
1of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).
https://hdl.handle.net/2142/121110

EAASI PRESERVATION OF MOBILE APPLICATIONS
Progress with the long-term preservation of

access to mobile applications using the EaaSI
platform

Euan Cochrane Jurek Oberhauser Rafael Gieschke

Yale University Library
Country

euan.cochrane@yale.edu
0000-0001-9772-9743

OpenSLX
Germany

jurek@openslx.com
0000-0003-4542-7959

University of Freiburg
Germany

rafael.gieschke@rz.uni-
freiburg.de

0000-0002-2778-4218

Abstract – Mobile devices have revolutionized
computing and democratized access to it. The
applications we use on our mobile devices play a
critical role in shaping our online experiences, our
culture, our politics, and our access to information.
Mobile applications are also widely used for data
gathering and asset management in many domains
from scientific research to infrastructure
maintenance. With such a wide-reaching impact it is
critical that the preservation community is able to
maintain access to mobile applications for future
generations. In this short paper we outline progress in
using the Emulation as a Service Infrastructure (EaaSI)
platform to run obsolete versions of the Android
operating system in virtualization and emulation in
order to maintain access to mobile applications. We
also detail the current limitations of virtualizing and
emulating mobile devices and provide a list of future
challenges to address as we move forwards with
ensuring long-term access to this essential part of our
history.

Keywords – emulation, mobile, apps, applications

Conference Topics – From Theory to Practice;

Immersive Information

I. INTRODUCTION

Within the Emulation as a Service Infrastructure
(EaaSI) platform users can already run some versions

of the Android operating system using the existing
QEMU emulator. Since Android is a variant of the
well-supported Linux-based operating system
family, Android versions made for the IBM PC
platform using the x86(-64) architecture [1] can
generally run on the modern versions of QEMU with
no special customizations being required. In
addition, Android comes with a driver for optical
drives so existing workflows in EaaSI that allow for
installing new software via an optical drive work with
these versions of Android, also with no
customization required. However, the configuration
of QEMU to support desktop Linux-based operating
systems and the way it is integrated within the EaaSI
user interface assumes a limited number of inputs
and outputs. Mobile devices generally have quite
different input and output methods relative to
desktop computers. For example, mobile devices
often accept touch input, GPS sensor input,
gyroscopic sensor input, and many other mobile-
oriented inputs, and will output mobile-oriented
outputs like vibrations, device-based-sharing
protocols, and other mobile-specific outputs. Within
EaaSI there is significant work to do to integrate
these mobile-specific inputs and outputs into the
EaaSI interface and workflows. In addition, we need
to add options for simulating inputs like GPS
coordinates and health sensor data.

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/2142/121110
mailto:euan.cochrane@yale.edu
mailto:jurek@openslx.com
mailto:rafael.gieschke@rz.uni-freiburg.de
mailto:rafael.gieschke@rz.uni-freiburg.de

2 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

1. TECHNICAL CHALLENGES

1. Emulation and Virtualization of Mobile Devices

The Android OS itself is an open-source project
[3], however most Android versions that are used on
handheld devices are modified by the device
manufacturer to support device-specific operations.
These devices overwhelmingly depend on the
ARM(64) architecture. While ARM emulators exist,
emulating ARM-based Android images becomes a
tedious task, as both performance and user
experience suffer. Virtualization becomes a necessity
if suitable user experience should be provided. As
the desktop and server-based hardware on which
the emulators run is usually x86(-64)-based,
hardware acceleration and virtualization cannot be
provided for images with full ARM emulation.
Additionally, ARM emulation is more complex to set
up as, in contrast to the x86(-64) architecture with the
IBM PC platform, there is no universal ARM-based
platform yet but many different platforms1, i.e.,
combinations of a CPU implementing a specific
instruction set architecture (ISA) together with other
standardized hardware. While the ISA specifies the
supported CPU instruction and their encoding, the
platform allows other computer hardware to be
expected to behave in documented ways and
specifies, e.g., how the boot process works. As the
IBM PC is the almost only x86-based platform, any
x86 emulator will actually support it and, thus, can
boot and run Android-x86. However, there is not yet
any real equivalent for the ARM architecture (this is
currently being fixed in
https://www.arm.com/architecture/system-
architectures/systemready-certification-
program).

Given these challenges emulating ARM-based
devices, there are currently two non-proprietary
options that we’ve evaluated regarding ensuring long
term access to the applications that were used on
them:

1. Android-x86
Android-x86 is an open-source project with the

goal of porting existing Android versions to the x86(-

1 Historically, this has often been the case for CPU
architectures, considering that the MOS Technology
6502 CPU and its variants were used in such diverse
computers (platforms) as the Commodore C64,
Apple II, TRS-80, BBC Micro, Super Nintendo, and
many others.

64)/IBM PC platform. The main advantage of
Android-x86 is that it can be used with any x86-
capable emulator, such as QEMU and works “out-of-
the-box". Android-x86 is a community-based effort
and thus there is no guarantee that the project will
be continued and maintained long-term. Currently
the latest release features Android 9, which was
released in 2018. The current upstream Android
Release is Android 13, with Android 14 being
released this year. This shows that there is quite a
discrepancy between the latest official Android
release and that of Android-x86, however, with a
long-term preservation view, this can be
disregarded. Android-x86 allows to install the “Native
Bridge” feature which allows to install and execute
Applications within Android-x86 that were originally
compiled to run on ARM-architecture only.

Most users of Android do not run the x86(-64)
version.2 Instead, they run a version of Android
compiled for and compatible with ARM(64)-based
hardware. ARM hardware has traditionally been
more power-efficient than x86 hardware and so has
been the default option for mobile devices that have
limited battery capacity. Upon initial examination
this might be expected to cause significant issues for
preserving access to mobile applications as it would
be reasonable to assume that most mobile
applications were made for ARM-based devices.
However Android and mobile applications each have
some beneficial features that make this less of an
issue that might be expected. From the beginning of
mobile development many apps have been designed
for either web-browser based execution or for use
with a Java Virtual Machine (JVM)3. The web-browser
based apps often work on any version of Android as
they only rely on the in-built web browser. The Java-
based apps will run on any version of Android as
their architecture-independent bytecode is
transparently compiled to machine code on the
respective device itself.

2. Google Android Emulator
Google provides an official Android Emulator as

part of Android Studio, the official Development

2 However, Google is recently providing an x86-
based virtual Android environment on most of their
Chromebooks.

3 Implemented as Android Runtime (ART) on
Android (starting with Android 5.0) and being one of
core parts of the Android operating system.

https://www.arm.com/architecture/system-architectures/systemready-certification-program
https://www.arm.com/architecture/system-architectures/systemready-certification-program
https://www.arm.com/architecture/system-architectures/systemready-certification-program

3 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

Environment for Android. This emulator can also be
used in standalone mode and consists of a QEMU
with additional features and a somewhat complex
emulator architecture [2]. Google provides Android
system images, featuring different sizes, resolution,
and most importantly Android versions. Images are
provided in both x86 and ARM versions and range
from Android 1.5 to Android 13. The Google Android
Emulator offers a variety of input methods to
simulate “real” input that a user would provide to a
handheld device. It also contains interfaces to specify
locations, use phone services such as simulating
incoming calls or messages etc.

From a user standpoint, the Google Emulator
seems like the obvious choice to emulate Android
especially regarding input. However, there are strong
arguments against the usage of the Google Emulator
for long-term preservation:

1. As mentioned above, though being built on
QEMU, the Google Emulator cannot easily be
integrated with the EaaS framework.

2. Maintainability cannot be guaranteed as
Google often discards projects and not all of the
emulator’s functionality is publicly documented well

3. The Google Emulator mainly uses the Android
Debug Bridge (ADB) and wraps commands in its
interface. If the EaaSI platform is extended to
support ADB anyway, the better solution is to use
Android-x86 and the “normal” QEMU and build
interfaces for ADB functionality as we see need.

2. User Experience

3. Application Installation Workflows

1. The Standard Application Installation Workflow
The usual “workflow” when installing an

application is the following: The user opens the
Google Play Store, selects the Application that they
want to install, and clicks “Install”. While this option
currently works within emulated Android-x86, it
requires both Internet connectivity (which can be
provided by Emulation as a Service (EaaS)) and a
Google Account. Regarding long-term preservation
however, we cannot assume a functional App Store
and thus cannot rely on the Google Play Store.
Additionally, for security reasons, Google enforces a

4 https://android-

developers.googleblog.com/2017/12/improving-
app-security-and-performance.html

policy where apps need to target recent Android
versions or, otherwise, will not be available through
the Play Store.4 Android Packages (or “APK”s),
however, can easily be installed manually, either
from within the OS, or externally via a remotely
executed command, using ADB.

Figure 1: Installing the Wikipedia App within an
emulated Android 9

2. Side Loading Applications
By default, and in contrast to Apple’s iOS mobile

device Operating System (OS), the Android Operating
Systems have allowed “side-loading” of applications
once a user enabled the relevant system-setting.
“Side-loading” is the process of installing an
application from a file accessible to the device (e.g.,
downloaded from the internet, copied on removable
media, or accessed from a network location). Apple
does not allow this by default as they state that they
consider it a security risk [4]. Side-loading in iOS is
possible if the operating system and device are “jail
broken”. However, the process of “jail breaking” a
device has many copyright and security concerns
associated with it, this is one of a number of reasons
why the EaaSI team has begun working with Android

4 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

instead of iOS to address long term mobile
application preservation and access.

The ability to side-load applications in Android
OSes provides a simple and future-proofed method
for preservation practitioners to use to ensure
preserved mobile applications can be installed and
accessed by future users. It is by taking advantage of
this option that EaaSI users can use the existing
software installation workflow to install applications
in Android-based mobile devices emulated in EaaSI.
EaaS currently supports installation through the
following workflow: The user uploads that APK that
they want to install. The backend wraps the APK in an
ISO file that can be inserted into the emulated
Android system, similar to how an SD card is inserted
into a real smartphone. The user can then install the
APK from the Android File Browser.

Figure 2: The Google Chrome Browser running

within Android 9 in the EaaS UI

3. Providing a Custom Legacy App Store
Most users install applications in their mobile

Operating Systems (OSes) by finding them in the OS’s
application store (“app store”) and clicking the button
to install the application. One option for managing
workflows for installing software in preserved and
emulated versions of mobile devices and their OSes
would be to replicate this process, i.e., the EaaSI
software could provide a server hosting the
applications and an “app store” application on the
emulated devices that would provide a similar
experience to the app stores users are used to. This
option is relatively complex and requires a network
to be setup between the app-store host server and
emulated device along with sufficient metadata to be

populated into the app store database to enable
meaningful searching and browsing within it. Such a
configuration would also need to be maintained for
as long as the need to install legacy applications was
required. For these reasons, while the EaaSI team
may explore this option in the future, we have
instead decided to start with simpler workflows for
enabling applications to be installed on emulated
mobile devices.

4. Automatically Installing Applications
In addition to side-loading applications via the

ISO-wrapping workflow described above, the EaaSI
team have prepared Android-x86 images that
automate this process using a startup script that
checks if any APKs are present within the mounted
ISO and installs them via the integrated ‘package’
command line tool. That means that no user input is
required, and the installed app(s) can be used shortly
after startup. This automated installation is possible
because APKs usually don’t require any external
dependencies and can “just” be installed.

There are currently plans to expand the EaaS-
Framework to allow external installation of APKs as
well. As networks are already an established
functionality in EaaS, a container with ADB could be
connected to the Android Emulator. ADB could then
be used to remotely install APKs over the network.

4. Interaction

Interacting with Android applications (or
applications for handheld devices in general) differs
from interaction with a computer. This poses new
challenges for emulation as well. While many
applications can run properly in an emulated
environment, input and output in the form of multi-
touch is not supported in EaaSI yet. While the Google
Emulator provides an interface to simulate Inputs,
the current EaaSI-UI does not support any of these
Android-related features. The above-mentioned
network-based ADB integration will set a base for the
integration of some of these features, where a UI
input would be translated by the backend to an ADB
command – which is similar to the way the emulator
provided in Google’s Android Software Development
Kit (SDK) functions.

5 of 5

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

Figure 3: An example of the Google Android

Emulator with extended Controls to simulate sensor
input

5. Virtualizing ARM devices

While we have made great progress with
virtualization of x86-compatible mobile devices,
virtualization of ARM devices will require some
additional work. Currently all servers that run EaaSI
are x86(-64)-based and to virtualize ARM devices we
would need to incorporate ARM(64)-based servers
alongside the x86-based ones and develop EaaSI to
support seamlessly utilizing and interacting with
each type depending on the device being virtualized.
ARM emulation on x86-based hardware will be
essential in the future and is already possible. Given
the delay between creation of born-digital archives
and their acquisition by archival institutions (often
many years), it may not ever be necessary to
virtualize ARM-based devices in EaaSI as the existing
emulation functionality may be performant enough
on modern hardware to negate the need to virtualize
the ARM devices.

6. Apple device emulation and virtualization

As discussed, we are not yet integrating any
Apple device emulation or virtualization into EaaSI.
There are some existing companies providing Apple
device virtualization support, and some that claim to
support Apple device emulation. However, in both
cases their products are proprietary, which makes
integrating them into the fully open-source EaaSI
platform particularly challenging. In addition, there

has also been significant litigation by Apple against
these companies. The Software Preservation
Network supported one company, Corellium (a
company that supports security testing, training and
research), in one such lawsuit by providing an amicus
brief [5]. Fortunately, Corellium had some success
with that case, however the risk of litigation is still
high, which provides motivation for the EaaSI team
to delay additional investment into integrating Apple
device emulation and virtualization.

2. CONCLUSION

The EaaSI team have made significant progress in
ensuring long-term access to mobile applications. A
large proportion of historic Android-compatible
applications can already be made accessible in EaaSI
using the QEMU emulator and the Android-x86
operating system. Automated installation of these
applications is also possible in EaaSI for many
versions of Android. In the future, the process for
installing and configuring these applications will be
further simplified and streamlined using the Android
Device Bridge. Additionally, configuration of and
interaction with the more complex inputs and
outputs that mobile devices and their emulators
support is going to be integrated into the EaaSI User
Interface enabling simple replication of the
experience of interacting with legacy mobile devices
and their applications.

Challenges remaining to be resolved include
emulation and virtualization of Apple’s mobile
devices, however progress coming from the security
testing industry seems to show promise for
providing solutions that we may be able to integrate
into EaaSI in the future.

3. REFERENCES

[1] Android-x86, Online. https://www.android-x86.org/
[2] https://source.android.com/docs/setup/create/avd,

https://android.googlesource.com/platform/external/qe
mu/+/refs/heads/emu-master-dev

[3] Android Open Source Project, Online.
https://source.android.com/

[4] Clover, J. 26/5/2022, MacRumours.com “Apple Says Revised
U.S. Sideloading Bill Would 'Undermine the Privacy and
Security Protections' iPhone Users Rely On”.
https://www.macrumors.com/2022/05/26/apple-
statement-revised-sideloading-bill/. Accessed 3/9/2023

[5] Butler, Brandon. (2022, February 17). SPN amicus brief
defends fair use in Apple v. Corellium case. Software
Preservation Network.
https://www.softwarepreservationnetwork.org/spn-
amicus-brief-defends-fair-use-in-apple-corellium-
case/

https://www.android-x86.org/
https://source.android.com/docs/setup/create/avd
https://android.googlesource.com/platform/external/qemu/+/refs/heads/emu-master-dev
https://android.googlesource.com/platform/external/qemu/+/refs/heads/emu-master-dev
https://source.android.com/
https://www.macrumors.com/2022/05/26/apple-statement-revised-sideloading-bill/
https://www.macrumors.com/2022/05/26/apple-statement-revised-sideloading-bill/
https://www.softwarepreservationnetwork.org/spn-amicus-brief-defends-fair-use-in-apple-corellium-case/
https://www.softwarepreservationnetwork.org/spn-amicus-brief-defends-fair-use-in-apple-corellium-case/
https://www.softwarepreservationnetwork.org/spn-amicus-brief-defends-fair-use-in-apple-corellium-case/

