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Abstract

Environmental factors have been shown to partially explain the seasonality and interannual

variability of infectious diseases. Despite the wide amount of research in this area, the link

between climatic factors and the transmission of respiratory diseases at different temporal

scales is still poorly understood, especially in the Southern Hemisphere. In this thesis, we

focus on the transmission dynamics of Respiratory Syncytial Virus (RSV) and Influenza A,

two of the leading pathogens responsible for substantial morbidity and mortality worldwide.

Recently available data of weekly lab-confirmed cases from Chile provide a unique opportu-

nity to understand the effect of temperature and specific humidity on the seasonality and

interannual variability of RSV and Influenza A.

Using statistical models and techniques we perform an in depth data analysis to explore the

association of disease incidence and environmental drivers across all of Chile. In addition,

we quantify the effect of climate covariates on the transmission dynamics by formulating

multiple mechanistic compartmental models that take into account intrinsic and extrinsic

factors that may impact disease transmission. Using a partially observed Markov process

modeling framework, we construct Susceptible-Infected-Recovered stochastic transmission

models that mimic the dynamics of disease spread and perform iterated filtering to calculate

the maximum log likelihood estimate of model parameters using data from the capital of

Chile.

Our statistical analyses show consistent annual seasonality, with cases prevalent during the

winter months across all of Chile. Specific humidity is significantly associated with the mean

timing onset of RSV, where a 5 g/kg increase in mean annual specific humidity and a 1 ◦C

increase in mean annual temperature shift the timing of the RSV epidemic back by one week.

These associations are weaker for Influenza A. Furthermore, even though both viruses are

sensitive to climate their onset patterns are very different, with RSV starting in the North

and Influenza A in the South, highlighting the inherent differences in pathogen virology.

Moreover, we observe a latitudinal gradient with respect to the climate covariates suggesting

that both viruses can survive during very different winter conditions. When looking at the

results from both statistical and mechanistic models, we found no significant association
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between climate covariates and the year-to-year variation in amplitude of epidemics for RSV

and Influenza A. Nevertheless, the mechanistic epidemiological models presented in this

study are able to capture the timing and seasonality of disease onset.

This thesis provides a platform for understanding the impact of environmental factors on

the transmission dynamics of RSV and Influenza A. Determining the spatiotemporal trans-

mission patterns of infectious diseases and the environmental factors impacting transmission

is one of the key steps in infectious disease modeling and control. While both RSV and

Influenza A exhibit strong seasonal epidemics during the winter months, more research is

needed to better understand the associations between climate drivers, pathogen survival, hu-

man mobility, age structure, and disease transmission. Identifying specific factors relevant

to a particular virus in a certain geographic location can help public health professionals

make informed decisions, effectively respond to outbreaks, and prioritize the allocation of

resources.

iii



To my sister Frances, I couldn’t have done this without you.

iv



Acknowledgments

I would like to express my deepest gratitude to my parents, sister, partner, and friends

for their unwavering support throughout my journey. Your belief in me, your patience and

understanding, and the countless hours you devoted to listening to me talk about my research

have been a constant source of motivation.

I am deeply grateful to my thesis advisor, Pamela P. Martinez. Her guidance, support,

and expertise have been invaluable throughout this process. Her willingness to take a chance

on me and invest time in my work has been invaluable, and I am proud of what we have

accomplished together.

I would also like to thank my advisor Kay Kirkpatrick for her mentorship, valuable feed-

back, and support throughout my graduate studies. I am grateful for her belief in me and

my abilities, and for always encouraging me in my endeavors.

I want to thank my doctoral committee members, Lee DeVille and Zoi Rapti, for their

willingness to take the time to read my work and give me feedback. I want to thank my

colleagues in the PaDAS Lab, mentors, and professors who have helped me along the way.

I would also like to extend my thanks to the Alfred P. Sloan Foundation’s MPHD Program

(awarded in 2017) for partial support of my graduate studies.

Finally, I would like to express my appreciation to everyone who has contributed to this

thesis in any way, whether directly or indirectly. This journey has been challenging and at

times, overwhelming, but with the support of the people around me, I have been able to

achieve my goal.

Thank you all.

v



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions to the literature . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Mathematical modeling of infectious diseases . . . . . . . . . . . . . . . . . . 9
2.2 Inference for partially observed Markov processes via iterated filtering . . . 20

Chapter 3 Data analysis: The association of disease incidence and environmental
drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 RSV and Influenza A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Impact of environmental drivers on spatiotemporal patterns of disease incidence 35
3.4 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 4 Quantifying the effect of environmental drivers on disease incidence in
Santiago, Chile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Implementation of POMP models . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Model implementation procedure . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Parameter estimates and model selection . . . . . . . . . . . . . . . . . . . . 71

Chapter 5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Limitations and future directions . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendix A Analysis of MSIRS deterministic model . . . . . . . . . . . . . . . . . . 90
A.1 Calculating R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



Appendix B Extra figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.1 Lab-confirmed respiratory viruses in Chile . . . . . . . . . . . . . . . . . . . 93
B.2 Density plots: Specific humidity . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.3 Segmented regression graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.4 Onset week regression for Influenza A . . . . . . . . . . . . . . . . . . . . . . 99
B.5 Interannual variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix C Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
C.1 Multivariate logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . 104
C.2 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
C.3 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vii



Chapter 1

Introduction

1.1 Problem statement

Considerable attention has been put forth to further understand the mechanisms governing

infectious disease dynamics worldwide, but some are still poorly understood. One of them is

the role that climate factors play in modulating the seasonality and interannual variability

of disease incidence in space and time. In particular, while environmental factors have been

used to partially explain the seasonality of respiratory infections, a better understanding of

the link between climatic factors and the transmission of infectious diseases is needed, with

potential implications for our ability to predict the timing and magnitude of outbreaks.

Recent studies have shown that the transmission of the Influenza A virus increases in drier

and colder conditions, and this effect is likely due to the impact of humidity and temperature

on the stability of the virus within aerosols and the stability of respiratory droplets in the

air [LS14, SK09]. In a study analyzing data from 85 countries, Azziz-Baumgartner et al.

observed that the timing of influenza epidemics in temperate climates, correlates with low

temperatures [ABDN+12]. Peak infection rates were typically observed during or immedi-

ately following the coldest month of the year when mean monthly sunshine, precipitation,

absolute humidity and latitude were used as parameters. In contrast, influenza viruses in the

tropics tended to circulate year-round or to appear in multiple epidemics in a given year. In

[YKL+21], the authors developed a model capable of capturing the diverse seasonal pattern

in tropical and subtropical climates. Both very low and very high humidity levels were found

to facilitate transmission of Influenza A in Hong Kong. This relationship is also modified

by temperature such that, when temperature is above some cutoff value, transmissibility is

reduced.

Furthermore, in the United States, absolute humidity has been associated with the seasonal

onset of influenza virus infection [SK09, SPV+10]. To better understand viral seasonality,

animal models have been developed to assess how not only temperature, but also humidity,

play a role in infection of influenza virus. Lowen et al. were able to demonstrate the effects of

temperature and humidity on influenza virus transmission among experimental guinea pigs
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[LMSP07, LS14]. Multiple mathematical and statistical models have been implemented to

try and understand the impact of climatic factors on the onset and year-to-year variability

of Influenza A, but there is no conclusion on whether or not they are the leading factor

[SPV+10, SGL11, BAC+13, PB14, YLS15, OA15], and whether similar effects can be found

in the Southern Hemisphere.

Compared to Influenza A, Respiratory Syncytial Virus (RSV) is consistently less studied

and understood with respect to the role climatic factors play in modulating the seasonal-

ity and interannual variability of epidemics. In fact, no laboratory experiments have been

done to understand the influence of climatic factors (e.g. temperature, absolute humidity,

precipitation) on the survival and transmission capabilities of RSV. Existing studies rely on

observational data to understand the role of climatic factors on the transmission of RSV

[WWM+98, OJR+18, BMW+19, BAC+13, PVA+15, TL14, WPG+10]. When considering

the seasonality of RSV in various climates, studies have shown that, similarly to Influenza

A, RSV peak infection varies amongst different locations [OJR+18, BMW+19]. For example,

peaks of infection for RSV have been found to correlate with colder weather in temperate,

Mediterranean, and desert regions, while precipitation has been identified as a more accurate

predictor of infection in tropical and subtropical regions [WWM+98]. In a study comparing

RSV infection in temperate, tropical and subtropical climates, RSV infection was found to

display seasonality much like the Influenza virus in temperate climates, with infection rates

rising during cold and dry winter months, and a wide range of variability in the timing and

duration of epidemics in the tropics [BAC+13]. Another review study found similar pat-

terns, with temperate locations of the Northern and Southern Hemispheres characterized by

focused peaks of activity during their respective winters [OJR+18]. Although a general pat-

tern exists for RSV, the described variations from season to season within countries suggest

that multiple environmental factors may modulate the transmission of the pathogen.

1.2 Motivation

Combining statistical analysis and mathematical modeling can provide a more comprehensive

understanding of the transmission dynamics of RSV and Influenza A and how these two

pathogens might differ in their sensitivity to climate variability. With the increasing use

and complexity of mathematical models, comes the need for better tools to analyze them.

The recent advances in high powered computing have made it possible to develop methods

that allow us to perform statistically rigorous analysis on mechanistic models of infectious

disease dynamics [FK20]. More specifically, the development of sophisticated inference tools
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has made it possible to make progress in estimating key of epidemiological parameters that

improve the modeling of infectious diseases [Bre18, NKd+23, FPW16, INA+15, DH18].

Models that allow for epidemiological forecasting and the understanding of the fundamen-

tal mechanisms that influence the spread of epidemics have become a critical part of the

development of public health policies [ADL+20, Pan20, HB20]. For example, such models

can help predict the timing and severity of seasonal outbreaks, estimate relevant param-

eters, identify vulnerable populations, and evaluate the potential impact of interventions.

This information can then be used to inform decisions on public health measures such as

vaccination campaigns, administration of prophylactic antibodies, social distancing guide-

lines, and other interventions aimed at reducing the spread of these viruses and minimizing

their impact on public health [HBP+20, LE22]. Effectively estimating the size of an outbreak

for a particular year can be essential for hospitals to assess their capacity and prepare for

an influx of patients. Hospitals need to know the number of expected cases to ensure they

have enough resources, including staff, equipment, and supplies, to provide appropriate care

[RN14]. Climate and humidity control in hospital units would perhaps be helpful to minimize

the spread of a virus to others. It has also been suggested that better ventilation of indoor

environments would be an appropriate preventative measure against infection [LLT+07].

Anticipating the associated changes in the burden of infectious diseases can help develop

mitigation strategies and the planning of preparedness and response for a specific infectious

disease, especially in the context of climate change. Identification of specific factors that are

relevant for a particular virus in a certain geographic location is of critical importance to best

prevent viral spread in a particular community [PB14]. In addition, estimating the size of

an outbreak can help plan for the allocation of resources between different regions. If some

locations are likely to have a bigger than usual epidemic, then they may need additional

support and resources, especially in places with lower socioeconomic status [HBP+20].

1.3 Contributions to the literature

Both mathematical models and epidemiological data suggest that environmental factors

play a large role in the transmission efficiency of these viruses. Overall, climatic factors

together with other factors such as immune response and human behavior, are likely to act

together and influence the seasonality and interannual variation of disease incidence observed

in common respiratory viruses. As described above, attempts has been made to understand

the role of climatic factors on the dynamics of RSV and Influenza A. However, lack of data

on disease incidence in different climates makes it hard to reach definitive conclusions on the
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effects of climatic factors. For instance, in a recent review [BAC+13], the authors note that

understanding the effect of latitudinal gradients on the seasonality of RSV and Influenza A

is limited by the access to data from different locations. In order to provide a global picture

of the seasonal patterns, the authors needed to be fairly inclusive, and some of the studies

included had small sample size and/or short duration, potentially biasing the analysis.

Recently available data of multiple respiratory viruses from Chile provide us with the

unique opportunity to understand the effect of climate factors on the seasonality and inter-

annual variability of respiratory viruses in the Southern Hemisphere, as well as to compare

the similarities and difference of these two viral pathogens with similar seasonality but dif-

ferent life history. The climate of Chile comprises a wide range of weather conditions across

a large geographic scale, extending across 39 degrees (2698 miles) in latitude, but approx-

imately 9 degrees (110 miles) in longitude for the continental territory. According to the

Köppen system, Chile has at least seven major climatic sub-types, which makes it a suitable

place to study how environmental drivers affect the incidence of respiratory viruses like RSV

and Influenza A.

Data availability can be limited in certain settings, such as low-income countries or during

rapidly evolving epidemics where data collection may be challenging. We have 9 years of

weekly data, collected across 16 different regions in Chile. All of the data is collected as part

of Chile’s respiratory virus surveillance initiative conducted by the Institute of Public Health

(ISP) within the Health Ministry of Chile’s Government [isp]. Each region has multiple

sentinel hospitals, where the cases are laboratory confirmed from samples collected, which

makes the data very reliable.

The data includes multiple respiratory viruses, which allows us to compare the diseases

across regions. RSV and Influenza A are known for impacting different age groups, having

different pathogen evolution, as well as different connectivity across regions. They can also

differ in their onset, duration, and complications, highlighting the importance of individual-

ized prevention and management strategies. Using statistical models we assess the observed

differences between the two viruses. Furthermore, by implementing distinct mathematical

models that mimic the transmission of the viruses we use the data to perform parameter

inference. The estimated parameters allow us to compare and contrast recovery period, the

time of waning immunity, and the impact environmental factors may have on the dynamics

of the viruses.

Our work serves as a framework for understanding the impact of environmental factors on

the transmission dynamics of diseases. Even though our models are specifically constructed

for RSV and Influenza A they can be modified to mimic the transmission dynamics of

other pathogens. The methods below can be used to answer multiple questions about the
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transmission dynamics of infectious diseases and perform inference on relevant parameters

that are used to understand disease spread.

1.4 Methods

Infectious disease modeling encompasses a wide range of methods, where statistical and

mechanistic approaches go hand in hand. By combining statistical analyses with mathemat-

ical modeling of the transmission dynamics of RSV and Influenza A we aim to understand

the effect of temperature and specific humidity on the transmission dynamics of the diseases.

First, we use statistical methods to describe, visualize, and interpret the data. Statistical

methods allow us to answer questions about the data, test hypotheses, describe associations

(correlations), and model relationships (regression) within the data without incorporating

the process that governs the dynamics of the virus. To explore the seasonality we look at the

density of cases for each region independently and establish the periodicity of the outbreaks

by using wavelet analysis. We also calculate critical climate thresholds using segmented re-

gression to establish the relationship between climate covariates and the increase of disease

activity for each region. The timing of onset and amplitude of disease incidence is explored

by using linear regression. Furthermore, we use climatic and non-climatic variables to fit and

analyze a variety of models, including multivariate logistic regression, linear regression, and

generalized additive models, to quantify the relationship between seasonality and climate

without incorporating dynamical processes.

To further understand and quantify the effect of environmental drivers on the transmission

of respiratory viruses we use partially observed Markov process (POMP) models, also known

as Hidden Markov Models. POMP models allow us to model infectious disease time series

data as a noisy and partially observed realization of the disease transmission process that is

assumed to be Markov. This method can be used to test different hypotheses, to quantify

parameters, and to infer unobserved state variables. This idea was first introduced by King

et al. [KDI16]. POMP models consist of an unobserved Markov state process (that describes

the dynamics of disease transmission), connected to the data via an explicit model of the

measurement process.

A useful tool to mimic the mechanisms of disease spread between individuals are the classic

Susceptible-Infected-Recovered (SIR) compartmental models. These dynamical models allow

us to follow the movement of individuals from one compartment to the other (i.e., going from

being susceptible to infected and subsequently recovered) through time. The deterministic

nature of these models allows us to determine the future state of the system solely by
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its current state and the mathematical equations governing its behavior. This means the

models are Markov, and thus suitable for the construction of our state process. SIR-type

models allow us to understand underlying mechanisms driving disease transmission, as they

can capture the overall trends and patterns of disease spread, making them very popular

in infectious disease research. However, deterministic models do not capture the inherent

stochasticity of infectious disease transmission, which can result in significant variability

in disease outcomes. To address this limitation, we can add stochasticity to the models

through measurement and process noise (e.g. incorporating a probability distribution to

simulate the occurrence of stochastic events), providing a more realistic representation of

disease dynamics.

Stochastic SIR models can become quite complex as more factors are incorporated such as

multiple compartments, demography (i.e., births/deaths), maternal immunity, immunity due

to past infections, and seasonality, in order to make models more realistic. The predictive

ability of the models also relies on accurate and timely data on disease incidence. However,

data can have underreporting and overdispersion, requiring the addition of measurement

stochasticity. Estimating all the parameters accurately and efficiently can be challenging, as

they can vary depending on factors such as the reliability and completeness of the data, the

amount of parameters, the characteristics of the pathogen, as well as measurement noise and

process noise. The increased complexity can make the models more difficult to understand

and interpret, and can also require more computational resources to implement. Inference

of parameters based on the incidence data becomes harder to do because the likelihood is

often a complex and high dimensional integral, with no analytical solution.

In cases where the likelihood function is difficult to evaluate we can use simulation-based

methods [KBM+99, ADH10, TWS+09, Bre18]. We use iterated filtering [IBK06, INA+15]

for maximum likelihood estimation in partially observed epidemic models. This method

generates samples from the density of the Markov process instead of evaluating it. The

basic idea of iterated filtering is to apply a particle filter [AdFG01] to a model in which

the parameter vector for each particle is following a random walk in time. The particle

filter approximates the likelihood of the perturbed model by representing it with a set of

particles. The particles are then weighted according to their likelihoods under the current

approximation to the likelihood function, and re-sampled to generate a new set of particles

for the next iteration. The re-sampling techniques make them more efficient than stan-

dard Monte Carlo methods [ADH10], which require a lot of simulations in order to obtain

an estimate of the likelihood that is suitable for parameter estimation and model selection

[Sto19, SBH20, KIMB+22, Bre18]. The pomp package [KIMB+22], available in the R pro-

gramming language, provides the framework for efficient simulation and inference of POMP
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models.

We implement two stochastic SIR-type models. The model for RSV is a MSIRS model,

meaning that individuals are born into theM population with protective maternal immunity

and after becoming infected and recovered individuals can move back into the susceptible

compartment because of waning immunity. The MSIRS model also allows for multiple rein-

fections, with a reduction in susceptibility following the first infection and progressive build

up of immunity. For Influenza A we implement a SIRS model, meaning individuals have

waning immunity but no maternal immunity. Note that the Influenza A model does not

include reduction in susceptibility or progressive build up because of the rapid antigenic

evolution of the virus [YKH+13]. Different models are chosen because of the inherent differ-

ences in antigenic evolution and in age of infection of each pathogen. Since both respiratory

viruses are highly seasonal, we include seasonality through the transmission term. To assess

the effect of climate covariates on the dynamics of disease spread we implement different

variations of each model by changing the transmission rate in four different ways:

- the transmission rate includes seasonality through the addition of 4 cubic b-splines,

but no inter-annual effect,

- the transmission rate includes both seasonal and inter-annual effect through the addi-

tion of temperature,

- the transmission rate includes both seasonal and inter-annual effect through the addi-

tion of specific humidity, and

- the transmission rate includes both seasonal and inter-annual effect through the addi-

tion of both temperature and specific humidity.

Likelihood-based criteria is used for model selection. We use Akaike Information Criterion

scores, which take into account model complexity and penalize the likelihood based on the

number of parameters. The likelihood ratio test, also known as Wilks test, is then used to

assess the goodness of fit of the selected model based on the ratio of their likelihoods.

1.5 Outline

The thesis is organized as follows. Chapter 2 introduces the main concepts of SIR-type

models, POMP models, and iterated filtering. The incidence and climate data used for anal-

ysis is described in Chapter 3. We also perform an exploratory analysis of environmental
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drivers by describing spatiotemporal patterns using multiple statistical techniques. In Chap-

ter 4 we describe and implement statistical and mechanistic compartmental models for RSV

and Influenza A. Using the POMP modeling and iterated filtering framework we find the

maximum likelihood estimate of key epidemiological parameters from the models. We also

perform model selection based on model performance. Finally, in Chapter 5 we give con-

cluding remarks, potential limitations of the current study and how they can be addressed

in future research.
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Chapter 2

Background

In this chapter we introduce the framework used to build and analyze the proposed models in

Section 4.2. Section 2.1 is centered on the history, description and analysis of mathematical

modeling in epidemiology, and the applications on infectious diseases. In Section 2.2 we give

an overview of the theoretical background of partially observed Markov process models, and

the parameter inference method used to evaluate the likelihood.

2.1 Mathematical modeling of infectious diseases

The history of mathematical modeling in epidemiology goes back to the eighteenth cen-

tury when famous mathematician Daniel Bernoulli first expressed the proportion of sus-

ceptible individuals of an endemic infection (smallpox) in terms of the force of infection

and life expectancy [Bra, DH00]. Since the 1900s the use of mathematical models to un-

derstand and explain the population dynamics of infectious diseases has been increasing

[Bra17]. Mathematical models have been used to assess vaccination strategies for whooping

cough and measles [AM82], understand HIV transmission dynamics [AMMJ86], determine

the transmission potential of smallpox [GL01], find global patterns of dengue and malaria

[WLC+10], as well as analyze seasonal fluctuations of diseases like influenza [LS14, SK09],

RSV [BMW+19, WWM+98, PB14], and rotavirus [ASS91, MKY+16]. Most recently, the

SARS-CoV-2 (COVID-19) pandemic demonstrated the importance of using mathematical

models to understand not just the dynamics of the disease, but the public health and socio-

logical impacts of a pandemic [Pan20, ADL+20, AMY+21, JAB21].

Using the language of mathematics, we can describe how disease incidence varies through

space and time, and what are the factors responsible for this variation. As such, models can

be used to:

1. predict the long-term behavior by using past trends [WPG+10, SK12, YCLS15],

2. assess the impact of vaccination strategies [HKK97, Hsi10],

9



3. understand how an infectious disease spreads in the real world [ADL+20],

4. specify how various external factors may affect the dynamics [YKH+13, BMW+19,

SBH20, LE22],

5. and most importantly to help create public health interventions [JAB21, PB14, LLT+07].

The implementation of mathematical models have allowed us to account for both intrinsic

and extrinsic components of disease transmission. In this section, we describe the simplest

of epidemiological models, compartmental models, and go into detail on the mathematical

equations describing them and important concepts in epidemiology. The following sections

are adapted from the book titled “Introduction to Simple Epidemic Models” [KR08]. We

encourage the reader to refer to these references for a more comprehensive and extensive

explanation of the topics [KR08, DHM90, Fra80, van17, HHOW19a, Fis07a].

A compartmental model consists of categorizing individuals in the “host” population ac-

cording to their infection status. We assume individuals are either susceptible to infection,

currently infected and infectious, or recovered, and thus we call them Susceptible-Infected-

Recovered (SIR) models. This formalism, which was initially studied in depth by Kermack

and McKendric in 1927, categorizes hosts within a population as Susceptible (if previously

unexposed to the pathogen), Infected (if currently infected by the pathogen and infectious),

and Recovered (if they have successfully cleared the infection) [KMW27].

Figure 2.1: Compartmental diagram illustrating the structure of the SIR model.

Each of the compartments (S, I, and R) represent a specific stage of the epidemic (i.e.,

how hosts move between the susceptible, infected and recovered classes). The model can be

represented by a flow diagram where arrows show the movement between the S and I classes

and the I and R classes as seen in Figure 2.1 [KR08]. From a modeling perspective, this

translates to the process of individuals (hosts) moving between compartments through time

where S(t) is the number of individuals not yet infected with the disease, I(t) is the number

of individuals who have been infected with the disease, and R(t) is the compartment used

for those individuals who have been infected and then recovered from the disease at time t.

There are multiple ways to construct compartmental models. Depending on the host

population and pathogen the model could be SI (infected are assumed to remain infectious
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for an average period of time after which they die), SIS (individuals can become infected

multiple times with no apparent immunity), SEIR (adds an Exposed compartment before

becoming infectious and will have a latent period where the pathogen’s abundance in the host

is not enough to cause transmission), SIRS (there is waning immunity and recovered hosts can

move back to susceptible population), SICR (adds a Carrier compartment and susceptible

individuals can become infected by either carriers or acutely infectious individuals) and

others. For the remainder of this section we will focus on the SIRS deterministic model,

giving an extensive overview of the model and its analysis, as well as how it can be improved

(i.e., made more realistic) by adding stochasticy and seasonality.

2.1.1 Deterministic SIRS model

The deterministic SIRS model is characterized by having waning immunity, where a recovered

individual can move back into the susceptible population (diagram in Figure 2.2).

Figure 2.2: Compartmental diagram illustrating the structure of the SIRS model.

For all deterministic compartmental models, the transition rates from one compartment

to another are mathematically expressed as derivatives, i.e., ordinary differential equations,

in the following way:

dS

dt
= µN − λS − µS + ωR, (2.1)

dI

dt
= λS − γI − µI, (2.2)

dR

dt
= γI − µR− ωR, (2.3)

where S is the susceptible individuals, I is the infected individuals, and R is the recovered

individuals of the population and N = S + I + R at all times t (i.e., we have a closed
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population). In the above equations µ is the birth/death rate, 1/ω is the average duration

of immunity, and 1/γ is the average infectious period. The force of infection λ is determined

by three distinct factors: the prevalence of infecteds, the underlying population contact

structure, and the probability of transmission given contact [KR08].

2.1.2 Force of infection λ

For a directly transmitted pathogen, like Influenza A and RSV, there has to be contact

between susceptible and infected individuals, and the probability of this happening is deter-

mined by the respective levels of S and I, as well as the inherent contact structure of the host

population, and the likelihood that a contact between a susceptible and an infectious person

results in transmission [KR08]. Because transmission requires contact between infecteds and

susceptibles, two general possibilities exist depending on how the contact structure changes

with respect to population size: λ = βI/N and λ = βI, (where I is the number of infec-

tious individuals, N is the total population size, and β, called the transmission rate, is the

product of the contact rates and transmission probability). The first of the two is called a

frequency dependent (or mass action) transmission and the second as density dependent (or

pseudo mass action) transmission. Frequency dependent transmission assumes the number

of contacts is independent of the population size. In contrast, density dependent transmis-

sion assumes that as the population size increases, so does the contact rate. We will assume

a frequency dependent force of infection and thus λ =
βI

N
[GBF02].

2.1.3 Derivation of the transmission term β

To derive the frequency dependent transmission term, we assume homogenous mixing in the

population, i.e., everyone interacts with equal probability with everyone else. Consider a

susceptible individual with an average κ contacts per unit of time [AM91]. Of these, I/N

are contacts with infected individuals. During a small time interval (t, δt), the number of

contacts with infecteds is κ I
N
δt. If c is defined as the probability of successful disease trans-

mission following a contact, then 1−c is the probability of no transmission. By independence

of contacts, the probability 1 − δq that a susceptible individual escapes infection following

κ I
N
δt contacts is

1− δq = (1− c)κ
I
N
δt.
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Taking the logarithm on both sides of the equation we get

log(1− δq) = log
(
(1− c)κ

I
N
δt
)

log(1− δq) = κ
I

N
δt log(1− c)

1− δq = eκ
I
N
δt log(1−c)

δq = 1− eκ
I
N
δt log(1−c).

Let β = −κ log(1− c). Then the probability that the individual is infected following any

of these contacts is given by

δq = 1− e−βI/Nδt.

To translate this probability into the rate at which transmission occurs, first we expand the

exponential term using the Taylor series,

δq = 1−
(
1 + (−β I

N
δt) +

(−β I
N
δt)2

2!
+

((−β I
N
δt)3

3!
+ · · ·

)
.

If we simplify and divide both sides by δt we get

δq

δt
= β

I

N
−

(−β I
N
)2

2!
δt−

(−β I
N
)3

3!
δt2 − · · · .

Taking the limit of δq/δt as δt→ 0 we get

lim
δt→0

δq

δt
=
βI

N
,

which is the transmission rate per susceptible individual, or force of infection λ [AM91]. By

extention, the total rate of transmission to the entire susceptible population is given by

d(S/N)

dt
= −λ(S/N) = −βI

N

S

N
,

which can be re-written as
dS

dt
= −λ(S/N) = −βI

N
S.
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2.1.4 Basic reproductive ratio R0

One of the most important concepts in epidemiology is the basic reproductive ratio, R0,

defined as the average number of secondary cases arising from an average primary case in

an entirely susceptible population [KR08]. The use of R0 is heavily influenced by the math-

ematical application of R0 done by Diekmann et al. in 1990 and then applied by Anderson

and May in 1991 in their book “Infectious Diseases of Humans: transmission and control”

[DHM90, AM91]. The value of R0 depends on both the the disease and the host popula-

tion, and thus the same disease may have different values of R0 [AM91]. Mathematically R0

can be calculated as the rate at which new cases are produced by an infectious individual

multiplied by the average infectious period, when the entire population is susceptible.

An important use of R0 is the threshold phenomenon which states that the disease can

invade if R0 > 1, otherwise the disease dies out. This can be calculated by looking at

Equation 2.2 and rewriting it to get

dI

dt
=
βI

N
S − γI − µI

= I(
β

N
S − γ − µ).

Since dI
dt
> 0 is needed for the pathogen to spread in the population, then

β

N
S − γ − µ > 0 =⇒ S

N
>
γ + µ

β

which means that if the initial fraction of susceptibles S(0) is less than (γ+µ)/β the infection

dies out, where (γ + µ)/β is called the relative removal rate. Note that the inverse of the

relative removal rate is the basic reproductive ratio

R0 =
β

γ + µ
.

This result was first shown by Kermack and McKendrick in 1927 and is famously referred

as the threshold phenomenon [KMW27].

2.1.5 Equilibrium analysis

A useful way to study long term behavior of a disease is to explore the system when it is at

equilibrium, meaning dS
dt

= dI
dt

= dR
dt

= 0. Since N = S+I+R, we can re-write R = N−S−I
and get
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dS

dt
= µN − β

SI

N
− µS + ω(N − S − I),

dI

dt
= β

SI

N
− γI − µI, (2.4)

dR

dt
= γI − µR− ωR.

We divide the ODE system in (2.4) by N to obtain the fractions of the population being

susceptible, infected and recovered, i.e., s = S
N
,i = I

N
, and r = R

N
, with the sum over all

fractions adding up to one then the ODE system becomes

ds

dt
= µ− βsi− µs+ ω(1− s− i), (2.5)

di

dt
= βsi− γi− µi, (2.6)

dr

dt
= γi− µr − ωr. (2.7)

Note that (2.5) and (2.6) depend only on s and i and thus it is enough to analyze the

system using (2.5) and (2.6). Setting (2.5) and (2.6) to 0 and solving (2.6) we get

di∗

dt
= βi∗s∗ − γi∗ − µi∗ = 0

i∗(βs∗ − γ − µ) = 0

=⇒ i∗ = 0 or s∗ =
γ + µ

β
.

The two possible equilibrium points are i∗ = 0 or s∗ = γ+µ
β

.

Starting with i∗ = 0 and substituting into (2.5) we get s∗ = 1. Thus, the equilibrium

point is (s∗, i∗) = (1, 0), and it is known as the disease free equilibrium, i.e., the pathogen

has suffered extinction and in the long term everyone in the population is susceptible.

Now, consider s∗ = γ+µ
β

. Substituting into (2.5) we get

−βγ + µ

β
i∗ − (µ+ ω)

γ + µ

β
+ µ+ ω − ωi∗ = 0

−(γ + µ)i∗ − (µ+ ω)(γ + µ)

β
+ µ+ ω − ωi∗ = 0
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−(γ + µ+ ω)i∗ =
(µ+ ω)(γ + µ)

β
− (µ+ ω)

i∗ =
β(µ+ ω)− (µ+ ω)(γ + µ)

β(γ + µ+ ω)

=
(µ+ ω)(β − γ − µ)

β(γ + µ+ ω)
.

Therefore the equilibrium point is given by

(s∗, i∗) =

(
γ + µ

β
,
(µ+ γ)(β − γ − µ)

β(γ + µ+ ω)

)
,

which is called the endemic equilibrium, i.e., the disease persists in the population in the

long term. Note that the variables s, i, and r cannot be negative since they represent a

proportion of the population, and thus i∗ is biologically feasible when R0 > 1, which agrees

with the threshold phenomenon.

With equilibrium states comes the question of how did the dynamical systems approach

stability. Some trajectories can have oscillatory behavior while others tend to reach the

steady state more smoothly. The SIRS model is of the former variety, i.e., the inherent

dynamics contain a strong oscillatory behavior. In fact, it has damped oscillations, and thus

the amplitude of the fluctuations declines over time as the system reaches the equilibrium.

To explore the equilibrium dynamics we look at the rates of change of the variables (S, I, R)

and determine what happens when each one is slightly shifted away from the equilibrium.

Let ε be a small perturbation, then by making the substitutions s = s∗ + ε, i = i∗ + ε,

and r = r∗ + ε we can explore the growth or decline of the perturbation term over time.

A straightforward way to do this analysis is by looking at the eigenvalues of the Jacobian

matrix, J , of the ODE system evaluated at the equilibrium point. For a system of n ODEs,

there will be n eigenvalues and stability is ensured if the real part of all eigenvalues is less

than zero [Rou19].

Again we can use (2.5) and (2.6) to find the Jacobian matrix

J(s, i) =

(
−βi− µ− ω −βs− ω

βi βs− γ − µ

)
.

Starting with the disease free equilibrium point (s∗, i∗) = (1, 0), we evaluate the Jacobian

and get

J(s∗, i∗) =

(
−µ− ω −β − ω

0 β − ω − µ

)
.
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To find the eigenvalues of J(s∗, i∗) we evaluate

det(J − λI) = (−µ− ω − λ)(β − γ − µ− λ) = 0.

Therefore it has eigenvalues λ1 = −µ− ω < 0 and λ2 = β − γ − µ. If R0 < 1 then λ2 < 0 so

the disease free equilibrium point is stable. If R0 > 1 then λ2 > 0 and thus the disease free

equilibrium point is unstable.

For the endemic equilibrium point, the Jacobian matrix is given by

J(s∗, i∗) =

−(µ+ ω)(β − γ − µ)

(γ + µ+ ω)
− µ− ω −γ − µ− ω

(µ+ ω)(β − γ − µ)

(γ + µ+ ω)
0

 .

The characteristic polynomial is given by

det(J − λI) = λ2 +

(
(µ+ ω)(β − γ − µ)

(γ + µ+ ω)
+ µ+ ω

)
λ+ (µ+ ω)(β − γ − µ) = 0.

Using the quadratic formula we get

λ = −1

2

(
(µ+ ω)(β − γ − µ)

(γ + µ+ ω)
+µ+ω

)
±1

2

√(
(µ+ ω)(β − γ − µ)

(γ + µ+ ω)
+ µ+ ω

)2

− 4(µ+ ω)(β − γ − µ).

We can re-write the equations by making the substitution R0 =
β

γ+µ
to get

λ = −1

2

(
(µ+ ω)(γ + µ)(R0 − 1)

(γ + µ+ ω)
+ µ+ ω

)
± 1

2

√(
(µ+ ω)(γ + µ)(R0 − 1)

(γ + µ+ ω)
+ µ+ ω

)2

− 4(µ+ ω)(γ + µ)(R0 − 1).

Let A = γ+µ+ω
(µ+ω)(β−γ−µ)

be the average age at first infection, GI = 1
γ+µ

the average period

spent in the infected class, and GR = 1
µ+ω

the average period spent in the recovered class.

We can write

λ = −1

2

(
(µ+ ω)(γ + µ)(R0 − 1)

(γ + µ+ ω)
+

1

GR

)
± 1

2

√(
1

A
+

1

GR

)2

− 4
1

GI

1

GR

(R0 − 1).
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Since the endemic equilibrium is only feasible for R0 > 1 and the term

(
1

A
+

1

GR

)2

is

sufficiently small such that the discriminant is negative, we will have complex eigenvalues

with negative real part making the system locally asymptotically stable. The eigenvalues

are the complex conjugates

λ = −1

2

(
(µ+ ω)(γ + µ)(R0 − 1)

(γ + µ+ ω)
+

1

GR

)
± i

2

√
4
1

GI

1

GR

(R0 − 1)−
(
1

A
+

1

GR

)2

,

therefore the equilibrium is approached via oscillatory dynamics. The period of the damped

oscillations is given by the inverse of the complex part of the eigenvalues multiplied by 2π:

T ∼ 4π√
4
1

GI

1

GR

(R0 − 1)−
(
1

A
+

1

GR

)2
.

As we just saw, the SIRS model (with constant parameters) has damped oscillatory dy-

namics with stable endemicity in the long term. In order to have sustained oscillations and

recurrent epidemics, there has to be a forcing mechanism of which there are two forms:

seasonal forcing and stochastic forcing, both of which are explained below.

2.1.6 Seasonality

The term seasonality is used to describe the variations in the prevalence of an infectious

disease that happen at relatively regular intervals throughout the year. We can better

capture and predict the observed patterns of recurrent and seasonal epidemics by adding

a seasonally varying parameter that acts as a forcing mechanism [Fis07b]. For example,

analysis of measles data showed large amplitude recurrent epidemics with very strong peaks

and valleys, a dramatic shift from the simple SIRS model dynamics seen above. In fact, this

pattern has been seen for multiple infectious diseases such as chickenpox, mumps, influenza,

RSV, and cholera [BFG23, FC82, LY73, YL73, DPLE04, WWC+05, PRE+00, KRP+05].

Seasonality arises from a variety of factors depending on the host and pathogen that is

being studied. For instance, measles is commonly associated with increased transmission

during school terms [LY73], cholera and rotavirus transmission are thought to increase during

monsoon seasons [PRE+00, KRP+05, MKY+16], and the seasonality of influenza and RSV
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is linked with the winter season (low humidity and temperature) [SPV+10, LS14, SK09,

MKY+16, YCLS15, YLS15, SK12, BMW+19, WWM+98].

The addition of a seasonal forcing term to the simple SIRS model allows for more complex

and realistic models. Seasonality has been explored by adding a time dependent function

to the transmission rate, instead of having a constant transmission rate. Some common

functional forms used are sinusoidal functions, step functions, and splines [PVA+15, LY73,

MKY+16]. The choice of functional form used to represent seasonality in the transmission

term can cause very different transmission dynamics [KR08]. There is no straightforward way

of choosing the forcing term, therefore exploring multiple models with different functional

forms and their relative goodness of fit is recommended.

2.1.7 Stochasticity

Another approach to better capture the patterns and features of infectious diseases is using

a stochastic framework. So far, we have seen deterministic models where if given the same

starting conditions, the same trajectory and cycles will always be observed. This type of

model does not account for the real world dynamics of infectious diseases, in which we can

observe very different epidemic cycles, particularly for small populations, chance extinctions

between epidemics, and early stages of an outbreak when stochastic effects may dominate.

Stochastic models allow us to approximate the randomness or probabilistic element of infec-

tious diseases [KR08]. There are two common sources of stochasticity: measurement noise

and process noise.

In measurement noise, also known as observational noise, there is an assumed uncertainty

in the recorded data. This uncertainty can come from incomplete reporting of true cases, mis-

diagnosis, and over-reporting [FC82, FG00]. This type of observational error can impact the

amplitude of data (interannual variation), but not the periodicity. An important distinction

to make is that measurement noise does not impact the epidemiological dynamics and only

modifies the reported data [KR08]. Measurement noise is included in the way in which we

represent the number of infected individuals and can be done by using distributions (normal,

Poisson, binomial, exponential, negative binomial) depending on the type of observational

error in the data [KR08, LES03, CRP04, Sto19, SBH20, BHIK09, NMZC16, Bre18].

While measurement noise is included through the data, process noise, also known as envi-

ronmental noise, is introduced directly into the deterministic equations of the model [BFG23].

This means that the dynamics are subject to some random variability and this variability is

propagated forward in time by the underlying equations [KR08]. Adding noise to the model

means that the dynamics will deviate from deterministic equilibrium. It is important to ac-
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knowledge that the deviations from equilibrium are not completely random, even though the

noise term allows trajectories to deviate from the equilibrium, the deterministic component

forces them back towards the equilibrium point [KR08].

2.2 Inference for partially observed Markov processes via iterated

filtering

Our main goal is to estimate (infer) the parameters that govern the transmission dynamics

of respiratory viruses in Chile, and assess how climate influences these dynamics, by testing

different hypotheses. To do so, we will use surveillance data from Chile and model it as a

partially observed Markov process (POMP). A POMP, also called Hidden Markov Model or

state-space model, consists of an unobserved Markov state process, connected to the data

via an explicit model of the measurement process. The structure of a POMP model can be

seen seen in Figure 2.3 [KDI16].

Figure 2.3: POMP structure diagram adapted form the materials and tutorials in [KDI16].

The method of modeling infectious disease time series data as a noisy and partially ob-

served realization of the disease transmission process that is assumed to be Markov was first

introduced by King et al. [KDI16]. The following sections are adapted from tutorials devel-

oped by Aaron A. King [KIMB+22], notes from a short simulation based inference course

developed by Aaron A. King and Edward L. Ionides found in [KI22] and Chapter 11 of the

book “Handbook of Infectious Disease Data Analysis” written by Theresa Stocks [Sto19].

We encourage the reader to refer to these references for a more comprehensive and extensive

explanation of the topics [KIMB+22, KI22, HHOW19b].

In Section 2.2.1 we describe in detail what a POMP is and how to formulate the SIR

compartmental model as a Markov transmission model. Section 2.2.2 outlines the important
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aspects of likelihood-based inference, some challenges of existing methods. Particle filters

and iterated filtering iterated filtering to estimate the likelihood of a POMP are discussed

in Sections 2.2.3 and 2.2.4, respectively.

2.2.1 Partially observed Markov process

Mathematically, each model is a probability distribution. Let Yn be a random variable mod-

eling the observation at time tn, which denotes the measurement process (or observation pro-

cess), and Xn the latent state process (or transmission process) where X0:N = (X0, . . . , XN).

By definition, the state process model is determined by the density fXn|Xn−1 and the initial

density fX0 . The measurement process is determined by the density fYn|Xn . These two sub-

models determine the full POMP model. If we have a sequence of measurements, y∗n, made

at times tn, n ∈ [1, N ], then we think of these data, collectively, as a single realization of the

Y process. A POMP is characterized by two conditions:

1. the state process, Xn is Markov, i.e.,

fXn|Xn−1,Y1:n−1(xn|x0:n−1, y1:n−1) = fXn|Xn−1(xn|xn−1),

and

2. the measurements, Yn are conditionally independent and depend only on the state at

that time, i.e.,

fYn|X0:N ,Y1:n−1(yn|x0:N , y1:n−1) = fYn|Xn(yn|xn),

for all tn, where n = 1, · · · , N .

In other words, the latent state Xn at time tn is conditionally independent of its history

given Xn−1 and the observation Yn is conditionally independent of all other variables given

Xn. In Figure 2.4 we can see a graph of the conditional independence of POMP models. In

general, knowledge of the system’s state at any point in time is sufficient to determine the

distribution of possible futures.

In the case of SIR models, the state process describes the dynamics of the disease spread,

andXn = (S(tn), I(tn), R(tn)) counts the number of susceptible, infected, and recovered indi-

viduals at time tn. The surveillance data is then modeled as a realization of the measurement

process, Yn.
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Figure 2.4: POMP conditional independence graph [KDI16]. Here Yn denotes the
observations at time tn for n ∈ [1, N ], which depend on the state transmission process Xn

at that time, and Xn is conditionally independent of its history (i.e., Markov).

2.2.2 Likelihood of a partially observed Markov process

Likelihood-based inference attempts to draw conclusions about a parameter vector by con-

necting the model to the observations. The idea is to find the parameter values for which

the observations are most likely to occur under a chosen probability model. In the case

of POMP models, we have a model for the data determined by the measurement density

fYn|Xn(yn|xn−1; θ), together with the transition density fXn|Xn−1(xn|xn−1; θ) and the the ini-

tial density fX0(x0; θ), all parameterized by the vector θ, and we want to maximize the joint

density function

fX0:N ,Y1:N
(x0:N , y1:N ; θ) = fX0(x0; θ)×

N∏
n=1

fXn|Xn−1(xn|xn−1; θ)fYn|Xn(yn|xn; θ)

with respect to θ evaluated at the data y∗1:N . Fundamentally, we want to optimize the

likelihood function

L(θ) = fY1:N
(y∗1:N ; θ) =

∫
fX0:N ,Y1:N

(x0:N , y
∗
1:N ; θ)dx0:N . (2.8)

The parameter vector which maximizes this function is called the maximum likelihood esti-

mate (MLE) and is given by

θ̂ = argθ∈ΘmaxL(θ)

where Θ is the parameter space containing all possible sets of parameters.

Finding the likelihood can be very challenging. In the case of (2.8), the integral depends
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on the number of compartments in the state process (in the case of the SIR models we will

implement we have 3 or more compartments), and thus can be high dimensional and cannot

be solved analytically. Therefore we will be using the methods described in Sections 2.2.3

and 2.2.4.

2.2.3 Particle filter

A particle filter, also known as a sequential Monte Carlo algorithm, is a well known method

used to evaluate the likelihood when there are high dimensional integrals. More about

sequential Monte Carlo methods can be found in [AdFG01, AMGC02, ETvdM21, DJ11,

NKd+23]. We will give a quick overview of the particle filter method, which is necessary to

understand the algorithm described in Section 2.2.4. The general idea is that the likelihood

in (2.8) can be factored as

L(θ) = fY1:N
(y∗1:N ; θ)

=
N∏

n=1

fYn|Y1:n−1(y
∗
n|y∗1:n−1; θ)

=
N∏

n=1

∫
fXn|Yn(y

∗
n|xn; θ)fXn|Y1:n−1(xn|y∗1:n−1; θ)dxn,

where fX1|Y1:0 = fX1 . From the Markov property we have

fX1:N
= fX1(X1)fX2|X1(X2|X1) . . . fXN |XN−1

(Xn|Xn−1).

So it follows from the Chapman-Kolmogorov equation that

fXn|Y1:n−1(xn|y∗1:n−1; θ) =

∫
fXn|Xn−1(xn|xn−1; θ)fXn−1|Y1:n−1(xn−1|y∗1:n−1; θ)dxn−1,

and this is the prediction formula at each time step tn. By applying Bayes’ theorem

fXn|Y1:n(xn|y∗1:n; θ) = fXn|Yn,Y1:n−1(xn|y∗n, y∗1:n−1; θ)

=
fYn|Xn(y

∗
n|xn; θ)fXn|Y1:n−1(xn|y∗1:n−1; θ)∫

fYn|Xn(y
∗
n|xn; θ)fXn|Y1:n−1(xn|y∗1:n−1; θ)

,

we obtain the filtering formula at each time step tn. Here fXn|Y1:n−1(xn|y∗1:n−1) is called the

prediction distribution and fXn|Y1:n(xn|y∗1:n) is called the filtering distribution. Note that the

prediction formula gives the prediction distribution at time tn using the filtering distribution
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at time tn−1. Subsequently the filtering formula gives the prediction distribution at time tn

using the prediction distribution at time tn.

More precisely, assume that we have a set {XF
n−1,j}, , j = 1, . . . , J , where J is the number

of points (particles) drawn from the filtering distribution at tn−1. Drawing a sample from a

distribution means observing a realization of the random variable which has assigned that

distribution to possible outcomes. The prediction formula implies that we obtain a sample

XP
n,j of points from the the prediction distribution at time tn if we simulate from the state

process

XP
n,j ∼ process(XF

n−1,j, θ),

for j = 1, . . . , J . The filtering formula tells us that resampling from XP
n,j with weights

proportional to wn,j = fYn|Xn(y
∗
n|XP

n,1; θ) gives us a sample from the filtering distribution at

time tn. Using the Monte Carlo principle it follows that the likelihood in Equation 2.8 can

be approximated as

L(θ) ≈ L̂(θ) = 1

J

J∑
j=1

fYn|Xn(y
∗
n|XP

n,j; θ),

since XP
n,j is approximately a sample drawn form fXn|Y1:n−1(xn|y∗1:n−1; θ). A graphical rep-

resentation of this process can be seen in Figure 2.5. Iterating through the data, for each

time step tn (n = 0, . . . , N), and doing the recursion of simulating and resampling, as seen

in Algorithm 1, gives us the log-likelihood

ℓ(θ) = log(L(θ)) =
∑
n

log(Ln(θ)) ≈
∑
n

log
(
L̂(θ)

)
.

While the particle filter seen in Algorithm 1 can be used to evaluate the likelihood of

a POMP model, the method can fail when a very unlikely particle is suggested given the

model. If the conditional likelihood of this particle is below a certain tolerance value then

the particle is considered to be uninformative. If this situation happens for a lot of the

particles, the particle filter is said to suffer from particle depletion [KDI16]. There can also

be variability in the approximation of the log-likelihood, which can be reduced by increasing

the number of particles, but in most cases will remain. This might create problems when

using standard optimizers to find the MLE, which assume that the likelihood is evaluated

deterministically [Sto19]. A workaround is to use stochastic optimizers such as the iterated

filtering method described in Section 2.2.4.
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Algorithm 1 Particle filter pseudocode obtained from [KDI16]

Input: Simulator for fXn|Xn−1(xn|xn−1; θ), evaluator for fYn|Xn(yn|xn; θ), simulator for
fX0(x0; θ), parameter vector: θ, observation data: y∗1:N , number of particles: J .

1: Initialize XF
n−1,j, j = 1, . . . , J , where J is the number of points (particles) drawn from

the filtering distribution at tn−1

2: for n = 1, . . . , N do
3: Simulate the state process model to obtain a sample XP

n,j of points from the the
prediction distribution at time tn

XP
n,j ∼ process(XF

n−1,j, θ), j = 1, . . . , J

4: Obtain a sample of points from the filtering distribution at time tn, by resampling
from {XP

n,j, j ∈ 1 : J} with weights

wn,j = fYn|Xn(y
∗
n|XP

n,1; θ)

5: Using the Monte Carlo principle the likelihood in Equation 2.8 can be approximated
as

L(θ) ≈ L̂(θ) = 1

J

J∑
j=1

fYn|Xn(y
∗
n|XP

n,j; θ),

since XP
n,j is approximately a draw form fXn|Y1:n−1(xn|y∗1:n−1; θ)

6: end for
Output: log-likelihood ℓ(θ) = log(L(θ)) =

∑
n log(Ln(θ)) ≈

∑
n log

(
L̂(θ)

)
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Figure 2.5: Particle filter example adapted from [AdFG01].

2.2.4 Finding the likelihood via iterated filtering

To find the MLE of POMPmodels Ionides et al. developed an iterated filtering method where

samples are drawn from the density fXn|Xn−1 instead of evaluating it [IBK06, INA+15]. The

algorithm applies a particle filter, as seen in Section 2.2.3, to a model in which the param-

eter vector for each particle is following a random walk in time. After multiple repetitions

of the filtering procedure, the intensity of the perturbations (random walk) is reduced. The

random walk approaches zero and the modified model approaches the original one. It may

seem counterproductive to add more variability to the model, but in fact it combats the par-

ticle depletion mentioned in Section 2.8, it smooths the likelihood surface, which facilitates

optimization, and it can be shown that the algorithm converges towards the MLE [INA+15].

In the algorithm the initial parameter swarm is perturbed by a perturbation density where

its standard deviation σm is a decreasing function of m. The state process is initialized as

a draw form the initial density fX0 , which is dependent on the newly perturbed parameter

vector. We can then apply a particle filter as described in Algorithm 1, where now the

parameter vector is stochastically perturbed in every iteration through the data. The particle

filter is repeated M times, with decreasing perturbations. The algorithm returns the best

guess of the parameter swarm after M iterations.

In recent years iterated filtering has been used to solve likelihood-based inference prob-

lems for infectious diseases [MKY+16, IBK06, KIPB08, INA+15, DKWP17, FK20, SBH20,

YCLS15]. This has been facilitated by the R package pomp [KDI16, KIMB+22]. There are

multiple examples and tutorials available online on how to use the pomp package, some of
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Algorithm 2 Iterated filtering pseudocode obtained from [KDI16]

Input: Simulator for fXn|Xn−1(xn|xn−1; θ), evaluator for fYn|Xn(yn|xn; θ), simulator for
fX0(x0; θ), initial parameter swarm: {θ0j , j = 1, . . . , J}, observation data: y∗1:N , number
of iterations: M , number of particles: J , perturbation density hn(θ|ϕ;σ), perturbation
scale σ1:M .

1: for m = 1, . . . ,M do
2: θF,m0,j ∼ h0(·|θm−1

j ;σm) ▷ Perturb initial parameter values

3: XF,m
0,j ∼ fX0(·; θ

F,m
n−1,j) for j in 1 : J ▷ Initialize the state process by drawing from initial density

4: for n = 1, . . . , N do ▷ Particle filter

5: θP,mn,j ∼ hn(·|θF,mn−1,j, σm) for j in 1 : J

6: XP,m
n,j ∼ fXn|Xn−1(·|X

F,m
n−1,j; θ

P,m
n,j ) for j in 1 : J

7: wm
n,j = fYn|Xn(y

∗
n|X

P,m
n,j ; θP,mn,j ) for j in 1 : J

8: Draw k1:J with P (kj = i) =
wm

n,i∑J
u=1w

m
n,u

9: θF,mn,j = θP,mn,kj
and XF,m

n,j = XP,m
n,kj

for j in 1 : J
10: end for
11: Set θmj = θF,mN,j

12: end for
Output: Final parameter swarm, {θMj , j = 1, . . . , J}

them can be found in [KI22, KIMB+22]. This package provides the tools needed to perform

inferences for nonlinear partially-observed Markov processes as described in Algorithm 2.

The user can implement a POMP model by specifying its hidden process and measurement

components. After all components of the model are defined iterated filtering can then be

performed to estimate the parameters.

We will use iterated filtering methods to perform parameter inference, evaluate the effect

of climate covariates, and get a better understanding of disease spread mechanisms of res-

piratory viruses. In our work, we consider SIRS-type models to describe the transmission

dynamics of RSV and Influenza A in Chile. To build the POMP model, the first step is to

represent the SIRS models as unobserved Markovian transmission processes, done in Section

4.2, and subsequently connect them to a measurement model, which relates the data to the

transmission model. We show the results from our simulations in Section 4.4.
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Chapter 3

Data analysis: The association of disease incidence and
environmental drivers

3.1 RSV and Influenza A

Viral respiratory infections commonly affect the upper or lower respiratory tract. Some

of the most common respiratory virus symptoms include coughing, fever, runny nose, and

sore throat. Even with similar symptoms respiratory viruses are highly diverse not only in

their viral structure and genome composition but also in their modes of transmission among

humans. The severity of viral respiratory illness varies widely. Severe disease is more likely in

older patients and infants [WF04, Gle86]. Morbidity may result directly from viral infection

or may be indirect, because of pre-existing conditions exacerbated by the disease.

Respiratory viruses also display various transmission patterns among humans; via direct

and indirect contact airborne transmission, comprising both air droplets and aerosol. Their

transmissibility is influenced by the environment in which pathogen and host meet. Many

common respiratory viruses exhibit predictable seasonality, which can be exacerbated by

mobility patterns, socioeconomic status, as well as diseases interacting with each other (i.e.,

being infected with multiple viruses at the same time).

Influenza A and RSV are the leading pathogens responsible for substantial morbidity and

mortality due to respiratory tract worldwide [DS, ZTV+12, LWB+22, JSH+07, HCDV22]. In-

fluenza A produces the most severe illnesses in most age groups [Mon95, Sim99]. It is known

for providing long-term immunity; however, it has a rapid antigenic evolution, requiring

yearly vaccinations [Hsi10, YKH+13, DKWP17]. In contrast, RSV has limited immunity

allowing for reinfection throughout a persons life, and for its propensity to produce severe

illness in young children, making it less common in older individuals [APC18, MLC+22,

CZ22, LWB+22]. Both viruses are known to be highly seasonal, specifically during the win-

ter months in temperate climates and during rainy months in tropical and subtropical regions

[BAC+13, WWM+98, SK09, van28, PB12, Mon04, NK22]. Their predictable seasonality al-

lows us to examine data in a manner that helps us define environmental factors that may be

influencing differences in seasonality and interannual variability.

It is difficult to count Influenza A and RSV cases because the symptoms associated with

28



infection are nonspecific and laboratory testing is not routine in most places. Available data

can thus be incomplete because of underreporting (e.g. asymptomatic cases, individuals

don’t go to the doctor/hospital, misdiagnosis). Nevertheless a lot of work has been done to

examine environmental factors and their role in disease spread. In the sections below we will

describe the data used in this thesis and perform exploratory analysis to better understand

patterns seen in the data in the context of seasonality and interannual variability.

3.2 Data

We use a region-level dataset of weekly RSV and Influenza A confirmed cases from Chile

spanning 9 years. The spatial extent of our dataset covers a diverse set of climatologies.

We combine our incidence data with high resolution climate data (specific humidity and

temperature) in order to investigate spatial patterns in dynamics and evaluate the drivers

of transmission.

3.2.1 Surveillance data

Surveillance data allows for the continuous examination and analysis of infectious disease

incidence, with the goal of early detection of increase in incidence in time and space. Chile

has a large surveillance system as part of the Institute of Public Health (ISP) within the

Health Ministry of Chile’s Government [isp]. Chile’s objective is to identify the circulation

of influenza-like illness, severe acute respiratory infections, monitoring of emergency room

visits because of respiratory viruses, and characterize the antigenic variants. The system

is composted of 42 primary care sentinel centers distributed among the 16 regions of the

country. It also includes 31 public hospitals that integrate their laboratories for the detection

of the respiratory viruses. The sentinel centers and public hospitals are both a part of the

larger hospital network across all of Chile [isp]. Furthermore, the ISP processes samples from

private centers and hospitals that are not part of the surveillance system.

The complete data set includes the number of weekly respiratory viruses (this includes

Adenovirus, Parainfluenza, Influenza A, Influenza B, RSV, and Metapneumovirus) for each

region in Chile, as seen in Figure B.2. In this thesis use data of weekly lab-confirmed cases

for RSV and Influenza A from 2011 to 2019, as well as the number of detected respiratory

viruses (i.e., all cases combined). Each sentinel and laboratory site is designated to one of

the 16 regions of Chile, and aggregated to obtain regional weekly confirmed cases to obtain

better spatial resolution (Figures 3.1 and 3.2).
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Figure 3.1: Weekly lab-confirmed RSV cases from 2011 to 2019 by region and normalized
by population.
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Figure 3.2: Weekly lab-confirmed Influenza A cases from 2011 to 2019 by region and
normalized by population.
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3.2.2 Climate data

We explore two climate covariates: temperature (◦C) and specific humidity (g/kg). Specific

humidity refers to the weight (amount) of water vapor contained in a unit weight (amount)

of air (expressed as grams of water vapor per kilogram of air) [US ]. Absolute humidity

(expressed as grams of water vapor per cubic meter volume of air) is a measure of the

actual amount of water vapor (moisture) in the air, regardless of the air’s temperature [US ].

Therefore specific humidity is considered a measure of absolute humidity, and the terms can

be interchangeable.
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Figure 3.3: Regions of Chile with marked sentinel hospitals (red points) used for data
aggregation.

Climate data is often very difficult to obtain at the precise spatial locations of interest.

More specifically, we are working with regions and each region may have multiple meteoro-

logical sites with vastly different climates (even in the same region depending on elevation).

To overcome this issue, meteorological data can be interpolated across multiple spatial lo-
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cations. Our data is obtained from the ERA5 a global reanalysis dataset of gridded hourly

weather data that combines weather models with satellite observations from across the world

into a globally complete and consistent dataset [HBB+18]. The use of multiple data sets and

spatial interpolation methods allows for higher accuracy and spatial and temporal resolution

in the weather estimates [HBB+20]. We match the gridded climate data from ERA5 based

on the latitude and longitude for each region (Figure 3.3). We averaged over the hourly

observations to obtain weekly mean values for the temperature and specific humidity as seen

in Figure 3.4.

Figure 3.4: Climate covariates for each region.

33



3.2.3 Demographic data

The yearly population size for each region was obtained from the census international

database from 2011 to 2021 [Bur]. We assumed the birth rate varied between regions and

over time. We fit a cubic smoothing spline to the demographic data (for more on splines

see Appendix C) [H., PSAS19, DM]. Using the fitted cubic spline we predicted the weekly

population for each region from the yearly population size, as shown in Figure 3.5A. We use

the data to normalize the cases by population for each region.

We also calculate the first derivative of the fitted cubic spline to predict the weekly

birthrate as shown in Figure 3.5B. The models implemented in Section 4.2 consider a non-

constant population size, and this metric is incorporated in the models to reproduce the

observed population increase over time.

Figure 3.5: A. Predicted weekly Santiago population using a smooth cubic spline. B.
Predicted weekly Santiago birth rate using a smooth cubic spline.
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3.3 Impact of environmental drivers on spatiotemporal patterns of

disease incidence

In this chapter we use statistical methods to explore, describe, visualize, and interpret the

data. The methods used below allow us to answer questions about the data, test hypotheses,

describe associations (correlations), and to model relationships (regression) within the data

[Ale10]. While these analysis may be indicative of statistical trends, they do not fully capture

the intrinsic non-linear epidemic dynamics seen in respiratory viruses like RSV and Influenza

A [PVA+15, BMW+19, YCLS15]. We aim to understand our data to make more accurate

assumptions about the mechanistic models that are implemented in Chapter 4.

3.3.1 Disease patterns throughout Chile

Respiratory viruses are known to be extremely seasonal [van28, LS14, PB12, Mon04, NK22,

SL03, SK09]. In fact, studies have shown that outbreaks of RSV and Influenza A occur in

temperate climates during the winter season, whereas low activity is detected during the

summer months [NK22, BMW+19, BAC+13, WWM+98, PB14, LS14]. We want to explore

the behavior of RSV and Influenza A and determine how seasonal the outbreaks are in Chile.

To do so, we first explore the monthly amount of cases across all of Chile, as well as the

density of cases for each region independently. To further analyze the seasonality of both

viruses, we establish the periodicity of the outbreaks by using wavelet analysis.

Figure 3.6: Monthly confirmed cases for each year across all of Chile. The shaded region
shows the range of months for the winter season in Chile. A. RSV. B. Influenza A.
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Chile is located in the Southern Hemisphere and thus experiences seasons during different

months compared to the Northern Hemisphere. Summer is from December to February,

autumn is from March to May, winter is from June to August, and spring is from September

to November. Both RSV and Influenza A were found to be extremely seasonal across all of

Chile, with epidemics occurring during the winter months (see Figure 3.6). This coincides

with the seasonal patterns seen in the US [BMW+19, SPV+10, BAC+13, SK09].

We also explore the density of cases for each region. A density plot is a representation

of the distribution of a numeric variable. It uses a kernel density estimate to show the

probability density function of the variable [Sil18]. A kernel is a special type of probability

density function (PDF) with the added property that it must be even. The steps to estimate

the density are:

1. Choose a kernel, like Gaussian.

2. At each data point xi build the scaled kernel function

h−1K[(x− xi)/h]

where K is your chosen kernel function. The parameter h is called the bandwidth, or

the smoothing parameter.

3. Add all of the individual scaled kernel functions and divide by n. This places a prob-

ability of 1/n to each xi

f̂(x) = n−1h−1

n∑
i=1

K[(x− xi)/h].

It also ensures that the kernel density estimate integrates to 1 over its support set.

For more on density functions in statistics and data analysis please refer to [Sil18]. In

Figure 3.7 we have a density plot of positive RSV and Influenza A cases for each region.

Peak timing (max incidence) for Influenza A appears to be more in sync throughout all the

regions, whereas RSV has a different peak timing in the first three northern regions and then

starts to synchronize as we move towards the south, where it looses the synchrony once again.

This pattern has been documented in the Northern Hemisphere, where cases for RSV start

in locations closer to the Equator and move North [PVA+15, BMW+19]. To our knowledge

this is the first time this pattern has been documented in the Southern Hemisphere and

throughout a wide latitudinal range (39 degrees in latitude).
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Figure 3.7: Weekly density plots for A. RSV. B. Influenza A.

An additional wavelet analysis allowed us to look at the periodicity of the incidence data.

Wavelet analysis is a method that estimates the periodicity of a time series, and allows

changing dynamical patterns over time, and thus is very useful in the study of pathogen

dynamics [TC98]. Before wavelets, Fourier transforms (writing any signal as a combination

of cosines and sines) were used to extract information from a signal. The main issue with

Fourier transforms is that having high resolution in frequency makes it hard to isolate in time,

since each frequency exists across all time. The lack of resolution between the frequency and

time domain (Heisenberg uncertainty principle [HU16]) in Fourier transforms makes wavelets

a better tool for applications in epidemiology [CCC14]. Wavelets can be thought as short

“burst” waves that quickly die out. The objective is to use a wavelet transform to deconstruct

a signal into multiple wavelets being added together. Wavelets are limited (local) in time

and frequency, which allows for more resolution in the time domain.

More concretely, the continuous wavelet transform, Wn(s), of a discrete sequence xn, with

equal spacing δt and n = 0, . . . , N − 1, is defined as the convolution of xn with the scaled

and translated version of the normalized wavelet function Ψ,

Wn(s) =
N−1∑
n′=0

xn′Ψ∗
[
(n′ − n)δt

s

]
,

where Ψ∗ is the complex conjugate of Ψ, and s is the wavelet scale (distance between os-

cillations in the wavelet), translated along the localized time index n [TC98]. The wavelet

function should reflect the type of features present in the time series, and thus it depends
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on the type of data to be analyzed. We are primarily interested in the periodicity of our

data, and thus the choice of wavelet function is not critical. We will use the continuous

complex-valued Morlet wavelet

Ψ0(η) = π−1/4eiω0ηe−η2/2,

where η is a nondimensional time parameter and ω0 is the nondimensional frequency and

it is set to 6 to satisfy the admissibility condition (implies that the Fourier transform of Ψ

vanishes at the zero frequency [Val99]). A graph of the Morlet function can be seen in Figure

3.8.

Figure 3.8: Graph of the real and imaginary parts of the Morlet wavelet.

The scale s is chosen arbitrarily and is written as fractional powers of two:

sj = s02
jδj j = 0, 1, . . . , J

J =
1

δj
log2(Nδt/s0)

where s0 is the smallest scale so that the equivalent Fourier period is approximately 2δt and

J is the largest. For the Morlet wavelet we need to choose the periods by specifying the

number of octaves (main periods) and number of voices (number of subdivisions to estimate

within each octave), with 1/δj determining the number of voices per octave and thus it is

better to have a large value of voices. Smaller values of δj give finer resolution. Because the

Morlet wavelet function is in general complex, the wavelet transform Wn(s) is also complex.

The transform can then be divided into the real part, imaginary part, amplitude |Wn(s)|,
and phase arctan(Im(Wn(s))/Re(Wn(s))). The periodicity of the data is given by the local

wavelet power spectrum at time point n and scale s, given by |Wn(s)|2.
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To find the periodicity of the Influenza A and RSV data we are using the package Rwave

in R [CHT98], with the Morlet wavelet to analyze the frequency structure. Choosing eight

octaves {21, 22, . . . , 28} with 16 voices gives us 128 periods. We have 9 years of data each

with 52 weeks, and thus δt is chosen to be 1/52 and N = 468 for all regions. To calculate

the scales we have

s0 = 1/26

and

J = 16 log2((468/52) · 26)

= 128,

giving us

sj =
1

26
20.0625

for j = 0, 1, . . . , 128.

The wavelet power spectrum from the wavelet analysis shows annual peaks of power.

Figures 3.9 and 3.10 show the power spectrum for all regions. Note that all of the regions

have periodicity of 1 for both RSV (Figure 3.9) and Influenza A (Figure 3.10). Power is

colour-coded as shown in the legend bars for each region. The peaks in the power spectrum

are stronger for RSV than for Influenza A. This can be caused by the sparsity of the Influenza

A data in some regions. Statistical methods like wavelet analysis need a lot of data in order

to capture all the features at a given time and frequency and thus results vary depending on

the amount of data sampled at each region. All regions show the same one year pattern (even

if it is not as strong for some) and thus this results are enough for our analysis. Furthermore,

Figure 3.11 shows the average power for periods, representing the average of local power from

Figures 3.9 and 3.10 for each region. Note that the all regions have a higher average power

for a period of 1 year.
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Figure 3.9: Wavelet power spectrum for RSV incidence in all regions of Chile.
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Figure 3.10: Wavelet power spectrum for Influenza A incidence in all regions of Chile.
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Figure 3.11: Average wavelet
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3.3.2 Spatiotemporal associations of climate and disease incidence

3.3.2.1 Critical climate thresholds

In this section we explore the association of climate with activity of disease incidence. In

Section 3.3.1 we established that both viruses are highly seasonal, with very high activity

during the winter season. To assess the association with climate covariates (temperature

and specific humidity) we first look at the proportion of positive cases during each season

and compare it with the observed climate. We define the proportion of positive cases as

the total amount of positive lab-confirmed cases divided by the total amount of respiratory

cases (i.e., the sum of all Influenza A, RSV, Influenza B, Adenovirus, Parainfluenza, and

Metapneumovirus cases for a given week). Figure 3.12 shows that high disease activity

occurs throughout Chile during very low temperature (0◦C- 30◦C) and specific humidity

(2.5g/kg - 15g/kg) values for both RSV and Influenza A.

Figure 3.12: A. RSV cases by season B. Influenza A cases by season.

However, Chile has a wide range of weather conditions across a large geographic scale,

extending across 39 degrees in latitude, and approximately 9 degrees in longitude for the

continental territory. According to the Köppen system, Chile has at least seven major

climatic sub-types, ranging from very cold and dry regions in the North, to Mediterranean
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climate (characterized by warm to hot, dry summers and mild, fairly wet winters) in central

Chile and temperate regions towards the South. Therefore, each region can have different

weather patterns depending on its location. This makes it hard to generalize the impact

of climate covariates on disease spread across all of Chile and thus we look at each of the

regions individually.

To assess how different the climate covariates are during outbreaks for each of the regions

we look at density plots of positive RSV and Influenza A cases but with respect to climate

covariates. Figure 3.13 has the density plot of positive RSV and Influenza A cases with

respect to temperature.

Figure 3.13: A. RSV cases with respect to temperature ranges. B. Influenza A with
respect to temperature ranges.

Note that the ranges of temperature for which cases peak varies widely across regions.

There is a latitudinal gradient with respect to temperature, going from North to South. The

range of temperatures in Arica (North) is approximately (16◦C− 21◦C) while in Magallanes

(South) it is approximately (1◦C−7◦C) for RSV. We observe the same pattern for Influenza

A, where Arica has a range of (14◦C − 22◦C) and Magallanes has a range of (1◦C − 7◦C).

A similar gradient with respect to specific humidity is also observed for both diseases (see

Figure B.3 in Appendix B). While it is expected for the climate to be different in each of

the regions, these plots suggest that diseases like RSV and Influenza A can survive and

thrive during very different cold conditions. In fact, in [LS14], the authors used a guinea

pig model of influenza virus transmission to test the impact of ambient temperature and

relative humidity on the efficiency of viral spread between hosts and found that transmission

was highly efficient at 5◦C but was blocked or inefficient at 30◦C. Dry conditions were
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also found to be more favorable for spread, and several articles have found similar trends

[SK09, SPV+10].

We are interested in finding a critical threshold in which positive cases start to sharply

increase (i.e., cases start to increase abruptly). Segmented regression is a statistical technique

that has been used to model ecological and biomedical thresholds [TL03, SC02, BWBI96,

KFFM00]. Segmented regression, also known as piecewise linear regression, is a method in

regression analysis in which the independent variable is partitioned into a finite number of

equally spaced segments with breakpoints, or knots, at predetermined places [SW89]. The

breakpoints can be interpreted as a critical threshold value beyond or below which changes

occur. A function can then be fit to model the independent variable in each segment.

Assuming a linear relationship between the independent and dependent variable the simplest

segmented regression model joins two straight lines at the breakpoint as follows:

yi =

β1xi + β0 + ei, for xi ≤ α,

β1xi + β2(xi − α) + β0 + ei, for xi > α,

where yi is the dependent variable, xi is the independent variable, α is the breakpoint

(threshold), and ei are assumed to be independent, additive errors with mean zero, constant

variance, and finite absolute moment of order > 2 [SW89, TL03]. The slopes of the lines

are given by β1 and β1 + β2. Parametrizing the model in this way forces continuity at the

breakpoint.

When applying the segmented linear regression method to data of the form (x, y), in

which y is the dependent variable and x the independent variable, the least squares method

is applied separately to each segment, by which the regression lines are made to fit the data

set as closely as possible while minimizing the sum of squares of the differences between

observed and calculated values of the dependent variable.

Using segmented regression, we can find the critical threshold α that a covariate must

reach for cases to increase, thus we want to find α such that y(x) sharply increases. We do

this by setting β1 + β2 = 0, which gives us

y(x) =

β1x+ β0 + e x < α

−β2α + β0 + e x > α

Letting β3 = −β2α + β0 + e then

y(x) =

β1x+ β0 + e x < α

β3 x > α

45



Therefore we will have one linear equation β1x+β0+e and a constant equation β3. To find

these two equations we use the R programming [R C21] package segmented, which allows us

to estimate linear models having one or more segmented relationships in the linear predictor

[Mug08]. It provides estimates of the slopes and breakpoints along with standard errors. The

algorithm used by segmented is an iterative procedure found in [Mug03]. Table 3.1 shows

the temperature and specific humidity thresholds obtained from the segmented regression

analysis. Figure 3.14, as well as Figures B.5, B.4, and B.6 in Appendix B show the graphed

results of the segmented regression analysis for all 16 regions of Chile, giving us thresholds

for both temperature (Tc) and specific humidity (qc).

Figure 3.14: Segmented regression for positive RSV cases and temperature (◦C).
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As expected, similar to Figure 3.13, we find a latitudinal gradient with respect to the cli-

matic thresholds, showing that locations closer to the Equator have higher climatic thresholds

for both covariates (Figures 3.15 and 3.16). The critical thresholds from Table 3.1 are very

region specific (i.e., vary from region to region) for both RSV and Influenza A. RSV appears

to have a stronger latitudinal gradient than Influenza A with respect to specific humid-

ity. This suggests that for Influenza A cases to increase, specific humidity needs to reach a

stricter and narrower range of values. Both viruses exhibit similar temperature values, and

no meaningful differences were found.

Figure 3.15: Association of climatic thresholds and location for RSV incidence.A.
Temperature thresholds (◦ C). B. Specific humidity thresholds (g/kg).

Figure 3.16: Association of climatic thresholds and location for Influenza A incidence. A.
Temperature thresholds (◦C). B. Specific humidity thresholds (g/kg).
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RSV Influenza A
Region
Arica
Tarapaca
Antofagasta
Atacama
Coquimbo
Valparaiso
Santiago
O’Higgins
Maule
Nuble
Bio Bio
Araucania
Los Rios
Los Lagos
Aysen
Magallanes

Tc qc
23.41 12.41
25.28 11.11
23.56 10.19
26.73 6.49
19.36 10.12
19.08 7.55
24.05 6.28
23.93 6.89
17.09 7.69
15.62 7.60
13.78 8.09
13.28 7.25
12.37 7.21
13.05 7.88
10.66 5.00
7.54 4.90

Tc qc
20.75 9.86
25.28 9.29
23.56 7.68
26.73 5.78
18.96 10.10
18.92 7.90
23.36 6.33
23.92 6.72
17.58 7.84
15.90 7.96
15.34 8.77
15.53 7.74
13.95 7.78
12.28 7.41
12.28 5.71
10.25 5.58

Table 3.1: Temperature and specific humidity thresholds (Tc and qc, respectively) obtained
from segmented regression analysis for both RSV and Influenza A.

The critical threshold values for Santiago, shown in Table 3.1, will be used in Section 4.2.5

as part of the climate forcing component of the transmission term in our models.

3.3.3 Timing of disease onset

In Section 3.3.1 we established how RSV and Influenza A predominate in the winter season

across all of Chile. In other words, both respiratory viruses exhibit a “predictable” season-

ality. Therefore, even with a lot of regional and year-to-year variability (see Section 3.3.4),

we expect to observe disease spread during the winter. Regardless of this strong seasonal

periodicity, it is not enough to clearly pinpoint the timing of disease incidence, i.e., exact

week at which we expect cases to start. Knowing the time and place of the occurrence of

respiratory viruses can be very useful for prioritizing intervention strategies like vaccination

or masking, that could reduce disease frequency and severity. We are interested in assessing

the role of environmental covariates on the timing of disease incidence. More precisely we

want to answer the following questions:

1. What is the timing of disease onset?

2. How well do covariates explain the variance in onset?
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Disease onset can be defined as the time at which disease incidence starts to increase

significantly. To calculate mean onset week we first calculate mean incidence per week (i.e.,

each week averaged over all years for a given location), and then normalize these values

between 0 and 1. We define onset as when normalized incidence exceeds 0.2, assuming this

value is low enough to constitute onset but high enough to exceed random fluctuations in the

data, as calculated in [BMW+19]. We are interested in the effect of covariates on the timing

of RSV and Influenza A onset and thus we look at the relationship between the calculated

mean onset week and the mean value of the covariates during the mean onset week. In Figure

3.17 we have maps with the onset week for RSV and Influenza A in each region, where lighter

colors represent earlier onset and darker colors represent later onset. Figures 3.18 and 3.19

show the correlations between timing of epidemic onset and mean climate covariates, as well

as latitude.

Figure 3.17: A. Mean onset week of RSV activity in regions of Chile. B. Mean onset week
of Influenza A activity in regions of Chile.

Onset analysis for RSV shows similar results to the ones found in [BMW+19]. Specific

humidity is significantly associated with the mean timing onset of RSV (p < 0.01), and

explains 62% of the variance. In the case of Influenza A, this association is weaker, where

specific humidity (p = 0.12) only explains 12% of the variance. On the other hand, temper-

ature explains 32% of the variance in onset for Influenza A, while for RSV it only explains
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Figure 3.18: A. Onset of RSV with respect to specific humidity (g/kg). B. Onset of RSV
with respect to temperature (◦C). C. Onset of RSV with respect to latitude. Regions are
ordered from North to South.

Figure 3.19: A. Onset of Influenza A with respect to specific humidity (g/kg). B. Onset of
Influenza A with respect to temperature (◦C). C. Onset of Influenza A with respect to
latitude. Regions in the legend are ordered from North to South.

15% of the variance.

We also observe a difference in the slope of the linear regression, RSV has a negative slope

while Influenza A has a positive slope. This means that RSV incidence starts earlier in

the northern part of Chile, while Influenza A starts earlier in the south, which can also be

observed in 3.17. This can be seen in Figures 3.18C and 3.19C. Latitude explains 57% and

26% of the variance in Influenza A and RSV onset, respectively.

3.3.4 Interannual variability

The term interannual variability can be defined as the observed year-to-year variation. We

are interested in the interannual variability of the timing of onset, as well as the peak size or

amplitude of an outbreak or epidemic cycle for a particular year, i.e., year-to-year variation
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in the intensity of the spread. In this section we want to answer the following questions:

1. Do year-to-year variations in climate impact the timing of disease onset?

2. Do year-to-year variations in climate impact the timing of the peak?

3. Do year-to-year variations in climate impact the size or amplitude of the outbreak?

The answers to these questions will allow us to determine if environmental factors are

driving the interannual variability observed in our data and whether climate covariates are

the strongest influencing factor.

3.3.4.1 Onset

To investigate whether year-to-year variations in specific humidity and temperature can alter

the timing of onset of the epidemic within a particular location, we calculate the onset week

for every year for each location, using the same definition of onset from Section 3.3.3. We

then fit a linear regression model with onset week as the dependent variable and climate

covariates as the independent variable. The model includes dummies for each year and

location to remove mean onset timing. We find that a 5 (g/kg) increase in mean annual

specific humidity and a 1◦C increase in mean annual temperature shifts the timing of the

RSV epidemic back by 1 week (p < 0.001), shown in Figure 3.20 and Table 3.2. The effects

found for Influenza A were not as significant where 3 (g/kg) increase in mean annual specific

humidity (p < 0.01) and a 0.1 (◦C) increase in mean annual temperature (p < 0.5) shifts the

timing of the epidemic back by 1 week, as seen in Figure B.7 and Table 3.2.

RSV Influenza A
Specific humidity (g/kg) -5.233*** -3.130*

(3.144) (4.687)
Temperature (◦C) -1.6213** -0.1595

(3.285) (4.797)
Num. obs. 143 137
Adjusted R2 specific humidity 0.4855 0.4022
Adjusted R2 temperature 0.4383 0.3737
Signif. codes: 0 ‘***’; 0.001 ‘**’; 0.01 ;‘*’ 0.05 ;‘.’ 0.1 ; ‘ ’ 1

Table 3.2: Regression of climate variables on onset week. The model includes location fixed
effect to control for spatial heterogeneities in onset determinants. Standard errors are
shown in parentheses.
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Figure 3.20: A. Graph of linear regression model of onset week for RSV with specific
humidity (g/kg) as independent variable. B. Graph of linear regression model of onset
week for RSV with temperature (◦C) as independent variable.

As another measure of mean timing of epidemic onset, we calculate the center of gravity.

The timing of disease epidemics is measured by calculating the center of gravity, G, which

is defined by the mean week of activity for each season and epidemic year. For each region

r and year y, the formula for G is given by

Gr,y =

∑
w∈[1,52]

w ∗ casesr,y,w∑
w∈[1,52]

casesr,y,w
,

where casesr,y,w is the number of laboratory confirmed cases reported in region r during

epidemic year y and week w, as seen in [PVS+09, PVA+15]. Note that this calculation of

timing of onset is less biased than choosing an arbitrary cutoff as done in above and in

Section 3.3.3.

Upon inspection of the values obtained from calculating the center of gravity, we note that

the onset is occurring at much later times, suggesting that the center of gravity formula is

capturing the timing of the peak. Figure 3.21 shows the mean timing of the peak onset for

all regions of Chile. We observe the same patterns of onset for RSV and Influenza A from

Section 3.3.3. For RSV the regions in the North peak earlier, the central regions seem to

peak at the same time, and then the southern regions are not as synchronized. In contrast

to RSV, Influenza A is much more in sync throughout all of Chile. When we evaluate

the relationship between the environmental factors and timing of peak week, there is no

significant association (Figures B.8 and B.9).
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Figure 3.21: A. Center of gravity of RSV activity in regions of Chile. B. Center of gravity
of Influenza A activity in regions of Chile. Note that regions without any color had years
with 0 cases and thus would be biased.

3.3.4.2 Size of outbreak

To assess if interannual variability is caused by the climate covariates we look at the amount

of cases and the climate covariates during the peak timing (i.e., time at which the maximum

amount cases for a particular year is reached). As seen in Figure 3.22 (Figure B.10) there

is no significant association between specific humidity and the year-to-year amplitude of the

RSV (Influenza A) epidemic. Similar results were found when looking at temperature (see

Figures B.11 and B.12 in Appendix B). These results suggest that there are other mechanisms

involved in the year-to-year variation of outbreak size for both RSV and Influenza A.
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Figure 3.22: Graph of interannual variability in peak size for RSV with respect to specific
humidity (g/kg).

3.4 Summary of findings

• There are annual seasonal epidemics during the winter months (May to August) for

both RSV and Influenza A.

• There is a latitudinal gradient with respect to both climate covariates, going from

north to south, suggesting that diseases like RSV and Influenza A can survive and

thrive during very different cold conditions.

• There is a latitudinal gradient with respect to the critical climate thresholds in which
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disease incidence starts to sharply increase, and values are region specific. RSV ap-

pears to have a stronger latitudinal gradient than Influenza A with respect to specific

humidity, suggesting that for Influenza A cases to increase, specific humidity needs to

reach a narrower range of values across all of Chile.

• Specific humidity is significantly associated with the mean timing onset of RSV, while

for Influenza A this association is weaker.

• RSV onset is earlier in the Northern part of Chile while Influenza A starts earlier in

the South. This is similar to the behavior seen in the Northern Hemisphere.

• A 5 (g/kg) increase in mean annual specific humidity and a 1 ◦C increase in mean

annual temperature shifts the timing of the RSV epidemic back by 1 week. The effects

found for Influenza A were not as strong where 3 (g/kg) increase in mean annual

specific humidity and a 0.1 ◦C increase in mean annual temperature shifts the timing

of the epidemic back by 1 week.

• The timing of peak incidence has a similar pattern to the timing of disease onset, with

Influenza A peak timing being more synchronized across all regions.

• There is no significant association between climate covariates and the year-to-year

variation in amplitude of epidemics for both RSV and Influenza A.

3.5 Discussion

We observe consistent seasonality, with cases prevalent during the winter across all of Chile.

Both diseases exhibit annual (period 1) peaks of power. Specific humidity and temperature

are significantly associated with the onset of RSV. Influenza A has a weaker association with

respect to mean onset week, with similar mean onset timing for each region. By looking

at the year-to-year variations in specific humidity and temperature we find that a 5 (g/kg)

increase in mean annual specific humidity and a 1 ◦C increase in mean annual temperature

shifts the timing of the RSV epidemic back by 1 week. The effects found for Influenza

A were not as significant where 3 (g/kg) increase in mean annual specific humidity and a

0.1 increase in mean annual temperature (p < 0.5) shifts the timing of the epidemic back

by 1 week. These differences could be explained by heterogeneity in age of infection and

contact patterns across different age groups. RSV is known to be biased towards infants,

even though maternal antibodies offer brief protection from infection [OSF+09]. In fact,

during the first 2 years of life, all children will have been infected at least once with RSV

55



[Gle86]. In contrast, because of the rapid antigenic evolution of the different influenza virus

types, maternal immunity might not be acquired for influenza [YKH+13]. Influenza A affects

more young adults than RSV. However, both RSV and Influenza A cause increased mortality

in elderly individuals, which might be due to the decline of immune function as people get

older [WF04]. Immune history and connectivity across different regions might also interfere

with the role of climate factors in the transmission of respiratory viruses.

There is a latitudinal gradient in connection to temperature, seen in Figure 3.13 (as well

as specific humidity), which suggests that the host’s response to the environment might be

a strong force in the transmission of both RSV and Influenza A. Human behavior changes

as temperature changes and thus there might be more indoor crowding, increased num-

ber of close contacts, holiday and vacation travel, which can cause increased transmission

[ETBE12]. Host defense mechanisms are also impacted by changing environmental condi-

tions [Dow01].

The absence of strong interannual variability indicates that climate covariates do not in-

fluence the amplitude of the outbreaks. Some infectious diseases like cholera and dengue

exhibit an interannual component that is driven by the dynamics of El Niño Southern Os-

cillation [PRE+00, CCMH05]. One possible explanation for these differences is the epidemic

nature of RSV and Influenza A, and their annual predictability. Diseases like cholera and

dengue tend to be unstable because of their regular pandemic behavior. Water-borne and

vector-borne diseases also depend on host–pathogen interactions, e.g. drinking contaminated

water or the abundance and distribution of mosquitoes (where climate influences the biology

of the vector).

The relationship between climate, human behaviour, and infectious disease dynamics is

very complex, making it difficult to disentangle the main driving mechanisms of disease

spread. To contribute to the understanding of RSV and Influenza A spread mechanisms

we will implement a compartmental mechanistic model that takes into account intrinsic

and extrinsic factors. We are interested in understanding the processes that generate the

observed seasonality and interannual variability of both respiratory viruses. In particular,

we wish to quantify the effect of climate covariates on transmission by implementing a

stochastic, seasonally forced MSIRS and SIRS modeling framework, for RSV and Influenza

A respectively. By incorporating the climate covariates, stochasticity through measurement

and process noise, as well as a stochastic observation component, we hope to quantify the

effect of climate covariates on the dynamics of the viruses. Using the POMP modeling

framework depicted in Section 2.2, we will use iterated filtering to infer initial conditions

and parameters of the models and get a better picture of disease spread mechanisms of RSV

and Influenza A. The results from this analysis can potentially allow us to identify the role of
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climate versus nonlinear disease dynamics [LBI+10] in disease incidence. In the next chapter

we test whether the interannual variability observed in RSV and Influenza A is driven by

(i) climate, (ii) the intrinsic dynamics of the disease, or (iii) the interactions of these two

mechanisms.
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Chapter 4

Quantifying the effect of environmental drivers on
disease incidence in Santiago, Chile

In this chapter we use both statistical and mathematical modeling to quantify the effect of

environmental drivers on disease incidence and and to estimate key epidemiological param-

eters relevant for the disease transmission dynamics of RSV and Influenza A in Santiago,

Chile. Santiago is the capital and largest city of Chile. It is located in central Chile, and

thus it is considered to have a Mediterranean climate by the Köppen system, characterized

by hot, dry summers and cool, wet winters. Summers have temperatures reaching up to 35
◦C on the hottest days and winters reach daily temperatures of up to 14◦C and low tem-

peratures near 0 ◦C. It is considered a metropolitan area, often characterized by high levels

of economic activity, cultural diversity, and social interaction. As such, Santiago can play a

crucial role in disease spread because of the high population densities and a high degree of

connectivity with other regions.

In Section 4.1 we use statistical models to test hypotheses about the relationship between

climate covariates and disease activity. More precisely, we explore how timing of disease

activity responds to changes in environmental factors by fitting multiple statistical models

to the data. In Section 4.2 we dive into the core mathematical models used in the thesis.

We construct the deterministic SIR-type models as ordinary differential equations (Sections

4.2.1 and 4.2.3) and their stochastic versions using continuous time Markov chains (Sections

4.2.2 and 4.2.4). The models are then implemented in Section 4.4, using the pomp package

[KI22, KIMB+22], available in the R programming language. We also give an overview of

our model selection process, based on the MLE and provide simulations for the best model

in Sections 4.4.2 and 4.4.3. Finally, Section 4.4.5 has a discussion of our results.

4.1 Statistical analysis

Infectious disease modeling encompasses a wide range of methods where each one depends on

the research question being answered. Mechanistic models, like the SIR modeling framework

discussed in Section 2.1, allow us to study the underlying transmission dynamics of the spread

of respiratory viruses. They can be used to forecast or simulate future transmission scenarios
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under various assumptions about the parameters governing disease transmission (e.g. waning

immunity, natural births and deaths, contact rates, and disease mortality rates) [HB20]. As

mentioned in Chapter 2, the addition of seasonality and stochasticity in the model allows for

more complex and realistic models. The way in which we include these in the model depends

on the knowledge we have of the disease, the type of data we use to fit the parameters of

the model, as well as the assumptions we make about the behavior of the disease. Which is

why mathematical modeling goes hand in hand with statistical modeling.

In disease analysis, statistical modeling usually formalizes relationships among variables

that may influence the spread of disease, describes how one or more variables are related to

each other, and tests whether a hypothesis we have on disease spread is true [CMW14]. One

type of statistical modeling is exploratory data analysis, as done in Chapter 3. To test hy-

potheses about the trends observed in the exploratory data analysis we can use confirmatory

data analysis. Many traditional statistical analysis and modeling approaches can be found

in [Fra80, CMW14, MAA20]. By fitting multiple statistical models to our data we can quan-

tify the relationship between seasonality and climate without incorporating the process that

governs the dynamics of the virus. In this section we explore how timing of disease activity

responds to changes in environmental factors. Using climatic and non-climatic variables we

analyze a variety of models, including multivariate logistic regression, linear regression, and

generalized additive models (GAM). All regression models include month dummy variables

which allows us to estimate the effect of inter-annual variation in climate conditions while

controlling for possible unobserved confounders that vary seasonally.

A GAM with splines provided the best fit to the data than the other models as seen

from AIC (information on AIC scores can be found in Section 4.4) scores in Table 4.1. A

generalized additive model (GAM) is a Generalized Linear Model in which the expected

value of the response variable is related to a nonlinear predictor through a link function.

The idea is that the response variable depends linearly on unknown smooth functions of the

predictor variable, i.e.,

g(µ) = β0 + f(x1) + · · ·+ f(xn),

allowing us to capture nonlinear relationships. In summary, a GAM is a model which allows

the linear model to learn nonlinear relationships by using the sum of arbitrary smooth

functions of each variable to model the outcome. There are many smooth functions of the

form

s(x) =
k∑

i=1

βibi(x)

that we can use as basis functions for GAM models. The model can have k weights and
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functions per variable in the equation. Bigger k increases the flexibility of the model such

that it better captures the behavior of the data, but it has the drawback of increasing

computational cost and overfitting. Splines are commonly used in GAMs because of their

high degree of flexibility and we chose cubic regression splines as our smoothing functions.

Refer to Appendix C for a description of spline functions as well as a brief introduction on

Generalized Linear Models. For more on GAMs, [Woo17] is a great introductory reference

with practical examples and R programming software implementation.

RSV
Model AIC R2

Linear (specific humidity) 7358.748 0.6733989
Linear (temperature) 7372.274 0.6724792
Linear (specific humidity and temperature) 7359.727 0.6725789
Multivariate logistic model 7316.830 0.6725615
GAM 7092.559 0.6693111
GAM with splines⋆ 6951.189 0.6713978

Influenza A
Model AIC R2

Linear (specific humidity) 4430.835 0.1993223
Linear (temperature) 4381.874 0.2136904
Linear (specific humidity and temperature) 4377.648 0.2139728
Multivariate logistic model 4376.335 0.2157230
GAM 3962.665 0.3336227
GAM with splines⋆ 3911.128 0.350223
⋆ is the chosen model

Table 4.1: Regression of climate variables on onset week. The model includes location fixed
effect to control for spatial heterogeneities in onset determinants.

For both RSV and Influenza A the smooth terms of the models were found to be statisti-

cally significant (p < 0.005). The Influenza A model accounts for 35% of the variance while

the RSV model accounts for 67% of the variance. This suggests that climate covariates might

be stronger drivers of RSV activity. Figures 4.1 and 4.2 show the marginal effects plots of

the predicted proportion of positive RSV and Influenza A cases in Santiago. We find strong

evidence of impact of both specific humidity and temperature test-positivity, with highest

positivity rates observed for very low values. For both RSV and Influenza A the estimated

effect of climate covariates suggests increased activity during cold and dry environments. For

Influenza A this is in accordance to laboratory experiments where transmission was more

efficient at lower temperature and humidity [LMSP07]. They also found that lowering tem-
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perature affects the kinetics of viral shedding in inoculated guinea pigs. In summary, these

results suggest that both specific humidity and temperature are important drivers of disease

activity in Santiago, with peak activity occurring at low levels.

Figure 4.1: Marginal effects plots showing the predicted proportion positive for RSV by A.
Specific Humidity (g/kg), B. Temperature (◦C), and C. Month.

Figure 4.2: Marginal effects plots showing the predicted proportion positive for Influenza A
by A. Specific Humidity (g/kg), B. Temperature (◦C), and C. Month.

4.2 Implementation of POMP models

To further explore the hypothesis that climate covariates are the main drivers of seasonality

and inter-annual variability, we construct mechanistic models that mimic disease transmis-

sion with (and without) climate covariates. Using the POMP modeling framework and

iterated inference we aim to quantify the effect of climate covariates on disease transmission,

and explore the models ability to reproduce the seasonal pattern and variation in the timing

of disease activity in Santiago, Chile. Under the current climate change conditions, it is
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important to estimate the burden of diseases. These models allow us to understand and

project the dynamics of disease transmission under different climate change scenarios (e.g.

continuously rising temperatures).

4.2.1 Deterministic MSIRS model: RSV

To explore the mechanistic relationship between climatic factors and seasonal variation of

RSV incidence in Santiago, we implement a compartmental Susceptible-Infected-Recovered-

Susceptible model with maternal induced immunity (MSIRS) based on [DKWP17, PVA+15].

The model follows the flow of the population in susceptible, infected (and infectious), and

recovered compartments for seasonal RSV (Figure 4.3).

Figure 4.3: Compartmental flow diagram for RSV. The population is divided into four
compartments: M , maternally derived immunity; S, susceptible; I, infected; R, recovered.

Births enter M at the rate µN(t) +
dN(t)

dt
, and all individuals have a mortality rate

µ = 0.02, i.e., people live on average 50 years. After first infection the rate of subsequent
infection reduces by a factor of σ. There is also progressive build up of immunity following
two or more previous infections by a factor of p. Infections are counted upon transitions to
the R compartments. The case reports, C, count newly infected individuals (deduced from
the total number of infected I) with probability ρ.
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We subdivide the population into 10 discrete compartments, stratified by protection from

maternal immunity, (M), and repeated infections (S(t)1,2,3, I(t)1,2,3, R(t)1,2,3). Maternal an-

tibodies offer brief protection from RSV infection and thus individuals are born into the M

population with protective maternal immunity [OSF+09]. Maternal immunity wanes over

time at a rate m, leaving the infant susceptible to infection. S(t)1,2,3, I(t)1,2,3, and R(t)1,2,3

denote the number of susceptible, infected, and recovered individuals, respectively, in the

population at time t ∈ R+. The population size N(t) changes over time and the total birth

rate is quantified as µN(t)+
dN(t)

dt
to reproduce the observed population increase over time.

People live on average 50 years, and thus the mortality rate µ is fixed and equal to 0.02 for

all compartments.

Following the first infection the model takes into account partial immunity from previous

exposure to the pathogen through a reduction in susceptibility following the first infection,

which reduces the rate of subsequent infection by a factor of σ, consistent with epidemiologi-

cal studies and previous models of RSV transmission [PVA+15, WMG+07]. We assume that

immunity from infection lasts for a limited period of time, 1/ω, after which the individual

is again fully susceptible. There is also a progressive build up of immunity, by a factor of

p, following two or more previous infections [Gle86, HWLS91, PVA+15]. The recovery rate

and duration of infection is given by γ and 1/γ, respectively. The period of immunity is

given by 1/ω and ω is the rate at which immunity is lost and recovered individuals move

into the susceptible class. The deterministic transmission model is given by the following set

of differential equations:

dM

dt
= µN(t) +

dN(t)

dt
−mM − µM,

dS1

dt
= mM − λS1 − µS1,

dI1
dt

= λS1 − γI1 − µI1,

dR1

dt
= γI1 − µR1 − ωR1,

dS2

dt
= ωR1 − σλS2 − µS2, (4.1)

dI2
dt

= σλS2 − γI2 − µI2,

dR2

dt
= γI2 − µR2 − pωR2,

dS3

dt
= pωR2 − σ2λS3 − µS3 + p2ωR3,

dI3
dt

= σ2λS3 − γI3 − µI3,
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dR3

dt
= γI3 − µR3 − p2ωR3,

The force of infection (or per capita rate at which susceptible individuals get infected) is

given by

λ = β(t)
I1(t) + I2(t) + I3(t) + ι

N(t)
,

where ι is the mean number of infectives visiting the population at any given time and

β(t) is the transmission rate. Since both RSV and Influenza A have the same transmission

formulation, β(t), we describe it in more detail in Section 4.2.5.

Given the equations for the deterministic model in (4.1), the number of newly infected

individual accumulated in each observation time unit [tn, tn+1) is then given as

Hk(tn) =

∫ tn+1

tn

λSk(t)dt.

Note this is a high dimensional integral that depends on all state variablesM,S(t)1,2,3, I(t)1,2,3,

and R(t)1,2,3.

4.2.2 Stochastic MSIRS model: RSV

Recall that we are going to be using the POMP modeling framework and thus our model

needs to satisfy the Markov property. While deterministic SIR models, like the one in

Section 4.2.1, possess the Markov property the state of the system is fully determined by the

initial conditions of the system and thus there is no randomness in the process. This means

that deterministic models do not capture the inherent stochasticity of infectious disease

transmission, which can result in significant variability in disease outcomes. To address this

limitation, we can add stochasticity to the models and build the models by using continuous-

time Markov chains. A continuous-time Markov chain (CTMC) can capture the initial

disease dynamics and integrate the stochasticity involved in the disease transmission process

[TB17]. They are particularly well-suited for modeling epidemics, which are inherently

stochastic processes [YC11, MMM19, XZH22].

In a CTMC, the state of the system at any given time is described by a set of possible

states, and the transitions between those states are governed by transition rates. These rates

can be thought of as the probabilities per unit time that a transition will occur, given that

the system is in a particular state. To apply this framework to modeling an epidemic, we

define the states of the system to represent the susceptible, infected, and recovered states,

and the transition rates to represent the probabilities of moving between those stages (e.g.
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transmission rate, the recovery rate, and rate of waning immunity).

In the following the notation is adopted form King et al. [KDI16] and Stocks et al.

[SBH20]. Let NAB(t) denote a stochastic counting process, which counts the number of

individuals which have moved from compartment A to compartment B during the time

interval [0, t) with A,B ∈ X , where X = {M,S1, I1, R1, S2, I2, R2, S3, I3, R3} contains all

compartments of the model. N·A(t) counts the number of births and NA·(t) the num-

ber of deaths in the respective compartment up until time t. The infinitesimal increment

probabilities of a move between compartments connected by an arrow in Figure 4.3 fully

specify the continuous time Markov process describing disease transmission. The number

of individuals changing compartment in an infinitesimal time interval τ > 0 is given by

∆NAB(t) = NAB(t + τ) − NAB(t). Then the model in Figure 4.3 can be defined by the

following system of transitions rates:

P[∆N·M(t) = 1|Ft] = µN(t)τ +
dN

dt
τ + o(τ)

P[∆NMS1(t) = 1|Ft] = mM(t)τ + o(τ)

P[∆NS1I1(t) = 1|Ft] = λS1(t)τ + o(τ)

P[∆NI1R1(t) = 1|Ft] = γI1(t)τ + o(τ)

P[∆NR1S2(t) = 1|Ft] = ωR1(t)τ + o(τ)

P[∆NS2I2(t) = 1|Ft] = σλS2(t)τ + o(τ)

P[∆NI2R2(t) = 1|Ft] = γI2(t)τ + o(τ)

P[∆NR2S3(t) = 1|Ft] = pωR2(t)τ + o(τ)

P[∆NS3I3(t) = 1|Ft] = σ2λS3(t)τ + o(τ)

P[∆NI3R3(t) = 1|Ft] = γI3(t)τ + o(τ)

P[∆NR3S3(t) = 1|Ft] = p2ωR3(t)τ + o(τ)

P[∆NA·(t) = 1|Ft] = µA(t)τ + o(τ) for A(t) ∈ X

with the filtration Ft = {M(u), S1(u), I1(u), R1(u)(u), S2(u), I2(u), R2(u), S3(u), I3(u), R3(u), ∀0 ≤
u ≤ t} denoting the history of the process until time t. The little o notation, o(τ), is taken

to mean limτ→0 o(τ)/τ = 0.

Note that the transition rates are related with the state variables in the following way:

∆M = ∆N·M(t)−∆NMS1(t)−∆NM ·(t)

∆S1 = ∆NMS1(t)−∆NS1I1(t)−∆NS1·(t)

∆I1 = ∆NS1I1(t)−∆NI1R1(t)−∆NI1·(t)
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∆R1 = ∆NI1R1(t)−∆NR1S2(t)−∆NR1·(t)

∆S2 = ∆NR1S2(t)−∆NS2I2(t)−∆NS2·(t)

∆I2 = ∆NS2I2(t)−∆NI2R2(t)−∆NI2·(t)

∆R2 = ∆NI2R2(t)−∆NR2S3(t)−∆NR2·(t)

∆S3 = ∆NR2S3(t) + ∆NR3S3(t)−∆NS3I3(t)−∆NS3·(t)

∆I3 = ∆NS3I3(t)−∆NI3R3(t)−∆NI3·(t)

∆R3 = ∆NI3R3(t)−∆NR3S3(t)−∆NR3·(t)

If we divide the equations by τ and take the limit as τ → 0, we obtain the deterministic

version of the model seen in (4.1). The number of newly infected individuals accumulated

in each observation time period [tn, tn+1) is then given by

Hk(tn) = NSkIk(tn+1)−NSkIk(tn),

for k ∈ {1, 2, 3}. We are interested in numerically solving NSkIk , and the same methods can

also be applied to NIkRk
.

4.2.3 Deterministic SIRS model: Influenza A

Naturally occurring infection by influenza viruses is known to induce long-lasting protective

immunity. Although it can be strain-specific, mainly because of the emergence of new

influenza variants from the rapid antigenic evolution, and therefore recurrent infections can

occur. With this in mind we will model the transmission dynamics of Influenza A as an

SIRS model (Susceptible-Infected-Recovered-Susceptible), as seen in Figure 4.4.

S(t), I(t), and R(t) denote the number of susceptible, infected, and recovered individuals,

respectively, in the population at time t ∈ R+. The population size N(t) changes over time

and the total birth rate is quantified as µN(t)+
dN(t)

dt
to reproduce the observed population

increase over time. People live on average 50 years, and thus the mortality rate µ is fixed

and equal to 0.02 for all compartments. The deterministic transmission model is given by

the following set of differential equations:

dS

dt
=

[
µN(t) +

dN(t)

dt

]
− λS(t)− µS(t) + ωR(t),

dI

dt
= λS(t)− γI(t)− µI(t), (4.2)

dR

dt
= γI(t)− ωR(t)− µR(t),
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Figure 4.4: Compartmental flow diagram for Influenza A. The population is divided into
three compartments: S, susceptible; I, infected; R, recovered. Births enter S at the rate

µN(t) +
dN(t)

dt
, and all individuals have a mortality rate µ = 0.02, i.e., people live on

average 50 years. When immunity decreases, individuals move back to the susceptible
population at rate ω. Infections are counted upon transitions to the R compartments.The
case reports, C, count newly infected individuals (deduced from the total number of
infected I) with probability ρ.

where ω is the rate at which immunity is lost and recovered individuals move into the

susceptible class, thus the period of immunity is given by 1/ω. The recovery rate and

duration of infection are given by γ and 1/γ, respectively.

4.2.4 Stochastic SIRS model: Influenza A

Following the notation from Section 4.2.2, the model in Figure 4.4 can be defined by the

following system of transitions rates:

P[∆N·S(t) = 1|Ft] = µN(t)τ +
dN

dt
τ + o(τ)

P[∆NSI(t) = 1|Ft] = λS(t)τ + o(τ)

P[∆NIR(t) = 1|Ft] = γI(t)τ + o(τ)

P[∆NRS(t) = 1|Ft] = ωR(t)τ + o(τ)

P[∆NA·(t) = 1|Ft] = µA(t)τ + o(τ) for A(t) ∈ X

where X = {S, I, R}, and the filtration Ft = {S(u), I(u), R(u),∀ 0 ≤ u ≤ t} denoting the

history of the process until time t. Note that the transmission rates are related with the
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state variables in the following way:

∆S = ∆N·S(t)−∆NSI(t)−∆NS·(t) + ∆NRS(t)

∆I = ∆NSI(t)−∆NIR(t)−∆NI·(t)

∆R = ∆NIR(t)−∆NRS(t)−∆NR·(t)

If we divide the equations by τ and take the limit as τ → 0, we obtain the deterministic

version of the model seen in (4.2).

4.2.5 Transmission term β(t)

As discussed in Section 3.3.1, RSV and Influenza A are highly seasonal and thus we incor-

porate seasonal periodic forcing through the transmission term β(t) as follows

β(t) = exp

[ 4∑
i=1

bisi + bq∆qs3 + bT∆Ts3

]
dΓ

dt
.

The transmission term β(t) includes 4 periodic functions of time to incorporate the season-

ality through 4 cubic b-splines si (seen in Figure 4.5) and their respective coefficients bi, as

well as the interannual effect of climate through ∆q and ∆T with their coefficients bq and

bT as seen in [MKY+16]. More on splines can be found in Appendix C.

Figure 4.5: Four cubic periodic b-splines. Note the localization of the third spline, s3
(blue), during the winter season.

The effect of climate forcing enters at two different time scales, seasonal and interannual,
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in the expression bisi + bq∆qs3 + bT∆Ts3. The seasonal component quantified by this term

can be interpreted as the average influence of the climate driver, which includes specific

humidity and temperature. Note that the terms bT∆T and bq∆q are part of the spline s3,

this is because s3 is considered the winter season spline, i.e., peak of the spline is during the

winter months as seen in Figure 4.5. The terms ∆T and ∆q are given by

∆T = pmax(0, Tc − T̄ ),

and

∆q = pmax(0, qc − q̄),

where Tc and qc are the climate thresholds from Table 3.1. The terms T̄ and q̄ are the mean

monthly values (from May to August) of temperature and specific humidity, respectively.

The terms ∆T and ∆q are normalized values (by year) and they range from 0 to 1, where

values closer to 1 reflect more extreme winter conditions (i.e., lower temperature or specific

humidity).

Lastly, we include process noise into β(t) in the form of dΓ
dt
. Oftentimes the model does

not fully capture the fluctuations seen in the surveillance data. In order to have sufficient

stochasticity in the model and capture drivers not covered by the model (i.e., stochastic

variability absent in the climate covariate), we add environmental noise through a Gamma

distribution Γ, where marginally

Γ(t+ τ)− Γ(t) ∼ Gamma(
τ

α2
, α2)

is the increment of an integrated Gamma white noise process with intensity α. That is, Γ(t+

τ)−Γ(t) has mean τ and variance τα2. The resulting process is overdispersed and converges

(as τ goes to zero) to a well-defined process. Note that choosing the noise process Γ(t) in a

way such that its increments are independent, stationary, non-negative, and unbiased allows

us to preserve the Markov property as shown in [BHIK09].

4.2.6 Measurement model

Following the formulation of the process model we need to build the measurement (or ob-

servation) model to finish the POMP modeling framework. Many times when dealing with

surveillance data there is a lot of variability that cannot be captured under the assumed

model. To overcome this, we can introduce overdispersion into the measurement model by

choosing a distribution where the variance can be adjusted separately from the mean. With
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this in mind we model the reported cases as realizations of the negative binomial distribution

C = Yn ∼ NegBin

(
ρH(tn),

1

ψ

)
,

where H(tn) is the true number of accumulated incidences per time unit [tn, tn+1) and

NegBin(ν,
1

ψ
) with ψ > 0 denotes the negative binomial distribution with mean ν and vari-

ance ν + ψν2. Here, the parameter ρ is the reporting rate. For other types of measurement

models for incidence data please refer to [Sto19].

4.3 Model implementation procedure

In this section we aim to give an overview of our model implementation process to find the

maximum likelihood estimate (MLE) given a particular set of the parameters. We use the

pomp package, available in the R programming language, to perform inference on our POMP

models. The model is implemented by specifying (i) its state process and (ii) measurement

process to then perform maximum likelihood estimation via the iterated filtering algorithm

in order to make parameter inference. There are multiple examples and tutorials available

online on how to use the pomp package, some of them can be found in [KI22, KIMB+22].

The core of the simulation algorithm is to define a POMP object. The POMP object

is constructed by defining the state process as our stochastic transmission model and the

measurement process as the negative binomial distributed measurement model of the number

of newly infected individuals. We use an Euler approximation with a time step size of 1 day

to simulate the state process model. We must also define initial values for our parameters

(i.e., initial conditions of state variables and transmission rates).

To generate realizations from the state process we use the τ -leap algorithm which is based

on the Gillespie algorithm [KR08]. The τ -leap algorithm holds all rates constant in the

chosen interval τ and simulates the number of events that will occur in the interval (t, t+ τ).

The state variables are the updated and the process is repeated until a stopping time is

reached [KDI16]. The number of individuals leaving any of the states in the time interval is

then multinomially distributed. The simulation time step τ is chosen to be 1 day.

We begin our simulations with 10,000 values drawn uniformly from a hypercube which

contains biologically reasonable values for all parameters and S(0)+I(0)+R(0) = N(0). For

the first inference procedure (Algorithm 2) we use Nmif=50 iterations, Np=1000 particles,

a cooling of the perturbations of cooling.fraction.50=0.5 (i.e., every 50 iterations we

reduce the perturbation by 50%) and random walk standard deviations rw.sd of 0.03 for
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all the parameters. For each of the outputs we run 5 particle filters (Algorithm 1), each

with 1000 particles. From this we calculate the estimated mean of the log-likelihood and

the standard error of the Monte Carlo approximation for every parameter set. We then

recursively iterate the inference procedure 3 times, each one with the output from the highest

10,000 log-likelihoods from the former inference procedures as the set of initial parameters.

This first iterative process is called a global search.

Refinement Loops Cooling fraction # Iterations # Particles # Particle filters
1 3 0.7 50 1000 5 with 1000 particles
2 10 0.4 100 2000 10 with 3000 particles
3 10 0.3 150 2000 5 with 2000 particles

Table 4.2: Refinements using the 500 highest log-likelihoods.

As the last step, we perform 3 refinements using the 500 highest log-likelihoods as the

initial parameters. For each refinement we decrease the cooling fraction and increase the

number of iterations as seen in Table 4.2. We perform multiple loops for each of the starting

parameters. Even with advances in power computing this is still a very extensive and time

consuming procedure. Because of time constrictions we only performed this procedure on

8 models fitted on the incidence data from Santiago, Chile. The next section provides the

models implemented as well as parameter estimates from the iterated filtering procedure.

4.4 Parameter estimates and model selection

4.4.1 Models

In order to better understand the role of climate variables in the transmission of RSV and

Influenza A, we tested 4 hypotheses, that can be understood as different variations of the

transmission rate β(t) described in Section 4.2.5. These models assume the presence/absence

of the effect of the climate covariates in the disease transmission during the winter season

(i.e., third spline) in the following way:

1. No climate: Transmission rate includes seasonality through the addition of 4 splines,

but no interannual effect

β(t) = exp

[ 4∑
i=1

bisi

]
dΓ

dt
.
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2. Only temperature: Transmission rate includes both seasonal and interannual effect

through the addition of temperature

β(t) = exp

[ 4∑
i=1

bisi + bT∆Ts3

]
dΓ

dt
.

3. Only humidity: Transmission rate includes both seasonal and interannual effect

through the addition of specific humidity

β(t) = exp

[ 4∑
i=1

bisi + bq∆qs3

]
dΓ

dt
.

4. Mixed: Transmission rate includes both seasonal and interannual effect through the

addition of both temperature and specific humidity

β(t) = exp

[ 4∑
i=1

bisi + bq∆qs3 + bT∆Ts3

]
dΓ

dt
.

4.4.2 Model selection criteria

We base our criteria for model selection on Akaike Information Criterion (AIC) [Boz87].

It is a statistical measure for the comparative evaluation among models. AIC provides an

estimation of the information lost when a specific model is used to represent the process that

generated the data [PB19]. With such an approach, we can assess the trade-off between the

goodness of the fit and the complexity of the models. A lower AIC indicates the model that

fits better to the available data and is the one that explains the greatest amount of variation

using the fewest possible independent variables (i.e., parameters).

Mathematically, the AIC is calculated by the following equation:

AIC = −2 · ℓ+ 2 · k

where k is number of estimated parameters and ℓ the log likelihood estimate from performing

iterated inference on our POMP models. The AIC score takes into account model complexity

and penalizes the likelihood based on the number of parameters.

The likelihood ratio test, also known as Wilks test, is then used to assess the goodness of

fit of the selected model based on the ratio of their likelihoods [LBG11]. The likelihood-ratio

test requires that the models be nested (i.e., model A is a special case of model B). With
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a p < 0.05 significance level, we would fail to reject the null hypothesis, i.e., we should use

model A and not model B.

To perform the likelihood ratio test, we use the log-likelihood of the models obtained from

the iterated inference of POMP models. We calculate the likelihood ratio statistic, which

is the ratio of the likelihoods of the two models, also expressed as a difference between the

log-likelihoods

LRT = 2[ℓB − ℓA]

where ℓB is the log-likelihood of model B and ℓA is the log-likelihood of model A [Woo57].

The value of ℓB must be larger than or equal to that of ℓA because model A is a special case

of model B. The likelihood ratio statistic follows a chi-squared distribution with degrees of

freedom equal to the difference in the number of parameters between the two models, under

the null hypothesis.

4.4.3 Results

4.4.3.1 Best models

This section presents the results obtained by using the pomp package to perform simulation

based inference applied to the incidence data of RSV and Influenza A from Santiago, Chile.

Table 4.3 shows the log-likelihood and standard error obtained by using the iterated filtering

algorithm, as well as AIC scores and likelihood ratio test significance. For RSV, the model

best suited for our data is the one with a transmission rate that includes interannual effect

through the addition of specific humidity

β(t) = exp

[ 4∑
i=1

bisi + bq∆qs3

]
dΓ

dt
.

However, the likelihood ratio test shows a p-value of 0.06 when comparing the humidity and

no climate models, indicating that the observed result is likely to occur under both models.

The best model for Influenza A is the one without climate, i.e., the transmission rate

includes seasonality through the addition of 4 splines, but no interannual effect

β(t) = exp

[ 4∑
i=1

bisi

]
dΓ

dt
,

indicating that climate covariates do not drive the year-to-year variation in the transmission

of Influenza A in Santiago.
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RSV
Model Log-likelihood SE No. of parameters AIC Likelihood ratio test
No climate -1092.498 0.5249799 23 2230.996 p = 0.06417736
Temperature -1091.672 0.2980107 24 2231.344
Humidity⋆ -1090.785 0.4364656 24 2229.570
Mixed -1094.403 0.2733507 25 2238.806 p = 0.0071456

Influenza A
Model Log-likelihood SE No. of parameters AIC Likelihood ratio test
No climate⋆ -779.1951 1.349879 14 1586.390
Temperature -781.7816 0.3777042 15 1593.563 p = 0.02294057
Humidity -782.2934 0.8726984 15 1594.587 p = 0.0127996
Mixed -783.0096 0.4298842 16 1598.019 p = 0.02204874

⋆ is the chosen model with lowest AIC score

Table 4.3: Inference results for the four models with maximum likelihood estimate (MLE),
Akaike information criterion (AIC), standard error of the Monte Carlo approximations,
number of parameters, and likelihood ratio test.

We performed 1000 simulations to obtain a pointwise 95% prediction interval seen in

Figures 4.6 and 4.7. The RSV incidence data is covered 75% of the time by the pointwise

95% prediction interval obtained from the simulations, while for Influenza it is covered 89%

of the time. This indicates that both models explain the data well, successfully predicting

when seasonal outbreaks will start and end. However, we acknowledge that the prediction

intervals are larger for Influenza A, and that further research is needed to improve this fitting.

One limitation is that all observations from the data are used to fit the model and thus the

predictions from the realizations can produce overfitting. In Chapter 5 we give more details

on how to improve the models to better capture the interannual variability and better predict

the severity of seasonal outbreaks.

4.4.3.2 Parameter estimates

To obtain confidence intervals (CI) for the parameters we look at profiles of the likelihood.

Profile likelihood is a statistical method used for estimating parameters in a model by max-

imizing the likelihood function while holding all other parameters fixed. In other words, one

parameter is varied over a range of values, while the likelihood is maximized over all remain-

ing parameters [HIK10]. We calculate a Monte Carlo error adjusted profile log-likelihood of

each parameter [Ion05, KIMB+22, KDI16]. For each observation, a CI is estimated based

on multiple realizations of the model evaluated at the MLE, where only maximal values are
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Figure 4.6: The 95% prediction interval (orange shading) for realizations of the MSIRS
model (Figure 4.3 with humidity evaluated at the maximum likelihood estimate for the
RSV data in Santiago (solid dark blue line). RSV incidence data is covered 75% of the
time by the pointwise 95% prediction interval.

Figure 4.7: The 95% prediction interval (orange shading) for realizations of the SIRS
model (Figure 4.4 without climate forcing, evaluated at the maximum likelihood estimate
for the Influenza A data in Santiago (solid dark blue line). Influenza A incidence data is
covered 89% of the time by the pointwise 95% prediction interval.

kept and plotted.

The graphs in Figures 4.8 and 4.9 show the profile likelihood curves for estimated param-

eters for RSV and Influenza A, respectively, from which confidence intervals are obtained.
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RSV
Parameter Description MLE value Confidence Interval
bq Specific humidity coefficient -0.10 (-0.17, 0.01)
1/γ (days) Infectious period 4.4 (2.8, 4.9)
1/ω (days) Waning immunity period 1 (1, 14)
1/m (months) Maternal immunity period 23.6 (18.1, 37)
1/pω (days) Waning immunity period after 2nd infection 3.7
1/p2ω (days) Waning immunity period after 3 or more infections 20.9
σ Reduction in susceptibility 0.97

Influenza A
Parameter Description MLE value Confidence Interval
1/γ (days) Infectious period 1 (1, 1.1)
1/ω (days) Waning immunity period 53 (21, 53.5)

Table 4.4: MLE value and confidence interval of each parameter from likelihood profiles.

The CI is given by the intersection of the likelihood profile curves (blue curve) and the hori-

zontal line two log-likelihood units below the MLE (orange dashed line) for each parameter.

The MLE and confidence interval of each parameter is provided in Table 4.4.

While the MLE value for bq is -0.10, this estimate is very small and has confidence intervals

that cross 0. This result suggests that the impact of the interannual effect of the specific

humidity on the transmission is not statistically significant. This assessment coincides with

the results from the likelihood ratio test in Section 4.4.3, where the fit from the no climate

model can still give us good results.

This approach also allowed us to estimate CIs for key epidemiological parameters that

are relevant for the transmission of RSV and Influenza A. During the first 2 years of life,

all children will have been infected at least once with RSV [Gle86]. The RSV model was

able to capture the period of maternal immunity fairly well with a time of approximately 2

years and a confidence interval going from 1.5 years to 3 years. RSV is also said to provide

progressive build up of immunity, following two or more previous infections [Gle86, HWLS91,

PVA+15]. The estimate for p, the reduction in waning of immunity, was 0.0005, indicating

that immunity is boosted after the second infection and third infection, providing longer

periods of immunity (Table 4.4).

We can compare the infectious period (1/γ) and waning immunity period (1/ω) of the

two diseases. Biologically speaking we expect RSV to have a longer infectious period and

Influenza A to have a higher waning immunity period. Our models were able to capture this

behavior, RSV has an estimated infectious period of approximately 3 to 5 days and Influenza

A has an estimated infectious period of 1 to 1.1 days. Note that these are underestimates,

76



Figure 4.8: Profile likelihood curves for estimated parameters of the transmission model,
with corresponding MLE and confidence intervals for RSV. A. Infectious period 1/γ. B.
Period of immunity 1/ω. C. Duration of maternal immunity. D. Specific humidity
coefficient bq.

RSV is said to have an infectious period of 5 to 10 days, and Influenza a period of 3 to 5

days [HDG76, MKA+15, TGW+10, CFR+09]. A possible explanation is that the model is

capturing the time it takes for an individual to seek medical help after symptom onset, which

may be arising from two different sources. First, we are calculating the newly infected cases

based on individuals moving from the infected compartment to the recovered compartment,

since it is assumed that individuals remain in isolation once they are confirmed infected.

Second, the incidence data is obtained from a surveillance system of 42 primary care sentinel

centers distributed among the 16 regions of the country. It also includes 31 public hospitals.

These are part of the bigger hospital network across all of Chile. Our data is therefore biased

towards people who seek treatment from these specific health centers.

This possible bias towards people who seek treatment is also captured by the estimated
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Figure 4.9: Profile likelihood curves for estimated parameters of the transmission model,
with corresponding MLE and confidence intervals for Influenza A. A. Infectious period
1/γ. B Period of immunity 1/ω.

values of the the reporting rate ρ. RSV had a ρ of 0.0019 (i.e., 0.19% of cases were reported)

and Influenza A an estimated value of 0.0005 (i.e., 0.05% of cases were reported), meaning the

data is more likely to be biased towards Influenza A. Because of differences in age of infection

it is more probable that parents will seek care for their children than adults seeking care

for themselves [Fre21]. Influenza vaccination may also impact the amount of people who get

infected and subsequently tested. The quick antigenic changes in Influenza A require annual

to semi-annual re-formulation of vaccines and vaccination campaigns[Tre16, HKK97, LC18].

The variable effectiveness of Influenza vaccines means that from year to year there are changes

in well they protect against infection versus protection from severity, which depends on the

individuals vaccine history, immune history, and age [LC18, PYM+21]. The fast evolution of

this pathogen could also explain, at least in part, why interannual changes are not explained

by changes in specific humidity or temperature.

In terms of the waning of immunity, this period was higher for Influenza A with a time

of approximately 53 days and RSV with approximately 1 day. After the first infection

RSV provides very little protection allowing RSV to re-infect the host throughout life

[HWLS91, JBMC62, LSOC14]. No studies were found that give estimates for the period

of waning immunity for RSV, and to our knowledge this is the first time the period of immu-

nity for RSV is estimated. There are several reasons that could explain such a low estimate

for the waning immunity period. First, we are using an MSIRS model when it may be that

an MSIS (Susceptible-Infected-Susceptible) model might be more appropriate for modeling

the transmission dynamics of RSV as done in [PVA+15]. Second, RSV is mostly considered

an infant disease. It remains the most common cause of serious respiratory illness in children

under 5 years of age, with an estimated 60,000 deaths worldwide [CZ22, LWB+22]. In fact,
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in Chile, approximately 51% of cases are in children between 0 and 4 years of age [MLC+22].

Therefore, an age stratified model might be more appropriate for RSV transmission dynam-

ics.

In contrast, Influenza A is known to provide immunity for approximately 1 to 2 years, but

this is still very poorly understood [AT15]. In [PYM+21], a review of multiple studies in

humans and animals, the authors argue that immunity from natural infection of Influenza

does not prevent infection but reduces the intensity of subsequent infection. Fully estimat-

ing the provided immunity from natural infection of Influenza is very difficult, particularly

because of frequent virus mutation to evade immunity, difference of immunity in multiple

age groups, and dynamic immunity due to previous viral exposures (i.e., an individual may

be immune to one strain of influenza for multiple years but not another) [PYM+21].

4.4.3.3 Hidden state variables

We construct stochastic compartmental models for RSV and Influenza A, and perform iter-

ated inference to estimate transition rates only using the available surveillance data. Some

of the capabilities of using the iterated inference methodology for partially observed Markov

process models, developed by [IBK06], is that we can infer estimates of variables that are

not observed. The POMP modeling and iterated filtering framework facilitates the simula-

tion of sample paths that allow us to study the dynamics of the viruses. For example, the

models constructed allow us to simulate not just the newly infected individuals, but also

all state variables of the transmission process (i.e., M,S1, I1, R1, S2, I2, R2, S3, I3, R3 for RSV

and S, I, R for Influenza A). Figures 4.10 and 4.11 show the mean of 1000 simulations using

the MLE of the parameters. Knowing the values and dynamic behavior of state variables al-

lows us to understand how mitigation strategies (e.g. closing schools) impact the movement

of individuals from the susceptible compartment to the infected compartment.

4.4.4 Summary of findings

• The best model for Influenza A is the one without climate indicating that climate

covariates do not drive the year-to-year variation in the transmission of Influenza A.

• The model best suited for RSV is the one with a transmission rate that includes

interannual effect through the addition of specific humidity, but upon inspection of the

parameter estimate of bq, we determine that the impact of the interannual effect of the

specific humidity on the transmission of RSV is not statistically significant.
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Figure 4.10: Mean of 1000 simulations of RSV MSIRS model without humidity at MLE.

Figure 4.11: Mean of 1000 simulations of Influenza A SIRS model without climate forcing
at MLE.
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• The models successfully capture the seasonality, timing, and long term dynamics of

RSV and Influenza A.

• Using iterated inference, we estimate key epidemiological parameters and find that

RSV has a longer infectious period and Influenza A has longer periods of immunity,

both of which concur with the differences in pathogen virology.

• No studies were found that give estimates for the period of waning immunity for RSV,

and to our knowledge this is the first time the period of immunity for RSV is estimated

using surveillance data. Furthermore, the model captures the expected progressive

build up of immunity following two or more previous infections, as well as the period

of maternal immunity.

4.4.5 Discussion

Modeling the mechanisms of infectious disease transmission can be a challenging process.

There is a trade-off between having mathematically tractable models that only explain the

general behavior of the disease, and more complex models that can better quantify and pre-

dict the dynamics of disease transmission but require heavy computational efforts [DH18].

Using stochastic compartmental epidemiological models we effectively model the transmis-

sion of RSV and Influenza A. We also estimate key epidemiological parameters and simulate

disease incidence using the POMP modeling and iterated inference framework. While we

believe that further research is needed to accurately predict parameter estimates, the model

simulations are still able to capture the timing and seasonality of disease onset. Therefore,

these results can be useful for making decisions on public health measures such as vacci-

nation campaigns, administration of prophylactic antibodies, introducing social distancing

guidelines, and other interventions aimed to reduce the spread of these viruses and minimiz-

ing their impact on public health. These models can also be used to forecast the timing of

future outbreaks, but more data would be needed to do so.

Furthermore, our findings suggest that more analysis is still needed to disentangle the

effect of interannual climate variability on the year-to-year variability in disease incidence.

In the next chapter we present some of the modeling limitations that we encountered as

well as improvements that can be made to our models to get more accurate and biologically

plausible parameter estimates and further understand the impact of environmental drivers

on disease transmission.
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Chapter 5

Discussion

5.1 Concluding remarks

The hypothesis that climatic factors are the leading drivers responsible for the seasonal and

interannual variation observed in respiratory viruses remains unproven. Laboratory exper-

iments have shown that low absolute humidity (of which specific humidity is a measure)

constrains both influenza virus survival and transmission [SK09]. Unfortunately for RSV,

there are no similar studies, and thus existing models are built upon the assumption that

RSV and Influenza A might behave similarly [BMW+19]. While this may be true in a closed

laboratory setting, the results of this thesis indicate that while there is a correlation between

low specific humidity (and temperature) and the increase of disease activity, it is not enough

to determine a causal relationship in terms of the interannual variability observed in the

amplitude of outbreaks. Furthermore, our results indicate that the nonlinear dynamics of

the disease itself play a role in terms of the seasonality observed, but not the interannual

variability of outbreak size. See Table 5.1 for a summary of findings. Nevertheless, our study

provides a platform for understanding the impact of environmental factors on the transmis-

sion dynamics of RSV and Influenza A. Despite the fact that both viruses exhibit strong

seasonal epidemics during the winter months, our results serve as evidence that more re-

search is necessary to disentangle the associations between climate drivers, human behavior,

age structure, connectivity across regions, and how they impact infectious disease dynamics.

5.2 Limitations and future directions

It is important to recognize the limitations of our study. First, SIR-type models are consid-

ered a simplification of how the transmission of viruses truly behaves. While we did include

multiple parameters to make the system more realistic, for model simplicity we did not in-

clude the different epidemiological characteristics that different virus strains can have or the

interactions between strains. As such some parameter estimates (e.g. recovery rate) may not
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RSV Feature Influenza A
Chile

✓ Outbreaks during the winter ✓
✓ Annual outbreaks ✓
✓ Climatic latitudinal gradient ✓
✓ Onset: North to South –
– Onset: South to North ✓
– Synchronous onset ✓
✓ Significant association of onset and SH –
– Significant association of onset and temperature –
✓ Climate factors explain interannual variation of onset ✓
– Climate factors explain interannual variation of outbreak size –

Santiago
✓ Model captured timing of onset ✓
– Model captures interannual effect of climate on outbreak size –
✓ Model captures interannual variability of outbreak size –
✓ Parameter estimates capture disease mechanisms ✓

Table 5.1: Summary of findings. A checkmark ✓ indicates the feature is true for the
disease, the dash – indicates that the feature was not found. Orange text indicates different
outcomes for RSV and Influenza A.

reflect the true epidemiological value, and instead, it might be capturing dynamical processes

that were not explicitly modeled. Future research is necessary to explore the impact of co-

circulation, specially for Influenza A, which is known to evolve quickly. Similarly, our models

did not include several environmental factors that may shape RSV and Influenza A trans-

mission dynamics, in particular, age, vaccination, administration of prophylactic antibodies,

and seasonal changes in contact patterns. Because of the simplicity of the model, some val-

ues for the parameters found might not be realistic (i.e. biologically possible), because the

algorithm is trying to find the optimal solution based on the information given. There can

exist multiple maximums because the surface of the likelihood function has ridges, hence we

often encountered values that were not biologically plausible, but were a maximum. In this

case we need to constrain the starting values to improve the chances that the maximum that

has the reasonable parameter values is reached. We overcome this issue by using confidence

intervals to quantify the parameter range.

Second, all observations from the data are used to fit the model and thus the predictions

from the realizations can produce overfitting. This results in a lack generalizability to other

types of data. Cross-validation should be performed on the model to evaluate the model’s

performance on independent data. Estimates can also be validated by comparing them to

other sources of data, such as hospital admission rates or mortality data. In fact, we can use
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mortality data to enhance the model by connecting it to the latent state process through

a different measurement process. Third, while we account for overdispersion in the data

by using a Negative Binomial distribution in our measurement model, there may be other

limitations to the data, such as underreporting or incomplete data, which may be biasing

the results.

Finally, even though the findings from the exploratory analysis in Chapter 3 regarding

climate drivers still hold for all of the regions, we are limited by the fact that the parameters

for our model were only estimated for Santiago. Santiago is in the center of the country

and has a more Mediterranean climate, characterized by hot, dry summers and cool, wet

winters. In contrast, the southernmost region has oceanic climate (i.e. humid temperate

climate with high rainfall) while the northern regions are extremely desert like and dry. The

difference in climates could allows us to further explore the impact of climate covariates

on the transmission. By fitting our model to all the regions in Chile, we can correlate the

differences in the estimated climate forcing parameters to climatological differences for each

region. Panel models are a useful tool for this scenario. Panel models consist of a collection

of independent stochastic processes, generally linked through shared parameters while also

having unit specific parameters. Each unit (in our case these are the regions) will have a

partially observed Markov process model, as seen in Figure 5.1, and if all regions are modeled

as independent, the panel model encompassing all regions is called a PanelPOMP [BIK20].

To calculate the MLE of a PanelPOMP, Bretó et al. conveniently developed a framework

that is based on the iterated filtering approach of Ionides et al. described in Section 2.2.4

[IBK06]. The main idea is that a PanelPOMP model can be represented as a time inho-

mogeneous POMP model. The time series for each unit, corresponding to a latent POMP

process, are concatenated in the following way

X(t) = Xu(tu,0 + (t− T cum
u−1 ))

for T cum
u−1 ≤ t ≤ T cum

u , where {Xu(t), tu,0 ≤ t ≤ tu,Nu} is the latent Markov process for unit u

and T cum
u is a cumulative latent POMP process time for all panel units up to unit u, given

by

T cum
u = u+

u∑
k=1

(tk,Nk
− tk,0)

and T cum
0 = 0. This concatenation converts the wide panel data into a long format, where

every row represents an observation corresponding to a unit. Results from [BIK20] show that

a POMP representation using a long format preserves the theoretical justification for iterated

filtering. Therefore, similar to iterated filtering [INA+15, IBK06], the panel iterated filtering
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Figure 5.1: Diagram of PanelPOMP concept.

algorithm explores the space of unknown parameters by stochastically perturbing them and

applying sequential Monte Carlo (Algorithm 1) to filter the data seeking for parameter values

that are concordant with the data. Perturbations are successively diminished over repeated

filtering iterations, leading to convergence to a maximum likelihood estimate [BIK20]. The

relative performance of the POMP models we implemented tells us that we can use the same

stochastic transmission processes from Sections 4.2.2 and 4.2.4 to construct a PanelPOMP

model.

Acquiring additional covariate data can also improve our understanding of the seasonal

and interannual variability of RSV and Influenza A. A study of RSV in the US, determined

that temperature, vapor pressure, precipitation, and potential evapotranspiration were sig-

nificantly associated with the timing of RSV activity across states [PVA+15]. The model

presented in the study was able to replicate biennial patterns of RSV activity, however, they

were not able fully explain why RSV activity begins in Florida, one of the warmest states
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with long hot and humid summers and mild and wet winters. We observed a similar pat-

tern for RSV in Chile, where timing of onset was earlier in the warmer regions in the North.

However, the warmer regions in Chile usually have warm, dry summers and cold, dry winters

(a direct contrast to Florida), which might explain why we observe only annual patterns of

RSV activity.

As mentioned in the discussion of Chapter 3, RSV can be very age specific, where most

children have been infected by 2 years of age. Older people are also known to be impacted

by RSV because of their weakened immune response. Our model was fit to data aggregated

across all age groups. It is possible to improve the model by incorporating age. In an age

stratified SIRS model individuals are divided into different age groups, and the probability

of transmission between age groups is calculated based on age-specific contact patterns. The

model can be age-stratified as seen in Figure 5.2 and fit with data of hospitalization due to

RSV, and related illnesses and patient age. Hospitalization from RSV can be defined by dis-

charge diagnostic codes related to RSV. Fitting our model to the age-specific hospitalization

data might give us better parameter estimates. These models can be used to inform public

health strategies and interventions, such as vaccination programs targeted at specific age

groups, specially when RSV vaccines are in the final stages of approval [HTK16, QXL+22].

Age stratified models can also be used for Influenza A to inform vaccination strategies since

morbidity can be very high for very young and old individuals [HKK97, Tre16]. In fact, in

[Hsi10] they show that the estimated per contact transmission probability of Influenza A in

older people is significantly higher than that of any other age group due to close contacts

with individuals from other age groups. However, their age-stratified model found evidence

that targeting the very young and the very old for vaccination had very low impact on the

overall transmissibility of the disease in the community. This adds to the theory Influenza

A transmission is highly driven by human contact networks and connectivity across regions.

Our analysis for Influenza A shows spatial synchrony across regions. This behavior can

arise from the connectivity and movement across regions. In fact, Chile displays high levels

of internal migration and long-distance commuting attributed to mining and construction

activities [RB20]. A study from the US has shown that the regional spread of Influenza

A correlates more closely with rates of movement of people to and from their workplaces

(workflows) than with geographical distance [VBS+06]. Changing our model to include

mobility data and connectivity across regions would allow us to quantify the impact of human

behavior in the spread of Influenza A in Chile. SIR-type models that include mobility data

are a very useful tool that can help us determine how quickly the disease spreads from one

location to another, and to identify areas that are at high risk of becoming infected. As seen

with COVID-19, these models can be used to simulate the effects of various control measures,
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Figure 5.2: Flow diagram of age stratified SIRS model.

such as travel restrictions, social distancing, and lockdowns [KKM+21]. By incorporating

these measures into the model, researchers can predict how effective they will be at controlling

the spread of the disease. However, obtaining mobility data can be challenging due to privacy

concerns, technical limitations, data fragmentation, and data availability [SRR22].

Furthermore, even though both viruses may seem similar in terms of symptoms, the vi-

rology and host response to RSV and Influenza A are very distinct. Naturally occurring

infection by influenza viruses is known to induce long-lasting protective immunity, although

it can be strain-specific, mainly because of the emergence of new influenza variants from the

rapid antigenic evolution [NH07]. Recurrent infections therefore occur due to the antigenic

variation of strains that spread over time. Predictive models that incorporate evolutionary

change, like the one in [DKWP17], allow for accurate prediction ahead of seasonal outbreaks.

The purpose of their model is the prediction of interannual disease risk (i.e. anomalously

large or small outbreak amplitude) rather than timing of onset. The absence of strong inter-

annual variability in our data exploration suggests, that climate covariates do not influence

the amplitude of the outbreaks. By incorporating information on the evolutionary change

of the virus we might be able to explain the year-to-year variability observed in our data.

In contrast, reinfection with similar strains of RSV can occur multiple times throughout a

persons life, especially in young children as discussed above, indicating that the immunity

acquired by natural infection is limited and does not provide long-term protection against

reinfection [APC18]. Vaccine efforts against Influenza also provide protection, but it is for

a shorter amount of time, requiring yearly vaccination campaigns [Tre16]. Even with the

improved development of vaccines, there are currently no effective vaccines available against

RSV [HTK16, QXL+22]. Nevertheless, vaccine effectiveness can be incorporated into the

87



model to evaluate how different vaccines and vaccination strategies impact the dynamics of

disease transmission when introduced into the population [FTY11, Hsi10, HKK97].

Finally, we could change the form of the transmission term β(t). We chose periodic cubic

splines because of their inherent flexibility, and included climate forcing through one of the

splines. Other studies have used humidity-forced models, where β(t) is given by the following

expression based on

β(t) =

(
e−180q(t)(R0max −R0min

) +R0min

γ

)[
dΓ

dt

]
where q(t) is the specific humidity at time t, and R0max and R0min

denote the maximum

and minimum basic reproductive numbers, respectively [SK09, YLS15, YCLS15, DKWP17].

This equation was estimated from influenza virus survival and transmission in laboratory

experiments, where it was found that low absolute humidity constrains both transmission

efficiency and influenza virus survival [SK09]. This transmission term has been used to model

Influenza transmission in temperate regions [SPV+10, SK12, DKWP17].

In tropical or subtropical locations, the annual seasonal pattern is less commonly observed.

In [YKL+21], the authors show that modeling Influenza A transmission as monotonically

decreasing with increasing absolute humidity is not sufficient to explain patterns in Influenza

transmission in the tropics and subtropics. The study models the impact of absolute humidity

using a parabola, where transmissibility is highest at very low and very high levels of absolute

humidity. This relationship is also modified by temperature such that, when temperature is

above some cutoff value, transmissibility is reduced. The transmission term is given by the

equation

β(t) =

exp

(
aq2(t) + bq(t) + c

)[
Tc
T (t)

]Texp

γ
,

where q(t) is specific humidity and T (t) is temperature at time t. The assumption is that

if T is below Tc, lower temperatures are able to further increase transmission, whereas

temperatures above Tc inhibit Influenza transmission. The strength of this relationship is

further determined by the exponent Texp.

In summary, we have combined statistical and mathematical models to disentangle the

impact of environmental drivers on the transmission of RSV and Influenza A. Using a wide

range of statistical methods, we showed that both RSV and Influenza A have a sensitivity

to climate specially in the context of seasonality, timing of onset, and timing in which they

peak in Chile. Even though they are both sensitive their onset patterns are very different,

with RSV starting in the North and Influenza A in the South of the country, highlighting
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the inherent differences in pathogen virology. Furthermore, we observe a latitudinal gradi-

ent with respect to the climate covariates, and critical climate thresholds in which disease

incidence starts to sharply increase, suggesting that both viruses can survive during very

different winter conditions.

We also highlight the usefulness of mechanistic nonlinear dynamical systems that allow us

to model the transmission of respiratory viruses. These mathematical models, in combination

with the recently developed iterated filtering method, allow us to have a better understanding

of the underlying dynamics of the system by estimating key epidemiological parameters.

The models implemented in this thesis effectively capture the associations obtained from

the statistical analyses and are able to predict the timing of outbreaks. Moreover, the

results from our parameter inference and simulations further solidify our hypothesis that even

though both viruses are sensitive to climate covariates with respect to seasonality and time

of year in which they peak, the interannual variability observed in disease incidence is not

modulated by the interannual variability of the climate covariates. Together, these findings

suggest that while they do play a role, other factors like host demography, pathogen life

history, and connectivity across regions might be stronger drivers of year-to-year variability

in the size of outbreaks. Further work is needed to disentangle these associations, nevertheless

mathematical models like the ones presented in this thesis can still provide useful information

to guide public health policies.
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Appendix A

Analysis of MSIRS deterministic model

A.1 Calculating R0

Below we calculate the basic reproductive number, R0 for the model in Section 4.2.1. Pro-

posed by van den Driessche and Watmough, the next generation matrix method allows us

to determine R0 for an ODE compartmental model [DHM90, vW02, vW08, van17]. To

build the next generation matrix, let x = (x1, x2, . . . , xn)
T be the number of individuals in

each compartment, where the first m < n compartments contain infected individuals. Let

Fi(x) be the rate of influx of new infections in compartment i, and Vi(x) the net transfer

of other transitions between compartment i and other infected compartments, then consider

the equations for each xi to be written in the form

dxi
dt

= Fi(x)− Vi(x)

for i = 1, 2, . . . ,m. Define the Jacobian matrix of Fi(x) and Vi(x) as

Fi,j =
∂Fi(x)

∂xj

∣∣∣∣
x=x0

and Vi,j =
∂Vi(x)

∂xj

∣∣∣∣
x=x0

for 1 ≤ i, j ≤ m, where x0 is the disease free equilibrium and ∂
∂xj

is the partial derivative

with respect to xj. Biologically one can think of the entries of matrix F as transmissions

and the entries of matrix V as transitions. Then the matrix FV −1 has (i, j) entries equal

to the expected number of secondary infections in compartment i produced by an infected

individual introduced in compartment j. The matrix FV −1 is called the next generation

matrix and R0 is given by the spectral radius (i.e. largest eigenvalue) of FV −1.

For our model, we consider the equations of infected compartments I1, I2, I3:

dI1
dt

= λS1 − γI1 − µI1,
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dI2
dt

= σλS2 − γI2 − µI2,

dI3
dt

= σ2λS3 − γI3 − µI3,

where λ = β(t)
I1 + I2 + I3 + ι

N
. Then we have the following transmission matrix

F =

β σβ σ2β

0 0 0

0 0 0

 ,

and the transition matrix

V =

γ + µ 0 0

0 γ + µ 0

0 0 γ + µ

 .

The inverse of V is given by

V −1 =
1

(γ + µ)3



∣∣∣∣∣γ + µ 0

0 γ + µ

∣∣∣∣∣ −

∣∣∣∣∣0 0

0 γ + µ

∣∣∣∣∣
∣∣∣∣∣0 γ + µ

0 0

∣∣∣∣∣
−

∣∣∣∣∣0 0

0 γ + µ

∣∣∣∣∣
∣∣∣∣∣γ + µ 0

0 γ + µ

∣∣∣∣∣ −

∣∣∣∣∣γ + µ 0

0 0

∣∣∣∣∣∣∣∣∣∣ 0 0

γ + µ 0

∣∣∣∣∣ −

∣∣∣∣∣γ + µ 0

0 0

∣∣∣∣∣
∣∣∣∣∣γ + µ 0

0 γ + µ

∣∣∣∣∣


=


1

γ + µ
0 0

0
1

γ + µ
0

0 0
1

γ + µ

 .

Multiplying F and V −1 gives us

FV −1 =


β

γ + µ

σβ

γ + µ

σ2β

γ + µ
0 0 0

0 0 0

 .

Solving the equation det(FV −1−yI)=0, where I is the identity matrix, to find the eigenvalues

of FV −1 we get

det(FV −1 − yI) = (
β

γ + µ
− y)(y2) = 0 =⇒ y =

β

γ + µ
, y = 0.
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The largest eigenvalue is given by y =
β

γ + µ
, therefore

R0 =
β

γ + µ
.
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Appendix B

Extra figures

B.1 Lab-confirmed respiratory viruses in Chile

Figures B.1 and B.2 show the complete data set obtained from the Institute of Public Health

(ISP) within the Health Ministry of Chile’s Government [isp]. The data includes the number

of weekly respiratory viruses for Adenovirus, Parainfluenza, Influenza A, Influenza B, RSV,

and Metapneumovirus for each Region in Chile from 2011 to 2019.

Figure B.1: Weekly lab-confirmed cases of Adenovirus, Influenza A, Influenza B,
Metapneumovirus, Parainfluenza, and RSV per 100,000 people aggregated from all regions
of Chile.
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Figure B.2: Weekly lab-confirmed cases Adenovirus, Influenza A, Influenza B,
Metapneumovirus, Parainfluenza, and RSV per 100,000 people aggregated by region.
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B.2 Density plots: Specific humidity

Figure B.3 shows the density of cases within specific humidity ranges. Note that the ranges

of specific humidity for which cases peak varies widely across regions. There is a latitudinal

gradient with respect to specific humidity, going from north to south. The range of tem-

peratures in Arica (North) is approximately (8 g/kg−12g/kg) while in Magallanes (South)

it is approximately (2 g/kg− 5g/kg) for RSV. We observe the same pattern for Influenza

A, where Arica has a range of (8 g/kg− 10g/kg) and Magallanes has a range of (2 g/kg

−5g/kg).

Figure B.3: Density plots with respect to specific humidity ranges A. RSV. B. Influenza A.
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B.3 Segmented regression graphs

Graphed results of the segmented regression analysis for all 16 regions of Chile, giving us

thresholds for both temperature (Tc) and specific humidity (qc).

Figure B.4: Segmented regression for positive Influenza A cases and temperature.
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Figure B.5: Segmented regression for positive RSV cases and specific humidity.
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Figure B.6: Segmented regression for positive Influenza A cases and temperature.
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B.4 Onset week regression for Influenza A

To investigate whether year-to-year variations in specific humidity and temperature can

alter the timing of onset of Influenza A epidemics within a particular location we fit a

linear regression model with onset week as the dependent variable and climate covariates as

the independent variable, seen in Figure B.7. A 3 (g/kg) increase in mean annual specific

humidity (p < 0.01) and a 0.1 (◦C) increase in mean annual temperature (p < 0.5) shifts the

timing of the Influenza epidemic back by 1 week, as seen Table 3.2.

Figure B.7: A. Graph of linear regression model of onset week for Influenza A with specific
humidity (g/kg) as independent variable. B. Graph of linear regression model of onset
week for Influenza A with temperature (◦C) as independent variable.
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B.5 Interannual variability

B.5.1 Onset

When we evaluate the relationship between the environmental factors and timing of peak

week, there is no significant association. In fact, specific humidity only explains 32% (4%)

of the variance in the timing of peak week for RSV (Influenza A). This is 30% (8%) less

compared to RSV (Influenza A) onset seen in Figure 3.18 (Figure 3.19). The results for

temperature and latitude are similar.

Figure B.8: A. Peak week of RSV with respect to specific humidity (g/kg). B. Peak week
of RSV with respect to temperature (◦C). C. Peak week of RSV with respect to latitude.
Regions are ordered from North to South.

Figure B.9: A. Peak week of Influenza A with respect to specific humidity (g/kg). B. Peak
week of Influenza A with respect to temperature (Cº). C. Peak week of Influenza A with
respect to latitude. Regions are ordered from North to South.
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B.5.2 Size of outbreak

Figures B.10, B.11 and B.12 show the association between climate covariates and interannual

variability of outbreak size (i.e., amplitude of epidemic). There is no significant association

between the climate covariates and the year-to-year amplitude of the RSV and Influenza A

epidemics.

Figure B.10: Graph of interannual variability for Influenza A with respect to specific
humidity (g/kg).
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Figure B.11: Graph of interannual variability for RSV with respect to temperature (◦C).
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Figure B.12: Graph of interannual variability for Influenza A with respect to temperature
(◦C).
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Appendix C

Statistical methods

C.1 Multivariate logistic regression

Multivariate logistic regression analysis is used to predict the relationships by calculating the

probability of something happening depending on multiple variables. Instead of a continuous

set of results, a multivariate logistic regression can have multiple independent variables and

outcomes.

Mathematically, let π(x) represent the probability of an event that depends on n covariates.

Then we can estimate the probabilities of outcomes with the following formula

π(X) =
eβ0+β1X1+β2X2+···+βnXn

1 + eβ0+β1X1+β2X2+···+βnXn

given the covariatesX1, X2, . . . , Xn. Note that applying the logit function logit(p) = ln
(

p
1−p

)
for p ∈ (0, 1), i.e. the inverse of the standard logistic function σ(x) = 1/(1 + ex), we get

logit(π(X)) = β0 + β1X1 + β2X2 + · · ·+ βnXn.

This shows that multivariate logistic regression is a standard linear regression model, after we

transform the outcome using the logit function. Note that the logit function maps probability

values from (0, 1) to (−∞,+∞). For this equation, each data point will have an error term,

is often assumed to follow a normal distribution with mean zero and constant variance.

C.2 Generalized Linear Models

In statistics, model selection depends a lot on the data that is being analyzed. Many times,

the data does not behave linearly, so a simple linear regression model of the form yi =

β0 + β1xi + ε for data of the form (xi, yi), i = 1, . . . , n would not be able to accurately

approximate the observed pattern. Having more flexibility in the model allows for better
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predictive power. A generalized linear model (GLM) is a flexible generalization of ordinary

linear regression. GLMs can be written in terms of the expected value (mean) of the response

variable y in the following way

g(µ) =
n∑

i=1

βiX

where µ is the expected value of the response variable E(y). A link function is then used to

relate the mean µ to the linear predictor βX. For example, consider a linear regression model,

then y has a Normal distribution, i.e. we consider equal variance for all observations, and

µ = βX, and the link function is called the identity link function. If a Poisson distribution

is used as the distribution for y, then the link function g(·) is considered to be the natural

logarithm and thus

ln(µ) =
n∑

i=1

βiX.

There are many ways in which GLMs can be be modified to match the overall pattern of the

data that is being modeled by choosing the distribution and link function. To summarize, a

GLM generalizes linear regression by allowing the linear model to be related to the response

variable via a link function and by allowing the variance of each measurement to be a

function of the linear predictor. We can incorporate nonlinearity into the model by using

generalized additive models. For more on regression methods please refer to the following

books [FT94, FKLM13, HHOW19a].

C.3 Splines

A spline is a mathematical representation for fitting flexible shapes and curves. In statistical

regression analysis, splines are used to build more flexible models that provide a better fit to

the data that is being used. In general, functions (usually polynomials) are joined together

through selected points, commonly known as knots, and these functions are chosen to fit the

data between two consecutive knots. The type of polynomial and number and placement of

knots is what specifies the different types of splines. We give an overview on what splines

are and focus on the ones that are used in Sections 3.2.3 and 4.2.5. For more mathematical

and technical details, the reader can explore the following sources [dB01, Wan11, Wah90].

We refer to [PSAS19, H.] for a comprehensive review on the implementation of splines in the

R programming language.

Mathematically, let f : R → R be a piecewise polynomial function of degree d and define

the set of knots t1 < t2 < . . . < tk. The spline f will be a smooth function, satisfying a
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smoothness criterion that all derivatives of order less than d are continuous, such that f is

a polynomial of degree d.

A spline function f with fixed knots and fixed degree can be written as

f(x) =
k+d+1∑
i=1

bisi(x)

where the si are a set of truncated power basis functions for d-order splines over the knots

t1, . . . , tk and bi are the associated spline coefficients, with degree d and k knots. This

representation is linear in the coefficient vector b = (b1, . . . , bk+d+1) and thus linear in the

transformed variables si, . . . , sk+d+1. Therefore the problem is reduced to estimating the

coefficients bi. Assuming data of the form (xj, yj), j = 1, . . . , n, a regression spline can be

defined by

r̂(x) =
k+d+1∑
i=1

b̂isi(x),

where b̂1 . . . , b̂k+d+1 are found by minimizing

n∑
j=1

(
yj −

k∑
i=1

bisi(xj)

)2

.

Regression splines are a very good start and can be very useful when using an appropriate

amount of knots. To obtain more flexible curves the number of knots or the degree of the

polynomial can be increased. It is important to note that increasing the number of knots

may overfit the data and increase the variance, on the other hand decreasing the number

of knots may give a more restrictive function that has more bias. One issue with regression

splines is that the estimates can exhibit high variance at the variance at the boundaries of

the domain of x1, . . . , xn. The variance increases as the degree of the polynomial gets larger.

To avoid this issue, we can impose a further constraint that derivatives of order greater or

equal to two are zero at the leftmost and rightmost knots. Splines with this extra constraint

are called natural splines.

We will focus on the splines used in the thesis: periodic B-splines and cubic smoothing

splines. Cubic splines are created by using a cubic polynomial in an interval between two

successive knots. These are piecewise cubic functions that are continuous, and have a contin-

uous first and second derivatives. Specifically, the knots tj = (xj, yj) and tj+1 = (xj+1, yj+1)

are joined by the cubic polynomial

pj(x) = ajx
3 + bjx

2 + cjx+ dj
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for xj ≤ x ≤ xj+1 and j = 1, . . . , k − 1. The B-spline basis is a spline basis that is based on

a special parametrization of a cubic spline defined on [a, b]. The B-spline basis is based on

the knot sequence

τ1 ≤ · · · ≤ τd ≤ τd+1 < τd+2 < · · · < τd+k+1 < τd+k+2 ≤ τd+k+3 ≤ · · · ≤ τ2d+k+2

where τd+2 := t1, . . . , τd+k+1 : tk are the inner knots and taud+1 := a, τd+k+2 := b are the

boundary knots. For d > 0, B-spline basis functions of degree d are defined by the recursive

formula

Bd
k(c) =

x− τl
τl+d − τl

Bd−1
l (x)− τl+d+1 − x

τl+d+1 − τl+1

Bd−1
l+1 (x)

for l = 1, . . . , k + d+ 1, where

B0
l (x) =

1, τl ≤ x < τl+1

0, else

Smoothing splines are a special type of spline where the knot positions do not have to be

chosen. Instead, they are automatically placed at all points x1, . . . , xn, i.e. the inputs are

chosen as knots. Cubic smoothing splines are of the form

n∑
i=1

bisi(x)

where s1, . . . , sn are the truncated power basis functions for natural cubic splines with knots

at x1, . . . , xn. The coefficients are chosen to minimize

||y −Bb||22 + λbTΩb, (C.1)

where B = Bij = si(xj) is the basis matrix and Ωij =
∫
s′′i (t)s

′′
j (t)dt is the penalty matrix.

The term λbTΩb is called a regularization term, and it shrinks the components of the optimal

coefficients b̂ towards zero. The parameter λ ≥ 0 is called the smoothing parameter, and it

controls the amount of shrinkage the components will have (higher λ means more shrinkage).
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