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Abstract – Software is a very complex product, 
offering an endless number of different states and 
appearances. To foster academic discussion about 
software-based cultural and scientific phenomena like 
computer games, digital art, or scientific 
computational models, it is necessary to be able to 
reference specific moments of running software. In 
this article, we discuss the possibilities to “freeze” 
software while being executed and describe 
constraints for the long-term preservation of these 
snapshots. 
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I. INTRODUCTION  

Citation is an important tool for scientific 
research. With citations, one can point to prior or 
related work, for comparison and scientific or socio-
cultural discussion. Hence, access to cited work is an 
essential service of libraries and archives. Long-term 
digital preservation is the tool to ensure the 
availability of (cited) digital works for future access.  

With the emergence of more and more complex 
born-digital works, such as software-based art, 
computer games, and all kinds of interactive digital 
artifacts, and software in general, citation of works as 
well as access to cited works became a significant 
challenge. Citation of software has been integrated 
into scholarly practice, firstly due to the increased 
importance of software as a tool for research, e.g., 
data processing and data modeling. Especially since 
scientific software is usually made for a specific 

purpose, requires dedicated resources, and is an 
indispensable part of the research process and, thus, 
their authors deserve attribution. Furthermore, 
software setups perform extensive and complex 
operations. With the requirement to reproduce 
scientific results, availability and ideally re-
executability of software is curial. 

With emulation, there is a rather generic 
approach to keep software artifacts usable [1]. 
Providing a usable (or executable) reference to 
access and use software artifacts is currently 
ongoing work, e.g., through the Emulation as a 
Service Infrastructure (EaaSI) program of work [2]. A 
working and usable infrastructure to (re-)execute or 
“re-perform” a preserved digital object is necessary 
but not always sufficient to support research 
activities. Software or digital objects in general are 
not only complex in technical terms and, thus, need 
necessary technical infrastructure to be rendered 
but also complex in use and operation and manifold 
in their options, appearance, and how they are 
perceived by users. Hence, in many cases the 
description of the software and its execution 
dependencies is not sufficient to describe specific 
aspects of the software’s performance. The basic 
assumption of software functionality (and 
computers) to process data input and (re-)produce 
an output does not cover intermediate steps or user-
machine and machine-machine interactions during 
execution. These, however, do not only bear 
important aspects of how a particular result has 
been achieved but may constitute important 
information or facts themselves. For instance, a 
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computer game or a software-based digital artwork 
can produce an almost endless combination of 
states (e.g., the state after a character in the game 
has been positioned in a particular way after 
responding to other game elements). Not all of them 
are relevant, but some are. Picking these for 
scholarly discussion requires a way for future 
readers to explore these states to contribute to the 
scientific discourse.  

In general, one can imagine different options 
providing future scholars access to these states. The 
first and technically most viable as well as possibly 
the most cost-effective option is to create (static) 
documentation, e.g., through screenshots or video 
captures [3]. However, this method limits future 
research options, e.g., it will be difficult for future 
researchers to explore and inspect the context as 
well as possible follow-up states. 

If additionally, the software and its execution 
dependencies are preserved and accessible, the 
documentation can be used to perform necessary 
steps manually to reproduce a certain state or result. 
In most cases, however, a manual “replay” of 
documented steps can be difficult and time 
consuming. The documentation may not always be 
sufficient to guide future users successfully through 
the process, since users may lack skills and/or 
implicit operational knowledge. Especially computer 
games require some training to perform certain 
actions successfully. Furthermore, it is still not 
assured (especially in the case of a manual re-play) 
that the state reached is identical to the one 
described in literature. A potential technical solution 
to this problem is capturing user-interactions and 
support automated deterministic replay. Even 
though this approach shows promising results, there 
are still a lot of difficulties to be solved for generic 
use-cases, due to non-deterministic events or 
behavior of the system, especially with highly 
dynamic interactions [4]. 

A further option is the possibility to "freeze” the 
execution of software at any chosen state as an 
execution snapshot. Ideally, such snapshots could be 
archived, shared with others, and restored at any 
time to continue the execution of the software. While 
creating snapshots of running virtual machines (VMs) 
is a common feature of most virtualization and many 
emulation systems, reactivation in (slightly) differing 
technical setups as well as long-term usability of 
snapshots is an open issue. In this article, we 

investigate this problem and describe a way to 
implement long-term available “frozen” snapshots of 
running software.  

1. RELATED WORK 

With the growing importance of software as a 
cultural and scientific product, the necessity of citing 
software was recognized [5]. Citation practice ranges 
from informal mention to detailed version 
information but are being formalized further. 
Citation of software implies (or should imply) the 
availability of software.    

Even though many initiatives have started 
archiving software, software preservation in general 
is still an open issue because of the complexity and 
size of the task and sometimes due to legal 
obstacles. Preservation of source code [6] is to a 
certain degree the most systematic and successful 
public approach so far. However, available source 
code does only cover a limited field (open-source 
software) and, more importantly, there is a long-term 
usability problem [7], as source code cannot be 
trivially reused without further technical steps (i.e., 
compilation into an executable binary form). 
Furthermore, for more complex scenarios, different 
software products need to be contextualized (setup 
and configured) within a defined execution 
environment (e.g., using an emulator) and, especially 
in context of computational research, brought 
together with data. Container technology solved 
some of the dependency, setup and configuration 
problems [8] but seldomly reduces the operational 
complexity (e.g., the number of settings, runtime 
variables) of non-trivial setups. 

For smaller, controlled subsets, there are tailored 
solutions, not only to reproduce a computational 
result but also to transparently document all in-
between steps in an executable form, e.g., Jupyter 
notebooks. But even for these rather constrained 
niches, long-term access and reproduction is quite 
difficult [9], [10].  

Another alternative to deterministically restore a 
specific application state without reproducing 
interactive user (GUI-)events (e.g., [11]), which are 
prone to non-deterministic behavior of GUI 
applications, are so called “record and replay” tools 
(e.g., [12], [13]). In contrast to tools recording GUI-
events (e.g., macro recorders), these tools record the 
interaction of an application with the underlying 
operating system and, thus, can deal with potential 
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non-determinism (e.g., clock/time functions, random 
number generators). These tools, however, are 
usually quite intrusive (e.g., they depend on special 
CPU features or only work for special cases like 
applications with limited interactivity) and slow down 
the execution of the recorded application 
significantly. 

2. SNAPSHOTS OF RUNNING APPLICATION PROCESSES 

Presumably, the main motivation to access 
preserved (and cited) software setups beside 
verification of  published results could be exploring 
the relevant software environment further, e.g., by 
changing intermediate inputs in a case of interactive 
computational science or to follow different paths of 
a computer game. But there are many other 
different use-cases for preserving a specific state of 
a running software setup. This section will discuss 
the concepts to generate software snapshots. 

A “snapshot” is a saved (serialized) state of a 
running process or system. Any information needed 
to restore the process or system and to continue its 
execution is contained within the snapshot. This 
operation requires some technical support of the 
surrounding environment, i.e., the software that is 
creating the snapshot. Since we do not want to 
constrain snapshots to a single architecture, 
computer platform, or operating system, i.e., we 
want to be able to cover applications from different 
technical epochs, we chose to take a snapshot of the 
whole system the application of interest is running in 
(guest system). We, thus, assume that the guest 
system is running on either virtualized or emulated 
hardware (i.e., in an emulator or hypervisor). 

In principle, there are different ways to create a 
snapshot of a running system. The first one is taking 
advantage of the capabilities of the hypervisor or 
emulator. Some emulators (e.g., QEMU, v86) or VM 
hypervisors (e.g., VMware Workstation/ESXi, 
VirtualBox) offer built-in functionality to create 
snapshots. The emulator or hypervisor can pause 
the execution of a guest and save all states of the 
hardware (i.e., the virtual CPU and any other virtual 
hardware devices). The snapshots created this way 

 
1 We have found that a snapshot taken using 

hibernation by the guest operating system might 
even fail to restore on different builds of the very 
same emulator source code, see 
https://gitlab.com/emulation-as-a-

are called virtual machine snapshots. Saving the state 
of the whole computer system to disk can also be 
done by the (guest) operating system itself without 
the help of a hypervisor, a feature typically called 
“hibernation” or “suspend to disk”. However, this 
option is only available for a few 
emulators/hypervisors (and guest operating systems 
in case of hibernation). 

But having a working option to create virtual 
machine snapshots (e.g., QEMU), a further option to 
consider could be to run emulators not capable of 
creating snapshots themselves (e.g., SheepShaver, 
VICE) within a capable hypervisor (or emulator) and 
use it (the “outer” emulator) to create snapshots (of 
the “inner” emulator). Most likely, the generated 
snapshots depend on the software (emulator or 
hypervisor) they were created on. Firstly, virtual 
machine snapshots are saved (serialized) in a format 
specific to the emulator/hypervisor software used. 
Secondly, while it would be possible for other 
emulators to re-implement support for an existing 
virtual machine snapshot format, this seems unlikely 
as the virtual machine snapshots including their 
configured operating system require the exact same 
(virtual) hardware (i.e., not only the same CPU but 
also identical other virtual hardware devices) it has 
been created on to be restored successfully [14]. 
Even the forward-compatibility of virtual machine 
snapshots to later versions of the same 
emulator/hypervisor will likely decrease over time as 
their main usage is for live migration and short-term 
snapshots.1 Hence, virtual machine snapshots must 
be carefully curated and maintained together with 
the necessary software (i.e., the emulator or 
hypervisor) for restoring, which will lead to 
significant maintenance overhead over time. 

An alternative option to storing the complete 
hardware state of a virtual machine is to create 
process snapshots (also known as application 
snapshots) which do not rely on a hypervisor but on 
functionality offered by the operating system. 
Process snapshots save the state of a specific 
running application, comparable to the way the 

service/emulators/qemu-eaas/-
/blob/v2.5/dsdt.patch. This finding might be 
extendable to virtual machine snapshots taken by 
the emulator/hypervisor but does require further 
research. 

https://gitlab.com/emulation-as-a-service/emulators/qemu-eaas/-/blob/v2.5/dsdt.patch.
https://gitlab.com/emulation-as-a-service/emulators/qemu-eaas/-/blob/v2.5/dsdt.patch.
https://gitlab.com/emulation-as-a-service/emulators/qemu-eaas/-/blob/v2.5/dsdt.patch.
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operating system saves the process’s state when 
executing a context switch. 

While virtual machine snapshots save the state of 
the whole platform (i.e., the CPU and any devices, 
e.g., the IBM PC platform), process snapshots only 
save the state of (parts of) the CPU (i.e., only the parts 
of the hardware defined by the instruction set 
architecture (ISA), e.g., the x86-64 architecture). For 
other resources (the equivalent of devices), they 
make use of the abstraction the operating system 
provides and are therefore less hardware 
dependent. Consequently, however, they have a 
rather strong operating-system (i.e., kernel 
Application Binary Interface “ABI”) dependency as 
well as a dependency on any open files, network 
connections, or similar resources originally being in 
use by the process at the time of creating the 
snapshot. For our purposes, we chose to create a 
process snapshot of the emulator process2, and 
thus, implicitly the state of the guest system. 

Taking a snapshot of a running process usually 
requires special support from the operating system, 
because some parts of the process’s states are not 
visible to the process itself but only available to the 
operating system.  The Linux kernel was extended to 
provide previously missing APIs to create process 
snapshots by the Checkpoint/Restore In Userspace 
(CRIU) project3, which also provides a user-space 
helper utilizing the kernel’s API to create, serialize 
(i.e., save as regular files), and restore process 
snapshots4. 

 
2 We are only using emulators here. There would 

be no principal problem in creating a process 
snapshot of a hypervisor that uses the Linux kernel’s 
KVM ABI (e.g., QEMU) as these hypervisors are 
normal processes. However, this functionality has 
only niche use cases and is not supported by process 
snapshot frameworks, see 
https://github.com/checkpoint-
restore/criu/issues/229. 

3 Checkpoint/Restore In Userspace, see 
https://criu.org/. 

4 The kernel patches created by the CRIU project 
were accepted and included in the upstream Linux 
kernel, so that the CRIU user-space helper can be 
used together with any stock Linux kernel, reducing 
maintenance burden. 

CRIU works best when it is used to snapshot 
isolated applications running in their own Linux 
container5 using a container runtime6 and is, in fact, 
already well integrated into contemporary container 
runtimes7. As we already developed a framework to 
package (untrusted and potentially insecure) 
emulators including supporting infrastructure as 
self-contained container images and let them run in 
an isolated Linux container in the EaaS emulation 
framework [15], we used the same approach for 
CRIU8. Taking this approach, preserving emulators 
(and snapshots) becomes a special case of 
preserving containers [16]. 

3. LONG-TERM ACCESS TO PROCESS SNAPSHOTS 

Solving portability issues of the created 
snapshots solves only the smaller part of the 
problem. The second problem set is to restore or 
reactivate a snapshot using future computer 
systems. By choosing process snapshots, we have 
reduced hardware dependencies, which are typically 
abstracted by the operating system. For instance, for 
a (user-space) application to be run on a Windows or 
Linux system, the hardware configuration of the 
computer does typically not matter to the 
application. Instead, an application uses well defined 
interfaces of the operating system to interact with 
graphics, sound, or network hardware. These 
interfaces are stable and do not change, e.g., if a 
hardware component is replaced. Hence, for process 
snapshots, the remaining (future) dependencies are 
the operating system application binary interface 
(ABI) and the CPU instruction set architecture (ISA; 

5 See, e.g., 
https://www.redhat.com/en/topics/containers/w
hats-a-linux-container. 

6 Standardized in the OCI Runtime Specification 
(https://github.com/opencontainers/runtime-
spec) and implemented in, e.g., Docker, runc, or crun 
with the help of functionality provided by the Linux 
kernel. 

7 See, e.g., 
https://github.com/opencontainers/runc/blob/m
ain/man/runc-checkpoint.8.md. 

8 The images may have to be slightly altered (e.g., 
checked in an automated process) as CRIU can place 
subtle restrictions on the kind of executables it is 
able to restore properly, see  
https://github.com/checkpoint-
restore/criu/issues/1507. 

https://github.com/checkpoint-restore/criu/issues/229.
https://github.com/checkpoint-restore/criu/issues/229.
https://criu.org/
https://www.redhat.com/en/topics/containers/whats-a-linux-container.
https://www.redhat.com/en/topics/containers/whats-a-linux-container.
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runc/blob/main/man/runc-checkpoint.8.md
https://github.com/opencontainers/runc/blob/main/man/runc-checkpoint.8.md
https://github.com/checkpoint-restore/criu/issues/1507
https://github.com/checkpoint-restore/criu/issues/1507
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e.g., x86-64), which should make these snapshots 
portable between contemporary systems but also to 
future systems. 

1. Restoring the Execution Context 

When CRIU restores a snapshot, it interacts with 
the Linux kernel to restore the exact same state the 
process was in when the snapshot was created. The 
“exact same state” reproduced by CRIU includes CPU 
registers and memory used by the application as well 
as any resources opened by the application, e.g., files 
or network sockets. These resources must remain 
available in the very same state (e.g., the same file 
content) and must be saved, managed, and restored 
independently from the CRIU snapshot. We have 
already accomplished this by using container 
images, for which a derivative image can be created 
when snapshotting the application. For network 
connections (e.g., connected TCP sockets), CRIU’s 
approach is usually more brittle as they depend on 
the uncontrollable outside world (e.g., the remote 
end of a TCP socket will probably be gone when the 
snapshot is restored). In the EaaS emulation 
framework, we have already solved this problem by 
providing network access only via a virtualized and 
isolated network. 

2. Identifying Remaining Hardware Dependencies 

The described approach makes sure that any 
applications can continue to run after being 
restored. However, CRIU’s intended usage scenarios9 
are focused on short-term usage of the created 
snapshots on homogenous machines (i.e., using the 
same CPU model or, at least, the same CPU 
generation from the same CPU vendor with the same 
architectural features, similar other installed 
hardware devices, and similar Linux kernel versions). 

 
9 https://criu.org/Usage_scenarios  
10 For their recent processors with 

heterogeneous CPU core configurations, Intel takes 
great pain in ensuring that all cores expose exactly 
the same process-visible features, see, e.g., 
https://www.tomshardware.com/news/intel-
nukes-alder-lake-avx-512-now-fuses-it-off-in-
silicon. 

11 See, e.g., gcc and its libgcc: 
https://github.com/gcc-
mirror/gcc/blob/59a72acbccf4c81a04b4d09760f
c8b16992de106/gcc/common/config/i386/cpui
nfo.h#L975. 

In other words, CRIU‘s process snapshots may still 
depend on the original CPU model. This can be a 
surprising property as applications can break in 
unexpected and subtle ways under different CPU 
models, even more so when the CPU is changed 
during the application’s execution. Normal 
applications do not expect that the CPU’s (visible) 
features change during execution10  and, as the 
application, deliberately, has no way to notice that it 
is being snapshotted and restored, it even has no 
chance to react to the changed CPU at all. 

On the x86(-64) architecture, the CPU vendor and 
model, its supported extensions to the original ISA, 
and other features of the CPU are exposed via the 
CPUID machine instruction. The CPUID instruction is 
unprivileged and, thus, can be executed by user-
space applications. It is typically, transparently, 
included by the compiler into the executable binary11 
for features like function multiversioning12 or 
queried using dedicated libraries13 by the application 
itself. All these features have in common that they, at 
the start of the application, select one of several 
machine code versions of the same function most 
suitable (i.e., optimized) for the current CPU model. 
This is a problem if the target CPU has less features 
(e.g., no AVX2) than the original CPU. After resuming 
the snapshot, the application will still execute the 
code path requiring the original CPU features (e.g., 
AVX2) and execution on the target CPU will fail, 
generating a SIGILL signal (on Linux/POSIX) and 
terminating the process14. 

A possible approach could be to require the 
target CPU to always support more features than the 
original CPU, e.g., by requiring it to support all CPU 
extensions available at a time. We found, though, 
that this approach does not work as, apart from 

12 
https://gcc.gnu.org/onlinedocs/gcc/Function-
Multiversioning.html  

13 See, e.g., libcpuid: 
https://github.com/anrieff/libcpuid. 

14 While it would be imageable to catch this signal 
and emulate just the missing (e.g., AVX2) 
instructions, in practice, this approach is unfeasible 
as other (existing) (SSE) instructions modify the state 
of the (extended) registers used by AVX2 as well 
while not producing a catchable SIGILL instruction. It 
is, thus, not possible to selectively emulate these 
instructions but all instructions (including the 
existing ones) would have to be emulated. 

https://criu.org/Usage_scenarios
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://github.com/gcc-mirror/gcc/blob/59a72acbccf4c81a04b4d09760fc8b16992de106/gcc/common/config/i386/cpuinfo.h#L975.
https://github.com/gcc-mirror/gcc/blob/59a72acbccf4c81a04b4d09760fc8b16992de106/gcc/common/config/i386/cpuinfo.h#L975.
https://github.com/gcc-mirror/gcc/blob/59a72acbccf4c81a04b4d09760fc8b16992de106/gcc/common/config/i386/cpuinfo.h#L975.
https://github.com/gcc-mirror/gcc/blob/59a72acbccf4c81a04b4d09760fc8b16992de106/gcc/common/config/i386/cpuinfo.h#L975.
https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html
https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html
https://github.com/anrieff/libcpuid.
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being expensive by requiring the latest CPUs, CPU 
features are not only added by vendors but 
sometimes also removed again in later CPU model 
generations15. A ”best“ CPU including every feature 
ever introduced may, thus, not always exist. 

More importantly, though, we found that, e.g., a 
snapshot created on a CPU not supporting AVX2 will 
crash on a CPU supporting AVX2, i.e., a CPU with 
strictly more features. Debugging showed that this is 
due to the XSAVE instruction, which writes the CPU 
register’s state to memory at an application-provided 
location. The (byte) size the register state will need in 
memory can be queried by the application (or a 
supporting library) using the CPUID instruction, but 
this, again, is typically only done at application 
startup and cached for later use. If, in our case, the 
snapshot is now resumed on a target CPU requiring 
more space for its register state (i.e., by having the 
larger AVX2 registers), not enough space will have 
(unknowingly) been reserved by the application 
when calling the XSAVE instruction and the CPU will 
silently overwrite parts of memory, e.g., in the 
application’s stack, leading to the application’s crash. 

A possible workaround is to disable the 
problematic features (e.g., AVX2) on the target CPU 
with the operating system’s help16. This workaround 
was tested but proved not to be successful as a 
number of applications, including the widely used 
GnuTLS library17, check incorrectly for the availability 
of CPU features, subsequently still try to use the 
disabled features and crash. This results in crashes 
of even very basic dependent applications like ”apt-
get”. 

 
15 Again, see the removal of AVX-512 from Intel’s 

recent processors with heterogeneous CPU core 
configurations, 
https://www.tomshardware.com/news/intel-
nukes-alder-lake-avx-512-now-fuses-it-off-in-
silicon. 

16 Using the Linux kernel’s ”clearcpuid” 
and ”noxsave” command-line options, which do not 
directly interfere with the result of the CPUID 
instruction for user-space applications but only 
disable CPU features using the CR4 control register. 

17 See https://gitlab.com/gnutls/gnutls/-
/issues/1282. The underlying problem is that such 
problems do not get much real-world test coverage 
as users do not typically want to restrict their CPU’s 

Thus, the most feasible way is to directly restrict 
the CPUID instruction to report only desirable 
features as available and report a buffer size for the 
XSAVE instruction that is large enough for any target 
CPU’s register state. At the same time, this is 
advantageous as it allows to restrict the used CPU 
features to a sensible set of features supported by 
not only the latest CPUs but a large number of 
(cheaply available) CPUs from different vendors (and 
most x86-64 emulators). Such “common 
denominators” of features are already standardized 
as micro-architecture levels (e.g., x86-64-v2) in the 
ELF x86-64 psABI18 and are recently starting to be 
used to define minimum system requirements of 
Linux distributions. 

3. CPUID virtualization 

Manipulating the CPUID instruction, though, 
proves to be problematic on the x86-64 architecture, 
a property than can be attributed to the fact that the 
x86-64 architecture (without extensions) does not 
conform to the virtualization requirements 
introduced by Popek and Goldberg [17]. The CPUID 
instruction can be seen as a behavior sensitive 
instruction that is not privileged, i.e., can be executed 
directly by user-space application without a chance 
for the operating system’s kernel to interfere. 

An extension found on most Intel processors19 
remediates this problem by allowing to turn the 
CPUID instruction into a privileged instruction, and, 
thus, trapping it in user space.20 This feature is used 

features, i.e., never run applications under such 
kernel configurations. 

18 Processor-specific application binary interface, 
https://gitlab.com/x86-psABIs/x86-64-ABI. 

19 Exposed by the Linux kernel via the 
arch_prctl(ARCH_SET_CPUID, ...) system call, see 
https://man7.org/linux/man-
pages/man2/arch_prctl.2.html. 

20 Both Intel‘s VT-x and AMD‘s AMD-V 
virtualization extensions for the x86-64 architecture 
do allow for hypervisors to trap CPUID instructions. 
An alternative approach would, thus, be to have the 
application run in its own virtual machine (potentially 
inside yet another virtual machine provided by a 

 

https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://gitlab.com/gnutls/gnutls/-/issues/1282
https://gitlab.com/gnutls/gnutls/-/issues/1282
https://gitlab.com/x86-psABIs/x86-64-ABI
https://man7.org/linux/man-pages/man2/arch_prctl.2.html.
https://man7.org/linux/man-pages/man2/arch_prctl.2.html.
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by the libvirtcpuid project21, which, independently 
from our work, researched the presented problem of 
a snapshot created on a CPU with less features (e.g., 
no AVX2) crashing when being resumed on a CPU 
with more features (e.g., AVX2). Their intended use 
case, however, focuses on live migration of 
applications and differs from our long-term 
preservation use case. Additionally, they rely on the 
described Intel extension, which is neither found on 
AMD x86-64 CPUs nor in emulators and often not 
exposed by cloud providers, reducing its usefulness 
for our application significantly. 

We, thus, modified libvirtcpuid’s approach 
slightly: while the original libvirtcpuid relies on the 
described CPU extension to trap CPUID instructions, 
we modify the application’s executable (ELF) binary 
files in advance to replace every CPUID instruction 
with an RDMSR instruction22. RDMSR instructions, in 
turn, are always privileged on the x86-64 architecture 
and, thus, will trap with a signal to user-space that 
can be processed by libvirtcpuid in its usual way23. 
This approach is not guaranteed to work as 
applications may dynamically generate just-in-time 
(JIT) code including CPUID instructions. Only being 
generated at runtime, these instructions would not 
be processed by our tool and still leak unmodified 
CPUID information to the application. However, this 

 
cloud provider) restricted to, e.g., the x86-64-v2 
micro-architecture level. This approach was not 
pursued as more virtualization levels will most 
probably degrade performance and (nested) 
virtualization is not universally available at cloud 
providers or comes with extra costs, see, e.g., 
https://ignite.readthedocs.io/en/stable/cloudpro
vider/. 

21 https://github.com/twosigma/libvirtcpuid 
22 Introducing the ELFant tool, a powerful but 

friendly shell script that tramples over your ELF files, 
see https://github.com/emulation-as-a-
service/libvirtcpuid. 

23 A conceivable alternative approach of 
replacing CPUID instructions with a call to a library 
function emulating and manipulating the CPUID 
instruction directly is not feasible as the CPUID 
instruction is encoded in only 2 bytes, which is not 
sufficient space for any jump/call instruction. In 
contrast, the RDMSR instruction is encoded in 2 bytes 
as well, and can, thus, directly replace the CPUID 
instruction in the binary file without any further 

is very unlikely as, as described above, code using the 
CPUID is typically statically generated by the 
compiler or placed in dedicated libraries. Other 
potential problems, e.g., applications checking for 
CPU features by trying to directly use them without 
checking for their availability first24, are the same as 
for the upstream libvirtcpuid and rare in practice. 

4. Other sources of non-determinism 

As described above, the restored application also 
depends on outside resources. Obvious ones like 
files (either regular files, UNIX domain sockets, or 
pipes) are already handled by our emulation 
framework. Non-obvious ones include time 
functions25, which naturally depend on the time in 
the outside world, either measured as time since the 
system was booted (CLOCK_MONOTONIC) or as real 
(i.e., wall-clock) time (CLOCK_REALTIME). The former 
(CLOCK_MONOTONIC) can be virtualized by the 
Linux kernel using time namespaces26, which are 
already supported and handled by CRIU. As they are 
typically used via the C standard library, the latter 
(CLOCK_REALTIME) can potentially be modified in 
user-space27 to be derived from 
CLOCK_MONOTONIC with a constant (user-
configurable) offset. 

However, an application could also use the 
RDTSC instruction to directly read the processor’s 

modifications. Yet another conceivable alternative 
approach of replacing library functions (e.g., libcpuid) 
utilizing the CPUID instruction is not feasible as they 
might not easily be recognized anymore when linked 
into the application in binary form, the variety of 
such libraries is too diverse, and some applications 
(e.g., GnuTLS) do not employ such libraries at all but 
directly use the CPUID instruction for similar 
purposes, leading to a very brittle application-
specific manual patching approach. 

24 In this case, if the CPU feature is available on 
the original CPU, the application will recognize it as 
usable but will crash as soon as trying to use it on the 
target CPU after the snapshot is resumed. 

25 Exposed via the clock_gettime() system call on 
Linux, see https://man7.org/linux/man-
pages/man3/clock_gettime.3.html. 

26 https://man7.org/linux/man-
pages/man7/time_namespaces.7.html 

27 For instance, using the LD_PRELOAD 
mechanism, see https://man7.org/linux/man-
pages/man8/ld.so.8.html. 

https://ignite.readthedocs.io/en/stable/cloudprovider/
https://ignite.readthedocs.io/en/stable/cloudprovider/
https://github.com/twosigma/libvirtcpuid
https://github.com/emulation-as-a-service/libvirtcpuid
https://github.com/emulation-as-a-service/libvirtcpuid
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
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time-stamp counter. Differently from the CPUID 
instruction, the RDTSC instruction can be disabled 
and trapped in user-space28. As the application might 
not expect RDTSC to not work, further modifications 
to the application might be necessary. In contrast to 
the CPUID problem, however, this problem is 
immediately visible already when starting the 
application on the original CPU and can, thus, be 
handled more easily instead of manifesting itself in 
an unfixable way later long after the snapshot has 
been created. 

A final class of resources that must be dealt with 
are resources available on the original system that 
are being masked by the container 
runtime/configuration but are not available at all on 
the new system. As they are not available at all, CRIU 
cannot mask them like on the original system and, 
thus, might fail to restore the snapshot.29 Here, a 
simple workaround is to not mask the resources in 
the first place.30 

5. Emulation in Emulation 

To restore an application state, the snapshotted 
emulator process containing the running application 
must be restored using a suitable technical 
environment. In the case of a future reactivation, the 
required technical environment for restoring will be 
an appropriate emulator, e.g., a suitable x86-64 
emulator satisfying the CPU dependencies (e.g., the 
x86-64-v2 micro-architecture level) and a container 
runtime including an appropriate Linux kernel and 
pre-configured tools to restore the snapshot (e.g., 
CRIU). This runtime then will be able to restore the 
snapshotted process (emulator running a guest 
system). This setup, however, will lead to an 
emulation-in-emulation (stacked emulation) access 
context. 

Using emulation-in-emulation as an emulation-
based digital preservation strategy is not an ideal 
solution in general. While the idea is simple and 
appealing, i.e., today’s emulator setups containing 

 
28 Exposed as prctl(PR_SET_TSC, ...) by the Linux 

kernel, see https://man7.org/linux/man-
pages/man2/prctl.2.html. 

29 For instance, the Linux kernel only provides 
/proc/asound/ (masked as empty directory inside 
containers) if the host system includes a sound card. 
This is typically true for desktop computers but 
untrue for server or cloud computers. A snapshot 

obsolete systems and running, e.g., on a 
contemporary Windows 11 system, can be preserved 
and kept available through future emulators by 
simply focusing on today’s Windows 11 system and 
so on. However, with technical epoch and thus, every 
new level in this emulator stack, a technical and 
conceptual mapping between contemporary 
computer systems and the last generation (latest 
emulators) must be made. 

These mappings usually require technical 
compromises, especially but not only, for interactive 
usage, because future concepts have changed 
significantly. For instance, by moving toward gesture 
inputs, mapping modern touchscreen gestures to 3-
button mouse events is necessary. Clever emulator 
developers will find a user-friendly and usable 
solution for their technical environment and context. 
However, with every additional layer (and mapping), 
it will be harder to operate the original system (e.g., 
the 3-button mouse, through an emulated 
touchscreen using a future VR setup) and, eventually, 
some states or concepts of the original system will 
become inaccessible throughout the different layers. 
Therefore, we usually argue to “migrate” the old 
(guest) systems to new emulators, such that any new 
generation of computer systems with new 
interaction paradigms (e.g., virtual reality) adapt 
these directly to the old concepts. 

For this special case (snapshots of running 
processes), however, the emulation-in-emulation 
scenario is necessary and justifiable. Its necessity 
results from the design choices of taking process 
snapshots. In the case of virtual machine snapshots, 
restoring the saved machine state on future 
emulators is possible in theory. However, in practice 
it will be quite difficult since the target machine must 
match exactly the hardware of the snapshotted 
virtual machine. Even the transition (live migration) 
between two contemporary virtual machines, both 
running within the same emulator (in this case, two 

created on a desktop computer may, thus, fail to 
resume on a server or cloud computer. 

30 This can pose security problems but, e.g., in the 
sound card scenario, it might be acceptable to not 
mask the sound card when being run on a desktop 
computer as the desktop computer is typically 
operated by only one user, who is already able to 
manipulate and interfere with the sound card in host 
system anyway. 

https://man7.org/linux/man-pages/man2/prctl.2.html.
https://man7.org/linux/man-pages/man2/prctl.2.html.


9 of 10 

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US. 
19 -23rd September 2023 

QEMU-based VMs) turned out to be rather difficult 
[18]. 

For the conceptual idea of saving and restoring 
an application state, the concept of emulation-in-
emulation is appropriate. Not only is the depth of the 
emulation stack limited to the maximum of one extra 
layer and, thus, the mapping problem between 
contemporary systems and old systems is 
addressable, but this also is a desired setting since 
the future user is able to observe the exact state, 
including all features and limitations of the access 
platform (emulator) the creator of the snaphot has 
experienced. Even if the restored snapshot offers 
limited usablity (compared to running the 
application using future emulation-based access 
platforms), it offers a stable and reproducible 
reference point. 

4. CONCLUSION AND FUTURE WORK 

In this article, we have presented a technical and 
conceptual analysis on the preservation of software 
execution states (so called snapshots). The concept 
of preserving snapshots will not only contribute a 
further facet for software citation, but it will also 
contribute to an increased usability of emulation 
setups by simplifying the preparation of ready to use 
software setups. Users can be presented with a 
configured and running application in a usable state, 
without the hurdle of operating an old computer 
system, e.g., staring an application, finding the 
necessary files, etc. For some (future) software 
setups, such an approach might be the only viable 
solution. Software becomes a boundless product 
which is difficult to capture and to “own” since it is 
not shipped anymore on media. Modern software 
offers dynamic installation processes with multiple 
options for extension, in-app purchases, etc., relying 
not only on individual decisions but also the 
publisher’s infrastructure and especially support of 
installing outdated software packages. 

In addition to citation use cases, the functionality 
required to fulfill these can be useful for other long-
term access purposes. For example, when making 
digital artifacts available via emulation that rely on 
slow or complex software environments, it can be 
valuable from a user-experience perspective to be 
able to immediately restore the system or network 

 
31 https://rossarchive.library.yale.edu/  

state to a point after all the software components 
involved have completely loaded. The state-saving 
functionality described in this paper is currently in 
use at Yale University Library as part of their efforts 
to retain access to web sites including the Ross 
Archive site31 and the Historical Register Online 
site32. Access to both sites is provided via emulation 
of hardware supporting the underlying web server 
software, database software, and a 
contemporaneous web browser. Each of these has to 
be loaded before the user can access the site in 
emulation and the process can take minutes. By pre-
loading them, saving the state in a process snapshot, 
and loading the state at point of access, this saves 
the user a great deal of time and significantly 
improves the user experience for them. 

While there is a proof-of-concept 
implementation available as well as working real-
world examples as part of the EaaSI project, the 
focus of this work was to improve our understanding 
of potential technical hurdles restoring snapshots in 
the future. x86-64-based systems are still the most 
important platform running in-production 
framework. Hence, our analysis was focused on x86-
64 process snapshots. Future work will widen the 
scope to other relevant platforms (e.g., ARM64).  

Re-storing snapshots does not only pose 
technical challenges but also administrative ones. 
The runtime environment must be archived and 
maintained, as well as any other runtime 
dependency. By encapsulating emulators with their 
runtime dependencies within containers, preserving 
containers (and their runtime), the preservation of 
snapshots is just a special case of the existing EaaS 
container preservation workflow. 

An important limitation of our experimental 
setup is the time lag between a snapshot request 
and the snapshot executions. This lag is currently 
somewhere around 2-5 seconds. Additionally, 
serializing a snapshot takes time – linear to the total 
memory of the process used. Hence, currently our 
setup is not yet suitable for highly dynamic software 
setups, e.g., computer games, where states are 
changing very quickly, and not suitable to create a 
series of fine-grained snapshots. However, there are 
promising developments to improve snapshot 

32 
https://yalehistoricalregister.library.yale.edu/ 

https://rossarchive.library.yale.edu/
https://yalehistoricalregister.library.yale.edu/


10 of 10 

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US. 
19 -23rd September 2023 

performance and to support fine-grained, high 
frequency incremental snapshots [19]. 
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