datasets.
The three density functions in both figures are similar showing the validity of statistical
replication.

For each cohort, a comprehensive and shared set of longitudinally collected common clin-

ical data elements were selected for analysis. Overall, 122 clinical features were available

across six visits for PPMI and 120 features across four visits for PDBP. We used the following

features for the subtype identification stage:

• International Parkinson’s disease and Movement Disorder Society Unified Parkinson’s

Disease Rating Scale (MDS-UPDRS) Part I, Part II, and Part III [61]

• Cranial Nerve Examination (CN I-XII)

• Montreal Cognitive Assessment [62]

• Hopkins Verbal Learning Test [63]

• Semantic Fluency test [64]

• WAIS-III Letter-Number Sequencing Test [65]

• Judgment of Line Orientation Test [66]
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• Symbol Digit Modalities Test

• SCOPA-AUT [67]

• State-Trait Anxiety Inventory for Adults [68]

• Geriatric Depression Scale [69]

• Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease [70]

• REM-Sleep Behavior Disorder Screening Questionnaire [71]

• Epworth Sleepiness Scale [72].

In addition to these clinical measurements, biological and genetic–based features were in-

cluded in the baseline subtype interpretation and the subtype prediction. These additional

features include genotypes using imputed Illumina NeuroX array, vital signs, serum, CSF,

and urine measurements. For genotyping data, we used the variants mapped to human

genome build 38 (hg38) genotyping from unrelated European ancestry imputed genotype

data passing standard QC metrics used to construct the genetic risk score (GRS) [39, 53, 54].

The values indicate the number of copies of the minor allele of each variant for each sub-

ject. We used these values as categorical features. Patient characteristics include height,

weight, blood pressure, and demographic details. For biological biomarkers, we assessed

alpha–synuclein, total tau protein, β–amyloid 1–42 (Aβ42), phospho–tau181 (p–Tau181) in

CSF, serum neurofilament light (NfL), and urine levels of di–22 6–bis (monoacylglycerol)

phosphate total in the urine. We studied the longitudinal variation of biomarkers and pa-

tients’ characteristics measurements across the identified PD subtypes. Furthermore, we

investigated the biological measurements’ role in discriminating PD subtypes.

2.2.3 Procedures and statistical analysis

The data analysis pipeline for this work was performed in Python (version 3.8) with

the support of several open-source libraries (NumPy, pandas, matplotlib, seaborn, plotly,

scikit-learn, UMAP, XGBoost, LightGBM, H2O, streamlit). To facilitate replication and

expansion of our work, we have made the notebook publicly available on GitHub at ht

tps://github.com/anant-dadu/PDProgressionSubtypes. The code is part of the

supplemental information; it includes the rendered Jupyter notebook with full step-by-step

data preprocessing, statistical, and machine learning analysis. For readability, machine

learning parameters have been described in the Python Jupyter notebook and not in the
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text of the paper. Our results are available on an interactive web browser (https://anan

t-dadu-pdprogressionsubtypes-streamlit-app-aaah95.streamlitapp.com/), which

allows users to browse the PD progression space. In addition, the browser also includes

predictive model interpretations allowing readers to explore feature contributions to model

performance. For the streamlit website, we designed a surrogate XGBoost classification

model for subtype prediction, which uses a single split with 70% training and 30% test

data. The reported subtype classification performance in the manuscript is based on a more

stringent nested loop procedure.

2.2.4 Data preprocessing

As the clinical features have varying directionalities, features were transformed to ensure

the highest values uniformly represent the worst outcome while the lower value corresponds to

greater health. To identify the features not following this pattern, we conducted a two-sample

one-tailed t-test (null hypothesis: µHC >= µPD) with cases versus controls as two samples.

We transformed those features that showed a p-value of less than 0.05 (5% significance

test). We further verified the transformations by manually reviewing the distribution of

each feature. We performed feature clipping to minimize the influence of extreme outliers

in the data. We limited all the features values between the range given by the second and

98th percentiles. Only a few features had residual missingness that was distributed randomly

across the patients at a rate of < 5%. For these features, we performed data imputation using

linear interpolation longitudinally (i.e., across visits) for each feature. Then, we transformed

the dataset into a mathematically meaningful and naturally interpretable format. To achieve

this objective, we a) vectorized and b) normalized all longitudinal data. Specifically, we first

vectorized by transforming all observations of a particular parameter in a column vector,

then appended all parameters together. We then used the min-max method to normalize

the data.

2.2.5 Non-negative matrix factorization

Mathematically, NMF factorizes (deconstructs) the data into two matrices. Given a non-

negative matrix XϵRm×n, a non–negative decomposition of the matrix X is a pair of non–

negative matrices UϵRm×p and V ϵRp×n such that X = UV . A large number of patient

parameters are aggregated in a model that represents the underlying progression concept.

In this particular use case of NMF, the matrix U contains the progression space latent vectors,

and the second matrix V contains progression stand indicators corresponding to the latent
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vectors. Latent variables link observation data in the real world to symbolic data in the

modeled world. By further looking into the matrix with progression space’s latent vectors,

we can identify the mapping and, consequently, the implications (symbolic dimensions of

the modeled progression space).

2.2.6 Latent space adjustment

The progression of space latent vectors (matrix U) learned by NMF shows some weight

sharing among the projected dimensions. This weight sharing can be attributed to the pres-

ence of correlation in the data between symptomatologies. To represent the progression space

so that each progression indicator shows progression velocity for each symptom, we need to

adjust the progression space. We performed transformation on NMF learned progression

space by taking the weighted sum of the progression indicators. These weights represent the

contribution of each dimension for distinct symptomatology.

Through our use of NMF, we identified progressive features based on motor, cognitive,

and sleep-based disturbances. Following this, unsupervised learning via Gaussian Mixture

Models (GMM) [73] allowed the data to naturally self-organize into different groups relating

to velocity of decline across these three categories, from non-PD controls representing normal

aging to PD subtypes. GMM is a variant of mixture models, compared to other methods,

the parametrization of a GMM allows it to efficiently capture products of variations in

natural phenomena where the data is assumed generated from an independent and identically

distributed (i.i.d.) mixture of Gaussian (normal) distributions. The assumption of normal

distribution (and therefore, the use of GMM) is often used for population-based cohort

phenomenon. We use the Bayesian Information Criterion (BIC) to select the number of PD

clusters (subtypes) [74]. The BIC method recovers the true number of components in the

asymptotic regime (i.e., much data is available, and we assume that the data was generated

i.i.d. from a mixture of Gaussian distributions). To replicate the subtype identification, we

applied the GMM model developed in the PPMI data to an independent cohort with varying

recruitment strategy and design: the PDBP cohort.

2.2.7 Unsupervised subtype identification

We used dimensionality reduction techniques to develop an interpretable representation

of high modality longitudinal data. Dimensionality reduction techniques helped us to build

the “progression space” where we can approximate each patient’s position relative to both

controls and other cases after the 60-month period in one-year intervals. We used the Non-
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negative Matrix Factorization (NMF) technique to achieve this aim [75, 76]. Alternative

methods, such as principal component analysis and independent component analysis, did

not perform as well as NMF on longitudinal clinical data due to the non-negative nature of

our clinical tests. This process essentially collapses mathematically related parameters into

the same multi-dimensional space, mapping similar data points close together.

2.2.8 Supervised early subtype prediction

After identifying progression classes using unsupervised learning, we built predictive mod-

els utilizing multiple supervised machine learning methods, including the ensemble learning

approach. This method combines multiple learning algorithms to generate a better pre-

dictive model than could be obtained using a single learning algorithm [77]. To do this,

we used stacking ensembles of three supervised machine learning algorithms (Random for-

est [78], LightGBM [79], and XGBoost [80]) to predict PD clinical subtypes using the data

obtained at the time a neurologist first reviewed the patient as the input (combining baseline

and varied time points). This approach outperformed other methods in preliminary testing,

such as support vector machines (SVM) and simple lasso-regression models. Besides the

predictive performance, we chose an ensemble approach due to the nature of our data and

problem: (i) decision trees are intrinsically suited for multiclass problems, while SVM is in-

trinsically two-class, (ii) they work well with a mixture of numerical, categorical, and various

scale features, (iii) they can be used to rank the importance of variables in a classification

problem and in a natural way which helps the interpretation of clinical results, and (iv)

it also gives us the probability of belonging to a class, which is very helpful when dealing

with individual subject progression prediction. We developed three predictive models to

predict the patient’s progression class after 60 months based on varying input factors: (a)

from baseline clinical factors, (b) from baseline and first-year clinical factors, and (c) from

biomarkers and genetic measurements.

To validate the effectiveness of our predictive models, we used a nested cross–validation

(CV) approach with 5 folds in both inner and outer loops. Specifically, we randomly divided

the dataset into five subsamples (outer folds). Each of the subsamples was used as the testing

data exactly once, while the remaining (training) data was used for hyperparameter tuning

and model training. The hyperparameters were chosen based on their average performance

on training data during the inner cross–validation loop. The workflow of the approach is

depicted in Algorithm 2.1. The performance of the algorithm was measured by the area under

the receiver operating curve (AUC) generated by plotting sensitivity vs. (1 – specificity). We

used a macro–average AUC score computed by averaging the metric independently for each
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class (hence treating all classes equally for predicting fast, moderate, and slow progressing

cases). The five results from the multiple iterations were averaged to produce a single

estimation of performance across these three classes.

Algorithm 2.1: Model Evaluation Procedure

for each iteration i=1,2,..I do

Divide the dataset into train (80%) and test data (20%) at random;

Divide the train into K cross-validation subfolds at random;

for each fold k=1,2,..K // CV loop do

validation = fold k ;

subtrain = all folds other than k ;

Train model with every hyperparameter on subtrain;

Evaluate it on validation;

end

Calculate the average metrics score on validation over the K folds for every

hyperparameter;

Choose the best hyperparameter setting;

Train a model with the best hyperparameter on train;

Evaluate its performance on test ;

end

Calculate the mean accuracy over all I iterations on test data;

To conclusively validate the algorithm, we also evaluated the performance of the predictive

models (trained on the PPMI measurements) on the independent PDBP cohort. To replicate,

we trained the supervised model on PPMI latent weights (at baseline) and then used the

same model on the PDBP latent weights (at baseline). We show that the predictive models

preserve their high accuracy applied to another dataset.

2.2.9 Biomarker based prediction

There were 448 observations in total. We did not include plasma, CSF hemoglobin, and

CSF glucosylceramide features because of their high missing data (> 35%). Baseline CSF

data were missing for p-tau in 51 patients, for total-tau in 26 patients, for abeta-42 in 20

patients, and alpha syn in 15 patients. Serum Nfl is missing in 22 participants, 17 participants

did not have data for DNA GRS scores, and 36 participants had missing APOE status. The

overall missing percentage for the above measurements was approximately 5%. We imputed

the missing predictor variable data with means for numerical features and used most frequent
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category for categorical features. The remaining features include demographic information

(education year, biological sex, birthdate, race), vital signs (weight, height, blood pressure),

and family history (parents’ PD status) with no patients having missing data for them. For

hg-38 genetic measurements, data was missing for 8 participants. We removed these patients

from our study. Finally, we had 440 participants and 39 and 64 features for biomarkers and

genetics measurements, respectively. All the genetic features are considered as categorical

except DNA GRS. For the combined model, we concatenated both the biospecimen and

genetic features. This concatenated vector was used as input for the classification of PD

subtypes.

2.3 RESULTS

2.3.1 Clustering vectors of progression

Figure 2.3 shows the result of the mathematical projection of PD progression, called

Parkinson’s disease progression space detailing normalized progression trajectories of each

sample relative to others based on this unsupervised classification system. This space shows

the relative progression velocity of each patient in 60 months (i.e., speed and direction).

The progression velocity level is divided into three main dimensions: motor, cognitive, and

sleep-related disturbances. Movement disorders specialists audited component features to

categorize these clinical measures into domains of sleep, motor, and cognition disturbance af-

ter identification by the algorithm. Based on latent variables clustered within the Parkinson’s

progression space, the projected motor dimension was responsible for 63.58% of the explained

variance, followed by the sleep dimension (21.81%), and cognitive dimension (14.61%). Mo-

tor symptoms are the hallmark of PD progression, with sleep and cognitive decline being,

in some cases, elevated past that decline seen in controlled aging. The projected motor di-

mension significantly contributes towards PD progression; however, sleep and cognition are

essential, accounting for 37% variation. Across these trajectories, the unsupervised learning

analysis reveals and classifies patients into three main subtypes of PD, relating to rates of

disease progression: slow progressors (PDvec1), moderate progressors (PDvec2), and fast

progressors (PDvec3). This shows how we can map the clinical features and progression

velocity from the point of diagnosis. The components of the motor, cognitive, and sleep

dimensions with a description of the latent space used to define the progression space that

may aid in interpretability are described in next section.
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Figure 2.3: Different views of the Parkinson’s disease progression space in 5 years with three
corresponding projected dimensions cognitive motor and sleep dimensions on a normalized
scale.
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2.3.2 Interpretation of the Latent Space

Figure 2.4: Shows how each 122 different input parameters have been projected into the new
dimension of the Parkinson’s progression space (cognitive, motor, and sleep dimensions).
Darker colors represent strong mapping. The mapping is shown at the final visit after z-
score normalization; it is similar for other visits as well (Figure not shown).

To understand the interpretation of PD progressions space dimensions, Figure 2.4 shows

the mapping guide for how the PPMI’s high-dimensional space of 122 different clinical pa-

rameters is mapped to the three-dimensional embedding of Parkinson’s disease progression

space. The features are grouped together to represent coherent skills. The leftmost com-

ponent in Figure 2.4 mainly constitutes the questionnaire associated with sleep and mood

problems, such as dream, fatigue, anxiety, and depression. The middle component repre-

sents questions related to motor skills such as speech, facial expression, tremor, and rigidity.
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The third component represents questions related to cognitive skills, such as cognitive as-

sessment and verbal learning tests. Therefore, the columns represent the projected three

dimensions, i.e., motor, cognitive, and sleep-related trajectories, and the rows are the PPMI

clinical parameters. This interpretable mapping is due to the property of NMF to group

features showing similar variations in the data. This figure allows us to not only observe

the conversion but also the heterogeneity of some clinical parameters, for instance how some

of the Epworth Sleepiness Scale parameters reflect both sleep and cognitive disorders, and

some reflect both sleep and movement disorders. We also looked at the features that seem

to be incorrectly assigned, such as cognition (NP1COG) in the motor, and neurocranial

(CN346RSP) in sleep. We find that the responses to these questions show minimal variation

across subjects, which might make NMF assign them to any of the components. In compar-

isons of the eigenvalues within the NMF decomposition, the projected motor dimension was

responsible for 63.58% of the explained variance, followed by the sleep dimension (21.81%),

and cognitive dimension (14.61%).

2.3.3 Five year progression space

Figure 2.5 shows the disease trajectory of different PD subtypes. The progression space

shows the gradual and linear change for all the subjects. Furthermore, the progression space

tends to stabilize at the end of the third year. In this way, our model can capture patients’

nuanced behavior showing their progression along with different skills. It is interesting to

observe that a significant decline occurs between the second and third year for the subjects

in our analysis. In terms of characteristics of PDs identified subtypes, Figure 2.6 demon-

strated how cognitive, motor and sleep-related symptoms differ within each PDs subtype

and in controls. There is a clear trend for increased cognitive, sleep, and motor disturbances

after five years in fast progressors compared to the slower progressing subtypes. The slowest

progressive subtypes (PDvec1) show a mild decline for motor dimension but less change for

sleep and cognitive dimensions. We can observe that the difference in progression rates be-

tween controls and fastest progressive subtypes is mainly along the motor dimension followed

by sleep and then the cognitive dimension.

Figure 2.7 shows the progression of each PD subtype overtime at baseline and after 12

months, 24, 36, 48 months, and 60 months. To better understand the clinical presentation

of the three identified subtypes, Figure 2.7 and Figure 2.8 demonstrates the three main

projected dimensions (motor, cognitive, and sleep-related disturbances), as well as actual

clinical values of each subtype overtime for UPDRS-Part I, Part II, Part III, as well as Hop-

kins Verbal Learning Test, Symbol Digit Modalities Test, Semantic Fluency test, Epworth
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Sleepiness Scale, State-Trait Anxiety Inventory for Adults, and Geriatric Depression Scale.

Figure 2.5: Visualization of two-dimensional progression space of PD subtypes at the end
of every year, showing their normalized trajectory. (BL-baseline, V04-Year1, V06-Year2,
V08-Year3, V10-Year4, V12-Year5).

2.3.4 Identified subtypes and their clinical characteristics

Figure 2.9 shows the visualization of unsupervised learning via Gaussian Mixture Model

(GMM) in a two-dimension progression space. In two-dimensional progression space, the

projected dimensions represent motor (y-axis) and cognitive (combined with sleep) (x-axis)

components. Projected dimensions are normalized; the increase in values along either direc-

tion signifies a higher decline. GMM fits the data into different subtypes relating to velocity

of decline across symptomatologies from non-PD controls. The Bayesian information crite-

rion has identified three Gaussian distributions representing three PD subtypes. Further,

mean values of PD subtypes in lower dimensional progression space are significantly different

along both Motor dimension (PDvec1 = 0.43 [95%CI: 0.41-0.44], PDvec2 = 0.64 [95%CI:

0.62-0.65], PDvec3 = 0.89 [95%CI: 0.85-0.92)] and Cognitive/Sleep dimensions (PDvec1 =

0.40 [95%CI: 0.39-0.42], PDvec2 = 0.57 [95%CI: 0.56-0.59], PDvec3 = 0.71 [95%CI: 0.68-

0.75]) all with non-overlapping CIs across groups. These three groups identified algorithmi-

cally within the case population change over time differently within the progression space
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Figure 2.6: Shows the distribution of projected dimensions (cognitive, motor, and sleep)
weights for each Parkinson’s category and healthy control after five years. An increase in
values along either direction reflects the increase in the disturbance. PDvec3 has the highest
motor and sleep disturbance, as well as the highest cognitive impairment.

and across specific biomarkers of progression, with PDvec3 generally progressing at a much

steeper slope (Figure 2.5, Figure 2.6, Figure 2.7, Figure 2.8). Using our proposed approach,

45% (134/294) of PD patients identified as PDvec1 (slow progressors), with 39% (114/294)

belonging to PDvec2 (medium progressors) and PDvec3 (fast progressors) accounts for 16%

(46/294) patients.

2.3.5 Biological characteristics of the identified subtypes

Figure 2.10 shows the variation of biological biomarkers for each PD subtype over time.

In terms of patients’ features, height and weight show a significant decline over time for the
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Figure 2.7: Shows the progression of each PD subtype over time for motor, sleep, and
cognitive dimension overtime on the preprocessed values.

fast progressors (PDvec3) compared to other subtypes. We used a linear mixed effects model

for association testing of PD subtypes and serum neurofilament light (Nfl) measurements.

PDvec3 has a significantly steeper slope across time than PDvec1 after adjusting for sex,

height, weight, and age at baseline (P < 0.005). Table 2.3 shows the association testing of

Nfl with PD subtypes. PD patients have lower values compared to healthy controls for all

CSF sample measurements such as alpha–synuclein, total tau protein, Aβ 42, and p–Tau181.

2.3.6 Genetic analysis of the identified subtypes

In terms of the genetic association of PDs identified subtypes, genetic risk scores (GRS)

were calculated [39, 53, 54]. As a one-time measurement, the GRS was not included during

the longitudinal clustering exercise; however, we analyzed regressions comparing associations

between the GRS and either the continuous predicted cluster membership probability (linear

regression) or the binary membership in a particular cluster group compared to the others.

All models were adjusted for age at onset, biological sex, and principal components as covari-

ates to adjust for population substructure in PPMI. The GRS was significantly associated

with decreasing magnitude of the sleep vector per Standard deviation (SD) of increase in

the GRS (beta = -0.029, se = 0.010, p = 0.002, adjusted r2 = 0.046). For binary models

of membership, we see that the GRS is weakly but significantly associated with a decreased

risk of membership in PDvec3 (odds ratio = 0.563 per 1 SD increase from case GRS mean,

beta = -0.574, se = 0.244, P = 0.018) and increased risk of membership in PDvec1 (odds

ratio = 1.341, beta = 0.293, se = 0.134, P = 0.0282) all relative to the moderate progressing

group as a reference. The lack of a strong genetic association is due to the small sample size,

and that genetic variants relating to risk do not necessarily affect progression.
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2.3.7 Replication in an independent cohort

In order to ensure the generalizability and validity of the results, we replicated the subtype

identification in an independent PDBP cohort. Details on differences between the training

(PPMI) and replication (PDBP) cohorts can be found in the Figure 2.2, Table 2.3. In the

PDBP cohort, 46% (121/263) of PD patients were identified as PDvec1, 23% (60/263) be-

longed to PDvec2, and the remaining 31% (82/263) were classified into the PDvec3 group.

We observed less manifested separation of PDvec2 (medium progressors) in the PDBP co-

hort. In the progression space, the spatial differences between subtypes become more ap-

parent with increased longitudinal data. The reason can be attributed to the fact that the

PDBP cohort has 3 years of longitudinal data compared to 5-year data in the PPMI cohort.

Figure 2.11 shows the identified subtypes in the independent PDBP cohort using the model

developed on the PPMI dataset. We see that the identified subtypes in the PDBP cohort

are similar to the ones in the PPMI dataset in terms of progression. Due to the limited

length of the PDBP study (36 months), the visualization of progression space is shown

through the 36 months follow-up from the baseline. The PPMI and PDPB cohorts are

clinically different cohorts and recruited from different populations. The replication of our

results in the PDBP cohort that was recruited with a different protocol shows the strength

of our study’s methodology. We demonstrate that if we ascertain the same phenotypes using

standardized scales, we can reliably discern the same subtypes and progression rates. This

suggests that our results may be generalizable and the clinical subtypes reproducible.

2.3.8 Supervised early subtype prediction

Following the data-driven organization of subjects into progression subtypes and clustering

them into three subtypes, we developed three models to predict patient progression class

after 60 months based on varying input factors: (a) from baseline clinical factors, (b) from

baseline and year one clinical factor, (c) biological and genetics measurements. Figure 2.12a

and Figure 2.12b show the ROC (Receiver Operating Characteristic) curves of our multi-

class supervised learning predictors. We correctly distinguish patients with PD based on

baseline only input factors and predict their 60-month prognosis with an average AUC of

0.92 (95% CI: 0.94 ± 0.01 for PDvec1, 0.86 ± 0.01 for PDvec2, and 0.95 ± 0.02 for PDvec3)

at cross-validation. The predictor built on baseline and year 1 data performs even better

with an average AUC of 0.953 (95% CI: 0.97 ± 0.01 for PDvec1, 0.91 ± 0.02 for PDvec2,

and 0.97 ± 0.01 for PDvec3) also at cross-validation. In Figure 6d, we have shown the

PD subtype predictive performance at baseline, only using baseline data, and years after,
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as more data becomes available and combined with the baseline. The increased accuracy

trend is due to the availability of more information about a subject. This approach is also

practical in a clinical setting, as physicians will provide a better prognosis for patients after

a one-year follow-up. Out of identified top-20 features, 11 belong to the motor dimension,

5 are from the sleep dimension and 4 are a part of cognitive dimension, which is in line

with the amount of variability explained by each dimension (Table 2.2). Further details on

feature importance contributing to the accuracy of these models can be found in the section

entitled Feature Importance and Figure 2.15, Figure 2.16 and Figure 2.17.

Table 2.2: Shows the top 20 clinical parameters used to obtain 0.92 AUC scores and their
mapped dimension. Refer to Figure 2.15 for the scaled importance weights of each feature.

Feature Description Latent dimension
NHY Hoehn and Yahr stage Motor
NP3BRADY Global Spontaneity of movement Motor
NP3FACXP Facial expression Motor
NP2TRMR Tremor Motor

urinary

difficulty retaining urine
+ involuntary loss of urine
+ stream of urine been weak
+ pass urine at night
+ urine your bladder was not completely empty
+ urine again within 2 hours of the previous time

Sleep

SDMTOTAL total symbol digit modalities test Cognitive
VLTANIM Total number of animals Cognitive
NP1SLPD Daytime sleepiness Sleep
NP2HOBB Doing hobbies and other activities Motor

gastrointestinal down

Have feeling during meal that you were full very quickly
+ Had problems with constipation
+ Had to strain hard to press stools
+ Had involuntary loss of stools

Sleep

NP3FTAPR Finger tapping right hand Motor
NP3RIGN Rigidity – neck Motor
HVTRT1 Immediate Recall Trial 1 Cognitive
NP2DRES Dressing Motor
NP3RTCON Constancy of rest Motor
NP2SALV Saliva and drooling Motor
DRMFIGHT In my dreams: sudden limb movements Sleep

DRMAGRAC
Dreams frequently have aggressive
or action-packed content

Sleep

VLTVEG Total number of vegetables Cognitive
NP3PRSPR Pronation-supination – right hand Motor

Besides the cross-validation of predictive models in the PPMI cohort, we have also vali-

dated the accuracy of the predictive model in the independent PDBP cohort. The predictive

model trained on the PPMI baseline data correctly distinguished PDBP patients with an
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AUC of 0.84 (ROC curves in Figure 2.12c). The replicated predictive model performs very

well for PDvec1 and PDvec3 (AUC of 0.91 and 0.88, respectively). However, due to the

small sample size, the predictive model does not predict as well on PDvec2 (AUC of 0.73).

Fewer samples make up the PDvec2 cluster in the replication cohort, and it has been easier

for the predictive model to predict the more extreme subtypes (i.e., PDvec1 and PDvec3).

Despite the smaller sample size of the PDBP cohort, the results strongly validate our previ-

ous observations of distinct, computationally discernible subtypes within the PD population.

This finding indicates that our methodology is robust, and our unique progression analysis

and clustering approach result in the same clusters. In summary, we have mined data to

identify three clinically related constellations of symptoms naturally occurring within our

longitudinal data that summarize PD progression (63.58%, 21.81%,14.61% variance loadings)

comprised of factors relating to motor, sleep, and cognitive.

2.3.9 Biomarker based prediction

The performance of PD progression prediction models using biomarkers and genetic mea-

surements for the PPMI cohort is shown in Figure 2.13 and Figure 2.14. A trained machine

learning model using only UPDRS can predict subtypes with a 0.77 AUC score (Figure 2.13b)

compared to 0.92 with the model that uses all symptomatic clinical measures at baseline

on five-fold cross-validation. It demonstrates the utility of machine learning models in inte-

grating features from multiple dimensions to provide an optimal classification performance.

Biomarkers, such as age, height, weight, and CSF measurements, are shown to be essential

features in predicting the subtypes at baseline (shown in Figure 8). The mean AUC score is

0.67 (Figure 2.13e) using biospecimen, vital signs, and demographics. In comparison, genetic

features show slightly lower performance (AUC score 0.66, Figure 2.13d). A combination of

demographics, biospecimen, vital signs, genetics, and UPDRS is the best performing model

(AUC score 0.80, Figure 2.13a). It is important to note that segregating PDvec3 (fast pro-

gressive subtype) has shown similar performance with only the UPDRS model and that

model that includes other biomarkers and genetic measurement. It might be valuable to

evaluate the UPDRS model’s performance in a clinical setting, as UPDRS is a standard

measure of PD diagnosis and disease severity. Further, the individual components (clinical

questionnaire responses) of UPDRS are crucial, and machine learning models exploit and

utilize their complex interaction to form a composite score of PD subtypes prediction. A

simple aggregation (average) of UPDRS individual responses might not have similar subtype

prediction power. Based on the ease of availability in real-world clinical settings, we suggest

combining UPDRS, genetics, biomarkers, and demographics as a subtype diagnostic model,
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which has a 0.80 AUC score (Figure 2.13a). Further validation of the model is necessary to

improve generalizability in other cohorts to make it an application for clinicians.

2.3.10 Feature importance

The predictive model was also analyzed to identify the feature importance in predicting

PD subtypes. Feature importance is determined by calculating the relative influence of each

variable, which is typically given by information gain/entropy, and how much the variable

contributes to the accuracy (Figure 2.15). We further scaled each feature’s importance be-

tween 0 and 1 using min-max normalization. Figure 2.15 shows the top-50 features identified

by our predictive model. We list the top 20 features used as input to obtain 0.92 AUC with

an ensemble of machine learning models.

SHAP is an unified approach to explain the output of any supervised machine learning

model. It assigns an importance value to every feature based on Shapley values. In addition,

it generates the impact of each feature on the model’s output i.e. the class probability for

classification algorithms. The best performing model among five folds is chosen to calculate

the SHAP values. Figure 2.16 (left) shows the impact score (SHAP contribution) on the

probability of PDvec3 class. We see that a higher serum nfl score corresponds to the increase

in the probability of a patient belonging to the PDvec3 class. Similarly, higher scores on

other symptomatic features related to hobby, sleep are among the top features that can

differentiate between PD h and other classes. Figure 2.16 (right) shows the behavior of

the model for PDvec1 class. The top features include sleeping behavior, Hoehn and Yahr

stage score and the posture stability with probability of lower progressive class increases

with increase in scores for these features. Younger PD patients at screening are expected to

show lower PD progression as compared to the older patients. Figure 2.17 shows the top 20

features involved in classifying PD progressive subtypes.

2.3.11 Change in diagnosis status

The clinical condition of patients can deteriorate, stay the same, or rarely gets better

with time. As the study progresses and more information becomes available about the

disease manifestation, the patient’s diagnosis will be updated. We looked at cases where

their clinical diagnosis were updated in the PPMI study. Figure 2.18, shows the trajectory

of two patients initially diagnosed as PD in the progression space. We can observe that the

patient whose status has changed from PD to dementia has much worse condition along the

Cognitive dimension. The other patient whose status changed from PD to multiple system
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atrophy has shown more decline along the motor dimension.

2.3.12 Association testing of Nfl with PD subtypes

Table 2.3: Shows the longitudinal changes in serum Nfl levels over 5 years for three subtypes.
We used a statistical t-test between PDvec1 vs. PDvec2 and PDvec1 vs. PDvec3 to compare
the means of slope and serum Nfl levels at different points in time.

Outcome PDvec1 PDvec2 PDvec3

Change in serum Nfl level per year Mean [SD] 1.31 [2.36] 1.48 [2.76] 2.91 [4.23]

t-test
P-value [t-statistic]

- 0.6196 [-0.50] 0.0025b [-3.07]

Baseline Mean [SD] 11.54 [5.84] 11.77 [5.21] 15.42 [6.66]

t-test
P-value [t-statistic]

- 0.7576 [-0.31] 0.0004 [-3.63]

At end of year1 Mean [SD] 11.72 [5.05] 13.69 [10.42] 15.72 [6.38]

t-test
P-value [t-statistic]

- 0.086 [-1.73] 0.0002 [-3.86]

At end of year2 Mean [SD] 13.34 [8.09] 13.85 [7.17] 17.09 [7.91]

t-test
P-value [t-statistic]

- 0.6321 [-0.48] 0.0138 [-2.49]

At end of year3 Mean [SD] 14.16 [8.98] 14.76 [8.98] 19.87 [8.99]

t-test
P-value [t-statistic]

- 0.5761 [-0.56] 0.0006 [-3.51]

At end of year5 Mean [SD] 16.72 [13.51] 18.02 [12.36] 26.75 [20.41]

t-test
P-value [t-statistic]

- 0.4435 [-0.77] 0.0003 [-3.73]

Table 2.3 below details baseline and follow-up differences in Nfl across the predicted pro-

gression vector classes. Here we show significant differences between slow and faster progres-

sors not only in the measures of Nfl itself but in the slope of change. Correcting for relevant

parameters using a linear mixed-effects model In addition to subtype, Nfl measurements

might be sensitive to other factors such as sex, height, weight, and age at baseline. We used

a linear mixed effects model to test for the association between subtypes and Nfl measures

after adjustment.
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2.4 DISCUSSION

Prediction of disease and disease course is a critical challenge in the patient counseling,

care, treatment, and research of complex heterogeneous diseases. Within PD, meeting this

challenge would allow appropriate planning for patients and symptom-specific care (for ex-

ample mitigating the chance of falls, identifying patients at high risk for cognitive decline or

rapid progression, etc.). Perhaps even more importantly at this time, prediction tools would

facilitate more efficient execution of clinical trials. With models predicting a patient-specific

disease course, clinical trials could be shorter, smaller, and would be more likely to detect

smaller effects, thus, decreasing the cost of phase 3 trials dramatically and essentially re-

ducing the exposure of pharmaceutical companies to a typically expensive and failure-prone

area. We previously had considerable success in constructing, validating, and replicating a

model that allows a data-driven diagnosis of PD and the differentiation of PD-mimic dis-

orders, such as those patients who have parkinsonism without evidence of dopaminergic

dysfunction [59]. We set out to expand this work by attempting to use a novel approach to

1) define natural subtypes of the disease, 2) attempt to predict these subtypes at baseline,

and 3) identify progression rates within each subtype and project progression velocity.

While the work here represents a step forward in our efforts to sub-categorize and predict

PD, much more needs to be done. The application of data-driven efforts to complex problems

such as this is encouraging; however, the primary limitation of such approaches is that they

require large datasets to facilitate model construction, validation, and replication. These

datasets should include standardized phenotype collection and recording to achieve the most

powerful predictions. Longer follow-ups, more ancestral diversity in samples, and large

sample series are crucial to broadening the applicability of this work. Collecting such data

is a challenge in PD, with relatively few cohorts available with deep, wide, well-curated

data. Thus, a critical need is the expansion or replication of efforts such as PPMI or PDBP,

importantly with a model that allows unfettered access to the associated data; the cost

associated with this type of data collection is large, but these are an essential resource in

our efforts in PD research. Global Parkinson’s Genetics Program (GP2) project has the

potential to address some of these limitations in the future (https://gp2.org/).

A study used cluster analysis to identify patient subtypes and their corresponding progres-

sion rates [23], although these used percentile cutoffs and are not completely data-driven in

nature. However, this study evaluated clusters according to only two-time points, baseline,

and short-term follow-up, that were aggregated into a Global Composite Outcome score. In

return, the subtypes did not capture the fluctuations in the prognosis of subtypes. More

recently, a study used a Long-Short Term Memory-based deep learning algorithm to dis-
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cover PD subtypes, with each subtype showing different progression rate18. The loss of

interpretability with deep learning models makes their approach less suitable for practical

purposes. Another study proposed a trajectory-based clustering algorithm to create patient

clusters based on trajectory similarity [81]. The algorithm gives equal importance to all

the features; however, PD is a multi-dimensional spectrum of symptoms with overlapping

features derived from simultaneous pathological processes [82]. Finally, in order to be used

in practice, subtyping solutions need to be replicated in a different cohort to show the relia-

bility of methods in assigning individual patients to a subtype. Additionally, none of these

previous studies used completely independent replication data.

Our findings can also have implications for the day-to-day practice of clinicians. Movement

disorders specialists often use screening tools such as MDS-UPDRS to assess a patient’s pro-

gression and response to treatment. However, performing these clinical assessments requires

experience, expertise, and time, which hinders its widespread use by other clinicians (and

even neurologists who are not trained in movement disorders). Underutilization of clinical

assessment tools can lead to the suboptimal characterization of PD patients and their clini-

cal course, which in turn impacts their care. Our study is one of the first of its kind which

systematically assessed the accuracy of each feature of MDS-UPDRS in predicting PD’s

course. For example, daytime sleepiness (NP1SLPD) was found to have the highest impor-

tance in clinical progression, followed by doing hobbies and activities (NP2HOBB), dressing

(NP2DRES), and urinary problems (NP1URIN). Knowing the clinical features with the

highest yield in course prediction can help clinicians to tailor their assessment and better

inform patients about their disease course. In addition, shortened versions of comprehensive

assessment tools can be utilized to address specific clinical questions. Surprisingly, none

of the genetic markers studied had high accuracy in clinical course prediction. Our work

initiates multiple questions that are worth exploring in the future. The progression space

seems to stabilize after three years from the baseline. It will be interesting to predict how

much time (from baseline) is required to provide reliable predictions about the PD subtypes.

Secondly, fast progressors do not worsen with the multiple symptoms such as Epworth and

MDS-UPDRS scores (Figure 2.8) from the fourth to the fifth year, while other subtypes do.

It raises the question of whether the fast progressors reach the saturation point after some

time from baseline. It will be useful if we can look for similar patterns in other PD datasets.

Incorporating imaging data for PD subtypes is also an exciting direction to pursue in the

future. Finally, dramatic increases in Nfl and high baseline levels of Nfl could be an indicator

of potential rapid progression.

In this study, we addressed the complexities of PD. We integrated unlabeled, multimodal,

and longitudinal data. The longitudinal data had a long-term nature, and we were interested
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in capturing the overall pattern of the individual’s trajectories. Vectorization and NMF

methods were the most successful approaches for extracting long-term trajectories. Using

comprehensive multi-modal data helped us to develop an embedded space. This space was

crucial for understanding the trajectories and dimensions in which the individuals traverse.

Having this easily interpretable space, we were able to use a GMM unsupervised learning

approach to identify new subtypes of the disorder based on disease progression. We also

provided an in-depth analysis of these subtypes. Furthermore, we developed predictive

models for early diagnosis, prognosis, and clinical trial stratification.

This work provides data-driven subtypes in distinct progression stages of PD and discusses

an approach to predict the future rate of progression years from baseline using longitudinal

clinical data. Predicting disease progression is a paramount challenge in treating and cur-

ing several complex diseases. This study is a step forward toward designing sophisticated

machine-learning paradigms to facilitate the early diagnosis of PD progression and longi-

tudinal biomarker discovery such as our finding of elevated Nfl in fast progressors (both at

baseline and with regard to the rate of change per year). Predicting PD progression rates

would lead to better patient-specific attention by recognizing the patients with a swift rate

of progression at an early stage. The proposed disease progression and trajectory prediction

algorithms can help healthcare providers to develop a methodical and organized course for

clinical tests, which can be much more concise and effective in detection. These adaptations

and modifications in clinics may help to diminish treatment and therapy costs for PD. Fur-

ther, the capability to anticipate the trajectory of impending PD progression at the early

stages of the disease is an advancement toward uncovering novel treatments for PD mod-

ification. The proposed analysis provides insights to inhibit or decelerate the progression

of PD-related symptoms and subsequent deterioration in the characteristics of life that are

accompanied by the disease.

We have demonstrated that applying machine learning provides a systematic, data-driven

way to understand disease heterogeneity. We discussed how unsupervised learning and visu-

alization in lower-dimensional space can provide insights into disease understanding. How-

ever, these approaches have some limitations. Firstly, the linear nature of non-negative

matrix factorization (NMF) cannot capture nuances in the data. Secondly, in this work, the

dimensionality of the data in this chapter is in the order of 100s, but other multimodal

biological datasets can consist of more than 1000 features. In the next chapter, we explore

the applicability of a non-linear, graph-based dimensionality reduction tool called Aligned

UMAP on large longitudinal biomedical datasets.
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Figure 2.8: Shows the progression of each PD subtype over time. The graphs demonstrate
the actual clinical values of each subtype overtime for UPDRS-Part I, Part 2, Part 3, as
well as Hopkins Verbal Learning Test, Symbol Digit Modalities Test, Semantic Fluency test,
Epworth Sleepiness Scale, State-Trait Anxiety Inventory for Adults, and Geriatric Depression
Scale. BL: Baseline. V04: visit number 4 after 12 months. V06: visit number 6 after 24
months. V08: visit number 8 after 36 months. V10: visit number 10 after 48 months. V12:
visit number 12 after 60 months.
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Figure 2.9: PD five-year progression space. Visualization of unsupervised learning via
GMM on two-dimensional progression space and identification of three Gaussian distribu-
tions representing three distinct PD subtypes. An increase in value along either direction
reflects the increase in the disturbance on a normalized scale.

38



Figure 2.10: Shows the biological biomarker variation of each PD subtype over
time. The graphs demonstrate the actual clinical values of each subtype overtime for vi-
tal signs (DIASTND standing diastolic blood pressure (BP), DIASUP supine diastolic BP,
HRSTND standing heart rate, HRSUP supine heart rate, SYSSTND standing systolic BP,
SYSSUP supine systolic BP, HTCM height in cm, TEMPC: temperature in C, WGTKG
weight in kg), cerebrospinal fluid (abeta 42 beta-amyloid 1–42, alpha syn alpha-synuclein,
p tau181p phospho-tau181, total tau total tau protein), and serum neurofilament light levels
(serum nfl). BL: Baseline. V04 visit number 4 after 12 months. V06: visit number 6 after
24 months. V08 visit number 8 after 36 months. V10 visit number 10 after 48 months. V12
visit number 12 after 60 months. In all panels, data is presented as mean.
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a

b c d

Figure 2.11: Shows the identified subtypes in the independent PDBP cohort using the model
developed on the PPMI dataset. Similar PDBP and PPMI subtypes in terms of progression.
a Shows the view of all three dimensions, b view of the motor and cognitive dimensions,
c view of motor and sleep dimensions, and d view of sleep and cognitive dimensions. The
normalized progression space is shown through the 36 months follow up from baseline for
both PPMI and PDBP datasets.
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Figure 2.12: Shows the performance of Parkinson’s disease progression prediction models. a
The ROC (receiver operating characteristic) for the predictive model at baseline developed
on the PPMI cohort evaluated using five-fold cross-validation. b The ROC for the predictive
model developed on the baseline, and first-year data of the PPMI cohort evaluated using five-
fold cross-validation. c The ROC for the predictive model developed on the PPMI baseline
and tested on the PDBP cohort. d Performance of predictive models using data starting
from baseline, only using baseline data, and years after, as more data becomes available and
combined with the baseline. The y-axis shows the average AUC score across PD subtypes
in the PPMI dataset. e Contribution of important features to achieve high accuracy. By
including only 20 features, we can achieve an AUC of greater than 0.90. In all panels, data
is presented as mean.
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Figure 2.13: Shows the performance of Parkinson’s disease progression prediction models
using biomarkers and genetic measurements for the PPMI cohort. All models are evaluated
using five-fold cross-validation. From top left to bottom right: a The ROC for the predictive
model using a combination of demographics (education, year, sex, race), biospecimen (cere-
brospinal fluid, serum Nfl levels), genetics (hg genotype), vital signs (weight, height, blood
pressure) and UPDRS measurements. b The ROC for the predictive model developed on
UPDRS scores. c The ROC for the predictive model developed using demographics, genetics,
vital signs, and biospecimen measurements. d The ROC for the predictive model developed
on genetic measurements e The ROC for the predictive model uses only demographics, vital
signs, and biospecimen measurements. In all panels, data is presented as mean.

Figure 2.14: Heatmap plot showing significant contributing clinical parameters based on de-
mographics, vital signs, baseline biospecimen, baseline MDS-UPDRS scores, and genetic
measurements. The importance score of each feature is relative. BL baseline, HTCM
height in cm, serum nfl serum neurofilament light levels, age at screeing Age at screen-
ing, DIASTND standing diastolic blood pressure (BP), urine totaldi urine levels of di-22:6-
bis (monoacylglycerol) phosphate, WGTKG weight in kg, SYSSUP supine systolic BP,
csf abeta 42 cerebrospinal fluid β-amyloid 1–42, KIDSNUM number of kids, dna grs ge-
netic risk score.
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Figure 2.15: Shows the summary of clinical parameters (top 50 features) to the prediction
models ordered by their importance. The value indicates the scaled importance of the vari-
ables in predicting the PD subtypes. Table lists significantly contributing clinical parameters
based on the baseline model and on model using both baseline and year 1 data.
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Figure 2.16: Clinical features influencing Parkinson’s Disease progression class. Panels A
and B from left to right. Detailed view of influence of top features for Higher PD progression
class i.e. PDvec3 (Left) and lower PD progression class i.e. PDvec1 (Right). Higher value
on the horizontal axis represents higher probability of a PD patient belonging to the PDvec3
class (left) and PDvec1 class (right).

Figure 2.17: Clinical features influencing Parkinson’s Disease progression class. Panels A
and B from left to right. Detailed view of influence of top features for Higher PD progression
class i.e. PDvec3 (Left) and lower PD progression class i.e. PDvec1 (Right). Higher value
on the horizontal axis represents higher probability of a PD patient belonging to the PDvec3
class (left) and PDvec1 class (right).
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Figure 2.18: Shows the trajectory of two PD patients in the two dimensional progression
space whose status has changed from their recruitment category in PPMI cohort. It also
shows the average trajectory of PD subtypes and Non-PD subjects. The marker size corre-
sponds to time from baseline.

45



CHAPTER 3: APPLICATION OF ALIGNED-UMAP TO LONGITUDINAL
BIOMEDICAL STUDIES

In the previous chapter, we explored a use case of unsupervised learning algorithms and

demonstrated how visualizing data in lower dimensions can help us understand disease. In

this chapter, we aim to extend this approach to other longitudinal biological datasets and

explore new use cases beyond disease heterogeneity.

3.1 INTRODUCTION

High-dimensional data analysis starts with projecting the data to low dimensions to visu-

alize and understand the underlying data structure. Several methods have been developed

for dimensionality reduction, but they are limited to cross-sectional datasets. Recently pro-

posed Aligned-UMAP, an extension of the UMAP algorithm, can visualize high-dimensional

longitudinal datasets. We demonstrated its utility for researchers to identify exciting pat-

terns and trajectories within enormous data sets in biological sciences. We found that the

algorithm parameters also play a crucial role and must be tuned carefully to utilize the

algorithm’s potential fully. We also discussed key points to remember and directions for

future extensions of Aligned-UMAP. Further, we made our code open-source to enhance

the reproducibility and applicability of our work. We believe our benchmark study becomes

more important as more and more high-dimensional longitudinal data in biomedical research

becomes available.

3.1.1 Bigger picture

Longitudinal multi-dimensional biological datasets are ubiquitous and highly abundant.

These datasets are essential to understanding disease progression, identifying subtypes,

and drug discovery. Discovering meaningful patterns or disease pathophysiologies in these

datasets is challenging due to their high dimensionality, making it difficult to visualize hid-

den patterns. In this work, we applied Aligned-UMAP on a broad spectrum of clinical,

imaging, proteomics, and single-cell datasets. Aligned-UMAP reveals time-dependent hid-

den patterns when color-coded with the metadata. Altogether, based on its ease of use and

our evaluation of its performance on different modalities, we anticipate that Aligned-UMAP

will be a valuable tool for the biomedical community.
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Figure 3.1: Graphical Abstract.

3.1.2 Highlights

The key highlights of our work are as follows:

• explored the utility of Aligned-UMAP in longitudinal biomedical datasets

• offer insights on optimal uses for the technique

• provide recommendations for best practices

Visualizing large-scale, high-dimensional datasets is the starting step for any data ex-

ploratory analysis. Visualizing data is particularly useful for the biological community, where

researchers rely on hypothesis-free data-driven analytics to gain essential insights and observe

meaningful patterns from the data. The standard way of visualizing high-dimensional data

is to project the data into low-dimensional space, typically 2D or 3D, while preserving local

and global relationships. This transformation is called dimension reduction and belongs to

the unsupervised machine learning algorithms class. The lower-dimensional data space can

guide us in various tasks, such as identifying clusters, sub-structures, and outliers, detecting

batch effects, and quality control measures to perform reliable and accurate downstream

analyses.

In contrast to traditional methods for dimensionality reduction—for example, princi-

pal component analysis (PCA) [83] — Uniform Manifold Approximation and Projection
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(UMAP) [84] learns a nonlinear embedding of the original space by optimizing the embed-

ding coordinates of individual data points using iterative algorithms. It aims to accurately

preserve the original local neighborhood of each data point in the visualization. Because

of the expressiveness of nonlinear embeddings, UMAP is well regarded for its state-of-the-

art empirical performance at elucidating sophisticated manifold structures. The biomedical

community widely adopts UMAP for multiple studies ranging from Single Cell RNAseq

data [85] to Genetics [52, 86] or complex clinical symptoms [32, 85] to depict exciting pat-

terns from the data. In these use cases, UMAP is explored on datasets assuming that all

samples in the dataset are independent.

Despite the prevalence of non-independent high-dimensional biological datasets, the ap-

plication of UMAP in this area is little explored. This non-independence effect can occur

from measurements at different time intervals, age, or other discrete/continuous variables.

There are various longitudinal datasets of different modalities such as Clinical Symptoms,

Magnetic Resonance Imaging (MRI), Electronic Health Records (EHR), Electroencephalog-

raphy (EEG) for sleep monitoring, Electrocardiogram (ECG) data, etc. Since UMAP is a

stochastic algorithm, different runs with the same hyperparameters can yield different re-

sults; therefore, extension to longitudinal datasets is not straightforward, unlike traditional

algorithms such as PCA. Aligned-UMAP is a recently introduced dimensionality reduction

approach for temporal data by the authors of UMAP (https://umap-learn.readthedocs

.io/en/latest/aligned_umap_basic_usage.html). It is based on the UMAP [84] and

MAPPER [87] algorithms. MAPPER is a well-known topological data analysis method that

successfully studies temporal, unbiased transcriptional regulation patterns [88]. Aligned-

UMAP imposes time constraints in the low dimensional embeddings, thereby controlling the

stochasticity of its cross-sectional counterpart along the longitudinal axis. TimeCluster [89]

is another approach that reduces the dimensionality of time-series data. Though it is possible

to discover clusters with similar trajectories using TimeCluster, their intrinsic longitudinal

variation cannot be observed. Further, it requires data availability for every time instance,

making it less applicable for most biological datasets.

In this work, we deep dive into the applications of Aligned-UMAP on various longitudinal

biological datasets. We applied the algorithm to clinical data, brain images, longitudinal

proteomic data, EHR, and ECG datasets. We demonstrated its utility for researchers to

identify exciting patterns and trajectories within enormous data sets. Secondly, we show

the effect of different parameters of Aligned-UMAP on the lower dimension space. We also

performed computation time analysis with varying datasets as a factor of the number of CPU

cores. Furthermore, we deployed an interactive data visualization tool for reproducibility

and transparency, motivated by open science. A deeper investigation of observed patterns

48



Method1: UMAP

• Apply UMAP on all   samples 
ignoring time dependency 
structure
• Visualization using 2D   scatter 
plots

Method2: Aligned UMAP

• Apply UMAP at each time step
• Regularize embedding by     
imposing time constraints
• Visualization using 3D line plots

t1
t2

t3
t4

Features

Time 

Samples

Figure 3.2: The workflow of analysis and model development.

could reveal more detailed, meaningful information, which is out of the scope of this work.

3.2 METHODS

3.2.1 Data pre-processing

All the datasets went through data processing before applying the Aligned-UMAP algo-

rithm. We follow the same methodology used in the cited publications (Table 1). Here we

list the summary of the data processing details for each of the datasets used in this work:

• PPMI clinical data [32, 49]: This clinical data was obtained from the Parkinson’s

Progression Marker Initiative (PPMI, http://www.ppmi-info.org/). Data went

through triage for missing data, a 60-month assessment, and comprehensive phenotype

collection. In the study, we included only data from participants with 60 months of

follow-up for PPMI. Overall, in the PPMI (n = 294 PD cases including 99 (34%) female;

154 controls including 58 (38%) female) passed the triage. We color the trajectory

based on progression-based subtypes obtained from Dadu et al. [49]. We used the

source code located at https://github.com/anant-dadu/PDProgressionSubtypes.

• ADNI clinical data [90]: Clinical assessment data for Alzheimer’s disease were obtained

from the ADNI database (https://adni.loni.usc.edu/). The total scores and sub-

scores from commonly collected cognitive, functional, and longitudinal clinical data

elements were aggregated to form a 78-dimension feature vector. Missing values were

estimated using linear interpolation based on the past visit readings for the feature,
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avoiding any influence of other observations during data imputation as per Satone et

al. [58]. For our analysis, we utilized the code provided at https://github.com/NIH

-CARD/ADProgressionSubtypes.

• PPMI-ADNI T1 MRI [91]: In this dataset, we used derived features that include

regional brain volumes, cortical thickness, and area as T1 MRI imaging features. We

used ANTsPyT1w available at https://github.com/stnava/ANTsPyT1wtopre-pro

cesstheimages.

• MIMIC-III [92]: We utilized the data processing code available at https://gith

ub.com/Jeffreylin0925/MIMIC-III_ICU_Readmission_Analysis to generate

features from electronic health records. We used three categories of features in this

work, namely chart events, ICD-9 embeddings, and demographic information of the

patients [93].

We download the preprocessed version for the other three datasets using the link provided

in the relevant publications, Longitudinal Proteomic COVID–19 from Filbin et al. [94],

Longitudinal whole lung scRNA from Strunz et al. [95] and iPSC derived neurons from

Reilly et al. [96]. On all these datasets, we applied min–max normalization to numerical

features to preserve the longitudinal relationships among the original data and ensure a

zero-to-one range. Additionally, we outlined the specifics of data preparation in the Readme

file of our publicly accessible GitHub repository (https://github.com/NIH--CARD/Aligne

dUMAP--BiomedicalData#step1-prepare--data).

3.2.2 Statistical, and machine learning analysis

After preparing the data, we perform unsupervised machine learning using the Aligned-

UMAP algorithm. We hypothesized that this approach could identify the clusters with

distinct trajectories over time. Since this work is an entirely unsupervised analysis, we

visualize 3D trajectory plots, color-coded based on metadata, to evaluate the algorithm’s

performance. We performed extensive hyperparameter tuning with different sets of values

for Aligned-UMAP parameters (distance metric, alignment regularization, alignment window

size, number of neighbors, minimum distance). For additional information, please see Section

2 of the Readme file available in our GitHub repository at (https://github.com/NIH-C

ARD/AlignedUMAP-BiomedicalData#step2-setup-configuration-and-data-paths).

Finally, we analyze the time taken by Aligned-UMAP on all our datasets to provide the

estimate of execution time to the users (Figure 3.11).
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3.3 RESULTS

3.3.1 Overview of the Aligned-UMAP method

Uniform Manifold Approximation and Projection: UMAP is a dimensionality reduction

method that learns a non-linear low-dimensional embedding of the original high-dimensional

space. UMAP has solid theoretical foundations based on manifold theory and tries to pre-

serve both the local and some global structure better than other popular techniques such as

t-SNE. UMAP is a graph-based dimensionality reduction method. It has two phases—first,

computation of a weighted nearest-neighbor graph from the high-dimensional dataset. In

the second phase, a low-dimensional layout is computed by optimizing the objective function

that preserves desired characteristics of this nearest-neighbor graph. The algorithm is com-

putationally efficient with the time order of sample size for the low dimensional optimization

phase but is essentially bounded by the log-linear complexity of the nearest neighbor search

phase in practical scenarios [97]. It is the superior run time performance of UMAP as com-

pared to its counterparts that makes it very popular among the dimensionality reduction

methods [85].

Aligned Uniform Manifold Approximation and Projection: Aligned-UMAP is a recently

introduced dimensionality reduction approach for temporal data. The trivial way of per-

forming dimensionality reduction on longitudinal data is to apply UMAP independently at

different time steps and align the embedding using a Procrustes transformation on related

points. However, Aligned-UMAP optimizes both embeddings simultaneously using a regu-

larizer term to provide better alignments in general. The MAPPER algorithm is used to

get the regularizer term which enforces the constraint on how far related points can take

different locations in embeddings at multiple time points. Further details for the algorithm

can be found on the UMAP documentation website (https://umap-learn.readthedocs

.io/en/latest/aligned_umap_basic_usage.html). Figure 3.2 and Figure 3.1 shows the

pipeline of our analysis workflow.

3.3.2 Software output and reproducibility

A demo of the Aligned-UMAP visualization is available at https://alignedumap-bio

medicaldata.streamlit.app. The data analysis pipeline for this work was performed in

Python 3.8 using open–source libraries (numpy, pandas, plotly, umap). Our code is publicly

available at https://github.com/NIH-CARD/AlignedUMAP-BiomedicalData to facilitate

replication and future expansion of our work. The repository is well documented and includes
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a description of the data pre-processing, statistical, and machine learning analysis used in

this study.

3.3.3 Visualizing high-dimensional longitudinal data

We study Aligned-UMAP in a wide range of biomedical datasets from multiple data

modalities. Table 3.1 shows the statistics of various datasets, with the count of samples

ranging from approximately 500 to 21,000. These datasets vary in both the number of time

sequences and the number of features available. For every visualization, each representa-

tive point becomes a thread through the time-axis as their relative position changes in the

low-dimensional space. Low dimensional embeddings by UMAP and Aligned-UMAP dimen-

sionality reduction algorithms on longitudinal biomedical datasets from multiple modalities

are shown from Figure 3.3- 3.9. Also, it should be noted that we apply the Aligned-UMAP

algorithm on the dataset having characteristics shown in Table 3.1. In this figure, we have

demonstrated a subset of classes for better visualization purposes. For more detailed analy-

sis, users can explore our public web application.

Figure 3.3: Reveals the distinction between Parkinson’s Disease subjects (with rapid pro-
gressors) and Healthy Controls from 122 clinical measurements collected over five years
from Parkinson’s Progression Markers Initiative (PPMI) study. Measures include Montreal
Cognitive Assessment scores and MDS-Unified Parkinson’s Disease Rating Scale scores.

Clinical data: In neurodegenerative diseases such as Alzheimer’s and Parkinson’s, the

individual can manifest disease in various ways, often times prior to clinical diagnosis. We

evaluate the Aligned-UMAP algorithm on the clinical assessment data from Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) and Parkinson’s Progression Markers Initiative (PPMI)

study cohorts. The ADNI study includes Alzheimer’s patients, mild cognitive impairment

subjects, and elderly controls. PPMI study has subjects recently diagnosed with Parkinson’s
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Figure 3.4: Show trajectories of Dementia and Healthy Control subjects on 78 clinical
measurements collected over two years from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) study. Measurements include Mini-Mental State Exam (MMSE) scores and
Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-COG) tests.

Disease (PD) and healthy controls. These studies collect data for many clinical assessments

related to movement and cognitive disability to monitor disease progression. All such mea-

surements are recorded longitudinally at separate visits. The time duration of such visits

can range from years to decades.

We preprocess the ADNI and PPMI cohort datasets following the strategy proposed in

previous disease subtyping studies [49, 58, 98]. UMAP and Aligned-UMAP successfully

pulled together clusters corresponding to populations with similar disease progression (Fig-

ure 3.3 and Figure 3.4). However, longitudinal differences got lost in the UMAP version due

to its stochastic nature. Aligned-UMAP separates rapidly progressive PD from the healthy

control group and demonstrates divergence of the rapid PD subgroup from healthy controls

with aging (Figure 3.3). Furthermore, Aligned-UMAP reveals distinct longitudinal courses

for dementia and the healthy control group (Figure 3.4). We follow a continuum spectrum

from lower progressive to high progressive subgroups for PD and Dementia subjects. These

results suggest that Aligned-UMAP could be used as a hypothesis-generating tool to identify

distinct subtypes based on disease progression. For instance, a particular subgroup shows

rapid decline in clinical symptoms such as MDS-Unified Parkinson’s Disease Rating Scale [61]

or MoCA cognitive assessment [62] as compared to healthy control and other subgroups.

Whole lung scRNA Data: Single-cell transcriptomics (scRNA) using next-generation

transcript sequencing (RNA-seq) has recently received much attention due to its ability to

uncover cellular heterogeneity, cellular differentiation, and development mechanisms. UMAP

has demonstrated its efficacy in analyzing single-cell datasets by identifying clusters of related

cells. Modeling gene expression trajectories of different cell types have been successfully used
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Figure 3.5: Aligned-UMAP trajectories show shifts in specific cell types (such as Mesothelial
and AT2 cells) in gene expression space during the regeneration time course of mice having
bleomycin lung injury.

to understand cell-cell communication routes in various chronic diseases such as lung disease

and tumor cells [95, 99]. We evaluated Aligned-UMAP on whole lung scRNA data of mice

undergoing regeneration after bleomycin-induced lung injury [95]. Transcriptomic profile of

29,297 cells was collected from six time points (day 3, 7, 10, 14, 21, and 28). We observe

clusters of cell types showing different cellular dynamics through the regeneration process

(Figure 3.5); Mesothelial cells show a spike at day 14 and start returning to their healthy

state (day 0). Thereby, suggesting the role of mesothelial cells in bleomycin related lung

injury. This way, we could extract hidden longitudinal patterns from high-dimensional time-

series datasets using Aligned-UMAP.

Figure 3.6: Aligned-UMAP embeddings depict aging patterns for Dementia, and Parkinson’s
disease patients, stratified by gender.

Imaging Data: Imaging is a pervasive way of monitoring the disease progression of

multiple disorders. We use the Advanced Normalization Tools (ANTs) pipeline 18 to extract
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structural features such as the volume and area of different brain regions from the Magnetic

Resonance Imaging (MRI) T1 image. Since the number of longitudinal images for each

subject is scarce, we use the imaging features to model aging trajectories. To be precise, we

relate images if they are observed at similar age groups instead of relating subjects based on

their visits. Also, these relations are constrained by different diagnosis groups (i.e., Control,

PD, or Dementia). Figure 3.6 shows various aging courses based on the subject’s latest

diagnosis and gender. We noticed a more rapid decline among female dementia cases versus

male dementia cases around 80 years of age. It suggests the non-linear and distinct patterns

of disease progression across groups within a disease. We observed distinct longitudinal

trajectory patterns, which might be a possible way to monitor disease progression.

Figure 3.7: Unveils trajectories of the subject’s admitted in different critical care units of
the MIMIC-III database. Measurements include vital signs such as blood pressure, oxygen
levels, and ICD-9 diagnosis codes.

EHR Data: Electronic Health Records (EHR) is a systematic collection of patients’

healthcare records in a digital format. EHR is adopted in many hospitals in the USA and

UK [100]. We applied the Aligned-UMAP on the MIMIC-III Critical Care Database [92],

which consists of records of more than 40,000 patients in intensive care units (ICU) of

the Beth Israel Deaconess Medical Center between 2001 and 2012. We preprocessed the

dataset following the methodology proposed by Lin et al. [93]. Figure 3.7 shows the lower-

dimensional space on the MIMIC-III dataset on measurement recorded during the initial 72

hours. of entry to the Intensive Care Unit (ICU). We color the trajectories based on the type

of critical care unit a patient stays in just before discharge from the hospital. We observe

that UMAP could not recover time-related patterns; however, Aligned-UMAP segregates

trajectories based on the patient’s critical care unit. This pattern reflects that it might be

helpful to analyze ICU datasets stratified by their care unit and suggests that the quality of

care in ICU units is highly variable.
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Figure 3.8: Embedding space depicts the severity of COVID-19 disease from 1,463 unique
plasma proteins measured by proximity extension assay using the Olink platform. The cutoff
at day 3 is visible because of data unavailability at day seven due to either patient recovery
or deceased

COVID-19 Proteomics Data: Uncovering protein signatures associated with COVID-

19 infection and severity can provide insights into its pathophysiology and immune dys-

function [94]. We utilized longitudinal proteomic data on 306 COVID-19 patients [94].

Aligned-UMAP has identified distinct trajectories for severe and non-severe patients over

seven days (Figure 3.8). We observed the participants exhibiting continued negative symp-

tom trajectories at seven days belonging to more severe or longer COVID-19 infection.

Figure 3.9: Aligned-UMAP low dimensional space identified the cell culture environment of
iPSC-derived neurons using longitudinal proteomic data for more than 8000 proteins.

iPSC-derived neurons Proteomics Data: Aligned-UMAP can be incorporated as a

quality control measure for longitudinal data. We applied this approach to longitudinal

proteomic profiling of the differentiation of iPSC (Induced Pluripotent Stem Cells) derived

neurons cultured in different bioreactors [96]. We could visualize distinct patterns of change

for each cell line grouped by their culture environment, thereby identifying batch effects
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(Figure 3.9). We observed that the cell lines cultured only in the 2D bioreactor are hyper-

variable for almost all time points (till day 28). The cell line 2D 3D (day0-day3 2D culture,

day4-day28 3D culture) tends to converge around day 14, and the cell line cultured in the

3D bioreactor tends to be more homogeneous after around day 7. A tighter spread denotes

a homogeneous group.

Table 3.1: Datasets overview and statistics

Dataset Modality # samples # features # time sequences

PPMI clinical data Clinical Assessment 476 122 6

ADNI clinical data Clinical Assessment 435 78 4

PPMI-ADNI T1 MRI MRI T1 Imaging 2,836 406 52

MIMIC-III EHR 36,675 64 6

Longitudinal Proteomic COVID-19 Proteomics 383 1,463 3

Longitudinal whole lung scRNA scRNA 10,111 21,767 7

iPSC derived neurons Proteomics 18 4,959 6

3.4 DISCUSSION

3.4.1 Observed meaningful patterns

Our work demonstrates that Aligned-UMAP could help us discover meaningful longitudi-

nal patterns by color-coding them based on multiple known covariates. Our analysis finds

that both UMAP and Aligned-UMAP help generate intuitive embeddings because of their

ability to preserve the global structure. Additionally, Aligned-UMAP provides a view that

highlights longitudinal structure by imposing time constraints in the embeddings, thereby

controlling the stochasticity of its cross-sectional counterpart. We observe distinct trajectory

patterns of the data from different modalities. Dementia and PD subtypes are delineated

using clinical assessment measurements from the PPMI and ADNI study (Figure 3.3, Fig-

ure 3.4). Aligned-UMAP has also shown visually meaningful patterns on high-dimensional

omics data such as proteomics (Figure 3.8, Figure 3.9) or single-cell transcriptomics data

(Figure 3.5). Therefore, it is evident that Aligned-UMAP provides meaningful representa-

tions and is likely to be a valuable tool for researchers working on multivariate longitudinal

datasets by preserving the global and local trends along the time axis.
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3.4.2 Points to remember

Based on our observations from this study, this approach promises to be useful in many

other biomedical datasets. These datasets can vary in terms of missing data, time sequences,

or domain-specific variations that make it challenging to tune experimental settings. So, here

we discuss key points that users should keep in mind while using Aligned-UMAP.

• Missing data: The problem of missing data is prevalent in healthcare datasets and

can interfere with the conclusions drawn from the data. Aligned-UMAP can han-

dle data missingness across the longitudinal dimension by performing interpolation in

low-dimensional space. Tensor decomposition based dimension reduction approaches

cannot handle any data missingness [89]. However, none of the dimension reduction

approaches are designed to handle missingness for features measured cross-sectionally.

• Aligned-UMAP Parameter Effect: The number of neighbors and the minimum

distance are two critical parameters affecting the lower-dimensional space using the

UMAP algorithm. In Aligned-UMAP, the number of parameters can increase signif-

icantly. We can vary the UMAP parameters for each step to observe different tra-

jectories. The two other alignment parameters, namely, alignment window size and

alignment regularizer, are critical in visualizing the longitudinal trend that controls

the volatility along the time axis. Figure 3.10 shows the effect of alignment window

size, alignment regularizer, and the number of neighbors on the PPMI longitudinal

dataset. Our web app also demonstrates the impact of these parameters on the lower-

dimensional space.

• Execution Time: We analyze the execution time taken by both algorithms on mul-

tiple datasets and use their subsamples of different sizes. Further, to understand the

algorithm’s scalability and parallelization, we executed it utilizing different numbers

of cores (Figure 3.11). Multiple core setup does not seem to improve run times of

Aligned-UMAP in low data regimes, which may be attributed to inter-core synchro-

nization overheads. However, significant improvements are observed on complete lung

scRNA data with 16 cores (Figure 3.11a). Compared to UMAP, Aligned-UMAP would

require a larger dataset to have better parallelization on a multi-core machine (Fig-

ure 3.11b).

• Stochastic models and reproducibility: Although Aligned-UMAP can handle

stochasticity along the longitudinal axis, it still produces variable embeddings on dif-

ferent runs. Like UMAP, it uses randomness both to speed up approximation steps
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and to aid in solving optimization problems, thereby affecting the reproducibility of

the lower dimensional space. However, UMAP and Aligned-UMAP provide relatively

stable results when applied to large amounts of data. In the future, sophisticated

approaches are required to ensure reproducibility.

3.5 FUTURE WORK

The Aligned-UMAP algorithm is still in the developing phase. We discuss the plausible

extensions of the algorithm that might be useful in a multitude of biomedical research

datasets.

• Clustering: The dimensionality reduction method is a standard pre-processing step to

utilize density-based clustering methods on the high-dimensional dataset. Dynamic

time warping is the most common metric to cluster time-varying patterns using K-

mean clustering. It will be interesting to evaluate multiple clustering approaches on

longitudinal trajectories.

• Semi-Supervised / Supervised: Sometimes, we would like to incorporate target label

information to project high-dimensional data to lower-dimensional space in dimension-

ality reduction. There are various reasons for supervised dimension reduction; First,

to retain the internal structure of classes and have dense clusters. Secondly, to main-

tain the global structure. i.e., preservation of inter-relationships among the known

classes. Finally, we can observe outliers or subjects that do not belong to either class

using the semi-supervised learning approach. The extension of Aligned-UMAP for

supervised/semi-supervised dimension reduction will be a part of future work.

• Rare Events Detection: UMAP algorithm supports the detection of outliers using the

Local Outlier Factor [101] algorithm. Identifying outliers from longitudinal trajectories

generated by Aligned-UMAP will need further investigation.

• Multi-modal aspect: In the biomedical domain, monitoring disease needs data from

multiple modalities such as imaging, blood biomarkers, genetics, or multi-omics [53,

54]. Current dimensionality reduction approaches are destined for the dataset from a

single modality. The trivial way of incorporating multi-modal data is to use vector-

ization, but it might not be the optimal solution to discover hidden patterns in the

data. Therefore, evaluating and building new dimensionality reduction approaches for

multi-modal data analysis setup is required.
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• Interpretability: It’s important to note that because UMAP and t-SNE both necessar-

ily warp the high-dimensional shape of the data when projecting to lower dimensions,

any given axis or distance in lower dimensions still isn’t directly interpretable in the

way of techniques such as PCA. However, PCA is highly influenced by outliers present

in the data, and its inability to capture nonlinear dependencies causes a mix up among

underlying clusters in lower dimensional space.

• Data frequency: Since Aligned-UMAP creates a lower-dimensional space for every

location, analyzing data collected at an extremely fine scale, such as ICU or ECG

spectrograms, becomes expensive.

Figure 3.10: Effect of hyperparameters of Aligned-UMAP on the PPMI clinical dataset.
The alignment regularization is varied for [0.003, 0.03], alignment window size from [1, 6]
and number of neighbors from [5, 25]. We could observe that an increase in the number of
neighbors increases the size of visible clusters (1, 2). Alignment regularization controls and
alignment window size the volatility of trajectories. Higher values for alignment regulariza-
tion will keep the related embeddings closer (1, 5), and alignment window size captures how
far forward and backward across the datasets we look at when doing alignment (1, 3).

So far, we have seen the potential of unsupervised learning in detecting patterns in an

unbiased way. In the next chapter, we will explore how we can utilize labeled data. Su-

pervised algorithms are also useful when we have labels to guide the algorithms towards

specific tasks. Furthermore, we have focused on utilizing brain imaging and genomic data to

compare different NDDs, which allows for early detection during the asymptomatic phase.
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Figure 3.11: Execution time for input datasets of varying sizes (a) for Aligned-UMAP on
multiple datasets (b) for Aligned-UMAP and UMAP on whole lung scRNA dataset. All the
experiments are conducted on a 128 GB RAM machine utilizing a different number of cores
(marker symbol).
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CHAPTER 4: PREDICTION, PROGNOSIS AND MONITORING OF
NEURODEGENERATION AT BIOBANK-SCALE

Alzheimer’s disease and related dementias (ADRD) and Parkinson’s disease (PD) are the

most common neurodegenerative disorders. These are multisystem disorders affecting differ-

ent body parts and functions. Patients with ADRD or PD have long asymptomatic phases

and exhibit significant etiology or clinical manifestations heterogeneity. Hence, quantitative

measures that can provide early disease indicators are necessary to improve patient stratifi-

cation, clinical care, and clinical trial design. This work uses machine learning techniques to

derive such a quantitative marker from T1-weighted (T1w) brain Magnetic Resonance Imag-

ing (MRI). In this retrospective study, we developed a machine learning (ML) based score

of T1w brain MRI image utilizing disease-specific Parkinson’s Disease Progression Marker

Initiative (PPMI) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohorts. Then,

we evaluated the potential of ML-based scores for early diagnosis, prognosis, and monitoring

of ADRD and PD in an independent large-scale population-based cohort, UK Biobank, using

longitudinal data. In this analysis, 1,826 dementia (from 731 participants), 3,161 healthy

controls images (925 participants) from the ADNI cohort, 684 PD (319 participants), 232

healthy controls (145 participants) from PPMI cohort were used to train machine learning

models. The classification performance is 0.94 [95% CI: 0.93-0.96] area under the ROC Curve

(AUC) for ADRD detection and 0.63 [95% CI: 0.57-0.71] for PD detection using 790 extracted

structural brain features. We identified the hippocampus and temporal brain regions as sig-

nificantly affected by ADRD and the substantia nigra region by PD. The normalized ML

model’s probabilistic output (ADRD and PD imaging scores) was evaluated on 42,835 partic-

ipants with imaging data from UK Biobank. For diagnosis occurrence events within 5 years,

the integrated survival model achieves a time-dependent AUC of 0.86 [95% CI: 0.80-0.92] for

dementia and 0.89 [95% CI: 0.85-0.94] for PD. ADRD imaging score is strongly associated

with dementia free survival (hazard ratio (HR) 1.76 [95% CI: 1.50-2.05] per S.D. of imaging

score), and PD imaging score shows association with PD free survival (hazard ratio 2.33

[95% CI: 1.55-3.50]) in our integrated model. HR and prevalence increased stepwise over

imaging score quartiles for PD, demonstrating heterogeneity. The scores are associated with

multiple clinical assessments such as Mini-Mental State Examination (MMSE), Alzheimer’s

Disease Assessment Scale-cognitive subscale (ADAS-Cog), and pathological markers, includ-

ing Amyloid and Tau. Finally, imaging scores are associated with polygenic risk scores for

multiple diseases. Our results indicate that we can use imaging scores to assess the genetic

architecture of such disorders in the future. Our study demonstrates the use of quantitative

markers generated using machine learning techniques for ADRD and PD. We show that dis-
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ease probability scores obtained from brain structural features are useful for early detection,

prognosis prediction, and monitoring disease progression.

4.1 INTRODUCTION

Neurodegeneration refers to the progressive loss of neurons, causing the loss of brain

functions. Alzheimer’s disease and related dementias (ADRD) and Parkinson’s disease

(PD) are the most common forms of neurodegeneration affecting millions of people world-

wide [13, 14, 102]. ADRD is predominantly characterized as a cognitive or behavioral dis-

order, while PD mainly affects motor skills [11]. However, these are multisystem disorders

affecting different body parts and functions. Further, both these diseases exhibit substantial

phenotypic heterogeneity with clinical manifestations varying by onset age, progression rate,

or the constellation of motor/non-motor features [23, 49, 58, 103, 104]. ADRD and PD are

now recognised as forming a phenotypic spectrum rather than discrete categories. Therefore,

the binary assignment cannot capture the complexity of ADRD and PD. Hence, quantitative

indicators of disease are required. Such quantitative markers can also function as surrogate

endpoints to increase clinical trials’ ability to monitor treatment effects [105].

Clinical diagnosis of neurodegenerative disease is preceded by a potentially long asymp-

tomatic phase [106]. It is critical to identify the disease during patients’ pre-asymptomatic

phase when there are higher chances of successful disease modifying therapies [107]. Identi-

fying the disease during patients’ pre-asymptomatic phase is critical when there are higher

chances of successful disease modifying therapies. There has been evidence of abnormal

anatomical changes during the pre-asymptomatic phase of AD and PD due to neuronal

loss [108]. Further, the risk of getting these disorders is highly dependent on heritable fac-

tors, with more than 75 AD and 90 PD associated genetic risk loci already identified [38, 39].

Together, both genetic and imaging data modalities could be a useful predictor of clinical

outcomes during the asymptomatic period of neurodegeneration.

Machine learning approaches have facilitated the analysis of a large number of brain struc-

tural features from T1-weighted (T1w) Magnetic resonance imaging (MRI) [109]. Machine

learning models have shown success in accurately diagnosing AD (post-clinical diagnosis)

[110, 111], as well as predicting the conversion from mild cognitive impairment to AD (pre

clinical diagnosis) [112, 113]. These approaches have been primarily used as a classification

tool to discriminate patients from healthy individuals (binary classification), rather than

quantifying disease. Further, very few studies have validated their findings in an indepen-

dent cohort [114]. While T1-weighted MRI is commonly used to study AD, its application

in PD is limited due to the need for more fine-grained features to analyze neuronal loss in
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the substantia nigra, which is the area most affected in PD [115].

In the following, we present how we developed quantitative markers of ADRD and PD

from brain imaging data using machine learning techniques and investigated their associa-

tion with clinical outcomes during the pre-diagnosis and post-diagnosis phases. We evaluated

the contribution of imaging scores, in combination with genetic risk factors to predict the

likelihood of developing the disease later in life. In the post-diagnosis phase, we assessed the

potential of imaging scores as a disease monitoring marker by examining their association

with clinical assessments and relevant pathological biomarkers. We leverage disease-specific

cohorts to train the machine learning models and evaluate machine learning-generated imag-

ing scores in a large external biobank. The cost-effective biomarker using T1 brain imaging

could pave the way for passive surveillance of the healthcare system for neurodegenerative

disorders at a biobank scale. Figure 4.1 highlights the workflow for our analysis.
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4.2 RESEARCH IN CONTEXT

4.2.1 Evidence before this study

We searched PubMed for articles published in English from database inception to May

11, 2023, about the use of machine learning on brain imaging data for Alzheimer’s disease

(AD), dementia, and Parkinson’s disease (PD) population. We used search terms ”ma-

chine learning” AND ”brain imaging” AND ”neurodegenerative disorders” AND ”quanti-

tative biomarkers”. The search identified 25 studies. Most of these studies are focused on

Alzheimer’s disease. They use machine learning to predict conversion from mild-cognitive

impairment to dementia or to build a classification tool. Many studies also focused on

positron emission tomography (PET) images rather than cost effective T1w MRI images

in their analysis. None of the studies have focused on detecting disease during the asymp-

tomatic phase of dementia and PD. Identified studies are limited in sample size (order of

hundred samples) and extracted features. The assessments of the clinical utility of machine

learning predicted disease probabilities are scarce. Significantly, no attempts were made to

validate the algorithm in an external cohort.

4.2.2 Added value of this study

This study developed machine learning based quantitative scores to measure risk, severity,

and prognosis of Alzheimer’s disease and related dementias (ADRD) and Parkinson’s disease

(PD) using brain imaging data. Neurodegenerative disorders affect multiple body functions

and exhibit significant etiology and clinical presentation variation. Patients with these con-

ditions may experience prolonged asymptomatic periods. Disease-modifying therapies are

most effective during the early asymptomatic stage of the disease, making early intervention

a crucial factor. However, the lack of biomarkers for early diagnosis and disease progression

monitoring remains a significant obstacle to achieving this goal. We leveraged disease specific

cohorts ADNI (1,826 images from 731 dementia participants) and PPMI (684 images from

329 PD participants) to develop a machine learning classifier for AD and PD detection using

T1w brain imaging data. We obtain disease-specific imaging scores from these trained models

using the normalized disease probability score. In a sizeable external biobank, UK Biobank

(42,835 participants), we found these scores show strong predictive power in determining

the occurrence of PD or dementia during 5 year followup. The occurrence of PD increased

stepwise over ascending imaging score quantiles representing heterogeneity within the PD

population. Imaging scores are also associated with pathological and clinical assessment
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measures. Our study indicates this could be a single numeric indicator representing disease-

specific abnormality in T1w brain imaging modality. The association of imaging score with

the polygenic risk score of related disorders implies the genetic basis of these scores. We also

identified top brain regions associated with dementia and Parkinson’s disease using feature

interpretation tools.

4.2.3 Implications of all the available evidence

The findings should improve our ability to create practical passive surveillance plans for

individuals with a heightened risk of occurrence of neurodegenerative disease. We have shown

that imaging scores complement other risk factors, such as age and polygenic risk score for

early detection. The integrated model could serve as a tool for early interventions and study

enrollment. Understanding the genetic basis of imaging scores can provide valuable insights

into the biology of neurodegenerative disorders.

4.3 METHODS

4.3.1 Study design

We trained a supervised classification model using brain structural features extracted

from T1w MRI brain images in PD specific and AD specific cohorts. Normalized disease

probability scores were obtained after inference with a trained machine learning model.

These scores were evaluated as a quantitative disease marker of ADRD and PD in an external

large biobank.

We trained and internally validated the AD classification model using the T1w MRI

data from Alzheimer’s Disease Neuroimaging Initiative (ADNI, https://adni.loni.us

c.edu/) cohort, which also allowed for examining the association of imaging scores with

AD biomarkers and assessment tests. It consists of 731 dementia cases and 925 controls.

Similarly for PD, data from Parkinson’s Progression Marker Initiative (PPMI, http://

www.ppmi-info.org/) was used that includes 319 PD cases, 145 controls. We assessed

the association of imaging scores with relevant clinical outcomes in 42835 participants from

the UK Biobank (UKB, https://www.ukbiobank.ac.uk/) with T1w brain MRI. All

participants and their study partners provided their consent, accepting their engagement for

the data collection. The study protocols for ADNI, PPMI and UKB were approved by the

Institutional Review Board. Access and use of data from the UK Biobank was approved

under application number 33601.
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4.3.2 Study participants

The study included two disease specific cohorts (ADNI, PPMI) and an external large

biobank (UK Biobank). ADNI enrolls participants between the ages of 55 and 90 recruited

at 57 sites in the United States and Canada. After obtaining informed consent, participants

undergo a series of initial tests repeated at intervals over subsequent years, including a clinical

evaluation, neuropsychological tests, genetic testing, lumbar puncture, and MRI and PET

scans. PPMI Clinical protocol is designed to acquire comprehensive longitudinal within-

participant data from approximately 4,000 participants enrolled at about 50 sites worldwide.

The quantitative marker’s performance was assessed in the UK Biobank, a community-based

cohort of over 500,000 individuals, mainly of British self-reported ethnicity, between the

ages of 40 and 69, recruited from across the UK between 2006 and 2010. We only included

participants with T1w MRI data available, randomly selected, avoiding the possibility of

selection bias. The details of the number of participants used in the analysis are shown in

Figure 4.1.

4.3.3 ADRD and PD diagnosis

In the PPMI cohort, all PD patients fulfilled the UK Brain Bank Criteria [60] and

healthy control subjects had no clinical signs suggestive of parkinsonism, no evidence of

cognitive impairment, and no first degree relative diagnosed with PD. For the ADNI cohort,

the Alzheimer’s disease (AD) diagnosis is based on the criteria established by the National

Institute on Aging and the Alzheimer’s Association (NIA-AA). The diagnosis of MCI was

based on the core clinical criteria for MCI established by the NIA-AA workgroups [116] and

the criteria modified from the criteria proposed by Petersen et al. [117]. Since the accurate

confirmation of dementia type is done using post-mortem brain we are considering the AD

cases in ADNI as ADRD rather than specific to AD. In the UK Biobank, the diagnosis

date and the participants with all cause dementia were identified using Field 42018 and

Field 42032 was used for PD (for detailed description of Field in UKB refer to https:

//biobank.ndph.ox.ac.uk/showcase/).

4.3.4 Clinical features obtained from T1w brain imaging data

We use the Advanced Normalization Tools (ANTs) pipeline [91] to extract structural

features such as the volume and area of different brain regions from the Magnetic Resonance

Imaging (MRI) T1w image. The ANTs pipeline has significantly improved performance in
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age and gender prediction compared to its counterpart Freesurfer [91]. Further, it can extract

features from more nuanced and smaller brain regions. We used ANTsPyT1w available at

https://github.com/stnava/ANTsPyT1w to pre-process the images. The complete pipeline

yielded 869 features from each image using segmentation based on various brain atlases.

After filtering and excluding 79 features who had more than 1% missing values, we trained

the ML model using 790 continuous features. We performed min-max normalization to scale

the range of all features between 0 and 1. Our study is the first to have a consistent pipeline

for extracting such a large number of features from two large neurodegeneration specific and

biobank scale datasets.

4.3.5 Development of the machine learning model

We develop a stacked ensemble of three supervised machine learning algorithms (Neural

network, XGBoost, Logistic regression) to train a classification model for Parkinson’s disease

(PD) and Alzheimer’s disease (AD) in disease specific cohorts. To train an ensemble model,

we followed the strategy proposed in AutoML tool h2o. The best performing model (based

on performance metric) was selected after extensive hyperparameter tuning to build the

final ensemble model. Feature selection was performed using Least Absolute Shrinkage

and Selection Operator (LASSO) [118] as a part of the hyperparameter tuning procedure.

The effectiveness of our classifier was validated using a 3-fold cross validation approach.

Model performance was evaluated on the basis of various metrics, including accuracy, area

under the receiver operating characteristic curve (AUC), sensitivity and specificity. Although

longitudinal data was used for training the model, we ensured that the cross-validation folds

were split in such a way that the same individual did not appear in both the training and

test folds. This approach ensured that the model performance reports were free from bias.

The 95% confidence intervals (CIs) on diagnostic and prognostic performance estimates were

calculated by use of a percentile bootstrap with 10,000 samples. We employed the Shapley

Additive Explanations (SHAP) [119] (refer to chapter 2, section 2.3.10 for more details)

approach to assess the impact of each feature on the machine learning model predictions.

SHAP values are derived from game theory and provide an approximation of a feature’s effect

on the model. SHAP enhances understanding by creating accurate explanations for each

observation. The interactive website (https://ndds-brainimaging-ml.streamlit.app/)

was developed as an open-access and cloud-based platform for researchers to investigate the

top features of the machine learning models developed and how these may influence the

disease probability scores. Finally, the probability scores were normalized using log-odds

transformation to generate the disease specific quantitative markers.
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4.3.6 Features from UK Biobank cohort

We computed ADRD and PD imaging scores for all participants in UK Biobank who

have available T1w brain MRI. In our analysis, we also considered known risk factors asso-

ciated with neurodegenerative disorders comprising age at recruitment (Field 21022), Date

of attending assessment center (Field 53), Sex (Field 31), Townsend deprivation index at re-

cruitment (Field 22189), Standard polygenic risk score (PRS) for Alzheimer’s disease (Field

26206) and Standard PRS for Parkinson’s disease (Field 26260) available in UKB database.

4.3.7 Clinical assessments and MCI convertors to Dementia

We evaluated the association of imaging scores with standard clinical assessments used

for diagnosing dementia, such as MoCA score, MMSE, and ADAS-Cog, available in the

ADNI database. Additionally, we utilized pathological biomarkers of AD, including AV45

and FDG, to validate the imaging scores. We also assessed the predictive value of imaging

scores for the conversion from MCI to dementia. To validate the scores, we extracted MDS-

UPDRS-III, MoCA, and SerumNfl biomarkers from the PPMI database.

4.3.8 Statistical analysis

We employed a Cox proportional hazards regression model to examine the correlation

between imaging scores and the clinical diagnosis time of participants who had imaging

data before diagnosis. These models were adjusted for relevant covariates. To estimate

survival curves, we used imaging score quantiles. We reported the hazard ratio along with

the corresponding p-values and 95% CI. The overall performance was measured using the

concordance index, while the time-dependent AUC metric, using sksurv, was used to evaluate

the model’s performance in terms of stratification based on time from the event. Linear

regression was used to associate the polygenic risk score with the imaging score, and Pearson

correlation coefficient was used to determine the correlation between imaging scores and

disease monitoring clinical assessment tests. All statistical tests and plots were created

using Python (version 3.8). Figure 4.1 highlights the workflow for our analysis.

4.4 RESULTS

Feature extraction using AntsPyT1w from T1w MRI images was completed for 2,546

participants (22,004 images) in the ADNI dataset, 1,316 participants (2,601 images) in the
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Figure 4.2: Performance of the machine learning model for the detection of AD
in the ADNI and PD in the PPMI cohort following stratified 3-fold CV (based
on individuals) evaluation scheme.(A), (D) The machine learning model discriminated
Dementia from healthy controls with cross-validated AUROCs of 0·94 (95% CI 0·93–0·95),
and PD from healthy controls with AUROCs of 0.63 (95% CI 0·58–0·69). (B), (E) Shows
the calibration curves for trained classifiers, demonstrating that the model is well calibrated
and not making overconfident or underconfident probabilistic predictions. (C), (F) Shows
the confusion matrix on cross-validation folds for AD and PD detection respectively at
the threshold with maximum F1 score. CV, cross-validation; AD, Alzheimer’s Disease; PD,
Parkinson’s Disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; PPMI, Parkinson’s
Progression Markers Initiative; AUROC, area under the receiver operating characteristic
curve

PPMI cohort, and 42,925 participants (46,124 images) available in the UK Biobank cohort.

Each image has an automated quality score from the ANTs pipeline that is used to remove

noisy images. There may be multiple images for a single participant on a particular visit,

so we chose the best quality images out of these. Further, we excluded participants who

were less than 40 years old. We trained an ADRD classification model on 1,826 dementia

and 3,161 control image samples from the ADNI cohort. We also trained a PD classification

model on 684 dementia and 232 control image samples from the PPMI cohort (demographics

shown in Table 4.1).
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Figure 4.3: Testing utility of AD/PD imaging scores as a risk, prognostic, and
monitoring biomarker. Imaging scores were stratified into multiple quantiles and ad-
justed HRs were compared with the lowest quantile. (A) Plot summarized the conversion
from healthy control to PD (PD risk), healthy control to Dementia (Dementia risk) and
MCI to Dementia (prognosis) with adjusted HR using Cox PH survival model. Both HR
and converted percentage increased over ascending imaging score quantiles. The effect size
is significantly different between the highest and lowest quantile for all the conversion as
depicted in the forest plot. (B), (C), and (D) Covariate-adjusted survival curves for patients
for different quantiles with duration (in years) from the conversion on the x-axis and fraction
of individuals surviving free of conversion on the y-axis. Higher imaging score quantiles had
lower survival for conversion as compared with lower quantiles. HR, hazard ratio; Cox PH,
Cox Proportional-Hazards;

We correctly distinguish images with ADRD based on imaging features with an AUC

of 0.94 (95% CI: 0.93-0.96) and PD with an AUC of 0.63 (0.56-0.70) at cross-validation

(subject based) (Figure 4.2A, Figure 4.2D). Both the models are very well calibrated for

ADRD detection model and PD (Figure 4.2B, Figure 4.2E, Table 4.2). The well-calibrated

model is necessary in our study as we focus on the usefulness of probabilistic scores obtained

from machine learning models. The quantification scores allow us to extend the model

trained on post-diagnosis phase to develop a model for early detection of AD and PD during

pre-diagnostic phase.

We evaluated the association between ADRD/PD imaging score and the occurrence of
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Table 4.1: Characteristics of participants in the training and internal validation set

PPMI ADNI
Controls
(I=232, N=145)

PD
(I=684, N=319)

Controls
(I=3,161, N=925)

Dementia
(I=1,826, N=731)

Mean age at baseline (SD), years 62 (10) 62 (9) 73 (7) 76 (8)
Mean age at T1w MRI performed (SD), years 62 (10) 63 (9) 75 (7) 76 (8)
Sex
Female
Male

47 (32%)
98 (68%)

111 (35%)
208 (65%)

457 (56%)
358 (44%)

237 (42%)
334 (58%)

Race
White
Black or African American
Asian
Other / unknown

136 (93%)
7 (5%)
1 (1%)
2 (1%)

296 (93%)
5 (2%)
6 (2%)
12 (3%)

803 (87%)
75 (8%)
26 (3%)
24 (2%)

683 (93%)
26 (4%)
16 (2%)
6 (1%)

Baseline clinical outcomes
MOCA
MMSE
MDS-UPDRS III
ADAS-Cog-13

28 (1)
NA
1 (2)
NA

27 (2)
NA
22 (9)
NA

26 (3)
29 (1)
NA
9 (4)

17 (5)
23 (3)
NA
29 (8)

Table 4.2: Classification performance of machine learning model for PD and AD detection

AUROC Sensitivity Specificity Accuracy Balanced Accuracy PPV NPV
PD detection
(3-fold CV)

0.63 [0.58-0.69] 0.55 [0.51-0.59] 0.68 [0.62-0.73] 0.58 [0.55-0.61] 0.61 [0.58-0.65] 0.83 [0.80-0.87] 0.34 [0.30-0.38]

AD detection
(3-fold CV)

0.94 [0.93-0.95] 0.87 [0.86-0.89] 0.92 [0.91-0.93] 0.90 [0.89-0.91] 0.89 [0.89-0.90] 0.86 [0.84-0.87] 0.93 [0.92-0.93]

all cause dementia and PD in UK Biobank during the pre-diagnostic phase using survival

analysis. In UKB, out of 92 dementia patients with imaging data, 76 have images collected

during the pre-diagnostic phase and 16 have during post-diagnosis phase. For PD, 46 have

image collection during pre-diagnostic and 50 during post-diagnosis phase. ADRD imaging

score was associated with a quantitative increase in risk of getting dementia, with an adjusted

HR of 1·5 (95% CI 1·4–1·6; p < 0.0001) per SD increase in ADRD imaging score. Also, PD

imaging score was associated with a quantitative increase in risk of getting PD diagnosis, with

an adjusted HR of 1·5 (95% CI 1·4–1·6; p < 0.0001) per SD increase in PD imaging score.

Prevalence and risk of getting clinical diagnosis increased stepwise over ascending imaging

quartiles: two (0.2%) of 1247 participants who had follow up in the bottom quartile (Q1), and

23 (1.9%) of 1247 in the top quartile (Q4; 56 [20–158]; p < 0.0001; Figure 4.3). We observed

a phenotypic continuous spectrum for PD in which the imaging score (abnormality in T1w

image) varies across the PD population during the pre-diagnostic phase. For dementia,

we observed more homogeneous patterns, as the majority of the subjects (in quartile 1)

demonstrated abnormality in T1w during the pre-diagnosis stage.

We used time-dependent ROC and concordance index to characterize the discrimination

potential of the imaging scores (Table 4.3). We observed that the predictive importance

of imaging score in determining survival is higher for subjects who converted within three

years from baseline as compared to those who converted after three years. It is consistent
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Figure 4.4: SHAP Interpretation of imaging scores. (left plot) Distribution of the
top-20 features that had the most substantial effect on the ADRD imaging score (disease
probabilities). Each point represents a patient and the amount of effect on model output
for each feature depends on its SHAP value. For example, the effect of the hippocampus
cortical thickness feature on model output is large and positive (high risk) when the patient
has low values for hippocampus cortical thickness (more blue points are on the right side).
Similarly, right plot shows the top features for PD imaging scores.

Table 4.3: Survival analysis detailed statistics for risk/prognosis prediction

Imaging
HR
(95% CI)

Imaging
P-value

Concordance
Index
(95% CI)

Mean t-AUC
(95% CI)

Mean t-AUC
(95% CI)
<3 years

Mean t-AUC
(95% CI)
>= 3 years

PD risk prediction
A + S + T + PD PRS NA NA 0.83 [0.78-0.89] 0.87 [0.82-0.92] 0.84 [0.77-0.93] 0.91 [0.86-0.97]

PD Imaging + A + S + T + PD PRS 2.33 [1.55-3.50] 4.8e-5 0.86 [0.81-0.92] 0.89 [0.85-0.94] 0.87 [0.81-0.96]
0.92
[0.89-0.99]

AD risk prediction
A + S + T + AD PRS NA NA 0.82 [0.76-0.89] 0.84 [0.77-0.90] 0.78 [0.66-0.92] 0.89 [0.82-1.01]
ADRD Imaging + A + S + T + AD PRS 1.76 [1.50-2.05] 1.6e-12 0.86 [0.79-0.93] 0.86 [0.80-0.92] 0.81 [0.67-0.97] 0.90 [0.84-1.01]
MCI =>Dementia risk prediction
A + S + BV + AD PRS NA NA 0.52 [0.41-0.61] 0.51 [0.37-0.63] 0.55 [0.30-0.86] 0.50 [0.33-0.64]
ADRD Imaging + A + S + BV + AD PRS 2.99 [2.31-3.86] 5.7e-17 0.73 [0.64-0.84] 0.74 [0.63-0.87] 0.65 [0.40-0.97] 0.73 [0.60-0.85]

for both dementia and PD conversion. It is an important result as it guides the healthcare

system to determine the duration between image collections. The contribution of imaging
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Figure 4.5: Association testing of AD/PD imaging scores with pathological
biomarkers and genetic risk scores. (left plot) Shows the heatmap plot of P-values
for the association testing between ADRD/PD imaging scores with clinical outcomes in
ADNI and PPMI cohort stratified based on diagnosis status. (right plot) Heatmap plot
showing association test of imaging scores with polygenic risk scores of related diseases in
the UK biobank cohort. ADAS−Cog−13, Alzheimer’s Disease Assessment Scale−Cognitive
Subscale; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination;
MDS-UPDRS III, MDS-Unified Parkinson’s Disease Rating Scale Part III; Serum Nfl, Serum
neurofilament light; PPMI-SWEDD, Patients with scans without evidence of dopaminer-
gic deficit in PPMI; PPMI-PRODROMAL, prodromal PD patients; PPMI-GENPD, Ge-
netic affected PD; PPMI-GENUN, Genetic unaffected PD; AD PRS, polygenic risk score
of Alzheimer’s disease; HT PRS, polygenic risk score of Hypertension; ISS PRS, polygenic
risk score of Ischemic stroke; MS PRS, polygenic risk score of Multiple Sclerosis; PD PRS,
polygenic risk score of Parkinson’s disease; SCZ PRS, polygenic risk score of Schizophrenia;
UKBB-HC, healthy control in UK biobank (with no NDDs); UKBB-STROKE, Stroke pa-
tients in UK biobank; UKBB-ALL DEMENTIA, all cause dementia patients in UK biobank;
UKBB-MS, Multiple Sclerosis patients in UK biobank; UKBB-PD, Parkinson’s disease pa-
tients in UK biobank; UKBB-MND, Motor neurone disease patients in UK biobank; ***,
P<0.001; **, P<0.005; *, P<0.01;

score is further useful in early detection of prognosis from MCI to dementia with the hazard

ratio (32.1 [7.6–135.3]; p < 0.0001) for quartile 1.

SHAP values provide in depth analysis of machine learning classifiers by highlighting the

top discriminating features of ADRD and PD. The biological plausibility of the models is

supported by the feature importance plots, which highlight regions known to be earliest

regions affected during AD and PD. In ADRD, features related to the hippocampus and

temporal brain regions have the greatest discriminatory power (Figure 4.4A). Midbrain re-

gions, including substantia nigra, brain stem, and parietal brain regions, help distinguish

PD from healthy people (Figure 4.4B).
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To assess the potential of imaging scores as a monitoring tool during the post-diagnosis

phase, we conducted association testing with clinical and pathological biomarkers in the

PPMI and ADNI cohorts. We found a strong association between the imaging scores and

cognitive measures (i.e, Alzheimer’s Disease Assessment Scale−Cognitive Subscale, Montreal

Cognitive Assessment tests), especially for the AD imaging score, and a weaker association

for the PD imaging score (Figure 4.5C). In addition, we observed a strong association be-

tween the imaging scores and the MoCA (P<0.001), MMSE (P<0.001), and ADAS-Cog-13

(P<0.001) scores, while the correlation with the MDS-UPDRS- III score was not as strong

for the PD imaging score (Figure 4.5C) (P>0.05). The imaging phenotypes can further

help us assess the genetic architecture of neurodegenerative disorders. We found a signifi-

cant association between imaging scores and disease-specific polygenic risk scores obtained

from case-control genome wide association studies (GWAS) in the UK Biobank cohort (Fig-

ure 4.5D). The p-value for the association testing of ADRD imaging score and AD polygenic

risk score, as well as PD imaging score and PD polygenic risk scores, was found to be less

than 0.001.

4.5 DISCUSSION

This study uses the brain imaging data and machine learning approach to generate disease

specific scores. We have shown the potential of imaging scores in pre-diagnostic prediction,

addressing heterogeneity and monitoring disease severity. We observed that not all PD or

all cause dementia subjects show abnormality in brain anatomical features during their pre-

diagnostic phases. Finally, the association with clinical and pathological biomarkers shows

that these scores can also be used to monitor disease progression. This study presents a

general framework to generate machine learning based disease scores from complex data

modalities such as imaging and is easily extendable to other disorders.

Identifying individuals during the asymptomatic phase is the key for successful interven-

tion using disease modifying treatments. Since, the brain atrophy starts much before the

symptomatic phase of a disease therefore structured brain imaging may help. As we observed

significant variability in terms of imaging; this might reflect some differences in underlying

pathologies. Therefore, we believe that these scores have the potential of intervention during

study enrollment to have more homogeneous patients going into the trial. Imaging scores can

work as complementary measures in addition to pathological markers such as α-synuclein

seed amplification [120], to select the patients in precision medicine trials. Our models can

be used as potential therapeutic engagement readouts. However, it is important to note

that a single measure or modality may not be sufficient to capture all the symptoms of such
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disorders. Therefore, using multiple modalities (such as combining imaging, behavioral, and

clinical data) could provide a more comprehensive and useful approach to assessing thera-

peutic engagement. Passive surveillance is another crucial aspect that has to be incorporated

in health care systems [121, 122]. It involves monitoring an individual’s data over time to

detect any abnormalities that may occur, even in the absence of symptoms. With the cost

effectiveness and availability of T1w brain MRI imaging, our models have the potential

to track patients’ brain health more effectively. Ultimately, this could result in improved

patient outcomes and more efficient use of healthcare resources.

In our current analysis, we also showed association of disease imaging scores with polygenic

risk scores of related disorders. There could be direct implications of performing GWAS on

imaging in a UK biobank. First, we can understand the overlaps across neurodegenerative

disorders at the gene level. Second, we might find novel risk loci using imaging scores as we

can have more accurate phenotype, reducing proxy cases which is common in current GWAS

studies. ML based probabilities are useful in identifying new genetic loci for glaucoma and

chronic obstructive pulmonary disease [123]. Transparency and reproducibility is a critical

aspect of science [124]. It becomes further more important for machine learning models due

to the dependency on data and black box nature of machine learning models [125, 126, 127].

To facilitate this, we have developed an interactive website that allows researchers to explore

the top features contributing to predicting disease probabilities. Further, we incorporated

a model perturbation analysis feature in our website where researchers can manually play

with the features and observe how the prediction changes. Therefore, the transparency of

our approach, using SHAP values, and the contributions of data types move the research

community away from black-box predictors.

Although this study presents the potential of machine learning based biomarkers on com-

plex data such as imaging, much remains to be established. First, the limited availability

of data from non-European participants’ dataset can introduce inherent bias. Second, the

diagnosis that we have used both for validation and model training are not pathologically

confirmed. We put efforts to avoid overfitting in our models so that the ML model won’t fit to

misdiagnosed cases. However, pathology confirmed cases are particularly important for the

validation purpose. Third, in this work, we are considering ADRD as a single group but it is

very important to have biomarkers that can differentiate between dementia types. Fourth,

the analysis of common brain regions affected in both Alzheimer’s and Parkinson’s disease

would be useful future work. Finally, co-pathology is very common across neurodegenerative

disorders [128, 129] which should be considered in future studies.

In summary this work presents an approach to generate disease biomarkers using machine

learning and brain imaging data. This study is a step forward toward utilizing sophisti-
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cated machine-learning paradigms to facilitate the early disease detection, prognosis and

monitoring of disease progression.

So overall, we have developed various machine learning models to address the challenges

presented by neurodegenerative disorders. However, machine learning tools also present

challenges, with the topmost concerns being transparency, reproducibility, and accessibility

of the models.
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CHAPTER 5: TRANSPARENT, REPRODUCIBLE AND ACCESSIBLE
SCIENCE

In this chapter, we will discuss the measures we have taken to make all our machine

learning models more accessible. We believe that this is a necessary task if we really want

to bring machine learning into medical practice.

5.1 INTRODUCTION

Transparency, reproducibility and accessibility is a critical aspect of science. It becomes

further more important for Artificial Intelligence due to the dependency on data and black

box nature of machine learning models [125, 126, 127]. We are facing a major reproducibility

crisis in science [124], with only 6% of the papers in the Artificial Intelligence community

sharing the algorithm’s code [130]. It is particularly crucial in medical science because of

the expense of drug discovery [131] and from an ethical point of view [132, 133]. Therefore,

we performed code sharing with proper documentation and the public sharing of research

results/tools through web applications. In all our works, we used open-source development

tools to release our code and research results and make it accessible to research and medical

professionals. The idea to keep up with open-science philosophy of transparent and accessible

knowledge to everyone.

5.2 METHODS

In the following section, we discuss the tools we used to make our research transparent,

reproducible and accessible. The interactive websites were developed as an open-access and

cloud-based platform for researchers to investigate the research output.

5.2.1 Transparency

Transparency of machine learning models involves explaining how machine learning sys-

tems make decisions or predictions, which can be challenging due to the high level of com-

plexity in machine learning models. Merely showing accuracy estimates of these models can

hide their complexity. It involves making the algorithms and models used in AI systems

open and accessible, as well as disclosing the data sets used to train the models. Providing

transparency in ML can help medical professionals to better understand how the ML system

78



arrived at a particular decision or prediction, which can build trust in the technology. As ma-

chine learning algorithms increase in size, incorporating a larger number of parameters, with

the use of neural networks, ensemble classifiers, and other complex methods, transparency

becomes increasingly important.

In this dissertation, we employ both supervised and unsupervised machine learning al-

gorithms. However, ensuring transparency for both types of algorithms requires different

approaches and tools. In this section, we describe how we address some of the challenges

posed by these models from the viewpoint of transparency. When it comes to evaluating

unsupervised machine learning algorithms, visual inspection is typically the main approach.

To facilitate this process, we have developed a platform that allows for easy inspection of

the results. Our platform includes a color-coding system that helps to guide evaluation of

the lower-dimensional space based on available metadata. Given that metadata can often

contain a large number of features, and researchers may want to understand the underlying

patterns that are driving the observed results, it is crucial to provide sophisticated tools

that simplify this process. The visualization of lower-dimensional data space can guide us

in various tasks, such as identifying clusters, sub-structures, and outliers, detecting batch

effects, and quality control measures to perform reliable and accurate downstream analy-

ses [134, 135, 136].

For supervised models that have been trained, interpreting the features and analyzing

model perturbations are important aspects for improving transparency. We’ve created a

dashboard that enables users to perform a “what-if” analysis on the features used to train

the model. Shapley additive explanations (SHAP) [119] approach was used to evaluate

each feature’s influence in the ensemble learning. This approach, used in game theory,

assigned an importance (Shapley) value to each feature to determine a player’s contribution

to success. Shapley explanations enhance understanding by creating accurate explanations

for each observation in a dataset. They bolster trust when the critical variables for specific

records conform to human domain knowledge and reasonable expectations [137, 138]. We

used the one-vs-rest technique for multi-class classification. Based on that, we trained a

separate binary classification model for each class. By examining the top features of the

model developed in this study, users can gain insight into how these features may affect the

classification (or sometimes, misclassification) of a given sample.

5.2.2 Reproduciblility

Small errors or missing details in the computer code could have significant impacts on the

machine learning training and evaluation of results. Therefore, it’s important to be transpar-
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ent about the actual computer code used to train a model, the process of hyper-parameter

tuning and the final optimized parameters, to ensure reproducible research. To facilitate

replication and expansion of our work, we have made the notebook publicly available on

GitHub. It includes all code, figures, models, and supplements for this study. The code is

part of the supplemental information; it includes the rendered Jupyter notebook with full

step-by-step data preprocessing, statistical, and machine learning analysis.

Computational tools and code availability Most of the data-analysis work was done

in Python (version 3.8) using open-source libraries (NumPy [version 1.20.3], pandas [version

1.2.5], matplotlib [version 3.4.2], seaborn [version 0.11.1], plotly [version 4.14.2], scikit-learn

[version 0.24.2], UMAP [version 0.5.0], XGBoost [version 1.4.2], LightGBM [version 3.2.1],

GenoML [version 2v1.0.0b11], and TensorFlow [version 2.4.0]). For all our work, we made

our code publicly available on GitHub to facilitate replication and future expansion of our

work.

5.2.3 Accessiblity

Web dashboard Streamlit is an open-source Python library that makes it easy to create

and share, custom web applications for machine learning and data science (https://stream

lit.io/). It is useful in deploying data application with interactive facility. It is a commonly

used tool to build prototypes of data science projects. Further, it allows sharing open-access

dashboard using cloud-based platform making it easily accessible. All the project developed

as part of this dissertation includes such an application dashboard that allows to inspect the

models and data used for the projects.

5.3 RESULTS

In this section, we describe the list of things that we did to make our works more transpar-

ent, reproducible and interpretation. Particularly, we will discuss the features of dashboard

designed to allow exploration of both unsupervised and supervised models. The web links

are listed below:

• Subtypes for Amyotrophic Lateral Sclerosis (ALS): http://bitly.ws/u5h7

• Subtypes for Alzheimer’s disease (AD): http://bitly.ws/u5h3

• Subtypes for Parkinson’s disease (PD): https://shorturl.at/fkvw3

• Longitudinal Aligned-UMAP: https://rb.gy/zf2xu
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5.3.1 Unsupervised models

The subtype identification process requires creating a multi dimensional space that cap-

tures the disease’s features, for instance, the progression rate of Parkinson’s disease (PD)

subtypes (i.e., velocity). The data dimensional reduction methods on the complex clinical

features created meaningful spatial representation of each patient’s status at this time point.

Figure 5.1 displays the lower dimensional space generated by Non-negative matrix factor-

ization approach on ADNI dataset. The dashboard enables users to choose the time point

for analyzing the lower dimensional space and color the scatter plot using single measures at

any specific point in time, such as ADAS-Total-Scores at baseline, as shown in Figure 5.1.

For PD subtyping, we demonstrate how the latent space varies as we incorporate more lon-

gitudinal data in our approach (Figure 5.2). The dashboard developed for Aligned-UMAP

work incorporates interactive dimensional reduction plots for all seven longitudinal datasets

included in the analysis, as explained in detail in Chapter 3. To observe the effect of different

hyper-parameter settings, we added an additional feature to Longitudinal Aligned-UMAP.

Figure 5.3 depicts the significant decrease in volatility as we increase emphasis on longitu-

dinal regularization terms.

5.3.2 Supervised models

SHAP values A surrogate xgboost model [80] was trained in 70% of the data and later

tested in the 30% of withheld data to evaluate the model’s contributing features. The

interactive website was developed as an open-access and cloud-based platform for researchers

to investigate the top features of the model developed in this study and how these may

influence the classification.

Figure 5.4 shows the top features involved in accurate diagnosis of PD using multi-omic

dataset. It is very difficult to explain the effect of each individual feature when we have very

high dimensional data for prediction. The utility of our designed tools grows significantly in

such cases. Similar interactive data-driven web applications were developed for PD subtype

predictions (Figure 5.5).

What-if analysis The web applications will also provide a useful result interpretation

and “what-if analysis” tool, a very useful tool to investigate effects of possible factor changes

or early interventions. In our web applications toolbox, we also provide Shapely values to

increase the interpretability of the results.

Figure 5.6 shows the interface to provide top-20 features required for the classification

model to predict subtype probabilities. The output obtained contain two items (1) the
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Figure 5.1: Shows the dashboard with views of AD progression space generated based on
user provided instructions. The shown scatter plot is generated using three longitudinal
visits over 24 months. Coloring is done based on ADAS-total-score collected at baseline.
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Figure 5.2: Two-dimensional progression space colored by PD subtypes (observed using 5
years of longitudinal data) showing their normalized trajectory.

Figure 5.3: Parameter tuning dashboard of longitudinal dimensional-reduction algorithm
(Aligned-UMAP). Figure shown here is generated using user-defined input parameters of
Aligned-umap on PD subtype data (i.e. alignment regularization terms).

changes in class prediction probabilities and (2) the explanation plots (force plot, decision

plot (bottom) illustrating the influence of each feature on the model’s prediction for a sin-

gle individual (Figure 5.7). Similar dashboards were developed to predict ALS subtypes
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Figure 5.4: Feature importance plots for top 5% of features in data. The plot on the left has
lower values indicated by the color blue, while higher values are indicated in red compared to
the baseline risk estimate. Plot on the right indicates directionality, with features predicting
for cases indicated in red, while features better-predicting controls are indicated in blue.
SHAP Shapley values, UPSIT University of Pennsylvania smell identification test, PRS
polygenic risk score.

(Figure 5.8).
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Figure 5.5: Feature importance summary plots for top features involved in PD subtype
classification. The plot on the left shows the directional of each feature on model’s output.

Figure 5.6: Shows the interface that users can use to provide input the trained classifiers.

5.4 DISCUSSION

Our work showcases a practical approach to make machine learning techniques more ac-

cessible for the public. We have developed interactive web dashboards that enable users to

explore and analyze the supervised and unsupervised models we have built as part of this

dissertation. These interactive data-driven web applications provide valuable insights into
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Figure 5.7: Shows the output class probabilities using trained supervised model and reason-
ing behind the output using SHAP force plots for PD subtype prediction.

our research results, making it easier for researchers and other healthcare professionals to

understand our research outputs.

While our work represents a step forward in developing machine learning models that

follow the principles of open science, it is not without its limitations. One of the major

challenges we face is the high computational demand required by software tools, particularly

with the ever-growing volume of large-scale healthcare datasets. Therefore, incremental

learning algorithms should be developed. Analyzing health data, particularly genomics and

imaging data, presents significant computational hurdles. Genomics, in particular, is widely

considered to be one of the most computationally demanding big data domains, presenting

challenges throughout the data life cycle, from acquisition and storage to distribution and

analysis. Further, the cost of computation time in the cloud environment can be high,

which highlights the importance of implementing optimized machine learning algorithms

that reduce network overhead and I/O waste. Integrating more complex data modalities

such as multi-omics and Magnetic Resonance Imaging (MRI) brain imaging data into our
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apps would be a useful addition in the future.

In the next chapter, we will provide a summary of our work and highlight the key findings

of this dissertation. Additionally, we will discuss the potential directions for basic science

discovery using novel biological tools based on our proof of concept results. Finally, we will

conclude by presenting open research questions and future directions for further investiga-

tion.
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Figure 5.8: Shows the input feature interface, output class probabilities using trained su-
pervised model and reasoning behind the output using SHAP force plots for ALS subtype
prediction.
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CHAPTER 6: CONCLUSIONS

6.1 INTRODUCTION

We believe our work has confirmed the significant impact that machine learning can have

in advancing medical research for neurodegenerative diseases (NDDs). This work incor-

porated insights from prior knowledge about neurodegenerative disorders and integration

of biological datasets, to build interpretable machine-learned models. We focus on four

major challenges proposed by NDDs that hinders successful drug development: (i) disease

heterogeneity, (ii) shared pathologies, (iii) early detection, and (iv) insufficient disease under-

standing. Specifically, the work leverages large datasets to address the challenges presented

by the NDDs observed in medical literature to disease understanding and improvement in

recruitment criteria for clinical trials.

The key innovation here is to expose the multi-modal biological data to machine learning

tools – specifically neural networks – to reduce the inefficiencies of handmade features or

proxy phenotypes for neurodegenerative disorders. We perform detailed investigation of all

research analysis and deploy open-source tools for people to use and for further inspection.

Our solutions demonstrate that machine learning can provide a more systematic approach

to the causes and diagnosis of a disease. We believe our proposed work has the potential to

influence the ML community working on healthcare problems to design specialized algorithms

that work in coordination with data generated from biological research.

In Chapter 2, we deep dive into Parkinson’s disease heterogeneity from the perspective of

clinical signs and symptomatologies. The integration of longitudinal data was followed by

vectorization and non-negative matrix factorization to develop a low-dimensional embedded

space. After creating this space, we used unsupervised clustering to determine whether

there were clear subtypes of disease within this space. This effort identified three distinct

clinical subtypes corresponding to three groups of patients progressing at varying velocities

(i.e., slow, moderate, and fast progressors). These subtypes were validated and replicated

in an independent cohort. Following the successful creation of disease subtypes within a

progression space, we created a baseline predictor that accurately predicted an individual

patient’s clinical group membership five years later. Further, we examined the predictive

capability of biospecimen biomarkers at baseline and developed predictive models for early

diagnosis, prognosis, and clinical trial stratification.

In Chapter 3, we explored the application of a longitudinal dimension reduction approach,

Aligned-UMAP, on seven large biomedical datasets. High-dimensional longitudinal data is
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prevalent yet understudied in biological literature. Discovering meaningful patterns from

these datasets is an important task. Though few methods are available for visualizing

high dimensional longitudinal data, they are not studied extensively in real-world biolog-

ical datasets. A recently developed nonlinear dimensionality reduction technique, Aligned-

UMAP, analyzes sequential data. We offer insights on optimal uses for the technique and

provide recommendations for best practices. Aligned-UMAP reveals time-dependent hidden

patterns when color-coded with the metadata. Altogether, based on its ease of use and our

evaluation of its performance on different modalities, we anticipate that Aligned-UMAP will

be a valuable tool for the biomedical community. The tool is available as a web application

and a GitHub repository was added to make it accessible to the users.

In Chapter 4, we discussed our work at the intersection of brain imaging and genetics data

and looking multiple neurodegenerative disorders as a whole. We evaluated the potential

of quantitative markers generated using machine learning techniques for Alzheimer’s disease

and related dementias and Parkinson’s disease. We show that disease probability scores

obtained from brain structural features are useful for risk stratification, prognosis prediction,

and monitoring disease progression.

Chapter 5 of this dissertation presents our efforts to enhance the transparency, repro-

ducibility, and accessibility of our research output. We discuss methods for investigating our

machine learning models in great detail to ensure their validity. To facilitate more impactful

research, we have deployed a cloud based web dashboard with multiple functionalities and

interactive plots. Our models could serve as a potential benchmark for future research to

compare against. For unsupervised models, users can explore the lower dimensional space

generated from our subtype identification works and longitudinal dimensional reduction re-

sults. For supervised models, we have incorporated SHAP values and what-if analysis to

open up the black box nature of trained machine learning classifiers. In summary, we believe

that transparency is key to bringing machine learning into real-world healthcare settings.

Further development in cloud computing is needed to make the applications faster and more

cost-effective, especially with the increasing scale of high-dimensional genomics and imaging

databases.

6.2 CONTRIBUTIONS

6.2.1 Publications

1. Dadu, A., Satone, V., Kaur, R. et al. Identification and prediction of Parkinson’s disease

subtypes and progression using machine learning in two cohorts. npj Parkinsons Dis. 8,
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172 (2022). https://doi.org/10.1038/s41531-022-00439-z [49]

2. Dadu, Anant, et al. ”Application of Aligned-UMAP to longitudinal biomedical studies.”

Patterns (2022). [50]

3. Prediction, prognosis and monitoring of neurodegeneration at biobank-scale via machine

learning and imaging. (Dadu, Anant, et al. In preparation for submission at The Lancet

Digital Health, 2023)

4. Faghri, Faraz, et al. Identifying and predicting amyotrophic lateral sclerosis clinical

subgroups: a population-based machine-learning study. The Lancet Digital Health 4.5

(2022): e359-e369. [51]

5. Satone, Vipul K., et al. Predicting Alzheimer’s disease progression trajectory and clinical

subtypes using machine learning.” bioRxiv (2019): 792432.

6. Mathew J Koretsky and others, Genetic risk factor clustering within and across neurode-

generative diseases, Brain, 2023 [52]

7. Makarious, Mary B., et al. Multi-modality machine learning predicting Parkinson’s dis-

ease. npj Parkinson’s Disease 8.1 (2022): 35. [53]

8. Makarious, Mary B., et al. GenoML: automated machine learning for genomics. arXiv

preprint arXiv:2103.03221 (2021). [54]

9. Reilly, Luke, et al. A fully automated FAIMS-DIA proteomic pipeline for high-throughput

characterization of iPSC-derived neurons. bioRxiv (2021): 2021-11. [55]

6.2.2 Web dashboards

(a) Subtypes for Amyotrophic Lateral Sclerosis (ALS): http://bitly.ws/u5h7

(b) Subtypes for Alzheimer’s disease (AD): http://bitly.ws/u5h3

(c) Subtypes for Parkinson’s disease (PD): https://shorturl.at/fkvw3

(d) Longitudinal Aligned-UMAP: https://rb.gy/zf2xu

An efficient and systematic approach is the key to accelerating medicinal science for NDDs

therapeutic development. In this dissertation, we illustrated a framework using machine
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learning to address the obstacles occurring due to the complexity of neurodegenerative dis-

orders. Our approach to PD subtype identification and prediction is a step toward precision

clinical trials (1). We were able to replicate the findings in an independent cohort. A

news article has discussed its potential to be incorporated into the clinical setting5. This

robust technique has been extended to Alzheimer’s disease (5). Our contribution to ALS

subtype discovery offers a broad insight into clinical heterogeneity (4). This structured ap-

proach to subtype identification can improve clinical care and clinical trial design. Then, we

demonstrated the applicability of a more sophisticated algorithm called Aligned-UMAP of

seven different longitudinal datasets (2). It was able to capture batch effects in biological

experiments (9). In addition, we provide well-documented code and a web dashboard for

researchers to use on their datasets (d). As part of this thesis, we investigate genomic fac-

tors involved in Parkinson’s disease using Shapley values that could provide accurate drug

targets (7, 8).

Our analysis using more complex data modality, brain MRI imaging, and genomics im-

proves the detection of PD and dementia during a patient’s asymptomatic phase (3). It

could be a valuable tool for early intervention when treatments may be most effective. We

have used imaging and genetic data to find similarities and differences across NDDs (6).

Lastly, our work on the open-science principles would bridge the gap between the use of

computational research and clinical practice (a, b, c, d).

6.3 FUTURE WORK

This dissertation represents a step towards a much larger goal of developing effective

drugs for neurodegenerative disorders. As part of our preliminary studies, we explored two

potential research directions that align with the goals of this work. First, we discuss our

efforts to understand gene functions at the cellular level, which could pave the way for novel

therapeutic targets. Second, we explored the potential of extracting insights from genomic

data across different neurodegenerative disorders. We conclude this section by highlighting

some of the general open problems and research directions in this field that require further

exploration.

5https://neuroderm.com/living-with-parkinson-s/info-center/machine-learning/
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6.3.1 Disease associated cellular morphology

Summary: In the past two decades, mutations in several genes have been identified for

NDDs, but their mechanism of action is still unknown. Understanding cellular pathology

is challenging due to death and damage to neuronal cells. The development of innovative

biological tools, such as iPSC and CRISPR, allows monitoring of neuronal cells in-vitro.

Therefore, we propose profiling cell morphology using computer vision techniques like self-

supervised learning to identify disease phenotypes at the cellular level. We will compare

healthy cells with the mutated cells having risk variants identified for ALS, AD, PD, and

FTD disorders. One of this work’s primary research outcomes is to demonstrate ML’s utility

in discovering disease-specific pathology at genomic and cellular levels.

Problem And Insight: Using twin studies, heritability is estimated to be between

60% and 80% for AD and PD. This strong genetic component provides an opportunity to

determine the pathophysiological processes in NDDs and identify new biological features,

new prognostic/diagnostic markers, and therapeutic targets through translational genomics.

Characterizing the genetic risk factors in NDDs is a primary objective; with the advent of

high-throughput genomic techniques, many putative NDDs-associated loci/genes have been

reported.

Cellular phenotypes have been studied for a long time, focusing on senescent cells, a type of

damaged cells that are permanently withdrawn from the cell cycle [139]. Cellular senescence

is widely recognized as a hallmark of aging, both as a primary causal factor in the decline of

tissue homeostasis and as a consequence of other aging processes such as inflammation and

DNA damage [140, 141]. Due to its critical role in disease etiology, senescence is increasingly

recognized as a target for pharmaceutical intervention. Astrocytes, the largest group of glial

cells in the brain, have shown senescence in Alzheimer’s disease and have the potential to be

novel and feasible therapeutic approaches [142, 143]. Neuronal cells might not fit into the

definition of cell senescence as they are post-mitotic, but cellular phenotype can represent

distinct features of stress and inflammatory response [144, 145]. However, the role of cell

morphological changes in NDDs is not clearly understood. Importantly, diseased cells often

exhibit an altered morphology, making them amenable to analysis with computer vision and

machine learning methods.

Possible approach: Availability of cells with perturbation of a risk gene variant using

CRISPR and induced pluripotent stem cell (iPSC) models presents an excellent opportunity

for understanding the functions of risk gene variants and diseased phenotypes. Applying

machine learning approaches to large, high-quality datasets using methods such as high-

content imaging is a powerful strategy to capture novel patient- or disease-specific phenotypic
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Figure 6.1: Workflow of analysis and model development of identification of disease cellular
phenotypes.

patterns.

The workflow of the future approach could be as shown in Figure 6.1. The first step is

to have the collection of the neuronal cell images captured using confocal microscopy and

cell painting procedures [47]. iPSC Neurodegenerative Disease Initiative (iNDI) provides us

with the cellular imaging data for FTD, ALS, AD, and PD risk variants. Then, we plan to

apply three different models for feature extraction in our analysis:

• Extract morphological features such as area, shape, intensity or texture using an image

processing pipeline.

• End-to-end feature learning pipeline specifically focused on unsupervised neural net-

work techniques.

• Incorporate risk gene information into supervised neural network models. After that,

we will analyze the results using classification performance metrics such as AUC-ROC

and observing patterns using dimensional reduction techniques.

6.3.2 Shared mechanisms across NDDs using ML

Summary: The insight behind this work is the potential to address the overlapping

clinical syndromes prevalent in NDDs by exposing biological data to machine learning tech-

niques. Just as it is possible to understand class overlaps using ML and manifold learning

techniques [146], we propose to explore using similar learning approaches on genetic risk

factors identified using Genome-Wide association studies (GWAS) across NDDs. Using
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techniques like supervised manifold learning and ensemble learning approach, we will ex-

plore how neurodegenerative diseases overlap and provide a diagnostic tool for classifying

neurodegenerative disorders using genomic data. We will use genome-wide sequencing data

obtained from multiple cohorts that include Parkinson’s Disease (PD) cases, Alzheimer’s

disease (AD) cases, Frontotemporal dementia (FTD) cases, Amyotrophic Lateral Sclerosis

(ALS) cases, and Lewy body dementia (LBD) cases, with diagnostic category verified at

biopsy.

Problem And Insight: All NDDs have different clinical entities concerning affected

brain regions, progression, onset age, and behavior traits. However, they share similarities

at different levels, such as genetic and phenotypic levels. Further, the distinction between

motor and cognitive skills deficiencies across NDDs is unclear. These commonalities suggest

that there might be an overlap between many of these disorders at the gene level. It can

provide insight into better drug targets and lead to fundamental mechanisms behind neu-

rodegenerative diseases. Further, understanding the differences/similarities between these

disorders can provide us with better recruitment criteria for clinical trials. In addition, a

gene base risk prediction model for multiple NDDs can give early disease detection and

precision medicine tools. In this work, we plan to integrate multi-cohort genomic datasets

for five related neurodegenerative disorders (AD, ALS, FTD, LBD, and PD), which requires

adjusting for ancestry and batch effects. After that, we expose preprocessed data to machine

learning techniques which can provide us with overlapping patterns of risk genes.

Possible approach: The first step is the collection of whole genome sequencing data from

participants suffering from neurodegenerative disorders. Since the prevalence of NDDs such

as FTD and DLB is not as high as that of AD and PD, we plan to use data from multi-cohort

studies from different regions, mainly with participants of European ancestry [35]. For data

harmonization, we adjust for principal components that represent population substructure

to remove any population effect that can act as a confounder in our work. For the feature

selection part, we use prior summary stats of GWAS research performed separately on each

NDD. We plan to demonstrate results using risk variants selected at different thresholds of

the p-value. After that, we trained a prediction model that can classify the NDDs using the

risk variants. Once trained, we inspect the trained neural network model to study shared

disease pathologies using model interpretable techniques such as Shapley Values [119] and

explore low-dimensional embeddings of the penultimate layer of the neural network. We

expect that observing the low dimensionality can highlight the nuances of disease overlaps

and the relations between NDDs at the level of genetic risk variants. The complete workflow

of the proposed model is detailed in Figure 6.2.
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Figure 6.2: Workflow of analysis and model development for extracting shared mechanisms
using genomics data. The output is the hypothetical representation of the results we expect
from our proposed model.

6.3.3 Open problems and research directions

There are several open problems and directions to explore further in the future:

• Data limitations

– Diversity: Most of the healthcare datasets are from participants belonging to

European ancestry. Diversity in the demographic makeup of healthcare data has

significant implications for health equity. For example, certain diseases have a

higher incidence among specific racial or ethnic groups. Failure to consider this

diversity in training machine learning models can result in erroneous predictions

and hazardous health outcomes [147]. Therefore, it is critical to ensure that

healthcare data is representative of diverse populations to minimize healthcare

disparities.

– Sample size: The sample size of health data for neurodegenerative disorders

(NDDs) are still not sufficient to exploit the power of advanced deep learning

algorithms. More importantly there is dearth of studies having phenotypic data

collected during pre-clinical stages of NDDs.

– Harmonization and quality control: Machine calibrations used to collect

complex healthcare datasets, such as imaging and genomics, can have a significant

impact on the downstream tasks. Therefore, quality control and harmonization

are crucial in data analysis pipelines.

– Accessiblity: Medical data, especially from clinical settings, is often siloed and

scattered across multiple institutions, making it challenging to utilize for research.
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This can limit the ability of researchers and healthcare professionals to make

evidence-based decisions.

– External validation: In healthcare research, validation of research findings in an

external cohort is a critical step to ensure the reproducibility and generalizability

of the results. This is because the characteristics of the cohort used for discovery

may not be representative of the larger population.

• Collaborative healthcare

– Biologists and data scientists: They bring different skill sets to the table,

with biologists specializing in the interpretation of biological phenomena, and

data scientists applying computational tools to analyze and integrate complex

data. It is particularly crucial in the analysis of complex biological data such as

neuronal images or the accumulation of protein observed in PET images.

– Clinical trial operations and data scientists: With regards to incorporating

computational tools in setting up recruitment criteria, trial endpoints, etc., there

is still a long way to go. Coordination between computer scientists and large bio-

pharmaceutical companies conducting clinical trials is necessary to bring these

tools into practice.

• Computational challenges

– Handling multi-modal data: For multi-dimensional disorders such as NDDs,

analyzing multi-modal is necessary. More sophisticated algorithms that can in-

tegrate data modalities such as imaging (include MRI, PET scans, DATSCAN),

whole genome sequencing, and proteome data will be required.

– Lack of accurate labels: Most of the datasets in neurodegenerative disorders

research lacks accurate diagnostic labels. Detecting dementia accurately is a

challenging task, and the current gold standard involves utilizing post-mortem

brain examinations. Therefore, it is important to consider overfitting in machine

learning models and more focus on unsupervised and semi-supervised learning

approach is needed. It would likely be beneficial to improve MRI technology and

reduce its deployment costs, alongside exploring potential improvements in other

clinical approaches.

– Imbalanced datasets: As more and more heterogeneity within diseases is dis-

covered, it will become very difficult to train machine learning models for diagnos-

97



tic purposes due to low prevalence. Hence, methods that can handle imbalanced

classes should be preferred.

– Storage and data size: Development of more efficient and cost-effective stor-

age solutions is necessary for large and complex medical datasets. This includes

the use of cloud-based platforms and distributed computing systems, as well as

advancements in data compression and processing techniques.

• Clinical challenges

– Cost-effective drugs: The development of Alzheimer’s disease drugs has made

progress with Lecanemab showing some degree of clinical improvement. However,

the cost of the drug is $26,500 per year, which can impose a heavy financial burden

on healthcare systems. Hence, we need more research to develop cost-effective

drugs for NDDs.

– Cost-effective biomarkers: As research progresses and new biological data

modalities are discovered, it may increase the cost of healthcare systems due to

the need for additional equipment, resources, and personnel to utilize these new

modalities. Therefore, we need more cost-effective biomarkers such as blood tests.

6.4 BROADER IMPACTS

This work will influence industry and academia by advocating for and enabling data-driven

methodologies to enhance medical research. We provide the provide a framework to mine

the ever-growing biological datasets with a comprehensive evaluation that allows smooth

translation from basic science research to clinics to communities that truly benefit society.

Our work has the potential to show the underpinnings of knowledge about neurodegenerative

diseases that can quickly lead us to precise therapeutic targets.

Open Source Artifacts: Another primary source of value come from disseminating and

maintaining well-supported open source tools. We publicized our code and data with a web

application allowing researchers to inspect our methodology. Further, our analysis can work

as a benchmark upon which researchers can improve with innovative algorithms and tools.

For clinicians, we develop user-friendly tools that can help in their tangible decision-making

concerning courses and diagnosis of neurodegenerative diseases.
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