
1 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).
https://hdl.handle.net/2142/121092

NOT WELL-FORMED OR INVALID. NOW

WHAT?
Towards a formalized workflow for format

validation error treatment

 Micky Lindlar
 TIB Leibniz Information

 Centre for Science and
 Technology

Germany
michelle.lindlar@tib.eu
0000-0003-3709-5608

Abstract – File format validation – we all use it and
we all run into problems when files do not validate.
Though a core process within digital preservation
practice, little progress has been made in shared
documentation and discussion of processes used to
treat file format validation errors. This paper aims to
close that gap. A basic workflow for handling
validation errors is proposed and visualized, and in a
second step tested against two TIFF and two PDF
validation errors of varying severity. Observations
made are fed back into the workflow diagram. The
outcome shall provide a first step towards shared
digital preservation practice in the currently largely
neglected field of method formalization for file format
validation error treatment.

Keywords – file format validation; process
formalization; error handling

Conference Topics – We’re all in this Together;
From Theory to Practice

I. INTRODUCTION

(Digital) interpretability, i.e., correct rendering of
digital objects, is one of the core tasks of digital
preservation. Checking if files open in a reader is one
method to check correct rendering, however, this is
a time-intensive process and can only be achieved
perfectly if we know what the original is supposed to
look like. Even in textual objects, malformed

formulas or tables might easily be missed during
visual inspection [1],[2]. File format identification and
file format validation therefore serve as standard
processes to check for a file’s structural and
syntactical intactness and they are embedded
processes in all major end-to-end digital
preservation systems [3]. It is thus safe to say that
most digital preservation practitioners should be
familiar with the tasks.

Since file format identification is based on short
pattern recognition such as “magic number” or byte
sequence checking, it is a good first indicator of a
digital object’s file format, but it is by no means proof
that the file can actually be opened. The most reliable
method to ensure the renderability of a digital object
is file format validation, which checks the digital
object’s internal syntax against the rules outlined in
the file format standard or description. Since the
development of a validator not only depends on the
availability of a file format description, but is also
significantly more resource-intensive than
identifying and capturing a file format signature
pattern, validators are currently only available for a
handful of file format families. Those file formats
that do have validators available are often also found
in “recommended” or “preferred file format lists” [4].

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/2142/121092

2 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

Benefits of a formalized methodology for
validation troubleshooting are threefold:

(1) “A picture is worth a thousand words” – a
workflow graphic can enable more effective
communication about specific errors amongst
practitioners. Furthermore, it can help those just
starting out to understand the process better.

 (2) Following a fixed path instead of ad-hoc
processes will make it easier to identify gaps in the
tools we use.

 (3) An easy-to-compare documentation of what
we do as a community is the prerequisite to
questioning/checking/adapting our processes – it is
the first step to next-level digital preservation.

But is a formalized description of what we do
when validation fails even possible? This paper shall
address exactly that question. After drafting a basic
workflow of typical post-validation-error steps, this
workflow is tested using two different file formats
(TIFF and PDF) with two validation error examples
each. In a second step, the basic workflow graphic is
adapted according to the analysis outcome and the
workflows usability is briefly discussed.

II. RELATED WORK

Digital preservation practice rates “file format
validation” as a key task of the ingest process. But
what if file format validation fails? While the past
decade has put forth new validators such as new
JHOVE modules [5], veraPDF [6], DPFManager [7],
MediaConch [8] or pdfcpu [9], little progress has
been made in describing what to do when things go
wrong. With few exceptions, that information largely
stays among file format practitioners in our domain
[10], [11]. Instead of promoting a broad discussion
on these error messages within the community and
aiming for joined solution approaches when it comes

to handling invalid files, we often find ourselves
questioning the process per-se [12].

While Gattuso and Goethals reported on a
workflow used to assess and mitigate JHOVE
validation errors at the National Library of New
Zealand in 2017 [10], little work has been undertaken
on formalizing a generic workflow for post-
validation-error situations. Even the “Community

Owned Workflows (COW)” section of the COPTR Wiki
[13] includes only one validation-centric description,
which does not really touch on error handling.

III. METHODOLOGY

For notation of the process, a simple flowchart
style is used in order to make the diagrams easy to
understand, thus allowing them to be of benefit to
the widest audience possible. In a first step, a basic
overview of the process is drafted. The single steps
outlined are based on shared community
experiences made in the past 10 years of digital
preservation practice [1],[2], [10],[11],[15]. Figure 1
shows this basic overview.

The starting point of the workflow is a validation
error message, while its ending point as indicated in
Figure 1 is the result of the validation error treatment
process. In the wider digital preservation process this
might be a decision to accept or decline the file.
However, capturing this decision is considered
outside of the scope of this paper. The process is
broken down into two larger categories – the analysis
chain (see yellow box in Figure 1) and the “treatment”
chain following the analysis. The steps are described
in further detail in subsection III A “Definitions”.

The basic overview shall be a starting point for
documenting the post-validation process. In a next
step, the workflow is tested against real-life use cases
to see where it works and where it does not work. Of
particular interest is the question of how the basic

Figure 1: Basic overview of validation error treatment process. The yellow box includes the main analysis steps.

3 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

workflow works when it comes to different file
formats and different “severity levels” of validation
errors. Since file format characteristics differ widely,
two different file format families are chosen as
examples to check the workflow against. Both file
formats are widely adopted, have an openly available
specification and more than one validation tool
available. TIFF shall represent file formats that are of
comparatively strict and simple structure; PDF shall
represent file formats with a comparatively flexible
and complex structure. For both file formats two
different error messages are chosen – one “fixable”
and one “not fixable” error each - to test the workflow
description against. While within the scope of this
paper all workflow descriptions start with a JHOVE
error message, the workflow diagram is kept generic
enough to work with any validation tool’s error
output.

A. Definitions

Before looking at the workflow diagram in
further detail, a shared understanding of “validation”
needs to be reached. The Community Owned digital
Preservation Tool Registry (COPTR) classifies the
function validation as a subset of the lifecycle stage
ingest, describing it as “(…) the validation of digital
files, typically against a file format specification” [32].
The dpc handbook has an even broader approach,
stating that file format validation compares an
instance of a file format to its expected behaviours
[33]. More granular discussions of file format
validation [2], [12], [15], [34] differentiate between
different error levels of validation, such as “well-
formed” and “valid” or “error” and “warning”. Within
the scope of this paper, (file format) validation is
understood as any tool-based method to check a file
format instance against a publically available
description of the file format’s syntax and semantics.
This description can be in form of a full standard
document, a format specification or a rule set,
including a rule set of the validator itself.

The rest of this subsection gives a short overview of
each of the workflow steps described in Figure 1
including their necessity and dependency. Necessity
of a step depends on pathways chosen – e.g., step 4
(“choose error to treat”) is optional, as it depends on
more errors than one being present in the validation
results.

Step 1: Validation Error (Mandatory)

Description: Starting point of the workflow; error can
be from any tool used to validate the syntax and
semantics of the file format

Prerequisite: Validation error message; access to the
validation tool used; access to the file being validated

Step 2: Cross-check with other Tools (Optional)

Description: If other tools are available to check the
validity of the file, these are run to cross-check and
potentially gather further information; step is
optional since further tools may not be available for
all cases

Prerequisite: Availability of further tools to check
validity of file

Step 3: Matching Results? (Optional)

Description: If different tool(s) are used to cross-
check (step 2), tool outputs are compared to initial
validation error message (step 1); the decision
whether results match is not necessarily a
straightforward task as terminologies may differ
between tools

Prerequisite: Cross-check with other tools completed
and results documented (step 2)

Step 4: Choose Error to Treat (Optional)

Description: If additional errors were found, a
decision needs to be made which error is handled; in
some cases errors may be connected to each other,
leading to more than one error being handled in the
following analysis and fix steps

Prerequisite: Additional tool(s) available (step 2) and
additional validation errors found (step 3)

Step 5a: Locate Error in Spec (Mandatory)

Description: Validation tools check against a rule set
which is derived from a standard or specification
document for the file format; checking the validity of
an error requires a comparison of the specification
that is being checked against and the position in the
file that triggered the error;

Prerequisite: Knowledge of and access to the
documentation which the tool checks against (i.e.,
standards document, specification, schema)

Step 5b: Locate Error in File (Mandatory)

Description: The position in the file that triggered the
error is typically referenced in the error message

4 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

(e.g., via offset, tag name, chunk, etc); it can be
accessed via tools like a hexeditor (for binary
formats), an editor (for text based formats) or of a
structure parsing tool such as itext RUPS [31] for PDF

Prerequisite: Information about section of file that
triggered the error; access to an analysis tool like
hexeditor or editor; knowledge of how to navigate
through the file formats structure

Step 6: Match? (Mandatory)

Description: Rationale for the error message are
compared by checking the rule against the respective
section of the file – this allows to check for false
positives (validation tool errors); this step also forms
the basis for understanding the impact of the tool,
resulting in necessary information for a potential fix

Prerequisite: Rule that triggered the error and
corresponding section in the file

Step 7: Fixable? (Mandatory)

Description: While some validation errors cannot be
fixed, others can, but institutions may elect not to do
so, e.g., because the error has no impact on
rendering behavior; since the decision not to fix a file
leads to the first end marker, step 7 is the last
mandatory step in the workflow description

Prerequisite: Understanding of the error message
and its impacts; tools / methods to conduct fix

Step 8: Fix (Optional)

Description: Repairing the file within the context of
the validation error message (step 1); while some
institutions may decide to discard the original after a
successful fix, both versions (original and fixed)
should be kept until the end of the workflow
described here

Prerequisite: Knowledge of a method and availability
of tools needed to fix the validation error within the
file

Step 9: Check (Optional)

Description: Fixed files are cross-checked by
rerunning the tools that produced the original
validation error (step 1) as well as, if available, other
validation tools (step 2); outcome of check
determines whether workflow may need to start
over again with a new validation error; in addition to
validation checks, content-based integrity checks
(where available) may be conducted to verify that
actual content of the digital object was unchanged

Prerequisite: Original and repaired file for potential
cross-checks; content-based integrity check tools or
methods (where available)

Step 10: Success? (Optional)

Description: fixes can be successful or not – the two
different outcomes typically serve as hooks for
follow-up workflows within an archive (e.g., decline
unfixable file)

Prerequisite: Understanding of impact of fix on
digital object

IV. ANALYSIS - TIFF

The following section describes processes for
two different TIFF validation errors by using the basic
flowchart description. The first error is one that can
be fixed while the second error is one without a
known remedy.

The starting seed validation error always stems from
JHOVE v1.26 TIFF-hul 1.9.3[5]. Cross-checking is
always completed with DPF Manager v3.5.1 [7] in full-
check against Default mode as well as with ExifTool
v12.44 [16]. The steps outlined in Figure 1 will be
referenced by their respective numbers.

A. TIFF Use Case 1: TIFF-HUL-2 Tag 270 out
of sequence

The error and handling described here is similar
to that of a previously published blog-post [17]. The
error has been reproduced in a file made available
as TIFF_Case-1.tif in the dataset associated with the
paper [18].

Step 1: Validation Error

The JHOVE validation error is “TIFF-HUL-2: Tag 270 out
of sequence.” As additional information, JHOVE gives
the offset at which the error occurs: 178

Step 2: Cross-check with other tools

The error is cross-checked with DPF Manager and
Exiftool. DPF Manager reports two errors and one
warning: IFD-0007 “Tags must be in strict ascending
order” for IFD1 and IDFE-0002 “Only 7-bit ASCII codes
are accepted” for tag 270 ImageDescription”. In
addition, DPFManager lists one warning. However,
DPFManager warnings are considered out of scope
for this paper as the tool clearly differentiates
between errors and warnings. The DPFManager
output includes a reference to the part of the TIFF
specification that is violated by the file – for both

5 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

errors that is “TIFF Baseline 6: Section 2: TIFF Structure.
Page 15”. Exiftool (called with -validate –warning –a
flags) returns two warnings: “Entries in IFD0 are out of
order” and “Tag ID 0x010e ImageDescription out of
sequence in IFD0”.

Step 3: Matching Results?

JHOVE’S TIFF-HUL-2 “Tag 270 out of sequence”, DPF
Manager’s IFD-0007 “Tags must be in strict ascending
order” and Exiftool’s “Entries in IFD0 are out of order”
and “Tag ID 0x010e ImageDescription out of sequence
in IFD0” appear to be matching results – although the
different referencing of the IFD as IFD0 and IFD1
between DPF Manager and ExifTool are confusing.
DPF Manager finds one additional error pertaining to
a non-7 bit ASCII Code (in this case, a German Umlaut
“ö”) in tag 270.

Since the tool set we ran puts forth two different
errors, we move along the “no” branch to Step 4.

Step 4: Choose Error to treat

We choose to neglect the DPF Manager Tag 270 non-
7-bit-ASCII Character error for now and focus on the
original JHOVE error, which was confirmed by DPF
Manager and ExifTool.

Step 5A: Locate error in spec

Thanks to the detailed information returned by DPF
Manager, we know exactly where to consult the TIFF
specification. DPF Manager paraphrases the
specification text for us, so we do not necessarily
have to go look it up ourselves: “The entries in an
Image File Directory(IFD) must be in strictly ascending
order by tag although the values which directory entry
points need not be in any particular order” [19],[20].

Step 5B: Locate error in file

JHOVE navigates us to two locations: while the offset
is of little help here as the information in the binary
cannot be understood easily, the tag number given
in the error message itself is indeed helpful. With a
tag viewer like ExifTool, we can extract the tags as
they appear in sequence in the file and we can
indeed see that tag number 270 is located between
305 and 317, so clearly not in ascending order.

Step 6: Match?

The error message “Tag 270 out of sequence”
matches with what we have found in the file and can
be verified. We therefore move along the “yes”
branch to step 7.

Step 7 - 8: Fixable? & Fix

As described in [17], the error can be fixed with
Exifool using the –P –ImageDescription= -tagsfromfile
@ -ImageDescription flags. We move along the “yes”
branch in step 7 and fix the file in step 8. This results
in the creation of a new file with the correct tag order
while maintaining all timestamp information. The
fixed file is included as TIFF_Case-1_fixed_1.tif in the
dataset associated with this paper [18].

Step 9 – End: Check & Success?

The success of the fix can be verified by re-running
the file through JHOVE, DPF Manager and ExifTool as
well as by manually re-inspecting the file as
described in step 5B. In addition, the integrity of the
image data can be verified by comparing the hash of
the image data in the old file to that of the new file.
This can be achieved with ImageMagick [30] using
identify –quiet –format “%#”. We conclude the
handling of this instance of TIFF-HUL 2 Tag 270 out
of sequence by moving along the “Yes” branch to the
workflow’s “End” marker.

The case-specific workflow diagram is included
as Appendix A1 to this paper.

While the workflow has been completed successfully
for the specific JHOVE error used as a starting seed,
we did encounter additional errors along the way.
When checking the fixed file in Step 9, JHOVE
returned the object as well-formed and valid,
whereas DPF Manager continued to report the IDFE-
0002 Error “Only 7-bit ASCII codes are accepted” for
tag 270. While the error can be easily treated using
the same workflow methodology, it imposes
questions on how multiple error treatment should
be reflected in the description. This question is
elaborated on further in the Discussion section of
this paper.

B. TIFF Case 2: TIFF-HUL-28 StripOffsets
inconsistent with StripByteCounts

The error and handling described here is similar
to that of a previously published blog-post [21]. The
error has been reproduced in the file TIFF_Case-2.tif
that is available in the dataset associated with this
paper [18].

Step 1: Validation Error

The JHOVE validation error is “TIFF-HUL-28:
StripOffsets inconsistent with StripByteCounts: 1 != 55”.
No further information is given.

6 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

Step 2: Cross-check with other tools

The error is cross-checked with DPF Manager and
Exiftool. DPF Manager reports two errors: IDFE-0002
“Only 7-bit ASCII codes are accepted” for tag 270
ImageDescription as well as STRIPS-0005 “Inconsistent
strip lengths, the cardinality of stripoffsets and
StripsBytesCount must match”. In addition,
DPFManager lists one warning, which has no impact
on the file and shall be neglected in the scope of this
paper. The DPF Manager output includes a reference
to the part of the file format specification that is
violated by the file – for STRIPS-0005 that is “TIFF
Baseline 6: Section 8: Baseline Field Reference Guide,
Page 40”. ExifTool (called with -validate –warning –a
flags) returns one warning: “Wrong number of values
in IFD0 0x0111 StripOffsets”.

Step 3: Matching Results?

JHOVE’s TIFF-HUL 28 “StripOffsets inconsistent with
StripByteCounts: 1 != 55”, DPF Manager’s STRIPS-0005
“Inconsistent strip lengths, the cardinality of stripoffsets
and StripBytesCount must match” and ExifTool’s
“Wrong number of values in IFD0 0x0111 StripOffsets”
appear to be matching results. DPF Manager finds
one additional error pertaining to a non-7 bit ASCII-
Code (in this case, a German “ß”) in Tag 270.

Since the tool set we ran puts forth two different
errors, we move along the “no” branch to Step 4.

Step 4: Choose Error to treat

We choose to neglect the Tag 270 non-7 bit ASCII
character error and focus on the original JHOVE
error.

Step 5A: Locate error in spec

Again, DPF Manager paraphrases the section of the
specification: “The cardinality of stripOffsets and the
cardinality of StripsBytesCounts must be the same”.

Step 5B: Locate error in file

We can locate the error by extracting the values from
the binary data of the respective tags. This is possible
by using ExifTool’s –b option. Comparing the values
in question, we see for TIFF_Case-2.tif that
StripOffsets contains 1 value, StripByteCounts
contains 55 values.

Step 6: Match?

The error message “StripOffsets inconsistent with
StripbyteCounts: 1 != 55” can be verified in the file. We
therefore move along the “yes” branch to step 7.

Step 7 - End: Fixable?

Unfortunately, the error means that the image data
cannot be extracted from the file correctly [21]. Since
the error is not fixable, we move along the “no”
branch of step 7 and reach the end of the workflow
here.

The case-specific workflow diagram is included
as Appendix A2 to this paper.

While the workflow could be applied correctly to the
use case, we discovered that we need to rely on
outside information or knowledge when it comes to
the question of fixable errors. This topic will be
picked up later in the Discussion section of this
paper.

V. ANALYSIS – PDF

The following section describes processes for
two different PDF validation errors against the basic
flowchart description. The first error is one that can
be easily fixed, while the second error is one without
a known remedy.

The starting seed validation error always stems from
JHOVE v1.26 PDF-hul 1.12.3 [5]. Cross-checking is
always completed with pdfcpu (v.0.4.0. dev,
validation –mode strict) [9] and qpdf (v. 9.1.1, --check –
verbose options) [22]. The steps outlined in Figure 1
are referenced by their respective numbers.

A. PDF Use Case 1: PDF-HUL-137 No Pdf
Header

The error of “junk data” before the header is
common, especially in some older PDF files [23]. For
this use case, an example of such a case discovered
“in the wild” is used. The file is made available as
PDF_Case-1.pdf via the dataset associated with this
paper [18].

Step 1: Validation Error

The JHOVE validation error is “PDF-HUL-137: No PDF
Header”. The Offset is given as 0.

Step 2: Cross-check with other tools

The error is cross-checked with pdfcpu and qpdf.
Pdfcpu returns the validation error “xRefTable failed:
pdfcpu: headerVersion: corrupt pdf stream – no header
version available”, whereas qpdf returns no error.

7 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

Step 3: Matching results?

JHOVE’s PDF-HUL 137 matches the “no header version
available” message thrown by pdfcpu. Since there is
only one error to treat, we move along the “yes”
branch directly to step 5A.

Step 4: Choose error to treat

Step 4 is skipped as we moved directly to step 5A
from the “yes” branch in step 3.

Step 5A: Locate error in spec

ISO 32000-1:2018 states in section 7.5.2 that “The first
line of a PDF file shall be a header consisting of the 5
characters %PDF- followed by a version number of the
form 1.N where N is a digit between 0 and 7” [24].

Step 5B: Locate error in file

Viewing the file in a hex editor, we can easily see that
the first line is not the version info. There are 128
additional bytes before the %PDF-1.3 declaration.

Step 6: Match?

The error message “No PDF Header” can be verified
via file inspection. We therefore move along the “yes”
branch to step 7.

Step 7 – 8: Fixable? & Fix

The PDF can be fixed by removing the 128 bytes
before the %PDF-1.3 declaration, as they are deemed
“junk data” [25]. We move along the “yes” branch in
step 7 and fix the error in step 8.

Step 9 – End: Check & Success?

The fix can be verified by rerunning the fixed file
through JHOVE and pdfcpu. The file is now returned
as well-formed and valid and we move along the
“yes” branch in step 10 to the end of the workflow.

The fixed file is made available as PDF_Case-
1_fixed.pdf in the dataset associated with this paper
[18].

In addition, Adobe Acrobat Professional offers a
compare tool, via which two PDFs can be compared
and a difference report be generated. The case-
specific workflow diagram is included as Appendix
A3 to this paper.

B. PDF Use Case 2: PDF-HUL-38 Invalid
Object Definition

The last use case is a difficult and unsolved PDF
case. The issue has been previously discussed in a
blog post [1]. It is chosen to test how well the

proposed workflow diagram is applicable to
complicated cases where it is hard to pinpoint the
error. An example of such a case discovered “in the
wild” is used and made available as PDF_Case-2.pdf
via the dataset associated with this paper [18].

Step 1: Validation Error

The JHOVE validation error is “PDF-HUL-38: Invalid
Object Definition”. The Offset is given as 285259. For
this particular test file, JHOVE throws another error
as well: PDF-HUL 87 “File header gives version as 1.3,
but catalog dictionary gives version as 1.4”. Since the
workflow description takes exactly 1 validation
message as a starting point, and since PDF-HUL-87 is
an error that can be neglected [26] we will focus on
PDF-HUL-38.

Step 2: Cross-check with other tools

The error is cross-checked with pdfcpu and qpdf.
Pdfcpu returns the validation error
“dereferenceObject: problem dereferencing object 91:
pdfcpu: ParseObjectAttributes: can’t find ‘obj’”. Qpdf
shows a total of 28 error messages. 19 of those are
“object has offset 0” for different objectIds, 5 of those
comment on missing or incorrect entries in different
objectIds, 2 deal with object 91 (“expected n n obj” and
“0 not found in file after regenerating cross-reference
table” and 2 of the error messages pertain to the
document as a whole (“file is damaged” and
“attempting to reconstruct cross-reference table”).

Step 3: Matching results?

It is hard to figure out whether the different error
messages actually describe the same problem. Both,
pdfcpu and qpdf have an error pointing to obj 91.
Unfortunately, the JHOVE offset does not lead to obj
91 but to obj 194. None of the other tools have an
error message pointing to obj 194. Qpdf is the only
tool that reports the file as damaged. Since the error
messages point to different sections of the file, we
move along the “no” branch to step 4 to choose
which error to treat and analyze in the following
steps.

Step 4: Choose error to treat

Even though none of the other errors match with the
JHOVE error message, we will stick with our starting
seed message and attempt to treat the PDF-HUL-87
for obj 194 first.

Step 5A: Locate error in spec

8 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

According to the JHOVE error message
documentation the error message occurs when a
keyword other than “obj” was found while paring an
indirect object definition [27]. According to section
7.3.10 of the specification Object definitions need to
follow the form “<obj.number> <obj.generation>
obj” [24].

Step 5B: Locate error in file

We already navigated to the respective obj via the
JHOVE offset in step 3 to cross-check the result
against that of other validation tools. Indeed instead
of the expected “194 0 obj” we find a “194 00obk”.

Step 6: Match?

The error message “Invalid Object Definition” can be
verified via file inspection and we move along the
“yes” branch to step 7.

Step 7-10: Fixable? – Success?

We can replace the faulty “194 00obk” in the
HexEditor with “194 0 obj”. However, when checking
the file with the same tools used in Step 2, qpdf and
pdfcpu still show the same error messages as before
whereas JHOVE now shows a different error message
– “PDF-HUL-66 Lexical Error”. Since the file is mangled
from a specific point onwards, the post-validation
workflow process could be repeated countless times
without reaching a successful result. The process is
aborted here.

The case specific workflow diagram is included as
Appendix A4 to this paper. The PDF with the applied
fix for PDF-HUL-38 as per Step 8 is included in the

dataset as PDF_Case-2_fixed1.pdf [18].

While the workflow described how the specific JHOVE
error PDF-HUL-38 was treated, the digital object itself

seems to have a bigger problem, which all reported
errors are connected to. The question on whether
this interdependency can be modeled in the
workflow will be touched upon in the discussion
section.

VI. DISCUSSION

In testing the workflow diagram against the use
cases we discovered several issues that should be
reflected in an updated diagram version. This
updated version is presented as Figure 2. A common
strand was that for all use cases external information
needed to be consulted to address the issues. This
included error message description for JHOVE in the
GitHub Wiki, blog posts or uncodified information
known through practice. This is where tools can be
easily improved – e.g., the JHOVE GUI could include
pointers to the specification the same way that
DPFManager does. This would especially help less
experienced users in making the connection
between the error and the expected file format
syntax. As already discussed within the community,
different error levels such as warnings in addition to
errors would be a beneficial addition to JHOVE as well
[28].

Both, the TIFF and PDF use cases included warnings
or error messages which we did not treat (e.g., PDF-
HUL-87 in the second PDF use case). While an in-
depth discussion of these errors is out of scope for
this paper, the question of how to model the decision
not to treat an error is relevant to the diagram. But

where in the workflow does that decision take place?

While the first draft of the diagram presented in
Figure 1 works on a “blank page” assumption, i.e., no

Figure 2: Revised basic overview of validation error treatment process. The yellow box includes the main analysis steps.

9 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

knowledge of validators and error messages exist,
the decision to ignore an error is always based on
existing knowledge. Often, errors such as the
aforementioned PDF-HUL-87 or the “warning”
messages included in the ExifTool output are specific
to a tool. While a “warning” as opposed to an error
could imply that no direct action is necessary, the
actual decision not to treat the issue is always an
individual one that may depend on an institutional
policy. This binds the decision directly to a business
rule, but also to the error message and its producing
tool itself - the option not to treat the error therefore
needs to be located at the beginning of the workflow.
In some cases, however, the decision may depend on
a “second opinion”, i.e. a verification by a tool used
to cross-check. Therefore, an optional additional
“treat error” decision should be available after the
cross-checking step. Figure 2 shows the updated
diagram, with two “treat error” steps added directly
after the validation error starting seed and again
after the step “cross-check with other tools”.

Knowing which errors not to treat goes hand in hand
with knowing what errors should be treated. Once
either an understanding of the error message itself
and its correlation to the specification and file’s
actual syntax, or a solid trust in the validation tool
has been established, the steps “locate error in spec”,
“locate error in file” and “match” may become
unnecessary. These steps should therefore be
optional. However, the same argument can be made
for “cross-check with other tools”, as this may
become no longer needed once a high level of trust
in one tool’s ability is gained. Since the necessity of
each step is therefore subjective, depending on the
knowledge of those following the workflow, the
mandatory / optional descriptors are removed from
the updated workflow description.

But what if we come across multiple error
messages within a file? And is the validation error
message really the correct starting seed, or should
the starting point instead be the digital object? In the
first TIFF use case, JHOVE had only reported one
error, whereas DPF Manager put forth a second error
to be fixed. As shown in the use cases, validation
error handling can become a complex task. In
addition, we have to differentiate between error
messages that are dependent on each other and
those that are not. . The “non-7-bit-ASCII” error
message introduced in TIFF Use case 1 is clearly an
independent error message, whereas the 28 qpdf

error messages found in the second PDF use case
appear to depend on each other or on the same root
cause. However, we want the workflow diagram to
be an easy communication tool. Trying to model
more than one validation error message at once in a
diagram would make the diagram overly complex.
Therefore, the decision is made to outsource
additional error handling into new “Validation Error
Handling” processes. The option to do so is added as
a step resulting from the “cross-check with other
tools”. Since it might be helpful to understand if
errors are dependent on each other or not, an
optional “compare” connection was added to the
diagram between the “additional validation errors”
resulting from the initial cross-check and potential
output from the “check” step post fixing.

Another issue exists with the conditional based
on the match between the format specification and
the error in file. In the first version of the diagram as
presented in Figure 1, a successful matching leads to
a fix, whereas an unsuccessful match leads to a re-
evaluation of the specification and the error
message. This could easily create endless loop if the
connection simply does not exist, e.g. in case of a
false positive returned by the validation tool. Instead
of looping back to the comparison, a “no match”
should exit the process and result in an evaluation of
the validation error as a potential false positive.

Figure 2 presents the updated diagram with all
changes included. The numbering and necessity of
the steps has been removed due to aforementioned
reasons.

VII. CONCLUSION AND OUTLOOK

The paper presented a first draft of a formalized
methodology in form of a basic overview diagram for
post-validation-error process steps. This first version
was tested against four real-life use cases and
updated based on the findings. As a general
observation, the diagram outlines common steps but
does not, of course, contain all the answers for what
to do. However, having a structured documentation
instead of having to sift through blog posts, wikis etc.
to find the answer might make it easier for people to
learn from and build on experiences made by others.

The introduction section listed three potential
key benefits of such a formalized overview – one of
those already proved achievable in form of
recommendations for tool improvements made in

10 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

the discussion section of this paper. Whether the
diagram can be a vehicle for more effective
communication between practitioners and those just
starting out and whether it can aid us in improving
our processes remains to be seen.

A next step for this work is to collect community
feedback and model more use cases on the updated
version of the diagram. These use cases will then be
included in the COPTR COW section. A long-term goal
could also be to model validation error decisions in
the Preservation Action Registry PAR [29].

1. REFERENCES

[1] Lindlar, M. “Trouble-shooting PDF validation errors – a case
of PDF-HUL-38”. Blogpost at the Open Preservation
Foundation, Published on 27. November 2022.
https://openpreservation.org/blogs/trouble-shooting-pdf-
validation-errors-a-case-of-pdf-hul-38/

[2] Lehtonen, J. et al. “PDF Mayhem: Is Broken Really Broken?” In:
Proceedings of the 15th International Conference on Digital
Preservation, iPRES 2018, Boston, Massachusetts, USA, Sept.
24-28 2018. https://doi.org/10.17605/OSF.IO/FZXC9

[3] Digital Preservation Coalition. “iPRES 2022 – Bake Off: Full
Menu – All You Can Eat”. Recording of the Digital Preservation
Bake Off Session held at the 18th International Conference on
Digital Preservation, iPRES 2022, Glasgow, Scotland, Set. 12 –
16 2022. https://youtu.be/fj4Qg_Kj-xc

[4] OPF ICRFF Working Group. “International Comparison of
Recommended File Formats” Version 1.2, April 2022.
https://openpreservation.org/resources/member-
groups/international-comparison-of-recommended-file-
formats/

[5] JHOVE https://jhove.openpreservation.org/
[6] veraPDF https://verapdf.org/
[7] DPF Manager http://dpfmanager.org/

[8] Mediaconch https://mediaarea.net/MediaConch
[9] Pdfcpu https://pdfcpu.io/
[10] Gattuso, J., Goethals, A. “The Tip of the Validation Iceberg

– Addressing JHOVE-based file validation warnings” In:
Proceedings of the 14th International Conference on Digital
Preservation, Kyoto, Japan, 25 – 29 September 2017.
https://hdl.handle.net/11353/10.1424902

[11] Töwe, M., Geisser, F., Suri, R. “To Act or Not to Act –
Handling File Format Identification Issues in Practice”. In:
Proceedings of the 13th International Conference on Digital
Preservation, Bern, Switzerland, October 3 – 6, 2016.
https://hdl.handle.net/11353/10.503183

[12] Whatley, P. “A valdediction for validation?” Blogpost at
the DigitalPreservationCoalition. Published on 11 October
2018. https://www.dpconline.org/blog/a-valediction-for-
validation

[13] COPTR Wiki: Community Owned Workflows (COW).
https://coptr.digipres.org/index.php/Workflow:Community_
Owned_Workflows

[14] Van der Knijff, J. “PDF processing and analysis with open
–source tools”. Blogpost at bitsgalore. Published on 06
September 2021.

https://www.bitsgalore.org/2021/09/06/pdf-processing-and-
analysis-with-open-source-tools

[15] Lindlar, M. Tunnat, Y. “How Valid is your Validation? A
Closer Look behind the Curtain of JHOVE”. In: International
Journal of Digital Curation. Vol. 12, No. 2 (2017).
https://doi.org/10.2218/ijdc.v12i2.578

[16] ExifTool. https://exiftool.org/
[17] Lindlar, M. “Troubles with TIFF: Tag 270 out of sequence”.

Blogpost at the Open Preservation Foundation. Published on
19 March 2020.
https://openpreservation.org/blogs/troubles-with-tiff-tag-
270-out-of-sequence/

[18] Lindlar, M. Dataset for this paper – currently at
https://drive.google.com/drive/folders/1WmY0-
nWvjq5aKwBdkvxu43_7h7iiLeU4?usp=sharing will be moved
to Zenodo upon acceptance of paper

[19] DPS Manager. “Reference Documentation”.
http://dpfmanager.org/reference-documentation.html

[20] Aldus Developers Desk. “TIFF. Revision 6.0. Final” June 3,
1992.

[21] Lindlar, M. “Troubles with TIFF: StripOffsets inconsistent
with StripByte Counts”. Blogpost at the Open Preservation
Foundation. Published on 12 April 2020.
https://openpreservation.org/blogs/troubles-with-tiff-
stripoffsets-inconsistent-with-stripbytecounts

[22] Qpdf https://qpdf.readthedocs.io/
[23] Lindlar, M., Tunnat, Y. “Time-travel with PRONOM: the 4th

dimension of DROID”. In: Proceedings of the 15th
International Conference on Digital Preservation, iPRES 2018,
Boston, Massachusetts, USA, Sept. 24-28 2018.
https://doi.org/10.5281/zenodo.3517767

[24] ISO/TC 171/SC 2. “ISO 32000-1:2008 Document
management – Portable document format – Part 1: PDF 1.7”.
2008.

[25] OPF. “PDF-HUL-137”. Error Message Wiki on github.
https://github.com/openpreserve/jhove/wiki/PDF-hul-
Messages-2#pdf-hul-137

[26] OPF. “PDF-HUL-87”. Error Message Wiki on github.
https://github.com/openpreserve/jhove/wiki/PDF-hul-
Messages-2#pdf-hul-87

[27] OPF. “PDF-HUL-38”. Error Message Wiki on github.
https://github.com/openpreserve/jhove/wiki/PDF-hul-
Messages#pdf-hul-38

[28] OPF. “Does JHOVE need a warning Message type?” JHOVE
github issue #638 Discussion.
https://github.com/openpreserve/jhove/issues/638

[29] Preservation Action Registries (PAR).
https://parcore.org/

[30] ImageMagick. https://imagemagick.org/
[31] iText RUPS: https://github.com/itext/i7j-rups

[32] COPTR function category“Validation”:
https://coptr.digipres.org/index.php/Validation

[33] dpc. “File formats and standards” In: Digital Preservation
Handbook, 2nd Edition. 2015
https://www.dpconline.org/handbook .

https://openpreservation.org/blogs/trouble-shooting-pdf-validation-errors-a-case-of-pdf-hul-38/
https://openpreservation.org/blogs/trouble-shooting-pdf-validation-errors-a-case-of-pdf-hul-38/
https://doi.org/10.17605/OSF.IO/FZXC9
https://youtu.be/fj4Qg_Kj-xc
https://openpreservation.org/resources/member-groups/international-comparison-of-recommended-file-formats/
https://openpreservation.org/resources/member-groups/international-comparison-of-recommended-file-formats/
https://openpreservation.org/resources/member-groups/international-comparison-of-recommended-file-formats/
https://jhove.openpreservation.org/
https://verapdf.org/
http://dpfmanager.org/
https://mediaarea.net/MediaConch
https://pdfcpu.io/
https://hdl.handle.net/11353/10.1424902
https://hdl.handle.net/11353/10.503183
https://www.dpconline.org/blog/a-valediction-for-validation
https://www.dpconline.org/blog/a-valediction-for-validation
https://coptr.digipres.org/index.php/Workflow:Community_Owned_Workflows
https://coptr.digipres.org/index.php/Workflow:Community_Owned_Workflows
https://www.bitsgalore.org/2021/09/06/pdf-processing-and-analysis-with-open-source-tools
https://www.bitsgalore.org/2021/09/06/pdf-processing-and-analysis-with-open-source-tools
https://doi.org/10.2218/ijdc.v12i2.578
https://exiftool.org/
https://openpreservation.org/blogs/troubles-with-tiff-tag-270-out-of-sequence/
https://openpreservation.org/blogs/troubles-with-tiff-tag-270-out-of-sequence/
https://drive.google.com/drive/folders/1WmY0-nWvjq5aKwBdkvxu43_7h7iiLeU4?usp=sharing
https://drive.google.com/drive/folders/1WmY0-nWvjq5aKwBdkvxu43_7h7iiLeU4?usp=sharing
http://dpfmanager.org/reference-documentation.html
https://openpreservation.org/blogs/troubles-with-tiff-stripoffsets-inconsistent-with-stripbytecounts
https://openpreservation.org/blogs/troubles-with-tiff-stripoffsets-inconsistent-with-stripbytecounts
https://qpdf.readthedocs.io/
https://doi.org/10.5281/zenodo.3517767
https://github.com/openpreserve/jhove/wiki/PDF-hul-Messages-2#pdf-hul-137
https://github.com/openpreserve/jhove/wiki/PDF-hul-Messages-2#pdf-hul-137
https://github.com/openpreserve/jhove/wiki/PDF-hul-Messages-2#pdf-hul-87
https://github.com/openpreserve/jhove/wiki/PDF-hul-Messages-2#pdf-hul-87
https://github.com/openpreserve/jhove/wiki/PDF-hul-Messages#pdf-hul-38
https://github.com/openpreserve/jhove/wiki/PDF-hul-Messages#pdf-hul-38
https://github.com/openpreserve/jhove/issues/638
https://parcore.org/
https://imagemagick.org/
https://github.com/itext/i7j-rups
https://coptr.digipres.org/index.php/Validation
https://www.dpconline.org/handbook

11 of 11

iPRES 2023: The 19th International Conference on Digital Preservation, Champaign-Urbana, IL, US.
19 -23rd September 2023

Appendix A1: Workflow for TIFF Use Case 1 – TIFF-HUL-2 Tag out of Sequence

Appendix A2: Workflow for TIFF Use Case 2 – TIFF-HUL-28: StripOffsets inconsistent with StripByteCounts

Appendix A3: Workflow for PDF Use Case 1 – PDF-HUL 137: No PDF Header

Appendix A4: Workflow for PDF Use Case 2 – PDF-HUL-38: Invalid Object Definition

