
1 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).
https://hdl.handle.net/2142/121115

REVISION-SAFE ARCHIVING AND LICENSE-
CONTROLLED ACCESS USING DISTRIBUTED

LEDGER TECHNOLOGY

Sven Schlarb Roman Karl Victor-Jan Vos
AIT Austrian Institute of

Technology
Austria

sven.schlarb@ait.ac.at
0000-0003-3717-0014

AIT Austrian Institute of
Technology

Austria
roman.karl@ait.ac.at

NIOD Instituut voor
Oorlogs-, Holocaust- en

Genocidestudies
Netherlands

v.vos@niod.knaw.nl

Carlijn Keijzer Begoña Sanchez Royo

NIOD Instituut voor Oorlogs-,
Holocaust- en Genocidestudies

Netherlands
c.keijzer@niod.knaw.nl

Highbury Research
and Development Ltd.

Ireland
begona.sanchez-

royo@highbury.ie
0000-0002-2911-7881

Abstract – This paper describes an approach and a
prototype system to make use of Distributed Ledger
Technology or, more specifically, Blockchain, to build a
trusted digital repository with a transparent and
traceable change record for events related to the
preservation or action of requesting or granting access
to digital information objects. The approach focuses
on a notary use case where the information stored in
the blockchain serves as a proof of evidence regarding
the existence and integrity of digital information
objects.

Keywords – Blockchain, Distributed Ledger, Digital
Repository, Electronic Archiving.

Conference Topics – Digital Accessibility, From
Theory to Practice

1. INTRODUCTION

In this paper we present an approach together with
a prototype implementation [1] which aims at
increasing trust in electronic archiving and digital
repositories by enabling a transparent and traceable
change history of archival records using distributed
ledger technology (DLT) or Blockchain systems.

Digital objects stored in a repository are subject to a
life cycle, that is, there are events that modify the
objects themselves or the metadata related to them.
Trustworthy archiving means that these changes are
recorded as events in a transparent manner and that
it is clearly documented who initiated the changes
and for what reason.

One of the well-known application domains of
Blockchain is the so called “decentralized notary”
[2, section 7]. The principle is that the piece of data,
such as the fingerprint (or hash value) –
demonstrating the existence and integrity of a
document – is stored in the Blockchain together with
a timestamp. It is decentralized because – depending
on the security setup – any node can initiate
transactions which are then processed through the
distributed consensus and added to the Blockchain.

We present a use case related to negotiating access
to digital objects where an applicant – a researcher
from the repository’s designated community or a
general user – requests access. Further we describe

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/2142/121115
mailto:begona.sanchez-royo@highbury.ie
mailto:begona.sanchez-royo@highbury.ie

2 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

that the basic principle can also be used to record
digital preservation events.

The event metadata can be persisted together with
the information resource. We use PREMIS, a widely
used metadata scheme for recording preservation
events, in combination with blockchain transactions
to provide a transparent, auditable and tamper proof
change history record.

The prototype implementation [1] demonstrates the
principle of using a blockchain notary for recording
events related to accessing or preserving digital
objects and is designed to make use of the use of the
European Blockchain Infrastructure Service (EBSI) [3]
which allows making use of API functions to build a
transparent and tamper-proof provenance and
change history record without the need to set up a
dedicated blockchain service infrastructure. The
European Blockchain Services Infrastructure (EBSI) is
a cooperation of 29 countries and the European
Commission. It is a private blockchain-based system
with about 30 nodes which largely builds upon the
Ethereum ecosystem with several smart contracts
written in Solidity defining the core of the EBSI
functionality. This private Ethereum network is not
accessible directly from outside by users and
external developers. Instead, there are several
higher-level APIs as the only way to access the
system from outside. Developers can use this API to
write decentralized applications in a similar way as
with interacting with custom smart contracts directly,
but with the additional EBSI compatibility.

The paper's outline is structured as follows: Section
2 provides an overview of related initiatives and
work. Section 3 elaborates on the fundamental
methods for interacting with the blockchain. Section
4 delves into the implementation details of the
access and preservation use cases. Finally, Section 5
concludes the paper by summarizing the key
findings.

2. RELATED INITIATIVES AND WORK

A series of standards is relevant for trustworthy
archiving: The Reference Model for an Open Archival
Information System (OAIS) defines the requirements
for an archive or repository to provide long-term
preservation of digital information. Based on the
reference model several initiatives produced
recommendations for certification criteria related to
trustworthy repositories, such as [4], [5], and [6].
Even though these publications address mainly

organizational infrastructure aspects and do not
address the technical means for building trust, they
represent the general frame for building
“accountable record-keeping systems” [5, p. 8].

The relevance of blockchain technology for archiving
is reflected in the large number of publications
related to this topic. Very close to the approach
presented here is the model of a blockchain-based
system to assist the process of long-term
preservation of digitally signed records presented in
[7] and [8] and the project ARCHANGEL [9]. The
difference of our approach is that we present a
generic use case applicable to any type of archive
and propose a way to link preservation and access
metadata with the blockchain registry.

3. INTERACTING WITH THE BLOCKCHAIN

To be able to interact with the blockchain, or more
technically, to send a transaction that will be included
in a block, i.e., writing data to the blockchain, an
account on the blockchain system is required. This
account can correspond either directly to a user or to
an external system that administers multiple user
accounts by itself. Additional to a digital account
protected by public-key cryptography, a link to a
person or an organization must be established. We
will focus more on persons, “natural persons” in legal
terms, as the relevant legal contracts are often
concluded on this level.

The proof-of-concept implements a user
management that does not include an official
verification of an identity by the respective national
agencies of EU states. But the architecture will be
modular to allow such an extension without major
code changes. A potential extension could integrate
eID [10], a digital building block that was created as
part of the Connecting Europe Facility (CEF) program,
which takes care of cross-border verification of
identities. Similarly, the European Self-Sovereign
Identity Framework (ESSIF) built into EBSI can
facilitate the generation of user accounts with
verified identities based on official documents and
make it usable with the rest of the EBSI functionality.

Giving access to data is also not a task that is typically
solved only by a smart contract. First, because most
blockchain systems have no sophisticated reading
protection, which means that data is readable by
default for parties with access to the system. But a
blockchain is often not an ideal storage system for
many kinds of data, because of its persistent nature

3 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

and its reduced capacity and throughput. Therefore,
dissemination information objects will clearly not be
stored on the blockchain. Enforcing the rules of the
blockchain will be done by a component outside the
blockchain system. This component does not need a
distributed architecture and can be located at the
archive. For multiple archives the component can
simply be run as multiple instances, or an archive
could use its own implementation if it wishes so. It is
important to note that by doing so, we do not lose
the advantages of the blockchain system. If an
archive gave access to a DIP without having a legal
contract established on the blockchain, this would be
in its own control and responsibility. On the other
hand, an archive that does not give access to an
applicant even though a legal contract has been
established would violate that agreement, which
could be proven by the applicant.

Regarding the roles which are involved in the
information access use case we define three entities
when establishing a license agreement: Provider
Entity (PREMIS metadata: agent), Applicant Entity
(PREMIS metadata: agent), and Object Entity (PREMIS
metadata: Information Package, Representation, or
File).

The license agreement is concluded between the
Provider Entity and the Applicant Entity, and it relates
to the Object Entity.

For the preservation use case, events, such as the
migration of representations of file objects, are
documented as PREMIS with the corresponding
agents documenting the preservation decision
taken. The notary function of the blockchain
registers a combined hash of event identifier and
representation or file hash in this case.

4. USE CASE IMPLEMENTATION

One of EBSI’s APIs is particularly interesting for
referencing data entries to prove their existence and
validity at a certain point in time. The so called
“Timestamp API” basically stores hashes and
associates them to the timestamps at the point of
time when the entry was created. The hashing
algorithm can be chosen by the user out of a list of
standardized algorithms.

The timestamp is added by the EBSI system when the
entry is written to the blockchain. The original data
can be stored off-chain. That might be possible also

via the EBSI infrastructure or outside of it via a
separate application.

An important aspect of the dissemination of digital
objects is the definition of rights and the agreement
concerning the usage. To define in which way and to
what extent a dissemination object can be used, a
legally binding contract between two parties, the
provider, and a requester, must be put in place. In
the context of systems that use a blockchain as basic
data structure, there are pieces of code, called smart
contracts, which are sometimes seen as an
automated form of a legal contract. But this is only
true in certain cases because smart contracts can
only control very specific aspects of a legal contract.
A smart contract cannot prevent the requester to use
the dissemination object in any way that would
violate the legal contract. But still, having a
blockchain as data structure where it is not possible
to modify existing entries helps us to digitally record
an agreement between two parties and put the
legally binding contract in place. The central part of
the legal contract is the text that describes the legal
aspects, which we call “license”.

The process of recording the agreement on the
blockchain consists of five steps:

1. Register dissemination representation for
access. The dissemination object is identified
and referenced to by a UUID. The
dissemination object itself is never put on the
blockchain, but only its identifier.

2. Create text license document. Most of the
time, we will deal with a small set of standard
licenses, but it is also possible to assemble a
license out of a set of standard clauses or to
set up an individual license. A license is
hashed to prohibit future modifications and
the hash is used as identifier for a license on
the blockchain. Like the dissemination
object, the license itself won’t be stored on
the blockchain.

3. Provider assigns license to dissemination
representation. An entry on the blockchain is
made to record the bundling of the
dissemination object with a specific license.
Everyone with access to the system will then
be able to see the available offers. Since the
blockchain contains only the identifiers, a
customer will need not only the information
from the blockchain to assess the offer. What

4 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

is important, is that the data on the
blockchain is sufficient for a customer to
verify the validity of the offer.

4. Requester accepts license. The requester is
the first to sign the offer via an entry on the
blockchain.

5. Provider approves request. The signature of
the provider via an entry on the blockchain
finalizes the legally binding contract between
one requester and provider for one
dissemination object.

In these five steps we have three different fields
identifying the different objects and the user (field:
object identifier, type UUID, size: 16 bytes; field:
license hash, type SHA3-256, 32 bytes; field:
requester, type: Ethereum address, size: 20 bytes).

In steps 3 to 5, we need to store records which
consist of a combination of the fields. If we want to
use the Timestamp API, we cannot store multiple
fields, but just a single hash value. We compute such
a hash value by appending the input bytes in binary
format and by then hashing this byte sequence with
SHA3-256. As a result, we get another 32 bytes
sequence representing a data entry.

This reduction still allows a party to proof the validity
of a particular entry at a given time under the
condition that the original data is not lost. By itself,
the data stored on the blockchain itself will be
relatively meaningless, so it is important to see it only
as one part of the process.

To demonstrate the approach, we developed a
decentralized application that is based directly on
Ethereum, but because of the modular design the
connection to the blockchain system can be replaced
without the need of rewriting code in the other layers
of the component. The blockchain-based system is
set up as a private network with proof-of-authority
as consensus mechanism. Go Ethereum is chosen as
software for the execution client and a block is
created every 15 seconds. But it is important to note
that we do not rely on a particular setup and most of
the setup could be changed without affecting the
functionality of the decentralized application.

Adhering to the concepts and definitions of the EBSI,
we created a timestamp smart contract that
resembles the Timestamp service provided by the
EBSI but is a simplified implementation. It defines a
data structure, a map, with hash values as indexes

and timestamps in combination with the address of
the creator as associated information. It is
implemented in Solidity, which is the most widely
used language for smart contracts in Ethereum.

Interacting directly with smart contracts is in general
a bit tedious. Most of the time, decentralized
applications, sometimes also referred to as dapps,
are created to interact with smart contracts. In our
case the decentralized application is a web server
that provides a REST API as an easy way to access the
functionality of the smart contract. The web server is
written in Haskell, uses GHC 8.10.x, and includes
amongst others the libraries servant for the REST API
and web3-ethereum for the connection to the smart
contract. To ensure modularity, the application
consists of 4 layers, that built only upon the layer
directly below, but not on the others.

1. The uppermost layer in the architecture
describes the REST API including all elements
that concern the web server. This includes
the rendering of the responses, for which
JSON is used as format.

2. The second layer defines the business logic,
which means the five steps in our process of
recording an agreement and the
functionality for retrieving information.

3. The third layer is responsible for the storage
and is specific to the chosen storage
backend. In the current implementation, the
functions of the custom smart contract are
called to store a hash or retrieve the
information, timestamp and creator, of a
hash. This layer has to be replaced if the EBSI
Timestamp API is used instead of the custom
smart contract.

4. The lowest layer is also part of the storage
and just needed for the direct connection to
the Ethereum components and wouldn’t be
needed with EBSI. It makes all the
functionality of the smart contract accessible
via the web3-ethereum library, as this is a
form of polyglot programming and requires
some mechanism to connect the different
environments.

In the following we briefly outline the REST API
functions of the prototype implementation.

5 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

• registerObject: takes object_identifier as
parameter and returns the object’s
registration hash value.

• createLicense: takes license_hash as
parameter and returns the license’s
registration hash value.

• assignLicense: takes object_identifier and
license_hash as parameters and returns the
license assignment hash value.

• acceptLicense: takes the requester’s account
requester, the object_identifier and
license_hash as parameters and returns the
acceptance hash value.

• approveRequest: takes the requester’s
account requester and the object_identifier as
parameters and returns the approval hash
value.

On the other hand, querying does not involve
transactions on the blockchain, and the requests are
relatively fast. For any of the registered hash values
for object registration, license registration, license
assignment, license acceptance, and approval one
can get the timestamp of its registration and the
associated account address.

• timestamp: takes the registration hash value
as parameters and returns the timestamp
value timestamp and the creator’s account
creator.

An Ethereum network is a peer-to-peer network
consisting of several nodes. There can be one or
more instances of the decentralised application that
connect to one node, and one instance can serve one
or more users. In the prototype implementation the
key store is located at the Ethereum node, but it is
possible to relocate it to the decentralised
application, which would increase the flexibility and
depending on the setup can also help increasing the
security. There are some variations depending on
the location of the key store and the number of the
accounts that are stored in one key store. An
interesting case is created by locating the key store
at the decentralised application with only one
account per key store. This would mean that every
user has to run its own web server. An exchange of
the custom smart contract with the EBSI services has
only a minor impact, as it is also possible with the
EBSI to manage the keys either at the node or
outside of it.

5. CONCLUSION

The implementation of the concepts and approach
presented in this article can be used with Distributed
Ledger Technology or Blockchain services which
offer a function for registering a hash value and
providing a timestamp as return value. These
minimum requirements will allow tracing the
creation and integrity of information objects. To also
provide evidence for the authenticity of information
objects, i.e., who registered them for the first time or
who originated specific preservation objects, the
events need to be linked to the account. If the
requirement is to know about real identities behind
the accounts, further identification services, such as
the European eID services, need to be integrated.

6. ACKNOWLEDGEMENT

This project has received funding from the
European Union’s CEF programme with action No
2020-EU-IA-0185 under grant agreement No
INEA/CEF/ICT/A2020/2397190.

7. REFERENCES

[1] Kark, R., & Schlarb, S. (2023). Blockchain Notary Proof-of-
Concept (Version 1.0.0) [Computer software].
https://doi.org/10.5281/zenodo.8100250

[2] D. Di Francesco Maesa and P. Mori. Blockchain 3.0
applications survey. Journal of Parallel and Distributed
Computing, 138:99–114, 2020.

[3] W. J. Buchanan et al., “The Future of Integrated Digital
Governance in the EU: EBSI and GLASS.” 2023.

[4] D. R. C. T. Force. Trustworthy repositories audit certification:
Criteria and checklist. Research libraries group (rlg), Technical
report, RLG-NARA, 2007.

[5] R.-O. W. G. on Digital Archive Attributes. Trusted digital
repositories: Attributes and responsibilities. Technical report,
OCLC, 2002.

[6] W. G. on Digital Archive Attributes. An audit checklist for the
certification of trusted digital repositories. RLG-OCLC, 2005.

[7] Bralić, V., Stančić, H. and Stengård, M. (2020), "A blockchain
approach to digital archiving: digital signature certification
chain preservation", Records Management Journal, Vol. 30
No. 3, pp. 345-362. https://doi.org/10.1108/RMJ-08-2019-
0043.

[8] Stančić H, Bralić V. Digital Archives Relying on Blockchain:
Overcoming the Limitations of Data Immutability.
Computers. 2021; 10(8):91.
https://doi.org/10.3390/computers10080091.

[9] J. P. Collomosse et al., “ARCHANGEL: Trusted Archives of
Digital Public Documents,” CoRR, vol. abs/1804.08342, 2018.

[10] H. Strack, O. Otto, S. Klinner, and A. Schmidt, “eIDAS eID &
eSignature based Service Accounts at University
environments for cross boarder/domain access.” 2019.

