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Abstract

In magnetic-confinement fusion devices, high-fidelity models of the energy-angle distribution

of the ions impacting on material walls are crucial for characterizing ion-surface interactions

and impurity release. Typically, the Ion Energy-Angle Distributions (IEADs) are simulated using

plasma kinetic models (e.g. Particle-In-Cell PIC codes, such as hPIC), which are usually com-

putationally intensive. In this work, we constructed an effective surrogate model for the IEADs

by means of a data-driven strategy in high-dimensional parameter space. The surrogate model

considers up to four input parameters of relevance to the problem: (1) electron-to-ion tempera-

ture ratio, (2) magnetic field inclination, (3) magnetic field strength, and (4) plasma density. The

hPIC2 code was utilized to generate necessary training and testing data sets. A sparse grid was

employed to reduce the cost of the surrogate model construction without compromising accu-

racy. Least square approximation using data from a denser sparse grid was utilized to mitigate

the effect of particle noise. Fitting of IEAD was performed in a transformed coordinate system of

the distribution. Additionally, an artificial neural network strategy based on zero-inflated models

was employed to construct a surrogate model of plasma sheath potentials. The surrogate models

constructed as part of this work provide computationally efficient tools to emulate the output

of hPIC with limited errors. A variance-based sensitivity analysis using samples drawn from

the surrogate models was performed. The sensitivity analysis of plasma potentials showed that

the floating wall potential is solely affected by the electron-to-ion temperature ratio, whereas

the potential drop across the magnetic presheath and Debye sheath were significantly affected

by the magnetic field inclination angle. The sensitivity analysis of the IEAD moments also

showed a strong dependency of ions’ impact energy on the electron-to-ion temperature ratio

with insignificant dependence on the other physical parameters. On the other hand, the analysis

revealed significant dependencies of ions’ angle of impact on electron-to-ion temperature ratio

and magnetic field inclination angle, with a much lower effect of the remaining parameters.
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Chapter 1

Introduction

1.1 Motivation

The recent advancement in magnetically confined fusion devices enabled an increase in dis-

charge time and plasma temperatures. The harsh environment generated by thermonuclear

plasmas in contact with material surfaces underscores the importance of studying Plasma-

Material Interactions PMI. Such interactions have a significant impact on the fusion device’s

performance and safety. The main impacts of the PMI on fusion devices operations include

material erosion, tritium retention, and plasma heating. Material erosion can lead to a release of

high charge impurities, which rapidly cools the plasma, negatively affecting plasma confinement

and damaging plasma facing components. Retention of tritium, a radioactive isotope in the

surface of plasma facing component can impose a hazard and reduce the amount of fuel avail-

able for fusion reaction. Plasma heating can impose thermal stresses on the PFC and affect its

durability [1], [2]. Understanding and controlling plasma-material interactions is critical for the

successful operation of tokamaks and the development of practical fusion energy. These interac-

tions are dominated by ion-material interactions, including reflection, sputtering, implantation,

etc. While an estimate of such interactions can be computed using the mean energies and angles

of the impacting ions (e.g., energies provided by fluid models), such interactions are a strongly

non-linear function of both ions’ energies and angles [3], consequently, detailed knowledge of

Ion Energy-Angle Distributions IEADs at the PSI is often necessary.

1.2 Role of ion impact distributions on material walls

While plasma fluid models are able to capture the general features of the boundary plasma, they

usually lack the ability to provide a detailed Ion Energy-Angle Distribution of the particles impact-
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ing the material wall. Thus, kinetic simulation models are usually preferred. However, kinetic

models are significantly more computationally expensive when compared to the fluid model.

Accordingly, seeking a way to efficiently construct a reliable surrogate model that emulates the

IEAD produced by a high-fidelity kinetic code (e.g., hPIC [4], [5]) is desirable. The primary goals

of this work are to provide a methodology for efficient construction of a data-driven reduced

order model in the high-dimensional space of the IEAD. To reveal the underlying physics im-

pacting the IEAD by performing sensitivity analysis on the IEADs’ moments. To gain a better

understanding of the effect of the sheath structure on the IEAD by constructing a surrogate

model for the plasma sheath structure and utilizing it for sensitivity analysis. And to explore

the possible extension of the model’s dimensionality by performing local sensitivity analysis on

multi-species fusion plasmas.

1.3 Construction of Reduced-Order Models

The construction of the IEAD reduced order model employed a Least Square Approximation LSA

technique for the bin-by-bin fitting performed on the transformed coordinates. In addition, a

sparse grid was utilized to overcome the high computational cost. On the other hand, in addition

to the LSA technique, a machine learning based technique, optimized for exes-zero problems

was used for the plasma sheath potentials surrogate model construction. Training and testing

data sets were generated using hPIC simulations. Raw simulation’s outputs of interest are lists of

ions’ velocity vectors at the boundary, plasma potential profile, zeroth and first fluid moments.

The post-processes then convert the velocity vectors into IEADs, identifies the location of sheath

entrances using classical plasma sheath theories, and compute the potential drop across the

various layers of plasma sheath. Finally, Sobol’s indices were used to examine the sensitivity of

several responses of interests to the input parameters.

1.4 Thesis structure

The structure of the thesis is as follows: Chapter 2 provides a general overview of sheath formation

and its effect on the ions distribution function inside the plasma and subsequently the IEAD, for

the cases of an unmagnetized sheath in 2.1, magnetized sheath 2.2, and demonstrates the need

for a fully kinetic model for IEAD computations. Chapter 3 introduced the data-driven surrogate

model construction of the IEAD generated by hPIC. Where the mathematical tools utilized in the

construction as well as the construction procedures were summarized in section 3.1, section 3.2

summarized the training data ranges and simulation setup, and section 3.3 assess the accuracy

of the trained model and its predictability. Chapter 4 constructed a surrogate model for plasma
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potentials, where problem setup was reviewed in 4.1, least square approximation was utilized

for the construction in 4.2, and an artificial neural network was used in 4.3. Chapter 5 performs

global and local sensitivity analysis on both the IEAD, and plasma potentials. The sensitivity

analysis methods used in this work are reviewed in 5.2, the global sensitivity analysis is reported

in 5.3.1, and the local analysis can be found in 5.3.2. Finally, chapter 6.1 is the conclusion

chapter.
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Chapter 2

Plasma Sheath Formation and Structure

2.1 Unmagnetized Plasma Sheath

Sheath formation on plasma wall interface is one of the oldest problems in plasma physics yet

still not fully understood. Since the introduction of the basic concept of sheaths 1929 [6], several

attempts were made to develop a mathematical understanding of the phenomena, most notably

the classical Bohm criterion [7]. The basic idea of plasma sheath can be summarized by noting

that the average thermal speed of a charged particle vth is proportional to the temperature of

the particles’ population and inversely proportional to its mass (i.e., vth =
(

KB T
m

)
). Accordingly,

lighter species (i.e., electrons) are expected to leave the bulk plasma toward the wall at a higher

rate than the positively charged heavier ions. The wall will adjust itself to be negative conse-

quently accelerating the positive particle toward the wall and repelling the electrons leading to a

floating net positive space charge known as plasma sheath, also known as Debye sheath (DS),

the associated potential known as floating wall potential. Usually, the sheath will have a length

in the order of Debye length λD .

The classical picture of plasma bulk and sheath is based on the classical Bohm criterion and

can be found in many sources in literature, most notably [8], [9], and [10]. The classical picture of

plasma boundaries consists of three main regions, the quasi-neutral bulk region that makes most

of the plasma domain, followed by a pre-sheath region which is necessary to accelerate ions to

sound speed Cs (which is necessary to fulfill Bomh’s criterion that will be discussed shortly) and

finally a sheath region. According to [11] the "pre-sheath" can have several meanings in literature.

For example, it can refer to the thin layer adjacent to the sheath and required to accelerate ions,

this definition of pre-sheath is widely used in literature as noted earlier, or it can refer to the

whole domain of the collisionless plasma.

In order to highlight the meaning of Bohm’s criterion, the review provided by [11] will be

summarized. In his approach, Bohm used a fluid model and assumed the following: i. Cold ions
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(Ti = 0), ii. Monoenergetic ions, iii. Boltzmann electron, given by Equation 2.1, iv. Unmagnetized

plasma (B = 0), v. Single species, single charge ions, vi. Quasi-neutral bulk plasma. Among

Bohm’s assumptions, i,ii and vi are the roughest assumptions.

ne = n0 exp

(
eφ

KB Te

)
(2.1)

Using plasma’s fluid model and introducing dimensionless quantities shown in 2.2. Then

the sheath can be described by; dimensionless ion continuity Equation 2.3, dimensionless

conservation of energy 2.4, and dimensionless Boltzmann electrons 2.5.

χ=− eφ

KB Te

M =
1/2mi v2

i

KB Te

ξ= z/λD

Ne,i =
ne,i

n0

(2.2)

Ni M
1/2 =M

1/2
0 (2.3)

M =M0 +χ (2.4)

Ne = exp(−χ) (2.5)

Using Poisson’s Equation 2.6 to relate the densities in the sheath to the electrical field. Which

modifies using the dimensionless quantities and 1D into Equation 2.7.

∇2φ=− ρ

ε0
= e

ne −ni

ε0
(2.6)

d 2χ

dξ2
=

(
1+ χ

M0

)−1/2

−exp(−χ) (2.7)

The boundary conditions proposed by Bohm are shown in Equation 2.8, meaning the poten-

tial and field vanishes at a point remote from the sheath edge (i.e., quasi-neutral).

χ|ξ→0,
dχ

dξ
|ξ→0 → 0 (2.8)

Multiplying Equation 2.7 and integrating using the boundary conditions given by 2.8 leading

to
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(
dχ

dξ

)2

= 4M

[(
1+ χ

M0

)−1/2

−1

]
+2(exp(−χ)−1) (2.9)

Using Taylor expansion leads to

(
dχ

dξ

)2

=
(
1− 1

2M

)
χ2 + ... (2.10)

From 2.10 it can be noted that the first term on the RHS has to be greater or equal to zero.

This is called Bohm’s criterion and can be written in the form of Equation 2.11, where Cs is the

ions’ acoustic speed given by Equation 2.12 and Z is the charge number of the specie.

v2
i ,0 ≥C 2

s (2.11)

Cs =
(

Z KB Te

mi

)1/2

(2.12)

The total potential drop across plasma boundary and the bulk is given by the floating wall

potential shown in Equation 2.13 [10].

eφw

KB Te
=−1

2
ln

 mi /me

2π(1+ Ti
Te

)

 (2.13)

Time and spatial evolution of particle’s distribution in a collisionless plasma are commonly

described using Vlasov’s equation [12] shown in 2.14, where f (r,v, t ) is the particles’ distribution

function in the 7 dimensional space of position, velocities, and time; E and B are the electrical

and magnetic fields; and v is the velocity vector. Electrical and magnetic fields are commonly

evaluated using Maxwell’s equations in the differential form, coupled with Vlasov equation it

forms Vlasov-Maxwell system of equations. In the absence of a magnetic field, the Vlasov-Poisson

system of ordinary differential equations formed by 2.14 & 2.15 can be used instead, such that ρ

is the charge density.

∂ f

∂t
+v ·∇ f + q

m
(E+v×B) · ∂ f

∂v
= 0 (2.14)

∇2φ=− ρ

ϵ0
(2.15)

For time-independent ion-electron plasma, the Vlasov-Poisson system of equation in one

dimension can be written in form of Equation 2.16, where ϵ0 is the permittivity of free space.

The resulting equation is an integro-differential equation that is challenging to solve. Further
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simplification can be made by assuming Boltzmann electrons (i.e., ne = n0 exp
(

eφ
KB Te

)
) and

plasma is quasi-neutral (i.e., ne ≈ ni ). Such assumptions lead to a non-linear ordinary differential

equation given by 2.17. And obtaining an analytical solution for such a problem is still challenging

despite simplifications.

−d 2φ

d x2
= 1

ϵ0

∫
qi fi (x, v)d vi − qe

ϵ0
ne (2.16)

−d 2φ

d x2
= qi n0

ϵ0
− qe n0

ϵ0
exp

(
eφ

KB Te

)
(2.17)

Typically, plasma is in isothermal equilibrium and follows the Maxwell-Boltzmann distribu-

tion given by Equation 2.18. When an external force acts on the plasma and introduces a drift

velocity v0 the distribution modifies to drifting Maxwellian distribution given by Equation 2.19,

the plasma is still in isotropic equilibrium but the distribution is drifted as a whole, this can be

accounted for by introducing Galilean transformation. Although drifting Maxwellian can be

viewed as anisotropic, this is not the case. It is in fact a Maxwellian in which its mean is shifted

by v0. If the drift is resulting from the plasma sheath, then the beam distribution occurs when

the speed gained by the electrical field (v0 ∝
√

2qφ/mi ) is much larger than the ion’s thermal

speed. That requires the floating wall potential given by Equation 2.13 to be high, which can

happen when Te /Ti >> 1. schematics of the distributions are shown in Figure 2.1.

f (v)d 3v =
(

mi

2πKB Ti

)3/2

exp

(
− mv2

2KB Ti

)
d 3v (2.18)

f (v)d 3v =
(

mi

2πKB Ti

)3/2

exp

(
−m(v−v0)2

2KB Ti

)
d 3v (2.19)

Ions’ angular distribution of the Maxwell-Boltzmann distribution for an unmagnetized

plasma is given by Equation 2.20 [13], where vt is the thermal mean velocity, v0 is ions’ drift

velocity resulting from plasma sheath electrical field, such that, v0 =−2eφ/mi .

f (θ) = v2
0

v2
t

tanθ

cos2θ
exp

(
v2

0

2v2
t

)
(2.20)

2.2 Magnetized Plasma Sheath

In magnetized plasma, with magnetic field B inclined with ψ degrees with respect to the surface

normal, Equation 2.13 is still applicable and describes the total potential drop between the bulk

plasma and sheath-wall interface. However, the sheath and pre-sheath structures are different.
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Figure 2.1: Variations of unmagnetized Maxwell-Boltzmann distribution, showing the drifting
Maxwell-Boltzmann distribution in c).
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The pre-sheath region still accelerates the ions to sound speed with a direction parallel to the

magnetic field up to the entrance of another region known as the magnetic pre-sheath MPS or

Chodura sheath [14]. In the MPS region, the ions accelerate from ion sound speed Cs parallel

to the magnetic field to ion sound speed parallel to surface normal. The potential drop across

Chodura’s sheath is shown in Equation 2.21. The total potential drop given in Equation 2.13

does include the drop in MPS in addition to the classical sheath drop, also known as the "Debye

sheath" DS as in Equation 2.22. As noted by [15], there is a critical magnetic field inclination

angle in which φMPS exceeds the total potential drop as can be noted from Equation 2.22. While

this is true, it reveals a limitation in Chodura’s model rather than a unique physical phenomenon

at such high angles.

eφMPS

KB Te
= ln(cos(ψ)) (2.21)

φw =φDS +φMPS (2.22)

While obtaining an analytical solution for Vlasov-Poisson system of equations describing

unmagnetized plasma is challenging as discussed in section 2.1, more sophisticated analysis is

required when dealing with magnetized plasma. Nevertheless, several analytical solutions are

available in the literature, most notably the work done by [16], [17].

In the case of magnetized plasma, the distribution is axisymmetric and best described by

bi-Maxwellian distribution as shown in Equation 2.23. The main idea is to have a temperature

parallel to the magnetic field different than the temperature perpendicular to the field [18]. This

is especially a common case for ICRF and NBI heating schemes.

f (v||,v⊥)d v||d v⊥ =
(

mi

2πKB T||

)1/2 (
mi

2πKB T⊥

)
exp

(
−m(v||−v0)2

2KB T||
− v⊥

2KB T⊥

)
(2.23)

Equation 2.23 accounts for the drift component by adding a drift component to the parallel

direction. In a real case scenario, the drift component is resulting from the plasma sheath, which

is directed toward the surface normal direction, thus the shift is expected to affect both the

parallel and perpendicular velocity components. In addition, another drift component resulting

from the E ×B drift is expected to affect the perpendicular component. It should be noted that

the drifting Maxwellian distribution is different from the ion beam distribution, the latter can

be described as a Maxwellian distribution with a large shift and a small temperature (i.e., the

drifting component is much larger than the thermal speed of the ions). A schematic of particles’

distributions under magnetic constraints is shown in Figure 2.2. A review of Maxwell-Boltzmann

distribution formulations commonly found in plasma is reviewed in [18].
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Figure 2.2: Variations of magnetized Maxwell-Boltzmann distribution, showing the Bi-
Maxwellian distribution in a), and drifting Bi-Maxwellian in b).

2.3 Fully Kinetic Particle-In-Cell (PIC) Model.

Analytical models of plasma sheath often fail to capture the exact particles’ distributions at the

Plasma Surface Interface PSI. Knowledge of such distributions is often required for ion-materials

interactions at PSI. Accordingly, high-fidelity simulations using the Particle-In-Cell technique are

commonly utilized. PIC simulations commonly track individual particles in continuous phase

space, whereas distributions’ moments are computed on stationary mesh points. PIC technique

solves the Vlasov-Poisson of plasma’s distribution function given by equations 2.14 & 2.15 using

Boris’ leapfrog method [19], [20], where particle push is split into two steps, particle acceleration

due to electrical field and particle rotation due to the magnetic field. This step is denoted as

particle push. Followed by resolving the field by solving Poisson’s equation, where finite element,

finite difference, and spectral methods can be used. Then particle and field weights of the shape

functions are computed. This process is repeated over several time steps. Such cycle is denoted

as "classical" PIC and is summarized in Figure 2.4 b).

Because of its credibility, PIC method was utilized for computing IEAD and plasma moments

required for the analysis in chapters 3-5. hPIC code [4], [5] was used for such a purpose. A

summary of hPIC code can be found in 2.3.1. hPIC computes the IEAD by storing the velocity

coordinates V = (Vx ,Vy ,V z) for ions crossing the boundaries of the domain. Then ion’s energy

and angle of impact for each ion are computed according to equations 2.24 and 2.25, respectively.

An example of IEAD generated using hPIC simulation is shown in Figure 2.3.
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Figure 2.3: Example of Ion Energy-Angle Distri-
bution IEAD generated using hPIC simulation
with electron and ion temperatures Te = Ti =
10 [eV ], magnetic field strength B = 8.0 [T ], and
magnetic field inclination angle ψ= 46◦.

E = 1

2
mi v2 (2.24)

tan(θ) =
(
V 2

y +V 2
z

)1/2

|Vx |
(2.25)

2.3.1 Overview of hPIC

PIC is a fully kinetic, electrostatic Particle-In-Cell (PIC) developed for near-surface, plasma

materials interactions for both magnetized and unmagnetized plasmas [4]. Similar to the classical

PIC, hPIC solves the Vlasov–Poisson equation of plasma for distribution functions in phase

space. The individual particles’ velocity is updated using the equation of motion (Boris’ leapfrog

method). This step is combined with particle weighting, particle interpolation, and particle

localization inside the mesh into one step, the particle advance. Particles post-process handles

particles at the boundary and allows for particle communication. Finally, fields are updated

using Poisson’s equation. A schematic summarize hPIC cycle is shown in Figure 2.4 a).

11



Solve Fields
(Poisson Equation)

Advance Particles
Post Proc-

cess Particles

a) hPIC code structure

Solve Fields
(Poisson Equation)

Interpolation

Particles Push

Weighting

b) Classical PIC cycle

Figure 2.4: Schematics of the classical Particle-In-Cell cycle and hPIC cycle. Reproduced from
[4].
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Chapter 3

Data-Driven Surrogate Model of the Ion

Energy-Angle Distributions (IEAD) produced

by hPIC

In this chapter, a method for reconstruction of multidimensional particles distribution obtained

from Particle in Cell PIC simulations over high-dimensional input parameters’ space is presented

and demonstrated. A data-driven surrogate model that maps inputs-outputs relationship at a

significantly reduced computational cost was constructed. In order to maximize accuracy at a

reduced number of simulations, PIC samples drawn on a Sparse Grid SG were collected [21].

Such samples form a training set that is used to approximate the distribution function in the

energy-angle phase space locally. The approximation takes a form of a polynomial function of

the input parameters using a Leas Square Fit LSF. Once constructed, the surrogate model is a

handy tool that can be used when a large number of samples is needed or when computational

resources are limited, for example, Uncertainty Quantification UQ and Sensitivity Analysis SA.

The method was applied to the problem of characterizing the Ion Energy Angle Distributions

IEADs [13] of ions impacting the Tokamak divertor. Such a problem is important to characterize

Plasma-Material Interactions PMI in magnetically confined fusion devices. The training set (i.e.,

IEADs) was produced from a large number of simulations produced using hPIC [4] within data

ranges relevant to Tokamak (see Table 2.1.1 in [22]). More information about hPIC is reviewed in

chapter 2.3.1. PMI processes at the Tokamak divertor are dominated by ion-material interactions

and often lead to; impurity sputtering [23], ion implantation [24], particle reflection, and more

[1], [25]. While some empirical and semi-empirical formulas provide an approximation for such

process (e.g., [26], [27]). Such processes are strongly nonlinear as a function of ions’ energy and

angle, thus, accurate knowledge of IEAD is essential.

A surrogate model is a method used when the Response of Interest RoI cannot be easily mea-
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sured or computed, so the model of the outcomes is used instead. A data-driven surrogate model

[28], [29] utilizes data from an experiment or a high-fidelity simulation to construct a map of the

response surface between input parameters and RoIs. The goal of a surrogate model is to mimic

the behavior of the computational model as accurately as possible while being significantly

cheaper to evaluate. Popular surrogate modeling approaches include; Galerkin methods, for

example, polynomial chaos expansion PCE; radial basis functions RBF; Gaussian processes; Sup-

port Vector Machines (also, Support Vector Networks) SVMs; and Bayesian network; and Artificial

Neural Network ANN. Despite being developed by different comminutes, these methods share

many common features. Galerkin methods construct the approximation in the linear space with

predefined basis functions, such as global polynomials [30], expansion coefficients then chosen

to match data using projection. The limitation of Galerkin is that the RoIs should be evaluated at

specific input parameters and cannot fit random points. Radial Basis Function RBF interpolation

[31] also represents the interpolating functions as a linear combination of basis functions, but

the basis functions only depend on the distance between the prediction and training points

(i.e., decay radially away from the training point), making RBF a mesh-free method suitable for

unstructured training data sets. However, RBF basis functions have a tunable hyper-parameter

that requires calibration to match the expected behavior of the data (e.g., For Gaussian basis

functions the hyper-parameter is the variance σ2) [32]. Gaussian processes regression (also

known as Kriging) [33] is an interpolation method based on Gaussian process governed by prior

covariances, the latter is usually specified by two points kernel function, such kernel function

commonly represented in the form of RBF. SVMs are considered a sub-class of machine learning

methods, it is commonly used for both classification and regression [34]–[37]. Advantages of

SVM include: effectiveness in high-dimensional space, even when the number of dimensions is

larger than the number of samples; it is memory-efficient; and it is considered to be a versatile

method. SVMs usually use linear approximation with coefficients determined by a constrained

quadrature optimization problem. However, it can be used for non-linear approximations using

a non-linear basis function as a lifting function using a two-points kernel function (e.g., RBF).

ANN maps the inputs with outputs via a complex network of nodes forming a set of layers. The

coefficients of ANN are calculated via non-linear regression to minimize what is known as the

loss function. Such networks have the ability to capture non-linear responses, especially with

high-dimensional spaces, but are often expensive to train and require some trial-and-error to

find the best ANN architecture.

The organization of this chapter is as follows. The methodologies for surrogate model

construction are presented in section 3.1, including the sparse grid in section 3.1.1, the least

square approximation in section 3.1.2, and the workflow for IEAD surrogate model construction

is summarized in section 3.1.3. Simulations setup, including ranges of input data and simulations’
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tools, are summarized in section 3.2. And results for IEAD surrogate model training and testing

procedures are reported in section 3.3.

3.1 Methodologies

This section provides an overview of the tools used for IEAD surrogate model construction,

including sparse grid used for efficient sampling of the training set, least square approximation

utilized to reduce the effect of particles’ noise, and coordinate transformation in ions’ energy

and angle space.

3.1.1 Sparse Grid

The standard way of representing multi-dimensional polynomial functions is tensor grid shown

in Figure 3.1 b). In such a grid, the number of points (i.e., inputs) in which the RoIs have

to be computed depends exponentially on the number of dimensions (i.e., number of input

parameters). However, Particle In Cell PIC simulations are often computationally expensive,

which motivates seeking a fitting method to adequately capture the behavior of RoIs using

a reduced number of simulations without compromising accuracy. This can be achieved by

utilizing Sparse Grid SG methods [21]. Such methods are built on classical interpolation theory

and extended to handle multi-dimensions [38]. For a function y(p) defined on a hypercube with

m dimensions (e.g., y(p) : Γ⊂Rm → R where Γ= [−1,1]m), we seek an approximation function

f (p) as given by Equation 3.1, where, φl (p) and cl are a set of properly chosen functions and its

corresponding coefficients, respectively. The main goal of the sparse grid method is to obtain

maximum accuracy of fitting with a reasonable computational cost.

y(p) ≈ f (p) =
L∑

l=1
clφl (p) (3.1)

The basis functions of choice for this work are Lagrange polynomials with inputs sampled

from points on Clenshaw-Curtis SG. Such selection of basis functions and points allows for

nesting, meaning that when increasing the total polynomial level, points from previous level(s)

can be reused, allowing for a significantly reduce the number of simulations needed when higher

accuracy is desired. The total polynomial levels used in the current work are 7, 10, and 13. Figure

3.1 shows a comparison of sparse grid and tensor grid in 2D inputs in data ranges adopted in this

work. The reduction in the number of simulations required to construct the surrogate model

when utilizing a sparse grid is summarized in Table 3.1 for the 2D & 4D hypercubes. The library

(Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN) TASMANIAN [38]
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Figure 3.1: Comparison of Sparse Grid Vs. Tensor Grid for the 2D case with a total polynomial
level of 13.

Table 3.1: Comparison of the number of points in Clenshaw-Curtis sparse grid
and tensor grid for the 2D and 4D cases at total polynomial levels of P = 7, 10 &
13.

Level Number of points (SG) Number of points (TG) reduction in number of points

2D Cases
7 49 81 39.5%

10 129 289 55.4%
13 161 289 44.3%

4D Cases
7 721 6561 89.0%

10 2225 83521 97.3%
13 5563 83521 93.3%

[

was used for sparse grid implementation and interpolation.

3.1.2 Least Square Approximation

PIC simulations often suffer from particle noise due to the stochastic sampling of ions’ speeds

and positions during simulations. Consequently, the resulting RoIs are usually non-smooth.

Global interpolation strategies can significantly amplify the noise. Accordingly, incorporating

a strategy to mitigate the effect of noise when using the sparse grid method construction is

essential. One straightforward method to reduce the noise in the outputs is to average out the

values of RoIs using the data from a large number of simulations or using refined simulations by

increasing the number of particles per cell and the number of cells. However, PIC simulations

are computationally expensive, which will render either method inefficient. In addition, hPIC
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used in the current work lacks parallelization capabilities, which imposes a limit on the level

of refinement that can be used for numerical parameters. The first approach was used within

reasonable computational cost, where each simulation was repeated a number of times such

that NPPC ×Nsi ms is constant. While this strategy mitigated the effect of particle noise, it was not

sufficient, and seeking additional method(s) was/were essential.

The next strategy is an extension to the sparse grid approach (section. 3.1.1). By computing

samples on a denser sparse grid and computing polynomial basis functions coefficients using

least square fitting LSF. The goal is to construct an approximation in the form given by Equation

3.1 for a given set of basis functions {φl (p)}L
l=1. In other words, for a given set of K data points

{pk , yk }K
k=1, we are seeking coefficients that minimize the sum of square residuals R2 given

by Equation 3.2. Where pk are the parameters (inputs) used in the k th sample and yk is the

corresponding scalar RoI, and {cl }L
l=1 are the coefficients.

R2 =
K∑

k=1

[
f (pk )− yk

]2 =
K∑

k=1

[
L∑

l=1
a1φ1(pk )− yk

]2

(3.2)

In matrix form Equation 3.2 can be written as,

c = ar g mi n
a∈RL

||Aa−y||22 (3.3)

where c and a are vectors of coefficients (c1,c2, . . . ,cL) and (a1, a2, . . . , aL), respectively, A

entries are Ak,l = φl (pk ), and ||.||2 is the L2 norm. For Lagrange polynomials, when K = L

the matrix A is the identity matrix and the solution is trivial (i.e., the solution of the global

interpolation strategy in Equation 3.1). However, when K > L a QR solver is employed and the

solution is no longer trivial.

The main goal of using an over-sampled spare grid approach is to mitigate particle noise with

a reasonable number of simulations. Using LSF with random samples often requires K >> L

and the computational cost can be prohibitively expensive. While the current approach requires

K > L.

3.1.3 Construction of IEAD Surrogate Model

The general workflow of surrogate model construction and SA procedures is summarized in

Figure 3.2. And shows 4 blocks of sub-workflow including: data generation, IEAD/IEAD* sur-

rogate model, moments surrogate model, and the SA procedures model. The data generation

sub-workflow creates the SG for a given total polynomial level P using TASMANIAN and scans

the archive for simulations from previous simulations then initiate simulations for new input

vectors and collects the ions’ velocity data (Vx ,Vy ,Vz ) for each simulation. Velocities data is then
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Figure 3.2: Workflow of surrogate model construction and sensitivity analysis. The dashed blue
box represents the data generation model utilizing nested SG. The red dashed box is the actual
surrogate model construction model which in turn uses the moments surrogate model inside
the magenta dashed box. Finally, the green dashed box represents the sensitivity analysis model
adopted in this work.

passed to the IEAD surrogate model construction block. The surrogate model construction sub-

workflow reads the particles’ velocities lists and computes the corresponding lists of scaled ions’

energies and ions’ angles (E/Te ,θ) that are used later to construct the moments surrogate model.

Moments surrogate model itself is used to perform coordinate transformation for each particle in

the (E/Te ,θ) list, followed by assigning each particle to a bin of the histogram in the transformed

coordinate of IEAD (i.e., constructing IEAD*) for each simulation. Then over-sampled LSF is

performed on IEAD* bins from all simulations to construct the IEAD* surrogate model. Finally,

inverse transformation to retrieve IEAD in the original coordinates using the moments surrogate

model can be used when needed. The SA sub-workflow samples input list using any known

sampling technique (e.g., Saltelli sampling), then send the input vectors to the surrogate model

and receive IEAD in the original coordinates (or transformed coordinated if only IEAD moments

are needed) followed by SA interpretation on RoIs.

The default IEAD output of hPIC has a form of 240×90 histograms, with the y-axis repre-

senting the normalized incident energies of ions E/Te and the x-axis representing the incident
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polar angles θ in degrees. This format makes it difficult to construct a surrogate model because

the support of the distribution changes significantly for different input vectors as shown in

figures 3.4 b) & 3.4 a). To resolve this issue, the surrogate model has been constructed using a

transformed coordinates system for the IEADs denoted as IEAD*s. Coordinates transformation

summarize as follows: Given a set of N ions arriving at the PSI with RoI data array given by

X ∈Rd×N defined by X = [x1 x2 · · · xN ], such that xn ∈Rd×1 is particle features of the nth particle

data. Then the first moment is given by Equation 3.4. In this analysis, the output features of

interest are xn = [E/Te θ]. The second moment is defined as covariance tensor Θ ∈Rd×d given by

Equation 3.5.

x̄ = 1

N

N∑
n=1

xn (3.4)

Θ=
N∑

n=1
(xn − x̄)

⊗
(xn − x̄) (3.5)

Data scaling to the transformed coordinate system is performed according to Equation 3.6.

Figure 3.4 shows an example of IEADs in both original and transform coordinates. It can be

noted that the support of the distribution in the transformed distribution for various inputs

is comparable. In fact, it can be shown using direct calculations that the scaled data has a

mean value x̄⋆ = 0 and covariance tensor Θ⋆ = I . An additional benefit of using a transformed

coordinate system is that a non-uniform binning of the IEAD* can be employed, a schematic of

the non-uniform binding is shown in Figure 3.3. This can reduce the cost of surrogate model

construction and enhance its accuracy. Since a finer mesh for the IEAD* is used toward the

center of the distribution where more variation is expected and the mesh becomes coarser as

moving away from the center. Due to the noise in PIC simulations, simulations associated with

each input vector have been executed 10 times for the 2D cases and 40 times for the 4D cases1,

then, data were averaged out.

x⋆n =Θ−1/2 (xn − x̄) , n = 1, . . . , N (3.6)

Performing coordinates transformation according to Equation 3.6 requires knowledge of

moments x̄ and Θ. More specifically, since the IEAD problem has two features of interest, five

values of moments are needed. Namely, the mean of the features Ē/Te and θ̄; and the three

entries of the covariance matrixΘ11,Θ22, andΘ12
2. While the moments can be evaluated directly

1Due to the computational resources limit; 1000 PPC was used for 2D simulations and 400 PPC for 4D. Otherwise,
this step could have been replaced with one finer simulation per point

2Note that Θ12 =Θ21
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Figure 3.3: Illustration of non-uniform binning, in 1D (3.3 a)) generated by a scaled
standard normal distribution. And in 2D (3.3 b)) generated by tensor product of the 1D
non-uniform binning.

from the data, surrogate models were constructed for the moments. Such a step can be justified

by two reasons. First, due to the particle noise in PIC simulations, the value of the moments

cannot be uniquely determined for a given choice of physical parameters; this can lead to

different transformations for different repetitions with the same physical parameters. Second,

it provides a rule for inverse transformation to original coordinates as can be seen in Equation

3.9. A limitation of this approach is that it introduces additional sources of error, one associated

with the construction of moments’ surrogate models, and one associated with IEAD* surrogate

model construction.

Moments of each point in the physical parameters space are computed as the mean of the

moments values over the number of repetitions. The surrogate model for each moment (x̄1 =
θ̄, x̄2 = Ē/Te ,Θ11,Θ22, and Θ12) was constructed using the least square approximation described

in section 3.1.2. Since Θ11 and Θ22 are non-negative by definition, the surrogate models for these

moments were constructed using logarithmic values to ensure a non-negative response surface.

Similarly, but instead due to the exponential dependence of the energy profile on electrons-to-

ions temperatures ratios Te/Ti , the logarithmic value of Ē/Te was used for the construction.3

Proceeding the coordinates transformation, an average distribution f ⋆
(
θ⋆,E⋆

)
is directly

constructed from the transformed data. The transformed distribution now provides the data

to construct the IEAD* surrogate model as follows. With a distribution function IEAD* rep-

resented as f ⋆
(
θ⋆,E⋆;p

)
, where p ∈ Rm is a vector of m physical parameters, the distribution

function maps f ⋆ :R2 ×Rm →R. We seek an approximation in the form of Equation 3.7. Where,

3To guarantee that the coordinate transformation is orientation-preserving, the moments surrogate model should
satisfy the condition det(Θ) > 0 at any evaluation points.
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Figure 3.4: Example of IEAD in the original and transformed coordinates,
with varying Te/Ti and ψ only; fixing other input parameters at B = 8[T ] and
n = 1×1018[m−3]. IEADs have been constructed from velocity space at PSI
and averaged out using 10 simulations with 103 PPC.
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Figure 3.5: Illustration of bin-wise surrogate model construction for IEAD* in transformed
coordinates. The figure illustrates the construction for a 1D hypothetical case with variable
electron-to-ion temperature ratios Te/Ti . The white square represents a bin and the dashed white
line is the trajectory of IEAD* values in the path of varying the temperature ratios represented by
the blue vector.

{Bl⋆
(
θ⋆,E⋆

)
}l⋆=1,...,N⋆

b
are the basis functions, with the choice of basis functions given by Equa-

tion 3.8. Then, N⋆
b is the number of bins and bl⋆(p) its corresponding coefficients at the l⋆th bin

for a given value of physical parameter p.

f ⋆
(
θ⋆,E⋆;p

)= N⋆
b∑

l⋆
bl⋆(p)Bl⋆

(
θ⋆,E⋆

)
(3.7)

Bl⋆
(
θ⋆,E⋆

)=
1

(
θ⋆,E⋆

) ∈ l⋆th bin,

0 else.
(3.8)

After determining the basis function, the goal now is to find an appropriate function to map

the coefficients with input parameters. Which was achieved using the least square approximation

introduced in section 3.1.2. The least square fitting was computed for each bin as illustrated in

Figure 3.5. In other words, each bin has its own surrogate model in the transformed coordinates

system.
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For a discrete IEAD* prediction f̃ ⋆
(
θ⋆,E⋆

)
evaluated in the transformed coordinates, using

the non-uniform binning illustrated in Figure 3.3. The inverse transformation of the prediction to

the original coordinates f (θ, E/Te) is performed according to Equation 3.9. Where l = 1, . . . ,21600

is the bin number of the fine 240×90 uniform binning of the original coordinates.

f (θl , El/Te) ≈ f̃ (θl , El/Te) =
˜f ⋆ (θl⋆ , El⋆/Te)

|det(Θ)|1/2
(3.9)

3.2 Simulations Setup and Data Ranges

hPIC [4] was used to simulate all RoIs needed for surrogate model training and testing, including

the IEAD surrogate model in section 3.3 and the potentials surrogate model in chapter 4. A set of

input parameters that are expected to have a significant impact on IEAD within ranges relevant

to Tokamak operating parameters (see, e.g., Table 2.1.1 in [22]) were chosen for demonstrating

the surrogate models’ construction procedures. Table 3.2 summarizes the input parameters

selected for the current analysis. The reason behind choosing such a set of input parameters is

evident from the analysis in chapter 2, which can be summarized as follows: the total potential

drop given by Equation 2.13 is a function of ion-to-electron mass ratio mi/me and electron-to-ion

temperature ratio Te/Ti , the former is constant since the analysis was on Hydrogen plasma for

simplicity. The potential drop in the MPS is solely a function of the magnetic field inclination

angle ψ as Equation 2.21 reads. Thus, electron-to-ion temperature ratio Te/Ti and magnetic field

inclination angle with respect to surface normal ψ are expected to have the most significant

impact on the IEAD at PSI. Accordingly, the 2D case was limited to (Te/Ti ,ψ). Additionally, DS

thickness scales to a few Debye lengths λD which is a function of the electron temperature Te

and plasma density n. On the other hand, the MPS thickness length scales with Larmor radius

r = mv⊥
qB which is a function of magnetic field strength B . Thus, the 4D cases are extended to

include plasma density n and the magnetic field strength B . The latter two parameters were

fixed to n = 1×1018 [m−3] and B = 8 [T ] for the analysis of the 2D cases.

Table 3.2: Summary of input parame-
ters and its corresponding range used
in surrogate models construction.

Parameter Range Case
log10(Te/Ti ) [−1.25,1.25] 2D, 4D
ψ [deg ] [0.0,87.0] 2D, 4D

B [T ] [0.0,15.0] 4D
l og10(n0) [m−3] [16,20] 4D
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Table 3.3: Summary of numerical parame-
ters setup of hPIC simulations used to con-
struct the surrogate model.

Numerical Parameter 2D cases 4D cases
Domain Size 200λD or 3r

Number of Cells 1 cell per λD

NPPC 1,000 400
Nsi ms 10 40

Numerical input parameters for all simulations are summarized in Table 3.3. Domain size

was chosen to be at least 200 Debye lengths λD with one cell per λD unless ions’ Larmor radius is

comparable to the domain size (i.e., 3r> 200λD ) then the domain size was set as 3r. The number

of particles per cell was selected such that its multiplication with the number of repetitions

is constant (i.e., NPPC ×Nsi ms = const .), more specifically, for 2D simulations, NPPC = 1,000

with 10 repetitions, and for the 4D cases, NPPC = 400 with 40 repetitions. To gain flexibility in

surrogate model construction, IEADs were saved as a list of ions’ velocities (Vx ,Vy ,Vz) at PSI as

demonstrated in Figure 3.2, instead of 2D histograms of ions’ energies and angles.

3.3 IEAD Surrogate Models Training and Testing

Using the tools developed in sections 3.1.1-3.1.3. IEAD surrogate model was constructed for data

ranges given in section 3.2. Training data was produced using simulation data points with inputs

associated with SG of levels Ld at a = 7, 10&13. On the other hand, the polynomial levels used

for the least square approximation were Lmodel = 5, 8&11 following the rule Lmodel = Ld at a −2,

such an approach reduces the effect of particles’ noise on the surrogate model as discussed in

section 3.1.2. All moments’ surrogate models were constructed using L f i t = 4. Comparison of

the number of coefficients and basis functions needed to be evaluated during the surrogate

models’ construction of both the IEAD model and moments model at various polynomial levels

of interest are tabulated in 3.4. The 5 in the moments surrogate model number of coefficients is

associated with the number of moments. And, the 3136 in the IEAD surrogate models are the

number of bins in the non-uniform IEAD* grid shown in Figure 3.3 b).

Two sources of error can be identified in the IEAD approximation. The first is moments’

surrogate model related error resulting from the approximation of the moments rather than

using the exact values of moments. The second is related to IEAD surrogate model error, resulting

from the bin-by-bin fitting procedure demonstrated in Figure 3.5. Errors of the IEAD surrogate

model have been computed with respect to the training data (denoted as "training error") and
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Table 3.4: Number of basis functions and coefficients needed to construct
moments surrogate model IEAD surrogate model for different model’s poly-
nomial levels.

Surrogate Model Lmodel Number of Basis Functions Number of Coefficients
2D 4D 2D 4D

Moments 4 21 137 5×21 5×137
IEAD 5 29 249 3136×29 3136×249
IEAD 8 65 1041 3136×65 3136×1041
IEAD 11 129 3185 3136×129 3136×3185

Table 3.5: Moment surrogate model training
error for 2D and 4D data associated with var-
ious SG levels.

Ld at a θ E/Te Θ11 Θ22 Θ12

2D
7 0.0088 0.0012 0.017 0.012 0.025

10 0.0097 0.0012 0.017 0.017 0.036
13 0.0097 0.0012 0.017 0.017 0.035

4D
7 0.017 0.0060 0.041 0.018 0.040

10 0.020 0.0066 0.047 0.022 0.044
13 0.020 0.0065 0.049 0.021 0.064

with respect to data points different from the training point (denoted as "testing error").

The moments’ surrogate model errors were assessed by evaluating the relative error, as

follows. For a vector z containing moments values at a given point on the SG for a certain

polynomial level Ld at a . The associated approximation provided by the moments surrogate

model is denoted as z̃. Then the relative error is evaluated as ||z̃−z||2/||z||2 such that ||.||2 is the

L2−nor m. The values for surrogate model training error and testing error are tabulated in tables

3.5 and 3.6, respectively.

Errors for IEAD* have been estimated in a similar fashion. Such that, the error between

the actual value of IEAD* data point f ∗
m∗(p) for the m∗th bin for a given input vector p and the

IEAD* approximation evaluated using the surrogate model was computed according to Equation

3.10, where A∗
m∗ is the area of the m∗th pin. The overall error for all points was calculated using

Riemann’s sum over the IEAD* domain. A histogram of the errors’ distributions calculated with

respect to the training data points (training error) are shown in Figure 3.7. Values of means and

standard deviations of IEAD surrogate model "training errors" at various SG levels are tabulated

in 3.7 and show that as the level increases, errors the mean decreases, and its standard deviation
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Table 3.6: Moment surrogate model training er-
ror for 2D and 4D data associated with various
SG levels.

Ld at a θ E/Te Θ11 Θ22 Θ12

2D
7 0.0141 0.0020 0.0214 0.0183 0.0778

10 0.0128 0.0017 0.0192 0.0223 0.0672
13 0.0119 0.0018 0.0197 0.0202 0.0660

4D
7 0.0237 0.0070 0.0583 0.0217 0.0676

10 0.0233 0.0070 0.0528 0.0236 0.0663
13 0.0231 0.0070 0.0536 0.0226 0.0641

Table 3.7: Statistical values of IEAD surro-
gate model "training errors" for 2D and 4D
data associated with various SG levels.

Lmodel Mean Standard Deviation Max
2D

5 0.0715 0.0252 0.1331
8 0.0331 0.0124 0.0853

11 0.0183 0.0091 0.0392
4D

5 0.0838 0.0485 0.4506
8 0.0365 0.0221 0.2414

11 0.0234 0.0108 0.1473

reduces.

e(p) =
∣∣∣∣ f̃ ∗(p)− f ∗(p)

∣∣∣∣
L2∣∣∣∣ f ∗(p)

∣∣∣∣
L2

≈

[
M∗∑

m∗=1

(
f̃ ∗(p)− f ∗(p)

)2
A∗

m∗

]1/2

[
M∗∑

m∗=1

(
f ∗(p)

)2 A∗
m∗

]1/2
(3.10)

Distributions of IEAD surrogate model "training error" in the physical parameters space for

the 2D cases are shown in Figure 3.6, where it is clearly evident that the error decreases as the

total polynomial level increases.

In order to test the IEAD surrogate model’s predictive capabilities, a uniformly spaced grid

with input parameters within ranges listed in Table 3.2 was created. A 400 points grid (20×20)

was used for the 2D cases testing, as shown in Figure A.1 in Appendix A. And a 625 points grid

(5×5×5×5) was chosen for the 4D cases. Simulations for the testing grid points were executed
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a) 2D: Lmodel = 5 b) 2D: Lmodel = 8 c) 2D: Lmodel = 11

d) 4D: Lmodel = 5 e) 4D: Lmodel = 8 f) 4D: Lmodel = 11

Figure 3.6: IEAD surrogate model "training errors" in 2D (top row) and 4D (bottom row) for
Lmodel = 5, 8&11. The red dashed line represent the mean and the red dotted lines represents
the standard deviation boundaries.
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Figure 3.7: IEAD surrogate model "training errors" for each simulation in 2D SG. The color
intensity and marker size represents the error for each simulation’s point.
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a) 2D: Lmodel = 5 b) 2D: Lmodel = 8 c) 2D: Lmodel = 11

d) 4D: Lmodel = 5 e) 4D: Lmodel = 8 f) 4D: Lmodel = 11

Figure 3.8: IEAD surrogate model "testing errors" in 2D (top row) based on the grid in Figure A.1
And 4D (bottom) row for Lmodel = 5, 8&11. The red dashed line represents the mean and the red
dotted lines represent the standard deviation boundaries.

using hPIC with similar numerical parameters used in the original data generation. Histograms

of the IEAD testing errors are shown in Figure 3.8 as calculated by Equation 3.10, in addition,

statistics about errors are shown in Table 3.8. The top row summarizes testing errors for 2D cases,

and the bottom row shows errors for 4D cases. The advantage of using a higher polynomial level

is evident from Table 3.8, it can be noted that increasing the total polynomial level decreases

the mean and maximum of the error as well as the standard deviation. Although, comparing

values of "training errors" in Table 3.7 and "testing errors" in Table 3.8 it can be noted that the

overall error is larger for the "testing error", which is expected since the training procedures were

completely agnostic of the testing data points. IEAD testing errors at each point on the testing

grid physical parameters space for the 2D cases is shown in Figure 3.9.

Besides eliminating the particles’ noise of the simulation, the surrogate model significantly

reduces the computational cost, which is especially important when a large number of simu-

lations are needed (e.g., when performing SA). Table 3.9 shows a comparison of the estimated

computational time required to generate the data needed to construct the surrogate model using

hPIC Vs. using the surrogate model. hPIC time was estimated as T = Nt × tstep , where Nt is the

total number of time-steps and tstep is the time estimated per time-step. The latter was esti-

mated as tstep = Npar t × t f i eld +Nnodes × tpp , where Npar t is the total number of computational
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Table 3.8: Statistical values of IEAD surro-
gate model testing error for 2D and 4D data
associated with various SG levels.

Lmodel Mean Standard Deviation Max
2D

5 0.1141 0.0381 0.2218
8 0.0594 0.0210 0.1594

11 0.0546 0.0188 0.1105
4D

5 0.1270 0.0666 0.5357
8 0.0682 0.0365 0.2388

11 0.0492 0.0250 0.2630
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Figure 3.9: IEAD surrogate model "testing errors" for simulations on the uniform testing grid
shown in Figure A.1. Color intensity and marker size represents the error for each simulation’s
point.
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Table 3.9: Comparison of the computational time estimated for IEADs evalu-
ation using hPIC and the IEAD surrogate model for training data with poly-
nomial level Ld at a = 13.

Data Set Number of Points hPIC Time SM Time Reduction in Time
2D (Ld at a = 13) 161 7.45 [hr ] 40 [s] 90.05%
4D (Ld at a = 13) 5569 186.46 [d ay] 21 [mi n] 99.53%

surrogate model 
 (vector form)

surrogate model hpic
10 3

10 2

10 1

100

101

tim
e 

[s
]

Original Coordinates
Transformed   Coordinates

a) 2D

surrogate model 
 (vector form)

surrogate model hpic

10 3

10 2

10 1

100

101

102

103

tim
e 

[s
]

Original Coordinates
Transformed   Coordinates

b) 4D

Figure 3.10: Comparison of the total computational time needed to
generate IEADs for input data of Ld at a = 13, using the surrogate model
in vectorized form, surrogate model including the inverse coordinates
transformation, and hPIC simulations. Showing the comparison for 2D
in 3.10 a) and 4D in 3.10 b).

particles in the domain, t f i eld = 70[ns] is the field solver time, Nnodes = Ncel l s +1 is the number

of nodes in the domain, and tpp = 1500[ns] is the particle push time. The number of steps was

selected such that the total time is at least one ion transit time. The number of cells equal to

the number of Debye lengths λD in the domain. In general, domain size is x = 100λD unless the

Larmor’s radius 2r is larger. The time of the surrogate model includes two steps, evaluating the

surrogate model in transformed coordinates (IEAD*), and the inverse transformation to original

coordinates (IEAD). If the inverse mapping of IEAD* to IEAD is not needed, then the surrogate

model evaluation can be performed in a vectorized form, leading to a significant reduction

in computation time. A summary of the estimated time required to evaluate IEAD for input

parameters used to construct the surrogate model with Ld at a = 13 is shown in Figure 3.10.
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3.4 Main Takeaways

• A strategy for constructing a surrogate model for the IEAD in high-dimensional parameters

space is introduced. The surrogate model’s goal is to efficiently emulate IEAD without

compromising accuracy.

• Training and testing IEADs data was produced by hPIC simulations with input parameters

ranges relevant to magnetically confined fusion devices. For simplicity, Hydrogen plasmas

were used in the construction. Up to four parameters are considered in the construction.

Namely, electron-to-ion temperature ratios Te/Ti , the magnetic field inclination angle with

respect to surface normal ψ, magnetic field strength T , and plasma density n. Such input

parameters are expected to have the most significant impact on IEAD according to the

analysis in chapter 2.

• The strategy for surrogate model construction is summarized as follows:

1. Inputs parameters list was sampled using a sparse grid based on Clenshaw-Curtis

polynomials, this step aims to reduce the number of simulations required for surro-

gate model construction.

2. hPIC was utilized to simulate IEAD using the input parameters list in (1), for the

current analysis, the output of hPIC has the form of a velocities list (Vx ,Vy ,Vz) which

is then converted to energies and angles list (E ,θ).

3. The IEADs were normalized via coordinates transformation to overcome the chal-

lenge of variable support of the IEAD. This also allowed for using a nonuniform

binning of the IEAD.

4. Surrogate models for the IEAD moments were also constructed to overcome the noise

of the simulations and to provide a rule for inverse transformation.

5. A bin-by-bin least square data fitting was presented. The LSA used polynomial order

of L − 2, where L is the polynomial level of the data SG. Such a step is important

to mitigate the effect of particles’ noise inherent in the training data and to avoid

over-fitting.

• Followed by the IEAD surrogate model construction, it has been tested using data points

different than the training data points. The L2 norm of the error is used as a metric to

assess the performance of the surrogate model. The mean and maximum of the training

errors for the 4D cases using the Ld at a = 13 are 0.0234 and 0.1473 respectively; and for

testing data the values are 0.0250 and 0.2630.
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Chapter 4

Data-Driven Modeling of Plasma Potentials

Detailed knowledge of plasma potentials is important to understand the behavior of plasma

at PMI. As reviewed in 2, the total potential drop within the plasma domain in presence of

an inclined magnetic field is separated into three layers, known as plasma pre-sheath, plasma

magnetic pre-sheath MPS (also known as Chodura sheath), and Debye sheath DS. While total

potential drop controls the total energy of ions at the PMI, it does not provide insight about

the angle of impact. As demonstrated in chapter 2, ions’ impact angle is affected by the initial

thermal distribution of ions; the inclination of the magnetic field; the value of potential drop

across the MPS (which is also a function of ψ), where plasma potential accelerates ions parallel

to the magnetic field; and the potential drop across DS, where plasma potential accelerates ions

in a direction perpendicular to the surface. All such factors affect the resulting IEAD.

In this chapter, surrogate models for the response surfaces of floating wall potential, magnetic

pre-sheath potential, and Debye sheath potential with variable electron-to-ion temperature

ratios Te/Ti and magnetic field inclination angles ψ were constructed. The construction used the

least square approximation introduced in section 3.1.2. In addition, two artificial neural network

models were introduced and applied for the "excess zero" cases (i.e., in the cases where a large

number of zero outputs is expected).

The importance of plasma potentials surrogate models is summarized as follows: (1) To

provide guidance to interpret the results of global sensitivity analysis for IEAD in section 5.3.1.

(2) To identify the points in the physical parameter space where DS dissipates. (3) To provide a

tool to estimate the values of potential at a reduced computational cost (e.g., sensitivity analysis

in sections 5.3.1).

The structure of this chapter is as follows. Section 4.1 summarized the workflow of construct-

ing the response surfaces used for surrogate models training and testing. The results of surrogate

models constructed using the least square approximation are shown in section 4.2. Excess zero

artificial neural network models are introduced and applied to the plasma potentials problem in
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Figure 4.1: Uniform grids used for the ANN models train-
ing and testing. Blue data points are the training data for
the ANN models and training data for the LSF model. Or-
ange data points are the testing data for the ANN model.

section 4.3.

4.1 Construction of plasma potentials training and testing re-

sponse surfaces

This section reviews the process of constructing the response surfaces for the total potential drop,

the potential drop across the magnetic pre-sheath, and the potential drop in the Debye sheath.

Data ranges for the current analysis are similar to the 2D cases shown in Table 3.2. The training

data for the least square approximation surrogate model was created using input parameters on

SG with level Ld at a = 13 shown in Figure 3.1 a). Training data for the ANN models were produced

using data points on the uniform grid shown in Figure 4.1. The same data points were used for

the LSF surrogate model testing. A separate uniform grid with different data points was used for

ANN models testing as shown in Figure 4.1. Simulations for data points on the SG were produced

using hPIC [4]. And hPIC2 [5] was used for data points on the uniform grids.

As reviewed in chapter 2, MPS entrance is identified as the point where ions’ velocities

parallel (V||B ) to the magnetic field lines is equal to ions’ Bohm acoustic speed Cs . Similarly,

DS entrance is identified as the point where ions’ speed parallel surface normal is equal to

Cs . Such a definition was used for plasma potential response surfaces construction. While the

general workflow used to generate the response surfaces for the SG and the uniform grid data
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points is similar, there are a few differences that will be pointed out later. The workflow for

the SG data points is summarized as follows. Zeroth order moment profile (plasma density n),

lab frame first order moments profile (momentum density), and plasma potential profile were

collected from the simulations. Then, to reduce the particles’ noise effect, the average profile

for each output was computed using several repetitions at the same data point. Bohm acoustic

speed was calculated using input parameters according to Equation 2.12. Using the averaged

moments, ions flow velocities (Vx ,Vy ,Vz) were computed by dividing momentum density in the

ith direction by plasma density (i.e., Vi = Pi /n). Followed by evaluating ions’ velocity parallel

to the magnetic field V||1. The normalized ions’ velocity profile with respect to ions’ acoustic

speed in a direction parallel to magnetic field lines V||/Cs and parallel to surface normal Vx/Cs were

used to identify the locations of MPS and DS entrances, respectively. The corresponding points

on the plasma potential profiles are the values of the potentials (φMPS ,φDS). The difference in

the approach used for the uniform grid data points is that one finer simulation per data point

is used instead. In addition, a digital signal filter was applied to the profiles. An example of

the procedure used to identify the potentials of MPS and DS is shown in Figure 4.8. A detailed

workflow breaking down the procedures of identifying the potentials drops across the MPS and

DS is shown in Figure 4.2.

4.2 Least Square Approximation Surrogate Model

The results of constructing a surrogate model using the least square approximation of an over-

sampled SG for plasma potentials are discussed in this section. The data set used for global

interpolation surrogate model construction is the sparse grid data at a polynomial level equal to

13 (i.e., Ld at a = 13). Polynomial levels used for surrogate model training are variable for each

response surface as summarized in Table 4.1, training polynomials’ levels were chosen such that

the mean and max errors are minimal for both training and testing. The priorities for selecting

the fitting polynomial order are as follows: 1. testing error means is minimum, 2. maximum

value of testing error is minimum, 3. training error mean is minimum, 4. maximum value of

training error is minimum. Surrogate models were constructed for both the absolute value of

potential φ as well as the dimensionless value eφ
KB Te

within data ranges listed in Table 3.2.

In general, it was found that training the model using dimensionless potential response

surfaces eφ
KB Te

performs significantly better than the response surfaces for the absolute potential

drops. Recall that such a problem was partially tackled by constructing the surrogate model on

the log of the RoIs values in section 3.3. Table 4.1 shows the mean square errors for all RoIs as

1Note that the magnetic field inclination angle ψ is defined with respect to surface normal in the xy-plane, thus,
only Vx and Vy profiles are needed.
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Inputs

Run hPIC/hPIC2
Compute Bohm's
acoustic speed

ions' first order lab frame
moments

 

ions' zeroth
order moment

Plasma Potential
profile 

 

Compute ions' velocity profile
: 

Compute normalized speed profile ,
normalized parallel and perpendicular speeds parallel

to magnetic field 

 Digital signal's noise filter 

Scan for the DS and MPS entrances locations:
, 

 

Figure 4.2: Workflow of evaluating the floating wall potentialφw , potential drop across the Debye
sheathφDS , and the potential drop across the magnetic pre-sheathφMPS , for a single input point.
Showing the post-processing done on hPIC’s outputs of interest and the computation of the
potential drops according to the discussion in chapter 2.
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Table 4.1: Summary of surrogate models construction errors for the floating wall potential φw ,
the potential drop across the magnetic pre-sheath φMPS , and potential drop across the Debye
sheath φDS ; as well as the associated dimensionless potential drops. Showing the MSE for all
cases; polynomial levels for data and training (Ld at a&L f i t ); errors statistics for each case, percent
errors were calculated for φw cases and absolute errors for all other cases.

RoI
MSE Error Training Error Testing Error

L f i t Ld at aTesting Training Type mean max stdev mean max stdev
φw 1.8×105 0.0853 %Er r or 0.7775 11.075 1.581 0.5942 10.969 1.1571 8 13
eφw
KB Te

0.3864 8.09 ×10−6 %Er r or 0.0267 0.1786 0.029 0.1927 1.0436 0.194 5 13

φMPS 1.21×105 18.3507 ∥Er r or∥ 1.8105 29.2892 3.8823 2.3311 53.5039 5.0811 6 13
eφMPS
KB Te

2.7021 0.0042 ∥Er r or∥ 0.0366 0.3387 0.0539 0.0566 0.3888 0.0705 6 13

φDS 6888.6386 11.6318 ∥Er r or∥ 1.3673 24.2357 3.1244 1.922 54.2819 4.4111 8 13
eφDS
KB Te

2.0822 0.0035 ∥Er r or∥ 0.0309 0.3277 0.0508 0.0475 0.3923 0.0658 6 13

well as statistics about errors for each RoI. Absolute percent errors were calculated for φw and
eφw
KB Te

, while the absolute error was used for all other response surfaces since such surfaces have

several zeros. For the reason mentioned above, in later analysis, only dimensionless response

surfaces surrogate models of the plasma potential drops are considered.

The response surfaces of plasma potentials generated using the original data and the LSF

surrogate models are shown in Figure 4.3. It can be noted that the surrogate model of the floating

wall potential φw in Figure 4.3 d) was successfully captured and smoothed as shown in 4.3 a)

without significant over-fitting. However, for the other two response surfaces (φMPS and φDS

response surfaces) several challenges arise: first, the response behavior is more complicated (i.e.,

data is more non-linear); second, the presence of exactly zero values (i.e., when the MPS or DS

does not exist) alter the behavior of the fitting; third, the preparation of the raw data involved

using the moments, plasma density and potential profile, all such quantities are affected by

particles’ noise and post-processing propagates and subsequently amplifies the noise. These

challenges combined lead to a trade-off between accuracy and over-fitting. The fitted models in

figures 4.3 e) and 4.3 f) were found to be the best fits to smooth-out raw data and minimize the

errors. Some of these challenges were addressed in the ANN method.

As a means to gain a better understanding of the accuracy of the surrogate models’ training

procedures, the errors of the surrogate models’ predictions at the training data points with

respect to the exact values of the training data points were computed, such errors will be referred

to as "training error". Histograms of training errors are shown in Figure 4.4. Training errors

computed on sparse grid data are shown in Figure 4.5. It was found that the mean value of

the absolute percent "training" error of the total potential drop eφw
KB Te

equal to 0.0267% with a

standard deviation of 0.029, Figure 4.4 a) shows that most of the error values are around the mean

value with few outliers errors exceed 0.8% such outliers mainly occur at corners of the sparse grid
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Figure 4.3: Dimensionless potential drops response surfaces of original data (figures. a), b) & c))
Vs. surrogate model (figures d), e) & f)). For ranges shown in Table 3.2. Showing the data points
in blue and training points in orange
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Figure 4.4: Histograms of training errors, represented as absolute percent error for eφw
KB Te

a),

absolute error for eφMPS
KB Te

b), and absolute error for eφDS
KB Te

c). The red solid line represents the mean
value of the error and the red dashed line is one standard deviation of error.

as can be seen in Figure 4.5 a). In conclusion, the least square approximation method was able

to accurately capture the repose surface of dimensionless plasma’s floating wall potential eφw
KB Te

.

Training errors for the MPS and DS response surfaces were significantly higher. In addition, a

large number of error outliers were observed as shown in figures 4.4 b) and 4.4 c). Figures 4.5 b)

and 4.5 c) show that most of the high-valued errors are presented in regions where the exact

value of the RoI is zero, and near the corners of the SG. This suggests three drawbacks of using

the least square approximation for such response surfaces: first, the model failed to capture

exactly zero values in the response surfaces; second, the model did over-fit the response in the

regions of highly non-linear response; third, the regions of zeros affected the capability of the

model to capture the non-linearity of the non-zeros regions. The latter can be clearly observed

in Figure 4.3 e), where a peck appeared on the fitted surface. The second point can be seen in

Figure 4.3 f) where two boundaries of high-valued potentials showed a "wavy" behavior.

In order to assess surrogate models’ predictive capabilities, a uniformly spaced testing grid

with points different than the sparse grid training points was used. The testing grid data points

are shown in Figure 4.1. The error computed on the testing grid points is denoted as "testing

error". Potentials "testing error" statistics are summarized in Table 4.1. Histograms of testing

error distribution are shown in Figure 4.6. Testing errors computed on the testing grid are shown

in Figure 4.7. While the general arguments addressed in the "training errors" discussion hold for

"testing errors", the latter have higher values of errors’ mean values and standard deviations, as

the training process was completely agnostic to the testing data set. One exception is most of the

high error points are located on the boundaries of the zeros non-zero regions.

A major advantage of the least square approximation method is the computational efficiency

of construction. The construction times for each surrogate model were in the range of 1−3ms.
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Figure 4.5: Potential surrogate model errors computed on data sparse grid, represented as
absolute percent error for eφw

KB Te
a); absolute error for eφMPS

KB Te
b); and absolute error for eφDS

KB Te
c). The

color intensity and marker size represent the relative error magnitude.
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Figure 4.6: Histograms of testing errors, represented as absolute percent error for eφw
KB Te
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solute error for eφMPS
KB Te

b); and absolute error for eφDS
KB Te

c). The red solid line represents the mean
value of the error and the red dashed line is one standard deviation of error.
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Figure 4.7: Potential surrogate model "testing errors" computed on data sparse grid, represented
as absolute percent error for eφw

KB Te
a); absolute error for eφMPS

KB Te
b); and absolute error for eφDS

KB Te
c).

The color intensity and marker size represent the relative error magnitude.
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Figure 4.8: Example of "Savitzky–Golay filter" applied to hPIC data at (log(Te /Ti ) = 0, ψ= 550).

While prediction times for testing data points2 were in the range of 10−50ms.

4.3 Artificial Neural Network Surrogate model

The limitations of the global interpolation surrogate model method motivated exploring a

different method that is capable of capturing the complexity of potentials response surfaces with

reduced error. Thus, Artificial Neural Networks ANN techniques were considered. By utilizing

ANN, a number of challenges arise, including: 1. ANN techniques are more sensitive to noise, 2.

ANN is more likely to over-fit the response of training data points, 3. exactly zero values in the

response surfaces can bias the overall fitting leading to lower prediction values and preventing

the model from achieving sufficiently high accuracy, 4. ANNs requires a careful selection of the

hyper-parameters (e.g., when the response surface has exactly zero values, the mean absolute

percent error cannot be used as a loss function). To tackle such a problem several techniques

were developed and implemented. For example, to reduce the effect of particles’ noise on the

final response surface, a digital signal filtration technique known as "Savitzky–Golay filter" [39]

was applied to ions’ fluid moments and potential profiles in the post-analysis procedures, the

windows for filtration were tuned at 50%NCel l s and 25%NCel l s for the ions’ moments and plasma

potential profiles, respectively; and the filter polynomial orders are 9 and 11. An example of

filtered data is shown in Figure 4.8.

In the case where the response surface does not contain zeros (e.g., φw and eφw
KB Te

), the ANN

surrogate model was constructed using a general ANN architecture, which was built using Keras

library [40], an open-source library that provides a Python based interface for ANN. The general

2Total of 500 data points.
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Table 4.2: Summary of the general ANN model, showing the model’s
architecture and hyperparameters details.

Architecture
Layer(s) No. Activation Nodes No. Activation Function
1× Input 2 ReLU

2× Hidden 512 ReLU
1× Output 1 Linear

Hyper Parameters
Epochs Loss Function Optimizer Learning rate Momentum Batch size

2,000 Huber Adam 5×10−4 0.1 32

ANN model consists of one input layer of shape 2 and two hidden layers with 512 activation

nodes each per hidden layer and activation functions of type Rectified Linear Function ReLU

[41], and one output layer of shape 1 and linear activation function. To ensure the model does

not converge to a local minimum momentum of value 0.1 was added. Because the training

data set size is relatively small, the learning rate was reduced to 5×10−4 and batch size was

limited to 32, such setup is important to avoid sudden spikes in the loss function during the

training. Finally, to avoid over-fitting and ensure the robustness of the model, the loss function

was changed to Huber loss function [42]. Huber loss functions are less sensitive to outliers in the

data compared to the MSE loss function. A summary of the general ANN model’s architecture

and hyperparameters values are tabulated in Table 4.2.

The problem that arises from the presence of a large number of exactly zero values in a

probability distribution is well-known in statistics and usually denoted as the "excess zeros

problem" [43]–[45], common techniques for dealing with such distributions in statistics are: the

zero-inflated models (i.e., zero-inflated Poisson ZIP [46]); and Hurdle model [47]. In general,

a zero-inflated model is a probability distribution that allows for frequent zeros in the model.

On the other hand, Hurdle model represents the random variable using two parts, the first

part is the probability of attaining a value of zero, and the second part models the non-zero

values. In the current analysis, variations of both the zero-inflated model and Hurdle model were

modified to fit within an ANN model. In the modified ZIP model, a classifier of type Support

Vector Classifier SVC, which is a classifier based on SVM, was used to separate the zero from

the non-zero outputs, where the zero output directly fed to the output layer and the non-zero

output are fed to the ANN regression model, SVC model used a kernel function of type RBF. The

ANN regression model contains one input layer with shape 2 (represents the inputs of the model

(log(Te/Ti )), 8 hidden layers of size 512 each, and activation functions of ReLU, with a loss MSE

function. The architecture and hyperparameters of the modified ZIP are summarized in tables

4.3 and 4.4 for the classifier and the regressor, respectively. The modified ZIP was constructed
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Table 4.3: Summary of hyper-parameters of the
classifier SVC sub-model used in the modified ZIP
model.

Model Kernel degree Tolerance No. Iterations
SVC "RBF" 7 1×10−4 10,000

Table 4.4: Summary of the regressor ANN sub-model used in the modi-
fied ZIP model, showing the model’s architecture and hyperparameters
details.

Architecture
Layer(s) No. Activation Nodes No. Activation Function
1× Input 2 ReLU

8× Hidden 512 ReLU
1× Output 1 Linear

Hyper Parameters
Epochs Loss Function Optimizer Learning rate Momentum Batch size
50,000 MSE Adam 1×10−4 None 32

using scikit-lego meta models library [48] with regression and classification models built using

scikit-learn (sklearn) library [49]. Huber loss function was not used in the modified ZIP model

because it is not available in the scikit-learn library.

The main idea of Hurdle ANN model is to train two separate classification and regression

sub-models simultaneously, where the two sub-models can share all or part of the ANN layers.

However, each sub-model will have its own loss function and output layer. The main target of the

classification sub-model is to predict if the response value is zero or non-zero, and the regression

sub-model will predict the actual response value. The final output of the model can either be

the prediction of the regressor alone or manually multiply it with the classification output to

force zero values. While modified Hurdle and modified ZIP may seem to share many similarities,

they are essentially different. While the classifier in the modified ZIP model filters out the zeros

before feeding them to the regression model, Hurdle model regressor takes the data as is. Thus,

arguably, the modified ZIP model can provide more accurate predictions since no bias caused by

the zero values affects the regressor. On the other hand, the zeros bias on Hurdle regressor is not

expected to be significant. This can be explained using the fact that the regressor and classifier

share part or all of the activation nodes, thus when the regressor sub-model modifies activation

nodes weights in the shared part it forces the regressor to achieve higher accuracy near the zero’s

responses. A detailed comparison of Hurdle and ZIP models can be found in [50].

Two modified Hurdle model based ANN architectures are proposed and will be referred to

them as "Hurdle1" and "Hurdle2". The main difference between the two models is the portion
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Figure 4.9: A schematic representation of the two variations of Hurdle model architectures
developed in the current work. "Hurdle1" shown in a) regressor and classifier shares all layers. In
"Hurdle2" shown in b) regressor and classifier shares part layers.

Table 4.5: Hyper parameters summary of the modified Hurdle models.

Parameter Value/Flag
Regressor Loss Function Huber loss
Classifier Loss Function Sparse Categorical Cross Entropy loss

Batch Size 128
Optimizer Adam

Learning rate 5×10−4

Number of Epochs 15,000

of layers the sub-models share. In the "Hurdle1" model shown in 4.9 a) the regressor and

classifier share the entire neural network except for the input and output layers. Whereas in the

"Hurdle2" model shown in 4.9 b) the sub-models only share part of the neural network layers,

called "bottleneck layers". Dropout layers were added to the models to prevent any possible

over-fitting. A summary of Hurdle models hyper-parameters is shown in Table 4.5. Despite the

undesired effect of increasing the batch size on convergence, it was important to increase it to

128 to prevent strong biases when the random batch consists of mainly zeros.

Training and testing data sets used for the ANN-based models training and testing are shown

in Figure 4.1. While the training data set of the least square model could have potentially been

used for the ANN models, they can lead to a significant error in training since the training data
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Figure 4.10: Comparison of potentials training data and ANN trained response surfaces. Response
surfaces in figures [b), d)] were trained using the general ANN model summarized in Table 4.2;
figures [f), j)] were trained using the modified ZIP model summarized in tables 4.4 & 4.3; and
figures [g), k)] & [h), l)] were trained using the two variations of Hurdle model shown in Figure
4.9. To reveal possible over-fitting, response surfaces were created using a fine input grid of size
500×500.

points of a SG is denser on the corners of data ranges and more sparse near the center, making

such set inappropriate for ANN training. Figure 4.10 summarizes the plasma potentials’ original

data response surfaces and ANN trained response surfaces3. Where general ANN model was

applied to the total potential drop and its corresponding dimensionless response surfaces shown

in figures 4.10 b) and 4.10 d). On the other hand, "Hurdle1", "Hurdle2", and ZIP ANN models

were applied to the dimensionless MPS and DS response surfaces shown in figures 4.10 f)-4.10 h)

and 4.10 j)-4.10 l).

Similar to the procedures followed in section 3.3, models’ accuracies and predictive capabili-

ties were assessed by evaluating "training error" and "testing errors". Absolute percent errors

3Note that response surfaces of the original data in Figure 4.10 is slightly different than the surfaces appears in
the LSF model in Figure 4.3 as different training data sets were used.
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Table 4.6: ANN training errors. Normalized Root-Mean-
Square Error NRMSE was calculated for all models. Ab-
solute percent error was used for φw models assess-
ments, and SAMPE error given by Equation 4.1 was used
to assess other models.

RoI Model NRMSE
Errors

Mean Max stdev
eφw
KB Te

General ANN 0.42637 0.10121 0.6199 0.1109

φw General ANN 0.3729 0.7298 4.99 0.8435

eφMPS
KB Te

modified ZIP 0.8773 7.56 87.73 12.8
"Hurdle1" 0.0247 6.759 79 12.542
"Hurdle2" 0.0121 2.891 50.7 7.093

eφDS
KB Te

modified ZIP 0.1925 2.0564 35.297 3.496
"Hurdle1" 0.0296 1.6586 34.35 2.835
"Hurdle2" 0.0342 1.9178 47.5 3.868

were computed for the general ANN models. And, in the cases of "excess zeros" models, the

error is calculated as Systematic Absolute Percent Error SAPE given by Equation 4.1, where f

is the actual data value and f̃ is the predicted value and p is the input vector. The Normalized

Root-Mean-Square Errors NRMSEs were calculated for all training methods. A summary of the

"training" normalized root-mean-square errors and statistics of "training errors" are listed in

Table 4.6. Histograms of errors’ distributions are shown in Figure 4.11. While the training error of

the floating wall potential is lower in the least square approximation model as Table 4.1 suggests,

training errors of all other potentials’ response surfaces were significantly lower when trained

using the ANN models. Concluding that, in general, ANN models provide enhanced accuracy. In

addition, Table 4.6 suggests that Hurdle models are more accurate than the modified ZIP models.

Also, "Hurdle1" showed a lower error when used to train the MPS response surface. In contrast,

the error was lower when "Hurdle2" was used for the DS case.

S APE = %e(p) = | f̃ (p)− f (p)|
| f (p)|+ | f̃ (p)| ×100% (4.1)

For the purpose of having a better insight into the distributions of training errors on the

physical parameters space, errors are plotted on the uniform training grid as shown in Figure

4.10. Error grids show higher values on the boundaries of training batches. Such behavior is more

visible for φw training error grid in Figure 4.12 b), where lines of errors surrounding groups of 32

data points (batch size) are visible. Such errors can be reduced by a proper shuffling of training

data and using an increased batch size. Also, high-error data points are visible around the

zero-valued data point, such errors can be interpreted as artifacts of response surface smoothing
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Figure 4.11: Histograms of the "training" errors associated with ANN surrogate models’ construc-
tions. Captions show the RoI along with the models’ names. Absolute percent error was used for
zero-free models in figures [a), b)]. Systematic absolute percent SAP error given by Equation 4.1
was used for the excess zeros problems figures c)-h). The solid lines represent the errors’ mean,
the dashed-dotted lines are the errors’ median, and the dashed lines are one standard deviation
from the mean.

procedures.

In order to test the predictive capabilities of the ANN-based models, testing errors were

calculated for all models and response surfaces. NRMSE of testing data as well as testing errors’

statistics are listed in Table 4.7. Comparing the testing errors of the ANN models and the least

square approximation models’ testing error in Table 4.1, it can be inferred that the ANN models

have better predictive capabilities. Similar to training errors, Table 4.7 suggests that "Hurdle2"

model has a better performance compared to "Hurdle1" model in the case of MPS response

surface. Surprisingly, modified ZIP model showed excellent predictive capabilities with error’s

mean, median, and maximum values of 2.3%,1.03%, and 13.1%, respectively. Detailed distribu-

tions’ histograms of ANN testing errors are shown in Figure 4.13. Testing errors’ distributions

on testing grid data points are shown in Figure 4.14. Similar to training errors, the testing errors

grid shown in Figure 4.13 a) shows an increased error on the boundaries of batches. Errors of

the MPS models were found to be high near the zero non-zero regions’ boundary, away from

boundaries "Hurdle2" has a reduced error compared with other ANN models.

To select a surrogate model for each response to be used for the sensitivity analysis conducted

in chapter 5 a selection criterion based on the following factor was used: (1) Training accuracy,

which can be assessed based on training error and the number of outliers. (2) The ability of
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Figure 4.12: Distribution of ANN models’ training errors shown in Figure 4.11 on the training
grid.

Table 4.7: ANN testing errors. Normalized Root-Mean-Square Error
NRMSE was calculated for all models. Absolute percent error was
used for φw models’ assessments, and SAMPE error given by Equa-
tion 4.1 was used to assess other models.

RoI Model NRMSE
Errors

Mean Max stdev median
eφw
KB Te

General ANN 0.44004 0.10962 0.54417 0.10811 0.06965

φw General ANN 0.39723 0.88058 4.14324 0.86182 0.56529

eφMPS
KB Te

modified ZIP 0.03608 8.90772 94.1215 15.2772 3.15342
"Hurdle1" 0.02792 8.61349 97.7446 15.6129 3.6045
"Hurdle2" 0.01356 5.20074 93.7956 11.5264 1.5914

eφDS
KB Te

modified ZIP 0.0842 2.30791 13.1324 2.71752 1.0317
"Hurdle1" 0.06748 4.18116 19.3978 4.1471 3.4044
"Hurdle2" 0.07318 4.15528 30.0551 4.0520 3.0844
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Figure 4.13: Histograms of the "testing" errors associated with ANN surrogate models’ construc-
tions. Captions show the RoI along with the models’ names. Absolute percent error was used for
zero-free models in figures [a), b)]. Systematic absolute percent SAP error given by Equation 4.1
was used for the excess zeros problems figures c)-h). The solid lines represent the errors’ mean,
the dashed-dotted lines are the errors’ median, and dashed lines are one standard deviation
from the mean.
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Figure 4.14: Distribution of ANN models’ "testing" errors shown in Figure 4.13 on the testing grid
data points.
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Table 4.8: Summary of ANN surrogate models construc-
tion times in [s]. And prediction time for 250,000 data
points in[ms].

RoI Model Fitting Time [s] prediction time [ms]
eφw
KB Te

General ANN 64 ∼ 1

φw General ANN 119 ∼ 1

eφMPS
KB Te

modified ZIP 137 60
"Hurdle1" 320 ∼ 2
"Hurdle2" 190 ∼ 2

eφDS
KB Te

modified ZIP 70 18
"Hurdle1" 700 ∼ 2
"Hurdle2" 400 ∼ 2

the model to mitigate particles’ noise effect, which can be assessed by the smoothness of the

surface, the location of outliers, and the extent of over-fitting. It should be noted that there

is a trade-off between training accuracy and the ability for noise mitigation. For example, if a

data point of value zero falls between two non-zero data points, an accurate fitting will be the

one that captures the values of the three data points, however, an over-fitting free fitting will

predict a non-zero value for the zero data point, leading to a 100% error at that point. (3) Models’

predictive capabilities, which can be measured based on testing error. However, one should be

cautious when calculating the testing error as the testing data set can potentially be affected

by particles’ noise. Based on such criteria, the general ANN surrogate model of φw and eφw
KB Te

will be used for the SA. "Hurdle1" model will be used for eφMPS
KB Te

. While tables 4.6 and 4.7 show

that "Hurdle2" model is more accurate for such a response surface, errors’ distribution on the

data grid in figures 4.14 d) and 4.14 e) suggests that "Hurdle2" model suffered from over-fitting.

Finally, the modified ZIP surrogate model will be used for eφDS
KB Te

response surfaces.

Finally, ANN models’ construction (training) and prediction time are tabulated in 4.8. In

general, the LSF models’ training time was significantly shorter when compared with the ANN

training time. On the other hand, the prediction time is slightly shorter for the ANN models.

Table 4.8 shows that the training time of the modified ZIP models is generally shorter than

Hurdle models, this can be explained by the fact that the training of classification models is

more efficient when compared with regression models, and since a smaller amount of data is

being passed to the regression model in the modified ZIP model, it converges faster. For the time

differences in the two Hurdles models, it is a function of the models’ complexity as Figure 4.9

shows.

A problem of interest is identifying the region on the parameter space where the Debye

sheath disappears. Such a problem was identified by [15]. The classification part of the ANN
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Figure 4.15: Region where Debye sheath disappears as predicted by the ANN classification model.
The model was trained using PIC simulation for plasma with Hydrogen+ ions, electron-to-ion
temperature ratios log(Te/Ti ) in the range [−1.25,1.25], magnetic field inclination angles with
respect to surface normal ψ in the range [0.0◦,87.0◦], magnetic field strength of B = 8[T ], and
plasma density of n = 1×1018 [m−3].

model was used to identify such regions as shown in Figure 4.15.

For reference, the response surfaces of the potential drops across the MPS and DS are shown

in Figure 4.16.

4.4 Main Takeaways

• In this chapter, the procedure of constructing surrogate models for floating wall potential

φw , potential drop across the magnetic pre-sheath φMPS , and potential of the Debye

sheath φDS is summarized.

• The main goals of constructing a surrogate model for the plasma potentials is to have a

better understanding of plasma sheath structure, to understand its impact on the IEAD,

and to provide a tool to efficiently compute the plasma’s potential drops.

• Two main methods of construction were applied and compared, the least square approxi-

mation method introduced in chapter 3, and the artificial neural network ANN approach

(i.e., Multi-Layer Perceptron MLP).

• Two ANN approaches for the excess-zero problems were introduced and applied to the

construction of plasma potentials surrogate models. These approaches utilized modified

versions of common methods in statistics for such problems, namely, zero-inflated Poisson

ZIP and Hurdle models. The main approach for each model is summarized as follows:

50



1.0 0.5 0.0 0.5 1.0
log(Te/Ti)

0

10

20

30

40

50

60

70

80

°

0

40

80

120

160

200

240

280

320

e
D

S
K B

T e
[V

]

a) Potentials drops across the Debye sheath

1.0 0.5 0.0 0.5 1.0
log(Te/Ti)

0

10

20

30

40

50

60

70

80

°

0

25

50

75

100

125

150

175

200

e
M

PS
K B

T e
[V

]

b) Potentials drops across the magnetic pre-sheath

Figure 4.16: Response surfaces of the potentials drops across both the DS and the MPS computed
using the ANN surrogate model.

– Zero-Inflated Poisson ZIP: uses a classifier to filter zero values before passing it to the

regressor, or by defining a custom loss function to optimize prediction in the excess

zero regions. For the current work supported vector classifier is used.

– Hurdle: train a regressor and classifier simultaneously, where the regressor and

classifier share part or all of the ANN’s architecture.

• To overcome challenges associated with using PIC generated training data, several strate-

gies were adopted in the ANN model construction. Including, using a digital signal filter

to reduce the effect of particles’ noise, and utilizing Huber loss function to avoid data

over-fitting.

• While the artificial neural network surrogate models outperformed the models constructed

using the least square approximation method in terms of accuracy and predictive capa-

bilities, it has several drawbacks when compared to the latter. First, it requires a careful

selection of hyperparameters. Second, it is more sensitive to particles’ noise and more

prone to over-fit the training data. Third, construction is several order-of-magnitude more

computationally intensive.

• The classifier of the ANN model was used to identify the regions where the Debye sheath

disappears, such a problem is important for plasma under the influence of a grazing

magnetic field, for example, near the divertor of a Tokamak.
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Chapter 5

Sensitivity Analysis (SA) of IEAD’s moments

and Plasma Potentials

5.1 Introduction

Uncertainty Quantification UQ and Sensitivity Analysis SA are two essential procedures in

scientific computing. In general, UQ can be defined as the area of research concerned with

identifying, quantifying, and reducing uncertainties associated with models, numerical methods,

experiments, and predicting Response of Interest RoI [29]. The main goal of UQ is to assess the

performance of the system when part of the inputs is uncertain. SA on the other hand maps the

relation between scientific model (computational, empirical, semi-empirical, etc) inputs and the

RoI. The main goal of SA is to identify and rank input parameters with the most significant effect

on RoI. UQ and SA are tightly connected. For example, input parameters that have the largest

impact on RoI and are highly uncertain are expected to dominate the effect on the RoI [51]. In

general, SA has two main classes: Local Sensitivity Analysis LSA and Global Sensitivity Analysis

GSA. LSA aims to obtain sensitivity information about a specific point within the input parameter

space. Such analysis aims for eliminating the least significant parameters for later UQ analysis,

or unrevealing the most impact-full input parameters specifically for the inputs of interest. On

the other hand, GSA explores the entire space of the input parameters [52]. SA methods can

be classified in many different forms, [53] reviewed some of the methods and classified them

as follows: (1) perturbation and derivative methods, (2) multi-starts perturbation methods,

(3)correlation and regression analysis methods, (4) regional sensitivity analysis methods, (5)

variance-based methods, (6) density-based methods. Method no.1 (perturbation) is utilized in

this work for LSA in section 5.3.2. Variance-based methods are utilized for GSA in section 5.3.1.

PIC simulations often suffer from particle noise and are computationally expensive. Thus,
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limited work was found in the literature concerning UQ and SA on PIC codes, and constructing a

surrogate model is even more challenging. An example of performing SA and utilizing a surrogate

mode is [54], in which the authors used Sobols’ indices as a method of SA to identify the most

critical numerical parameters of PIC simulations, aiming to reduce the total computational time

by eliminating trial-and-error procedure of choosing numerical parameters of a PIC simulation

used in the context of particle accelerator systems. In their analysis, a surrogate based on

Polynomial Chaos Expansion PCE was constructed. Using PCE to construct the surrogate model

can reduce the cost of computing Sobols’ indices. Also, [55] performed SA in the context of

chemical reactor engineering using the PIC code MFiX-PIC. On the other hand, UQ is usually

used in validation and verification procedures. For example [56] performed parametric UQ as

a part of the validation and benchmark of two PIC codes; EDIPIC [57] and LSP [58], applied

to a short parallel-plate glow discharge. Also, [59] applied UQ as a part of PIC validation and

verification. They identified two sources of uncertainties: the uncertainty related to particle

noise (numerical error) and parametric uncertainty of the PIC inputs. To estimate the numerical

error, they used a multi-fitting scheme known as Stochastic Richardson Extrapolation-based

Error Quantification StREEQ [60]. Such a method was developed specifically for numerical

error estimation for stochastic codes. [61] explored the propagation of the noise in a PIC cycle

by performing GSA of the parameters at each stage of the cycle at different numerical input

parameter sets.

A variance-based method, known as Sobols’ indices, was used to perform global sensitivity

analysis on two main problems, IEADs’ moments as well as potentials’ drop across the plasma

domain. The IEAD surrogate model constructed in chapter 3 was employed to supply the

samples necessary for sensitivity indices computations. Sensitivity indices of IEAD moments,

namely, ions’ mean energy of impact, ions’ mean impact angle, and their associated standard

deviations were computed with respect to the most influential parameters, electrons-to-ions

temperature ratios Te/Ti , and magnetic field inclination angle ψ. Then the analysis was extended

to include additional parameters: magnetic field strength B and plasma density n. Similarly,

the ANN-based surrogate models of plasma potentials were used to compute the effects of

Te/Ti and ψ on floating wall potential, the potential drop across the DS, and MPS. In addition,

Local Sensitivity Analysis LSA was performed on WEST like conditions using One at a Time OAT

method. The goal of the LSA is to explore the effect of an extended parameter space on the

responses of interest.

Section 5.2 reviews the methods used for the GSA and LSA. The results of the GSA and LSA

are reported in sections 5.3.1 and 5.3.2, respectively.
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5.2 Methodologies

5.2.1 Sobol’s Indices

Among the classes of methods available for GSA, a variance-based method known as Sobols’

indices has been adopted in this work [52]. The basic idea is to decompose the variance of

RoI into fraction contributions from inputs. Choosing Sobols’ indices can be justified by: (i)

simplicity of the method, the method is straightforward to implement and interpret since the

output appears as a percentage of input contribution to the output of RoI. (ii) The method allows

for interaction between the inputs. iii. This class of methods can deal with non-linear RoIs.

First order Sobols’ indices (also known as "main effect indices") measure the direct contri-

bution of each input toward the final RoI, without taking into account the interaction between

the input parameters. Given a response function y for input vector p with n inputs, such that

y(p) : Rn →R such that p ∈R, then first order Sobol index is given by Equation 5.1. In which,V(y)

is the variance of y and V
[
E
(
y

∣∣ pi
)]

is the variance of the conditional expectation of y given the

fixed input parameter pi .

Si := V
[
E
(
y

∣∣ pi
)]

V(y)
, i = 1, ...,n (5.1)

The second-order Sobols’ indices (also known as "second-order interaction"), measure the

effect of varying two parameters (pi , p, j ) simultaneously, along with their individual effect, and

is defined by Equation 5.2. Such that V
[
E
(
y

∣∣ pi , p j
)]

is the conditional expectation of y given

the fixed input parameters pi , p j . The second-order indices are usually represented in a 2×2

matrix. Higher order indices follow the same definition of 5.2, however, have not been used in

this analysis. In practice, the number of higher order indices scales with 2n −1. Accordingly, if

the number of input parameters is large, higher order indices become computationally extensive

and one can use the total effect indices instead.

Si j := V
[
E
(
y

∣∣ pi , p j
)]

V(y)
−Si −S j , i , j = 1, ...,n, i ̸= j (5.2)

Finally, the total effect indices measure the contribution towards RoI using variances of the pi ,

including all variances caused by interactions of any order with any other input parameter. Total

effect variance is defined by Equation 5.3. Such that, E
(
y

∣∣ p∼i

)
is the conditional expectation of

y for all fixed parameters except for pi . Total effect indices are the most informative among the

order of Sobols’ indices.

STi := 1− V
[
E
(
y

∣∣ p∼i

)]
V(y)

, i = 1, ...,n (5.3)
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It should be noted that Sobols’ indices are a uni-variant method and the indices for a two-

dimensional response (e.g., IEAD) can be evaluated by computing Sobols’ indices pixel-wise

across all input parameters inputs, similar to Figure 3.5.

For the 2D cases, relations between different orders of Sobol indices are summarized in

equations 5.4 & 5.6. Such a simple relation exists because in 2D first and second order indices

can fully describe sensitivity response and the total effect indices are redundant information.

S1 +S2 +S12 = 1, (5.4)

ST1 = S1 +S12 = 1−S2, (5.5)

ST2 = S2 +S12 = 1−S1, (5.6)

In general, the first-order indices and higher order indices can be related according to

Equation 5.14, so when the interaction is minimal, the first-order indices are expected to add up

to unity. If the sum exceeded unity then an error/noise is affecting the data and more samples are

needed. On the other hand, the total effect indices can exceed unity as can be read in Equation

5.15. If the sum of the total effect indices is unity, then the model is purely additive and no

significant interaction between the inputs is present.

The computations of Sobols’ indices are as follows: To compute Sobols’ indices, N samples

of n quasi-random input values1 have been drawn from the physical input space. The sampling

technique of choice was Sobol’s sequence2 with n = 4 for the 2D cases and n = 8 for the 4D cases.

Using Sobol’s sequence to sample from the input space is attractive because it can sample N ×2d

list efficiently, with d being the number of input parameters. In addition, Sobol’s sequence

ensures a low discrepancy random sample [62]. It should be indicated that Sobol’s sequence can

only sample a number of samples of base 2 and using MATLAB ’qrandstream’ will truncate the

sequence to N , leading to a slight increase in the discrepancy of the random sample.

Sobols’ indices computation procedure as described by [52], and summarized as follows:

First step is to generate a N ×2n matrix of random numbers M within the range of the input

parameters, such that, M ∈ RN×2n . With N is the sample size and n is the number of input

parameters (In the current analysis n = 2,4). Such that, the i th and (n+i )th element corresponds

to the i th parameter.

1Not to be mixed with pseudo-random numbers.
2Not to be mixed with Sobol indices.
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M =


p(1)

1 p(1)
2 · · · p(1)

n p(1)
n+1 · · · p(1)

2n

p(2)
1 p(2)

2 · · · p(2)
n p(2)

n+1 · · · p(2)
2n

...
... · · · ...

... · · · ...

p(N )
1 pN

2 · · · p(N )
n p(N )

n+1 · · · p(N )
2n

 (5.7)

Matrix M can be rewritten as two matrices of N×n elements such that A ∈RN×n and B ∈RN×n

as follows:

A =


p(1)

1 · · · p(1)
n

...
. . .

...

p(N )
1 · · · p(N )

n

, B =


p(1)

n+1 · · · p(1)
2n

...
. . .

...

p(N )
n+1 · · · p(N )

2n

 (5.8)

Matrices A & B are then used to construct n additional matrices Ci ∈ RN×n , i = 1, · · · ,n.

Matrices Ci are constructing based on matrix B with the i th column replaced by elements from

matrix A:

Ci =


p(1)

n+1 · · · p(1)
i · · · p(1)

2n
...

...
...

...
...

p(N )
n+1 · · · p(N )

i · · · p(N )
2n

 (5.9)

The response y (P) of each input parameters vector (i.e., row) in the matrices A, B , and Ci is

evaluated (either by simulations or using a surrogate model), leading to (2+n) N ×1 response

vectors:

yA = y(A) :=


y
(
P(1)

)
y

(
P(2)

)
...

y
(
P(N )

)

 , yB = y(B) :=


y

(
P̄(1)

)
y

(
P̄(2)

)
...

y
(
P̄(N )

)

 , yC = y(C ) :=


y

(
P̄(1)|i

)
y

(
P̄(2)|i

)
...

y
(
P̄(N )|i

)

 ,

(5.10)

Where p( j ) :=
(
p( j )

1 , p( j )
2 , · · · , p( j )

n

)
, p̄( j ) :=

(
p̄( j )

n+1, p̄( j )
n+2, · · · , p̄( j )

2n

)
and p̄( j )|i :=

(
p̄( j )

n+1, p̄( j )
n+2, · · · , p j

i , · · · , p̄( j )
2n

)
with the i th entry replaced by p( j )

i from matrix A.

After computing the responses of matrices A, B and C , the first and total order Sobols’ indices

can be evaluated. First order Sobol’s index with respect to the i th input parameter is given by:

Si =
(1/N)

∑N
j=1 y ( j )

A y ( j )
Ci

− f 2
0

(1/N)
∑N

j=1

(
y ( j )

A

)2 − f 2
0

, i = 1, · · · ,n, (5.11)
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With f 2
0 given by:

f 2
0 :=

(
1

N

N∑
j=1

y ( j )
A

)2

(5.12)

Similarly, total order Sobol’s index with respect to the i th input parameter can be calculated

by:

STi = 1−
(1/N)

∑N
j=1 y ( j )

B y ( j )
Ci

− f 2
0

(1/N)
∑N

j=1

(
y ( j )

A

)2 − f 2
0

, i = 1, · · · ,n, (5.13)

Sample size used for the current analysis was N = 50,000 as discussed in section 5.3.1. Based

on this method, the number of simulations needed for the GSA is N (2+n), with n = 2 for the 2D

cases and n = 4 for the 4D case, the total number of simulations required to be run are 200,000

and 300,000, respectively. Thus, a surrogate model was a necessity.

d∑
i=1

Si +
d∑

i< j
Si j +·· ·+S12...d = 1 (5.14)

d∑
i=1

STi ≥ 1 (5.15)

While the Sobols’ indices were hardly coded for most of the work, for some analysis the

sensitivity analysis library in python SALib was used [63], [64] due to its parallel capabilities,

which allowed for more extensive analysis.

5.2.2 One At a Time (OAT)

While GSA ranks the influence of parameters on the RoI over a wide range of inputs, LSA is

concerned with a limited input range, usually around one point of interest. The motivations

to perform LSA in the current analysis are summarized as follows: To get an insight about the

parameters that will be included in future GSA, especially in the case of multi-species plasma, to

have a more profound understanding of RoIs’ sensitivities for input parameters from an actual

magnetic confinement device, and to determine which parameters should be included in future

UQ analysis (i.e., parameters that are both highly uncertain and sensitive).

LSA was applied to a tungsten divertor in steady-state of WEST [65]. Plasma parameters of

He +/He ++ discharges and from probe data obtained at 5 points along the Tokamak divertor

were used as inputs. The method adopted for LSA is One At a Time OAT local sensitivity analysis

method (i.e., also known as linear perturbation theory), which is the most common method
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for local sensitivity analysis 3. OAT ranks the relative influence of the i th input parameter xi

on the RoI denoted as f . Then the sensitivity index S, for each input parameter is calculated

by evaluating the partial derivative of the RoI concerning each input parameter as shown in

Equation 5.16 [66], [52].

SO AT
i = ∂y

∂xi
, i = 1,2, ...,n (5.16)

Since an analytical solution is not available for the RoIs. Finite difference methods were

used to calculate the partial derivatives numerically. In this work, forward 5.17 and central 5.18

finite difference methods were used and compared. Where, in equations 5.17 & 5.18, h is the

perturbation value of the i th input parameter and f is the RoI. h has been estimated based on the

expected uncertainties of the measurement. In order to ensure dimensionless values of S, and to

facilitate the comparison of sensitivity indices, it is common to normalize equations 5.17 and

5.18 as shown in equations 5.19 and 5.20. Although it is common to use different perturbation

values for each finite difference scheme. It has been fixed in this analysis for simplicity. Table

5.1 summarize perturbations values for each physical parameter of interest used for the OAT

analysis.

f
′
(x) = f (x +h)− f (x)

h
+O (h) (5.17)

f
′
(x) = f (x +h)− f (x −h)

2h
+O (h2) (5.18)

SO AT
i ,nor m = ( f (xi +h)− f (xi ))/ f (xi )

h/xi
(5.19)

SO AT
i ,nor m = ( f (xi +h)− f (xi −h))/ f (xi )

2h/xi
(5.20)

5.3 Results

5.3.1 Global Sensitivity Analysis (GSA) of IEAD’s Moments and plasma poten-

tials

The Global Sensitivity Analysis GSA method described in section 5.2.1 was applied to two prob-

lems, moments of the IEADs problem described in chapter 3, and the plasma potentials problem

3It is the LSA version of Morris screening method
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Table 5.1: Chosen perturbation values for WEST physical param-
eters used for OAT sensitivity analysis.

Parameter Perturbation
B (Magnetic field) [T ] 0.5
ψ (Magnetic angle) [Degree] 3
Te (Electrons’ Temperature) [eV ] 10%
Ti (Ions’ Temperature) [eV ] 10%
He++ Density [n/m3] One order of magnitude
He+ Density [n/m3] One order of magnitude

introduced in chapter 4. The goal of the analysis is to unravel the effects of physical parame-

ters (i.e., electron-to-ion temperature ratio Te/Ti , plasma density n, magnetic field strength B ,

and magnetic field inclination ψ) on the ions’ energies and angles moments (i.e., mean and

variance) at PSI of a Hydrogen plasma, for the first problem. And to compute the effects of

physical parameters (i.e., electron-to-ion temperature ratio Te/Ti , and magnetic field inclination

angle ψ) on plasma potential for the second problem. More specifically compute the effect

of physical parameters on floating wall potentials (φw , eφw
KB Te

), the potentials’ drop across the

MPS (φMPS , eφMPS
KB Te

), the potentials’ drop across the DS (φDS , eφDS
KB Te

), and the effect on normalized

potential drops in the MPS and DS with respect to the total potential drops (φMPS
φw

, φDS
φw

).

The general workflow of the GSA follows is shown in Figure 3.2, while the workflow shows the

procedures for the IEAD, the method remains the same for the plasma potentials problem. The

workflow is summarized as follows. Following input space sampling, the RoIs for both, moments

of ions’ energies and angles, and plasma potentials were evaluated using the IEAD surrogate

model described in chapter 3, and the plasma potentials surrogate model described in chapter

4. Then Sobols’ indices were evaluated along with the associated indices’ errors. More samples

were added until the maximum error of the Sobols’ indices is within the "acceptable" range.

Table 5.2 shows the errors of Sobols’ indices for both 2D and 4D cases computed for the IEAD’s

moments. At N = 50,000 the error is 0.02% for the 2D cases and 0.35% for the 4D cases, thus, for

later analysis the number of samples used in Sobols’ indices calculations was fixed at N = 50,000.

First and second-order Sobols’ indices4 of plasma potentials (with variable electron-to-ion

temperature ratios Te/Ti and the magnetic field inclination angles ψ) are shown in Figure 5.1 and

the values of the indices are tabulated in Table 5.3, where S1 denotes the first order effect with

respect to electrons-to-ions temperature ratios Te/Ti , S2 denotes the first order effect with respect

to magnetic field inclination angle with respect to surface normalψ, and S12 denoted the second

order sensitivity index, showing the interactions of the input parameters.

4Recall that the total index in for two dimensional problems is the sum of first and second order indices as given
by Equation 5.4.

59



Table 5.2: Maximum error of Sobol indices for a different
N number of samples. Error for each number of samples
was evaluated with respect to the previous sample size,
with N = 100 have been used as a reference sample size.
The error in the 2D cases is that of the first-order Sobol
indices, whereas the error in the 4D cases is that of the
first and total Sobol indices.

N 2D Max. Error 4D Max. Error
500 0.0324 0.2266

1000 0.0123 0.0409
2000 0.0126 0.0419
5000 0.0068 0.0136

10,000 0.0013 0.0081
20,000 0.0012 0.0031
50,000 0.0002 0.0035

Table 5.3: First and second orders Sobols’ indices for plasma potentials, ranking the influ-
ence of physical parameters

(
log10 (Te/Ti ) ,ψ

)
on floating wall potentials (φw , eφw

KB Te
), the po-

tentials’ drop across the MPS (φMPS , eφMPS
KB Te

), the potentials’ drop across the DS (φDS , eφDS
KB Te

),
and the effect on normalized potential drops in the MPS and DS with respect to the total
potential drops (φMPS

φw
, φDS
φw

). Sensitivity indices were computed using a large number of
samples N = 50,000. Responses were computed using the surrogate model developed in
chapter 4.

Sobol’s Index Parameter
Potential

φw φDS φMPS
eφw
KB Te

eφDS
KB Te

eφMPS
KB Te

φDS
φw

φMPS
φw

S1 log10 (Te/Ti ) 1 0.5824 0.388 0.9989 0.0277 0.0453 0.7634 0.0534
S2 ψ 0 0.1672 0.1794 0.0011 0.93 0.8969 0.2045 0.8182

S12
(
log10 (Te/Ti ) ,ψ

)
0 0.2505 0.4326 0.0001 0.0423 0.0579 0.0322 0.1292
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Figure 5.1: First and second orders Sobols’ indices for the plasma potentials; showing the effect
of electron-to-ion temperature ratios Te/Ti (a)), magnetic field inclination angles ψ (b)) and the
combined effect (second/total effect Sobols’ indices) (c)) on plasma potential of a Hydrogen
plasma. Using a number of samples N = 50,000. RoIs were computed using the surrogate models
developed in chapter 4.
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a) S1
(
log10(Te/Ti )

)
b) S2

(
ψ
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(
log10(Te/Ti ),ψ

)
Figure 5.2: First and second orders Sobols’ indices for the 2D cases; showing the effect of electron-
to-ion temperature ratios Te/Ti (a)), magnetic field inclination angles ψ (b)), and the combined
effect (second/total effect Sobols’ indices) (c)) on ions’ energies and angles moments at PSI of a
Hydrogen plasma. Using a number of samples N = 50,000.

Figure 5.1 a) shows the effect of electron-to-ion temperature ratios Te/Ti on the different

potential drop values. The floating wall potential is 100% affected by Te/Ti as Equation 2.13 reads.

Potential drops across MPS and DS does add up to a value very close to unity, suggesting that

in some cases Equation 2.22 does not apply, and the sum of potentials exceeds unity. When

computing S1 for the dimensionless cases, Te/Ti has little effect on MPS and DS, since they are no

longer a function of Ti and only ψ has a significant effect as Equation 2.21 suggests. A strong

interaction between the input parameters was observed for MPS and DS in Figure 5.1 c) since

both of them are a function of Te , with a much lower effect observed for their dimensionless

values as the effect of Te is neutralized, with the remaining effect is believed to occurs in the

regions where the DS does not exist. In addition, little to no effect on φw was correlated to ψ as

Figure 5.1 b). Finally, the effects of the normalized DS and MPS values will be used to explain the

Sobols’ indices on the IEADs’ moments.

First and second-order Sobols’ indices of the 2D cases (with variable electron-to-ion tem-

perature ratios Te/Ti and the magnetic field inclination angles ψ) are shown in Figure 5.2 and

the total effect Sobols’ indices values for 2D and 4D cases are tabulated in Table 5.4. Recall that

for the 4D cases, in addition to the 2D parameters, the effect of magnetic field strength B and

plasma density n were added. 4D first order Sobols’ indices for the ions’ energies and angles

moments are shown in Figure 5.3 and the total effect indices are shown in Figure 5.4.

From Figure 5.2, it can be noted that the electron-to-ion temperature ratios Te/Ti significantly

affect the mean ions’ energy and the spread of the energy (can be interpreted as ions’ tempera-

ture) at PSI. This agrees with Equation 2.13 which governs the total potential drop from the bulk

plasma to the wall surface. In more detail, as Te/Ti increases eφw
KB Te

increases, thus, increasing the

energy of ions impacting the wall and decreasing its spread as the sheath accelerates the ions

toward the wall to get a beam-like structure (sheath cooling effect). This also agrees with Figure
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Table 5.4: Total effect Sobols’ indices for 4D cases
ranking the influence of Te/T i , n, B and ψ on IEAD’s
moments. Indices for 2D cases are provided for com-
parison. Indices were computed using a number of
samples N = 50,000.

Sobol index ST1 ST2 ST3 ST4

Parameter log10 (Te/Ti ) ψ B log10 (n)
Cases 2D 4D 2D 4D 4D 4D

Moments
µθ 0.22 0.24 0.99 0.90 0.02 0.07
µE 1.00 1.00 0.0 0.0 0.0 0.0
σθ 0.87 0.88 0.18 0.17 0.01 0.04
σE 1.00 0.99 0.01 0.01 0.01 0.04

5.1 where it can be noted that the mean and standard deviation of ions’ energy at the PSI are

directly correlated with the total potential drop in plasma. Comparing figures 5.2 and 5.1 it can

be noted that the mean angle of impact follows the same correlation behavior as φMPS
φw

indicating

that the mean angle of impact is a function of the portion of the MPS drops to the total plasma’s

potential drop. Similarly, the spread of the impact angle can be correlated with the DS portion of

the potential drop.

First and total orders Sobols’ indices for IEADs’ moments in the 4D cases are shown in

figures 5.3 and 5.4. This shows similar dependencies of the ions’ energy and angle moments

as the 2D cases, also reviles a small dependency on plasma density n and almost negligible

dependency on magnetic field strength. To gain a deeper understanding of the nature of variation

in ions’ energy and angle moments with respect to the most influential input parameters (i.e., 2D

parameters, electron-to-ion temperature rations Te/Ti , and magnetic field inclination angle ψ.),

the dependencies of IEADs moments on the physical parameters space are plotted in Figure 5.5.

Figure 5.5 shows a strong dependency of IEAD means energies µE on electrons-to-ions

temperature ratios. This can be fully explained using Equation 2.13. Total potential drop φw is

proportional to Te and ln(Te/Ti ), thus, the acceleration of ions toward the wall will increase as Te

increases. Note that the electrons-to-ions temperature ratio has been varied by keeping the ions’

temperature Ti constant and changing the electrons’ temperature Te . Accordingly, most of the

effect on µE is in fact due to Te . The behavior of ions’ energy at the PSI is also in good agreement

with the response surface of the floating wall potential φw shown in Figure 4.10 b).

Figure 5.5 b) shows that the energy spread (represented by standard divination of energies

σE ) is directly affected by the electrons-to-ions temperature ratios Te/Ti with a slight effect from

the magnetic field inclination angle ψ. Such an effect is more obvious at high temperature ratios.
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a) S1
(
log10 (Te/Ti )
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b) S2
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ψ

)
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log10 (n)

)
Figure 5.3: First order Sobols’ indices for the 4D cases; ranking the effect of electron-to-ion
temperature ratios ni ce f r acTe Ti (a)), magnetic field inclination angles ψ (b)), magnetic field
strength B (c)) and plasma density n (d)) on ions’ energies and angles moments at PSI. Using a
number of samples N = 50,000.
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Figure 5.4: Total order Sobols’ indices for the 4D cases; ranking the effect of electron-to-ion
temperature ratios Te/Ti (a)), magnetic field inclination angles ψ (b)), magnetic field strength B
(c)), and plasma density n (d)) on ions’ energies and angles moments at PSI. Using a number of
samples N = 50,000.
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a) µE b) σE

c) µθ d) σθ

Figure 5.5: Variation of ions’ energies and angles moments at PSI with respect to the two-
dimensional space of the most impactful physical parameters, namely, the electron-to-ion
temperature ratios Te/Ti and magnetic field inclination angle ψ, within ranges defined in Table
3.2. Values were evaluated using the moments surrogate model in chapter 3 using 250×250
points grid.
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Comparing Figure 5.5 b) with DS and MPS dependencies on the physical parameters shown in

Figure 4.16 it can be noted that the spread of energy tends to decrease in the regions where the

MPS drop is strong. Meaning that, in such regions, ions will keep accelerating in a direction

parallel to the magnetic field lines, and the plasma cooling effect is more obvious.

The relation of IEADs angles’ moments θ shown in figures 5.5 c) and 5.5 d) with respect to

physical parameters Te/Ti & ψ is more complicated. In general, for the same value of Te/Ti the

mean values of the ions’ angle of impact θ increase with ψ. This effect becomes more significant

as Te/Ti increases. As discussed in chapter 2 the initial distribution of the ions in the plasma

domain can be assumed to be Maxwellian, with the ions’ temperature Ti representing the spread

of the ions. Such distribution is then accelerating along the magnetic field lines in the presheath.

Magnetic pre-sheath then accelerates ions parallel with the surface normal. Finally, the Debye

sheath accelerates ions toward the surface. Comparing Figure 5.5 c) with Figure 4.15 it can be

noted that the ions’ angle of impact follows the magnetic field inclination in the regions where

DS disappears (i.e., top row in Figure 5.5 c)). On the other hand, ions’ mean angles of impact are

close to 45◦ for log10(Te/Ti ) <−0.5 and ψ< 70◦, that is the angle of impact for ions with thermal

distributions. Finally, the region in the right lower corner (i.e., log10(Te/Ti ) > 0 and ψ < 60◦) is

dominated by the effect of the DS potential drop shown in Figure 4.16 a) where ions follow a

direction normal to surface normal.

The standard deviation of the IEADs’ angles of impact at the PSI (also correlated with the

ions’ temperature) is shown in Figure 5.5 d). Comparing the standard deviations of ions’ angle of

impact with the regions in the physical input parameter space where the MPS or DS dominates

as shown in Figure 4.16, it can be concluded that the standard deviation of ions’ angle of impact

tends to be higher in the regions where the potential drop across the MPS and the DS are

comparable. Where, in such regions, the MPS will accelerate ions toward magnetic field lines,

followed by the DS will try to bend ions’ flow speed toward the surface normal direction. The

combined effect will result in a larger spread of ions’ angle of impact, thus, a higher standard

deviation. Such an effect cannot be seen in the regions where the MPS or DS disappears.

5.3.2 Local Sensitivity Analysis (LSA) on WEST Like Conditions

While the Global Sensitivity Analysis (GSA) performed in section 5.3.1 ranks the influence of

input parameters on the RoIs for a wide range of inputs, the Local Sensitivity Analysis (LSA) is

concerned with the effects of input parameters around a specific point, or a limited set of point

in the input parameter space. The main goal of performing LSA is to acquire more information

about the effect of extended input parameter space on a specific point of interest. Because LSA

can be computed using very few simulations when compared with GSA, the dimensions of input
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Table 5.5: Numerical parameters for WEST OAT simulations.

parameter value
Domain Size [m] 0.005
Number of Cells 1000

Total Time [s] 5×10−6

d t [s] 2×10−10

Number of Time Steps 25,000
Number of Particles 2×107

Particles Per Cell 20,000

parameters space can be significantly increased. Accordingly, the LSA will serve as a guide on

the input parameters that should be included in future GSA and surrogate model construction.

The problem chosen for the LSA is points on the divertor of WEST [65]. And the RoIs chosen

for this analysis are total potential drop across the domain φw , and Moments of the IEAD for

both of the species He+ and He ++, including, the mean ions’ energies and angles, the standard

deviation of ions’ energies and angles, as well as the most probable values of the moments.

hPIC2 [5] was used to generate the RoIs of the targeted points and simulations. The numerical

parameters for all points are summarized in Table 5.5. Numerical parameters were chosen to

satisfy the following conditions: the domain size is at least 1000 Debye lengths and larger than

the Larmor radii of He+, He ++ with d x =λDmi n , time-step is at max d t = λDmi n/3vthmax and the

number of time-steps was chosen such that the total time exceeded the maximum ions’ transit

time of all points.

The OAT indices averaged out over the 5 points of interest at the WEST’s divertor, showing

the influences of the input parameters tabulated in 5.1 on the total potential drop in the domain

were calculated and summarized in Figure 5.6. Detailed indices per point are shown in Figure

B.1, Appendix B. As one can read from equations 2.21 & 2.13, the floating wall potential is a

strong function of the electrons’ temperature Te , with ions temperature Ti and the magnetic field

inclination angle ψ having a lower effect. Unlike what Equation 2.22 suggests, the total potential

drop can have a higher value compared with the sum of DS and CS, thus, ψ can have a higher

impact onφ, especially in the presence of species with a charge higher than 1. On the other hand,

the densities of the species and the magnetic field strength B have little to no impact.

The analysis was extended to include the impact of the input parameters given by Table

5.1 on IEAD moments. Results of the SA indices of the IEAD moments are shown in figures

5.7 for the He+ species and 5.8 for He ++. The indices were computed using the central finite

difference approach given by Equation 5.205. Detailed indices for each point at the divertor are

shown in figures B.4 to B.7 in Appendix B.

5Results of the forward difference method given by Equation 5.19 are shown in figures B.2 & B.3 in Appendix B.
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Figure 5.6: Average OAT indices, ranking the influence of WEST plasma parameters near divertor
on the floating wall potential φw . Figure 5.6 a) shows indices computed using the forward
difference method given by Equation 5.19, and 5.6 b) shows center difference method shown in
Equation 5.20. The OAT indices were calculated with respect to magnetic field strength B and
its corresponding angle ψ, electrons’ temperature Te , ions’ temperature Ti , and the densities of
He+ and He ++.

Figure 5.6 shows the OAT sensitivity indices of the floating wall potential φw across the

domain with respect to electron temperatures Te , ion temperature Ti , magnetic field strength B

and inclination angle ψ, and the density of the Helium species (nHe+,nHe++). Sensitivity indices

were computed using the central and forward finite difference methods and both are shown in

the figure to demonstrate the consistency of the method. Figure 5.6 shows a good agreement

with equations 2.13 & 2.21, such that, φw is a strong function of the electrons’ temperatures

Te , followed by the ions temperature Ti and the magnetic field inclination angle ψ. Although

Equation 2.22 suggests that the potential drop in the MPS φMPS is part φw , LSA suggest that in

some cases it does add to the total potential drop (i.e., φMPS +φDS > φwtheor y ). The magnetic

field strength B was found to have a smaller effect onφw . The densities of the species were found

to have no effect on the floating wall potential φw .

The OAT sensitivity indices for He+ and He ++ IEADs’ moments are shown in figures 5.7

and 5.8, respectively. For both species, the magnetic field inclination angle ψ was found to have

the most significant effect on the ions’ mean angle of impact µθ, such observation is consistent

with the results of section 5.3.1. However, the standard deviation of ions’ angle of impact σθ also

shows similar dependencies, the reason behind the deviation from what Figure 5.2 b) suggests

can be referred to the fact that the input parameters of the LSA points fall near the region where

the DS disappears (i.e., ψ∼ 80◦, log10(Te/Ti ) ∼ 1), where ions tend to follow the magnetic field

lines as discussed in section 5.3.1. In fact, analysis of the point-wise OAT indices shown in

figures B.4 and B.5 shows that indices of σθ dramatically change with changing the point. Finally,
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Figure 5.7: Average OAT indices, ranking the influence of WEST plasma parameters near divertor
on He+ IEAD moments. Indices were calculated using center finite difference method given by
Equation 5.20.

electrons’ temperature Te , ions’ temperature Ti , and ions’ species densities showed little to no

effect on µθ and σθ.

The effect of electrons and ions temperature on the ions’ energies mean µE and standard

deviation σE were also analyzed. Figures 5.7 d) and 5.8 d) show strong dependencies on ions’

temperatures, which is expected since the initial spread of ions is a direct function of their

initial temperature as discussed in chapter 2. While a significant effect of sheath cooling is

expected, electron temperatures for data points of interest have relatively small values, thus,

potential drops also have small values. On the other hand, µE showed strong dependencies of

both, electrons and ions temperatures, the latter has two contributions toward µE , one resulting

from ions’ thermal energy and the other due to its effect on the floating wall potential. On the

other hand, the electrons’ temperature is directly affecting the floating wall potential. This also

explains the reason behind the higher impact of Te on higher Z specie in Figure 5.8 c)6.

6Higher OAT indices for ions’ temperature should not be interpreted as a higher impact of ions’ temperature
when compared with electron temperature. The discrepancy is in fact a result of perturbation values choice in Table
5.1.
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Figure 5.8: Average OAT indices, ranking the influence of WEST plasma parameters near divertor
on He ++ IEAD moments. Indices were calculated using center finite difference method given
by Equation 5.20.
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5.4 Main Takeaways

The main goals of chapter 5 are summarized as follows. First, to demonstrate the robustness

of the surrogate models constructed in chapters 3 and 4. Second, to estimate the effects of

electrons-to-ions temperature ratios Te/Ti and magnetic field inclination angle ψ on plasma

potentials as well as the IEAD moments. The analysis for the latter was extended to include

additional parameters, the magnetic field strength B , and plasma density n. Third, to explore

potential additional parameters that can be included in future surrogate models construction

and uncertainty quantification for magnetically confined fusion problems. The first and second

goals were achieved by performing Global Sensitivity Analysis GSA with samples computed using

the surrogate models. The third goal was met by performing local sensitivity analysis using actual

data measured on a fusion device divertor.

Global Sensitivity Analysis GSA based on Sobols’ indices method (a variance-based method)

using data computed using potentials surrogate models revealed strong dependencies of floating

wall potential φw on electrons-to-ions temperature ratios Te/Ti with no dependencies on the

magnetic field inclination angle ψ. The potential drop across the Debye sheath DS and the

magnetic pre-sheath MPS showed a moderate dependency on Te/Ti with a lower effect from ψ.

However, the second-order indices revealed a significant effect of input parameters interaction,

suggesting the existence of regions in the input parameter space where MPS is more significant.

Such a region was associated with DS disappearance.

First and total orders Sobols’ indices were computed for IEAD moments with data sampled

using the IEAD’s surrogate model. Revealing that the electron-to-ion temperature ratio and the

magnetic field inclination are the two parameters whose variation most affects the IEAD. On

the other hand, the results suggest that the other parameters, magnetic field strength B and

plasma density n have little to no effect on the IEAD. In terms of ions’ impact angle and kinetic

energy moments, it was observed that ions’ mean angle of impact is mainly affected by the

magnetic field angle ψ flowed by electrons-to-ions temperature ratios Te/Ti , whereas the mean

energy of impact is exclusively a function of electrons-to-ions temperature ratios Te/Ti . With

respect to standard deviation, the energy of impact standard deviation is primarily a function of

electrons-to-ions temperature ratios Te/Ti , whereas the angle standard deviation is affected by

electrons-to-ions temperature ratios Te/Ti followed by the magnetic field inclination ψ. A deeper

analysis of the results revealed that the means and standard deviation of ions’ impact energy is

directly correlated with the floating wall potential values, whereas ions’ mean angle of impact is

correlated with the ratio of the potential drop across the MPS with respect to the floating wall

potential φMPS/φw . Similarly, the standard deviation of ions’ angle of impact is correlated with

the ratio of the potential drop across the DS with respect to the floating wall potential φDS/φw .
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Finally, a Local Sensitivity Analysis LSA based on One At a Time OAT method was performed

using data measured at WEST divertor. The main motivations for performing such a LSA are the

following: Rank the importance of input parameters on IEADs to give guidance on the parameters

that can be in any future UQ analysis around these points, thus, reducing the computational

cost for such analysis. (ii) Give a general insight of the parameter space that should be included

in a higher parameter space order GSA and surrogate model construction. (iii) Have a better

understanding of IEAD behavior in a real Tokamak application. While LSA results are in general

consistent with the one obtained in the GSA, the presence of additional input parameters showed

that the standard deviations of ions’ impact energy are mainly a function of the ions’ temperature

Ti , while the mean value is a function of electron temperature. Suggesting a need to separate the

two temperatures in future analysis. In addition, the existence of multi-species did not show a

significant effect from their densities, however, the charge significantly affected their individual

IEADs moments.
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Chapter 6

Conclusions

6.1 Conclusions

A strategy based on Least Square Approximation LSA for constructing a surrogate model for Ion

Energy-Angle Distribution IEAD produced by hPIC in high-dimensional parameter space was

introduced. The LSA strategy along with ANN strategy were also used to construct a surrogate

model for the plasma sheath potentials. Up to four input parameters relevant to magnetic

confinement fusion devices were used: the electron-to-ion temperature ratio Te/Ti , the magnetic

field inclination angle with respect to surface normal ψ, magnetic field strength B , and plasma

density n. Training and testing data sets were generated using hPIC simulations of Hydrogen

plasma. The LSA model utilized a sparse grid to efficiently sample the input space, thus reducing

the model construction cost. The IEADs were normalized via coordinates transformation to

overcome the challenge of variable support of the IEAD. This also allowed for using a nonuniform

binning of the IEAD. Then, a bin-by-bin least square data fitting was used. The IEAD surrogate

model showed L2 norm errors within acceptable ranges and is several orders of magnitudes more

efficient compared to the PIC simulations. In addition to the LSA method, two ANN architectures

introduced for the excess-zero problem were applied to the plasma potentials problem. While

the ANN based models resulted in lower errors when compared to the LSA, they are more prone

to over-fitting, more computationally intensive, and require more supervision since a careful

selection of hyperparameters is required. The classifier of the ANN model was used to identify

the regions where the Debye sheath disappears, such a problem is important for plasma under

the influence of a grazing magnetic field, for example, near the divertor of a Tokamak.

A Global Sensitivity Analysis GSA based on Sobols’ indices method (a variance-based method)

was performed on the moments of the IEAD and the sheath potentials drop. The main goals of

the GSA are to demonstrate the robustness of the surrogate models, and to unfold the impact of

the input parameters on the plasma sheath structure, and subsequently on the IEAD’s moments.
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The samples necessary for computing Sobols’ indices were drawn from the surrogate models

introduced in chapters 3 and 4. The main findings of the GSA are the following: Electron-to-ion

temperature ratio Te/Ti dominates the effect on the floating wall potential φw and ion’s mean and

standard-deviation of impact energy (E , σE ), and has a significant effect on potential drop across

the DS and MPS as well as impact angle (θ, σθ). A direct correlation was observed between (E ,

σE ) & φw ; θ & φMPS/φw ; and σθ & φDS/φw . Local Sensitivity Analysis LSA based on One-At-a-Time

OAT method was performed using data measured at WEST divertor. This analysis aimed to

explore an extended parameter space for future surrogate model constructions. The LSA’s results

were consistent with the GSA’s. However, some results suggested that ion temperature should be

treated as a separate input.

6.2 Future Work

The proposed surrogate model approach was computationally efficient in reconstructing IEAD

in high-dimensional parameter space, especially for applications related to UQ and SA. Sev-

eral improvements to the surrogate model can be made and can be classified into two main

categories: model’s related improvements and method’s related improvements. The model’s

related improvements include: (i) Extend the input parameter space to include more parameters

relevant to magnetic confined fusion devices, including: multi-ions species, ions’ source shape,

etc. (ii) Include more RoIs like floating wall potential, ions’ moments (e.g., density, flow speed,

temperatures, etc), and boundary conditions. (iii) Automate the current analysis to facilitate

IEAD reconstruction for future purposes. The method’s related improvement includes: (i) A

cross-validation data set different than the training and testing data set can be used to refine

the selection of surrogate model components, such as the polynomial basis functions with their

associated approximations, thus, reducing potential over-fitting during the LSF procedures. (ii)

Explore other surrogate model construction techniques (e.g., machine learning and polynomial

chaos expansion PCE), which could replace either the bin-by-bin fitting procedures or fitting the

whole IEAD histogram. (iii) Incorporate a surrogate model for IEAD variance to provide a tool to

estimate the noise at each point of the parameter space. (iv) Constructed a surrogate model for

the processes at PSI rather than the complex IEAD. The latter requires coupling of hPIC with

a plasma material interaction code such as rustBCA. The latter has a drawback of the limited

applicability of the surrogate model since the output will also be unique to the wall material.

Due to the fact that artificial neural networks are known to be versatile, the ANN methods

used in chapter 4 are expected to perform just as well when extending the dimensionality

of the parameters space, with the drawback of the increased computational cost of training

as more complex neural network architectures will be needed. Input parameters candidates
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necessary for fusion plasma modeling include ions’ densities of multi-species plasma, magnetic

field strength, domain size, collision cross-sections, etc. In addition, since IEADs are usually

zero excess histograms, the excess zero ANN models are a good candidate for the modeling

of Ion Energy-Angle Distributions (IEAD) when coupled with a more sophisticated regression

algorithm.

While performing GSA on the entire input space provides a comprehensive understanding of

the model behavior and the contribution of each input variable to the output variability over the

full range of input values. It is useful to apply the GSA on sub-domains of the input parameters

space. This can be justified by noting that the IEAD can be a strongly non-linear function with

some input parameters, and some regions in the input space are dominated by a unique physical

behavior. For example, at grazing magnetic field (i.e., ψ > 60◦) the DS can disappear and the

MPS dominates the potential drop, thus will affect the IEAD differently. This phenomenon was

observed in Figure 4.15 and was noted earlier by [15]. Another example, at Te/Ti >> 1 an ion

acoustic instability can be triggered [67] leading to a significant alternation to the IEAD.
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Appendix A

IEAD’s Surrogate Model Misc.
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Figure A.1: 20×20 testing grid for the 2D IEAD surrogate model.
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Appendix B

Additional Details for WEST Local Sensitivity

Analysis.

Table B.1: WEST points unperturbed input parameters.

Point B [T ] ψ [deg ] Te [eV ] Ti [eV ] nHe++ [m−3] nHe+ [m−3]
1 3.5931 80.9050 16.2170 68.7540 1.23E+18 1.30E+17
2 3.5929 80.9990 7.6975 40.8300 5.86E+17 1.30E+17
3 3.5928 81.0860 3.1478 21.8470 2.40E+17 1.30E+17
4 3.5926 81.1960 0.9555 9.4902 7.28E+16 1.30E+17
5 3.5925 81.2620 0.2900 4.1225 2.21E+16 1.30E+17
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Figure B.1: Detailed OAT indices, ranking the influence of WEST plasma parameters near divertor
on the total potential drop φ, showing indices for each point. Figure 5.6 a) shows indices
computed using the forward difference method given by equation 5.19, and 5.6 b) shows center
difference method shown in equation 5.20.
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B Te Ti nHe + +nHe +
0.0

0.1

0.2

0.3

0.4

0.5

S O
AT

d) He+, σE

Figure B.2: Average OAT indices, ranking the influence of WEST plasma parameters near divertor
on He+ IEAD moments. Indices were calculated using forward finite difference method given
by equation 5.19.
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Figure B.3: Average OAT indices, ranking the influence of WEST plasma parameters near divertor
on He ++ IEAD moments. Indices were calculated using forward finite difference method given
by equation 5.19.
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Figure B.4: Detailed OAT indices, ranking the influence of WEST plasma parameters near divertor
on He+ IEAD moments. showing indices values for each point. Indices were calculated using
center finite difference method given by equation 5.20.
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Figure B.5: Detailed OAT indices, ranking the influence of WEST plasma parameters near divertor
on He ++ IEAD moments. showing indices values for each point. Indices were calculated using
center finite difference method given by equation 5.20.
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Figure B.6: Detailed OAT indices, ranking the influence of WEST plasma parameters near divertor
on He+ IEAD moments. showing indices values for each point. Indices were calculated using
forward finite difference method given by equation 5.19.
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Figure B.7: Detailed OAT indices, ranking the influence of WEST plasma parameters near divertor
on He ++ IEAD moments. showing indices values for each point. Indices were calculated using
forward finite difference method given by equation 5.19.
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Appendix C

Reproducibility

Ensuring that research findings can be reproduced is a crucial aspect of scientific inquiry. The

ability to replicate the results of a study not only verifies its validity, but also promotes trans-

parency and facilitates further research. In this section, we detail the steps taken to ensure the

reproducibility of our study. We provide a detailed description of the data used and the codes

developed to analyze the data, and we make these available for others to access. By doing so, we

hope to promote transparency and facilitate future research in this area.

To facilitate reproducibility, we have made the data and codes used in this study openly

available. The codes used in the analysis have been uploaded to a publicly accessible repository,

along with a detailed README file that explains how to run the codes and reproduce the results.

We believe that making the data and codes available to others is critical for advancing scientific

research and promoting transparency. By doing so, we hope to encourage other researchers to

build upon our work and to replicate our findings.

The following list shows the databases and repositories available for data reproducibility:

• hPIC/hPIC2 were used for training and testing data generation. The code is available on

the public repository: https://github.com/lcpp-org/hpic2.git

• Scripts for generating hPIC/hPIC2 input files for sparse grid are available on the public

repository: https://github.com/mmustafa5/hpic_hpic2_inputs_gen.git

• Training and testing data necessary for IEAD surrogate model construction can be freely

accessed online through Constellation, DOI: https://doi.org/10.13139/ORNLNCCS/

1846780 [68]

• MATLAB scripts for constructing the IEAD surrogate model and GSA on IEADs’ moments

are available on the public repository: https://github.com/pabloseleson/hPIC-surrogate

[68]
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• Python script for emulating IEAD using trained model is available on the public repository:

https://github.com/lcpp-org/machine-learning-iead.git

• Data required for the potential surrogate model construction and the LSA can be freely

accessed online through Zenodo [69], DOI: 10.5281/zenodo.7850117

• Scripts for potentials surrogate model construction, LSA, and the M.S. thesis script are

available on the repository: https://github.com/mmustafa5/MS_Thesis.git

• Other libraries required for the reproducibility:

– TASMANIAN [38]: https://github.com/ORNL/TASMANIAN.git

– SALib [63]: https://github.com/SALib/SALib.git

– Keras [40]: https://github.com/keras-team/keras.git

– scikit-learn [49]: https://github.com/scikit-learn/scikit-learn.git

– scikit-lego [48]: https://github.com/koaning/scikit-lego.git
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