
1 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).
https://hdl.handle.net/2142/121093

Long-Term Preservation of a Software Execution
State

Rafael Gieschke Klaus Rechert Euan Cochrane
University of Freiburg

Germany
rafael.gieschke@rz.uni-

freiburg.de
0000-0002-2778-4218

University of Applied
Sciences Kehl

Germany
rechert@hs-kehl.de

0000-0002-2454-4374

Yale University Library
U.S.

euan.cochrane@yale.edu
0000-0001-9772-9743

Abstract – Software is a very complex product,
offering an endless number of different states and
appearances. To foster academic discussion about
software-based cultural and scientific phenomena like
computer games, digital art, or scientific
computational models, it is necessary to be able to
reference specific moments of running software. In
this article, we discuss the possibilities to “freeze”
software while being executed and describe
constraints for the long-term preservation of these
snapshots.

Keywords – Emulation, Program Snapshots

Conference Topics – Immersive Information

I. INTRODUCTION

Citation is an important tool for scientific
research. With citations, one can point to prior or
related work, for comparison and scientific or socio-
cultural discussion. Hence, access to cited work is an
essential service of libraries and archives. Long-term
digital preservation is the tool to ensure the
availability of (cited) digital works for future access.

With the emergence of more and more complex
born-digital works, such as software-based art,
computer games, and all kinds of interactive digital
artifacts, and software in general, citation of works as
well as access to cited works became a significant
challenge. Citation of software has been integrated
into scholarly practice, firstly due to the increased
importance of software as a tool for research, e.g.,
data processing and data modeling. Especially since
scientific software is usually made for a specific

purpose, requires dedicated resources, and is an
indispensable part of the research process and, thus,
their authors deserve attribution. Furthermore,
software setups perform extensive and complex
operations. With the requirement to reproduce
scientific results, availability and ideally re-
executability of software is curial.

With emulation, there is a rather generic
approach to keep software artifacts usable [1].
Providing a usable (or executable) reference to
access and use software artifacts is currently
ongoing work, e.g., through the Emulation as a
Service Infrastructure (EaaSI) program of work [2]. A
working and usable infrastructure to (re-)execute or
“re-perform” a preserved digital object is necessary
but not always sufficient to support research
activities. Software or digital objects in general are
not only complex in technical terms and, thus, need
necessary technical infrastructure to be rendered
but also complex in use and operation and manifold
in their options, appearance, and how they are
perceived by users. Hence, in many cases the
description of the software and its execution
dependencies is not sufficient to describe specific
aspects of the software’s performance. The basic
assumption of software functionality (and
computers) to process data input and (re-)produce
an output does not cover intermediate steps or user-
machine and machine-machine interactions during
execution. These, however, do not only bear
important aspects of how a particular result has
been achieved but may constitute important
information or facts themselves. For instance, a

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/2142/121093
mailto:rafael.gieschke@rz.uni-freiburg.de
mailto:rafael.gieschke@rz.uni-freiburg.de
mailto:rechert@hs-kehl.de
mailto:euan.cochrane@yale.edu

2 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

computer game or a software-based digital artwork
can produce an almost endless combination of
states (e.g., the state after a character in the game
has been positioned in a particular way after
responding to other game elements). Not all of them
are relevant, but some are. Picking these for
scholarly discussion requires a way for future
readers to explore these states to contribute to the
scientific discourse.

In general, one can imagine different options
providing future scholars access to these states. The
first and technically most viable as well as possibly
the most cost-effective option is to create (static)
documentation, e.g., through screenshots or video
captures [3]. However, this method limits future
research options, e.g., it will be difficult for future
researchers to explore and inspect the context as
well as possible follow-up states.

If additionally, the software and its execution
dependencies are preserved and accessible, the
documentation can be used to perform necessary
steps manually to reproduce a certain state or result.
In most cases, however, a manual “replay” of
documented steps can be difficult and time
consuming. The documentation may not always be
sufficient to guide future users successfully through
the process, since users may lack skills and/or
implicit operational knowledge. Especially computer
games require some training to perform certain
actions successfully. Furthermore, it is still not
assured (especially in the case of a manual re-play)
that the state reached is identical to the one
described in literature. A potential technical solution
to this problem is capturing user-interactions and
support automated deterministic replay. Even
though this approach shows promising results, there
are still a lot of difficulties to be solved for generic
use-cases, due to non-deterministic events or
behavior of the system, especially with highly
dynamic interactions [4].

A further option is the possibility to "freeze” the
execution of software at any chosen state as an
execution snapshot. Ideally, such snapshots could be
archived, shared with others, and restored at any
time to continue the execution of the software. While
creating snapshots of running virtual machines (VMs)
is a common feature of most virtualization and many
emulation systems, reactivation in (slightly) differing
technical setups as well as long-term usability of
snapshots is an open issue. In this article, we

investigate this problem and describe a way to
implement long-term available “frozen” snapshots of
running software.

1. RELATED WORK

With the growing importance of software as a
cultural and scientific product, the necessity of citing
software was recognized [5]. Citation practice ranges
from informal mention to detailed version
information but are being formalized further.
Citation of software implies (or should imply) the
availability of software.

Even though many initiatives have started
archiving software, software preservation in general
is still an open issue because of the complexity and
size of the task and sometimes due to legal
obstacles. Preservation of source code [6] is to a
certain degree the most systematic and successful
public approach so far. However, available source
code does only cover a limited field (open-source
software) and, more importantly, there is a long-term
usability problem [7], as source code cannot be
trivially reused without further technical steps (i.e.,
compilation into an executable binary form).
Furthermore, for more complex scenarios, different
software products need to be contextualized (setup
and configured) within a defined execution
environment (e.g., using an emulator) and, especially
in context of computational research, brought
together with data. Container technology solved
some of the dependency, setup and configuration
problems [8] but seldomly reduces the operational
complexity (e.g., the number of settings, runtime
variables) of non-trivial setups.

For smaller, controlled subsets, there are tailored
solutions, not only to reproduce a computational
result but also to transparently document all in-
between steps in an executable form, e.g., Jupyter
notebooks. But even for these rather constrained
niches, long-term access and reproduction is quite
difficult [9], [10].

Another alternative to deterministically restore a
specific application state without reproducing
interactive user (GUI-)events (e.g., [11]), which are
prone to non-deterministic behavior of GUI
applications, are so called “record and replay” tools
(e.g., [12], [13]). In contrast to tools recording GUI-
events (e.g., macro recorders), these tools record the
interaction of an application with the underlying
operating system and, thus, can deal with potential

3 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

non-determinism (e.g., clock/time functions, random
number generators). These tools, however, are
usually quite intrusive (e.g., they depend on special
CPU features or only work for special cases like
applications with limited interactivity) and slow down
the execution of the recorded application
significantly.

2. SNAPSHOTS OF RUNNING APPLICATION PROCESSES

Presumably, the main motivation to access
preserved (and cited) software setups beside
verification of published results could be exploring
the relevant software environment further, e.g., by
changing intermediate inputs in a case of interactive
computational science or to follow different paths of
a computer game. But there are many other
different use-cases for preserving a specific state of
a running software setup. This section will discuss
the concepts to generate software snapshots.

A “snapshot” is a saved (serialized) state of a
running process or system. Any information needed
to restore the process or system and to continue its
execution is contained within the snapshot. This
operation requires some technical support of the
surrounding environment, i.e., the software that is
creating the snapshot. Since we do not want to
constrain snapshots to a single architecture,
computer platform, or operating system, i.e., we
want to be able to cover applications from different
technical epochs, we chose to take a snapshot of the
whole system the application of interest is running in
(guest system). We, thus, assume that the guest
system is running on either virtualized or emulated
hardware (i.e., in an emulator or hypervisor).

In principle, there are different ways to create a
snapshot of a running system. The first one is taking
advantage of the capabilities of the hypervisor or
emulator. Some emulators (e.g., QEMU, v86) or VM
hypervisors (e.g., VMware Workstation/ESXi,
VirtualBox) offer built-in functionality to create
snapshots. The emulator or hypervisor can pause
the execution of a guest and save all states of the
hardware (i.e., the virtual CPU and any other virtual
hardware devices). The snapshots created this way

1 We have found that a snapshot taken using

hibernation by the guest operating system might
even fail to restore on different builds of the very
same emulator source code, see
https://gitlab.com/emulation-as-a-

are called virtual machine snapshots. Saving the state
of the whole computer system to disk can also be
done by the (guest) operating system itself without
the help of a hypervisor, a feature typically called
“hibernation” or “suspend to disk”. However, this
option is only available for a few
emulators/hypervisors (and guest operating systems
in case of hibernation).

But having a working option to create virtual
machine snapshots (e.g., QEMU), a further option to
consider could be to run emulators not capable of
creating snapshots themselves (e.g., SheepShaver,
VICE) within a capable hypervisor (or emulator) and
use it (the “outer” emulator) to create snapshots (of
the “inner” emulator). Most likely, the generated
snapshots depend on the software (emulator or
hypervisor) they were created on. Firstly, virtual
machine snapshots are saved (serialized) in a format
specific to the emulator/hypervisor software used.
Secondly, while it would be possible for other
emulators to re-implement support for an existing
virtual machine snapshot format, this seems unlikely
as the virtual machine snapshots including their
configured operating system require the exact same
(virtual) hardware (i.e., not only the same CPU but
also identical other virtual hardware devices) it has
been created on to be restored successfully [14].
Even the forward-compatibility of virtual machine
snapshots to later versions of the same
emulator/hypervisor will likely decrease over time as
their main usage is for live migration and short-term
snapshots.1 Hence, virtual machine snapshots must
be carefully curated and maintained together with
the necessary software (i.e., the emulator or
hypervisor) for restoring, which will lead to
significant maintenance overhead over time.

An alternative option to storing the complete
hardware state of a virtual machine is to create
process snapshots (also known as application
snapshots) which do not rely on a hypervisor but on
functionality offered by the operating system.
Process snapshots save the state of a specific
running application, comparable to the way the

service/emulators/qemu-eaas/-
/blob/v2.5/dsdt.patch. This finding might be
extendable to virtual machine snapshots taken by
the emulator/hypervisor but does require further
research.

https://gitlab.com/emulation-as-a-service/emulators/qemu-eaas/-/blob/v2.5/dsdt.patch.
https://gitlab.com/emulation-as-a-service/emulators/qemu-eaas/-/blob/v2.5/dsdt.patch.
https://gitlab.com/emulation-as-a-service/emulators/qemu-eaas/-/blob/v2.5/dsdt.patch.

4 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

operating system saves the process’s state when
executing a context switch.

While virtual machine snapshots save the state of
the whole platform (i.e., the CPU and any devices,
e.g., the IBM PC platform), process snapshots only
save the state of (parts of) the CPU (i.e., only the parts
of the hardware defined by the instruction set
architecture (ISA), e.g., the x86-64 architecture). For
other resources (the equivalent of devices), they
make use of the abstraction the operating system
provides and are therefore less hardware
dependent. Consequently, however, they have a
rather strong operating-system (i.e., kernel
Application Binary Interface “ABI”) dependency as
well as a dependency on any open files, network
connections, or similar resources originally being in
use by the process at the time of creating the
snapshot. For our purposes, we chose to create a
process snapshot of the emulator process2, and
thus, implicitly the state of the guest system.

Taking a snapshot of a running process usually
requires special support from the operating system,
because some parts of the process’s states are not
visible to the process itself but only available to the
operating system. The Linux kernel was extended to
provide previously missing APIs to create process
snapshots by the Checkpoint/Restore In Userspace
(CRIU) project3, which also provides a user-space
helper utilizing the kernel’s API to create, serialize
(i.e., save as regular files), and restore process
snapshots4.

2 We are only using emulators here. There would

be no principal problem in creating a process
snapshot of a hypervisor that uses the Linux kernel’s
KVM ABI (e.g., QEMU) as these hypervisors are
normal processes. However, this functionality has
only niche use cases and is not supported by process
snapshot frameworks, see
https://github.com/checkpoint-
restore/criu/issues/229.

3 Checkpoint/Restore In Userspace, see
https://criu.org/.

4 The kernel patches created by the CRIU project
were accepted and included in the upstream Linux
kernel, so that the CRIU user-space helper can be
used together with any stock Linux kernel, reducing
maintenance burden.

CRIU works best when it is used to snapshot
isolated applications running in their own Linux
container5 using a container runtime6 and is, in fact,
already well integrated into contemporary container
runtimes7. As we already developed a framework to
package (untrusted and potentially insecure)
emulators including supporting infrastructure as
self-contained container images and let them run in
an isolated Linux container in the EaaS emulation
framework [15], we used the same approach for
CRIU8. Taking this approach, preserving emulators
(and snapshots) becomes a special case of
preserving containers [16].

3. LONG-TERM ACCESS TO PROCESS SNAPSHOTS

Solving portability issues of the created
snapshots solves only the smaller part of the
problem. The second problem set is to restore or
reactivate a snapshot using future computer
systems. By choosing process snapshots, we have
reduced hardware dependencies, which are typically
abstracted by the operating system. For instance, for
a (user-space) application to be run on a Windows or
Linux system, the hardware configuration of the
computer does typically not matter to the
application. Instead, an application uses well defined
interfaces of the operating system to interact with
graphics, sound, or network hardware. These
interfaces are stable and do not change, e.g., if a
hardware component is replaced. Hence, for process
snapshots, the remaining (future) dependencies are
the operating system application binary interface
(ABI) and the CPU instruction set architecture (ISA;

5 See, e.g.,
https://www.redhat.com/en/topics/containers/w
hats-a-linux-container.

6 Standardized in the OCI Runtime Specification
(https://github.com/opencontainers/runtime-
spec) and implemented in, e.g., Docker, runc, or crun
with the help of functionality provided by the Linux
kernel.

7 See, e.g.,
https://github.com/opencontainers/runc/blob/m
ain/man/runc-checkpoint.8.md.

8 The images may have to be slightly altered (e.g.,
checked in an automated process) as CRIU can place
subtle restrictions on the kind of executables it is
able to restore properly, see
https://github.com/checkpoint-
restore/criu/issues/1507.

https://github.com/checkpoint-restore/criu/issues/229.
https://github.com/checkpoint-restore/criu/issues/229.
https://criu.org/
https://www.redhat.com/en/topics/containers/whats-a-linux-container.
https://www.redhat.com/en/topics/containers/whats-a-linux-container.
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runc/blob/main/man/runc-checkpoint.8.md
https://github.com/opencontainers/runc/blob/main/man/runc-checkpoint.8.md
https://github.com/checkpoint-restore/criu/issues/1507
https://github.com/checkpoint-restore/criu/issues/1507

5 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

e.g., x86-64), which should make these snapshots
portable between contemporary systems but also to
future systems.

1. Restoring the Execution Context

When CRIU restores a snapshot, it interacts with
the Linux kernel to restore the exact same state the
process was in when the snapshot was created. The
“exact same state” reproduced by CRIU includes CPU
registers and memory used by the application as well
as any resources opened by the application, e.g., files
or network sockets. These resources must remain
available in the very same state (e.g., the same file
content) and must be saved, managed, and restored
independently from the CRIU snapshot. We have
already accomplished this by using container
images, for which a derivative image can be created
when snapshotting the application. For network
connections (e.g., connected TCP sockets), CRIU’s
approach is usually more brittle as they depend on
the uncontrollable outside world (e.g., the remote
end of a TCP socket will probably be gone when the
snapshot is restored). In the EaaS emulation
framework, we have already solved this problem by
providing network access only via a virtualized and
isolated network.

2. Identifying Remaining Hardware Dependencies

The described approach makes sure that any
applications can continue to run after being
restored. However, CRIU’s intended usage scenarios9
are focused on short-term usage of the created
snapshots on homogenous machines (i.e., using the
same CPU model or, at least, the same CPU
generation from the same CPU vendor with the same
architectural features, similar other installed
hardware devices, and similar Linux kernel versions).

9 https://criu.org/Usage_scenarios
10 For their recent processors with

heterogeneous CPU core configurations, Intel takes
great pain in ensuring that all cores expose exactly
the same process-visible features, see, e.g.,
https://www.tomshardware.com/news/intel-
nukes-alder-lake-avx-512-now-fuses-it-off-in-
silicon.

11 See, e.g., gcc and its libgcc:
https://github.com/gcc-
mirror/gcc/blob/59a72acbccf4c81a04b4d09760f
c8b16992de106/gcc/common/config/i386/cpui
nfo.h#L975.

In other words, CRIU‘s process snapshots may still
depend on the original CPU model. This can be a
surprising property as applications can break in
unexpected and subtle ways under different CPU
models, even more so when the CPU is changed
during the application’s execution. Normal
applications do not expect that the CPU’s (visible)
features change during execution10 and, as the
application, deliberately, has no way to notice that it
is being snapshotted and restored, it even has no
chance to react to the changed CPU at all.

On the x86(-64) architecture, the CPU vendor and
model, its supported extensions to the original ISA,
and other features of the CPU are exposed via the
CPUID machine instruction. The CPUID instruction is
unprivileged and, thus, can be executed by user-
space applications. It is typically, transparently,
included by the compiler into the executable binary11
for features like function multiversioning12 or
queried using dedicated libraries13 by the application
itself. All these features have in common that they, at
the start of the application, select one of several
machine code versions of the same function most
suitable (i.e., optimized) for the current CPU model.
This is a problem if the target CPU has less features
(e.g., no AVX2) than the original CPU. After resuming
the snapshot, the application will still execute the
code path requiring the original CPU features (e.g.,
AVX2) and execution on the target CPU will fail,
generating a SIGILL signal (on Linux/POSIX) and
terminating the process14.

A possible approach could be to require the
target CPU to always support more features than the
original CPU, e.g., by requiring it to support all CPU
extensions available at a time. We found, though,
that this approach does not work as, apart from

12
https://gcc.gnu.org/onlinedocs/gcc/Function-
Multiversioning.html

13 See, e.g., libcpuid:
https://github.com/anrieff/libcpuid.

14 While it would be imageable to catch this signal
and emulate just the missing (e.g., AVX2)
instructions, in practice, this approach is unfeasible
as other (existing) (SSE) instructions modify the state
of the (extended) registers used by AVX2 as well
while not producing a catchable SIGILL instruction. It
is, thus, not possible to selectively emulate these
instructions but all instructions (including the
existing ones) would have to be emulated.

https://criu.org/Usage_scenarios
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://github.com/gcc-mirror/gcc/blob/59a72acbccf4c81a04b4d09760fc8b16992de106/gcc/common/config/i386/cpuinfo.h#L975.
https://github.com/gcc-mirror/gcc/blob/59a72acbccf4c81a04b4d09760fc8b16992de106/gcc/common/config/i386/cpuinfo.h#L975.
https://github.com/gcc-mirror/gcc/blob/59a72acbccf4c81a04b4d09760fc8b16992de106/gcc/common/config/i386/cpuinfo.h#L975.
https://github.com/gcc-mirror/gcc/blob/59a72acbccf4c81a04b4d09760fc8b16992de106/gcc/common/config/i386/cpuinfo.h#L975.
https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html
https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html
https://github.com/anrieff/libcpuid.

6 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

being expensive by requiring the latest CPUs, CPU
features are not only added by vendors but
sometimes also removed again in later CPU model
generations15. A ”best“ CPU including every feature
ever introduced may, thus, not always exist.

More importantly, though, we found that, e.g., a
snapshot created on a CPU not supporting AVX2 will
crash on a CPU supporting AVX2, i.e., a CPU with
strictly more features. Debugging showed that this is
due to the XSAVE instruction, which writes the CPU
register’s state to memory at an application-provided
location. The (byte) size the register state will need in
memory can be queried by the application (or a
supporting library) using the CPUID instruction, but
this, again, is typically only done at application
startup and cached for later use. If, in our case, the
snapshot is now resumed on a target CPU requiring
more space for its register state (i.e., by having the
larger AVX2 registers), not enough space will have
(unknowingly) been reserved by the application
when calling the XSAVE instruction and the CPU will
silently overwrite parts of memory, e.g., in the
application’s stack, leading to the application’s crash.

A possible workaround is to disable the
problematic features (e.g., AVX2) on the target CPU
with the operating system’s help16. This workaround
was tested but proved not to be successful as a
number of applications, including the widely used
GnuTLS library17, check incorrectly for the availability
of CPU features, subsequently still try to use the
disabled features and crash. This results in crashes
of even very basic dependent applications like ”apt-
get”.

15 Again, see the removal of AVX-512 from Intel’s

recent processors with heterogeneous CPU core
configurations,
https://www.tomshardware.com/news/intel-
nukes-alder-lake-avx-512-now-fuses-it-off-in-
silicon.

16 Using the Linux kernel’s ”clearcpuid”
and ”noxsave” command-line options, which do not
directly interfere with the result of the CPUID
instruction for user-space applications but only
disable CPU features using the CR4 control register.

17 See https://gitlab.com/gnutls/gnutls/-
/issues/1282. The underlying problem is that such
problems do not get much real-world test coverage
as users do not typically want to restrict their CPU’s

Thus, the most feasible way is to directly restrict
the CPUID instruction to report only desirable
features as available and report a buffer size for the
XSAVE instruction that is large enough for any target
CPU’s register state. At the same time, this is
advantageous as it allows to restrict the used CPU
features to a sensible set of features supported by
not only the latest CPUs but a large number of
(cheaply available) CPUs from different vendors (and
most x86-64 emulators). Such “common
denominators” of features are already standardized
as micro-architecture levels (e.g., x86-64-v2) in the
ELF x86-64 psABI18 and are recently starting to be
used to define minimum system requirements of
Linux distributions.

3. CPUID virtualization

Manipulating the CPUID instruction, though,
proves to be problematic on the x86-64 architecture,
a property than can be attributed to the fact that the
x86-64 architecture (without extensions) does not
conform to the virtualization requirements
introduced by Popek and Goldberg [17]. The CPUID
instruction can be seen as a behavior sensitive
instruction that is not privileged, i.e., can be executed
directly by user-space application without a chance
for the operating system’s kernel to interfere.

An extension found on most Intel processors19
remediates this problem by allowing to turn the
CPUID instruction into a privileged instruction, and,
thus, trapping it in user space.20 This feature is used

features, i.e., never run applications under such
kernel configurations.

18 Processor-specific application binary interface,
https://gitlab.com/x86-psABIs/x86-64-ABI.

19 Exposed by the Linux kernel via the
arch_prctl(ARCH_SET_CPUID, ...) system call, see
https://man7.org/linux/man-
pages/man2/arch_prctl.2.html.

20 Both Intel‘s VT-x and AMD‘s AMD-V
virtualization extensions for the x86-64 architecture
do allow for hypervisors to trap CPUID instructions.
An alternative approach would, thus, be to have the
application run in its own virtual machine (potentially
inside yet another virtual machine provided by a

https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://www.tomshardware.com/news/intel-nukes-alder-lake-avx-512-now-fuses-it-off-in-silicon
https://gitlab.com/gnutls/gnutls/-/issues/1282
https://gitlab.com/gnutls/gnutls/-/issues/1282
https://gitlab.com/x86-psABIs/x86-64-ABI
https://man7.org/linux/man-pages/man2/arch_prctl.2.html.
https://man7.org/linux/man-pages/man2/arch_prctl.2.html.

7 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

by the libvirtcpuid project21, which, independently
from our work, researched the presented problem of
a snapshot created on a CPU with less features (e.g.,
no AVX2) crashing when being resumed on a CPU
with more features (e.g., AVX2). Their intended use
case, however, focuses on live migration of
applications and differs from our long-term
preservation use case. Additionally, they rely on the
described Intel extension, which is neither found on
AMD x86-64 CPUs nor in emulators and often not
exposed by cloud providers, reducing its usefulness
for our application significantly.

We, thus, modified libvirtcpuid’s approach
slightly: while the original libvirtcpuid relies on the
described CPU extension to trap CPUID instructions,
we modify the application’s executable (ELF) binary
files in advance to replace every CPUID instruction
with an RDMSR instruction22. RDMSR instructions, in
turn, are always privileged on the x86-64 architecture
and, thus, will trap with a signal to user-space that
can be processed by libvirtcpuid in its usual way23.
This approach is not guaranteed to work as
applications may dynamically generate just-in-time
(JIT) code including CPUID instructions. Only being
generated at runtime, these instructions would not
be processed by our tool and still leak unmodified
CPUID information to the application. However, this

cloud provider) restricted to, e.g., the x86-64-v2
micro-architecture level. This approach was not
pursued as more virtualization levels will most
probably degrade performance and (nested)
virtualization is not universally available at cloud
providers or comes with extra costs, see, e.g.,
https://ignite.readthedocs.io/en/stable/cloudpro
vider/.

21 https://github.com/twosigma/libvirtcpuid
22 Introducing the ELFant tool, a powerful but

friendly shell script that tramples over your ELF files,
see https://github.com/emulation-as-a-
service/libvirtcpuid.

23 A conceivable alternative approach of
replacing CPUID instructions with a call to a library
function emulating and manipulating the CPUID
instruction directly is not feasible as the CPUID
instruction is encoded in only 2 bytes, which is not
sufficient space for any jump/call instruction. In
contrast, the RDMSR instruction is encoded in 2 bytes
as well, and can, thus, directly replace the CPUID
instruction in the binary file without any further

is very unlikely as, as described above, code using the
CPUID is typically statically generated by the
compiler or placed in dedicated libraries. Other
potential problems, e.g., applications checking for
CPU features by trying to directly use them without
checking for their availability first24, are the same as
for the upstream libvirtcpuid and rare in practice.

4. Other sources of non-determinism

As described above, the restored application also
depends on outside resources. Obvious ones like
files (either regular files, UNIX domain sockets, or
pipes) are already handled by our emulation
framework. Non-obvious ones include time
functions25, which naturally depend on the time in
the outside world, either measured as time since the
system was booted (CLOCK_MONOTONIC) or as real
(i.e., wall-clock) time (CLOCK_REALTIME). The former
(CLOCK_MONOTONIC) can be virtualized by the
Linux kernel using time namespaces26, which are
already supported and handled by CRIU. As they are
typically used via the C standard library, the latter
(CLOCK_REALTIME) can potentially be modified in
user-space27 to be derived from
CLOCK_MONOTONIC with a constant (user-
configurable) offset.

However, an application could also use the
RDTSC instruction to directly read the processor’s

modifications. Yet another conceivable alternative
approach of replacing library functions (e.g., libcpuid)
utilizing the CPUID instruction is not feasible as they
might not easily be recognized anymore when linked
into the application in binary form, the variety of
such libraries is too diverse, and some applications
(e.g., GnuTLS) do not employ such libraries at all but
directly use the CPUID instruction for similar
purposes, leading to a very brittle application-
specific manual patching approach.

24 In this case, if the CPU feature is available on
the original CPU, the application will recognize it as
usable but will crash as soon as trying to use it on the
target CPU after the snapshot is resumed.

25 Exposed via the clock_gettime() system call on
Linux, see https://man7.org/linux/man-
pages/man3/clock_gettime.3.html.

26 https://man7.org/linux/man-
pages/man7/time_namespaces.7.html

27 For instance, using the LD_PRELOAD
mechanism, see https://man7.org/linux/man-
pages/man8/ld.so.8.html.

https://ignite.readthedocs.io/en/stable/cloudprovider/
https://ignite.readthedocs.io/en/stable/cloudprovider/
https://github.com/twosigma/libvirtcpuid
https://github.com/emulation-as-a-service/libvirtcpuid
https://github.com/emulation-as-a-service/libvirtcpuid
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html

8 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

time-stamp counter. Differently from the CPUID
instruction, the RDTSC instruction can be disabled
and trapped in user-space28. As the application might
not expect RDTSC to not work, further modifications
to the application might be necessary. In contrast to
the CPUID problem, however, this problem is
immediately visible already when starting the
application on the original CPU and can, thus, be
handled more easily instead of manifesting itself in
an unfixable way later long after the snapshot has
been created.

A final class of resources that must be dealt with
are resources available on the original system that
are being masked by the container
runtime/configuration but are not available at all on
the new system. As they are not available at all, CRIU
cannot mask them like on the original system and,
thus, might fail to restore the snapshot.29 Here, a
simple workaround is to not mask the resources in
the first place.30

5. Emulation in Emulation

To restore an application state, the snapshotted
emulator process containing the running application
must be restored using a suitable technical
environment. In the case of a future reactivation, the
required technical environment for restoring will be
an appropriate emulator, e.g., a suitable x86-64
emulator satisfying the CPU dependencies (e.g., the
x86-64-v2 micro-architecture level) and a container
runtime including an appropriate Linux kernel and
pre-configured tools to restore the snapshot (e.g.,
CRIU). This runtime then will be able to restore the
snapshotted process (emulator running a guest
system). This setup, however, will lead to an
emulation-in-emulation (stacked emulation) access
context.

Using emulation-in-emulation as an emulation-
based digital preservation strategy is not an ideal
solution in general. While the idea is simple and
appealing, i.e., today’s emulator setups containing

28 Exposed as prctl(PR_SET_TSC, ...) by the Linux

kernel, see https://man7.org/linux/man-
pages/man2/prctl.2.html.

29 For instance, the Linux kernel only provides
/proc/asound/ (masked as empty directory inside
containers) if the host system includes a sound card.
This is typically true for desktop computers but
untrue for server or cloud computers. A snapshot

obsolete systems and running, e.g., on a
contemporary Windows 11 system, can be preserved
and kept available through future emulators by
simply focusing on today’s Windows 11 system and
so on. However, with technical epoch and thus, every
new level in this emulator stack, a technical and
conceptual mapping between contemporary
computer systems and the last generation (latest
emulators) must be made.

These mappings usually require technical
compromises, especially but not only, for interactive
usage, because future concepts have changed
significantly. For instance, by moving toward gesture
inputs, mapping modern touchscreen gestures to 3-
button mouse events is necessary. Clever emulator
developers will find a user-friendly and usable
solution for their technical environment and context.
However, with every additional layer (and mapping),
it will be harder to operate the original system (e.g.,
the 3-button mouse, through an emulated
touchscreen using a future VR setup) and, eventually,
some states or concepts of the original system will
become inaccessible throughout the different layers.
Therefore, we usually argue to “migrate” the old
(guest) systems to new emulators, such that any new
generation of computer systems with new
interaction paradigms (e.g., virtual reality) adapt
these directly to the old concepts.

For this special case (snapshots of running
processes), however, the emulation-in-emulation
scenario is necessary and justifiable. Its necessity
results from the design choices of taking process
snapshots. In the case of virtual machine snapshots,
restoring the saved machine state on future
emulators is possible in theory. However, in practice
it will be quite difficult since the target machine must
match exactly the hardware of the snapshotted
virtual machine. Even the transition (live migration)
between two contemporary virtual machines, both
running within the same emulator (in this case, two

created on a desktop computer may, thus, fail to
resume on a server or cloud computer.

30 This can pose security problems but, e.g., in the
sound card scenario, it might be acceptable to not
mask the sound card when being run on a desktop
computer as the desktop computer is typically
operated by only one user, who is already able to
manipulate and interfere with the sound card in host
system anyway.

https://man7.org/linux/man-pages/man2/prctl.2.html.
https://man7.org/linux/man-pages/man2/prctl.2.html.

9 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

QEMU-based VMs) turned out to be rather difficult
[18].

For the conceptual idea of saving and restoring
an application state, the concept of emulation-in-
emulation is appropriate. Not only is the depth of the
emulation stack limited to the maximum of one extra
layer and, thus, the mapping problem between
contemporary systems and old systems is
addressable, but this also is a desired setting since
the future user is able to observe the exact state,
including all features and limitations of the access
platform (emulator) the creator of the snaphot has
experienced. Even if the restored snapshot offers
limited usablity (compared to running the
application using future emulation-based access
platforms), it offers a stable and reproducible
reference point.

4. CONCLUSION AND FUTURE WORK

In this article, we have presented a technical and
conceptual analysis on the preservation of software
execution states (so called snapshots). The concept
of preserving snapshots will not only contribute a
further facet for software citation, but it will also
contribute to an increased usability of emulation
setups by simplifying the preparation of ready to use
software setups. Users can be presented with a
configured and running application in a usable state,
without the hurdle of operating an old computer
system, e.g., staring an application, finding the
necessary files, etc. For some (future) software
setups, such an approach might be the only viable
solution. Software becomes a boundless product
which is difficult to capture and to “own” since it is
not shipped anymore on media. Modern software
offers dynamic installation processes with multiple
options for extension, in-app purchases, etc., relying
not only on individual decisions but also the
publisher’s infrastructure and especially support of
installing outdated software packages.

In addition to citation use cases, the functionality
required to fulfill these can be useful for other long-
term access purposes. For example, when making
digital artifacts available via emulation that rely on
slow or complex software environments, it can be
valuable from a user-experience perspective to be
able to immediately restore the system or network

31 https://rossarchive.library.yale.edu/

state to a point after all the software components
involved have completely loaded. The state-saving
functionality described in this paper is currently in
use at Yale University Library as part of their efforts
to retain access to web sites including the Ross
Archive site31 and the Historical Register Online
site32. Access to both sites is provided via emulation
of hardware supporting the underlying web server
software, database software, and a
contemporaneous web browser. Each of these has to
be loaded before the user can access the site in
emulation and the process can take minutes. By pre-
loading them, saving the state in a process snapshot,
and loading the state at point of access, this saves
the user a great deal of time and significantly
improves the user experience for them.

While there is a proof-of-concept
implementation available as well as working real-
world examples as part of the EaaSI project, the
focus of this work was to improve our understanding
of potential technical hurdles restoring snapshots in
the future. x86-64-based systems are still the most
important platform running in-production
framework. Hence, our analysis was focused on x86-
64 process snapshots. Future work will widen the
scope to other relevant platforms (e.g., ARM64).

Re-storing snapshots does not only pose
technical challenges but also administrative ones.
The runtime environment must be archived and
maintained, as well as any other runtime
dependency. By encapsulating emulators with their
runtime dependencies within containers, preserving
containers (and their runtime), the preservation of
snapshots is just a special case of the existing EaaS
container preservation workflow.

An important limitation of our experimental
setup is the time lag between a snapshot request
and the snapshot executions. This lag is currently
somewhere around 2-5 seconds. Additionally,
serializing a snapshot takes time – linear to the total
memory of the process used. Hence, currently our
setup is not yet suitable for highly dynamic software
setups, e.g., computer games, where states are
changing very quickly, and not suitable to create a
series of fine-grained snapshots. However, there are
promising developments to improve snapshot

32
https://yalehistoricalregister.library.yale.edu/

https://rossarchive.library.yale.edu/
https://yalehistoricalregister.library.yale.edu/

10 of 10

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

performance and to support fine-grained, high
frequency incremental snapshots [19].

5. REFERENCES

[1] D. S. Rosenthal, “Emulation & virtualization
as preservation strategies,” 2015.

[2] E. Cochrane, K. Rechert, J. Oberhauser, S.
Anderson, C. Fox, and E. Gates, “Useable Software
Forever,” IPres 2022 Glasg. 12—16 Sept. 2022 Www
Ipres2022 Scot.

[3] J. P. McDonough et al., “Preserving virtual
worlds final report,” 2010.

[4] J. Oberhauser, R. Gieschke, and K. Rechert,
“Automation is Documentation: Functional
Documentation of Human-Machine Interaction for
Future Software Reuse,” Int. J. Digit. Curation, vol. 17,
no. 1, Art. no. 1, Sep. 2022, doi:
10.2218/ijdc.v17i1.836.

[5] A. M. Smith, D. S. Katz, and K. E. Niemeyer,
“Software citation principles,” PeerJ Comput. Sci., vol.
2, p. e86, 2016.

[6] R. Di Cosmo, M. Gruenpeter, and S.
Zacchiroli, “Referencing source code artifacts: a
separate concern in software citation,” Comput. Sci.
Eng., vol. 22, no. 2, pp. 33–43, 2019.

[7] K. Rechert, J. Oberhauser, and R. Gieschke,
“How Long Can We Build It? Ensuring Usability of a
Scientific Code Base,” Int. J. Digit. Curation, vol. 16, no.
1, p. 11, 2021, doi: 10.2218/ijdc.v16i1.770.

[8] C. Boettiger, “An introduction to Docker for
reproducible research,” ACM SIGOPS Oper. Syst. Rev.,
vol. 49, no. 1, pp. 71–79, 2015.

[9] J. F. Pimentel, L. Murta, V. Braganholo, and J.
Freire, “A large-scale study about quality and
reproducibility of jupyter notebooks,” in 2019
IEEE/ACM 16th international conference on mining
software repositories (MSR), 2019, pp. 507–517.

[10] J. Wang, T. Kuo, L. Li, and A. Zeller, “Assessing
and restoring reproducibility of Jupyter notebooks,”
in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020,
pp. 138–149.

[11] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI
testing using computer vision,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 2010, pp. 1535–1544.

[12] O. S. Navarro Leija et al., “Reproducible
containers,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for

Programming Languages and Operating Systems, 2020,
pp. 167–182.

[13] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A.
Noll, and N. Partush, “Engineering Record and Replay
for Deployability.,” in USENIX Annual Technical
Conference, 2017, pp. 377–389.

[14] K. Rechert, O. Stobbe, O. Zharkow, R.
Gieschke, and D. Wehrle, “CiTAR - Preserving
Software-based Research,” Int. J. Digit. Curation, vol.
15, no. 1, Art. no. 1, 2020, doi: 10.2218/ijdc.v15i1.716.

[15] R. Gieschke and K. Rechert, “A Generic
Emulator Interface for Digital Preservation,” in iPres
2022 Glasgow 12—16 September 2022 www. ipres2022.
scot, 2022.

[16] K. Rechert, T. Liebetraut, D. Wehrle, and E.
Cochrane, “Preserving containers–requirements and
a todo-list,” in Digital Libraries: Knowledge,
Information, and Data in an Open Access Society: 18th
International Conference on Asia-Pacific Digital
Libraries, ICADL 2016, Tsukuba, Japan, December 7–9,
2016, Proceedings 18, 2016, pp. 225–230.

[17] G. J. Popek and R. P. Goldberg, “Formal
requirements for virtualizable third generation
architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–
421, 1974.

[18] J. Wei, L. K. Yan, and M. A. Hakim, “Mose: Live
migration based on-the-fly software emulation,” in
Proceedings of the 31st Annual Computer Security
Applications Conference, 2015, pp. 221–230.

[19] R. S. Venkatesh, T. Smejkal, D. S. Milojicic, and
A. Gavrilovska, “Fast in-memory CRIU for docker
containers,” in Proceedings of the International
Symposium on Memory Systems, 2019, pp. 53–65.

