
1 of 7

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).
https://hdl.handle.net/2142/121096

SOFTWARE PRESERVATION
AFTER THE INTERNET

Dragan Espenschied Klaus Rechert

Rhizome
USA/Germany

dragan.espenschied@rhizome.org
0000-0003-1968-6172

University of Applied Sciences Kehl
Germany

rechert@hs-kehl.de
0000-0002-2454-4374

Abstract – Software preservation must consider
knowledge management as a key challenge. We sug-
gest a conceptualization of software preservation ap-
proaches that are available at different stages of the
software lifecycle and can support memory institu-
tions to assess the current state of software items in
their collection, the capabilities of their infrastructure,
and completeness and applicability of knowledge that
is required to successfully steward the collection.

Keywords – software preservation, knowledge
management

Conference Topics – Sustainability; From Theory to
Practice

I. SOFTWARE PRESERVATION AS KNOWLEDGE MANAGE-

MENT

This article considers software preservation as
providing continuous access to reproduced perfor-
mance: Different from software in active use that ex-
poses a lot of touch points to larger systems and pro-
cesses, preserved software is kept available in a his-
toricized and more constrained archival context. This
(idealized) setting allows to trace and comprehend
the capabilities of all kinds of legacy software objects
into the future.

Software objects are regarded as having a work-
able boundary definition, including blurry objects
with parts of their resources or performance located
remotely [1]. A boundary definition typically applies
to software that is in some sense “unique” from a
particular point of view. For instance, from the per-
spective of a data science research project, compu-
tational processes developed for the project need to

be reproducible; for a museum of digital art, art-
works in the collection that were collected at differ-
ent points in history need to have their performance
available for exhibition and research; a memory in-
stitution concerned with digital work environments
will want to make available legacy productivity soft-
ware like word processors. In any of these cases the
software object in focus can be composed of multi-
ple artifacts including large amounts of adjacent soft-
ware and dependencies that are out of the preserv-
ing party’s reach or control, or might be logistically
impossible to turn into local artifacts—that’s the
“outside world.” The software object’s boundary thus
has to be defined in terms of its performance capa-
bilities at a certain point in time.

We’re further defining the performance of soft-
ware and the reproduction of that performance as a
continuum that is in sync with the lifecycle of a soft-
ware object as it moves from being actively devel-
oped, then maintained, and finally encapsulated.

We suggest a conceptualization of software
preservation approaches that are available at differ-
ent stages of the software lifecycle and can support
memory institutions to assess the current state of
software items in their collection, the capabilities of
their infrastructure, and completeness and applica-
bility of knowledge that is required to successfully
steward the collection. Ideally this conceptualization
can serve as a guide for improving the understand-
ing of the complexity of software preservation: Soft-
ware in its different manifestations—as source code,
installable binary, installed / configured binary, and

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/2142/121096

2 of 7

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

remote process—, its different versions—each po-
tentially exposing different characteristics, e.g. adap-
tations for different markets, languages, and user
groups—create a high-dimensional space that is dif-
ficult to oversee and makes it hard to navigate to-
wards formulating desired preservation goals. How-
ever, as these goals become more defined, gaps in
preservation knowledge and capabilities can be iden-
tified and addressed with new research and infra-
structure building projects.

II. HOW SOFTWARE IS MADE AND PRESERVED

A software object that performs and a software
object that has its performance reproduced are iden-
tical on the artifact level: both the item in focus (such
as a particular executable) and the software environ-
ment it is embedded in are identical in both stages,
bit for bit. The assessment differs according to the
activities required to produce or reproduce the per-
formance—the care work that supports a software
object—and the level of connectedness of the object
to the world outside its object boundaries.

In the continuum from performance to reproduc-
tion of performance, three stages can typically be ob-
served. The activities defining each stage are also
available for preservation and are structurally based
on different utopias: ideas about what will be done
to the software object in the future in the service of
preservation.

A. Active Development

When a piece of software is under active devel-
opment, it is tightly connected to and dependent on
the outside world. Through constant modification,
which might expand or otherwise change the soft-
ware’s capabilities, interactions with other software
in an ever-changing environment are kept intact. No
matter if programmers aim to produce discrete ver-
sions or follow a rolling release model, this stage con-
tains a whole additional level of performance: the
one required to build the software. Only if the build
performance succeeds will the actual desired perfor-
mance of the software become available.

Preservation at this stage is based on the utopia
that programmers will work on and constantly adapt
the software to keep its tight integration with the out-
side world functional. This approach offers the great-
est flexibility: over time, a software could be trans-
formed from a desktop into a mobile application,

take advantage of new kinds of displays and input
devices, be connected to the latest data sources, etc.,
thereby matching expectations of regular users to-
wards regular contemporary software.

The knowledge required to keep active develop-
ment going is large and not static: as changes in the
outside world happen, some knowledge about out-
dated components will become obsolete while new
knowledge about updated components will need to
be integrated into the software development pro-
cess. This suggests that a history of versions of the
software object will be too difficult to keep continu-
ously accessible, unless the capacity for preservation
grows with every version created. With the software
object being changed continuously it can be ex-
pected that knowledge of how to operate and evalu-
ate it will need to be adapted as well.

The potential for knowledge sharing among
memory institutions or preservation practitioners is
very low at this stage, as all knowledge is object-spe-
cific, and the activities rather demand an immersion
into software development communities.

Versions of the software object created during
active development might be used in the mainte-
nance stage.

B. Maintenance

When a software object is maintained rather
than actively developed, development activities are
reduced and often focused on adjacent tools and
patches. Instead of running the whole build process
for an object to make it perform in changing environ-
ments, small fixes are applied, operating system set-
tings and driver configuration options are tweaked,
and possibly other software tools that improve com-
patibility with legacy software are used to expand the
lifespan of the object. A single version or multiple
versions of a software could be created during the
active development stage with the plan to later main-
tain them.

Preservation at this stage is based on the utopia
that there will be some clever trick available in the
future that allows for a legacy software object to be
performed. Patches and tweaks need to be devel-
oped or existing tools repurposed to account for a
static software object being embedded in a highly dy-
namic environment.

3 of 7

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

The capacity required in this stage is significantly
smaller than that for active development. Specific
knowledge about how to operate the software object
is much less dynamic than during active develop-
ment, because no new versions of the object in ques-
tion are produced. Knowledge about how to inter-
face existing versions with the changing outside
world remains not static, just like in active develop-
ment new information will have to replace obsolete
information. However, there is potential for that
knowledge to be generalizable. It is likely that certain
classes of objects that can benefit from the same
tweaks will be identified. For instance, software that
requires a CD-ROM drive can be set up with a virtual
CD-ROM driver, Adobe Flash software might be
made accessible using the ruffle library, etc.

Over time, the software object will gradually lose
its connection to the outside world, as configuration
options become unavailable with new versions of op-
erating systems, drivers, and utilities, and required
tools will appear too difficult to further develop. At
some point the software object will become impossi-
ble to perform, perhaps with the last resort being
legacy hardware running contemporaneous sys-
tems.

Knowledge and tools collected in the mainte-
nance phase might be used in the encapsulation
phase.

C. Encapsulation

Encapsulation is an option made possible by
emulation [2] and dedicated software preservation
frameworks [3]. A fixed version of a software artifact,
plus all its dependencies, adjacent tools, and exter-
nal resources are packaged as immutable disk im-
ages, file systems, web archives, etc. and performed
by an emulator or a set of emulators orchestrated in
a simulated network environment.

All interactions with the outside world happen via
managed interfaces of a software preservation
framework that controls the emulator or set of emu-
lators. For instance, graphics and sound emitted
from an emulator are captured and exposed to the
outside world, signals from input devices are trans-
lated by the preservation framework into signals that
are understood by the emulator.

The utopia of encapsulation is that there will al-
ways be emulators in the future and software preser-
vation frameworks will continue to be actively devel-
oped.

Object specific knowledge is minimized to only be
concerned with how to operate the encapsulated
software object. Since this object is not supposed to
ever change, and will always perform in the same en-
vironment, this knowledge is static. What changes
over time are emulators and preservation frame-
works, which will need to always accommodate cur-
rent technical architectures and platforms. Any fu-
ture issues with the reproduced performance of pre-
served software objects are to be solved on a frame-
work level. This dynamic knowledge about the
preservation framework is highly generalizable, ide-
ally the same for all possible objects, and can be
widely shared with a large number of peers with dif-
ferent specializations.

III. IMPROVING PRESERVATION CAPACITY

Each stage of a software object is described
above in ideal and abstract terms. Especially in a
preservation context it is quite unlikely that any of
the stages will be observed in their pure form, and
mixtures are to be expected, depending on the com-
plexity, size and connectedness of the software in
question and its setup.

When framing software preservation as activities
enacted on software objects, thus as a knowledge
management challenge, it becomes necessary to
radically reduce the actively available knowledge re-
quired to reproduce the performance of software.

A decision that a software object should be pre-
served usually happens at a time when it doesn’t
make sense anymore for the original person or team
doing the active development to continue that activ-
ity. For instance, software objects produced during
an artist residency, or a research grant will need to
be taken care of when these projects conclude, and
the personnel involved need to move on to other
projects.

Institutions as well as communities won’t be able
to collect, connect, and find ways to apply an ever-
growing body of information on software over time.
As long as it can be assumed that certain desirable
properties of current networked computer systems

4 of 7

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

should persist into the future—that more or less ar-
bitrary parties can participate in and help develop
the overall software environment with at least some
degree of autonomy—the world outside of a soft-
ware object will always keep changing. Hence each
new class of software being collected and preserved
bears the risk of requiring significant amounts of pre-
viously unmanaged knowledge. Yet there is only so
much documentation a person can read, or a com-
munity can uphold as practice.

Looking at just a single software object in isola-
tion, a care approach modeled after active develop-
ment makes sense. However, within a collection or
archive, it imposes a limit on the number of software
objects that can receive preservation treatment and
on the time this activity can be sustained. The more
knowledge is generalizable instead of object specific,
the more institutions and communities can support
each other and pool their resources to improve
preservation capacity for the field as a whole. Hence,
the closer software preservation can move objects
towards the encapsulation stage, for single items, for
collections, and for software overall, the more likely
future generations will be able to explore a rich, di-
verse, and equitable history of software.

IV. SOFTWARE PRESERVATION REALISM

It is true that spectacular restoration projects
were realized working with legacy source code. [4] [5]
They also make for exciting stories as typically im-
portant figures from the history of computing and
specialized communities, often from the enthusiast
space, are involved. Yet exactly these inspiring sto-
ries should be interpreted as indicators of the risks
of relying on active development for software preser-
vation. While it might be possible to recruit highly
skilled developers and knowledgeable hobbyists to
work on a groundbreaking software object like an in-
fluential game or a landmark operating system—al-
ternatively, pay them well enough to do so—, this is
unlikely to happen for an under-appreciated art-
work, custom research software, or, plainly boring
yet essential software as developed for administra-
tive purposes in government and commerce.

Preservation projects focused on active develop-
ment are also more likely to succeed for the “classic”
model of software creating in which programmers
work with local source code and locally available li-

braries to produce a whole piece of software or com-
ponent to be packaged and shipped via carrier media
or a network connection.

Software Development After the Internet works
quite differently. Distributed package managers, in-
terpreted computer languages, and “continuous in-
tegration” build processes dominate mainstream de-
velopment practice and afford developers with pre-
viously unknown levels of nimbleness and powerful
abstractions. Here the build process has become a
performance before the performance, with likely as
many variables to consider as for the performance of
the software object that is being built. Unless it can
be demonstrated that the build process actually
works, it is not even possible to assess if all the re-
quired dependencies and external resources are
available in some form. Since packages and libraries
from remote repositories can also change without
notice, it becomes increasingly difficult to even delib-
erately delineate versions of the software object that
uses them, and temporarily suspending continuous
care for a software object runs the risk of opening a
knowledge gap that might turn out to be impossible
to close later.

Given these considerations it seems reasonable
to move out of the active development stage for
preservation purposes and only deal with challenges
of an object’s “main performance” that is available af-
ter the build. This even makes sense when consider-
ing that there is no technical difference between re-
producing a build performance or reproducing any
other software performance, meaning that a build
process could be moved to the encapsulation stage
just like its final product. The practicality of this ap-
proach has to be decided on a case-by-case basis.
For instance, if a software object requires rebuilding
to produce different desired results in its main per-
formance, the build performance could be made re-
producible as well. The usual restrictions of encapsu-
lation would apply, in particular the loss of unmedi-
ated interaction with the outside world.

In some cases, it might also not be possible to
leave active development behind, in particular when
the tools and techniques used to build the software
are not well understood or difficult to control due to
their novelty or because they’re highly proprietary
and opaque. Keeping active development going for
long enough to gather sufficient knowledge to move
to the maintenance or encapsulation stage could be

5 of 7

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

the only way to develop a long-term perspective for
certain types of software objects, such as games built
with proprietary toolkits, software requiring highly
secured proprietary online accounts, or access to
proprietary data.

Entering the maintenance stage is attractive
when active development is uneconomical, and
Shared knowledge can be utilized. Despite the soft-
ware industry’s push to move all users into subscrip-
tions for most products, there is a wealth of
knowledge around on how to keep legacy software
running and operational past official support times,
by tweaking aspects of new systems to cater for the
needs of legacy software objects. Sometimes legacy
hardware computer setups are available, or systems
are deliberately disconnected from the internet to
prevent any unintended automatic updates. Many of
these tweaks can be abstracted and applied to sev-
eral objects of a similar technical composition. Over-
all, maintenance moves the attention of program-
mers outside of the object to be preserved to the en-
vironments it should perform in.

This approach is for the most part offering the
same performance and performance quality as ac-
tive development—a freshly built object will be as re-
sponsive and snappy to interact with as a maintained
one that is running on a similar system—, yet at
some point the connections to the outside world will
become impossible to keep going and the object’s
performance will degrade.

Returning from maintenance to active develop-
ment with the plan to update the software object
once and to then resume with maintenance can be
very expensive and risky. Since active development
was suspended while the object was maintained, a
large knowledge gap might have appeared that
needs to be bridged before development can start. It
is also hard to predict for how long the result of such
a one-time fix will be able to reproduce the desired
performance. An update produced with significant
effort might become outdated pretty quickly, calling
for another potentially expensive active develop-
ment phase.

The encapsulation stage in many cases relies on
products of active development and maintenance: a
software object needs to be built to exist in the first
place, and maintenance knowledge can be used to

construct a suitable environment to package along-
side. Once that is done, knowledge can quite cleanly
be separated into static object specific and general-
izable infrastructure knowledge. Future risk is re-
duced to the need for suitable emulators being avail-
able and the maintenance of emulators’ interfaces
with the outside world on the framework level. This
means the framework level is ideal for collaboration
and most knowledge and development effort can be
shouldered in concert by otherwise not affiliated ac-
tors. Missing features in an emulator or preservation
framework can be identified by practitioners, and
stakeholder groups or open fundraising efforts can
then commission work to the benefit of any software
preservation use case. In an ideal world, emulators
and preservation frameworks would be the only
places that require active development in order to
provide continuous access.

Of course, encapsulation in reality has some
drawbacks. Software objects that use bleeding edge
or proprietary devices and components or data
sources will typically not be possible to capture in full
right after creation. For instance, at the time of writ-
ing, this is true for projects using virtual reality or
augmented reality, dealing with software embedded
in a highly competitive market with constantly chang-
ing devices, development environments, and real-
time online services. Ongoing research on singular
objects and classes of objects under active develop-
ment or maintenance is required to understand
which features need to be included into emulators
and preservation frameworks.

Additionally, accessing software performance via
emulators and preservation frameworks will never
be as direct as using software under active develop-
ment, and to some degree, under maintenance.
There will always be some layer users need to pass
to access a reproduced performance versus a regu-
lar performance, because emulators will have to be
spun up and configured by the preservation frame-
work to fit the presented object, and noticeable dif-
ferences in usage conventions and visual design will
contribute to an impression of media discontinuity.
This means that any encapsulated software object is
necessarily historicized.

V. OVERCOMING LONG-TERM LIMITS ON MANAGING

SOFTWARE KNOWLEDGE

6 of 7

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

Extensive documentation on legacy software
products is available in the form of printed and elec-
tronic books in libraries. Additionally, the preserva-
tion community active on the web provides us with a
wide variety of internet artifacts containing tips and
hints on configuration, usage and, most importantly,
repairing non-functional software products. While
this wealth of documentation is necessary and use-
ful, as time goes by, it will become less actionable.
The information available was prepared for contem-
poraneous users and omitted lots of knowledge re-
garded as implicit in its time. This concerns in many
cases basic instructions on how to configure and op-
erate systems that are now deemed obsolete and
have fallen out of use. As every change in the soft-
ware landscape potentially adds another layer of
knowledge, demanding preservation professionals
to make themselves familiar with everything they
need to fully understand any software they are sup-
posed to preserve, is unrealistic and ethically ques-
tionable. Similarly, preservation professionals
should reflect on their reliance on enthusiast com-
munities and creators for keeping knowledge active
and easily retrievable.

Fully configured, encapsulated computing envi-
ronments (in most cases in the form of a disk image
combined with instructions on how to connect and
start it up in an emulator) already can serve as a tech-
nical embodiment of knowledge, as they can be used
without having to look up how to construct one from
scratch.

As a next step, recordings of knowledgeable us-
ers interacting with encapsulated systems inside a
preservation framework can be made so they be-
come deterministically replayable in the future [6].
These recordings can be used to automate simple,
recurring tasks, for instance, configuring applications
or an operating system; a particularly important use-
case for software preservation is automated installa-
tions of applications requiring user input during
setup. Furthermore, these recordings—together
with user annotations—can act as executable docu-
mentation, allowing users to follow operational steps
and if necessary, take over and adapt a recording to
similar tasks, which could then be annotated and
stored as a new automated task in a library. Users
could choose to have these automations executed in
the background, for instance on many encapsulated

environments that need to be reconfigured in a sim-
ilar way or watch the execution to learn the steps.

Even though such recordings act as actionable,
executable documentation, a potential library of
such recordings will quickly grow into a silo that’s dif-
ficult to maintain, containing highly context sensitive
information for which no concept for indexing apart
from manual annotations and basic technical
metadata currently exists. Over time, it will become
highly desirable to interact with legacy systems on an
increasingly abstract level. For instance, to not have
to learn how to load a file in dozens of different ap-
plications that might run on top of a bunch of oper-
ating systems with differing user interface conven-
tions, recordings would need to become much more
variable than fully deterministic.

Feeding existing recordings to a learning algo-
rithm has the potential to make this abstraction pos-
sible, taking advantage of the similarities in user in-
terface design conventions used within certain time
periods. If a sophisticated enough model that
matches semantically described desired activity and
user actions can be created, it might be trained on
legacy tutorial screen capture videos released by
software vendors or created by user communities as
released on YouTube or similar public video sharing
platforms.

1. REFERENCES

[1] D. Espenschied and K. Rechert, “Fencing Appar-
ently Infinite Objects,” in Proceedings of the 15th
International Conference on Preservation of Digital
Objects, Boston, U.S., 2018.

[2] D. S. Rosenthal, “Emulation & virtualization as
preservation strategies,” 2015.

[3] E. Cochrane, K. Rechert, J. Oberhauser, S. Ander-
son, C. Fox, and E. Gates, “Useable Software For-
ever,” IPres 2022 Glasg. 12—16 Sept. 2022 Www
Ipres2022 Scot.

[4] G. Mastrapa, “The Geeks Who Saved Prince of
Persia’s Source Code From Digital Death,” Wired,
Mar. 10, 2023. Accessed: Mar. 10, 2023. [Online].
Available:
https://www.wired.com/2012/04/prince-of-per-
sia-source-code/

[5] “The ReCode Project — Matthew Epler,” Mar. 10,
2023. https://mepler.com/The-ReCode-Project
(accessed Mar. 10, 2023).

7 of 7

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

[6] J. Oberhauser, R. Gieschke, and K. Rechert, “Au-
tomation is Documentation: Functional Docu-
mentation of Human-Machine Interaction for Fu-
ture Software Reuse,” Int. J. Digit. Curation, vol. 17,
no. 1, Art. no. 1, Sep. 2022, doi:
10.2218/ijdc.v17i1.836.

