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Abstract

To address the steady increase in air travel in recent years, there is a pressing need to

expand and modernize many of the existing airports in the US that serve more than three

million daily passengers. Airport expansion projects often include construction of new

terminals, expansion of existing terminals, and construction of new runways and taxiways.

These projects often cause disruptions and delays in air traffic due to their impact on

the number, length, and capacity of operational airport runways and/or taxiways. On the

other hand, FAA regulations that require airport operations be minimally disrupted during

expansion projects often lead to an overrun in construction cost. Accordingly, airport and

construction planners need to carefully analyze and optimize the construction planning of

airport expansion projects in order to minimize construction-related disruptions in airport

operations while keeping total construction cost to a minimum.

The main goal of this research study is to develop novel models for optimizing the

planning of airport expansion projects that provide the capability of quantifying and mini-

mizing the disruptive impact of construction activities on air traffic and minimizing the total

construction cost. To accomplish this goal, the research objectives of this study are to

develop: (1) a novel optimization model for the planning of airport expansion projects that

is capable of minimizing both airport operations disruptions cost and total construction cost;

(2) an innovative machine learning methodology that can be used to create robust machine

learning models for predicting the impact of alternative airport area closures on flights

ground movement time without the need for repetitive and time-consuming simulation
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computations; and (3) a novel methodology for optimizing the phasing plans of airport

expansion project that identifies optimal daily and hourly work plans for all construction

activities that strikes an optimal balance between construction-related airport disruptions

and construction cost.

The performance of the developed models was analyzed using real-life case studies

of airport expansion projects. The results of this analysis illustrated the original con-

tributions of the developed models and their novel methodologies for (i) optimizing the

planning of airport expansion projects and generating optimal tradeoffs between minimizing

construction-related disruptions in airport operations and minimizing total construction

costs; (ii) developing optimal schedules for all airport construction phases at different levels

of details including daily and hourly work plans; (iii) accurately and efficiently predicting

the impact of alternative phasing plans on flights ground movement time during airport

construction activities and their associated construction-related disruption costs; and (iv)

analyzing and minimizing the impact of air traffic on total construction cost of airport

expansion projects. These original contributions and novel capabilities of the developed

models are expected to improve the functional performance of operational airports during

construction activities and enhance the cost-effectiveness of airport expansion projects.
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Chapter 1

Introduction

1.1 Overview and Problem Statement

There are more than 19,900 airports in the U.S. that provide service to 45,000 daily

flights and 2.9 million daily passengers (Bureau of Transportation Statistics, 2021; FAA,

2021). Many of these airports are in urgent need for upgrades and expansion (ACI-NA,

2021; ASCE, 2021; FAA, 2020a; Hubbard et al., 2021). In its latest assessment of the

conditions of infrastructure systems in the US, the ASCE provided an overall grade of “D+”

for the aviation sector infrastructure systems (ASCE, 2021). To address these challenges,

the Airports Council International in North America (ACI-NA) stated in its latest study

in 2021 the need for five-year (2021-2025) investment of approximately $115 billion in

U.S. airports to accommodate their increasing cargo activities, passenger growth, and

renovation needs (ACI-NA, 2021; ASCE, 2021; FAA, 2020a).

Airport expansion and renovation projects often cause disruptions and delays in the

daily operations of airports (FAA, 2017; Hubbard et al., 2021; Shami and Kanafani, 1997;

Siewart and Le Bris, 2015; Stewart, 2001). For example, construction activities often

require changes in the number and length of operational airport runways and/or taxiways,

and accordingly they cause operation disruptions such as restricting aircrafts to specific

runways and taxiways, suspension of operations, and/or decreased weights for aircrafts due
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to shortened runways (FAA, 2017). On the other hand, FAA regulations that require airport

operations be minimally disrupted during expansion projects often lead to construction

delays and cost overruns (Alnasseri et al., 2013; Shami and Kanafani, 1997; Stewart,

2001). For example, working during nighttime hours to mitigate disruptions in airport

operations often lead to increases in construction cost and duration that are caused by

lower construction productivity during nighttime shifts, double handling of materials due

to the closure of quarries at night, and extra cost and time for setting up closure lights,

barriers, and lighting towers for work areas (Stewart, 2001). Accordingly, project managers

and planners of airport expansion projects are often confronted with a number of unique

and critical challenges, including: (1) how to optimize the planning of airport expansion

projects to mitigate the impact of construction activities on airport operations, (2) how

to quantify the impact of airport construction activities and their phasing plans on flights

ground movement time, and (3) how to group airport construction activities into phases and

how to optimize the scheduling of these phases to minimize construction-related airport

disruptions while minimizing total construction cost, as shown in Fig. 1.1. The following

sections provide a concise discussion of these three challenges confronting airport and

construction planners of airport expansion projects, as shown in Fig. 1.1.

1.1.1 Optimizing the Planning of Airport Expansion Projects

Optimizing the planning of airport expansion projects confronts airport planners and

construction managers with a number of practical challenges including how to (1) identify

optimal project start date and optimal activity start times for airport expansion projects;

(2) determine optimal daily and weekly work plans for all airport expansion activities; (3)

select optimal working hours for each construction day from a set of feasible alternatives;

(4) quantify and minimize the impact of construction activities on airport operations during

the optimal planning of airport expansion projects; (5) measure and minimize the impact

of air traffic data and airport operations on total construction cost throughout the entire

duration of airport expansion projects; and (6) generate a set of optimal construction plans

2
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Airport Expansion Projects 
Challenges

Existing Research Gap Research Needs

Fig. 1.1. Challenges and research needs in airport expansion projects.

that provide optimal trade-offs between minimizing the construction-related disruption in

airport operations and minimizing the total construction cost.

Traditional scheduling methods do not consider the impact of construction work on

airport operations, nor the impact of airport regulations on construction activities. For

example, these methods often generate a plan that schedules airport expansion activities

during weekly working days using regular daytime hours, as shown in plan A and alternative

1 in Fig. 1.2, respectively. This plan, however, causes higher airport operational disruptions

because it schedules the construction activities during high daily and hourly air traffic

volumes. To minimize this disruptive impact of construction activities on airport operations,

planners can adjust plan A as follows: (1) change project start time (ST ) and activity start

dates (ST i) to schedule construction activities during low air traffic days as shown in plan

B in Fig. 1.2; (2) plan construction activities during weekly working days (ND) that have

low air traffic such as weekends as shown in plan B in Fig. 1.2; and (3) perform daily

construction activities during nighttime hours (NH) that have low air traffic, as shown in

alternative 2 in Fig. 1.2.
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Fig. 1.2. Needed model for optimizing scheduling of airport construction projects.

These construction planning decisions also have a significant impact on construction

cost. For example, the construction cost of the example in Fig. 1.2 can be minimized by:

(1) adjusting project start time (ST ) and activity start dates (ST i) to schedule construction

activities during regular construction working days as shown in plan A in Fig. 1.2; (2)

planning construction activities during weekly regular working days (ND) to minimize

the additional cost of labor overtime premiums, as shown in plan A in Fig. 1.2; and (3)

performing construction work during regular daytime hours (NH) to minimize the additional

cost of nighttime construction, as shown in alternative 1 in Fig. 1.2. This example clearly

illustrates the significant impact of the aforementioned decision variables on both airport

operation disruption and construction cost. Accordingly, the planning of airport expansion

projects needs to be carefully analyzed and optimized to address the aforementioned

challenges in order to minimize both the cost of construction-related disruption in airport

operations and the total construction cost.

A number of related research studies were conducted that focused on: (1) planning of

airport expansion and renovation projects (Shami and Kanafani, 1997; Stewart, 2001); (2)

analyzing the mutual interaction and impact between airport operations and construction

activities in airport expansion and renovation projects (Alnasseri et al., 2013; FAA, 2017,
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2022; Hubbard et al., 2021; Khalafallah and El-Rayes, 2006a, 2008; Shami and Kanafani,

1997; Siow et al., 2002; Stewart, 2001); and (3) optimizing the scheduling and resource

utilization of different types of construction projects (AlOtaibi et al., 2021; Altuwaim and

El-Rayes, 2021; El-Rayes and Jun, 2009; Jun and El-Rayes, 2010; Said and El-Rayes,

2012).

The first group of related studies focused on developing procedures to consider the

impact of construction activities on airport operations. For example, Shami and Kanfani

(1997) developed a decision support system (DSS) to identify, analyze, and evaluate

the interrelationships between airport operations and construction management systems

using novel disturbance concept and total disturbance cost model (TDC). The DSS was

developed to foster the TDC model by analyzing predefined construction/operation scenar-

ios and selecting the best plans based on a minimum disturbance cost. Stewart (2001)

presented practices used by Greater Toronto Airports Authority (GTAA) to strike a balance

between maintaining full operational needs and realistic construction methods and produc-

tion rates during airport expansion and renovation projects. These practices generated

construction schedules that heavily relied on nighttime work and weekend shifts that were

justified because their impact on increasing construction cost was considered reasonable

compared to the benefits gained from mitigating disruption in airport operations.

The second group of available related studies focused on investigating and analyzing (a)

the impact of airport expansion and renovation construction projects on airport operations;

and (b) the impact of airport and FAA regulations, that require airport operations to

be minimally disrupted during construction, on the construction cost and duration. For

example, Siow et al. (2002) developed a methodology that identifies the critical phases of

the airport expansion projects that need to be carefully planned and managed to minimize

disruptions in airport operations. Khalafallah and El-Rayes (2006a, 2008) analyzed the

proximity between construction activities and airport operations and developed two multi-

objective optimization models for planning airport construction site layouts that focused
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on (a) minimizing construction-related hazards and site layout costs; and (b) minimizing

construction-related security breaches while minimizing site layout costs. Alnasseri et

al. (2013) presented a theoretical framework that integrates project and human resource

strategies for airport operators to implement in order to enhance business operations

when managing and controlling construction projects. Hubbard et al. (2021) conducted a

literature review that focused on analyzing the impact of construction activities on airport

operations and reported that the limited amount of relevant literature indicates that this

area warrants further study. The same study highlighted the need for additional research

to investigate the potential use of alternative construction scheduling strategies such as

nighttime work to minimize construction-related disruptions in airport operations (Hubbard

et al., 2021).

The third group of related studies focused on optimizing the planning of a wide range

of construction projects to accomplish multiple project objectives. For example, a group

of research studies developed models to optimize construction planning by identifying

an optimal start time of construction activities in order to (a) maximize the efficiency of

resource utilization in construction projects (El-Rayes and Jun, 2009); (b) minimize site

logistics costs and project criticality of congested construction sites (Said and El-Rayes,

2012); and (c) generate optimal trade-offs among project duration, work interruptions, and

overtime use of repetitive construction projects (Altuwaim and El-Rayes, 2021). Another

related study developed a model for optimizing the planning of renovation work in leased

residential buildings to minimize total renovation cost by identifying optimal project start

date, crew formations, and unit renovation sequence (AlOtaibi et al., 2021).

Despite the significant contributions of the aforementioned research studies, they have

limitations in optimizing the planning of airport expansion and renovation projects as they

are incapable of (1) identifying optimal project start date and optimal activity start times

for airport expansion projects; (2) determining optimal daily and weekly work plans for all

airport expansion activities; (3) selecting optimal working hours for each construction day
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from a set of feasible alternatives; (4) quantifying and minimizing the impact of construction

activities on airport operations during the optimal planning of airport expansion projects;

(5) measuring and minimizing the impact of air traffic data and airport operations on total

construction cost throughout the entire duration of airport expansion projects; and (6)

generating a set of optimal construction plans that provide optimal trade-offs between

minimizing the construction-related disruption in airport operations and minimizing the

total construction cost. Accordingly, there is a need to develop a novel multi-objective

optimization model for the planning of airport expansion projects that provides the capability

of minimizing both airport operation disruptions and construction cost.

1.1.2 Predicting the Construction-Related Disruptions in Airport Ex-
pansion Projects

Airport expansion projects often cause disruptions and delays in air traffic due to their

impact on the number, length, and capacity of operational airport runways and/or taxiways

(FAA, 2017). For example, airport traffic controllers need to adjust the flights ground

movement routes due to the closure of the construction area to keep the airport operational.

This often leads to longer taxi and/or wait times for the flights to move between assigned

gates and runways during departure and arrival, as shown in cases A, B, and C in Fig. 1.3.

These construction-related delays need to be carefully analyzed to minimize the disruptive

impacts of construction activities on airport operations (Hubbard et al., 2021; Said and

El-Rayes, 2010; Shami and Kanafani, 1997; Stewart, 2001).

Many airport expansion projects are often broken down into phases to minimize

construction-related airport disruptions (FAA, 2017; Stewart, 2001), as shown in the

simplified example in Fig. 1.3. In this example, the airport expansion project requires

construction work in areas C1 and C2 to reconstruct these segments of the taxiway. Airport

and construction planners need to carefully analyze the impact of possible combinations

of airport area closures on flights ground movement time and on airport operations. For
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Case A:         Taxi path during construction in 𝐶1 & 𝐶2
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Case C:         Taxi path during construction in 𝐶2
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Runway
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Fig. 1.3. Impact of scheduling airport area closures on flights ground movement time
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example, airport and construction managers need to create a simulation for flights ground

movement under the condition of closing (1) area C1 and C2 together, (2) area C1, and (3)

area C2 to determine the best scheduling option and alternative, as shown respectively in

Cases A, B, and C in Fig. 1.3.

The number of all possible combinations of airport area closures depends on the number

of the area closures and equals to 2n − 1 where n represents the number of areas. For

example, the number of all possible combinations of airport area closures for an airport

expansion project that requires the reconstruction of 14 segments of Taxiway-B in San

Diego International Airport (see Fig. 1.4) equals 214−1 = 16, 383 combinations. The impact

of each of these 16,383 possible combinations on airport operations needs to be carefully

analyzed to select the best possible construction plan that minimizes total construction-

related airport disruptions. This impact can be analyzed using air traffic simulation tools

such as Simmod Pro (ATAC, 2021) to simulate and calculate flights ground movement time

for each of these possible combinations of varying airport area closures. This requires

time-consuming simulations and significant computational efforts which clearly illustrates

the challenges confronting airport and construction planners during their scheduling of

airport construction activities. To address these challenges, there is a pressing need

for an accurate and reliable model for predicting the impact of alternative construction

plans on flights ground movement time without the need for repetitive and time-consuming

simulations.

A number of related studies were conducted that focused on: (1) identifying and

analyzing the interaction between construction activities and air traffic operations during

airport expansion and renovation projects (FAA, 2017, 2022; Hegazy and Kamarah, 2022;

Hubbard et al., 2021; Khalafallah and El-Rayes, 2011; Shami and Kanafani, 1997; Siow et

al., 2002; Stewart, 2001); (2) estimating and predicting flight taxi times using computational

models (Balakrishna et al., 2008; Jordan et al., 2010; Lee et al., 2016; Lee et al., 2015;

Legge and Levy, 2008; Lian et al., 2018; Ravizza et al., 2013; Srivastava, 2011; Yin et al.,

9
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Fig. 1.4. Taxiway reconstruction areas at San Diego International Airport

2018; J. Zhang et al., 2022); and (3) predicting flight delays using machine learning models

(Gui et al., 2019; Ye et al., 2020).

The first group of related studies focused on developing procedures to quantify the

impact of construction activities on air traffic operations. For example, Shami and Kanfani

(1997) developed a systematic framework to evaluate the disturbance interrelationship

between construction activities and airport operations during airport expansion projects

and linked these interrelationships in a disturbance matrix. Siow et al. (2002) developed

a methodology to identify the critical phases of airport expansion projects in order to be

analyzed carefully to assess and manage their impact on airport operations. Hubbard

et al. (2021) presented a literature review about the construction impact on airport

operations and highlighted the need to analyze relevant case studies to access relevant

data due to lack of research and studies on this topic. FAA (2022) analyzes impacts that

upcoming construction projects may have on airport and airspace capacity and issues

airport construction impact reports quarterly. FAA also requires airport operators to identify

airport areas affected by construction activities to help measure the impact of construction

on airport operations (FAA, 2017).

The second group of available related studies focused on estimating and predicting

flight taxi times. For example, Legge and Levy (2008) and Srivastava (2011) developed

prediction models for departure taxi-out times by deriving linear equations from regression
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analysis using surveillance system data. Balakrishna et al. (2008) applied a reinforcement

learning probabilistic framework algorithm to estimate and predict average taxi-out times

at the airport at least 15 minutes before aircraft scheduled gate departure time. Jordan

et al. (2010) utilized a statistical learning method to extract key variables and predict taxi

time to support tower flight data managers. Another related study combined statistical

approach and ground movement model to improve taxi-out times estimations at airports

using multiple linear regression analysis (Ravizza et al., 2013). Lee et al. (2016, 2015)

proposed two new methods to predict taxi-out times at Charlotte Douglas Airport. In the first

study, a simulation tool was used to predict real-time taxi times and provide the estimates

to the runway scheduler, and a data-driven machine learning method was used to assess

the prediction accuracy (Lee et al., 2015). In the second study, surface surveillance data

was first analyzed to select key factors affecting taxi-out times that were used in multiple

machine learning methods to learn and predict taxi-out times (Lee et al., 2016).

The third group of related studies focused on predicting flight delays based on machine

learning models to help air traffic controllers in improving airport efficiency. For example,

Gui et al. (2019) developed two machine learning models which are random forest-based

and long short-term memory-based architectures to predict individual flight delay, and they

found that the random forest-based architecture presented better adaptation at a cost of

the training accuracy when handling a limited data set. Ye et al. (2020) developed new

models for predicting aggregate flight delays in airports by exploring four popular machine

learning methods, and the best performing model provided high prediction accuracy and

less error than previous studies.

Despite the significant contributions of the aforementioned research studies, they are all

incapable of (1) quantifying the impact of airport area closures on air traffic during airport

expansion projects; and (2) predicting the impact of alternative construction phasing plans

on flights ground movement time during airport expansion projects without the need for

repetitive and time-consuming simulation computations. Accordingly, there is a pressing
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need for the development of new models to address and overcome these limitations of

existing studies.

1.1.3 Optimizing the Construction Phasing Plan of Airport Expansion
Projects

Airport expansion projects often need to be planned and executed in phases to minimize

disruptions in air traffic that needs to remain operational during construction (FAA, 2017;

Shami and Kanafani, 1997; Stewart, 2001; Jaroch, 2020). These phases are typically

planned and scheduled to minimize the impact of airport area closures due to construction

on flights ground movement time and total construction cost (Hubbard et al., 2021; Philadel-

phia International Airport, 2019; Stewart, 2001; Jaroch, 2020). These airport construction

phases can be scheduled to be executed concurrently, sequentially, or with a degree of

overlapping among them, as shown in options I, II, or III in Fig. 1.5, respectively.

The concurrent scheduling of all construction phases to start at the same time always

reduces the overall duration of construction activities and airport area closures, however,

its impact on airport disruption cost varies significantly based on the airport layout and

required area closures, as shown in Fig. 1.5. For example, the concurrent closure option of

areas C1, C2, and C3 outperforms the sequential closure option in both the overall project

duration and airport disruption cost, as shown in Example A in Fig. 1.5. The reason for the

lower disruption cost of the concurrent closure is that the sequential closure of these three

areas one after the other does not reduce air traffic disruption because closing area C1

requires all aircrafts to take a detour to cross the runway to reach the departure queue

stage even if areas C2 and C3 are kept open for flights ground movement. Accordingly,

the concurrent closure of these three areas leads to a shorter overall number of days for

air traffic disruptions and lower airport operations disruption.

On the other hand, the concurrent closure option of areas C4, C5, and C6 results in a

shorter overall project duration, however, it leads to a higher airport disruption cost than
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those of the sequential closure option, as shown in Example B in Fig. 1.5. The reason for

the higher airport disruption cost of the concurrent closure is that it requires flights to take a

longer taxi path around the three closed areas while the sequential closure requires flights

to take a shorter taxi path around only one closed area at a time, as shown in Fig. 1.5. In

addition to these concurrent and sequential phasing options, planners can develop and

analyze the impact of intermediate alternatives that provide varying degrees of overlap

among the construction phases, as shown in Option III in Fig. 1.5. This example clearly

illustrates that the impact of phasing options on airport disruption cost is highly dependent

on the layout of the airport and therefore needs to be carefully considered by airport and

construction planners during the planning of airport expansion projects.

In addition to the construction phasing decisions, airport and construction planners

need to consider and analyze the impact of other important planning decisions on airport

disruption and construction costs including: (1) start date and time of construction phases

(PSp), (2) start time of construction activities (ASp,i), (3) weekly working days (WDp), (4)

number of daily working shifts (WSp), (5) working hours per shift (WHp,ws), and (6) lag

time between shifts (lagp,ws), as shown in Fig. 1.6. For example, airport and construction

planners can minimize the construction impact on airport disruption by scheduling the start

time of construction phases and activities (PSp, ASp,i) during low air traffic periods. This

can be achieved by planning the construction activities to be performed during low air traffic

days and hours such as weekends and nighttime hours, as shown in Plan A in Fig. 1.6.

Alternatively, planners can minimize the total construction cost by scheduling the start time

of phases and activities (PSp, ASp,i) to perform construction work during weekdays and

regular working hours to minimize overtime premiums, as shown in Plan B in Fig. 1.6. This

example clearly illustrates the significant impact of the aforementioned airport construction

planning decisions on both airport operations disruption cost and construction cost.

To minimize airport operations disruption cost and construction cost during airport

expansion projects, planners are often confronted with a number of challenges that require
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Fig. 1.6. Needed model for optimizing phasing plans of airport expansion projects

them to (1) identify optimal construction phasing plans including the start dates and times

of each phase and activity; (2) determine optimal schedule of each construction phase at

different levels of details including daily schedule and hourly work plans; (3) quantify and

minimize the impact of construction phasing plans on flights ground movement time using

machine learning; and (4) generate optimal phasing plans that provide optimal trade-offs

between minimizing construction-related disruption in airport operations and minimizing

total construction cost.

To support planners address the aforementioned challenges in the planning of airport

expansion projects, a number of related studies were conducted that focused on: (1)

analyzing the need for and impact of phasing plans during airport expansion projects

(Ashford et al., 2011; Dubey, 2020; Horst and Murray, 2014; Hubbard et al., 2021;

Khalafallah and El-Rayes, 2006a, 2008; Kwakkel et al., 2010; Lary and Rothnie, 1994;

Stewart, 2001; Stockton, 2015; Jaroch, 2020); (2) assessing and improving air traffic

and airport operations management (Castelli and Pellegrini, 2011; Herrero et al., 2005;

Humbertson and Sinha, 2012); and (3) investigating the implementation of air traffic

simulation tools and building information modeling environments in airport expansion

projects (Biancardo et al., 2020; X. Li and Chen, 2018).

15



The first group of studies focused on analyzing the need for and impact of construction

phasing plans during airport expansion projects. For example, Lary and Rothnie (1994)

investigated two airport construction projects that involved runway, taxiway, and terminal

apron pavement replacement and their complex construction phasing plans. These plans

required a substantial portion of the construction work to take place in nighttime due to the

high air traffic volume during regular daytime working hours. Stewart (2001) presented

practices used by Greater Toronto Airports Authority (GTAA) to strike a balance between

maintaining full operational needs and realistic construction methods and production

rates. The same study highlighted that it was necessary to divide the project into various

stages and sub-stages to maintain the required level of service. Jaroch (2020) investigated

industry practices for developing phasing plans to reconstruct a taxiway in Van Nuys Airport

by dividing the project into multiple phases to maintain access and mitigate operational

impact during construction. Khalafallah and El-Rayes (2006a, 2008) developed two

optimization models for planning airport construction site layouts that analyzed the proximity

between airport operations and construction activities in order to minimize site layout costs,

construction-related hazards, and construction-related security breaches.

The second group of available related studies focused on assessing and improving air

traffic management to support airport operators in reducing delays in airport operations and

flights. For example, Herrero et al. (2005) developed a decision support system to find the

best routes and sequences for selected airport operations to minimize total airport ground

delay. Castelli and Pellegrini (2011) evaluated the benefits and limitations of implementing

collaborative decision making (CDM) process among airlines, airports, and air navigation

service providers (ANSPs) in the planning and execution phases of a flight and reported

that the implementation of the new proposed protocol appears to be beneficial for airlines

and ANSPs but not for airports. Humbertson and Sinha (2012) investigated the use of

available planning and recovery tools to improve air traffic management and to mitigate

the impact of irregular airport operations caused by unforeseen events such as significant
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weather events.

The third group of related studies analyzed the performance of airport simulation tools

and BIM models during the planning, design, construction and/or operating phases of

airport expansion projects. For example, Li and Chen (2018) analyzed the application

of different simulation tools such as Simmod Pro in airport planning and reported that

the use of these tools has a great significance in optimizing airport construction plans

and improving air traffic management. Biancardo et al. (2020) implemented Building

Information Modeling (BIM) environment for an airport construction project of an elevated

walkway connecting the gate with the runway and reported that the use of BIM environment

resulted in reducing project cost and duration.

Despite the significant contributions of the aforementioned research studies, they

have limitations in optimizing the phasing plans of airport expansion projects as they are

incapable of: (1) identifying optimal construction phasing plans including the start dates and

times of each phase and activity; (2) determining optimal schedule of each construction

phase at different levels of details including daily schedule and hourly work plans; (3)

quantifying and minimizing the impact of construction phasing plans on flights ground

movement time using machine learning; and (4) generating a set of optimal phasing plans

that provide optimal trade-offs between minimizing airport operations disruption cost and

minimizing total construction cost. Accordingly, there is a pressing need to develop a novel

methodology for optimizing the phasing plans of airport expansion projects that overcomes

the aforementioned limitations of existing research studies and identifies optimal daily and

hourly work plans for all construction activities in order to minimize both airport operation

disruptions and total construction cost.

1.2 Research Objectives

The primary goal of this research study is to develop a novel methodology for optimizing

the planning of airport expansion projects. To accomplish this goal, the objectives of this
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research study along with its research questions are summarized as follows:

Objective 1:

Conduct a comprehensive literature review on the latest research on (1) mutual dis-

ruption impact in airport expansion projects between airport operations and construction

activities in airport expansion and renovation projects; (2) optimizing phasing plans of

airport expansion projects; (3) available planning and scheduling optimization models of

airport expansion and renovation projects; (4) flights taxi and travel times machine learning

prediction models; (5) available site layout models for area-constrained construction site

projects such as airport expansion projects; (6) new technologies such as autonomous

vehicles and high-speed mass transit systems and their impact on the future use of airport

facilities; and (7) decision-making and multi-objective optimization techniques that have

the ability to address the challenges of airport expansion projects.

Research Questions:

(1) What are the mutual impacts between ongoing airport operations and construction

activities? (2) What measures can be taken to mitigate the construction-related disruptions

during airport expansion projects? (3) How can the phases of airport expansion projects

optimally planned? (4) How can the planning of airport expansion projects mitigate airport

operation disruptions and total construction cost? (5) What methods exist to optimize the

planning and scheduling of an airport expansion project? and (6) What machine learning

models can be used to predict the impact of construction phasing plans on flights ground

movement time during airport expansion projects?

Objective 2:

Formulate a novel optimization model for the planning of airport expansion projects

that provides the capability of minimizing both airport operation disruptions and total

construction cost.

Research Questions:

18



(1) What metrics can be utilized to evaluate and analyze the impact of construction

activities on airport operations? (2) How can these metrics be integrated to compute

the total disruption cost and the overall construction cost for airport expansion projects?

(3) How to optimize the planning of airport expansion projects to minimize both airport

disruption cost and total construction cost? (4) What are the decision variables and

constraints that need to be considered and optimized in this optimization problem? (5)

How to formulate an optimization objective function that minimizes construction-related

disruption in airport operations and total construction cost for airport expansion projects?

and (6) How to evaluate the performance of the developed optimization model?

Objective 3:

Develop an innovative machine learning methodology that can be used to create robust

machine learning models for predicting the impact of alternative airport area closures

on flights ground movement time in any airport without the need for repetitive and time-

consuming simulation computations.

Research Questions:

(1) How to quantify and predict the impact of construction airport area closures on flights

ground movement time? (2) What are the predictor variables during airport expansion

projects that have an impact on flights ground movement time? (3) How to create a

representative dataset that can be used to train and test the performance of the developed

machine learning models? (4) What data transformation techniques can be used to

preprocess the data to improve the prediction accuracy of the developed model? and (5)

Which machine learning methods can be utilized to develop models that are capable of

accurately predicting the impact of airport area closures on flights ground movement time?

Objective 4:

Develop an original methodology for optimizing the phasing plans of airport expansion

project that identifies optimal daily and hourly work plans for all construction activities in
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order to minimize both airport operation disruptions and total construction cost.

Research Questions:

(1) How to quantify the construction-relation disruption cost associated with airport area

closures? (2) How to optimally break down airport expansion projects into multiple phases?

How to select the optimal start time of each phase of the airport expansion project? (3)

How to optimize the number of weekly working days, daily shifts, working hours per shift

for each phase? (4) How to formulate an optimization objective function that minimizes

construction-related disruption in airport operations and total construction cost for airport

expansion projects? and (5) Which optimization techniques can be utilized to optimize

phasing plans to minimize construction-related disruptions in airport operations? and (6)

How to evaluate the performance of the developed optimization model?

1.3 Research Methodology

This section presents the proposed methodology for achieving the objectives of this

research study. As shown in Fig. 1.7, the proposed methodology is composed of four major

research tasks that are designed to: (1) conduct a comprehensive literature review, (2)

formulate a novel optimization planning model for airport expansion projects, (3) develop

an innovative machine learning methodology to create a prediction model for quantifying

the impact of various construction phasing plans on flights ground movement time during

airport expansion projects, and (4) develop an original multi-objective model for optimizing

the phasing plans of airport and renovation expansion projects.

1.3.1 Task 1: Conduct a Comprehensive Literature Review

This task focuses on conducting a comprehensive literature review to identify and

investigate the latest research focusing on the airport expansion projects challenges. The

work in this research task can be subdivided into the following subtasks:
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Task 2:
Airport Planning Optimization Model

Task 3:
Machine Learning Prediction Model

Task 4:
Phasing Plan Optimization Model

Task 1:
Comprehensive Literature Review

Analyze construction-related disruptions facing airport expansion projects

Investigate the latest research on the phasing plans of airport expansion projects

Study existing work of optimizing scheduling and resource utilization of construction projects

Explore flights taxi-out and travel times machine learning prediction models

Examine the construction site layout planning models

Evaluate impact of new technologies on upgrading and transforming airport facilities

Analyze available multi-objective optimization techniques

Identify model decision variables

Develop an airport planning optimization model

Implement the optimization planning model

Test the performance of the model

Determine model decision variables

Formulate a phasing plans optimization model

Implement the phasing plans optimization model

Evaluate the performance of the model

Collect airport and air traffic data

Preprocess the collected data

Train the model

Evaluate and validate the model performance

Fig. 1.7. Research methodology.

Analyze construction-related disruptions facing airport expansion projects

The purpose of this task is to analyze the construction-related disruption facing airport

expansion projects and identify measures that can be taken to mitigate the disruption and

its consequences. The disruption to be investigated include the impact that construction

activities and airport operations cause to each other. The consequences of these disrup-

tions are delay in construction activities, delay in airport operations, and delay in delivering

projects in the form of extra construction and operation costs.

Investigate the latest research on the phasing plans of airport expansion projects

This task investigates the available research and studies of optimizing the phasing plans

of airport expansion projects using different optimization techniques to achieve different

objectives. This task also evaluates the formulation of these models, their performances,

and abilities to handle the different type of decision variables and objective functions of

this type of projects.
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Study existing work of optimizing scheduling and resource utilization of construction
projects

This task studies the existing studies and work of optimizing the scheduling and resource

utilization of construction projects in general and airport expansion projects in particular.

These models are also investigated in this task to assess their ability in handling the

formulation of optimization problems of this type of projects.

Explore flights taxi and travel times machine learning prediction models

This task explores the existing statistical and machine learning models that is capable of

estimating and predicting the flights taxi and travel times. Moreover, this task will evaluate

the accuracy of these models and their capability of accurately predicting flights delays

especially during airport expansion projects.

Examine the construction site layout planning models

This task examines the available methodologies and models of optimizing construction

site layout planning including heuristics and genetic algorithms. Moreover, this task will

evaluate the performance of these techniques in handling the decision variables and the

required constrained of construction site layouts including boundaries and zone conditions.

Evaluate impact of new technologies on upgrading and transforming airport facilities

This task evaluates the latest research on the upgrading and transformation plans of

airport existing facilities. Applicable areas of research include the related new technologies

and their impacts on the future need of the existing airport facilities to maximize the use of

the ongoing facilities over the time.

Analyze available multi-objective optimization techniques

This task focuses on analyzing the latest decision making and optimization techniques,

which will be utilized to address the unique challenges of airport expansion projects. This
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task considers heuristics algorithms, genetic algorithms, and weighted linear programming

optimization techniques.

1.3.2 Task 2: Formulate Optimization Planning Model

This objective of this task is to formulate a multi-objective optimization planning model

of airport expansion projects that is capable of minimizing construction-related disruptions

in airport operations and minimizing total construction cost. This model intends to support

airport planners, stakeholders, and construction planners in their efforts to upgrade the

aviation infrastructure with minimal impact on ongoing airport operations while minimizing

total construction cost. The work in this research task can be subdivided into the following

subtasks:

Identify model decision variables

The purpose of this task is to identify new decision to formulate the optimization problem.

These decision variables, include project start date, construction activities start times,

number of weekly working days, and number working hours per shift.

Develop an optimization planning model

This task develops a multi-objective optimization planning model that is capable of

generating optimal tradeoffs between minimizing the construction-related disruptions in

airport operations and minimizing the total construction costs.

Implement the optimization planning model

The objective of this task focuses on implementing the developed optimization planning

model using the NSGA-II genetic algorithm (Deb et al., 2002).
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Test the performance of the model

This task tests and refines the performance of the developed optimization planning

model using a case study of San Diego International airport expansion project.

1.3.3 Task 3: Develop Machine Learning Prediction Model

This objective of this task is to develop a machine learning model of airport expansion

projects that is capable of quantifying and predicting the construction-related disruptions in

airport operations. This model is expected to support airport planners and construction

managers in their efforts to minimize the construction-related disruptions in airport opera-

tions during construction for airport expansion projects. The work in this research task can

be subdivided into the following subtasks:

Collect Data

The purpose of this task is to focus on analyzing the airport data to determine the factors

that has a significant impact on the mobility of the aircrafts during its ground movement,

such as, airport layout, flights schedule, departure and arrival gates, taxi paths, and

allocated runways. This task also collects this data using an advanced air traffic simulation

tool (Simmod PRO!).

Preprocess the Data

This task preprocesses the collected data to normalize and standardize it to prepare it

for the training model. Different normalization and standardization techniques are used

based on the type of data to get the best results, such as, min-max scalar for continuous

type of data, and one hot encoding for categorical type of data. Dijkstra’s algorithm is also

used in this task to find the shortest taxi path for each flight to normalize the airport layout.
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Train the model

In this task, the model focuses on training the normalized and standardized data by

splitting it in time series. Different machine learning models are used in this task for training

the model and compare the results to determine the best machine learning model that

gives the highest accuracy. The model tests its accuracy by comparing the predicted

results for the test data that was split before with its actual results.

Evaluate and Validate the model

This task focuses on evaluating the performance of the developed model using the train-

ing dataset and validating its results by comparing the predicted values to the true values

in the testing dataset that was never seen before by the model. The prediction accuracy

of the model is measured in different metric such as the mean absolute percentage error,

mean square error, mean absolute error, and others.

1.3.4 Task 4: Develop Optimization Phasing Plans Model

This objective of this task is to develop a multi-objective optimization phasing plans

model of airport expansion projects that is capable of minimizing construction-related

disruptions in airport operations and minimizing total construction cost. This model intends

to optimize the phasing plans of airport expansion projects to support airport planners,

stakeholders, and construction managers and planners in their efforts to upgrade the air-

ports with minimal impact on ongoing airport operations while minimizing total construction

cost. The work in this research task can be subdivided into the following subtasks:

Determine model decision variables

In this task, new decision variables will be determined to formulate the optimization

problem. These decision variables, include phases start date, construction activities start

times, number of weekly working days, number of daily shifts and working hours per shift.
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Formulate an optimization phasing plans model

The objective of this task is to formulate a multi-objective phasing plans optimization

model that is capable of generating optimal tradeoffs between minimizing the construction-

related disruptions in airport operations and minimizing the total construction costs.

Implement the optimization phasing plans model

This task implements the developed phasing plans optimization model using the NSGA-

II genetic algorithm (Deb et al., 2002).

Evaluate the performance of the model

This task focuses on evaluating and refining the performance of the developed phasing

plans optimization model using a case study of an airport expansion project.

1.4 Research Significance

The developments of this research study are expected to have significant and broad

impacts on: (1) quantifying and minimizing the construction-related disruptions and total

construction cost of airport expansion projects; (2) accurately and efficiently predicting

the impact of airport area closures during airport expansion projects on flights ground

movement time; and (3) supporting airport and construction planners in identifying optimal

daily and hourly work plans for all airport construction activities to minimize construction-

related disruptions and total construction cost.

1. Minimizing the construction-related disruptions and the total construction cost

The present study is expected to support airport planners and construction managers

in minimizing construction-related disruptions and total construction cost. The proposed

multi-objective optimization model is designed to generate a wide spectrum of Pareto

optimal solutions that represent unique and optimal tradeoffs between the two optimization

objectives functions of minimizing construction-related disruptions in airport operations
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and total construction cost. Accordingly, project planners can select schedule plans from

the spectrum of Pareto-optimal solutions that best fit the maximum acceptable level of

disruptions in air traffic or complies with the maximum available budget. This capability will

result in the construction of cost-effective and high-performance sites that will lower the

disruptions in airport operations during construction.

2. Quantifying and predicting the impact of construction activities.

This research study holds a strong potential to quantify and accurately predict the

construction-related disruptions in airport operations by conducting a simulation of the air

traffic and operations of the airports in normal conditions and during construction using an

advance air traffic simulation tool (Simmod PRO!). The model then learns and predicts the

impact of the construction activities on air traffic to enable planners to accurately analyze

their plans for airport expansion projects and determine any needed changes to maintain

the minimal level of disruptions in air traffic during construction.

3. Optimizing the phasing plans and construction schedules of airport expansion projects

The developed phasing and planning optimization model provides planners of airport ex-

pansion projects planners with the capability of minimizing construction-related disruptions

and total construction cost. The model provides much-needed support for airport planners

and construction managers and enables them to identify an optimal and cost-effective phas-

ing plans and construction schedules that minimizes construction-related disruptions in air

traffic and total construction cost. This can lead to numerous and significant improvements

in the performance of constructing this type of projects.

1.5 Report Organization

The organization of this report along with its relation to main research objectives, is

discussed as follow:

Chapter 2 details a comprehensive literature review that establishes baseline knowledge
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of the latest research conducted on (1) analyzing the mutual interaction and impact between

airport operations and construction activities in airport expansion and renovation projects,

(2) planning of airport expansion and renovation projects, (3) optimizing the scheduling and

resource utilization of different types of construction projects, (4) taxi and flight times and

delays machine learning prediction models, (5) construction site layout planning models,

(6) the transformation models for airport facilities that are expected to be under-utilized in

the future, and (7) available decision-making and optimization techniques.

Chapter 3 describes the development of a novel multi-objective optimization model for

the planning of airport expansion projects that provides the capability of minimizing both

airport operation disruptions and construction cost. This chapter presents the model in four

main modules (1) simulation module that calculates and quantifies the impact of airport

construction activities on air traffic and airport operations; (2) optimization module that

searches for and identifies an optimal construction schedule that generates optimal trade-

offs between the two important objectives of minimizing construction-related disruptions in

airport operations and minimizing construction cost; (3) scheduling module that calculates

the start and finish times of each activity in airport expansion projects; and (4) cost module

that computes the total cost of construction-related disruptions in airport operations, and

the total construction cost for each generated solution in the optimization module. A real-life

case study of planning an airport expansion project is analyzed to demonstrate the use of

the model and display its unique capabilities.

Chapter 4 presents the development of an innovative machine learning methodology to

develop a prediction model for quantifying the impact of various phasing plans on flights

ground movement time during construction of airport expansion project. The methodology

implementation is organized in four stages: (1) data collection stage to gather all required

airport data for training and testing the prediction model; (2) data preprocessing stage to

identify, classify, transform, and split all predicted and predictor variables data into training

and testing datasets; (3) model training stage to select the machine learning methods and
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fit each of them to the training dataset by adjusting its parameters to minimize the error; and

(4) evaluation and validation stage to evaluate the performance of each selected method

on the training dataset and validate its results by applying it on unseen testing dataset to

verify its generalizability to make predictions on new unseen data. The performance of the

developed machine learning models was evaluated by analyzing a real-life case study.

Chapter 5 discusses the development of a novel methodology for optimizing the phasing

plans of airport expansion projects that provides the capability of minimizing both the cost

of construction-related disruptions in airport operations and the total construction cost.

This chapter presents the integration of a machine learning model to predict the impact of

generated phasing plans on flights ground movement time during construction, and a multi-

objective genetic algorithms optimization model to identify optimal construction phasing

plans for airport expansion projects. A real-life case study of phasing the construction plan

of an airport expansion plan is analyzed to illustrate the use of the developed models and

demonstrate their capabilities.

Chapter 6 presents the conclusions, research main contributions, and recommended

future research of the present study.
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Chapter 2

Literature Review

2.1 Introduction

A comprehensive literature review has been conducted to investigate existing research

on the topics most relevant to airport expansion projects in order to establish a solid

starting point to pursue this research study. This chapter summarizes and organizes

the reviewed literature in eight main sections: (1) the mutual disruption impact in airport

expansion projects between airport operations and construction activities; (2) phasing

optimization models; (3) planning and scheduling optimization models; (4) flights taxi and

travel times machine learning prediction models; (5) site layout planning models; (6) the

future impact of new innovative technologies on the existing facilities; (7) decision-making

and optimization techniques; and (8) limitations of existing models and research needs.

2.2 Disruption in Airport Expansion Projects

The causes of delayed flights are categorized into five different categories: (1) Air

Carrier, (2) Aircraft Arriving Late, (3) Security Delay, (4) National Aviation System Delay,

and (5) Extreme Weather (Bureau of Transportation Statistics, 2022a). National Aviation

System Delay examines and includes the delay data because of closure runways. For

example, In April 2017, 78.15% of the flights were recorded on time while 7.55% of the

30



flights were recorded delayed due to National Aviation System (NAS), as shown in Fig. 2.1.

Moreover, 21.82% of the delayed flights caused by the NAS were because of runway

closure (Bureau of Transportation Statistics, 2022b).

The Impact of runway closure was significantly more in some airports that has construc-

tion or development projects underway during that specific period of time. For instance,

San Francisco International Airport had many construction projects going on, as the re-

habilitation program of a major runway construction project (Runway 28L) that had to be

upgraded through April – June 2017 was going underway, reducing the capacity of the

runway by 50% causing more than a thousand delayed or cancelled flights over a weekend

(Brinkley, 2017; Sciacca, 2017). Bureau of Transportation Statistics (2022b) showed that

only 57.5% of the flights were recorded on time in San Francisco International Airport in

April 2017. On the other hand, 25.83% of the flights were delayed because of NAS reasons.

However, 54.67% of these delayed flights was because of the closed runway recording

150% more delay because of runway closure than the average in all major airports, as

shown in Figs. 2.2 and 2.3 (Bureau of Transportation Statistics, 2022b).

Nevertheless, in the same airport for the period of (May 2015 – May 2016) when there

were no major construction projects are going on, 75.41% of the flights were on time where

10.4% of the flights were delayed due to NAS and only 1.75% of these flights were delayed

because of closed runway. This shows that airport expansion and development projects

have a direct impact on airport operations, as it causes delays for flights due to runway

closure and many other reasons (Bureau of Transportation Statistics, 2022b).

Airports are divided into landside and airside with the need for infrastructure for a

ground access. According to Shami and Kanfani (1997) the impact is mutual between the

airport system and the construction system, as any disturbance that could happen to any

component of the airport divisions would necessarily lead to a disruption in the airport

operations or the construction activities. Disruption of airport operations means delay that
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Fig. 2.1. All US airports on time arrival performance in April 2017 (Bureau of Transportation Statistics, 2022b)

Fig. 2.2. Causes of NAS delays in all US airport in April 2017 (Bureau of Transportation Statistics, 2022b)
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Fig. 2.3. Causes of NAS delays at SFO in April 2017 (Bureau of Transportation Statistics, 2022b)

can be represented by time or cost and could happen in many shapes and not limited to;

(1) more time needed to serve the planes, (2) more time the plane needs to spend on its

way from the gate to the runway and vice versa, (3) more time added to the scheduled flight

at the time of construction compared to its normal duration, (4) The additional time that the

passengers are asked to take it into consideration in order to arrive earlier to the airport

because of construction, (5) Detour to arrive to the terminal that would increase the time

of the trip to the terminal, and (6) the decrement of airport’s capacity, in addition to other

ways of possible delays. On the other hand, the airport system constrains the construction

activities in many ways, since the airport usually require staying fully functional or to face

the minimum disruption during the construction phase (Shami and Kanafani, 1997).

The statistics show that the National Aviation System sector (NAS) is responsible for a

significant amount of delayed flights. The NAS sector consists of; (1) Weather, (2) Volume,

(3) Equipment, (4) Closed Runway, and (5) Others (Bureau of Transportation Statistics,

2022a). However, the weather is the dominant reason among other NAS component that

causes delay. Nonetheless, it is worth it to mention that logically weather is hard to be
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predicted in manner to take the change in the flights schedule into consideration. On

the other hand, construction is a long process that requires a set of plans and detailed

schedules that help the airlines to take actions and consider the construction into their

flights schedule.

Allison Hope (2017) mentioned that airlines consider many variables to determine the

time of each flight they are responsible on, that makes it a very complicated process

to formulate the schedule. The airport infrastructure is a main variable that plays a big

role in that, including the number of gates is available and the status of the runways in

addition to the construction projects. This would help the airline to extend the time block

of certain flights to avoid the delayed status on their trips which affects the accuracy of

the impact of the construction on the flights time. Although the airlines denied the claim,

the industry insiders name this process “schedule padding” which is used to enhance the

punctuality. For example, despite new technology and developed airplanes that we travel

on nowadays, OAG schedules Analyzer shows that the scheduled time of flights have

increased significantly over the past years. For example, the average flight times from New

York La Guardia Airport to Chicago O’hare Airport have increased by 20 minutes, from

around 2 hours and 30 minutes to 2 hours and 50 minutes (Morries and Smith, 2018), as

shown in Fig. 2.4

2.3 Phasing Models of Airport Expansion Projects

This section discusses a number of related studies were conducted that focused on: (1)

developing operational procedures and phasing plans for airport expansion projects; (2)

planning and improving air traffic and airport operations management; and (3) investigating

and analyzing the implementation of information and communication technologies and

simulation tools in airport expansion projects.
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Fig. 2.4. New York La Guardia to Chicago Evolution of Block Hours (Morries and Smith, 2018)

2.3.1 Operational procedures and phasing plans

Lary and Rothnie (1994) studied two airport construction projects that involved replace-

ment of runway, taxiway, and apron pavement with cement concrete pavement. Some

of the new replaced cement concrete pavement must return in service within hours af-

ter replacement due to the high traffic volume at the airports where these projects take

place. Therefore, these projects were formulated, designed, and executed under nighttime

conditions to mitigate any disruptions in airport operations.

Stewart (2001) presented industry practices used by the Greater Toronto Airport Au-

thority (GTAA) to insure effective communication between all concerned parties especially

to find a rapid resolution for any change in response to unforeseen conditions. These

procedures require developing operational plans to focus on airside work challenges, such

as night work, short closures, and segmenting of work. These plans aims to maintain

the required level of service during airport expansion and renovation projects by dividing

the project into segments. Furthermore, airport and construction managers plans the

precise number, size, and timing of each segment to strike a balance between maintaining
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full airport operational needs and realistic construction methods and production rates.

The result for the studied project was a construction schedule that is divided into many

segments assigned for short shifted night work and weekend working hours. The study

highlighted that the additional costs which were associated with segmenting the project

and working during premium time nights and weekend hours is considered a small price

for maintaining the same level of operational service and safety.

Kwakkel et al. (2010) explored three adaptive alternatives to Airport Master Planning

(AMP) which is the dominant approach for Airport Strategic Planning (ASP) that focuses

on the development of plans for the long-term development of an airport. AMP aims

to provided a detailed view for how the airport would look like in the future. The study

highlighted this method performs poorly when the real future turns out to be different from

the assumed view since the master plan is static. This study concluded that the three new

approaches are complementary and worth be combined into a new adaptive approach to

ASP. These three approaches, Dynamic Strategic Planning (DSP), Adaptive Policy Making

(APM), and Flexible Strategic Planning (FSP), have different emphasizes, as DSP focuses

on real options, APM provides a detailed framework for the development of adaptive plans,

and FSP covers a broad spectrum of planning concepts that together result in a thorough

treatment of many and diverse airports face uncertainties.

Horst and Murray (2014) identified some key differences in the requirements and

practical developments of Construction Safety and Phasing Plans (CSPPs) throughout

many International Civil Aviation Organization (ICAO). CSPP is a necessary document for

any airport construction project that could have an impact on normal airport operations.

This study also identified best industry practices for CSPP development due to the fact

that there is no readily available source of information to identify the difference in CSPP

requirements found between ICAO states which has left a challenge for engineering firms

to face. This study highlighted that best practices practices in developing CSPP is found in

a combination of US and UK practices. In the US, FAA requires a CSPP for each airfield

36



construction project funded by the Airport Improvement Program (AIP) of the Passenger

Facility Charge (PFC) or located on an airport certificated under Part 139.

FAA (2017) provides significant guidance for developing a CSPP for aiport construction

projects. In this advisory, they introduced Safety and Risk Management (SRM) to the

CSPP development process. Furthermore, to ensure that contractors fully understands

the CSPP along with their responsibilities, FAA requires the contractor to produce a Safety

Plan Compliance Document (SPCD) as part of final CSPP.

Jaroch (2020) analyzed a taxiway reconstruction project at Van Nuys project. The project

was to reconstruction the 8000-foot-long asphalt Taxiway A and Taxiway B pavement

including shoulders. The main challenge in the planning phase for this project was

dividing the project into various phases to mitigate construction-related impact to the

airport to ensure access for airport to and from the runways with the least impact to tenant

operations. Each phase of construction was executed in the same manner, starting with

shutting down the construction area, installation of lighted barricades, removal of airfield

marking and signage leading into the work area, installing temporary lighting to maintain

the electrical system for remaining active airfield areas, and demolishing the existing

pavement and electrical system at the work area. After that, the contractor installs deep

utilities, constructing the taxiway base material, installing in-pavement lighting conduit,

placing the new asphalt pavement, installing edge light fixtures, signage, and tests the

electrical system. Finally, the contractor completes the pavement marking of the new

taxiway, removes the barricades, and opens the area up to aircraft operations. Once one

phase is complete and access is restored, similar construction phase is then shut down

and the process is repeated. The article highlighted one of the biggest challenges was

faced in this project during early stage of construction of Taxiway B which was a heavy

rain season, and their design team reacted quickly to re-sequence and combine certain

phases of the project to compensate for the time lost due to initial weather delays.
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2.3.2 Air traffic management

Herrero et al. (2005) proposed and analyzed two planning approaches for automatically

optimize and find the best routes and sequences for airport operations to help airport

ground controllers to improve surface operations and safety. This study addressed the

airport global management of departure flights, moving aircrafts along taxiways between

gate positions and runways, Two modified optimization algorithms, a time-space flow

algorithm and a genetic algorithm, have been developed together to minimize the total

ground delay. The study highlighted the significance in using simulation and decision

support tools in helping airport controllers in their airport management efforts.

Castelli and Pellegrini (2011) analyzed the potential benefits and limitations of imple-

menting collaborative decision making (CDM) process among airlines, airports, and air

navigation service providers (ANSPs) in the framework of the European air traffic man-

agement (ATM) system. The goal of this proposed concept is to identify four dimensions

(latitude, longitude, flight-level, and time) called target windows which are defined at spe-

cific transfer of responsibility areas. Two distinct Analytic Hierarchy Process (AHP) models

were presented to evaluate the effect of the introduction of these winows in the planning

and execution phases of a flight. The study analysis shows that the implementation of the

new proposed protocol appears to be beneficial for airlines and ANSPS but not for airports.

Humbertson and Sinha (2012) described the technologies and tools that can be used

by airport operation managers and air traffic management service providers to reduce the

impact of irregular aircraft operations caused by significant weather events. This study also

discusses the benefits of a shared situational awareness or common operating picture that

could be achieved from proper implementation.
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2.3.3 Information technologies and simulation tools

Li and Chen (2018) explored and described airport simulation technology that can help

the civil aviation achieving scientific assessment and refined decision-making for airport

planning, construction, and operating management. These simulation tools can be divided

into four types: airside ground operating simulation, terminal area and airway airspace

simulation, terminal building internal process simulation, and airport landside curbside

traffic simulation. The first type focuses on analysing the operating efficiency of aircrafts in

the runway-taxiway-area inside the airfield, and the evaluation of flights delay level, taxiing

time, take-off and landing efficiency, and the ground operating capacity of an airport, such

as Simmod simulation tool. The second type focuses on analysing the flight efficiency of

aircrafts in the arrival and departure route network inside the terminal area and in the route

network under airspace, and the evaluation of the terminal area airspace capacity. The

third type focuses on analyzing the efficiency of arrival, departure, and transfer procedures

in the terminal building. Finally, the fourth type focuses on the evaluation of the landside

traffic efficiency in airport, curbside congestion, and the smoothness of traffic. This study

highlighted the significance of implementing these simulation tools in airport planning,

design, and operating phases to the optimization of airport construction plans and the

improvement of airport operational management models.

Biancardo et al. (2020) presented the implementation of information and communication

technology in airport construction projects. In this study, a Building Information Modeling

(BIM) was adapted for an elevated walkway connecting the gate with the runway at one

of airport construction projects. Revit software was used for the architectural/structural

model, Robot Structural Analysis (RSA) for the analytical verification, and Navisworks

for the 4D/5D model. The study highlights the benefits obtained from implementing BIM

technology showing a reduction in construction times and costs. The same study discussed

the help BIM can provide by overcoming typical inefficiencies of the traditional design

method and conventional professional practices, allowing more integration between design
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and execution phases.

2.3.4 Limitations of available phasing models

Despite the significant contributions of the aforementioned research studies, they

have limitations in optimizing the phasing plans of airport expansion projects as they are

incapable of: (1) identifying optimal start dates of each phase and optimal activities start

times for each phase of airport expansion projects; (2) determining optimal daily and weekly

work plans for all airport expansion activities; (3) selecting optimal number of working

shifts and shifts working hours for each construction day from a set of feasible alternatives;

(4) quantifying, predicting, and minimizing the impact of construction activities on airport

operations during the optimal planning of airport expansion projects; (5) measuring and

minimizing the impact of air traffic data and airport operations on total construction cost

throughout the entire duration of airport expansion projects; and (6) generating a set of

optimal construction phasing plans that provide optimal trade-offs between minimizing the

construction-related disruption in airport operations and minimizing the total construction

cost. Accordingly, there is a need to develop a novel multi-objective model for optimizing

the phasing plans of airport expansion projects that provides the capability of minimizing

both construction-related disruptions in airport operations and construction cost.

2.4 Planning and Scheduling Models of Airport Expan-
sion Projects

This section discusses a number of research studies were conducted that focused on: (1)

planning of airport expansion and renovation projects; (2) analyzing the mutual interaction

and impact between airport operations and construction activities in airport expansion and

renovation projects; and (3) optimizing the scheduling and resource utilization of different

types of construction projects.
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2.4.1 Planning of airport expansion and renovation projects

Shami and Kanfani (1997) addressed the complicated characteristics of airport ex-

pansion and renovation projects and its challenges especially the interference between

construction activities and facilities ongoing operations as these operations constrain

the performance of construction from one side, and construction activities often cause

disruption to airport operations on the side. This study outlined a new concept called the

disturbance concept to develop a prototype decision support system to minimize the dis-

turbance between construction project and airport operations. Shami and Kanfani (1997)

developed a systematic decision support system (DSS) framework to identify, analyze, and

evaluate the interrelationships between airport operation and construction management

systems using the newly developed disturbance concept and total disturbance cost (TDC)

model. These two components were linked in a database that was called the disturbance

matrix. The DSS was developed to foster the TDC model and analyze the disturbance

matrix. The authors integrated construction and operations scenarios using airport sim-

ulation tool (Simmod) and scheduling software (Primavera). The DSS then was used to

assist management in selecting optimum scenarios based on a minimum disturbance

cost. In this study, a real-life case study was analyzed to illustrate the capabilities of the

developed model, and it highlighted that airports can accommodate construction without

necessarily suffering heavy negative consequences and achieving a significant minimiza-

tion in disturbance by combining improved actions in air traffic control and construction

management. Also, the authors mentioned that the TDC model is invaluable in measuring

airfield performance during construction and in resolving schedule criticality, liquidated

damages, and work phasing.

Stewart (2001) presented practices used by GTAA to strike a balance between maintain-

ing the same operational level of service and realistic construction methods and production

by holding multiple meetings between airport authorities and construction managers to

generate practical schedules to perform the work of airport construction projects. These
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practices generated a construction schedule that involves short shifted nighttime works and

weekend hours. These practices also divided the work into various stages and sub-stages

to ensure the minimal impact on airport operations and movement of aircrafts during the

construction project. Although this schedule resulted in higher construction cost, it was

considered a small price for the resulting increase in operational service and safety.

2.4.2 Airport operations and construction activities

Siow et al. (2002) developed a methodology to identify the critical construction phases

to be analyzed, managed, and evaluated to minimize the construction impact. This

study presented a new simulation tool, Terminal, Roadway, and Curbside Simulation tool

(TRACS), to assist airport planners and decision makers in assessing and managing

construction impact on airport operations. The authors highlighted in this study the

efficiency and importance of using these tools for evaluating the performance of airport

facilities and examining different what-if scenarios for airport planners and decision makers.

Khalafallah and El-Rayes (2006a) analyzed the proximity between airport operations

and construction activities during the planning of construction site layout to minimize and

eliminate all potential construction-related hazards to aviation safety. In this study, the

authors developed a multi-objective optimization model for planning airport construction

site layouts that is capable of minimizing construction-related hazards and minimizing site

layout cost. This model is also capable of maximizing the control of hazardous construction

debris near airport traffic areas, minimizing site layout costs including the travel cost of

construction resources and the cost of debris control measures on airport sites, and

satisfying all operational safety constrains required by the federal aviation administration.

In another study, Khalafallah and El-Rayes (2008) investigated another challenge

caused by the proximitiy between airport operations and construction activities as airport

expansion projects often require the presence of construction personnel, material, and

equipment near airport secure area leading to an increase in the level of risk to airport
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security. In this study, the authors developed a multi-objective optimization model for

planning airport construction site layout that is capable of minimizing construction-related

security breaches while minimizing the site layout costs. This model is also capable of

evaluating and maximizing construction-related security level in operating airports. Genetic

Algorithm optimization technique was used in this model.

Alnasseri et al. (2013) presented a prototype for a theoretical framework for airport

operators to implement in order to cope with an airport environment and enhance business

operations when managing and controlling construction projects. This framework has

integrated various existing theories associated with project strategies and strategic human

resource management and it aims to achieve the framework that offers possible solutions

for airport operators and project managers to implement when managing and controlling

their construction projects.

Siewart and Le Bris (2015) presented real-life case studies to highlight the interre-

lationships between airport operations and construction activities, the safety concerns

that resulted from this proximity between the two components, and best practices and

recommendations to increase the safety. The authors mentioned that markings and lighting

are the first safety nets due to their efficiency in dramatically reducing the risks, and they

found that achieving and increasing safety and mitigating risks can be done in cheap,

simple, and efficient means.

Hubbard et al. (2021) conducted a literature review on airfield infrastructure projects

that usually are performed on active airfield which impose operational and human factors

challenges for all users. This study focused on analyzing the impact of construction, data

related to airfield safety, and presented a discussion of the human factors considerations

and mitigation measures that may be appropriate. The same study highlighted the need

for further study about the potential impact of airfield construction on airport operations

and its safety. It also recommended future investigation for scheduling and contracting
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approaches other than timing construction activities to occur when air traffic volume is low.

2.4.3 Optimizing scheduling and resource utilization

El-Rayes and Jun (2009) developed a robust and practical optimization model that is

capable of generating optimal and practical schedules that maximize the efficiency of

resource utilization. This model incorporate two innovative resource leveling metrics to

directly measure and minimize the negative impact of resource fluctuations on construction

productivity and cost. The first metric quantifies the total amount of resources that need

to be temporarily released during low demand period and rehired at a later stage during

high demand periods, and the second measures the total number of idle nonproductive

resource days that are caused by undesirable resource fluctuations. This study is useful to

construction engineers and planners in their efforts to improve labor productivity and cost

performance in construction projects.

In another study, Jun and El-Rayes (2010) investigated and analyzed construction

projects that involves work in evening and night shifts, and developed a multi-objective

optimization model for scheduling labor shifts in construction projects to minimize project

duration, reduce cost, and minimize labor utilization in evening and night shifts. This study

is useful to construction planners in their effort to optimize the utilization of multiple shifts

in order to accelerate the delivery of projects while minimizing the negative impacts of

evening and night shifts on construction productivity, safety, and cost.

Said and El-Rayes (2012) developed a new congested construction logistics planning

(C2LP) system that optimize the utilization of interior building spaces by considering

shifting some of the non-critical activities in order to generate sufficient interior space for

storage areas. This model is designed to optimize two competing objectives of minimizing

site logistic costs and minimizing project criticality. This study addresses the challenges

that contractors face in planning material supply and site logistics due to the scarcity of

construction site space.
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Altuwaim and El-Rayes (2021) developed a novel multi-objective optimization model for

repetitive construction projects that is capable of optimizing project duration, work inter-

ruption, and overtime use to address the challenges confronted in repetitive construction

projects such as high rise building and highway construction as minimizing the duration

of such projects usually requires interrupting the work continuity. This study provides a

practical tool for construction planners to minimize project duration while minimizing crew

work interruptions and the use of overtime hours.

In another related study, AlOtaibi et al. (2021) developed a model for optimizing the

scheduling of renovation project for leased residential buildings to minimize total renovation

cost. The model was applied on a cast study to illustrate its capabilities and achieved a

3.6%-4% reduction in total renovation cost in comparison with other available models and

industry practices. This model is useful in providing support for construction planners who

seek to minimize the total renovation cost of leased residential buildings.

2.4.4 Limitations of available planning and scheduling models

Despite the significant contributions of the aforementioned research studies, they have

limitations in optimizing the planning of airport expansion and renovation projects as they

are incapable of (1) identifying optimal project start date and optimal activity start times

for airport expansion projects; (2) determining optimal daily and weekly work plans for all

airport expansion activities; (3) selecting optimal working hours for each construction day

from a set of feasible alternatives; (4) quantifying and minimizing the impact of construction

activities on airport operations during the optimal planning of airport expansion projects;

(5) measuring and minimizing the impact of air traffic data and airport operations on total

construction cost throughout the entire duration of airport expansion projects; and (6)

generating a set of optimal construction plans that provide optimal trade-offs between

minimizing the construction-related disruption in airport operations and minimizing the

total construction cost. Accordingly, there is a need to develop a novel multi-objective
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optimization model for the planning of airport expansion projects that provides the capability

of minimizing both airport operation disruptions and construction cost.

2.5 Flights Taxi and Travel Times Prediction Models

This section discusses a number of related studies were conducted that focused on:

(1) identifying and analyzing the interaction between construction activities and facilities

functions during expansion and renovation projects; (2) estimating and predicting taxi

and flight travel times using computational models; and (3) predicting flight delays using

machine learning models.

2.5.1 Construction activities and facilities functions

Shami and Kanfani (1997) investigated and analyzed the interrelationship between con-

struction activities and airport operations in his research to develop a decision support sys-

tem to help airport and construction planners in selecting optimum construction/operations

scenarios based on a minimum total disturbance cost. In this study, Simmod was used to

assess the performance of the airport during the simulation of the built scenarios. This

study aims to address the mutual impact between construction activities and airport op-

erations and a case study was analyzed to illustrate the capabilities of this developed

framework.

Yee et al. (2013) analyzed and investigated renovation projects of occupied building

which are often confronted with challenges due to the interactions with buildings occupants

and tenants. This study presented a formal representation of renovation planning infor-

mation and reasoning methods that utilize the formal representation to identify occupant

interactions automatically. The results of this study shows that the renovation planning

ontology and reasoning methods enable planners to represent renovation planning in-

formation more thoroughly, and with increased detail, leading them to identify occupant

interactions more accurately than traditional planning methods.
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2.5.2 Taxi times prediction models

Legge and Levy (2008) analyzed the utilization of the Airport Surface Deterction Equip-

ment, Model X (ASDE-X) surface surveillance data and compared them with the archived

historical data and a dynamic real-time surface analysis to predict taxi-out times. Several

methods for predicting taxi-out time were applied.

Balakrishna et al. (2008) presented their work in using reinforcement learning algorithm

for estimating average taxi-out times in fifteen minute intervals of the day and at least

fifteen minutes in advance of aircraft scheduled gate push-back time. The authors used a

probabilistic framework of stochastic dynamic programming with a learning-based solution

strategy and train the model on historic data collected from the Federal Aviation Adminis-

tration’s Aviation System Performance Metrics (ASPM). The model was tested on John F

Kennedy International Airport ad the results showed a match between the actual average

taxi-out times and predicted average taxi-out times within 5 minutes for about 65% of the

time on an average across fifteen days.

Jordan et al. (2010) presented a new approach to taxi process modeling specifically

intended to support the needs of the tower flight data manager (TFDM) development

activity. A statistical learning method is used to extract key variables. The results shows

that statistical learning techniques can be used to produce accurate, yet relatively simple

models of aircraft taxi time.

Srivastsava (2011) presented a novel approach to build an adaptive taxi-out prediction

model based on historical traffic database generated using the ASDE-X data. The model

correlates taxi-out time and taxi-out delay to a set of explanatory variables. In this study,

two prediction models were developed, one treats aircraft movement from starting location

to the runway threshold uniformly while the other models aircraft time to get to the runway

queue different from the wait time experienced by the aircraft while in the runway queue.

Results from applying the models show a significant improvement in quality of predictions
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when compared with predictions available from FAA’s Enhanced Traffic Management

System (ETMS) or average taxi-out times for a flight.

Ravizza et al. (2013) combined both airport layout and historic taxi time information

within a multiple linear regression analysis and identifying the most relevant factors affecting

the variability of taxi times for both arrivals and departures. This combination of statistical

approach and ground movement model was applied on two different airport and compared

against previous results. The results showed high accuracy reaches to 99%.

Lee et al. (2015) presented the use of Linear Optimized Sequencing (LINOS), a discrete-

event fast-time simulation tool, to predict taxi times and provide the estimates to the runway

scheduler in real-time airport operations. The model accuracy was assessed using a

data-driven analytical method using machine learning techniques. The results showed

that LINOS could predict the taxi-out times as accurate as the Support Vector Machines

method and better than the Linear Regression method and the Dead Reckoning method

based on unimpeded taxi times.

In another study, Lee et al. (2016) presented applying machine learning techniques

to actual traffic data at Charlotte Douglas International Airport for taxi-out time prediction.

Surface surveillance data was first analyzed to find the key factors affecting aircraft taxi

times. Various machine learning methods were used and the results showed that linear

regression and random forest techniques provided the most accurate predictions in terms

of root-mean-square errors.

Yin et al. (2018) applied machine learning techniques to predict the taxi-out time of

departure aircraft at Shanghai Pudong International Airport. The key factors affecting

taxi-out time and their correlations were revealed by exploring historical data. Extensive

system of predictors was formulated for this machine learning approach based on a

macroscopic network topology from an aggregate view. Three machine learning methods:

linear regression (LR), support vector machines (SVM), and random forest (RF) were
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formulated using one-day and one-month training samples and applied to new test data to

validate the prediction performance. The results on the model showed that the training RF

model sing one-month sample significantly outperform other models in terms of prediction

accuracy.

Lian et al. (2018) tested three conventional methods: generalized linear model, softmax

regression model, and artificial neural network and two improved support vector regression

(SVR) approaches based on swarm intelligence algorithm optimization and firefly algorithm.

The results showed that the proposed two SVR approaches, especially the improved firefly

algorithm optimization-based SVR method performed the best modelling measures and

accuracy rate compared with the forecast models and it also achieved a better predictive

performance when dealing with abnormal taxi-out time series.

Zhang et al. (2022) presented a data-driven method for predicting the arrival flight

time by first extracting the features affecting arrival flight times. Then eight widely used

models are developed to predict flight time. Finally, a case study was analyzed to verify

the proposed method’s effectiveness.

2.5.3 Flight delays machine learning prediction models

Gui et al. (2019) explored a broad scope of factors that influence the flight delay and

compared several machine learning-based models in generalized flight delay prediction

tasks. Data was collected by pre-processing automatic dependent surveillance-broadcast

(ADS-B) messages and then integrated with other information, such as weather condition,

flight schedule, and airport information. The prediction tasks consisted of classification

tasks and regression tasks and the results showed that long short-term memory (LSTM)

is capable of handling the obtained aviation sequence data but was confronted with over-

fitting problem due to the limited database. Random forest-based model obtained higher

prediction accuracy of 90.2% and overcame the overfitting problem.

49



Ye et al. (2020) presented a new method for predicting flight departure delays in airports

by exploring supervised learning methods. Four popular supervised learning methods:

multiple linear regression, a support vector machine, extremely randomized trees and

LightGBM are investigated to improve the predictability and accuracy of the model. The

model was trained using operational data from Nanjing Lukou International Airport and the

results show that LightGBM model provides the brest result with 0.8655 accuracy rate with

a 6.65 min mean absolute error which is 1.83 min less than results from previous research

and models. This model helps in better understanding of delays interactions between time,

flight plan and previous delay.

2.5.4 Limitations of available flights taxi and travel times prediction
models

Despite the significant contributions of the aforementioned research studies, they have

limitations in quantifying and predicting the construction impact on air traffic during airport

expansion and renovation projects as they are incapable of: (1) estimating flights taxi

and travel times during airport expansion projects; (2) quantifying the construction-related

disruptions in airport operations; and (3) predicting the impact of construction activities on

air traffic and flight travel times. Accordingly, there is a need to develop a machine learning

model that is capable of estimating and predicting the impact of selected construction

schedules on air traffic during the planning stage of airport expansion projects.

2.6 Site Layout Planning Models

As airports are required to stay minimally disrupted or fully functional during expansion

projects, managing their construction site layout is challenging due to the proximity between

construction activities and ongoing airport operations (Khalafallah and El-Rayes, 2006a).

Airport expansion projects are executed in area-constrained sites that often causes: (1)

disruption in airport operations due to the complexity of the airport expansion sites and

the proximity of temporary facilities to airport ongoing operations (Alnasseri et al., 2013;
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FAA, 2017; Shami and Kanafani, 1997); (2) construction delays and cost overruns due to

the arrangements that need to be taken to compile with the FAA regulations and airport

authorities (Khalafallah and El-Rayes, 2008; Shami and Kanafani, 1997); and (3) area

constraints regulations that affect accelerating project delivery (Said and El-Rayes, 2013a).

To address the aforementioned challenges, a number of research studies were con-

ducted to investigate various aspects of optimizing site layout planning, including: (1)

quantifying the impact of facilities ongoing operations on construction activities (Alnasseri

et al., 2013; Khalafallah and El-Rayes, 2006a; Khoury et al., 2006; Lopez et al., 2017;

Shami and Kanafani, 1997); (2) optimizing site layout to minimize construction delay and

cost (Abdelmohsen and El-Rayes, 2016; Calis and Yuksel, 2010; Easa and Hossain, 2008;

Khalafallah and El-Rayes, 2004; Olugboyega and Wemimo, 2018; Sander et al., 2014;

Xu and Li, 2012); and (3) optimizing site layout to accelerate delivery of projects (Bakry

et al., 2014; Hinze, 2012; Hyari and El-Rayes, 2006; Ning et al., 2011; Said and El-Rayes,

2013a).

Despite the significant contributions of these studies, there is little or no reported

research that considered (1) optimizing site layout of airport expansion projects to minimize

the total disruption and cost of construction activities and airport operations; and (2)

optimizing site layout to accelerate the delivery of project milestones in area-constrained

construction sites that are in close proximity to ongoing airport operations. Thus, there

is a pressing need for an advanced optimization model that is capable of optimizing

construction site layout to simultaneously minimize disruptions in airport operations and

accelerate the completion of project milestones.

The primary purpose of site layout planning is to allocate site space to resources so that

they can be accessible and functional during construction (Zouein and Tommelein, 1999).

Optimizing site layouts can assist in achieving multiple objectives such as minimizing

resource transportation and facility relocation costs (Mawdesley et al., 2002; Tam et
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al., 2002; Zouein and Tommelein, 1999), improving site safety (Elbeltagi et al., 2004;

Khalafallah and El-Rayes, 2004), and minimizing site security risks (Khalafallah and El-

Rayes, 2008; Z. Li et al., 2015; Said and El-Rayes, 2012). Site layout models can also be

static (one phase) or dynamic (multiple phases of construction). The following sections

discuss several methodologies used in the literature to accomplish site layout planning

tasks.

2.6.1 Heuristics

Zouein and Tommelein (1999) approached the problem of dynamic site layout planning

with a combination of constraint satisfaction, heuristics and linear programming. The model

objective is to minimize total cost, which is the sum of transportation and relocation costs.

Resources are represented as rectangles in a two-dimensional space. The facility centroid,

its dimensions, and its orientation identify the location of each facility. A series of hard

constraints determine which positions are acceptable and soft constraints gauge the quality

of the layout.

Resources are analyzed one at a time and a position is selected for each resource based

upon two heuristics: (1) resources with the largest relocation weights; and (2) resources

with the greatest interaction with other positioned resources. Tiebreaker heuristics are

also identified, if required. A linear program is then used to minimize overall costs. The

main limitation of the system is that layouts are selected chronologically; meaning earlier

optimized layouts cannot be reanalyzed. As a result, the system cannot achieve global

optimality.

Tam et al. (2002) analyzed a site layout-planning problem using nonstructural fuzzy

decision support system (NSFDSS). NSDFSS consists of three steps: (1) decomposition,

which is breaking the problem down in a hierarchal fashion; (2) conducting pairwise

comparisons on a three-point scale (better, the same, or worse); and (3) synthesis of

priorities, which combines decision criteria with weighting factors.
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The authors claim that their method offers three advantages over the traditional ana-

lytical hierarchy process (AHP): (1) a simplified comparative rating scale (1, 0.5 and 0) in

evaluating the relative importance of decision criteria; (2) built-in consistency checking by

placing a greater level of reliability on higher rows and automatically resetting the values

of lower rows if inconsistencies are found; and (3) elimination of consistency deviation

by providing absolute consistency during evaluation. The data is then arranged in matrix

form to display comparison and score assignment. Project managers can then use the

priorities identified by the NSFDSS to aid in decision making. The authors reported two

main limitations in this model: (1) decisions and comparisons are still not automated

although the process is less labor intensive than AHP; and (2) quality of results is highly

dependent on the knowledge and expertise of the project management team.

2.6.2 Genetic Algorithms

Mawdesley et al. (2002) utilized an augmented genetic algorithm to model the cost to

move and position temporary facilities on a construction site over time. A user-defined grid

system was established to create potential locations within site boundaries. Facilities are

assumed to be rectangular and are represented by coordinates of two opposite corners.

The model allows for user-defined minimum and maximum interfacility distances. There

are three sources of costs considered in this model: (1) the cost to setup a facility; (2) the

cost to remove a facility; and (3) the cost of transporting materials between locations.

Minimum travel distances can be calculated using either Manhattan (follows only axis-

aligned directions) or Euclidean (straight line between two points) geometry. Additionally,

the model allows for varying site conditions and can account for unequal transportation

costs in north-south, south-north, east-west, and west-east directions. The authors identify

two primary limitations of their model: (1) its sensitivity to the relative costs assigned to

facility setup and material transport; and (2) modeling the dynamic nature of a project by

considering the site layout to be correlated with the work phases.
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Elbeltagi et al. (2004) developed a GA that was able to consider the effects of safety in

dynamic layout planning. The model aimed to minimize distances between facilities for the

purpose reducing resource travel costs, but only to the extent that it did not move facilities

into unsafe zones around high-risk buildings. The authors adapted existing closeness

relationships from Malakooti (1987) and introduced large negative values when safety

concerns arose between two facilities. The model was built into Excel using macros, which

allowed for linking to widely used scheduling software. Furthermore, model results can be

exported to Geographical Information System (GIS) to automate site mapping.

While many other studies have investigated the optimization of construction site layout

planning, considering the site layout of critical infrastructure projects as an objective has

been limited to only a few studies, namely Khalafallah and El-Rayes (2008) and Said and

El-Rayes (2012). The main limitation of these studies is that they only consider the security

risk of human breaches, not the mutual disruption between construction activities and

airport operations. The discussion of these papers in this section will focus on their facility

layout component. Khalafallah and El-Rayes (2008) developed a multi-objective genetic

algorithm capable of minimizing construction-related security breaches while keeping the

site layout costs of airport expansion projects to a minimum.

The location of temporary facilities such as security fences, site offices and hazardous

material storage facilities affect numerous aspects of this model including: (1) the response

distances required by security personnel; (2) the buffer zone sizes between secure areas

and temporary facilities; and (3) the travel costs of resources. The travel costs of resources

are estimated based on the planned travel frequency of crews, the crew hourly cost rate,

and the average speed of travel (El-Rayes and Khalafallah, 2005). In order to perform

the optimization, project planners must provide the dimensions of each temporary facility,

the available options for temporary fence placement, the location and dimension of each

secure facility on the construction site and the recommended security response distances

between secure areas. The output of the model includes identifying the optimal location
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of temporary facilities and the security fence and the optimal utilization of security control

systems in order to achieve the aforementioned objectives.

Said and El-Rayes (2010) developed an automated multi-objective optimization frame-

work, using genetic algorithm, to simultaneously minimize the site security risks and

minimize the overall site costs associated with the construction of critical infrastructure

projects. The main security threat in this model was the theft or destruction of classified

materials located in a Sensitive Compartmented Facility (SCIF). The construction site

was separated into three layers: (1) site fence; (2) site grounds; and (3) target fence.

Additionally, multiple phases of construction were considered, potentially requiring the

relocation of temporary facilities and construction materials. The model is designed to

dynamically position all temporary facilities and relocate moveable facilities in each stage

of the project. Facility location impacts the length of an attacker’s intrusion path (which

impacts the likelihood of a successful attack), the degree or amount of natural surveillance,

and site layout costs, which are the sum of resource travel costs and facilities relocation

costs.

Analogous to Zouein and Tommelein (1999), the facilities are represented by their

centroid, dimensions and orientation. Four types of geometric constraints must be satisfied

in order to successfully place a facility within the site boundary: 1) boundary; 2) overlap; 3)

distance; and 4) zone constraints (El-Rayes and Said, 2009). The model generates an

optimal combination of security measures and facility positions over multiple phases of

construction to minimize site security risks and to minimize overall site costs.

2.7 New Technology Impact on Existing Airport Facilities

Airports are critical and secured areas, governments and airport’s management make

significant efforts to implement most recent reliable technologies and services to serve

passengers in fastest and smoothest way to prevent any congestion and disturbance to
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occur at airports. This leads to more challenges that airports need to analyze and address,

including; (1) the quick continuous development of technology; and (2) the need to upgrade

existing facilities to implement and adapt these technologies.

Future airport expansion and construction costs are expected to be affected by new

and emerging technologies, including (1) faster and cost-effective mass transit systems for

airports such as hyperloop capsules and high-speed trains (Kumar and Khan, 2017; Park

and Ha, 2006); and (2) autonomous vehicles and shared rides (Bansal and Kockelman,

2017; Fagnant and Kockelman, 2015; Henderson and Spencer, 2016; Philanthropies,

2017). These two emerging technologies are expected to reduce vehicle traffic and parking

at airports in the next decades. Accordingly, strategic planning of airport expansion projects

needs to analyze these evolving needs and develop long-term plans for transforming the

use of under-utilized airport facilities such as roads and parking structures that occupy

substantial areas at airports (Henderson and Spencer, 2016).

FAA requires airports to provide 1000 – 3300 parking spaces per million originating

passengers or 1.5 times the number of peak hour passengers in a rate of 109-124 parked

cars per acre (FAA, 1988). These airport parking facilities will be significantly under-

utilized in the future as three out of four vehicles are expected to be autonomous by 2040

(Philanthropies, 2017). To adapt to the expected use of these new technologies at airports,

decision makers must carefully analyze their predicted impact on existing facilities and

develop an optimal transformation and upgrading plan for existing facilities at airports.

A number of significant research studies were conducted to investigate various aspects

of new technologies and their future impact on existing infrastructure systems. These

studies focused on (1) predicting the implementation of new technologies and their impact

on existing infrastructure systems (Bansal and Kockelman, 2017; Davidson and Spinoulas,

2015; Fagnant and Kockelman, 2015; Gopalswamy and Rathinam, 2018; Henderson and

Spencer, 2016; Litman, 2017; Philanthropies, 2017; Skarbek-Zabkin and Szczepanek,
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2018; Tettamanti et al., 2016); and (2) upgrading and transforming transportation systems

to adapt to these new technologies (Beiker, 2014; Brown et al., 2009; Cole, 2001; Farah

et al., 2018; Fraedrich et al., 2019; Guerra, 2016; Pendyala, 2013).

Despite the significant contributions of these studies, there is little or no reported

research that (1) considered the impact of these new technologies on existing airport

facilities such as roads and parking structures; and (2) support airport decision makers

in developing long term plans for gradual transformation of existing airport facilities to

maximize the efficiency of their future utilization. Hence, there is a need for an innovative

transformation-planning model for airport expansion projects that is capable of considering

the impact of the aforementioned emerging technologies and generating long-term optimal

plans for transforming the use of airport facilities that are expected to be under-utilized in

the future in order to maximize the utilization and cost-effectiveness of all airport facilities.

The following sections present a comprehensive literature review of research studies

on the new technology that are related to airport facilities and expansion projects sites,

that focused on: (1) the future impact of these technology on existing facilities; and (2)

transformation and upgrading plans for existing facilities.

2.7.1 Future Impact of New Technology on Existing Facilities

Philanthropies, B. (2017) analyzed the development of Autonomous Vehicles (AV) and

predicted that 3 out of 4 cars in 2040 will be autonomous which means that cities need to

be reshaped and planners have to reform the land use to adapt the future ubiquitous AVs.

The AVs will be soon on the streets, this will lead to more challenges in different aspects

including: (1) Laws; (2) Technology; (3) Integrated environment; and (4) Infrastructure. The

following paragraphs provide a concise discussion of the challenges of these aspects. It

should be noted that this analysis is still in its preliminary stage.
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Law

Reconsideration of a broad range of legal guidelines and laws need to be taken into

account in order to enable the general use of autonomous cars on public roads. Sev-

eral challenges and difficulties will be on the way of implementing this new technology

including defining who is responsible for traffic related problem and who is reliable for the

accidents and injuries, other difficulties may be straightforward such as insurance and

liability (Davidson and Spinoulas, 2015).

Technology

Autonomous Vehicles need to be supported with other technologies to provide the

required service for AVs to be implemented safely on the roads. This parallel system

needs to keep developing its features to get to the optimum level of protecting the safety

of the people and the security of the system. Traffic system touches people lives directly

and could cause significant loss of their lives if hackers succeeded in hacking the system.

All these challenges lead the companies and the governments to specialize part of their

budget to improve their preparations and arrangements in creating testing areas and cities

to facilitate the adaption of the new future (Davidson and Spinoulas, 2015).

Integrated Environment

It’s expected that the implementation of Autonomous vehicles to happen gradually. The

partial implementation of adapting autonomous vehicles on our existing road network will

impact the traffic efficiency and safety. This will raise many critical questions and serious

concerns regarding the geometric road design, structural pavement features and design,

and digital infrastructure (Farah et al., 2018).

Infrastructure

Farah et al. (2018) investigated the potential changes of existing infrastructure to hose

the new technology in its best way. Cross sections and lane wideness will be reduced to
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increase the smoothness of the traffic and capacity of the roads. However, the pavement

features and design would require to be investigated more carefully to determine the

procedures of the emergency cases that requires pavement maintenance for example. On

the other hand, parking spots will be reduced significantly due to the less need of long-time

parking as vehicles would have the ability to drive back home on their own. This reduction

would give more space to be utilized by the authorities in a different way (Henderson and

Spencer, 2016).

Henderson and Spencer (2016) presented that Autonomous Vehicles will increase the

unoccupied area of the building which would create opportunities for real estate developers

and companies to invest and make a productive use of this extra space. AVs will still need

some parking space for loading and unloading standing zones in addition to waiting spots

for passengers or arriving with passengers. These changes need all associated parties

with this technology to cooperate to set new comprehensive cities and facilities upgrading

and transformation plans to create fully mature infrastructure that is capable of adapting

the new system of transportation in the near future.

2.7.2 Transformation and Upgrading Plan for Existing Facilities

Development of new technologies and planning to transform and upgrade the infrastruc-

ture should follow parallel paths to go beyond all the barriers and to make the adoption

of new technologies as smooth as possible. As all work being done together in the same

time, problems can be solved and open the way to recommend new sets of policies, laws,

transportation networks, and robust infrastructure (Cole, 2001; Fagnant and Kockelman,

2015; Guerra, 2016). Henderson and Spencer (2016) investigated the relation between

the autonomous vehicles and commercial real estate to recommend some transformation

and upgrading procedures for the existing infrastructure based on the predicted impact

of this new technology on the current infrastructure and streets network. For example,

Autonomous Vehicles will lead to a reduction in the width of streets’ lanes and parking

59



Fig. 2.5. Before and After AVs (Henderson and Spencer, 2016)

spots creating more space than can be used for different projects like increasing the green

area in the roads to make the cities more sustainable and environment friendly or even

creating more facilities to make the best utilization of this future extra areas.

Fig. 2.5 shows a suggested transformation of 19th Avenue in San Francisco before

and after AVs. This change will decrease the specified areas for cars and utilize the extra

space to increase green area and bicycle lane. While Fig. 2.6 presents an image of how

to use the existing parking spots to build new facilities on the reduced parking area to

increase the value and the utilization of the areas in the future. Suggestions and ideas are

not limited and require additional studies to choose the best use to determine the best

upgrading decisions and transformation plans.

Henderson and Spencer (2016) conducted a study that analyzes an existing building

in Chicago consists of 12 parking floors and 30 office floors. This study shows that the

present value of existing parking spots costs a loss of $17,025,000 equal to -$14,428 per

spot. Assuming a 40% reduction in required parking, this leads to a valuation increase from
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Before Parking Reduction After Parking Reduction

Fig. 2.6. Before and After Parking Reduction (Henderson and Spencer, 2016)

building an office building with the same volume and less parking achieving a present value

of additional office space of $66,155,520 equal to $730 present value of each additional

SF of Office Space, as shown in Tables 2.1 and 2.2.

Despite the significant contributions of these aforementioned studies, there is little or no

reported research that considered (1) the impact of new technologies and transportation

means on airport existing facilities; (2) optimizing a plan to perform a gradual transformation

of airport existing facilities to future needed facilities and (3); a comprehensive guideline

that can be adopted to transform and upgrade existing facilities to achieve the best present

value and the maximum lifetime revenue. Hence, there is an urgent and pressing need for

an innovative multi-objective transformation-planning model for airport expansion projects

that is capable of setting the optimal plan to transform the future-unnecessary existing

facilities to maximize the utilization of the area it occupies and to minimize the construction

and life cycle costs.

In conclusion, bringing future into planning is a significant process to detect all the
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Table 2.1. Chicago office building parking example (Henderson and Spencer, 2016)

Parking Requirements Construction Costs
Gross office space (SF ) 600,000 Parking cost of construction ($/SF ) $200
Floor plate (size) 20,000 Office cost of construction $350
Required number of floors 30 Total parking cost $48,000,000
SF of space exempt from parking (SF ) 10,000 Total building cost $258,000,000
Ration (number of spaces/gross SF of office space) 0.002 Parking cost/total building cost (%) 19%
Total required parking spots 1180

Parking Spot Parameters Parking Garage Valuation
Width (ft) 8 Parking space rent ($/month) $125
Depth (ft) 18 Vacancy (%) 30%
Total area (SF ) 144 Yearly parking revenue $1,239,000
Garage efficiency (%) 75% Parking rent annual growth rate (%) 2%
Required parking area 226,560 Discount rate (%) 6%
Number of parking levels 12 Present value of parking rent $30,975,000

Present value of parking -$17,025,000
Present value cost per spot -$14,428

Table 2.2. Valuation increase from additional office space (Henderson and Spencer, 2016)

Reduction in required parking (%) 40%
Additional office space from parking reduction (SF ) 90,624
Cost of extra office space (SF ) $31,718,400
Office rent ($/SF) $60
Efficiency (%) 80%
Vacancy (%) 90%
Additional yearly office revenue $3,914,957
Office rent annual growth rate (%) 2%
Office discount rate (%) 6%

Present value of additional office space $66,155,520
Present value of each additional SF of office space $730
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possible challenges, find solutions for all predicted barriers, and set the best transformation

plans and upgrading decisions to open the way to adopt new technologies with prepared

robust infrastructure.

2.8 Multi-Objectives Optimization Techniques for Airport
Expansion Projects

This section analyzes a number of available optimization techniques that are used for

modeling multi-objectives optimization problems for addressing the unique challenges of

airport expansion projects, including: (1) Weighted linear programming; (2) Meta-heuristic

algorithms; and (3) Evolutionary (genetic) algorithms.

2.8.1 Weighted Linear Programming

A multi-objective problem can be solved by transforming it into a linear function using

the weighted-sum method to formalize the problem in the form, minimize:

k∑
i=1

wifi (x̄) (2.1)

where k = number of objective functions, fi (x̄) = scalar objective functions; and wi =

weighting coefficients representing the relative importance of the objectives.

In this method, it is generally assumed that all weighting coefficients are positive and

the sum of the coefficients equal one (Coello, 1999). The two main advantages of this

method over other optimization techniques are: (1) the ability to achieve a global optimum

solution, as opposed to the sub-optimal solutions reached when using metaheuristic

optimization methods, and (2) faster computational efficiency. The main disadvantage

is the difficulty in determining the appropriate weighting coefficients when little is known

about the problem or how the relative weights will affect the solution (Coello, 1999). To

overcome this shortcoming, it is necessary to solve the same problem for many different
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values of wi in order to generate the Pareto front (Caramia and Dell’Olmo, 2008).

The weighted-sum method can be employed in linear, integer or mixed-integer pro-

gramming problems. A main limitation to linear programming is the requirement for all

objective functions and constraints to be linear. Integer programming refers to decision

variables that are non-continuous and non-fractions such as the number of personnel

required to complete a task. Mixed-integer programming is when some decision variables

require integers and others are continuous (Abdallah, 2014). These techniques have been

used to solve many complex optimization problems in construction, including facility layout

modeling (Foulds et al., 1998; Kim and Kim, 2000).

2.8.2 Nature-inspired Meta-heuristic Algorithms

Hard optimization problems can be defined as problems that cannot be solved by

any deterministic method within a reasonable amount of time (Boussaid et al., 2013).

Metaheuristics can be used to solve these hard optimization problems. Metaheuristics

are “higher-level” heuristics, meaning that they are designed to approximately solve a

wide range of optimization problems without having to deeply adapt to each specific

scenario (Boussaid et al., 2013). Most metaheuristic algorithms are nature-inspired,

seeking optimality by mimicking some physical, biological or ethological process. In a

recent survey, Fister et al. (2013), identified more than 40 nature-inspired metaheuristic

algorithms based upon such natural processes as migratory bird patterns (Eberhart and

Kennedy, 1995), ant colony behaviors (Dorigo et al., 1996), bacterial foraging (Chu et

al., 2008), firefly bioluminescence (Yang, 2009), slime mold life cycle (Monismith and

Mayfield, 2008), cockroach infestation (Havens et al., 2008), mosquito host-seeking (Feng

et al., 2009), and bat echolocation (Yang, 2010). This section will analyze the two most

prevalent nature-inspired metaheuristic algorithms: particle swarm optimization and ant

colony optimization.
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Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based, stochastic optimization tech-

nique, inspired by the migratory patterns of birds attempting to reach an unknown destina-

tion (Zhou et al., 2011). PSO was originally developed by Eberhart and Kennedy (1995)

and was later expanded to include multi-objective optimization by Moore and Chapman

(1999). In PSO, each solution is a “bird” in the migrating flock. As the flock flies, the birds

communicate with one another, identifying the bird in the best location. The rest of the

flock then flies toward this bird and investigates their surrounding environment. This social

behavior is repeated until the birds reach their destination. PSO successfully incorporates

both intelligence and social interaction, combining local search, where the birds learn from

their own experience, and global search, where the birds learn from the experience of

others around them (Elbeltagi et al., 2005). PSO has been widely used in multi-objective

optimization problems in construction, including modeling construction site layout (Ohmori

et al., 2010; Rezazadeh et al., 2009; H. Zhang and Wang, 2008).

Ant Colony Optimization

Dorigo et al. (1996) developed ant colony optimization (ACO), a naturally inspired

optimization technique that mimics the process of ants determining the shortest route

between their nest and a food source (Elbeltagi et al., 2005). As ants travel, they deposit

pheromone trails on the ground that are detected by other ants (Zhou et al., 2011). As

the search for food begins, ants will randomly travel around all sides of an encountered

obstacle, initially depositing equal concentrations of pheromones from the left and right

direction. Ants with the shortest path to food will return to their nest following their original

path, thus depositing more pheromones. Future ants will detect this greater concentration

of pheromones and follow the established path from their nest to the food source (Elbeltagi

et al., 2005). Over time, favored paths that are shorter and more efficient will emerge

because of this positive feedback mechanism (Yang, 2010), as shown in Fig. 2.7. ACO

has been effectively utilized to address many multi-objective optimization problems in
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Fig. 2.7. Ant Colony Optimization (Yousefikhoshbakht et al., 2013)

construction, including construction site layout (Baykasoglu et al., 2006; Pour and Nosraty,

2006; Wong et al., 2010), and sustainability and building energy performance (Marzouk

et al., 2012; Yuan et al., 2012). One limitation of ACO is that it can only be used in discrete

problems (Elbeltagi et al., 2005).

2.8.3 Genetic Algorithm

Genetic algorithms, developed by John Holland in 1975, are search algorithms that

mimic genetic operations based up Darwin’s theory of natural selection (Goldberg, 1989).

Genetic algorithms apply survival of the fittest to obtain near-optimum solutions by following

a six-step process: (1) create a population of individual solutions (chromosomes); (2)

calculate the value of the objective function(s) for each individual within the population;

(3) assign a fitness value to each individual based upon the objective function(s); (4)

perform reproduction with higher-fitness individuals having a higher probability of survival

than individuals with lower fitness values; (5) create offspring by combining or varying

the genotypes in the parent solutions through the processes of crossover and mutation;
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(6) repeat steps 2-5 until termination conditions are satisfied (Weise et al., 2008).The

structured randomness of genetic algorithms coupled with the inclusion of mutation to

avoid local minima give genetic algorithms the ability to deal with complex problems and

parallelism. Genetic Algorithm has been used successfully to address, formulate, and

solve several types of optimization problems, whether the objective function is linear or

nonlinear, static or dynamic, continuous or discontinuous, or even contains random noise

(Yang, 2010). Genetic Algorithm is the most optimization tool used to address multi-

objective optimization problems in construction engineering and management. Including:

construction site layout planning (Elbeltagi et al., 2004; Khalafallah and El-Rayes, 2006b,

2008; Said and El-Rayes, 2010, 2013b).

2.9 Research Needs

This detailed literature review revealed that there is a pressing need for novel machine

learning and optimization models for the planning of airport expansion projects that are

capable of: (1) optimizing the planning of airport expansion projects to mitigate the

impact of construction activities on airport operations, (2) quantifying the impact of airport

construction activities and their phasing plans on flights ground movement time, and

(3) grouping airport construction activities into phases and optimizing the scheduling

of these phases to minimize construction-related airport disruptions while minimizing

total construction cost. Moreover, this chapter studied and analyzed the capabilities and

limitations of available models for optimizing the planning of airport expansion projects.
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Chapter 3

Optimizing the Planning of Airport
Expansion Projects

3.1 Introduction

This chapter presents the development of a novel multi-objective optimization model

for the planning of airport expansion projects that provides the capability of minimizing

both airport operation disruptions and construction cost. The developed model integrates

a novel methodology that is capable of identifying an optimal project start time (ST ), an

optimal start time of each activity (ST i), optimal working days per week (ND), and optimal

working hours per day (NH).

The model optimization computations are performed using a novel methodology that in-

tegrates four main modules, as shown in Fig. 3.1: (1) simulation module that calculates and

quantifies the impact of airport construction activities on air traffic and airport operations;

(2) optimization module that searches for and identifies an optimal construction sched-

ule that generates optimal trade-offs between the two important objectives of minimizing

construction-related disruptions in airport operations and minimizing construction cost;

(3) scheduling module that calculates the start and finish times of each activity in airport

expansion projects; and (4) cost module that computes the total cost of construction-related

disruptions in airport operations, and the total construction cost for each generated solution

in the optimization module. The following sections provide a concise description of the
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Input Data Output DataOptimization Model

Optimization Module
• Decision Variables
• Objective Functions
• Constraints

Cost Module
• Airport Operations Disruption Cost
• Total Construction Cost

Project
• Start time (𝑆𝑇)
• Finish time (𝐹𝑇)
• Duration (𝑇𝐷)
• Working days  per week (𝑁𝐷)
• Working hours per day (𝑁𝐻)

Activity
• Start time (𝑆𝑇!)
• Finish time (𝐹𝑇!)
• Duration (𝐷!)

Optimization Results
• Optimal airport expansion project 

plans 
• Optimal trade-offs between 

minimizing total construction-
related disruption cost (𝑇𝐷𝐶) and 
minimizing total construction cost 
(𝑇𝐶𝐶)

Scheduling Module
• Initial Schedule Phase
• Adjusted Schedule Phase

Project
• Location
• Construction activities (𝐼)
• Indirect cost rates (𝐼𝐶𝑅)

Activity
• Quantities of work (𝑄!)
• Precedence relationships (𝑃!)
• Crew daily output rate (𝑃𝑅!)
• Impact of overtime on crew 

productivity (𝑃𝐸!,#)
• Airport construction adjustment 

factor (𝑃𝐴!,#)
• Unit and labor cost rates (𝐶𝑈!, 𝐿𝐶!)
• Labor overtime premiums (𝐶𝐹!) 
• Mobilization & demobilization cost 

rates (𝑀𝐶𝑅!) 
• Nighttime lighting equipment cost 

(𝑁𝐶!,#)

Airport
• Airport layout
• Air traffic
• Flight operations schedule
• Airplane delay cost per hour (𝐷𝑉)

Simulation Module
(Simmod Pro!)

Quantify impact of airport expansion project 
activities on air traffic by calculating:

• Delay time of each flight (𝐷𝑇$)
• Construction-related disruption (𝐷𝐶𝑇$,%)

Fig. 3.1. Model development for airport expansion projects.

development and computations for each of these four modules.

3.2 Simulation Module

The main objective of this module is to calculate and quantify the impact of airport

expansion activities on air traffic and flight delays. This module is designed to calculate

the delay time encountered by all flights that are caused by airport construction activities.

This is achieved using an air traffic operations simulation tool “Simmod Pro!” (ATAC,

2021). The analysis procedure in the present simulation module is organized in five main

steps that are designed to (1) specify the layout of the airport, (2) define all related flight

and airport operational data, (3) calculate flights ground movement time under normal

conditions without construction activities, (4) calculate flights ground movement time during

construction activities, and (5) calculate construction-related disruption cost based on the

identified flight delays and the hourly cost rate of flight delays. This construction-related

disruption cost is the output of this simulation module, and it will be used as input for the

following modules, as shown in Fig. 3.1.
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Taxiing path during normal conditions

Taxiing path during construction 
Construction Area

Taxiway
Runway
Gate

Runway 27 Takeoff/Landing 

Runway 09 Takeoff/Landing 

Fig. 3.2. Layout of San Diego International Airport in Simmod Pro!

3.2.1 Specify airport layout

In the first step, the layout of the airport is specified by modeling the airport taxiways

and runways as a set of links that are connected by nodes, as shown in Fig. 3.2.

3.2.2 Define flight and airport operational data

This step specifies all related airport input data including flights schedule, flights origin

and destination, airplanes type and size, arrival and departure gates, and airport runway,

as shown in the sample dataset for San Diego Airport (SAN) in Table 3.1. The aircraft size

is identified in this model based on FAA weight class criterion that classifies aircrafts in

four main groups: (1) Super such as Airbus A388; (2) Heavy for aircrafts that are capable

of takeoff weights of 300,000 pounds such as Boeing 747 and Airbus A340; (3) Large

for aircrafts that are capable of takeoff weights more than 41,000 pounds and less than

300,000 pounds such as Boeing 737 and Airbus A320; and (4) Small for aircrafts that

are capable of takeoff weights less than 41,000 pounds such as Cessna Caravan (FAA,

2019), as shown in Table 1. This input data is required by the software to simulate air traffic

operations.
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Table 3.1. Example flights information

Flight ID Type Time Airplane Type Airplane Size Origin Destination Gate Runway

2 Arrival 02:59 Cessna 208 Small IPL SAN 5 27
5 Departure 05:35 Boeing 738 Large SAN ORD 28 27
13 Arrival 06:14 Airbus 321 Large PHX SAN 31 27
195 Departure 11:22 DHC6 Small SAN NUC 4 27
381 Arrival 16:16 CRJ 700 Large LAX SAN 2 27
517 Departure 20:13 Boeing 737 Large SAN SFO 7 27

Table 3.2. Example flights ground movement time

ID Type
Normal Conditions During Construction

Landing Gate Time Ground Movement Landing Gate Time Ground Movement
Time (RT f ) (GT f ) Time (MT f ) (hour) Time (CRT f ) (CGT f ) Time (CMT f ) (hour)

2 Arrival 02:59 03:04 0.090 02:59 03:05 0.093
13 Arrival 06:14 06:21 0.124 06:14 06:22 0.131
381 Arrival 16:16 16:36 0.339 16:16 16:36 0.339

ID Type
Gate Time Take-off Ground Movement Gate Time Take-off Ground Movement
(GT f ) Time (RT f ) Time (MT f ) (hour) (CGT f ) Time (CRT f ) Time (CMT f ) (hour)

5 Departure 05:35 05:37 0.021 05:35 05:42 0.115
195 Departure 11:22 11:34 0.203 11:22 11:35 0.206
517 Departure 20:13 20:22 0.158 20:13 20:23 0.171

3.2.3 Calculate flights ground movement time under normal condi-
tions

In this step, the simulation tool is utilized to calculate the flight ground movement time

under normal conditions from the gate to the runway for departure flights, and from the

runway to the gate for arrival flights. The simulation tool is also used to generate a detailed

report that calculates the flight ground movement time (MT f) as the difference between

gate departure/arrival time (GT f) and take-off/landing time (RT f) that includes taxiway

and waiting times, as shown in Eq. (3.1) and Table 3.2.

MT f = |GT f − RT f | ∀ f ∈ {1, . . . , F } (3.1)

where MT f= ground movement time of flight f during normal (non-construction) conditions;

GT f= gate departure/arrival time of flight f during normal conditions; and RT f= take-

off/landing time of flight f during normal conditions.
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3.2.4 Calculate flights ground movement time under construction
conditions

In this step, the locations of all construction activities are defined on the airport layout

by removing their corresponding links from the airport model developed in the first step.

This ensures that the simulation tool does not allow airplanes to use these links during

construction activities, as shown in Fig. 3.2. Construction activities cause disruptions in air

traffic operations because of their impact on increasing the length of taxiing paths and/or

the waiting time on the taxiway. The simulation tool is then used to calculate the new flight

ground movement time under construction conditions (CMT f ) using Eq. (3.2), as shown

in Table 3.2.

CMT f = |CGT f − CRT f | ∀ f ∈ {1, . . . , F } (3.2)

where CMT f= ground movement time of flight f due to closure of construction area;

CGT f= gate arrival/departure time of flight f due to closure of construction area; and

CRT f= landing/taking-off time of flight f due to closure of construction area.

3.2.5 Identify construction-related delays and disruptions cost

In this step, the construction-related delay (DCT h,f) of each flight f at hour h due

to closure of the construction area is calculated as the difference between the ground

movement time under normal conditions (MT f ) and during construction (CMT f ) that were

calculated in the previous steps, as shown in Eq. (3.3). This construction-related delay

(DCT h,f ) is then used to estimate the disruption cost (DCCh,f ) for each flight that is caused

by the closure of the construction site using Eq. (3.4). The model then estimates the hourly

construction-related disruption cost by summing up the individual disruption costs of all

flights during hour h, as shown in Eq. (3.5) . A sample of the performed calculations in Eqs.

(3.3) – (3.5) is shown in Table 3.3. The model then repeats these calculations to estimate

the hourly construction-related disruption cost (DCCh) for each hour h. Table 3.4 shows

an example of these estimated hourly construction-related disruption costs (DCCh) due to

the closure of a taxiway segment in San Diego International Airport on Tuesday November
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Table 3.3. Example construction-related disruption costs during hour h

Ground Movement Time (minutes) Disruption
Flight Airplane Cost of hour Normal Construction Time Cost
ID (f ) Size delay (DV ) condition (MT ) condition (CMT ) (DCT ) (minutes) (DCC) ($)

2 SML $1,400 5.40 5.58 0.18 4.20
5 SML $1,400 1.26 6.90 5.64 131.60
13 LRG $4,500 7.44 7.86 0.42 31.50
195 LRG $4,500 12.18 12.36 0.18 13.50
318 LRG $4,500 20.34 20.34 0.00 0.00
517 LRG $4,500 9.48 10.26 0.78 58.50

Table 3.4. Example hourly construction-related disruption cost (DCCh) in one day

Hour (h) 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

DCCh 0 0 4 4 0 248 2179 1409 742 356 156 6374

Hour (h) 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

DCCh 767 369 1024 915 243 280 194 286 532 84 151 47

19th, 2019.

DCT h,f = CMT f − MT f (3.3)

where DCT h,f= delay time in flight f due to closure of construction area during hour h.

DCCh,f = DCT h,f × DV f (3.4)

DCCh =
F∑

f=1

DCCh,f (3.5)

where DCCh,f= cost of delay for flight f due to closure of construction area during hour h;

and DV f= delay cost rate for flight f in $/hour that varies from $1400/hour to $4500/hour

based on several factors such as size of aircraft (FAA, 2020b).

3.3 Optimization Module

The main purpose of this module is to search for and identify an optimal schedule for

airport expansion projects that provides an optimal trade-off between the two important

objectives of the developed model that focus on minimizing the cost of construction-related
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disruptions in airport operations and minimizing the total construction cost. The optimization

module is developed in four steps that are designed to (1) identify all relevant decision

variables; (2) formulate the optimization objective functions of minimizing the cost of the

construction-related disruption in airport operations and minimizing the total construction

cost; (3) model all related optimization constraints; and (4) execute the computations of

the optimization model. The following subsections provide a concise description of these

development steps of the optimization module.

3.3.1 Decision Variables

The purpose of this step is to identify all possible decision variables that affect the

construction-related disruption cost in airport operations and the total construction cost.

Accordingly, the identified decision variables in this model are project start time (ST ),

activities start time (ST i), working hours per day (NH), and working days per week (ND),

as shown in Fig. 1.2.

The first decision variable represents the selection of a project start time (ST ) from a

planner-specified range, as shown in Eq. (3.6). For example, a planner can specify that

the earliest (ET ) and latest (LT ) project start times are January 2nd at 8:00 am and March

29th at 8:00 am, respectively. Accordingly, the model would search for an optimal project

start time (ST ) within these boundary limits, as shown in Eq. (3.6).

ET ≤ ST ≤ LT (3.6)

where ET = earliest project start time, ST = project start time, and LT = latest project start

time.

The second decision variable is activities start time (ST i), which represents a selection

from a set of feasible alternatives that ranges from the early start time of the activity to its

late start time that can be calculated based on its free float time, as shown in Eqs. (3.7)
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and (3.8).

ESi ≤ ST i ≤ ESi + FF i ∀ i ∈ {1, . . . , I } (3.7)

FF i = min(SST i) − ESi −Di ∀ i ∈ {1, . . . , I } (3.8)

where ESi = early start of activity i; ST i = selected start time of activity i; FF i = free float

of activity i; SST i= successors start time of activity i; and Di= duration of activity i.

The third decision variable represents the selection of the number of working days per

week (ND) that can range from a minimum planner-specified number of days (MD) (e.g.

2 days per week) to a maximum of 7 days per week, as shown in Eqs. (3.9) and (3.10).

Similarly, the fourth decision variable represents the selection of the number of working

hours per day (NH) from a minimum (MNH) to a maximum (MXH) planner-specified

number of hours, as shown in Eqs. (3.11) and (3.12).

MD ≤ ND ≤ 7 (3.9)

0 < MD ≤ 7 (3.10)

MNH ≤ NH ≤ MXH (3.11)

0 < MNH ≤ MXH ≤ 24 (3.12)

where MD= minimum number of working days per week; ND= selected number of working

days per week; MNH= minimum number of working hours per day; and NH= selected

number of working hours per day; and MXH= maximum number of working hours per

day.

3.3.2 Objective Functions

The present model is designed to generate optimal trade-offs between the two objective

functions of: (1) minimizing the cost of construction-related disruption in airport operations

(TDC); and (2) minimizing the total construction cost (TCC) of airport expansion project,
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as shown in Fig. 3.3.

Objective 1:

The first objective function is designed to minimize the cost of all construction-related

disruptions (TDC) in airport operations, as shown in Eq. (3.13). TDC is calculated by

summing up all construction-related disruption costs of all flights (f = 1 to F ) caused by

the closed construction area during all hours (h = ST to FT ), as shown in Eq. (3.13).

Minimize TDC = Minimize

FT∑
h=ST

F∑
f=1

DCCh,f (3.13)

where TDC= total construction-related disruption cost in $, ST = project start time in hours,

FT = project finish time in hours, and f = flight ID.

Objective 2:

The second objective function of the developed model is designed to minimize the total

construction cost (TCC) of the airport expansion project, as shown in Eq. (3.14). TCC

is calculated by summing up all its components including construction direct cost (CDC),

indirect cost (CIC), mobilization cost (MC), and nighttime construction cost (NC), as

shown in Eq. (3.14).

Minimize TCC = Minimize (CDC + CIC +MC +NC) (3.14)

where TCC= total construction cost; CDC= construction direct cost; CIC= construction

indirect cost; MC= mobilization cost; and NC= nighttime construction cost.

3.3.3 Optimization Constraints

The model is designed to comply with all related practical constraints including: (1)

project completion time, (2) crew working time, and (3) job logic. First, the project com-

pletion time constraint is formulated to ensure that the project will be completed without
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Fig. 3.3. Optimization model computations
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delay within its early completion time. This is accomplished by guaranteeing that the

planned start time (ST i) of each activity i is within its float time to avoid causing a delay

to successor activities beyond their float times, as shown in Eq. (3.7). Second, the crew

working time constraint guarantees that the number of working days per week (ND) is

greater than or equal the planner-specified minimum number of days (MD) and that it does

not exceed 7 days per week, as shown in Eqs. (3.9) and (3.10). Similarly, this constraint

ensures that the number of working hours per day (NH) ranges from a planner-specified

minimum (MNH) to a maximum (MXH) number of hours, as shown in Eqs. (3.11) and

(3.12). Third, the job logic constraint ensures that the planned start time of each activity

(ST i) is greater than or equal to the planned finish time of its predecessors, as shown in

Eq. (3.15).

PFT i ≤ ST i ∀ i ∈ {1, . . . , I } (3.15)

where PFT i = finish time of all predecessors of activity i

3.3.4 Optimization Computations

The model is designed to execute the optimization computations using multi-objective

genetic algorithms due to their capabilities in (1) modeling nonlinear and discontinuous

decision variables similar to those used in this model including project start date, activities

start time, and working days per week; (2) searching for and identifying optimal solutions

in problems with large search space within a reasonable computational time; and (3)

successfully modeling similar scheduling, resource utilization, and construction optimization

problems (Abdallah and El-Rayes, 2016; AlOtaibi et al., 2021; Altuwaim and El-Rayes,

2021; Hegazy and Wassef, 2001; Jun and El-Rayes, 2010; Khalafallah and El-Rayes,

2006a, 2006b, 2008; Long and Ohsato, 2009). The present model is implemented utilizing

the nondominated sorting genetic algorithms II (NSGA-II) (Deb et al., 2002) and executed

with the Distributed Evolutionary Algorithms (DEAP) (Fortin et al., 2012) toolbox for Python

(vanRossum, 2017). As shown in Fig. 3.3, the optimization computations in this model are
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executed in seven main steps that are designed to:

1. Read all required project information including project data, activities data, and airport

data, as shown in Fig. 3.1.

2. Generate an initial random set of early start schedules for the project s = 1 to S for

the first generation g = 1. Each of these generated schedules represents an early

start schedule based on a random selection for the aforementioned three decision

variables: project start time (ST ), working days per week (ND), and working hours

per day (NH).

3. Generate a set of adjusted project schedules to evaluate the impact of delaying the

start time of each activity beyond its earliest start time and within its free float. Each

of these adjusted project schedules s = 1 to S is generated by adjusting each of the

initial schedules generated in the previous step based on a random set of activity shift

times (SH i) using the integrated scheduling module in this model.

4. Estimate the total construction-related disruption cost in airport operations (TDC),

and the total construction cost (TCC) for each adjusted schedule solution s = 1 to S

in generation g using the cost module, as shown in Fig. 3.3.

5. Evaluate and rank all generated schedule solutions from 1 to S in the generation g

and select the fittest schedules based on the aforementioned objective functions of

total construction cost and construction-related disruption cost that were calculated in

the previous step. End the optimization computations and generate its output data if

the specified GA stopping criteria were satisfied. Otherwise, the model proceeds to

steps 6 and 7.

6. Select the best solutions to be the parent population for the new generation g = g + 1.

7. Generate a new set of solutions for the new generation g = g + 1 utilizing GA operators,

crossover, and mutation, as shown in Fig. 3.3.
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3.4 Scheduling Module

The purpose of this module is to develop a practical schedule for all airport expansion

construction activities (i = 1 to I). The calculations in this scheduling module are organized

in two phases that are designed to (a) generate an initial early start schedule for airport

expansion project, and (b) adjust the early start time of each activity to analyze and

optimize the impact of delaying selected activities beyond their early start time on the

optimization objective functions.

3.4.1 Phase 1: Initial Schedule Phase

This phase is designed to generate an initial early start schedule for airport expansion

project based on planner-specified input data including: feasible range of project start

times (ST ), feasible range of working days per week (ND), feasible range of working

hours per day (NH), construction activities (I), predecessors of each construction activity

(Pi), activities quantity of work (Qi), crew daily output rate of each activity (PRi), airport

construction adjustment factor (PAi,j), and impact of overtime on crew productivity (PEi,j),

as shown in Fig. 3.1. This initial schedule will be used in the next phase to generate

an adjusted schedule to analyze and optimize the impact of delaying selected activities

beyond their early start time on the optimization objective functions.

This phase calculates the early start and finish times and the free float for each activity

(i = 1 to I) using the following four steps, as shown in Fig. 3.3, as follows:

1. Calculate activity early start time (ESi) for each activity (i = 1 to I) using one of the

following two options:

• For activity (i) that has no predecessor (Pi = 0), ESi is calculated as the

selected project start time (ST ) using Eq. (3.16).

• For activity (i) that has predecessors (Pi > 0), ESi is calculated as the latest

finish time of its predecessors using Eq. (3.17).
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2. Calculate quantity of work (QP i,j) performed in activity i in each hour j based on

the crew output rate (PRi), the impact of overtime on crew productivity (PEi,j), and

airport construction adjustment factor (PAi,j) using Eq. (3.18). It should be noted

that PEi,j represents the crew production efficiency that varies based on the number

of working hours per day and number of working days per week, for example, if a

crew works for 9 hours a day for 5 days a week, their productivity drops to 95% in

the third week (RSMeans data, 2020). Similarly, PAi,j represents the encountered

productivity loss during working at peak hours, evening times, and/or nighttimes, for

example, the Mechanical Contractors Association of America (MCAA) estimates 20%

loss in productivity for working during evening times (Kitchens, 1996).

3. Calculate early finish time (EF i) of activity i based on its start time (ESi) and duration

(Di) using Eq. (3.19). Di is calculated as the total number of hours needed to

complete the entire quantity of work (Qi) considering that the quantity of work (QP i,j)

completed in each hour j may vary, as shown in Eq. (3.18).

4. Calculate free float (FF i) of activity i using Eq. (3.20).

ESi = ST ∀i ∈ I and Pi = 0 (3.16)

ESi = max(EF Pi
) ∀i ∈ I and Pi > 0 (3.17)

QP i,j = PRi × PAi,j × PEi,j ∀ i ∈ I and ∀ j ∈ (ESi, . . . , EF i) (3.18)

EF i = ESi +Di (3.19)

FF i = min(SST i)− ESi −Di ∀i ∈ I (3.20)

where ESi = early start of activity i in hours; EF Pi
= early finish time of predecessors of

activity i in hours; QP i,j = performed quantity of work for activity i at working hour j in units

of measurements; PRi= crew hourly output rate of activity i in unit/hour; PAi,j = airport

construction adjustment factor for activity i at working hour j that ranges from 0 to 1; PEi,j

= impact of overtime on productivity for activity i at hour working hour j that ranges from 0
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to 1; EF i= early finish time of activity i in hours; Qi = quantity of work of activity i in units

of measurements such as CY for concrete; FF i = activity free float in hours; SST i = start

time of successors of activity i in hours; and Di = duration of activity i in hours.

3.4.2 Phase 2: Adjusted Schedule Phase

The main objective of this phase is to adjust the early start time of each activity to

analyze and optimize the impact of delaying selected activities beyond their early start time

on the optimization objective functions. This phase performs the adjustment calculations in

two steps that are designed to delay the activity start time beyond its early start time and

within its float, and calculate activity finish time, as shown in Fig. 3.3, as follows:

1. Calculate adjusted activity start time (ST i) based on its early start time (ESi) and shift

time (SH i) selected by the optimization module, as shown in Eq. (3.21).

2. Calculate finish time for activity i using Eq. (3.22) and recalculate the free float for its

predecessors using Eq. (3.20) based on the adjusted start time of activity i.

ST i = ESi + SH i ∀i ∈ I where 0 ≤ SH i ≤ FF i (3.21)

FT i = ST i +Di (3.22)

where ST i= adjusted start time of activity i in hours; FT i = adjusted finish time of

activity i in hours; and SH i = shift time of activity i that ranges from 0 to activity free

float time (FF i).

3.5 Cost Module

The calculations in this module are organized in the following two submodules that are

designed to compute (a) construction-related disruption cost in airport operations, and (b)

total construction cost of the generated schedules in the previous module.
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3.5.1 Airport Operations Disruption Cost

This submodule is designed to calculate construction-related disruption cost in airport

operations (TDC). This cost is designed to account for all air traffic disruption cost that is

caused by the closure of a construction area such as additional costs caused by longer

taxiing time due to closure of a taxiway segment for construction and/or additional flight

delay time caused by longer queues, as shown in Fig. 3.2. This is achieved by calculating

all disruption costs in airport flights due to the construction closure during the project

working hours using Eqs. (3.23) – (3.24).

TDC =
FT∑

h=ST

F∑
f=1

DCCh,f (3.23)

DCCh,f = DCT h,f ×DV f (3.24)

where DCCh,f = cost of delay for flight f due to closure of construction area during working

hour h in $; DCT h,f = delay time (in hour) in flight f due to closure of construction area

during hour h that is calculated using the aforementioned simulation module; and DV f =

delay cost rate for flight f in $/hour that varies from $1400/hour to $4500/hour based on

several factors such as aircraft size and number of passengers (FAA, 2020b).

3.5.2 Total Construction Cost

This submodule is designed to calculate all the components of the total construction

cost that include construction direct cost (CDC), indirect cost (CIC), mobilization cost

(MC), and nighttime construction cost (NC), as shown in Eq. (3.25).

TCC = CDC + CIC +MC +NC (3.25)

First, the direct cost of airport expansion projects (CDC) is calculated in this module by

summing up the direct cost of all activities in the project (i = 1 to I). The direct cost of each

83



activity i is calculated by adding up all its hourly costs of construction crews and material

over its entire duration, as shown in Eq. (3.26).

CDC =
I∑

i=1

FT i∑
j=ST i

(QP i,j × (CU i + (CF i,j × LCi))) (3.26)

where CDC = total construction direct cost in $; CU i= unit cost rate of activity i in $/unit

of measurement; CF i,j= labor overtime premium rate of activity i at working hour j; and

LCi= labor cost rate of activity i in $/unit of measurement.

Second, the project indirect cost (CIC) is calculated based on the project duration (TD)

and the indirect cost rate (ICR) that accounts for all time-dependent costs, such as site

supervision, site utilities, and office overhead, as shown in Eq. (3.27).

CIC = ICR × TD (3.27)

where ICR= indirect cost rate in $/day; and TD = project duration in days

Third, the mobilization cost (MC) is calculated using Eq. (3.28) to account for all

daily mobilization and demobilization costs that are often required to comply with airport

operation regulations such as the daily cost of cleaning up and sweeping the airfield to

meet the inspection standards and/or installing precast panels as a temporary pavement

if the concrete could not be poured and cured in time to restore access for airport use

(Delatte, 2006).

MC =
I∑

i=1

(MCRi ×Di) (3.28)

where MCRi= daily mobilization and demobilization cost rate of activity i in $/day; and Di

= duration of activity i in days.

Fourth, nighttime construction cost (NC) is calculated to account for all additional costs

incurred due to working during nighttime hours such as the ownership and operating cost
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Fig. 3.4. Layout of San Diego International Airport (SAN) during construction in Simmod Pro!

of lighting equipment, as shown in Eq. (3.29).

NC =
I∑

i=1

FT i∑
j=ST i

NC i,j (3.29)

where NCi,j= nighttime construction cost of activity i at hour j in $.

3.6 Case Study

The performance of the formulated optimization model is evaluated by analyzing a

real-life case study to demonstrate the use of the model and highlight its capabilities in

generating optimal tradeoffs between minimizing the cost of construction-related disruption

in airport operations and total construction cost of airport expansion projects. The case

study focuses on optimizing the construction planning of the relocation and reconstruction

of a 500 ft-long segment of Taxiway B at San Diego International Airport, as shown in

Fig. 3.4.

The input data for this case study consists of airport, project, and activity data, as

shown in Fig. 3.1. First, the airport input data includes (a) airport layout, as shown in

Fig. 3.4; (b) air traffic data; (c) flight operations schedule, as shown in Table 3.1; and (d)

airplane delay cost per hour (DV ) which is specified to be $1400/hour for small aircrafts

and $4500/hour for large aircrafts. Second, the project input data includes (i) location
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which is specified to be San Diego, CA; (ii) a total of 22 construction activities that are

grouped into six main work packages: demolish existing pavements and utilities, construct

utilities and storm drainage system, site earthwork and grading, construct new concrete

and asphalt pavements, construct airfield lighting and signage, and construct surface paint

markings (San Diego county regional airport authority, 2021); and (iii) indirect cost rate

that is specified to be 30% of the daily direct cost.

Third, the activity input data for this case study includes (1) predecessor activities (Pi),

(2) quantity of work (Qi), (3) crew daily output rates (PRi), (4) unit cost rates (CU i), as

shown in Table 3.5; (5) impact of overtime on crew productivity (PEi,j) that depends on

the number of working hours per day and number of working days per week (RSMeans

data, 2020); (6) airport construction adjustment factor (PAi,j) that represents the impact

of air traffic volumes and nighttime construction on crew productivity; (7) labor overtime

premiums (CF i,j) that was specified to be 150% of the regular rate; (8) mobilization and

demobilization cost rate (MCRi) which was specified to be 5% of the daily direct cost; and

(9) nighttime construction cost (NCi,j) that was specified to be 15% of the hourly direct

cost.

The developed optimization model utilized the aforementioned input data to search for

and generate an optimal reconstruction schedule that minimizes both construction-related

disruption cost in airport operations and total construction cost. The genetic algorithm

optimization computations for this case study were performed using the distributed evo-

lutionary algorithm package (DEAP) in the Python programming platform (vanRossum,

2017). The GA search parameters utilized in this case study are the NSGA-II selection

with a population size of 500, a mutation rate of 0.2, and a cross-over rate of 0.6. The

optimization engine was set to terminate the optimization computations after a total of 2000

generations. The computational time for this case study was approximately 25 minutes

using a personal laptop with 2 GHz Quad-Core Intel Core i5 Processor and 16 GB 3733

MHz LPDDR4X RAM.
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Table 3.5. Input data of reconstruction activities and crews

Construction Activities
Quantity

Unit
Daily Output Cost rate

Activity Predecessors of work (PRi) (CU i)
ID (i) (Pi) (Qi) (unit/day) ($/unit)

A Closing reconstruction area - 1,800 LF 400 3.68
B Installation of lighted barricades - 180 EA 150 150
C Removal of airfield marking A, B 2,750 SF 500 1.61
D Removal of signage A, B 3 EA 5 689
E Installation of temporary lighting A, B 1 EA 8 10,000
F Milling of asphalt pavement C, D, E 22,000 SY 9000 0.92
G Excavating down to subgrade F 16,000 BCY 12500 0.35
H Demolition of existing utilities G 500 LF 800 1.15
I Demolition of electrical system G 500 LF 394 0.82
J Removal of base soil H, I 6,200 LCY 1080 2.06
K Preparing the subgrade J 22,000 SY 15000 0.12
L Install deep utilities (duct bank) K 500 LF 260 3.55
M Placing base material L 22,000 SY 4200 7.99
N Compacting base material M 22,000 SY 4200 7.99
O Install conduit and base cans N 500 LF 270 1.91
P Install in-pavement lighting O 10 EA 18.64 783
Q Installation of asphalt pavement P 22,000 SY 4520 14.68
R Install in-pavement light fixtures Q 10 EA 4 370
S Install signage Q 3 EA 5 996.65
T Install a coat of pavement marking Q 2,750 SF 4000 0.68
U Remove the barricade R, S, T 180 EA 250 25
V Open the reconstruction area U 1,800 LF 432 0.98

87



The optimization computations for this case study were executed using the aforemen-

tioned four modules (see Fig. 3.3). First, the simulation module was utilized to quantify

the impact of the construction project on airport operations during the entire planned

project duration to estimate airport operations disruption cost (DCCh,f ) that is used in the

following modules. Second, the optimization module was used to search for and identify a

set of optimal solutions for the four decision variables of project start time (ST ), number of

working days per week (ND), number of working hours per day (NH), and activity start

time (ST i). Third, the scheduling module was utilized to (a) generate an initial early start

schedule for the case study using Eqs. (3.16) – (3.20), and (b) adjust the early start time

of each activity to analyze and optimize the impact of delaying selected activities beyond

their early start time on the optimization objective functions using Eqs. (3.21) and (3.22).

Fourth, the cost module was used to estimate airport operation disruption cost and total

construction cost for each of the generated solutions using Eqs. (3.23) – (3.29).

Upon completion of the aforementioned computations, the model generated 105 Pareto

optimal solutions, where each represents a unique and optimal tradeoff between minimizing

construction-related disruption cost in airport operations (TDC) and minimizing total

construction cost (TCC), as shown in Fig. 3.5. A sample of these solutions along with

their identified optimal project start time (ST ), number of working days per week (ND),

and number of working hours per day (NH) are summarized in Table 3.6. Furthermore,

an example of the identified optimal activity start and finish times for one of the generated

Pareto optimal solutions (S90) is shown in Table 3.7.

The generated 105 Pareto optimal solutions for this case study includes (1) a minimum

airport operations disruption cost solution of $750 (S1) with an associated maximum total

construction cost of $1,296,962, (2) a minimum total construction cost solution of $800,344

(S105) with an associated maximum airport operations disruption cost of $602,328, and

(3) 103 additional Pareto optimal solutions that provide a wide range of optimal trade-offs

between airport operations disruption cost and total construction cost, as shown in Fig. 3.5.
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Table 3.6. Sample of Pareto optimal solutions

Sol. Number Number Project Airport Total
(S) of days of hours Duration Start Time Finish Time Disruption Construction

(ND) (NH) (TD) (days) (ST ) (FT ) Cost (TDC) Cost (TCC)

1 6 5 109.2 November 23rd March 11th $750 $1,296,962
(00 - 05) at 00:00 at 04:45

18 5 8 81.2 November 24th February 14th $16,311 $1,294,298
(21 - 05) at 21:00 at 01:05

36 6 11 51.15 January 25th March 17th $66,430 $1,262,198
(17 - 04) at 17:00 at 20:25

54 7 8 56.13 January 7th March 4th $95,370 $1,196,162
(16 - 00) at 16:00 at 19:00

72 6 5 102.13 November 18th February 28th $130,221 $1,140,186
(16 - 21) at 16:00 at 19:15

90 5 7 85.17 January 22nd April 17th $196,254 $998,849
(13 - 20) at 13:00 at 17:05

105 5 8 78.1 April 1st June 18th $602,328 $800,344
(09 - 17) at 09:00 at 11:00
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Fig. 3.5. Generated Pareto optimal solutions
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Table 3.7. Optimal activity start and finish times for solution S90

Activity ID (i) Activity Start Time (ST i) Activity Finish Time (FT i)

A January 22nd at 13:00 January 29th at 16:50
B January 22nd at 14:00 January 23rd at 17:25
C January 29th at 16:50 February 7th at 15:30
D February 6th at 14:00 February 6th at 19:15
E February 7th at 13:00 February 7th at 14:05
F February 7th at 15:30 February 12th at 15:40
G February 12th at 15:40 February 13th at 19:35
H February 14th at 13:00 February 14th at 18:30
I February 13th at 19:35 February 15th at 16:45
J February 15th at 16:45 February 26th at 17:45
K February 26th at 17:45 February 28th at 16:35
L February 28th at 16:35 March 2nd at 19:20
M March 2nd at 19:20 March 11th at 16:20
N March 11th at 16:20 March 20th at 13:50
O March 20th at 13:50 March 24th at 16:00
P March 24th at 16:00 March 25th at 13:50
Q March 25th at 13:50 April 4th at 14:55
R April 4th at 14:55 April 9th at 15:55
S April 4th at 16:00 April 5th at 14:25
T April 4th at 17:00 April 5th at 16:10
U April 9th at 15:55 April 10th at 15:20
V April 10th at 15:20 April 17th at 17:05
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On one end of the spectrum, optimal solution S1 provides minimum airport operations

disruption cost (TDC) by scheduling the project to start and finish during the low air traffic

season of San Diego Airport and planning the construction activities during nighttime hours

that have the lowest air traffic. This is achieved by scheduling the project to start (ST ) on

Saturday November 23rd at midnight working 6 days per week (ND = 6) from Saturday to

Thursday and 5 hours per day (NH = 5) from midnight to 5:00 am. However, this solution

has the highest total construction cost due to the additional cost of nighttime construction

and labor overtime premiums.

On the other end of the spectrum, optimal solution S105 provides minimum total con-

struction cost (TCC) by scheduling the taxiway relocation activities during weekly working

days and regular daytime hours. This solution scheduled the project to start (ST ) on

Monday April 1st at 9:00 am working 5 days per week (ND = 5) from Monday to Friday

and 8 hours per day (NH = 8) from 9:00 to 17:00. This plan, however, causes the highest

airport operational disruptions among the generated optimal solutions because it schedules

the construction activities during high daily and hourly air traffic volumes. In addition to

the aforementioned two extreme solutions, the model generated 103 other Pareto optimal

solutions that enable planners to analyze and select the schedule that best meets their

unique project requirements.

To verify the generated results of the optimization model, a brute-force computational

analysis was executed to calculate airport disruption cost and total construction cost of all

possible solutions for this case study and compare them to the model optimal results. The

brute-force analysis was performed by identifying all combinations of all possible decision

variables: (1) project start time (ST ) from 1 to 8760, (2) activities shift time (SH i) from 0 to

FF i, (3) working days per week (ND) from 5 to 7 days per week, and (4) working hours

per day (NH) from 5 to 12 hours per day. A comparison between the results of all possible

solutions and the generated optimal solutions by the model is illustrated in Fig. 3.6. This

comparison confirms that the developed model was able to identify nondominated optimal
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Fig. 3.6. Comparison of model results and all possible solutions

tradeoff solutions between minimizing airport operations disruption cost and minimizing

total construction cost for this case study, as shown in in Fig. 3.6.

A sensitivity analysis was conducted to analyze the sensitivity of the generated results

by the model to uncertainties and variations in its input parameters. This was achieved

by varying the values of the model input parameters from -20% to 20% of their estimated

values with an increment of 5%, as shown in Table 3.8. The input parameters considered

in this sensitivity analysis are flights delay cost rate (DV i), construction unit cost rate

(CU i), crew daily output rate (PRi), and nighttime construction cost (NCi,j). The sensitivity

analysis evaluated the impact of the aforementioned variation in these four input parameters

on the minimum and maximum values of the two optimization objective functions of the

developed model, as shown in Table 3.8.

The results of the sensitivity analysis show that changes in these four input parameters

had varying impacts on the two optimization objectives, as shown in Table 3.8. For example,

changes in the flights delay cost rate (DV i) input parameter caused comparable variations
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Table 3.8. Sensitivity of model results to changes in input parameters

Input Parameters
Flights Delay Cost Rate (DV f ) Construction Unit Cost Rate (CU i) Crew Daily Output Rates (PRi) Nighttime Construction Cost (NCi,j)
Change in Change in Change in Change in Change in Change in Change in Change in
Total Airport Total Airport Total Airport Total Airport

Change in Construction Disruptions Construction Disruptions Construction Disruptions Construction Disruptions
Parameters Cost (TCC) (%) Cost (TDC) (%) Cost (TCC) (%) Cost (TDC) (%) Cost (TCC) (%) Cost (TDC) (%) Cost (TCC) (%) Cost (TDC) (%)
Values (%) Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

-20 0.0 0.0 -20.0 -26.5 -20.0 -20.0 0.4 -0.2 16.6 19.1 26.3 25.4 0.0 -1.5 0.2 0.2
-15 0.0 0.0 -15.1 -17.9 -15.0 -15.0 0.6 0.1 11.8 13.5 18.6 18.5 0.0 -1.0 0.0 0.0
-10 0.0 0.0 -10.0 -16.0 -10.0 -10.0 0.7 0.0 7.5 8.5 12.0 11.4 0.0 -0.8 0.2 -0.1
-5 0.0 0.1 -4.7 -3.9 -5.0 -5.0 0.1 0.2 3.5 4.0 5.4 5.5 0.1 -0.4 0.2 -0.3
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 4.9 3.0 5.1 5.0 -0.1 -0.1 -3.1 -3.7 -5.2 -5.3 0.0 -0.4 0.1 -0.2
10 0.0 0.0 9.9 8.0 10.1 10.0 -0.1 -0.3 -6.0 -6.9 -9.9 -10.3 0.0 -0.8 0.2 0.0
15 0.0 0.0 15.5 12.3 15.0 15.0 0.4 -0.3 -8.6 -9.9 -13.4 -14.0 0.0 -1.0 0.3 -0.1
20 0.0 0.0 21.0 17.4 20.0 20.0 -0.3 0.0 -11.0 -12.6 -17.2 -17.6 0.0 1.5 0.1 0.1

in airport operations disruption cost and had no impact on total construction cost (see

Table 3.8 and Fig. 3.7) due to the direct relationship between this input parameter and

airport operations disruption cost. On the other hand, changes in the construction unit

cost rate (CU i) input parameter caused comparable variation in total construction cost and

had no impact on airport operations disruption cost due to the direct relationship between

this input parameter and total construction cost. Changes in the crew daily output rate

(PRi), however, had a comparable impact on both airport operations disruption cost and

total construction cost due to its direct relationship with the project duration that affects the

aforementioned objective functions. On the contrary, changes in nighttime construction

cost (NCi,j) input parameter caused minimal variation in airport operations disruption cost

and total construction cost for the solutions that involve nighttime construction work and

had no impact on the total construction cost for the solutions that schedules the work

during daytime hours, as shown in Table 3.8.

3.7 Conclusion

A novel multi-objective model was developed to support airport and construction

planners in generating and analyzing optimal tradeoffs between minimizing the cost of

construction-related disruption in airport operations and minimizing the total construction

cost. The model is designed to optimize these two competing objective functions by

generating a detailed construction plan of airport expansion projects. The developed
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Fig. 3.7. Sensitivity of model results to variations in flights delay cost rate (DV f )

model complies with all relevant practical constraints, including project completion time,

crew working time, and job logic constraints. A case study was analyzed to illustrate the

use of the model in identifying an optimal construction schedule for the relocation and

reconstruction of a 500-ft long segment of Taxiway B at San Diego International Airport.

In this case study, the model generated a set of 105 optimal tradeoff solutions, where

each represents a unique and optimal tradeoff between the two optimization objectives

of minimizing the cost of the construction-related disruption in airport operations and the

total construction cost. At one extreme end of the generated tradeoff solutions, the model

identified an optimal construction plan that provides the least airport operations disruption

cost and the highest total construction cost. At the other end of the spectrum, the model

identified another optimal construction plan that provides the least total construction cost

and the highest airport operations disruption cost.

The results of the case study clearly illustrate the original contributions of the model to

the body of knowledge including its novel methodologies for (1) identifying optimal start date

and time for airport expansion projects and all their construction activities; (2) determining
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optimal daily and weekly work plans for all airport expansion activities; (3) selecting optimal

daily working hours for all construction crews on the project; (4) quantifying and minimizing

the impact of construction activities on airport operations; (5) analyzing and minimizing the

impact of air traffic data and airport operations on total construction cost; and (6) generating

a set of optimal construction plans that provide optimal trade-offs between minimizing the

construction-related disruption in airport operations and minimizing the total construction

cost. These novel capabilities are expected to support airport and construction planners in

their efforts to identify an optimal schedule for airport expansion projects that minimizes

the construction impact on ongoing airport operations while minimizing total construction

cost.
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Chapter 4

Predicting Construction Impact on
Airport Operations

4.1 Introduction

The objective of this chapter is to present the development of a novel machine learning

methodology that overcomes the limitations of existing related studies that stated earlier

in the first chapter. The methodology can be used to develop robust machine learning

models for predicting the impact of various construction phasing plans on flights ground

movement time in any airport without the need for repetitive and time-consuming simulation

computations. The methodology is designed to support airport and construction planners

in their efforts to efficiently and accurately analyze and compare the impact of all feasible

construction phasing plans on flights ground movement and airport operations.

The implementation of the machine learning methodology for predicting airport flights

ground movement time is organized in four main stages: (1) data collection stage to gather

all required airport data for training and testing the prediction model; (2) data preprocessing

stage to identify, classify, transform, and split all predicted and predictor variables data

into training and testing datasets; (3) model training stage to select the machine learning

methods and fit each of them to the training dataset by adjusting its parameters to minimize

the error; and (4) evaluation and validation stage to evaluate the performance of each

selected method on the training dataset and validate its results by applying it on unseen
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Airport Input Data
• Airport layout under normal 

conditions
• Airport gates 
• Runways and taxiways distance
• Areas of construction
• Airport area closure cases
• Airport layout of each airport 

area closure case

Flights Input Data
• Number of flights during 

planned project duration
• Flights ID
• Flights type (arrival/departure)
• Flights arrival/departure time
• Flights ground movement start 

and end points (gate/runway)
• Aircrafts weight class 

(heavy, large, and small)
• Flights ground movement time 

(Simmod Pro!)

Data Collection

Output

Data Preprocessing

Training

Evaluation and Validation

• Trained model for predicting flights 
ground movement time during various 
construction phasing plans

• Evaluating model performance
• Validating model results

• Selecting Machine Learning Algorithms
• Fitting selected algorithms to training 

dataset

• Predictor Variables Identification
• Data Classification
• Data Transformation
• Data Splitting

Fig. 4.1. Model development stages

testing dataset to verify its generalizability to make predictions on new unseen data, as

shown in Fig. 4.1. The following sections provide a concise description of the development

and computations of each of these four stages.

4.2 Data Collection

The primary purpose of this stage is to provide a dataset that the model can learn

from. Machine learning algorithms learn from data by finding patterns that can be used to

make predictions or decisions. This requires the collection and use of a large and diverse

dataset that accurately represents the problem that the model is intended to solve. To

illustrate the use of the proposed machine learning methodology, a large and diverse
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dataset is collected from a real-life airport expansion project that requires the relocation

and reconstruction of 14 segments of a 5000 ft-long Taxiway B at San Diego International

Airport (see Fig. 1.4). The procedure of data collection in this stage is organized in three

main steps that are designed to: (1) gather all related airport and flights data, (2) develop

a representative sample of various combinations of airport area closures that enables the

model to capture the changes in flights ground movement time that are affected by varying

area closures, and (3) calculate flights ground movement time during each of the specified

area closures.

4.2.1 Gather airport and flights data

In the first step, the layout of San Diego International Airport is specified graphically by

modeling the airport gates, taxiways, and runways as a set of links that are connected by

nodes, as shown in Fig. 1.4 and Fig. 4.1. This step also specifies all related airport and

flights data including flights schedule, flights origin and destination, aircrafts type and size,

arrival and departure gates, and airport runways.

4.2.2 Develop a representative sample of airport area closures

In this step, a representative sample of various combinations of airport area closures

was developed to enable the model to capture the changes in flights ground movement time

during various area closures. As stated earlier, there are 16,383 possible combinations

of airport area closures for the reconstruction of 14 segments of Taxiway-B in San Diego

International Airport. To maximize computational efficiency, a representative sample of

100 possible airport area closures was developed that includes (1) fourteen possible

combinations (cases 1 to 14) of single area closures, (2) one possible combination (case

100) that represents the concurrent closure of all fourteen areas, and (3) approximately 7

randomly generated combinations of concurrent area closures for each of the remaining

area closure possibilities, as shown in Table 4.1.
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Table 4.1. Representative sample of possible airport area closures

Number of Number Case Concruurent airport area closures during construction
closed areas of cases number

1 14 1 C1
...

...
14 C14

2 7 15 C5, C7
...

...
21 C6, C12

3 7 22 C4, C8, C13
...

...
28 C2, C7, C10

...
...

...
...

12 7 86 C1, C2, C3, C5, C7, C8, C9, C10, C11, C13 , C14
...

...
92 C2, C3, C5, C6, C7, C8, C9, C10, C11, C12, C13 , C14

13 7 93 C1, C2, C3, C4, C5, C6, C8, C9, C10, C11, C12, C13, C14
...

...
99 C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C14

14 14 100 C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14
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Table 4.2. Sample of flights ground movement time

Flight
ID

Flight
type

Ground movement time (minutes)
Normal Airport area closure case
conditions 1 15 22 86 93 100

1 Arrival 1.512 2.419 1.619 1.512 1.512 2.339 2.563

110 Departure 10.819 16.456 12.725 11.606 14.411 15.506 16.456

200 Arrival 3.665 4.212 3.832 3.965 4.132 4.432 4.732

300 Departure 13.730 18.166 15.503 14.503 17.065 16.885 18.711

410 Arrival 2.535 3.667 2.535 2.535 3.346 3.457 3.685

515 Departure 7.259 7.771 7.671 7.716 8.018 8.006 9.680

4.2.3 Calculate flights ground movement time

In this step, the ground movement time of all airport flights is calculated for each of

the 100 possible airport area closures that were generated in the previous step using an

FAA-validated air traffic simulation tool called Simmod Pro (ATAC, 2021; FAA, 2004). Each

of these 100 simulation runs was performed in three main substeps that are designed

to: (1) define airport layout including all its revised nodes and links to account for all

airport area closures during construction, (2) specify all flight and airport data, and (3)

calculate flights ground movement time during construction. In this step, a total of 53,900

flights ground movement times were calculated using Simmod Pro to analyze the impact

of the aforementioned 100 alternative airport area closures (see Table 4.1) on the ground

movement time for each of the 539 daily arriving and departing flights at San Diego

International Airport. A sample of these calculated flights ground movement time by

Simmod Pro for various airport area closures is shown in Table 4.2.

4.3 Data Preprocessing

The main objective of this stage is to preprocess the raw data that was collected in

the previous stage to ensure its quality and reliability. This is achieved by conducting (1)

predictor variables identification to select and calculate all predictor variables that have an
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impact on flights ground movement time; (2) data classification to group predictor variables

based on their types such as categorical and numerical variables; (3) data transformation to

encode categorical variables and normalize numerical variables to improve the performance

of the machine learning models; and (4) data splitting to divide the transformed data into

training and testing datasets, as shown in Fig. 4.2.

First, the predictor variables in the developed models were identified based on those

reported by existing studies (Lee et al. 2016) to have an impact on flights ground movement

time: (1) flight type, (2) flight ID, (3) aircraft weight class, (4) assigned gate and runway, (5)

flight arrival/departure time, (6) airport area closure case, and (7) flights ground movement

distance. The first six variables in this list are readily available data in most airports

while the last variable (flights ground movement distance) needs to be calculated using

graph algorithms such as Dijkstra’s algorithm (Dijkstra, 1959), as shown in Fig. 4.2. This

flights ground movement distance depends on the aircraft taxi path that changes based

on the assigned gate and runway of the flight and the dynamic layout of the airport that

also changes based on the location of the closed area for construction. To automate

the calculation of the distance, Dijkstra’s algorithm is utilized to calculate the distance

of the shortest path between the flight assigned gate and runway based on the airport

area closure case (Dijkstra, 1959). This is achieved by defining the airport layout under

construction as nodes and weighted links where the weight represents the distance of

the corresponding taxiway segment. The links that represent the construction areas of

the airport area closure case are removed to quantify the impact of its closure on the

flight ground movement distance using the Dijkstra’s shortest path algorithm, as shown in

Fig. 4.2.

Second, the aforementioned seven predictor variables were then classified in two groups

based on their types: (1) categorical variables such as flights type, flights ID, aircrafts weight

class, assigned gates and runways, and airport area closure cases; and (2) numerical

variables such as flights arrival/departure times and flights ground movement distance, as
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Dijkstra’s Algorithm

1- Predictor Variables Identification
Readily available data

1- Flights type
2- Flights ID
3- Aircrafts weight class
4- Assigned gate and runway
5- Airport area closure case
6- Flights arrival/departure time

Modeling airport layout
• Airport layout (links and nodes)
• Flights start point (Departure gate/Runway exit)
• Flights end point (Take-off area/Arrival gate)
• Airport area closure case

Find shortest taxi path for each flight

2- Data Classification
Categorical

1- Flights type
2- Flights ID
3- Aircrafts weight class
4- Assigned gate and runway
5- Airport area closure case

One hot encodingFlight type

01Arrival

10Departure

Numerical
1- Flights arrival/departure time
2- Flights ground movement

distance (GMD)

Categorical
One hot encoding

Numerical
Min – Max Scaler

ScaleGMD value 

1Max GMD

0Min GMD

3- Data Transformation

4- Data Splitting
1- Training dataset: 75%         2- Testing dataset: 25%

Calculated data
7- Flights ground movement distance

Fig. 4.2. Data preprocessing
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Table 4.3. Training and testing datasets

Dataset Data size
Average ground
movement time
(minutes)

Standard
deviation
(minutes)

Training 40425 6.1432 4.6519
Test 13475 6.0880 4.6141
Total 53900 6.1294 4.6425

shown in Fig. 4.2.

Third, each of these categorical and numerical variables were transformed to improve the

performance of the machine learning models. The categorical variables were transformed

using one hot encoding method to represent each categorical variable as a binary vector

that consists of several elements equal to the categories that the data variable has (Daly et

al., 2016), as shown in Fig. 4.2. For example, the flight type variable is encoded as a binary

vector of two elements where an arrival flight is encoded as [1, 0] and a departure flight is

encoded as [0, 1]. All other categorical variables were encoded using a similar procedure.

The numerical variables were transformed using min-max normalization technique to scale

the values of these variables to a range between 0 and 1, as shown in Fig. 4.2. This

normalization is often used to minimize the risk of one feature dominating the others, which

may occur if the features have very different ranges of values (Pedregosa et al., 2011).

Fourth, the transformed data were then split into training and testing datasets that

include 75% and 25% of the entire dataset of 53,900 flights, respectively, as shown

in Table 4.3. The training dataset will be used to train the machine learning models

and evaluate their performance, while the testing dataset will be used to validate their

performance on unseen data.

4.4 Training

The purpose of the training stage is to develop and compare the performance of five

machine learning models that can be used to predict and quantify the impact of various
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airport area closures on flights ground movement time. These five prediction models were

developed using five machine learning algorithms that are widely used for similar domain

problems such as predicting travel time for both cars and aircrafts on the ground (Lee

et al., 2016) (1) Multilayer Perceptron Neural Networks (MLP ), (2) Ridge Regression (RR),

(3) k-Nearest Neighbors (kNN ), (4) Random Forest Regressor (RFR), and (5) Support

Vector Machines (SVM ). Each of these models was developed using the aforementioned

training dataset.

The first model was developed using Multilayer Perceptron Neural Networks (MLP )

algorithm which is inspired by biological neural networks and suitable for civil engineering

problems (Attalla and Hegazy, 2003; Chakraborty and Elzarka, 2019). This model com-

prised of an input layer, hidden layers, and an output layer, with the numeric weights for

training in the connections (Rosenblatt, 1961). The developed MLP model consists of

1024 nodes in the input layer where their input and output mapped by a rectified linear unit

(ReLU ) activation function, two hidden layers with 128 and 4 nodes with a ReLU activation

function, and one node in the output layer with a linear function, as shown in Fig. 4.3

and Fig. 4.4. The model is built and trained with 200 epochs and batch size of 8. The

second model was developed using Ridge Regression (RR) which is a simple statistical

prediction method that performs regression on past observations with regulated linear

coefficients (Hilt and Seegrist, 1977). The third model was developed using k-Nearest

Neighbors (kNN ) algorithm which is a non-parametric method used for classification and

regression that uses the kth closest training examples in the feature space to predict the

property values of the output (Cover and Hart, 1967). The number of nearest neighbors in

the developed model was specified to be 3 (k value = 3), as shown in Fig. 4.3.

The fourth model was developed using Random Forest Regressor (RFR) which is a

learning method for regression that constructs a multitude of decision trees at training

time and returns the mean or average prediction of the individual trees (Ho, 1998). This

model was made up of 50 individual small trees (estimators), as shown in Fig. 4.3. The
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Multilayer Perceptron Neural Networks
Keras Model: Sequential
Input Layer: 1024 Nodes
Two Hidden Layers: 128 & 4 Nodes
Output Layer: 1 Node
Activation: ReLU
Optimizer: ADAM
Metrics: MAPE, MAE, MSE, RMSE and 𝑅!

Splitting

Training Dataset Testing Dataset

Evaluation & 
Validation

Trained Models
• Multilayer Perceptron Neural Networks
• Ridge Regression
• 𝑘-Nearest Neighbors
• Random Forest Regressor
• Support Vector Regression

Preprocessed Data

Ridge Regression
Metrics: MAPE, MAE, MSE, RMSE and 𝑅!

𝑘-Nearest Neighbors
𝒌 = 3
Metrics: MAPE, MAE, MSE, RMSE and 𝑅!

Classification and Regression Trees
Model: Random Forest Regressor
Number of Estimators = 50
Metrics: MAPE, MAE, MSE, RMSE and 𝑅!

Support Vector Machine
Model: Support Vector Regression
Kernel: Radial Basis Function
Metrics: MAPE, MAE, MSE, RMSE and 𝑅!

Training

Machine Learning Algorithms

Fig. 4.3. Model training framework

fifth model was developed using Support Vector Machines (SVM ) that solves classification

problems by mapping the training data from the input space into a higher dimensional

feature space via a kernel function (Cortes and Vapnik, 1995). The SVM method can be

applied to ground movement time prediction problems using an algorithm called Support

Vector Regression (SV R). For this SV R model, the Radial Basis Function (RBF ) was

used as the kernel function for regression, as shown in Fig. 4.3. The five aforementioned

machine learning algorithms were implemented in Python (vanRossum, 2017) using Keras

library (Chollet et al., 2015) for the first neural networks model, and scikit-learn library

(Pedregosa et al., 2011) for the remaining four models

The selected hyperparameters for each of the five developed models were tuned

using the randomized search method from scikit-learn library (Pedregosa et al., 2011).

This commonly used method involves specifying a range or a set of values for each

hyperparameter and then trying randomly selected sets of combinations to search for and

identify an optimal set of hyperparameters for each developed model.
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Linear

Results

…

…

Fig. 4.4. Graphical representation of developed multilayer perceptron neural networks model

The performance of the aforementioned five machine learning models was measured

using five different metrics: (1) mean absolute percentage error (MAPE) which is the

average of the absolute difference between the predicted and true values divided by the

true value, as shown in Eq. (4.1); (2) mean absolute error (MAE) which is calculated by

summing up the absolute differences between the predicted and true values and divided

by the number of predictions, as shown in Eq. (4.2); (3) mean squared error (MSE) which

is the average squared difference between the predicted and true values, as shown in Eq.

(4.3); (4) root mean squared error (RMSE) which is the square root of MSE, as shown

in Eq. (4.4); and (5) coefficient of determination (R2) which is a measure of how well a

statistical model fits the data, and is calculated as the square of the correlation between

the predicted and true values, as shown in Eq. (4.5).

MAPE =

∑n
i=1

|Pi − Ai|
Ai

× 100%

n
(4.1)
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MAE =

∑n
i=1 |Pi − Ai|

n
(4.2)

MSE =

∑n
i=1(Pi − Ai)

2

n
(4.3)

RMSE =
√
MSE (4.4)

R2 = 1−
∑n

i=1(Ai − Pi)
2∑n

i=1(Ai − Ā)2
(4.5)

where Pi = predicted value of the ith observation; Ai = true value of the ith observation; n =

number of observations in the dataset; and Ā = the mean of true values.

4.5 Evaluation and Validation

The main objective of this stage is to (1) evaluate the performance of each developed

model using the training dataset, (2) validate its results using the testing dataset by

comparing its predicted values to the true values in the testing dataset that was never seen

before by the model, (3) analyze the distribution of prediction errors over multiple windows

to provide additional insight into the performance of the developed models, and (4) conduct

cross-validation analysis to evaluate the generalizability of the aforementioned models.

First, the performance of each of the developed models was evaluated using the training

dataset and the aforementioned metrics. The outcome of this evaluation shows that the

MLP and RFR models provided the highest performance while the kNN and RR models

provided the lowest performance among the developed models. The MLP and RFR

models provided the lowest (a) mean absolute percentage error (MAPE) of 0.57% and

1.29%, and (b) mean absolute error (MAE) of 0.039 and 0.076 minutes of flights ground

movement time, respectively, as shown in Table 4.4. On the other hand, the kNN and RR
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Table 4.4. Performance of developed models

Model Dataset

Performance Metrics
Training
Time
(Seconds)

Mean Absolute
Percentage
Error

Mean
Absolute
Error

Mean
Squared
Error

Root Mean
Squared
Error

Coefficient of
Determination
(R2)

Multilayer Perceptron
Neural Network (MLP)

Training 0.5739% 0.0393 0.0134 0.1156 99.9382%
3321.18

Test 2.2268% 0.1275 0.1681 0.4100 99.2104%

Ridge Regression
Training 8.9014% 0.4377 0.7038 0.8389 96.7476%

0.81
Test 9.3342% 0.4503 0.7374 0.8587 96.5359%

k-Nearest Neighbors
(kNN)

Training 5.7540% 0.3822 1.0591 1.0291 95.1060%
4.03

Test 9.5441% 0.6255 2.2771 1.5090 89.3032%

Random Forest
Regressor (CART)

Training 1.2849% 0.0764 0.0476 0.2182 99.7799%
263.59

Test 3.6125% 0.2063 0.3343 0.5782 98.4294%

Support Vector
Regression (SVM)

Training 4.7800% 0.2718 0.6899 0.8306 96.8117%
3630.86

Test 5.8454% 0.3224 0.7874 0.8873 96.3014%

models provided the highest (a) MAPE of 5.75% and 8.90%, and (b) MAE of 0.382 and

0.438 minutes of flights ground movement time, respectively, as shown in Table 4.4.

Second, the results of the developed models were validated using the testing dataset by

comparing their predicted values to the true values. The results of this validation analysis

show that the MLP and RFR models provided the highest performance while the kNN

and RR models provided the lowest performance among the developed models. The MLP

and RFR models provided the lowest (a) mean absolute percentage error (MAPE) of

2.23% and 3.61%, and (b) mean absolute error (MAE) of 0.128 and 0.206 minutes of

flights ground movement time, respectively, as shown in Table 4.4 and Fig. 4.5. On the

other hand, the kNN and RR models provided the highest (a) MAPE of 9.54% and 9.33%,

and (b) MAE of 0.626 and 0.45 minutes of flights ground movement time, respectively, as

shown in Table 4.4 and Fig. 4.5.

The outperformance of the MLP model compared to the other four developed models

can be attributed to its reported capability of handling complex relationships in datasets

and ability to abstract and capture non-linear relationships through a combination of linear

transformations and non-linear activation functions (Sarker, 2021). Similarly, the RFR

model is a tree-based ensemble method that can capture non-linear relationships in
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Fig. 4.5. Performance of developed models using testing dataset

the data and handle interactions between variables (Breiman, 2001). Additionally, the

SV R model with RBF kernel can capture non-linear relationships between the input and

output variables, but it may have not performed better than the MLP and RFR models

in this study due to the high dimensionality and complexity of the non-linear relationship

in data (Cai et al., 2016). However, the SV R model can perform better if more advanced

optimization techniques were used for hyperparameters tuning or if low-dimensional and

small dataset were available (Cai et al., 2016). On the other hand, the kNN and Ridge

Regression Models are linear models and are limited in their ability to effectively capture

complex non-linear relationships as the other three developed models (Pedregosa et al.,

2011; Shi and Liu, 2018).

Third, the distribution of prediction errors was analyzed over multiple windows to provide

additional insight into the performance of the machine learning models beyond what can be

gleaned from the performance metrics. For example, a performance metric, such as MSE,

can provide an overall measure of error but may not reveal more subtle patterns in the

data such as heteroscedasticity (i.e., non-constant variance of errors) or autocorrelation in
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Table 4.5. Percentage of predicted flights ground movement time over multiple error windows

Model
Error windows

+/- 1-second +/- 5-second +/- 30-second +/- 1-minute +/- 5-minute

Multilayer Perceptron Neural Network (MLP ) 44.96% 73.51% 94.52% 97.38% 99.92%

Ridge Regression (RR) 3.25% 16.42% 79.71% 89.55% 99.58%

k-Nearest Neighbors (kNN ) 43.66% 55.62% 74.75% 81.87% 97.74%

Random Forest Regressor (RFR) 51.03% 67.98% 88.73% 94.15% 99.84%

Support Vector Regression (SV R) 8.95% 44.43% 87.62% 92.31% 99.26%

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Cu
m

ul
at

iv
e 

pe
re

nt
ag

e 
of

 fl
ig

ht
s (

%
)

Ground movement time absolute prediction error (minutes)

MLP RR kNN RFR SVR

Fig. 4.6. Prediction error distribution for developed machine learning models

the errors. By analyzing the distribution of errors over multiple windows, it is possible to

detect these patterns and gain a deeper understanding of how the model is performing.

Accordingly, the percentage of predicted flight ground movement times that fell within

each error window for the testing dataset was calculated and analyzed, as shown in

Table 4.5 and Fig. 4.6. The error windows were defined as ranges of deviation from the true

ground movement time. For example, the first error window of -1 to +1 second includes all

predictions that were within 1 second of the true flight ground movement time. The results

of this analysis indicate that the MLP and RFR models provided the best performance

as 94.52% and 88.73% of their predictions were within +/- 30 seconds of the true flights

ground movement time, respectively (see Table 4.5 and Fig. 4.6).
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Table 4.6. Percentage of flights within multiple absolute percentage error windows

Model
Absolute percentage error windows

1% 5% 10% 50% 100%

Multilayer Perceptron Neural Network (MLP ) 69.45% 92.63% 96.30% 99.52% 99.89%

Ridge Regression (RR) 10.01% 45.99% 72.65% 98.56% 99.61%

k-Nearest Neighbors (kNN ) 48.28% 67.65% 77.54% 95.71% 98.97%

Random Forest Regressor (RFR) 61.30% 84.35% 91.72% 99.18% 99.70%

Support Vector Regression (SV R) 24.57% 76.54% 89.77% 98.66% 99.56%

Runway

Taxiway
Runway
Gate
Arrival gates of flights with
high absolute percentage error

Fig. 4.7. Arrival gates of flights with high absolute percentage error

Furthermore, the distribution of prediction errors was analyzed over multiple absolute

percentage error windows (see Table 4.6) to investigate predicted flights ground movement

time with an absolute percentage error of more than 100%. The MLP model was able to

predict the ground movement times of 99.89% of the flights in the testing dataset with an

absolute percentage error less than 100%, as shown in Table 4.6. The remaining 0.11% of

the flights (15 flights) with an absolute percentage error of more than 100% were found to

be arrival flights using small aircrafts with short ground movement times of approximately

one minute and their assigned arrival gates were in a specific location of the airport, as

highlighted in Fig. 4.7. Additionally, these flights were found to account for 85% to 100%

of the flights with the highest absolute percentage error when predicted by the other four

developed models. This analysis shows that the developed prediction models may not

be able to capture the unique characteristics of arrival flights that use small aircrafts and

assigned to the highlighted gates in Fig. 4.7 when their ground movement times are short.
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Fourth, a cross-validation was conducted to evaluate the generalizability of the five

developed machine learning models. Cross-validation is a resampling procedure used

to evaluate the model’s ability to generalize to unseen data (Pedregosa et al., 2011).

The cross-validation analysis in this stage was conducted using the widely used k-fold

procedure (Pedregosa et al., 2011). This was achieved by dividing the training dataset

into k folds that are used to train and test the model in k iterations, as shown in Fig. 4.8.

In each of these iterations, a machine learning model was developed and tested in three

steps that were designed to (1) train the model using k – 1 subsets of the training dataset

that are represented by blue boxes in Fig. 4.8, (2) test the developed model using the

remaining subset of the training dataset that is represented by the yellow box in Fig. 4.8,

and (3) calculate the model prediction error. These three steps were repeated for each

iteration k, as shown in Fig. 4.8 and Table 4.7. The results of this cross-validation analysis

confirm the generalizability of the five developed machine learning models as they all

performed consistently in each iteration, as shown in Table 4.7. For example, the MAPE

of the developed MLP model in the five iterations of this cross-validation analysis were all

consistent ranging from 2.29% to 2.50% with an average of 2.40%, as shown in Table 4.7.

This average MAPE of the cross-validation analysis (2.40%) is also very close to that

of the aforementioned validation analysis (2.23%) that was calculated using the testing

dataset. The remaining four machine learning models had similar consistent performance

in the cross-validation analysis, as shown in Table 4.7. This confirms the generalizability

of the developed five machine learning models. The results also confirm that MLP

model outperformed the remaining four developed machine learning models in all five

performance evaluation metrics, as shown in Table 4.7. The overall results of this evaluation

and validation stage clearly illustrate the high accuracy that can be achieved by the five

developed models, especially the MLP and RFR models that had an accuracy of 97.77%

and 96.39% in predicting the impact of airport area closures on flights ground movement

time.
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Table 4.7. Cross-validation results

Model Performance Metric
Cross Validation Score

Mean
Standard
Deviation

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Multilayer
Perceptron
Neural
Networks
(MLP )

Mean Absolute Percentage Error
(MAPE)

2.45% 2.29% 2.35% 2.50% 2.42% 2.40% 0.07%

Mean Absolute Error (MAE) 0.1434 0.1346 0.1401 0.1358 0.1423 0.1392 0.0035
Mean Squared Error (MSE) 0.1924 0.1604 0.1797 0.1778 0.1815 0.1784 0.0103
Coefficient of Determination (R2) 99.09% 99.22% 99.15% 99.20% 99.15% 99.16% 0.04%

Ridge
Regression
(RR)

Mean Absolute Percentage Error
(MAPE)

9.32% 9.15% 9.20% 9.04% 9.18% 9.18% 0.09%

Mean Absolute Error (MAE) 0.4583 0.4359 0.4479 0.4454 0.4543 0.4483 0.0077
Mean Squared Error (MSE) 0.7636 0.6917 0.7027 0.7432 0.7838 0.7370 0.0351
Coefficient of Determination (R2) 96.53% 96.68% 96.72% 96.58% 96.44% 96.59% 0.10%

k-Nearest
Neighbors
(kNN )

Mean Absolute Percentage Error
(MAPE)

9.69% 9.79% 9.52% 9.84% 9.77% 9.72% 0.11%

Mean Absolute Error (MAE) 0.6755 0.6524 0.6633 0.6630 0.6882 0.6685 0.0123
Mean Squared Error (MSE) 2.6038 2.3905 2.5491 2.5335 2.7361 2.5626 0.1118
Coefficient of Determination (R2) 88.18% 88.52% 88.12% 88.35% 87.60% 88.16% 0.31%

Random
Forest
Regressor
(RFR)

Mean Absolute Percentage Error
(MAPE)

3.89% 3.73% 3.75% 3.87% 3.77% 3.80% 0.06%

Mean Absolute Error (MAE) 0.2355 0.2214 0.2300 0.2276 0.2295 0.2288 0.0046
Mean Squared Error (MSE) 0.4310 0.3588 0.4146 0.3639 0.3999 0.3936 0.0282
Coefficient of Determination (R2) 98.09% 98.33% 98.06% 98.39% 98.20% 98.21% 0.12%

Support
Vector
Regression
(SV R)

Mean Absolute Percentage Error
(MAPE)

6.23% 5.61% 5.73% 5.99% 6.17% 5.94% 0.24%

Mean Absolute Error (MAE) 0.3575 0.3220 0.3379 0.3435 0.3616 0.3445 0.0142
Mean Squared Error (MSE) 0.9465 0.7426 0.8027 0.8857 0.9949 0.8745 0.0920
Coefficient of Determination (R2) 95.70% 96.43% 96.26% 95.92% 95.49% 95.96% 0.34%
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Fig. 4.8. Cross-validation framework

4.6 Case Study

The performance of the developed machine learning models was evaluated by analyzing

a real-life case study. This analysis highlights the capabilities of the developed models in

quantifying the impact of alternative construction phasing plans on flights ground movement

time during airport expansion projects without the need for repetitive and time-consuming

simulations. The case study focuses on an airport expansion project that requires the

relocation and reconstruction of 14 segments of a 5000 ft-long Taxiway B at San Diego

International Airport (San Diego county regional airport authority, 2021), as shown in

Fig. 1.4. For this case study, airport and construction planners need to consider the impact

of three alternative construction phasing plans on flights ground movement time during the

reconstruction of the 5000 ft-long taxiways. These three alternative construction phasing

plans include concurrent, sequential, and overlapping closures of all 14 areas, as shown in

option I, II, and III in Fig. 4.9. All work for all phases in these three construction phasing

plans were scheduled to take place 5 days per week from Monday to Friday working 8
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Fig. 4.9. Construction phasing plans

hours per day from 9:00 to 17:00.

The developed multilayer perceptron neural networks model (MLP ) was used to support

airport planners in assessing and predicting the impact of the aforementioned three

alternative construction phasing plans on flights ground movement time without the need

for time-consuming simulations. For each alternative phasing plan, the MLP model was

used to predict ground movement time of all flights that are scheduled during the airport

expansion project. For each flight, the difference between its predicted ground movement

time during construction and normal conditions was then used to calculate its construction-

related delay. This delay accounts for all construction-related disruption such as additional

flights taxi time due to longer taxi path and queues caused by the closure of taxiway

segments during construction. For each of the three alternative construction phasing

plans, these calculated delays for all affected flights were then analyzed to calculate (1)

the total number of delayed flights; (2) the total delays of all affected flights in minutes and

hours; and (3) the number of flights with construction-related delays that are greater than

10%, 30%, . . . , 500% of regular flight ground movement time during normal conditions

with no construction; and, as shown in Table 4.8. This analysis illustrates that option I

that schedules all construction phases concurrently was the least disruptive construction

phasing plan among the three considered alternatives in this case study. Option I resulted

in (1) the least total number of delayed flights of 1,878; (2) the least total delays in

ground movement time of 47.9 hours for all of the 1,878 flights that were delayed during
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Table 4.8. Impact of construction phasing plans on flights ground movement time

Construction
phasing plan

Total delayed
flights

Total delay Number of flights with delays more than X% of normal ground movement time
10% 30% 50% 70% 100% 150% 200% 300% 500%

Option I
concurrent

1,878 2,879 mins
(47.9 hours)

1,429 1,193 986 815 648 436 306 137 21

Option II
sequential

12,580 4,319 mins
(71.9 hours)

6,441 4,202 2,730 1,824 1,208 579 226 101 50

Option III
overlapping

7,391 3,488 mins
(58.1 hours)

4,945 3,356 2,409 1,648 1,160 599 362 214 37

construction; and (3) the least number of flights that suffer varying levels of delays, as

shown in Table 4.8.

The results of the case study clearly illustrate the capability of the model to efficiently

and accurately predict the impact of alternative construction phasing plans on the total

number of delayed flights and their total delays in minutes and hours without the need

for performing repetitive and time-consuming runs using air traffic simulation tools. This

can lead to significant saving in the computational time and effort required to analyze the

impact of alternative construction phasing plans on flights ground movement time during

airport expansion projects. As stated earlier, there are 16,383 possible combinations of

airport area closures for this case study and analyzing even a very small subset of these

possible combinations using air traffic simulation tools requires at least 15 minutes per

simulation run for each alternative airport area closure. To overcome this limitation, the

developed prediction models require less than a second to accurately calculate and predict

the impact of any airport area closure alternative on flights ground movement time, as

shown in the three analyzed construction phasing plans in this case study.

4.7 Conclusion

A novel machine learning methodology was developed to enable construction planners

to accurately analyze the impact of feasible construction phasing plans on flights ground

movement time without the need for repetitive and time-consuming simulation computations.
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This methodology can be used to develop machine learning models for predicting the

impact of airport area closures on air traffic during airport expansion projects. The

methodology implementation is organized in four main stages: (1) data collection stage

to gather all required airport data for training and testing the prediction models; (2) data

preprocessing stage to identify, classify, transform, and split all predicted and predictor

variables data into training and testing datasets; (3) model training stage to select the

machine learning methods and fit each of them to the training dataset; and (4) evaluation

and validation stage to evaluate the performance of each selected method and validate

its results. The methodology was used to develop and compare the performance of

five machine learning models using multilayer perceptron neural networks (MLP ), ridge

regression (RR), k-nearest neighbors (kNN ), random forest regressor (RFR), and support

vector regression (SV R). The performance of each of these developed models was

evaluated using five evaluation metrics: mean absolute percentage error (MAPE), mean

absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE),

and coefficient of determination (R2). This performance evaluation showed that the

developed multilayer perceptron neural networks model outperformed the other models

in all performance metrics as it provided the lowest MAPE of 2.23% and MAE of 0.128

minutes.

A real-life case study of an airport expansion project was analyzed to illustrate the use of

the developed methodology. This case study required the relocation and reconstruction of

a 5000 ft-long Taxiway B of San Diego International Airport. Three alternative construction

phasing plans were analyzed and their impact on flights ground movement time was

predicted using the developed multilayer perceptron neural networks model. The case

study results illustrate the capability of the model in predicting the impact of alternative

construction phasing plans on flights ground movement time during airport expansion

projects efficiently and accurately without the need for repetitive and time-consuming

simulation computations.
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The original contributions of the developed novel machine learning methodology include

(1) development of five machine learning models for accurately and efficiently quantifying

the impact of construction-related airport area closures and flights ground movement

operations on flights ground movement time; (2) comparison of the performance and

accuracy of multilayer perceptron neural networks model, ridge regression, k-nearest

neighbors, random forest regressor, and support vector regression in predicting flights

ground movement time during airport expansion projects; and (3) efficient and reliable

assessment of the impact of alternative construction phasing plans on airport operations

without the need for repetitive and time-consuming simulation computations. These original

contributions and novel capabilities are expected to support airport and construction

planners in their efforts to efficiently and accurately analyze and compare the impact of

feasible construction phasing plans on airport operations in order to identify the least

disruptive phasing plan that minimizes total number of delayed flights and total delays of

all affected flights.
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Chapter 5

Optimizing the Phasing Plans of Airport
Expansion Projects

5.1 Introduction

The objective of this chapter is to develop a novel methodology for optimizing the phasing

plans of airport expansion project that overcomes the aforementioned limitations of existing

research studies and identifies optimal daily and hourly work plans for all construction

activities in order to minimize both airport operation disruptions and total construction cost.

The methodology is designed to enable airport and construction planners to identify all

optimal planning decisions including: optimal start time of each construction phase (PSp),

optimal start time of each activity in each phase (ASp,i), optimal working days per week

for each phase (WDp), optimal number of shifts per day for each phase (WSp), optimal

working hours per shift (WHp,ws), and optimal lag time between shifts (lagp,ws), as shown

in Fig. 5.1. The developed methodology integrates (1) the machine learning model that

was developed in the previous chapter to predict the impact of construction phasing plans

on flights ground movement time during airport expansion projects without the need for

repetitive and time-consuming simulations, and (2) a multi-objective optimization model to

generate optimal tradeoff between minimizing airport operations disruption cost and total

construction cost, as shown Fig. 5.1. The following sections provide a concise description

of the development and computations of the optimization model.
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Multi-Objective Optimization Model

Phasing Module
(See Fig. 5.3)

Formulation Module
• Identify decision variables
• Formulate objective functions
• Model practical constraints

Optimization Results

Optimal Planning Decisions

• Phase Start time (𝑃𝑆!)
• Activity Start time (𝐴𝑆!,#)
• Working days per week (𝑊𝐷!)
• Number of shifts per day (𝑊𝑆!)
• Working hours per shift (𝑊𝐻!,$%)
• Lag time between shifts (𝑙𝑎𝑔!,$%)

Optimal Scheduling Data
• Project start time (𝑃𝑆)
• Project finish time (𝑃𝐹)
• Project duration (𝐷)
• Phase finish time (𝑃𝐹!)
• Phase duration (𝐷!)
• Activity finish time (𝐴𝐹!,#)
• Activity duration (𝐷!,#)
• Optimal trade-offs between 

construction-related disruption 
cost (𝐶𝑅) and construction cost 
(𝐶𝐶)

• Predict impact of construction phasing plans 
on flights ground movement time (𝐶𝐺𝑇&)

• Calculate construction-related disruption 
(𝐷𝑇&,')

Machine Learning ModelInput Data

Project
• Location
• Construction phases (𝑃)
• Construction activities (𝐼)
• Indirect cost rates (𝐼𝑅)

Activity
• Quantities of work (𝑊!,#)
• Precedence relationships (𝑃𝐷!,#)
• Crew daily output rate (𝑂𝑅!,#)
• Impact of overtime on crew productivity 

(𝐼𝑂!,#,()
• Impact of nighttime work on crew 

productivity (𝐼𝑁!,#,()
• Unit and labor cost rates (𝑈𝐶!,#, 𝐿𝐶!,#)
• Overtime premiums rate (𝑂𝑃!,#) 
• Mobilization cost rate (𝑀𝑅!,#) 
• Nighttime work cost (𝑁𝐶!,#,()

Airport
• Airport layout
• Air traffic
• Flight operations schedule
• Airplane delay cost per hour (𝐷𝑅&)

GA Computations Module
(See Fig. 5.2)

Fig. 5.1. Methodology for optimizing airport construction phasing plans.

5.2 Multi-Objective Optimization Module

The main objective of this model is to generate optimal construction phasing plans

that provide optimal trade-offs between minimizing construction-related disruption cost

and total construction cost. The development of the multi-objective optimization model is

performed in three main modules: formulation, GA computations, and phasing modules

that are discussed in the following sections.

5.3 Formulation Module

The formulation module is designed to (1) identify all relevant decision variables that

include phases start time (PSp), start time of each activity in each phase (ASp,i), working

days per week for each phase (WDp), number of shifts per day for each phase (WSp),

working hours per shift (WHp,ws), and lag times between shifts (lagp,ws), as shown in

Fig. 1.6; (2) formulate the optimization objective functions for minimizing construction-
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related disruption cost and minimizing total construction cost, as shown in Eqs. (5.1) and

(5.2); and (3) model all related optimization constraints including phases start time, crew

working time, and job logic, as shown in the illustrated example of activities A,B, and C in

Fig. 5.3.

Minimize CR = Minimize

PF∑
h=PS

F∑
f=1

CRh,f (5.1)

where CR= total construction-related disruption cost in $, PS = project start time in hours,

PF = project finish time in hours, and f = flight ID.

Minimize CC = Minimize (CD + CI + CM + CN) (5.2)

where CC= total construction cost; CD= construction direct cost; CI= construction indirect

cost; CM= mobilization cost; and CN= nighttime construction cost.

5.4 GA Computations Module

The optimization computations of the formulated multi-objective model are executed

using multi-objective genetic algorithms due to their capabilities in (1) dealing with the

nonlinear and discontinuous decision variables and constraints of the formulated model

including phases and activities start time; and (2) identifying optimal solutions for similar

problems with large search space in a reasonable computational time (Abdallah and El-

Rayes, 2016; Al-Ghzawi and El-Rayes, 2023; AlOtaibi et al., 2021; Altuwaim and El-Rayes,

2021; Hegazy and Wassef, 2001; Jun and El-Rayes, 2010; Khalafallah and El-Rayes,

2006a, 2006b, 2008; Said and El-Rayes, 2010).

The optimization computations are accomplished in five main steps (see Fig. 5.2) that

are designed to (1) generate a new population of randomly selected construction phasing

plans s = 1 to S for the first generation g = 1 using the phasing module, as shown in

Fig. 5.2; (2) quantify the impact of each phasing plan on flights ground movement time
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Step 1: Generate a new population of random phasing 
plan solutions 𝒔 = 𝟏	𝒕𝒐	𝑺	for the first generation 𝒈 = 1

using Phasing Module (See Fig. 5.3)

𝒔 = 1

𝒔 = 𝒔	+ 1

𝒔 >	𝑺	No

Yes

Step 4: Evaluate and rank all generated phasing plans 
from 1 to 𝑺 in generation 𝒈

GA Stop 
Criterion

No

Step 5: Generate new 
set of phasing plans for 
generation 𝒈 utilizing 

GA operations

Yes

Step 2: Quantify impact of each generated phasing plan 𝑠
on flights ground movement time using 

Machine Learning Model

𝒈 = 𝒈	+ 1

INPUT DATA (See Fig. 5.1)

Step 3: Estimate (1) total construction-related disruption 
cost (𝐶𝑅), and  (2) total construction cost (𝐶𝐶) for each 

generated phasing plan 𝑠

Optimization Results 
(See Fig. 5.1)

Fig. 5.2. Genetic algorithms computations module
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using the developed machine learning model; (3) estimate the total construction-related

disruption cost in airport operations (CR), and the total construction cost (CC) for each

phasing plan using Eqs. (5.1) and (5.2); (4) evaluate and rank all generated solutions from

1 to S in generation g; and (5) perform GA operations of selection, mutation, and crossover

to generate a new set of phasing plans for the new generation g = g + 1, as shown in

Fig. 5.2. The optimization computations are terminated when the GA stopping criteria are

satisfied and then the model generates its optimization results (See Fig. 5.1).

5.5 Phasing Module

The purpose of this module is to generate a practical phasing plan for each solution

s generated by the GA optimization module that specifies the start and finish times of

each construction phase and its activities, as shown in Fig. 5.3 To ensure practicality,

this module is designed to ensure that generated phasing plans comply with all relevant

constraints including phases start time, crew working time, and job logic. To accomplish

this, the computations in this module are performed in six steps (see Fig. 5.3) that are

designed to:

1. Calculate early start time (AESp,i) of all activities that have no predecessor (PDp,i = 0)

based on GA selected phase start time (PSp).

2. Calculate the required duration in working hours of all activities i in each phase p (Dp,i)

based on activity quantity of work (Wp,i), crew output rate (ORp,i), impact of scheduled

overtime (IOp,i,j) and nighttime work (INp,i,j) on the productivity of construction crews,

as shown in step 2 in Fig. 5.3. IOp,i,j represents the impact of overtime use on the

productivity of construction crews. For example, the production efficiency of a crew

working 10 hours per day and 6 days per week was reported to be 85% based on

an analysis of historical crew productivity data (RSMeans data, 2020). Similarly,

INp,i,j represents the impact of working during nighttime hours on the productivity of

construction crews. For example, the Mechanical Contractors Association of America
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Table 5.1. San Diego International Airport taxiway segments length

Phase C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

Length (ft) 500 300 200 550 350 225 425 275 200 200 350 500 225 700

(MCAA) reported that the productivity of crews working during nighttime hours is

approximately 70% of those achieved during regular working hours (Kitchens, 1996).

3. Schedule the early start (AESp,i) and early finish (AEFp,i) times of all activities in

each phase based on the outcomes the previous two steps.

4. Calculate the early start time (AESp,i) of all remaining activities that have predecessors

(PDp,i > 0) in each phase and repeat steps 2 and 3.

5. Calculate the free float of all activities in each phase (FRp,i), as shown in Fig. 5.3.

6. Identify scheduled start time of all activities in each phase (ASp,i) based on GA

selections for this decision variable that are constrained by the activity free float (see

Fig. 5.3) to prevent extending the project duration beyond its early completion time.

This enables the model to consider and optimize the impact of alternative activity start

times on minimizing construction-related disruption cost and total construction cost.

5.6 Case Study

The performance of the formulated multi-objective optimization model is evaluated

by analyzing a real-life case study to demonstrate the use of the model and highlight

its capabilities in generating construction phasing plans that provide optimal tradeoffs

between minimizing the cost of construction-related disruption in airport operations and

total construction cost of airport expansion projects. The case study focuses on optimizing

the construction phasing plan for an airport expansion project that requires the relocation

and reconstruction of 14 segments of a 5000 ft-long Taxiway B at San Diego International

Airport, as shown in Fig. 5.4 and Table 5.1.
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Time (days)
00    1      2      3     4      5     6      7      8     9     10    11   12    13   14    15   16    17   18    19   20   21   22   23   00 

Time (hours)

GA Computations Module step 1
Generate random selections for all decision 
variables for solution 𝑠 in generation 𝑔:
• Phases start time (𝑃𝑆!)
• Activities start time (𝐴𝑆!,#)
• Number of days per week (𝑊𝐷!)
• Number of working shifts per day (𝑊𝑆!)
• Number of working hours per shift (𝑊𝐻!,$%)
• Lag time between shifts (𝑙𝑎𝑔!,$%)

Input Data
• Construction phases (𝑃)
• Construction activities (𝐼)
• Predecessors of each activity (𝑃𝐷!,#)
• Quantity of work of each activity (𝑊!,#,)
• Crew daily output rate of each activity (𝑂𝑅!,#)
• Impact of nighttime work on crew productivity 

(𝐼𝑁!,#,&)
• Impact of overtime on crew productivity (𝐼𝑂!,#,&) 

Example selected 
start time for 
phase 1 (𝑃𝑆!): 
Monday at 8:00 am 

Mon Tue  Wed Thu   Fri   Sat   Sun Mon Tue Wed Thu   Fri   Sat  Sun

Phasing Module

To GA Computations Module step 2

Time (days)
00    1      2      3     4      5     6      7      8     9     10    11   12    13   14    15   16    17   18    19   20   21   22   23   00 

Time (hours)

Example early start 
time of activities A 
and B that have no 
predecessors  
(𝐴𝐸𝑆!,#	&	𝐴𝐸𝑆!,$): 
Monday at 8:00 am 

Mon Tue  Wed Thu   Fri   Sat   Sun Mon Tue Wed Thu   Fri   Sat  Sun

Time (days)
00    1      2      3     4      5     6      7      8     9     10    11   12    13   14    15   16    17   18    19   20   21   22   23   00 

Time (hours)
Mon Tue  Wed Thu   Fri   Sat   Sun Mon Tue Wed Thu   Fri   Sat  Sun

A A A

B B B

Time (days)
00    1      2      3     4      5     6      7      8     9     10    11   12    13   14    15   16    17   18    19   20   21   22   23   00 

Time (hours)
Mon Tue  Wed Thu   Fri   Sat   Sun Mon Tue Wed Thu   Fri   Sat  Sun

A C C

B

C

Non-working days

Time (days)
Mon Tue  Wed Thu   Fri   Sat   Sun Mon Tue Wed Thu   Fri   Sat  Sun

B

𝑙𝑎𝑔!,!	= 4 hours

Example early start 
time of activity 𝐂
that has A and B as 
predecessors  
(𝐴𝐸𝑆!,%)

Example Activities in Phase 1

A

B
CStart End

Number of working shifts per 
day for phase 1 (𝑊𝑆!) = 2 shifts

Number of working days per week 
for phase 1 (𝑊𝐷!) = 5 days

Non-working days

A

A

Time (days)
Mon Tue  Wed Thu   Fri   Sat   Sun Mon Tue Wed Thu   Fri   Sat  Sun

A

B

C

Non-working days

A A C

Non-working days

A

Step 4: Calculate early start time of all activities (𝐴𝐸𝑆!,#) that have predecessors (𝑃𝐷!,# > 0) then repeat steps 2 and 3

Step 5: Calculate free float of all activities Step 6: Identify scheduled start times (𝐴𝑆!,#) of all activities based 
on GA selections 

𝑾𝑷𝒑,𝒊,𝒋 = 𝑶𝑹𝒑,𝒊 	 ∗ 𝑰𝑵𝒑,𝒊,𝒋 	 ∗ 𝑰𝑶𝒑,𝒊,𝒋 𝑾𝑷𝒑,𝒊 = 𝑾𝒑,𝒊𝑾𝑷𝒑,𝒊 = 𝑾𝑷𝒑,𝒊 +𝑾𝑷𝒑,𝒊,𝒋 𝑫𝒑,𝒊 = 𝒋
No

𝒋 = 𝟏 Yes

𝒋 = 𝒋 + 𝟏

Number of working hours during 
shift 1 of phase 1 (𝑊𝐻!,!) = 4 hours

Number of 
working hours 

during shift 2 of 
phase 1 

(𝑊𝐻!,)) = 4 
hours

Example free float 
of activity B

Example scheduled 
start time of activity 
B within its float 
(𝐴𝑆!,$): Tuesday at 
8:00 am rather than 
Monday at 8:00 am

Step 1: Calculate early start time of all activities (𝐴𝐸𝑆!,#) with no predecessors (𝑃𝐷!,# = 0)

Step 2: Calculate duration of all activities (𝐷!,#) in working hours.

Step 3: Schedule early start (𝐸𝐴𝑆!,#) and early finish (𝐸𝐴𝐹!,#) times of all activities

Example activities A and B

Schedule activities based on their:

(1) Calculated durations: 
𝐷!,# = 48	hours
𝐷!,$ = 24 hours

(2) GA selections: 
𝑊𝐷! = 5 days
𝑊𝑆! = 2 shifts
𝑊𝐻!,! = 4 hours
𝑊𝐻!,) = 4 hours
𝑙𝑎𝑔!,! = 4 hours

Lag time between first and second working 
shifts for phase 1 (𝑙𝑎𝑔!,!) = 4 hours

Fig. 5.3. Phasing module computations.
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Fig. 5.4. Layout of San Diego International Airport (SAN) in Simmod Pro!

The input data for this case study (see Fig. 5.1) includes (1) airport layout as shown in

Fig. 5.4; (2) air traffic data such as flight types and their assigned gates and runways; (3)

flight operations schedule such as arrival/departure time; (4) aircraft delay cost rate (DRf )

that depends on aircraft weight class and was specified to be $1,500, $3,000, and $4,500

per hour for small, large and heavy aircrafts, respectively (FAA, 2020b); (5) all construction

activities for each of the 14 phases, as shown in Table 5.2 (San Diego county regional

airport authority, 2021); (6) construction indirect cost rate that was specified to be 25% of

the construction direct cost; (7) predecessor activities (PDp,i); (8) quantity of work (Wp,i);

(9) crew daily output rates (ORp,i); (10) unit cost rates (UCp,i), as shown in Table 5.2; (11)

impact of overtime on crew productivity (IOp,i,j); (12) impact of nighttime work on crew

productivity (INp,i,j); (13) labor overtime premiums (OPp,i,j) that was specified to be 200%

of the regular rate; (14) mobilization cost rate (MRp,i) which was specified to be 3% of

construction direct cost; and (15) nighttime construction cost (NCp,i,j) such as nighttime

lighting equipment cost that was specified to be 10% of construction direct cost.

The aforementioned airport layout, air traffic data, and flight operations schedule were

utilized to develop a machine learning model that provides the capability of predicting

flights ground movement time during construction without the need for repetitive and time-

consuming simulations. To develop this model, the layout of San Diego International Airport

and all its related input data were specified in Simmod Pro, as shown in Fig. 5.4. Simmod
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Table 5.2. Input data of phase C8 reconstruction activities and crews

Construction Activities
Quantity

Unit
Daily Output Cost rate

Activity Predecessors of work (ORp,i) (UCp,i)
ID (i) (PDp,i) (Wp,i) (unit/day) ($/unit)

1 Close construction site - 1350 LF 400 3.78
2 Install lighted barricades - 100 EA 150 145
3 Remove airfield markings 1, 2 1512.5 SF 500 2.81
4 Remove signage 1, 2 2 EA 5 539
5 Install temporary lighting 1, 2 1 EA 8 9,430
6 Mill asphalt pavement 3, 4, 5 12000 SY 9,000 0.87
7 Excavate to subgrade 6 9000 BCY 12,500 0.42
8 Demolish existing utilities 7 275 LF 800 1.27
9 Demolish electrical system 7 275 LF 394 0.79
10 Remove base soil 8, 9 3400 LCY 1,080 2.16
11 Prepare subgrade 10 12000 SY 15,000 0.15
12 Install duct banks 11 275 LF 260 3.46
13 Place base material 12 12000 SY 4,200 8.01
14 Compact base material 13 12000 SY 4,200 7.99
15 Install conduit and base cans 14 275 LF 270 1.91
16 Install in-pavement lighting 15 5 EA 18.64 784
17 Install asphalt pavement 16 12000 SY 4,520 13.68
18 Install in-pavement light fixtures 17 5 EA 4 362
19 Install signage 17 2 EA 5 980
20 Install pavement marking 17 1512.5 SF 4,000 0.68
21 Remove lighted barricades 18, 19, 20 100 EA 250 27
22 Restore construction site 21 1350 LF 432 1
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Pro was then utilized to calculate the ground movement times for all flight under normal

(GTf ) and construction (CGTf ) conditions. This resulted in creating a training dataset

of 40,425 flights and a testing dataset of 13,475 flights that were used in training and

testing the machine learning model as described earlier. The machine learning model was

developed using Multilayer Perceptron Neural Networks (MLP ) in Python (vanRossum,

2017) and executed using Keras library (Chollet et al., 2015), and its performance was

validated using mean absolute percentage error (MAPE) and mean absolute error (MAE).

The results show that the MLP model provided MAPE of 2.23% and MAE of 0.128

minutes which indicate that the average accuracy of the developed MLP model was

approximately 97.77%.

The aforementioned MLP model was then combined with the developed multi-objective

optimization model to search for and generate an optimal reconstruction phasing plan

that minimizes both construction-related disruption cost in airport operations and total

construction cost, as shown in Fig. 5.1. The genetic algorithm optimization computations

for this case study were performed using the distributed evolutionary algorithm package

(DEAP ) in the Python programming platform (vanRossum, 2017). The GA search pa-

rameters utilized in this case study are the NSGA − II selection with a population size

of 512, a mutation rate of 0.6, and a cross-over rate of 0.2. The optimization engine was

set to terminate the optimization computations after a total of 20,000 generations or when

the set of the Pareto optimal solutions do not change for 200 consecutive generations.

The computational time for this case study was approximately 32 hours when the engine

terminated after 5,270 generations using a personal laptop with 2 GHz Quad-Core Intel

Core i5 Processor and 16 GB 3733 MHz LPDDR4X RAM.

Upon completion of the aforementioned computations, the model generated 150 Pareto

optimal solutions, where each represents a unique phasing plan that provides an optimal

tradeoff between minimizing construction-related disruption cost in airport operations (CR)

and minimizing total construction cost (CC), as shown in Fig. 5.5. A sample of these
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Table 5.3. Sample of Pareto optimal solutions

Sol. Project Start Time Project Finish Time Airport Disruption Total Construction
(S) (PS) (PF ) Cost (CC) Cost (CR)

1 Saturday, January 19th Saturday, January 4th $1,005 $13,350,668
at 00:00 at 02:12

26 Thursday, March 7th Sunday, February 16th $25,369 $13,121,845
at 23:00 at 23:15

52 Monday, March 25th Saturday, March 4th $57,409 $12,493,477
at 00:00 at 12:42

71 Sunday, February 10th Monday, March 2nd $116,591 $11,553,746
at 12:00 at 00:28

103 Tuesday, January 29th Wednesday, April 8th $171,554 $10,370,702
at 10:00 at 01:27

126 Monday, February 4th Wednesday, March 18th $351,298 $8,731,728
at 09:00 at 23:58

150 Monday, January 21st Tuesday, December 24th $879,791 $8,233,435
at 08:00 at 13:48

phasing plans along with their project start time (PS), project finish time (PF ), airport

disruption cost (CR), and total construction cost time (CC) are summarized in Table 5.3.

The generated 150 Pareto optimal solutions for this case study includes (1) a minimum

airport operations disruption cost solution of $1,005 (S1) with an associated maximum

total construction cost of $13,350,668; (2) a minimum total construction cost solution

of $8,233,435 (S150) with an associated maximum airport operations disruption cost of

$879,791; and (3) 148 additional Pareto optimal solutions that provide a wide range of

optimal trade-offs between airport operations disruption cost and total construction cost,

as shown in Fig. 5.5.

On one end, optimal solution S1 provides minimum airport operations disruption cost

(CR) by scheduling the construction activities during nighttime hours that have very limited

or no air traffic to avoid disrupting airport operations during high air traffic hours. This

is achieved by planning the work of all phases to be 5 days per week (WD = 5) from

Saturday to Wednesday by working in 1 shift per day (WS = 1) for 5 hours (WH = 5) from
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Solution S150: 
TCC = $8,233,435
TDC = $879,791

Solution S103: 
TCC = $10,370,702

TDC = $171,554

Solution S1: 
TCC = $13,340,668

TDC = $1,005
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Fig. 5.5. Generated Pareto optimal solutions

midnight to 5:00 am when there is very limited number of flights, as shown in Table 5.4.

However, this solution has the highest total construction cost among the generated optimal

solutions due to the additional cost of nighttime construction and labor overtime premiums.

A detailed phasing plan of this solution including the identified optimal phases start time

(PSp), activities start time (ASp,i) number of working days per week for each phase (WDp),

number of working shifts per day for each phase (WSp), and number of working hours

per shift (WHp,ws) are summarized in Table 5.4, Table 5.5, and Fig. 5.6. Furthermore, the

integrated models generated optimal schedule of each construction phase at different

levels of details including daily schedule and hourly work plans, as shown in the example

in Fig. 5.7.

On the other end, optimal solution S150 provides minimum total construction cost (CC)

by scheduling the taxiway relocation activities during weekly working days and regular

daytime hours to avoid labor overtime premium costs and related productivity losses. This

solution scheduled the work for all phases to be 5 days per week (WD = 5) from Monday

to Friday by working in 1 shift per day (WS = 1) for 8 hours (WH = 8) from 8:00 to 16:00 or
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Table 5.4. Optimal phasing plan for solution S1

Construction Start Number of Number of Number of Phase Start Time (PSp) Phase Finish Time (PFp)
(Phase p) Time Days per Shifts per Hours per

Order Week (WDp) Day (WSp) Shift (WHp,ws)

C1 4 5 1 5 Saturday, March 16th Sunday, July 28th

at 00:00 at 2:45
C2 11 5 1 5 Saturday, August 3rd Sunday, October 27th

at 00:00 at 3:18
C3 3 5 1 5 Saturday, February 23rd Tuesday, April 23rd

at 00:00 at 00:18
C4 6 5 1 5 Saturday, May 11th Monday, October 7th

at 00:00 at 1:15
C5 11 5 1 5 Saturday, August 3rd Saturday, November 9th

at 00:00 at 3:58
C6 1 5 1 5 Saturday, January 19th Monday, March 25th

at 00:00 at 00:32
C7 9 5 1 5 Saturday, June 15th Wednesday, October 9th

at 00:00 at 2:12
C8 14 5 1 5 Saturday, October 19th Saturday, January 4th

at 00:00 at 2:11
C9 5 5 1 5 Saturday, April 27th Tuesday, June 25th

at 00:00 at 2:12
C10 1 5 1 5 Saturday, January 19th Monday, March 18th

at 00:00 at 3:09
C11 6 5 1 5 Saturday, May 11th Sunday, August 18th

at 00:00 at 2:15
C12 8 5 1 5 Saturday, June 1st Monday, October 14th

at 00:00 at 12:54
C13 13 5 1 5 Saturday, August 24th Tuesday, October 29th

at 00:00 at 1:09
C14 10 5 1 5 Saturday, June 22nd Tuesday, December 24th

at 00:00 at 3:36
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Jan 1 Jan 31 Mar 2 Apr 1 May 1 May 31 Jun 30 Jul 30 Aug 29 Sep 28 Oct 28 Nov 27 Dec 27 Jan 26

C1
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C14

See Fig. 5.7 for 
optimal daily 

schedule and hourly 
work plan

Fig. 5.6. Optimal schedule of all construction phases in solution S1

First week
Jan 19 – Jan 25

00    1      2      3     4      5     6      7      8     9     10    11   12    13   14    15   16    17   18    19   20   21   22   23   00 

Sat  Sun  Mon  Tue  Wed Thu  Fri   Sat   Sun  Mon Tue Wed Thu  Fri   Sat   Sun

C6

C10

6

Non-working 
days

Sample optimal daily schedule of construction phase C6 in solution S1

1      2      3     4      5     6      7      8     9     10    11   12    13   14    15   16    17   18    19   20  21   22   23   00 

Mon Tue  Wed Thu  Fri  Sat   Sun  Mon Tue Wed Thu  Fri   Sat  Sun Mon Tue  Wed Thu  Fri   Sat   Sun Mon Tue Wed  Thu  Fri    

Second week
Jan 26 – Feb 01

Third week
Feb 02 – Feb 08

Fourth week
Feb 09 – Feb 15

Fifth week
Feb 16 – Feb 22

Sixth week
Feb 23 – Mar 01

C10 C10 C10 C10

C6 C6 C6 C6

…

…See sample daily schedule below

2

1 3

4

See sample hourly work plan below

Sample optimal hourly work plan of construction phase C6 in solution S1

Monday - Feb 04 Tuesday - Feb 05Time (hours)

Sample optimal schedule of construction phases during first six weeks of solution S1

5

7 13 14

Activity 10

Non-working hours Non-working hours

C10

C6

C3

…

Sat  Sun  Mon  Tue  Wed Thu  Fri   Sat   Sun  Mon Tue Wed Thu  Fri   Sat   Sun Mon Tue  Wed Thu  Fri  Sat   Sun  Mon Tue Wed Thu  Fri   Sat  Sun Mon Tue  Wed Thu  Fri   Sat   Sun Mon Tue Wed  Thu  Fri    

First week
Jan 19 – Jan 25

Second week
Jan 26 – Feb 01

Third week
Feb 02 – Feb 08

Fourth week
Feb 09 – Feb 15

Fifth week
Feb 16 – Feb 22

Sixth week
Feb 23 – Mar 01

1 3 10

Activity 11

11 13 …
8

96

7 7

8

9

Time 
(days)

Time 
(days)

12

Fig. 5.7. Optimal daily schedule and hourly work plan of phase C6 in solution S1
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Table 5.5. Optimal activity start and finish times of phase C1 in solution S1

Activity ID (i) Activity Start Time (AS1,i) Activity Finish Time (AF 1,i)

1 Saturday, March 16th at 00:00 Tuesday, March 26th at 3:43
2 Sunday, March 17th at 1:00 Tuesday, March 19th at 2:45
3 Tuesday March 26th at 3:43 Wednesday, April 10th at 2:10
4 Saturday, April 6th at 2:00 Sunday, April 7th at 2:40
5 Tuesday, April 9th at 2:00 Tuesday, April 9th at 3:12
6 Wednesday, April 10th at 2:10 Wednesday, April 17th at 00:55
7 Wednesday, April 17th at 00:55 Sunday, April 21st at 3:14
8 Monday, April 22nd at 4:00 Wednesday, April 24th at 00:07
9 Sunday, April 21st at 3:14 Wednesday, April 24th at 00:41
10 Wednesday, April 24th at 00:41 Saturday, May 11th at 1:35
11 Saturday, May 11th at 1:35 Tuesday, May 14th at 00:47
12 Tuesday, May 14th at 00:47 Sunday, May 19th at 4:28
13 Sunday, May 19th at 4:28 Monday, June 3rd at 00:19
14 Monday, June 3rd at 00:19 Monday, June 17th at 2:01
15 Monday, June 17th at 2:01 Sunday, June 23rd at 00:24
16 Sunday, June 23rd at 00:24 Monday, June 24th at 00:45
17 Monday, June 24th at 00:45 Sunday, July 7th at 4:05
18 Sunday, July 7th at 4:05 Sunday, July 14th at 4:02
19 Monday, July 8th at 3:00 Tuesday, July 9th at 4:03
20 Monday, July 8th at 1:00 Tuesday, July 9th at 2:55
21 Sunday, July 14th at 4:02 Tuesday, July 16th at 1:13
22 Tuesday, July 16th at 1:13 Sunday, July 28th at 2:45
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Table 5.6. Optimal phasing plan for solution 150

Construction Start Number of Number of Number of Phase Start Time (PSp) Project Finish Time (PFp)
Phase (p) Time Days per Shifts per Hours per

Order Week (WDp) Day (WSp) Shift (WHp,ws)

C1 5 5 1 8 Monday, April 1st Tuesday, June 18th

at 8:00 at 14:24
C2 4 5 1 8 Monday, March 25th Monday, May 13th

at 9:00 at 14:51
C3 13 5 1 8 Monday, October 28th Friday, November 29th

at 9:00 at 15:41
C4 7 5 1 8 Monday, June 10th Thursday, September 5th

at 9:00 at 12:12
C5 6 5 1 8 Monday, May 13th Tuesday, July 9th

at 9:00 at 13:43
C6 11 5 1 8 Monday, October 7th Wednesday, November 13th

at 9:00 at 15:45
C7 3 5 1 8 Monday, February 18th Thursday, April 25th

at 8:00 at 13:27
C8 10 5 1 8 Monday, July 29th Thursday, September 12th

at 8:00 at 13:03
C9 1 5 1 8 Monday, January 21st Friday, February 22nd

at 8:00 at 14:09
C10 9 5 1 8 Monday, July 22nd Tuesday, August 27th

at 8:00 at 10:43
C11 11 5 1 8 Monday, October 7th Monday, December 2nd

at 9:00 at 15:26
C12 8 5 1 8 Monday, July 8th Wednesday, September 25th

at 9:00 at 11:03
C13 14 5 1 8 Monday, November 18th Tuesday, December 24th

at 8:00 at 13:48
C14 2 5 1 8 Monday, January 21st Wednesday, May 8th

at 9:00 at 10:41

from 9:00 to 17:00 to minimize the additional costs of overtime and nighttime premiums, as

shown in Table 5.6. This plan, however, causes the highest airport operational disruptions

among the generated optimal solutions because it schedules the construction activities

during high daily and hourly air traffic volumes. A detailed phasing plan of this solution

is summarized in Table 5.6 and in Fig. 5.8. In addition to the aforementioned solutions,

the developed methodology was capable of generating 148 other Pareto optimal solutions

(phasing plans) that enable airport planners and construction managers to analyze and

select the plan that best meets their unique project requirements.
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Fig. 5.8. Optimal schedule of all construction phases in solution S150

5.7 Discussion

To verify the generated results by the developed methodology and its machine learning

model, the construction-related disruption costs of the aforementioned two extreme optimal

solutions (S1 and S150) and a third intermediate solution (S103) were compared to those

calculated using an FAA verified air traffic simulation tool (Simmod Pro). To enable this

comparison, the construction closure scenarios of each of these three optimal solutions (S1,

S103, and S150) were modeled in Simmod Pro to calculate their flights ground movement

time during normal and construction conditions. The difference between flights ground

movement time during normal and construction conditions was then used to calculate

the construction-related disruption cost for each of the generated optimal solutions, as

shown in Table 5.7. These construction-related disruption costs calculated based on the

simulation results provided by Simmod Pro were then compared to those generated by the

developed optimization methodology for the three optimal solutions (S1,S103, and S150).

This comparison illustrates that the difference between the construction-related disruption

cost calculated by the developed methodology and the simulation software was only 1.82%,
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Table 5.7. Validation of developed machine learning model

Solution Calculated construction-related disruption cost (CR) based on Difference
(s) Machine Learning Model Simulation Model (Simmod Pro) (%)

S1 $1,005 $987 1.82%
S103 $171,554 $174,313 -1.58%
S150 $879,791 $862,214 2.04%

-1.58% and 2.04% for optimal solutions S1, S103, and S150, respectively as shown in

Table 5.7. These results confirm the validity of the developed optimization methodology

and its machine learning model and their reliability in predicting the impact of alternative

construction phasing plans on flights ground movement time without the need for repetitive

and time-consuming simulations.

5.8 Conclusion

A novel methodology was developed to optimize the scheduling of construction phas-

ing plans during airport expansion projects. The developed methodology integrates (1)

machine learning model to predict the impact of construction phasing plans on flights

ground movement time during airport expansion projects without the need for repetitive

and time-consuming simulations, and (2) multi-objective optimization model to generate

optimal construction phasing plans that provide optimal trade-offs between minimizing

airport operations disruption cost and total construction cost. A case study was analyzed

to illustrate the use of the methodology in identifying optimal construction phasing plans for

the reconstruction of 14 phases for a 5000 ft-long Taxiway B at San Diego International Air-

port. The integrated models generated a set of 150 optimal tradeoff solutions for this case

study, where each represents a unique and optimal tradeoff between minimizing the cost

of the construction-related disruption in airport operations and the total construction cost.

The results of the case study clearly illustrate the original contributions of the methodology

to the body of knowledge in (1) identifying optimal construction phasing plans including the
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start dates and times of each phase and activity; (2) determining optimal schedule of each

construction phase at different levels of details including daily schedule and hourly work

plans; (3) quantifying and minimizing the impact of construction phasing plans on flights

ground movement time using machine learning; and (4) generating a set of optimal phasing

plans that provide optimal trade-offs between minimizing airport operations disruption cost

and minimizing total construction cost.
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Chapter 6

Conclusion

6.1 Summary

The present research study focused on optimizing the planning of airport expansion

projects in order to minimize both airport operations disruption cost and total construction

cost. The new research development of this study include: (1) a novel optimization model

for the planning of airport expansion projects that is capable of minimizing both airport

operations disruptions cost and total construction cost; (2) an innovative machine learning

methodology that can be used to create robust machine learning models for predicting

the impact of alternative airport area closures on flights ground movement time in any

airport without the need for repetitive and time-consuming simulation computations; and

(3) a novel methodology for optimizing the phasing plans of airport expansion project

that identifies optimal daily and hourly work plans for all construction activities in order to

minimize both airport operation disruptions and total construction cost.

First, a novel planning and scheduling model was developed for optimizing the planning

of airport expansion projects that provides the capability of minimizing both airport opera-

tions disruption cost and total construction cost. The model computations were performed

in four main modules: (1) simulation module that calculates and quantifies the impact of

airport construction activities on airport operations; (2) multi-objective genetic algorithms
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optimization module that identifies an optimal schedule for airport expansion projects; (3)

scheduling module that calculates the start and finish times of each construction activity;

and (4) cost module that computes the total cost of construction-related disruptions in

airport operations and the total construction cost. A real-life case study of an airport

expansion project is analyzed to illustrate the use of the model and highlight its unique

capabilities. The results of the case study clearly illustrate the original contributions of

the developed model and its novel capabilities that are expected to support airport and

construction planners in their efforts to identify optimal construction schedule for airport

expansion projects.

Second, an innovative machine learning methodology was developed to enable airport

and construction planners quantifying the impact of various construction phasing plans

on flights ground movement time during airport expansion project. The methodology

implementation is organized in four main stages: data collection, data preprocessing,

model training, and evaluation and validation stage. The methodology is used to develop

five machine learning models using multilayer perceptron neural networks, ridge regression,

k-nearest neighbors, random forest regressor, and support vector regression and their

performance is compared and evaluated using five evaluation metrics. A real-life case

study of an airport expansion project is analyzed to illustrate the use of the developed

methodology and highlight its original contributions that are expected to support airport

and construction planners in their efforts to efficiently and accurately analyze and compare

the impact of feasible construction phasing plans on airport operations in order to identify

the least disruptive phasing plan that minimizes total number of delayed flights and total

flight delays.

Third, a novel methodology was developed to optimize the phasing plans of airport ex-

pansion projects and provides the capability of minimizing both airport operation disruptions

and total construction cost. The developed methodology integrates a machine learning

model to predict the impact of construction phasing plans on flights ground movement
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time during airport expansion projects without the need for repetitive and time-consuming

simulations, and a multi-objective optimization model to generate optimal construction

phasing plans that provide optimal trade-offs between minimizing airport operations disrup-

tion cost and total construction cost. A real-life case study was analyzed to illustrate the

use of the methodology in identifying optimal construction phasing plans for the relocation

and reconstruction of an airport Taxiway. The results of the case study clearly illustrate

the original contributions of the developed models that are expected to support airport

and construction planners in identifying optimal construction phasing plans to improve the

functional performance of airports during expansion projects while minimizing their total

construction cost.

6.2 Research Contributions

This section highlights the main contributions of this research study to the body of

knowledge that include:

1. Novel methodology for measuring and quantifying construction-related delays in flights

ground movement time during airport expansion projects and their associated costs.

2. Original machine learning methodology for predicting the impact of various phasing

plans on flights ground movement time during construction of airport expansion

projects.

3. Innovative model for optimizing the planning of airport expansion projects that pro-

vides optimal tradeoffs between minimizing construction-related disruptions in airport

operations and minimizing total construction costs.

4. Novel model for optimizing airport construction phasing plans that generates optimal

schedules for all airport construction phases at different levels of details including

daily and hourly work plans.
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6.3 Research Impact

The aforementioned research developments and contributions are expected to have

significant and broad impacts on the current practices for planning airport expansion

projects. They have a strong potential to enable construction and airport planners to

generate optimal plans that are capable of: (1) accurately and efficiently predicting the

impact of airport area closures on flights ground movement time during construction;

(2) minimizing construction-related air traffic disruptions for airports that need to remain

operational during expansion projects; and (3) minimizing total construction cost of airport

expansion projects.

6.4 Future Research Work

While the present study fully achieved its research objectives, additional research areas

have been identified to expand and build upon the completed research work. Future

related research areas can focus on: (1) expanding the developed models to consider

related construction planning risks including those caused by weather, site conditions, and

labor productivity uncertainties; and (2) considering the impact of emerging transportation

technologies such as autonomous vehicles on the effectiveness and use of existing airport

facilities such as parking lots.

6.4.1 Planning of airport expansion projects under uncertainty

The developed models in this research study provide the capability of analyzing and

minimizing the disruptive impact of construction activities on airport operations and air

traffic and minimizing total construction cost of airport expansion projects. These developed

models can be expanded to consider the impact of uncertainty in weather, site conditions,

and labor productivity that are often encountered in airport expansion projects. To address

this challenge, the formulation of the developed models can be expanded to (1) utilize
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historical weather data to account for and model the impact of weather on the planning

of airport expansion projects; and (2) model uncertainties associated with the production

rates of construction crews and their deployment dates through the use of Monte-Carlo

simulation. These expansions are expected to provide much-needed support for airport

planners and enable them to consider the impact of uncertainty during the planning of

airport expansion projects.

6.4.2 Impact of emerging transportation technologies on the use of
existing airport facilities

Future airport expansion and construction costs are expected to be affected by new

and emerging technologies, including (1) faster and cost-effective mass transit systems for

airports such as hyperloop capsules and high-speed trains (Kumar and Khan, 2017; Park

and Ha, 2006); and (2) autonomous vehicles and shared rides (Bansal and Kockelman,

2017; Fagnant and Kockelman, 2015; Henderson and Spencer, 2016; Philanthropies,

2017). These two emerging technologies are expected to reduce vehicle traffic and parking

use at airports in the next decades. For example, FAA requires airports to provide 1000 –

3300 parking spaces per million originating passengers or 1.5 times the number of peak

hour passengers in a rate of 109-124 parked cars per acre (FAA, 1988). These airport

parking facilities will be significantly under-utilized in the future as three out of four vehicles

are expected to be autonomous by 2040 (Philanthropies, 2017). This expected reduction

in the use of current airport facilities creates challenges in the strategic planning of airport

expansion projects. Accordingly, there is a need to consider and optimize the impact of the

aforementioned emerging technologies in order to generate long-term optimal plans for

transforming the use of airport facilities that are expected to be under-utilized in the future.
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algorithms made easy. Journal of Machine Learning Research, 13(70), 2171–2175. http://jmlr.org/

papers/v13/fortin12a.html

Foulds, L. R., Hamacher, H. W., & Wilson, J. M. (1998). Integer programming approaches to facilities layout

models with forbidden areas. Annals of Operations Research, 81, 405–418.

Fraedrich, E., Heinrichs, D., Bahamonde-Birke, F. J., & Cyganski, R. (2019). Autonomous driving, the built

environment and policy implications. Transportation research part A: policy and practice, 122, 162–

172.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. addison. Reading.

Gopalswamy, S., & Rathinam, S. (2018). Infrastructure enabled autonomy: A distributed intelligence ar-

chitecture for autonomous vehicles. 2018 IEEE Intelligent Vehicles Symposium (IV), 986–992.

https://doi.org/10.1109/IVS.2018.8500436

Guerra, E. (2016). Planning for cars that drive themselves: Metropolitan planning organizations, regional

transportation plans, and autonomous vehicles. Journal of Planning Education and Research, 36(2),

210–224. https://doi.org/10.1177/0739456X15613591

Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., & Zhao, D. (2019). Flight delay prediction based on aviation big

data and machine learning. IEEE Transactions on Vehicular Technology, 69(1), 140–150.

147

https://www.faa.gov/documentLibrary/media/Order/2019-10-10%5C_Order%5C_JO%5C_7360.1E%5C_Aircraft%5C_Type%5C_Designators%5C_FINAL.pdf
https://www.faa.gov/documentLibrary/media/Order/2019-10-10%5C_Order%5C_JO%5C_7360.1E%5C_Aircraft%5C_Type%5C_Designators%5C_FINAL.pdf
https://www.faa.gov/documentLibrary/media/Order/2019-10-10%5C_Order%5C_JO%5C_7360.1E%5C_Aircraft%5C_Type%5C_Designators%5C_FINAL.pdf
https://www.faa.gov/newsroom/facts-about-faa-and-air-traffic-control
https://www.faa.gov/newsroom/facts-about-faa-and-air-traffic-control
https://www.tc.faa.gov/acb300/ap5%5C_workshops/documents/AP9%5C_MS%5C_TIM%5C_Paper%5C_Final%5C_101504.pdf
https://www.tc.faa.gov/acb300/ap5%5C_workshops/documents/AP9%5C_MS%5C_TIM%5C_Paper%5C_Final%5C_101504.pdf
http://jmlr.org/papers/v13/fortin12a.html
http://jmlr.org/papers/v13/fortin12a.html
https://doi.org/10.1109/IVS.2018.8500436
https://doi.org/10.1177/0739456X15613591


Havens, T. C., Spain, C. J., Salmon, N. G., & Keller, J. M. (2008). Roach infestation optimization. 2008 IEEE

Swarm Intelligence Symposium, 1–7. https://doi.org/10.1109/SIS.2008.4668317

Hegazy, T., & Kamarah, E. (2022). Schedule optimization for scattered repetitive projects. Automation in

Construction, 133, 104042.

Hegazy, T., & Wassef, N. (2001). Cost optimization in projects with repetitive nonserial activities. Journal of

Construction Engineering and Management, 127 (3), 183–191. https://doi.org/10.1061/(ASCE)0733-

9364(2001)127:3(183)

Henderson, J., & Spencer, J. (2016). Autonomous vehicles and commercial real estate.

Herrero, J. G., Berlanga, A., Molina, J. M., & Casar, J. R. (2005). Methods for operations planning in airport

decision support systems. Applied Intelligence, 22(3), 183–206.

Hilt, D. E., & Seegrist, D. W. (1977). Ridge, a computer program for calculating ridge regression estimates.

Department of Agriculture, Forest Service, Northeastern Forest Experiment . . .

Hinze, J. W. (2012). Construction planning and scheduling. Pearson. https://www.pearson.com/uk/educators/

higher-education-educators/program/Hinze-Construction-Planning-and-Scheduling-International-

Edition-4th-Edition/PGM1002109.html

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on

pattern analysis and machine intelligence, 20(8), 832–844.

Hope, A. (2017). The complex process behind your flight’s schedule. Conde Nast Traveler. https://www.

cntraveler.com/story/the-complex-process-behind-your-flights-schedule

Horst, J. J., & Murray, P. S. (2014). Industry best practice for airport construction safety and phasing plans

(cspps). T&DI Congress 2014: Planes, Trains, and Automobiles, 856–868.

Hubbard, S., Hubbard, B., & Sobieralski, J. (2021). Minimizing the negative impacts of airport construction.

51st International Symposium on Aviation Psychology, 352–357. https://corescholar.libraries.wright.

edu/isap 2021/59

Humbertson, R., & Sinha, A. (2012). Managing irregular airport operations. Journal of Airport Management,

6(4), 318–328.

Hyari, K., & El-Rayes, K. (2006). Optimal planning and scheduling for repetitive construction projects. Journal

of Management in Engineering, 22(1), 11–19. https://doi.org/10.1061/(ASCE)0742-597X(2006)22:

1(11)

Jordan, R., Ishutkina, M. A., & Reynolds, T. G. (2010). A statistical learning approach to the modeling of

aircraft taxi time. 29th Digital Avionics Systems Conference, 1–B.

Jun, D. H., & El-Rayes, K. (2010). Optimizing the utilization of multiple labor shifts in construction projects.

Automation in Construction, 19(2), 109–119. https://doi.org/10.1016/j.autcon.2009.12.015

148

https://doi.org/10.1109/SIS.2008.4668317
https://doi.org/10.1061/(ASCE)0733-9364(2001)127:3(183)
https://doi.org/10.1061/(ASCE)0733-9364(2001)127:3(183)
https://www.pearson.com/uk/educators/higher-education-educators/program/Hinze-Construction-Planning-and-Scheduling-International-Edition-4th-Edition/PGM1002109.html
https://www.pearson.com/uk/educators/higher-education-educators/program/Hinze-Construction-Planning-and-Scheduling-International-Edition-4th-Edition/PGM1002109.html
https://www.pearson.com/uk/educators/higher-education-educators/program/Hinze-Construction-Planning-and-Scheduling-International-Edition-4th-Edition/PGM1002109.html
https://www.cntraveler.com/story/the-complex-process-behind-your-flights-schedule
https://www.cntraveler.com/story/the-complex-process-behind-your-flights-schedule
https://corescholar.libraries.wright.edu/isap_2021/59
https://corescholar.libraries.wright.edu/isap_2021/59
https://doi.org/10.1061/(ASCE)0742-597X(2006)22:1(11)
https://doi.org/10.1061/(ASCE)0742-597X(2006)22:1(11)
https://doi.org/10.1016/j.autcon.2009.12.015


Khalafallah, A., & El-Rayes, K. (2004). Safety and cost considerations in site layout planning. Housing and

Building Research Centre Journal, 1(1), 141–150.

Khalafallah, A., & El-Rayes, K. (2006a). Minimizing construction-related hazards in airport expansion projects.

Journal of Construction Engineering and Management, 132(6), 562–572. https://doi.org/10.1061/

(ASCE)0733-9364(2006)132:6(562)

Khalafallah, A., & El-Rayes, K. (2006b). Optimizing airport construction site layouts to minimize wildlife

hazards. Journal of Management in Engineering, 22(4), 176–185. https://doi.org/10.1061/(ASCE)

0742-597X(2006)22:4(176)

Khalafallah, A., & El-Rayes, K. (2008). Minimizing construction-related security risks during airport expansion

projects. Journal of Construction Engineering and Management, 134(1), 40–48. https://doi.org/10.

1061/(ASCE)0733-9364(2008)134:1(40)

Khalafallah, A., & El-Rayes, K. (2011). Automated multi-objective optimization system for airport site layouts.

Automation in Construction, 20(4), 313–320.

Khoury, H. M., Kamat, V. R., & Ioannou, P. G. (2006). Simulation and visualization of air-side operations at

detroit metropolitan airport. Proceedings of the 2006 Winter Simulation Conference, 2029–2038.

Kim, J.-G., & Kim, Y.-D. (2000). Layout planning for facilities with fixed shapes and input and output points.

International Journal of Production Research, 38(18), 4635–4653.

Kitchens, M. (1996). Estimating and project management for building contractors. American Society of Civil

Engineers. https://doi.org/10.1061/9780784401484

Kumar, A., & Khan, A. (2017). Hyperloop high speed of transportation. International Journal of Innovative

Research in Science and Engineering, 3(4), 832–841.

Kwakkel, J. H., Walker, W. E., & Marchau, V. (2010). Adaptive airport strategic planning. European Journal of

Transport and Infrastructure Research, 10(3).

Lary, J. A., & Rothnie, J. (1994). Nighttime cement concrete pavement replacement seattle-tacoma interna-

tional airport. Aviation Crossroads: Challenges in a Changing World, 92–101.

Lee, H., Malik, W., & Jung, Y. C. (2016). Taxi-out time prediction for departures at charlotte airport using ma-

chine learning techniques. 16th AIAA Aviation Technology, Integration, and Operations Conference,

3910.

Lee, H., Malik, W., Zhang, B., Nagarajan, B., & Jung, Y. C. (2015). Taxi time prediction at charlotte airport using

fast-time simulation and machine learning techniques. 15th AIAA Aviation Technology, Integration,

and Operations Conference, 2272.

Legge, J., & Levy, B. (2008). Departure taxi time predictions using asde-x surveillance data. The 26th

Congress of ICAS and 8th AIAA ATIO, 8958.

149

https://doi.org/10.1061/(ASCE)0733-9364(2006)132:6(562)
https://doi.org/10.1061/(ASCE)0733-9364(2006)132:6(562)
https://doi.org/10.1061/(ASCE)0742-597X(2006)22:4(176)
https://doi.org/10.1061/(ASCE)0742-597X(2006)22:4(176)
https://doi.org/10.1061/(ASCE)0733-9364(2008)134:1(40)
https://doi.org/10.1061/(ASCE)0733-9364(2008)134:1(40)
https://doi.org/10.1061/9780784401484


Li, X., & Chen, X. (2018). Airport simulation technology in airport planning, design and operating management.

Applied and Computational Mathematics, 7 (3), 130–138.

Li, Z., Shen, W., Xu, J., & Lev, B. (2015). Bilevel and multi-objective dynamic construction site layout and

security planning. Automation in Construction, 57, 1–16.

Lian, G., Zhang, Y., Desai, J., Xing, Z., & Luo, X. (2018). Predicting taxi-out time at congested airports

with optimization-based support vector regression methods. Mathematical Problems in Engineering,

2018.

Litman, T. (2017). Autonomous vehicle implementation predictions. Victoria Transport Policy Institute Victoria,

BC, Canada.

Long, L. D., & Ohsato, A. (2009). A genetic algorithm-based method for scheduling repetitive construction

projects. Automation in Construction, 18(4), 499–511. https://doi.org/10.1016/j.autcon.2008.11.005

Lopez, R., Mascione, D., & Liu, H. J. (2017). Management of issues in the delivery of airport infrastructure

within western australia. Proceedings of the Institution of Civil Engineers-Management, Procurement

and Law, 170(5), 207–217.

Malakooti, B. (1987). Computer-aided facility layout selection (caflas) with applications to multiple criteria

manufacturing planning problems. Large scale systems, 12(2), 109–123.

Marzouk, M., Abdelhamid, M., & Elsheikh, M. (2012). Selecting building materials using system dynamics

and ant colony optimization. In Icsdc 2011: Integrating sustainability practices in the construction

industry (pp. 577–584).

Mawdesley, M. J., Al-Jibouri, S. H., & Yang, H. (2002). Genetic algorithms for construction site layout in

project planning. Journal of construction engineering and management, 128(5), 418–426.

Monismith, D. R., & Mayfield, B. E. (2008). Slime mold as a model for numerical optimization. 2008 IEEE

swarm intelligence symposium, 1–8.

Moore, J. (1999). Application of particle swarm to multiobjective optimization. Technical report.

Morries, H., & Smith, O. (2018). Airlines extending flight times to avoid payouts for delays, report claims. The

Telegraph. https://www.telegraph.co.uk/travel/travel-truths/Are-airlines-exaggerating-flight-times-

so-theyre-never-late/

Ning, X., Lam, K.-C., & Lam, M. C.-K. (2011). A decision-making system for construction site layout planning.

Automation in Construction, 20(4), 459–473.

Ohmori, S., Yoshimoto, K., & Ogawa, K. (2010). Solving facility layout problem via particle swarm optimization.

2010 Third International Joint Conference on Computational Science and Optimization, 1, 409–413.

150

https://doi.org/10.1016/j.autcon.2008.11.005
https://www.telegraph.co.uk/travel/travel-truths/Are-airlines-exaggerating-flight-times-so-theyre-never-late/
https://www.telegraph.co.uk/travel/travel-truths/Are-airlines-exaggerating-flight-times-so-theyre-never-late/


Olugboyega, O., & Wemimo, O. T. (2018). Construction site layout optimization and 3d visualization through

bim tools= visualización 3d y optimización a través de herramientas bim aplicado a los planos de

proyecto. Building & Management, 2(2), 35–52.

Park, Y., & Ha, H.-K. (2006). Analysis of the impact of high-speed railroad service on air transport demand.

Transportation Research Part E: Logistics and Transportation Review, 42(2), 95–104.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,

& Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12, 2825–2830.

Pendyala, R. (2013). Next generation infrastructure implications of autonomous vehicles and transport

automation.

Philadelphia International Airport. (2019). Projects that make a difference: Freshening up: Restroom renova-

tions at phl. PHL. https://www.phl.org/about/cdp/project-updates

Philanthropies, B. (2017). Taming the autonomous vehicle, a primer for cities. Aspen Institute Center for

Urban Innovation: New York, USA, 117.

Pour, H. D., & Nosraty, M. (2006). Solving the facility and layout and location problem by ant-colony

optimization-meta heuristic. International Journal of Production Research, 44(23), 5187–5196.

Ravizza, S., Atkin, J. A., Maathuis, M. H., & Burke, E. K. (2013). A combined statistical approach and ground

movement model for improving taxi time estimations at airports. Journal of the Operational Research

Society, 64(9), 1347–1360.

Rezazadeh, H., GHAZANFARI, M., SAIDI-MEHRABAD, M., & SADJADI, S. J. (2009). An extended discrete

particle swarm optimization algorithm for the dynamic facility layout problem. Journal of Zhejiang

University Science A, 10(4), 520–529. https://doi.org/10.1631/jzus.A0820284

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms (tech.

rep.). Cornell Aeronautical Lab Inc Buffalo NY.

RSMeans data. (2020). Heavy construction cost with rsmeans data. Gordian RSMeans Data. Rockland, MA.

Said, H., & El-Rayes, K. (2010). Optimizing the planning of construction site security for critical infrastructure

projects. Automation in Construction, 19(2), 221–234.

Said, H., & El-Rayes, K. (2012). Optimal material logistics planning in congested construction sites. In

Construction research congress 2012 (pp. 1580–1589). https://doi.org/10.1061/9780784412329.159

Said, H., & El-Rayes, K. (2013a). Optimal utilization of interior building spaces for material procurement and

storage in congested construction sites. Automation in construction, 31, 292–306.

151

https://www.phl.org/about/cdp/project-updates
https://doi.org/10.1631/jzus.A0820284
https://doi.org/10.1061/9780784412329.159


Said, H., & El-Rayes, K. (2013b). Performance of global optimization models for dynamic site layout planning

of construction projects. Automation in Construction, 36, 71–78.

San Diego county regional airport authority. (2021). Th11a – 6 – 2021 – report – exhibit 1. California Coastal

Commission. https://documents.coastal.ca.gov/reports/2021/6/th11a/th11a-6-2021-exhibits.pdf

Sander, D. E., Chapman, R. B., Ward, S. A., Marr, S., & Arnold, S. (2014). Guidebook on general aviation

facility planning.

Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications and

research directions. SN Computer Science, 2(6), 420.

Sciacca, A. (2017). SFO flight delays, cancellations could continue as airport revamps runway. East Bay

Times. https://www.eastbaytimes.com/2017/04/24/sfo-flight-delays-cancellations-could-continue-

as-airport-revamps-runway/

Shami, M., & Kanafani, A. (1997). Coping with construction in operational airports: Sfia case study. Journal of

Transportation Engineering, 123(6), 417–428. https://doi.org/10.1061/(ASCE)0733-947X(1997)123:

6(417)

Shi, B., & Liu, J. (2018). Nonlinear metric learning for knn and svms through geometric transformations.

Neurocomputing, 318, 18–29.

Siewart, D., & Le Bris, G. (2015). Safety of runway operations during construction works. https://onlinepubs.

trb.org/Onlinepubs/webinars/151130.pdf

Siow, B. T., Kivanc, O., Bender, G., Evlioglu, R., & Tunasar, C. (2002). Managing airport traffic disruptions

during construction. In Designing, constructing, maintaining, and financing today’s airport projects

(pp. 1–15). https://doi.org/10.1061/40646(2003)21

Skarbek-Zabkin, A., & Szczepanek, M. (2018). Autonomous vehicles and their impact on road infrastructure

and user safety. in 2018 xi international science-technical conference automotive safety (pp. 1–4).

IEEE. https://doi. org/10.1109/AUTOSAFE.

Srivastava, A. (2011). Improving departure taxi time predictions using asde-x surveillance data. 2011

IEEE/AIAA 30th Digital Avionics Systems Conference, 2B5–1.

Stewart, C. (2001). Airfield safety: Developing operational procedures and schedules for airside construction

projects. In Advancing airfield pavements (pp. 309–321). https://doi.org/10.1061/40579(271)26

Stockton, K. (2015). Tsa construction project: Eugene airport case study. Journal of Airport Management,

9(1), 51–59.

Tam, C., Tong, T. K., Leung, A. W., & Chiu, G. W. (2002). Site layout planning using nonstructural fuzzy

decision support system. Journal of construction engineering and management, 128(3), 220–231.

152

https://documents.coastal.ca.gov/reports/2021/6/th11a/th11a-6-2021-exhibits.pdf
https://www.eastbaytimes.com/2017/04/24/sfo-flight-delays-cancellations-could-continue-as-airport-revamps-runway/
https://www.eastbaytimes.com/2017/04/24/sfo-flight-delays-cancellations-could-continue-as-airport-revamps-runway/
https://doi.org/10.1061/(ASCE)0733-947X(1997)123:6(417)
https://doi.org/10.1061/(ASCE)0733-947X(1997)123:6(417)
https://onlinepubs.trb.org/Onlinepubs/webinars/151130.pdf
https://onlinepubs.trb.org/Onlinepubs/webinars/151130.pdf
https://doi.org/10.1061/40646(2003)21
https://doi.org/10.1061/40579(271)26


Tettamanti, T., Varga, I., & Szalay, Z. (2016). Impacts of autonomous cars from a traffic engineering

perspective. Periodica Polytechnica Transportation Engineering, 44(4), 244–250.

vanRossum, G. (2017). The python language reference. Python Software Foundation. https://scicomp.ethz.

ch/public/manual/Python/3.6.0/reference.pdf

Jaroch, W. (2020). Paving the airfield. Aviation Pros. https://www.aviationpros.com/aoa/runway-management/

taxiway-ramp-maintenance-training/article/21148524/paving-the-airfield

Weise, T., Skubch, H., Zapf, M., & Geihs, K. (2008). Global optimization algorithms and their application to

distributed systems.

Wong, K. Y., et al. (2010). Applying ant system for solving unequal area facility layout problems. European

Journal of Operational Research, 202(3), 730–746.

Xu, J., & Li, Z. (2012). Multi-objective dynamic construction site layout planning in fuzzy random environment.

Automation in construction, 27, 155–169.

Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. International symposium on stochastic

algorithms, 169–178.

Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for

optimization (nicso 2010) (pp. 65–74). Springer.

Ye, B., Liu, B., Tian, Y., & Wan, L. (2020). A methodology for predicting aggregate flight departure delays in

airports based on supervised learning. Sustainability, 12(7), 2749.

Yee, P., Fischer, M., & Haymaker, J. (2013). Automated identification of occupant interactions in renovations

of occupied buildings. Journal of Information Technology in Construction (ITcon), 18(10), 182–213.

Yin, J., Hu, Y., Ma, Y., Xu, Y., Han, K., & Chen, D. (2018). Machine learning techniques for taxi-out time

prediction with a macroscopic network topology. 2018 IEEE/AIAA 37th Digital Avionics Systems

Conference (DASC), 1–8.

Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2013). Modification of the ant colony optimization for

solving the multiple traveling salesman problem. Romanian Journal of Information Science and

Technology, 16(1), 65–80.

Yuan, Y., Yuan, J., Du, H., & Li, L. (2012). An improved multi–objective ant colony algorithm for building life

cycle energy consumption optimisation. International Journal of Computer Applications in Technology,

43(1), 60–66.

Zhang, H., & Wang, J. Y. (2008). Particle swarm optimization for construction site unequal-area layout.

Journal of construction engineering and management, 134(9), 739–748.

Zhang, J., Peng, Z., Yang, C., & Wang, B. (2022). Data-driven flight time prediction for arrival aircraft within

the terminal area. IET Intelligent Transport Systems, 16(2), 263–275.

153

https://scicomp.ethz.ch/public/manual/Python/3.6.0/reference.pdf
https://scicomp.ethz.ch/public/manual/Python/3.6.0/reference.pdf
https://www.aviationpros.com/aoa/runway-management/taxiway-ramp-maintenance-training/article/21148524/paving-the-airfield
https://www.aviationpros.com/aoa/runway-management/taxiway-ramp-maintenance-training/article/21148524/paving-the-airfield


Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary

algorithms: A survey of the state of the art. Swarm and evolutionary computation, 1(1), 32–49.

Zouein, P., & Tommelein, I. (1999). Dynamic layout planning using a hybrid incremental solution method.

Journal of construction engineering and management, 125(6), 400–408.

154


	Introduction
	Overview and Problem Statement
	Optimizing the Planning of Airport Expansion Projects
	Predicting the Construction-Related Disruptions in Airport Expansion Projects
	Optimizing the Construction Phasing Plan of Airport Expansion Projects

	Research Objectives
	Research Methodology
	Task 1: Conduct a Comprehensive Literature Review
	Analyze construction-related disruptions facing airport expansion projects
	Investigate the latest research on the phasing plans of airport expansion projects
	Study existing work of optimizing scheduling and resource utilization of construction projects
	Explore flights taxi and travel times machine learning prediction models
	Examine the construction site layout planning models
	Evaluate impact of new technologies on upgrading and transforming airport facilities
	Analyze available multi-objective optimization techniques

	Task 2: Formulate Optimization Planning Model
	Identify model decision variables
	Develop an optimization planning model
	Implement the optimization planning model
	Test the performance of the model

	Task 3: Develop Machine Learning Prediction Model
	Collect Data
	Preprocess the Data
	Train the model
	Evaluate and Validate the model

	Task 4: Develop Optimization Phasing Plans Model
	Determine model decision variables
	Formulate an optimization phasing plans model
	Implement the optimization phasing plans model
	Evaluate the performance of the model


	Research Significance
	Report Organization

	Literature Review
	Introduction
	Disruption in Airport Expansion Projects
	Phasing Models of Airport Expansion Projects
	Operational procedures and phasing plans
	Air traffic management
	Information technologies and simulation tools
	Limitations of available phasing models

	Planning and Scheduling Models of Airport Expansion Projects
	Planning of airport expansion and renovation projects
	Airport operations and construction activities
	Optimizing scheduling and resource utilization
	Limitations of available planning and scheduling models

	Flights Taxi and Travel Times Prediction Models
	Construction activities and facilities functions
	Taxi times prediction models
	Flight delays machine learning prediction models
	Limitations of available flights taxi and travel times prediction models

	Site Layout Planning Models
	Heuristics
	Genetic Algorithms

	New Technology Impact on Existing Airport Facilities
	Future Impact of New Technology on Existing Facilities
	Law
	Technology
	Integrated Environment
	Infrastructure

	Transformation and Upgrading Plan for Existing Facilities

	Multi-Objectives Optimization Techniques for Airport Expansion Projects
	Weighted Linear Programming
	Nature-inspired Meta-heuristic Algorithms
	Particle Swarm Optimization
	Ant Colony Optimization

	Genetic Algorithm

	Research Needs

	Optimizing the Planning of Airport Expansion Projects
	Introduction
	Simulation Module
	Specify airport layout
	Define flight and airport operational data
	Calculate flights ground movement time under normal conditions
	Calculate flights ground movement time under construction conditions
	Identify construction-related delays and disruptions cost

	Optimization Module
	Decision Variables
	Objective Functions
	Objective 1:
	Objective 2:

	Optimization Constraints
	Optimization Computations

	Scheduling Module
	Phase 1: Initial Schedule Phase
	Phase 2: Adjusted Schedule Phase

	Cost Module
	Airport Operations Disruption Cost
	Total Construction Cost

	Case Study
	Conclusion

	Predicting Construction Impact on Airport Operations
	Introduction
	Data Collection
	Gather airport and flights data
	Develop a representative sample of airport area closures
	Calculate flights ground movement time

	Data Preprocessing
	Training
	Evaluation and Validation
	Case Study
	Conclusion

	Optimizing the Phasing Plans of Airport Expansion Projects
	Introduction
	Multi-Objective Optimization Module
	Formulation Module
	GA Computations Module
	Phasing Module
	Case Study
	Discussion
	Conclusion

	Conclusion
	Summary
	Research Contributions
	Research Impact
	Future Research Work
	Planning of airport expansion projects under uncertainty
	Impact of emerging transportation technologies on the use of existing airport facilities


	References

