
© 2023 Jiangran Wang

CHURN-TOLERANT LEADER ELECTION ON
WEAKLY-CONSISTENT MEMBERSHIP

BY

JIANGRAN WANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Adviser:

Professor Indranil Gupta

ABSTRACT

Many distributed systems suffer from churn, such as peer-to-peer file-sharing

networks and distributed database systems. Churn in distributed systems is

the frequent joining and leaving of nodes, leading to instability and challenges

in coordination. Distributed applications running in such systems require

underneath them a membership protocol that updates (local) membership

lists in spite of churn. On top of this membership layer run coordination

protocols including (but not limited to) leader election, mutual exclusion,

agreement, etc. In this thesis, we present: i) a membership protocol called

Medley-F; ii) a family of leader election protocols that are churn-tolerant;

and iii) two protocols that estimate churn in distributed systems.

First, we present Medley-F, a weakly-consistent membership protocol for

IoT networks. It is an enhanced version of an existing system (Medley), and

Medley-F utilizes active and passive strategies to reduce failure detection tail

latency. We show both simulation results, as well as deployment results, atop

Raspberry Pi devices.

Second, we present a family of four leader election protocols that are churn-

tolerant (or c-tolerant). The key ideas are to: i) involve the minimum num-

ber of nodes necessary to achieve safety; ii) use optimism so that decisions

are made faster when churn is low; iii) incorporate a preference for elect-

ing healthier nodes as leaders. We present experimental results from both a

trace-driven simulation and our implementation atop Raspberry Pi devices,

including a comparison against Zookeeper.

Third, we present two protocols to dynamically estimate churn with the

underlying membership changes continuously. The key ideas are to: i) sample

memberships from a small subset of nodes; ii) utilize intermediate results

during leader election. We show simulation results of the estimation accuracy

of both protocols and the effect of underestimating churn on leader election

safety.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Indranil Gupta for his invaluable

advice and guidance. I would also like to thank my colleagues and collab-

orators, Rui Yang, Xiaojuan Ma, and Anna Karanika, for their continuous

support and invaluable help.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Contributions of this Thesis 3
1.2 Thesis Organization . 3

CHAPTER 2 BACKGROUND . 5
2.1 Failure Detector . 5
2.2 Membership Protocol . 6
2.3 Leader Election . 7
2.4 Related Work . 8
2.5 System Model . 9

CHAPTER 3 MEDLEY-F MEMBERSHIP SERVICE 11
3.1 Motivation . 11
3.2 Medley-F: Feedback-Based Target Selection 12

CHAPTER 4 MEDLEY-F EXPERIMENTS 15
4.1 Simulation . 15
4.2 Deployment . 21

CHAPTER 5 CHURN-TOLERANT LEADER ELECTION 24
5.1 Motivation . 24
5.2 Protocol Design . 25
5.3 Formal Analysis . 34

CHAPTER 6 LEADER ELECTION EXPERIMENTS 38
6.1 Trace-Driven Simulation . 38
6.2 Deployment with Raspberry Pis 46

CHAPTER 7 ESTIMATING CHURN PARAMETER c 51
7.1 Motivation . 51
7.2 Protocol Design . 52
7.3 Simulation . 56
7.4 Conclusion . 61

v

CHAPTER 8 CONCLUSION . 62
8.1 Summary . 62
8.2 Future Work . 63

REFERENCES . 65

vi

CHAPTER 1

INTRODUCTION

Driven by the promise of autonomous operation, self-adaptability, low la-

tency, and bandwidth [1], the global edge computing market size is expected

to reach 155.9 billion USD by 2030 [2], with over 29 billion IoT devices by

2030 [3]. Edge computing scenarios range from “stable” ones like smart

homes, Industry 4.0, and infrastructure deployments (e.g., smart bridges,

roads, etc.), to “dynamic” settings—examples include robots in remote or

inhospitable terrains (e.g., emergency rescue and recovery scenarios, battle-

fields, smart farms) [4, 5, 6], to constellations of satellites (low earth LEO,

or medium earth MEO) [7, 8], to fast-moving vehicle platoons [9]. While a

bulk of research today deals with the former stable edge settings, the rapid

recent growth of the latter dynamic settings brings forth many problems that

remain unsolved.

Coordination tasks—such as consensus protocols, distributed transactions,

and distributed task scheduling—are widely used in real-world applications.

For example, [10] analyzes the performance of (PBFT) consensus for blockchain

networks, Java Transaction API (JTA) [11] is a standard Java interface that

manages distributed transactions, and Apache Spark utilizes distributed task

scheduling for machine learning and big data processing [12]. Such tasks of-

ten require knowledge of membership of the system: in consensus, the system

needs to know the value at each node to ensure everyone reaches an agree-

ment; in distributed task scheduling, we need to know the availability and

resource capability at each node to schedule tasks efficiently.

This thesis makes three contributions applicable to edge and IoT net-

works that suffer from churn. The three contributions are: i) Medley-F,

a fully-decentralized membership protocol for IoT networks; ii) a family of

churn-tolerant leader election protocols; iii) two protocols that dynamically

estimate churn in a given system.

The first contribution of this thesis is Medley-F [13], a fully-decentralized

1

membership protocol for IoT networks. Its main goal is to detect device

failures (crashes) and update membership lists at non-faulty nodes. At large

scale, failures are the norm rather than the exception. In distributed systems,

it is important for other devices to be aware of any device failures and take

corrective action, sometimes even informing the user. Membership is an im-

portant building block atop which many other distributed protocols are built.

However, current IoT methods for detecting failures are usually centralized

or semi-centralized [14, 15, 16, 17], relying on a central clearinghouse that

stores information about active nodes. These methods often require access

to a cloud, which may not always be practical or feasible.

The second contribution [18] of this thesis is layered atop Medley-F, and

it tackles the classical problem of leader election. A leader election protocol

can be initiated by any one node, and aims to satisfy both: 1) (Safety) elect

a unique leader that has the single “best attribute” (e.g., the lowest hash ID,

or the most amount of data, etc.), and 2) (Liveness) inform all non-faulty

nodes of this single unique leader’s ID. Leader election is a key building block

for coordination among nodes in dynamic edge settings, especially when re-

moteness means no central hub or infrastructure is present nearby to perform

coordination actions. For instance, robots in rescue and recovery scenarios,

or smart farms [6], need a leader for coordination when no human opera-

tor is nearby. A second example—LEO or MEO satellites [7]—move very

fast (finishing an orbit in under 2 hrs), and so the set of satellites above a

geographical area (e.g., a state) is a dynamic group and yet needs a leader

satellite for coordination actions (since ground stations are sparse and may

be absent in that area). A third example is vehicle platoons using a leader

to achieve autonomous caravan driving [9].

The third contribution of this thesis is churn estimation for distributed

systems. Churn is a common phenomenon in distributed systems, but the

exact value is often difficult to estimate accurately, as the nodes constantly

join and leave the system. The churn rate in distributed systems and peer-

to-peer networks is well-studied [19, 20, 21]. Our work dynamically estimates

churn with the underlying membership changing continuously.

2

1.1 Contributions of this Thesis

This thesis makes the following contributions:

• We present an enhanced version of a previous failure detector named

Medley [22], which we call Medley-F [13]. Compared to Medley, Medley-

F reduces tail latency in failure detection with unlucky nodes by utilizing

Active-feedback strategy (where node monitors whether itself is unlucky)

and Passive-feedback strategy (where node monitors whether neighboring

nodes are unlucky)

• We propose a family progression of four variants for churn-tolerant (or

c-tolerant) election [18] that (respectively) involve the fewest messages,

have optimism by completing quickly in the common (consistent) case,

accommodate a “health” preference for the leader, and include a hybrid

optimistic-preference variant.

• We prove Safety and Liveness of all our protocols and analyze the opti-

mality of their message complexity.

• We present both simulation and Raspberry Pi deployment results of our

churn-tolerant election protocols, where we inject traces from the Medley-

F membership protocol. We also show that our protocols consume far

fewer resources than stock solutions like Zookeeper [23].

• We present two protocols for estimating churn. Obtaining the optimal

value of churn is essential for our churn-tolerant leader election protocols

to run accurately and efficiently. We also show simulations of our churn

estimation protocols and the effect of churn underestimation.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 presents background, related

works, and system model. Chapter 3 presents the design of Medley-F, a

weakly-consistent membership service, and Chapter 4 shows experiment re-

sults. Chapter 5 presents the design of a family of four churn-tolerant leader

election protocols and their formal analysis. Chapter 6 presents both simu-

lation and Raspberry Pi deployment results of our election protocols. Chap-

ter 7 presents two different protocols on estimating churn in a system and

3

their corresponding simulations. Chapter 8 summarizes this thesis and dis-

cusses potential future works.

4

CHAPTER 2

BACKGROUND

In this chapter, we discuss some preliminary concepts related to the thesis

contributions. Sec. 2.1 talks about failure detectors, Sec. 2.2 talks about dif-

ferent types of membership protocols, and Sec. 2.3 talks about leader election.

Sec. 2.4 presents related works, and Sec. 2.5 presents our system model.

2.1 Failure Detector

In large-scale systems, failures are the norm rather than the exception. When

a device fails, other affected devices need to know about it and take appro-

priate corrective action, and, in some cases, inform the human user. This

is a very common way of building internet-based and datacenter-based dis-

tributed systems. In the IoT environment, examples of corrective actions

after failure include (but are not limited to): backup actions to ensure user

needs are met (e.g., maintaining sufficient lighting in an area), re-initiating

and re-replicating device schedules that were stored on failed devices (e.g.,

timed schedules), informing the upper management layer, informing the user,

etc.

Failure detector protocols for internet-based distributed systems fall into

two categories: heartbeat-based (or lease-based) and ping-based. Heartbeat-

based protocols [24, 25, 26] have each node send periodic heartbeats to one

or more other monitor nodes; when a node ni dies, its heartbeats stop, the

monitors time out, and detect the node ni as failed. Ping-based protocols

[27, 28] have each node periodically ping randomly selected target nodes

from the system. Analysis in [27] has shown that compared to heartbeat

protocols, ping-based protocols are faster at detecting failures and impose

less network traffic, and can completely detect failures.

5

2.2 Membership Protocol

There are two major kinds of membership protocols in asynchronous dis-

tributed systems—strong and weak.

Strongly-Consistent Membership: The strictest variants assume that

membership lists at each alive node are identical at all times. This im-

plies that membership updates are delivered to all nodes at the exact same

time, which is impossible to achieve in asynchronous systems [29, 30]. A

slightly relaxed variant (within strong membership) assumes that member-

ship updates will reach each node in the same order, but possibly at different

physical arrival times. Examples include virtual synchrony [31], Raft [32],

Zookeeper [23], and others [33, 34]. Yet the overhead of strongly-consistent

membership protocols scales poorly with churn, rendering nodes unable to

do useful work. For instance, this is why a typical Zookeeper cluster only

contains between 3 and 7 servers.

Weakly-Consistent Membership: A weakly-consistent membership prop-

agates membership updates to all nodes eventually, but it does not guarantee

either ordering or timing of the updates. Examples include gossip-style heart-

beating [25], SWIM [28], and other IoT membership protocols [13]. These

protocols scale better than strongly-consistent membership protocols and

have been used in systems with thousands of participating nodes [35, 36].

However, membership inconsistencies create a mismatch with the desire to

provide a strong safety property above it. Concretely, a node Mi could be

missing in other nodes’ membership lists if Mi just joined or it is mistakenly

detected as failed (false positive) by some other nodes. A node Mi could also

falsely exist at another node’s membership list, but Mi is actually failed, as

failure detection is not instantaneous.

Membership in Edge Settings: Edge settings are better suited to

weakly-consistent membership protocols. Strongly-consistent membership

protocols have difficulty scaling in asynchronous systems, as they incur high

bandwidth and tend to splinter the node group beyond a few 10s of nodes

[37, 31, 29, 38]. Weakly-consistent membership protocols [39, 19, 13] only

guarantee eventual delivery of membership changes without order, but they

scale well and use low bandwidth. Hence, all election protocols presented in

this paper are layered over a weakly-consistent membership.

6

2.3 Leader Election

Leader election is a critical process in distributed systems that involves se-

lecting a leader among a group of peers. In a distributed system, a leader

is responsible for coordinating and managing the tasks performed by other

nodes in the system. The leader is typically the node with the most up-to-

date information and the highest level of availability. It ensures that there

is always a designated node responsible for coordinating and managing the

system.

The leader election process is important because it helps to ensure that the

distributed system is reliable, efficient, and fault-tolerant. In the absence of a

leader, nodes may operate independently and may not be able to coordinate

with each other effectively. This can result in inconsistencies, conflicts, and

failures within the system.

One of the commonly used leader election protocols is the Bully Algorithm,

which involves the nodes communicating with each other to determine which

node has the highest priority. The node with the highest priority is elected

as the leader, and all other nodes recognize this node as the leader. An-

other algorithm is the Ring Algorithm, where each node is assigned a unique

identifier and the nodes form a logical ring. The nodes then pass messages

around the ring until a node is identified as the leader.

An election run must satisfy the following two properties:

Definition 1. Liveness: Protocol terminates, i.e., each alive node eventu-

ally elects a leader (sets its local leader variable to a non-null value).

Definition 2. Safety: At the end of the leader election, each alive node

only sets its local leader variable to that unique non-faulty node which has

the lowest hash of all non-faulty nodes currently in the system.

We assume the election is initiated by a single “initiator” node. This node

may be the one that detects the failure of the old leader or is the bootstrap

node when the system boots up. We do not tackle initiator failure because

weak membership protocol failures are eventually detected (so some node

will eventually detect the old leader’s failure). For ease of exposition, our

description of the protocols assumes a single initiator. To handle multiple

initiators—any initiator that hears of a lower ID initiator does not complete

its protocol; thus only the lowest ID initiator completes.

7

2.4 Related Work

2.4.1 Related Work in Failure Detection

Classical Failure Detection : Failure detection in data-centers is well-

studied. The earliest failure detectors send periodic “I am alive” heartbeats

[24] to all other or a subset of nodes. Timeout on the next heartbeat leads

to failure detection. Heartbeats may be multicast or gossiped [25] or spread

hierarchically [40]. As described earlier, SWIM [28] is the inverse of heart-

beating, relying on pinging, and has bandwidth provably within a constant

factor of optimal. FUSE [41] disseminates failure information via applica-

tions, to reduce network costs.

Failure Detection in IoT Networks : Existing IoT failure detection

schemes largely focus on data anomalies. Sympathy [42] uses flooding and

aggregates distributed data at the sink, detecting failure by finding insuffi-

cient flow of incoming data. Memento [43] uses a tree for failure monitoring,

limiting its scalability under failures. Network-level delays and packet traces

can be used for failure detection [44, 45]. Yet, these are hard to analyze

mathematically. DICE [17] uses context (e.g., sensor correlation, state tran-

sition probabilities) to identify anomalous readings and their sensor nodes.

Asim et al. [46] partitions the network into cells, detects failures within cells,

and multicasts it across cells–this however assumes a homogeneous network.

2.4.2 Related Work in Churn-tolerant Leader Election

Broadly, the topic of layering consistent services over inconsistent substrates

has received recent attention. [47] implements transactional systems on top

of inconsistent replication in distributed systems, and [38] supports virtual

synchrony over gossiping. The key idea in [47] and [38] are similar: they

both reactively try to fix inconsistency issues raised from lower layers, as

opposed to our (membership-based) approach which is proactive. [48] builds

a microservices OS over inconsistent networks by integrating strong consis-

tency properties into the membership layer itself. Neither of the aforemen-

tioned papers builds over inconsistent membership lists, nor did they propose

fully-distributed election protocols. Some work [49, 50] provides probabilis-

tic safety property for distributed protocols atop weak membership, while

8

we provide 100% safety. Ad-hoc routing [36] uses gossip [37, 51] to spread

information fast, but requires flooding to maintain safety. To the best of our

knowledge, our work is the first to explore the challenges and mismatches

of layering strongly-consistent distributed protocols directly over weak mem-

bership layers.

Churn is a common phenomenon in peer-to-peer systems and past work has

built distributed hash tables and applications that are churn-tolerant [52, 53],

yet the notions of safety provided therein are merely probabilistic or best-

effort (while we provably guarantee safety). Classical leader election solu-

tions such as the Bully Algorithm [54] or consensus-based election protocols

like Zookeeper [23], Paxos [55], and Raft [32], assume full and correct mem-

bership. Election in mobile ad-hoc networks that are subject to partitions

exists [56, 57], yet they assume FIFO links and consistency within each par-

tition (these partition-tolerant techniques can be applied orthogonally to us

as we do not consider partitions). Self-stabilizing leader election [58, 59, 60]

aims to recover from transient faults, but they assume that the underlying

“overlay” (ring, tree, etc.) stabilizes after failures. We assume no mem-

bership convergence, and our membership lists can be inconsistent all the

time.

2.5 System Model

For each of our contributions, we assume a full-asynchronous system where

messages have arbitrary delay but are delivered eventually, and nodes may

crash by failing. Like classical literature, we assume a known upper-bound

f on the number of simultaneously failed nodes (after the protocol quiesces,

further f nodes may fail).

For our churn-tolerant leader election protocols and churn estimation, we

assume a weakly-consistent membership protocol [25, 28, 13] runs in the

background at each node and continually updates its local membership. Each

node in the system can join, leave, or fail (crash) arbitrarily, and the mem-

bership protocol only provides the property that such updates are eventually

propagated to non-faulty nodes. We also assume multicast is eventually re-

liable, e.g., via gossip [61] or R-multicast [62]. To summarize: in the rest

of this paper, a churned setting means a weakly-consistent membership and

9

eventually reliable multicast running at each node.

10

CHAPTER 3

MEDLEY-F MEMBERSHIP SERVICE

In this chapter, we present a weakly-consistent membership service for IoT

settings, Medley-F, which is an enhanced version of Medley. Medley-F uti-

lizes two strategies—active and passive—to reduce the failure detection tail

time of Medley. Sec. 3.1 summarizes the main idea of Medley and discusses

the motivation of introducing Medley-F. Sec. 3.2 presents the algorithm de-

sign of the two strategies.

3.1 Motivation

Medley [22, 13] is a fully-distributed failure detector for IoT deployments

running over a wireless ad-hoc network. It is the first fully-decentralized

membership service for IoT distributed systems, which maintains a dynamic

membership list containing a list of currently alive nodes in the system at

each IoT node. This allows fully distributed applications to be built atop

Medley.

The base Medley system [22] proposes a new spatial ping-target selection

strategy that prefers nearer nodes but also has some probability of pinging

farther nodes. A node chooses to ping a given target with probability propor-

tional to 1
rm

, where r is the distance to the target and m is a fixed exponent.

The hybrid of the uniform-random and the always-local target selection uti-

lizes a mix of nearer and farther ping targets to gain the advantages of both

approaches. The proposed spatial ping-target selection strategy reduces net-

work traffic, avoids congestion, and provides load balancing. Medley also

proposes a time-bounded design to restrict the upper bound of failure detec-

tion time.

One of the key issues in the base Medley system is the long detection time

of unlucky nodes in the system. These unlucky nodes are affected by uneven

11

distribution and the network is not aware of their presence. The longer

Medley tries to reduce communication costs, the more difficult it becomes to

identify these problematic nodes, resulting in a longer delay.

Figure 3.1: Medley first detection time of failure with different exponent m

Fig. 3.1 shows the first detection time of failure for Medley with different

exponent m and different topology. As m increases, the failure detection

time increases exponentially for random and cluster topology. These come

from the long tail of the detection time of unlucky nodes. In Medley-F [13],

we aim to reduce the detection time of unlucky nodes while still utilizing the

benefit of low communication cost under high exponent m.

3.2 Medley-F: Feedback-Based Target Selection

Medley, as described so far, may have a long tail of detection time for a

small subset of nodes. We define an unlucky node ni as one whose neighbors

have all their (respective) neighbors much closer to themselves, while ni is

relatively far from each of its neighbors. When the exponent m is high and

pings stay local, unlucky nodes have fewer pingers. If an unlucky node fails,

its detection time will be longer than other nodes. To reduce this tail, we

explore a variant of Medley, called Medley-F. Medley-F consists of competing

approaches: an active approach wherein a node actively realizes it is unlucky

and a passive approach wherein other nodes realize the unlucky node. In

both cases, the modified Medley adjusts the rate of pinging to the unlucky

node—permanently for the active approach and temporarily for the passive

approach.

12

3.2.1 Active Feedback Strategy

In active-feedback, every node actively monitors itself and reports its unluck-

iness to its 1-hop neighbors. These neighbors adjust their pinging probability

to the unlucky node.

Member Self Monitoring Each node estimates, via exponential averag-

ing, the average interval of incoming pings. Given a new measurement M

of pinging interval, Medley-F updates the estimate pinging interval I via

exponential averaging: I ← (1 − α) · I + α ·M . We use α = 0.125 in our

implementation. If the estimate I is above ACTIVE TIMEOUT, Mi considers

itself as UNLUCKY and reports to all its direct neighbors. We recommend set-

ting ACTIVE TIMEOUT to be less than suspicion timeout (e.g. half of suspicion

timeout), so that an unlucky node can report its unluckiness and potentially

update its aliveness to other nodes in a timely manner.

Unlucky handling When a node Mj receives an UNLUCKY report from a

1-hop neighbor Mi, Mj uses Algo. 1 to boost the pinging probability of Mi

to reach the average pinging rate for other non-unlucky (or lucky) nodes.

We describe Algo. 1 via an example. Consider a node M5 is maintaining

pinging probabilities of [0.43, 0.3, 0.17, 0.1] for its four neighbors M1 - M4.

Say M5 receives an UNLUCKY report from M4 (p = 0.1). Following Lines 1 - 3,

the target (average) pinging probability from M5 to M4 will be (0.43+ 0.3+

0.17 + 0.1)/4 = 0.25. Because M1 and M2 have above average probabilities,

they become probability sponsors (Line 5). The excess probability of 0.18 +

0.05 = 0.23 is provided to boost M4 from 0.1 to 0.25. Since 0.23 > 0.15,

M1 and M2 respectively and proportionally provide 0.18 × 0.15
0.23

= 0.12 and

0.05× 0.15
0.23

= 0.03. The final probability list at M5 is [0.31, 0.27, 0.17, 0.25].

This approach boosts unlucky nodes and reduces pinging only to nodes

with already-high ping rates.

3.2.2 Passive Feedback Strategy

The passive-feedback strategy is the reverse of active-feedback, and uses

neighbors to detect an unlucky node. In passive-feedback, each node Mi

actively maintains timestamp information about the last contact from other

13

Algorithm 1 Probability modification for a single node Mj after receiving
UNLUCKY reports of Mi

Require: Mj’s Runtime Probability List PMj

1: ▷ Get target probability for unlucky node Mi

2: Pabove = all pk in PMj
with pk > pMi

or k = Mi

3: ptarget = mean(Pabove)

4: ▷ Migrate probability from high-prob nodes to Mi

5: Psponsor = all (pk - ptarget) in PMj
with pk > ptarget

6: for each pk in Psponsor do

7: pk -= (pk - ptarget) ×
ptarget−pMi

sum(Psponsor)

8: end for
9: pMi

= ptarget

members. Such contact may be either through a direct contact where 1-hop

neighbor sends or forwards a message, or via an indirect contact where a

multi-hop member originates a message. To reduce the message payload, we

do not keep information for intermediate routing path nodes. When select-

ing the next ping target, Mi flips a coin with probability ppassive, and if it

turns up heads, Mi does a passive check. During a passive check, Mi looks

at its membership list and checks whether any node has not contacted Mi in

the last PASSIVE TIMEOUT time units. If any, Mi suspects it as unlucky and

randomly selects one of them as the next ping target. In our implementation

we set to a less aggressive ppassive = 0.1.

In active-feedback, the unlucky members that a node gets notified about

are always 1-hop neighbors, while in passive-feedback the reported unlucky

nodes are often “far” members whose information tends to stay local (at high

m). While pinging such far nodes involves more hop-to-hop communication,

passive-feedback can: i) still save considerable bandwidth compared to basic

SWIM since the majority of ping targets are still local, and ii) avoid extra

messages to report unlucky nodes that active-feedback needs.

14

CHAPTER 4

MEDLEY-F EXPERIMENTS

In this chapter, we present the experiment results of Medley-F. The re-

sults include the comparison between base Medley, Active-feedback, Passive-

feedback, and both strategies combined. Sec. 4.1 shows the simulation re-

sults, and Sec. 4.2 shows the Raspberry Pi deployment results.

4.1 Simulation

4.1.1 Simulation Results

We developed a second matching simulator, in Java, that uses the same code

as our Raspberry Pi deployment but without NS3’s fine-grained link layer

modeling. We evaluated Medley-F in two topologies: i) Random (nodes are

randomly placed), and ii) Cluster (there are 5 clusters with 7, 7, 9, 10, 16

nodes respectively where each cluster is bounded by a fixed square area),

each with 49 nodes deployed in 15m× 15m area. The communication radius

for each node is 4m. The random and cluster topologies are newly generated

(new seed) for each trial run. The default number of members chosen as

indirect pinger was 3, and protocol period was 20 time units. The suspicion

timeout, ACTIVE TIMEOUT and PASSIVE TIMEOUT were set as 160, 80, and

400 time units in the experiments respectively. Each data point reflects

data from 1000 independent runs. In every period, the probability to apply

passive-feedback is 10%.

We define first detection time as the time gap between a failure occurring

and the first non-faulty node detecting this failure (after suspicion timeout).

We measure dissemination time, the time for all nodes to know about a failure

after the first detection. Fig. 4.1 stacks dissemination time atop detection

time. For a fair comparison, instead of raw first detection time, in (only)

15

0.0 0.2
5 0.5 0.7

5 1.0 1.2
5 1.5 1.7

5 2.0 2.2
5 2.5 2.7

5 3.0 3.2
5 3.5 3.7

5 4.0 4.2
5 4.5 4.7

5 5.0

Exponent m

0

100

200

300

Fa
ilu

re
 d

et
ec

tio
n

tim
e

(t
im

e
un

it)

Medley, dfdt
Medley, dsm
active, dfdt
active, dsm

passive, dfdt
passive, dsm
act & pas, dfdt
act & pas, dsm

Figure 4.1: Differential first detection time (dfdt), stacked
dissemination time (dsm). Various m and optimizations. Random
topology.

this plot we use differential first detection time (dfdt) = (first detection time)

minus (minimum detection time). The (theoretical) minimum detection time

in our deployment is 180 time units: a sum of detection timeout of 20 time

units and suspicion timeout of 160 time units.

We find that active-feedback (only) is the most effective at reducing dfdt

by up to 31.1%. Active and passive together reduce by 27.4% and passive-

feedback-only by 11.5%. Combining both active and passive provides 54.6%

reduction in dissemination time (dsm), with passive-only at 44.5% and active-

only at 31.6%. Intuitively, active-feedback-only offers the shortest and sta-

blest first detection time even under high m, since it helps each unlucky

node get frequent pings. For dissemination, intuitively, the combination of

active-feedback spreading locally and passive-feedback spreading far away, is

fastest. Overall, at m=3, we recommend combining active and passive, to

reduce P95 dfdt by 31.2% and dsm by 47.2%.

Simultaneous Failures: We simultaneously fail 50% (randomly chosen)

nodes (24 out of 49) in the Random topology. Fig. 4.2 shows the average

first detection time. The lower and higher error bars are respectively the

earliest and latest time any failure is detected, averaged across runs.

1 4 8 12 16 20 24
Number of failures

0

200

400

600

Fi
rs

t d
et

ec
tio

n
tim

e
(t

im
e

un
it)

base SWIM(m=0)
Medley (m=3)
act & pas (m=3)

Figure 4.2: Failure detection time under simultaneous failures
(Random topology).

16

The average (raw) first detection time of Medley and its variants rises

gently asm and number of failures increase. Asm rises, a failed unlucky node

waits longer to become a ping target because pings stay local. Now, define

the detection gap as the percentage by which detection time is prolonged

under massive failure (50% nodes) vs. just a single failure scenario. In base

SWIM (at m = 0), the detection gap is only 12.3%– due to the uniform

randomness, a failed node has a high probability 1− (48
49
)24 ≃ 39.0% of being

pinged each round after failure. In Medley, the detection gap is 20.6% due to

localized pings and unlucky nodes’ higher detection times. Applying active

and passive feedback reduces the gap to 15.8%. Note that Medley’s slightly

longer detections come with massive bandwidth savings, which will be shown

later in this section.

Domain Failure: Next, we explore the effect of massive failures in an area

(e.g., connected to a power breaker). 49 nodes are located in five clusters in

the square area of interest. Each run randomly fails a whole cluster.

0.0 1.0 2.0 3.0 4.0 5.0
Exponent m

0

250

500

750

1000

Fi
rs

t d
et

ec
tio

n
tim

e
(t

im
e

un
it)

Medley
active
passive
act & pas

Figure 4.3: Failure detection time under domain failures (Cluster
topology).

From Fig. 4.3 (bars similar to Fig. 4.2) we observe that the average first

detection time stays low when m < 2, and as expected, it increases as m

rises. The increase in detection time withm is because of the ping localization

under higher m, implying that the typical way a detection proceeds at higher

m is from the edges of the failed cluster towards the cluster’s middle. In

comparison, lower values of m would detect nodes near the middle of the

failed cluster much quicker due to the higher probability of far-away non-

faulty pingers. Under high m, both active and passive reduce detection time,

with passive more effective since it provides a higher chance to detect nodes

near the “middle” of the failed cluster.

17

Fig. 4.4 shows the CDF of the hop count of messages. Point(x, y) means y%

of messages travel fewer than x hops. As expected, lowerm (basic SWIM with

uniform pinging) incurs far more hops, while Medley localizes traffic. Active

feedback does not affect traffic much, since the ping probability modification

occurs only among nodes with already-high pinging probabilities, i.e., already

close to pinger. Passive feedback raises traffic as farther nodes are affected.

0 1 2 3 4 5 6
Hop number

0

25

50

75

100

C
D

F
(%

)

base SWIM (m=0)
Medley (m=3)
active (m=3)
passive (m=3)
act & pas (m=3)

Figure 4.4: CDF of hop numbers that messages travel under
different strategies in Random topology.

Since Medley’s goal is to minimize both communication cost (messages

sent, counting multiple hops) and detection time, we measure the square root

of their product in Fig. 4.5, for Random topology. Each experimental run

was identically long at 300K time units, so trends would remain unchanged

if we replaced communication cost, i.e., messages, with bandwidth use, i.e.,

messages per second, or messages per second per hop. Medley’s product

cost (lower is better) falls quickly as m goes from 0 to 3, and then slowly

rises. At lower m, Medley pings faraway nodes more frequently. Rising

m increases detection time, yet the associated communication drop (due

to localization) is faster. At higher m, communication cost reduction slows

down, and thus detection time increase dominates. Compared to base SWIM

(m = 0), Medley’s product cost is 35.2% lower.

With active-feedback, Medley-F’s product cost (underm=3) is 37.8% lower

than base SWIM, as active-feedback lowers communication cost effectively.

Applying passive-feedback, and active+passive, do not bring higher benefits,

since passive sends faraway pings. However, product cost is still lowered by

up to 30% and 31.2% respectively compared to basic SWIM. At m > 3, in all

feedback-based strategies, communication reduction balances out detection

18

time increase.

0 1 2 3 4 5
Exponent m

25000

30000

35000

40000

45000

50000
sq

rt
(D

et
ec

tio
n

T
im

e
×

C
om

m
un

ic
at

io
n

C
os

t) Medley
active
passive
act & pas

Figure 4.5: Average failure detection time × Communication cost,
Square Root (Random topology). Lower is better.

4.1.2 Scalability

32 64 128 256 512 1024 2048
Number of servers m

0

100

200

300

Fa
ilu

re
 d

et
ec

tio
n

tim
e

(t
im

e
un

it)

Medley, dfdt
Medley, mdsm
active, dfdt
active, mdsm

passive, dfdt
passive, mdsm
act & pas, dfdt
act & pas, mdsm

32 64 128 256 512 1024 2048
Number of servers m

0.0

0.5

Incom
plete

D
issem

ination (%
)

Medley
active

passive
act & pas

Figure 4.6: Differential first detection time (dfdt), and stacked
median dissemination time (mdsm), under different network sizes.
For transparency, lower plot shows % nodes that does not receive
dissemination before simulation ends.

We evaluated the scalability of Medley and Medley-F up to N = 2048

nodes under m = 3, Random topologies, and in a square area, with fixed

density of 0.22 node/sq meter. Fig. 4.6 shows: a) dfdt: first detection time

(same as Fig. 4.1), and b) msdm: median dissemination time (stacked atop

19

dfdt). At large N, runs took long (e.g., N=2048 took 40 min per run, and

thus 5 days for the full experiment), and so we truncate these experiments.

While Medley is complete, for full transparency of results we also show the

incomplete dissemination (due to experiment truncation) in the lower part

of the plot. We plot the median and also plot standard deviation bars. Each

data point in the plot is from 1000 runs, with the exception of 200 simulation

runs at N = 2048.

We observe that: a) detection time is constant and insensitive to system

size, b) median dissemination time increases logarithmically with system

size (note the logarithmic x axis), and c) both active and passive strategies

reduce dissemination time, with passive being both faster and able to reduce

incomplete dissemination.

4.1.3 Performance Under Mobility

0 2 4 8 16
10% of nodes moved

28k

32k

36k

40k

sq
rt

(D
et

ec
tio

n
Ti

m
e

×
C

om
m

un
ic

at
io

n
C

os
t)

0 2 4 8 16
20% of nodes moved

0 2 4 8 16
40% of nodes moved

Maximum distance of nodes moved (m)

Medley
Medley_fr

active
active_fr

passive
passive_fr

act_pas
act_pas_fr

Figure 4.7: Failure detection under Mobility. Solid lines show Medley
operating with stale internal data structures after movement, while dotted
lines (fr) represent Medley with fresh data structures after movement.

While Medley is intended for static topologies, we show that it is tolerant

to moderate amounts of mobility. The experiment in Fig. 4.7 starts with

49 nodes in a random topology over a 15m × 15m area. Each run starts

Medley in a new topology and reaches a steady state. Then we instantly

move a fraction of the nodes in random directions by distances randomly

uniformly chosen among [0,min(X meters, distance to edge of square)] (X

is the x axis value on the plots). With this move, we do not update Medley’s

internal topology-related data at any nodes: distances, ping probabilities,

etc., all remain stale from the pre-move topology. However, routing tables

20

are updated post-move, as would be expected in a mobile network so that

packets can be routed correctly.

In Fig. 4.7, the solid lines show the post-move performance of Medley, op-

erating still with stale (pre-move) internal data structures. Dotted lines show

Medley with corrected post-move internal data. Essentially, the gap between

the solid and dotted lines shows the effect of Medley continuing with stale

data structures. We observe that: a) at small mobility up to X=4 meters,

even with up to 40% of nodes moved, stale data does not affect Medley per-

formance; b) when few nodes move (10% plot), larger mobility distances can

be tolerated—the metric rises by at most 7.1% at X=16; c) when more nodes

move (40% plot), metric degradation is worse at 35% at X=16. Overall, we

conclude that: 1) moderate mobility degrades Medley performance only mod-

erately, and 2) Medley continues offering low communication and detection

times even if its internal data (ping distances and hence ping probabilities)

remain stale.

4.2 Deployment

We implemented a prototype of Medley in the Raspberry Pi (RP) 4 [63]

environment. Our Java implementation was around 3000 lines of code, under

Raspbian 4.19. We deployed Medley in a network of 16 IoT devices in our

lab space. Figs. 4.8a and 4.8b show a photograph and a map of one of our

topologies. This random topology was in a 6m× 6m area (grid lines only for

reference purposes). Each device was a Raspberry Pi 4 model B, with 2GB

LPDDR4 RAM and Broadcom BCM2711, 1.5 GHz quad-core Cortex-A72

CPU. While Medley works modularly with any ad-hoc routing protocol, for

concreteness we use OLSR routing [64] due to its ease of configurability for

Pi4s, and popularity in discussion forum posts. Since the signal strength of

Pis were too strong to make multi-hop routing with respect to the limited

deployment area, we attenuated each Pi by both: a) consistently wrapping

in aluminum foil, and b) setting transmit power to 15 dBm, to force more

multi-hop transmissions. Red lines Fig. 4.8b is a screenshot of routine paths.

Prior to these experiments, we performed benchmark experiments to verify

that this attenuation was stable and consistent across Pis.

From Fig. 4.9 we observe that failure detection time and dissemination time

21

(a) Lab placement

0 1 2 3 4 5 6
x axis

0

1

2

3

4

5

6

y
ax

is

0

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

(b) Deployment topology (Random)

Figure 4.8: Topology of Raspberry Pi deployment.

both increase as m becomes larger. (The plot used 32 data points per failure,

with average and standard deviation shown.) This is because disseminating

failure information of unlucky nodes (e.g., nodes 0, 9 in Fig. 4.8) takes a

while since spatial pinging (hence piggybacking of failure information) stays

largely local especially at high m. Similar to simulation results, both active-

feedback and passive-feedback produce benefits for first detection time and

dissemination time. From the simulation (Sec. 4.1.1), we expected active-

feedback to work the best for first detection time and passive-feedback to

be effective on dissemination latency reduction. In the deployment, active-

feedback and applying both strategies do act as expected. However, at high

m, passive-feedback performs poorly on dissemination time, because benefits

of multi-hop dissemination do not emerge in our smaller deployment scales.

passive-feedback may only be more preferable at larger scales.

22

0 1 2 3 4 5
Exponent m

10

20

30

40

50

D
et

ec
tio

n
Ti

m
e

(s
)

naive, fdt
naive, dsm

active, fdt
active, dsm

passive, fdt
passive, dsm

act_pas, fdt
act_pas, dsm

Figure 4.9: First failure detection time and dissemination time for
Raspberry Pi experiments.

23

CHAPTER 5

CHURN-TOLERANT LEADER ELECTION

In this chapter, we present our churn-tolerant leader election protocols, which

can be run on top of any weakly-consistent membership. Sec. 5.1 presents

the motivation. Sec. 5.2 presents the detailed protocol designs, and Sec. 5.3

analyzes the protocols formally.

5.1 Motivation

Classical solutions to leader election [49, 23, 55, 32, 54, 56, 57, 65, 66] assume

a “stable” membership (i.e., “strongly-consistent membership”), wherein ev-

ery node knows all other nodes, and, if any node joins, leaves, or fails, the

underlying membership protocol sends an instantaneous update to all non-

faulty nodes. However, inconsistencies in membership lists are unavoidable

in asynchronous edge systems since an update (node join, leave, or failure)

cannot instantly propagate to all nodes: network latencies are non-zero and

vary, while timeouts for failure detection (e.g., via heartbeating [25] or ping-

ack protocols [28, 13]) are not synchronized across nodes.

We aim to solve leader election in such churned edge environments where

nodes continuously join, leave, and fail (by crashing only 1). Concretely, our

leader election protocols can be layered atop an arbitrary weakly-consistent

membership protocol such as gossip-style heartbeating [25], SWIM [28], or

Medley [13]. These weakly-consistent membership protocols detect failures

and spread membership updates quickly, yet they only provide eventual con-

sistency guarantees, i.e., a membership update (join, leave, or failure) is

received only eventually at all non-faulty nodes, and in an arbitrary order.

Due to their scalability, weakly-consistent membership protocols are an ap-

propriate choice for edge computing settings.

1Fail-stop model only. This paper does not consider Byzantine failures.

24

The problem of churn-tolerant leader election is non-trivial. Any leader

election protocols should satisfy both the liveness and safety property:

Definition 3. Liveness: Protocol terminates, i.e., each alive node eventu-

ally elects a leader (sets its local leader variable to a non-null value).

Definition 4. Safety: At the end of the leader election, each alive node

only sets its local leader variable to that unique non-faulty node which has

the lowest hash of all non-faulty nodes currently in the system.

Given strongly-consistent membership, a group can quickly elect a leader:

each node hashes all IDs present in its local membership list and selects as

leader node whose ID has the lowest hash [67, 49, 13]. With identical and

correct membership lists (strong), everyone elects the same leader, without

messages. However, if membership lists are inconsistent (weak), the would-

be leader may be unknown at some nodes, thus multiple leaders may be

elected, violating safety. Thus, a new churn-tolerant variant of this protocol

is needed. (For simplicity the rest of this paper uses the lowest hash ID as the

leader selection criteria, but this can be replaced by an arbitrary attribute

of choice, and our results still apply.)

5.2 Protocol Design

In this section, we present our four leader election protocols for churned

settings [18]. We first define the churn value c that is used by our protocols.

Denote the total number of nodes in the system as N . Let a given node

Mi be missing in the membership lists of ci other nodes. We assume that

the maximum of all ci values is bounded from above by a known value c

(analogous to the classical assumption of f failures), i.e.,

max({ci|1 ≤ i ≤ N}) ≤ c

We aim to design an election protocol that provides safety for a given maxi-

mum value of c—we call such an election as a c-tolerant election protocol (or

more precisely (c,f)-tolerant). Our notion of c-tolerance handles missing en-

tries in membership lists, thus generalizing the traditional failure (f)-tolerant

25

protocol that deals with extra entries (nodes that are failed but not yet de-

tected).

In practice, values of c are in fact small. Table 5.1 shows 5-minute runs

of the Medley failure detector [13] with 3 different topologies, system sizes,

and message drop rates. We observe that the calculated c(= max({ci|1 ≤
i ≤ N})) values are small. For message loss rates at or under 5%, c values

never exceed 10% of N . Hence we assume the membership graph is strongly

connected, not partitioned, and that c is small.

Table 5.1: c values (from 5-minute Medley [13] runs) stay small across
different configurations

Topology Type Topology Size Message Drop Rate c

Grid 49 0.05 4

Cluster 49 0.05 4

Random 49 0.05 4

Random 49 0.1 7

Random 49 0.15 10

Random 49 0.2 13

Random 32 0.05 2

Random 64 0.05 5

Random 128 0.05 9

Random 256 0.05 17

5.2.1 Base Protocol

We first observe that in order to minimize message complexity, the initiator

must communicate with the least number of nodes, to safely make a decision

about who the leader is.

Assume node Mi is the would-be (or presumptive) leader (i.e., the non-

faulty node with the lowest hash in the system, though other nodes may not

know it yet). Assume no failed nodes at first. By our assumption, Mi may be

missing in up to c other nodes’ membership lists. Thus, our protocol has the

initiator send a Query message to at least (c+1) nodes, selected arbitrarily,

which then send back a Response message with their lowest known hash

node (from their respective membership lists). By definition, at least one of

the (c+ 1) responses will contain the would-be leader Mi.

26

Next, with up to f failures, some of the nodes contacted by the initiator

may not respond. Thus we increase the number of nodes that the initiator

contacts to (c+f+1) nodes (selected arbitrarily) so that the initiator receives

at least (c+ 1) responses.

Once the initiator calculates the leader, it sends the would-be leader a

NotifyLeader message. Upon receiving this, the leader knows it is the

leader, and it multicasts a Leader message to the entire group.

This Base Protocol is depicted formally in Algorithm 2. The Timeout in

line 14 is set based on the expected round-trip time so that if the would-be

leader failed during the election run, a new election is started.

Algorithm 2 Base Protocol

1: function InitiateElection // At Initiator
2: id←∞, receivedIds← ∅
3: Send Query to arbitrary c+ f + 1 nodes
4: while size(receivedIds) < c+ 1 do
5: if no new Response after Timeout then
6: Send Query to c+ f +1− size(receivedIds) nodes excluding

receivedIds
7: end if
8: newId← Response from node i
9: receivedIds.add(i)

10: id← min(id, newId)
11: end while
12: Send NotifyLeader to node id
13: if No Leader message from id after Timeout then
14: InitiateElection()
15: end if
16: end function
17:

18: function RecvMessage(msg from node i) // Any Node
19: if msg is of type Query then
20: Send Response (← lowest hash node) to node i
21: else if msg is of type NotifyLeader then
22: Multicast Leader
23: else if msg is of type Leader then
24: Mark node i as leader
25: end if
26: end function

Fig. 5.1 depicts an example of the Base Protocol with 4 nodes. We use

c = 2, f = 0, and node 3 is the initiator.

27

Membership

0
1
2 0

Membership

1
2
3

1

Membership

0
1
2 2

Membership

1
2
3

3
c = 2
f = 0

c + f + 1 = 3

0

1

2

3
Query

Query

Initiator

0

1

2

3
Response {1}

Lowest hash: 1

0

1

2

3
Lowest hash: 1

Response {1}

0

1

2

3
Lowest hash: 0

Response {0}
0

1

2

3

NotifyLeader

Multicast Leader

Query

Figure 5.1: Base Protocol Example

5.2.2 Optimistic Protocol

The Base Protocol can be slow in the common case when membership lists

are nearly consistent. To converge quickly in this optimistic case, we present

the Optimistic variant shown in Algorithm 3. The key idea is for the initiator

to “stream” the leader calculation—whenever a new Response is received,

the leader is re-calculated and, if it changes, a new NotifyLeader message

is sent to the newly elected leader (which then multicasts Leader to the

group). Nodes may receive multiple Leader messages and use only the

lowest hash value node as the leader.

If membership lists are nearly consistent, the Optimistic Protocol converges

quickly, because one of the early Responsemessages received at the initiator

will contain the would-be leader and further NotifyLeader messages will

not be sent.

5.2.3 Preferred Protocol

Some applications additionally need to elect the lowest hash leader who is

also healthy, i.e., is being suspected less often by other nodes’ failure detec-

tors as a false positive. Our third protocol, called Preferred Protocol (Algo-

rithm 4), has each Response message contain both the top (parameterized)

y unhealthy nodes and the lowest (parameterized) x hash nodes. (In our

28

Algorithm 3 Optimistic Protocol

1: function InitiateElection // At Initiator
2: id←∞, receivedIds← ∅
3: Send Query to arbitrary c+ f + 1 nodes
4: while size(receivedIds) < c+ 1 do
5: if no new Response after Timeout then
6: Send Query to c+ f +1− size(receivedIds) nodes excluding

receivedIds
7: end if
8: newId← Response from node i
9: receivedIds.add(i)

10: if newId < id then
11: id← newId
12: Send NotifyLeader to node id
13: end if
14: end while
15: if No Leader message from id after Timeout then
16: InitiateElection()
17: end if
18: end function
19:

20: function RecvMessage is identical to the Base Protocol

29

implementation, typical values are x = y = 5.) The health of a node can be

calculated in an application-defined way: possibilities include metrics such as

false positive count [25] or suspicion counts (in SWIM [28] or Medley [13])—

these metrics are readily available from the membership protocol itself. The

initiator calculates the set leaders: by taking the union of all received lowest

hash ID nodes, and removing the union of all received unhealthy nodes. The

initiator uses the lowest hash node from leaders as the leader (the rest of

the protocol remains unchanged). If leaders = ∅, the protocol retries by

increasing x (GetNextX) and reducing y (GetNextY).

5.2.4 Hybrid Protocol: Combining Optimistic and Preferred

Optimism and Preference are orthogonal and our Hybrid Protocol in Algo-

rithm 5 combines both. Whenever the initiator receives a new Response,

it calculates the lowest hash node with unhealthy nodes excluded. If this re-

sults in a leader change, a new NotifyLeader is sent to the newly elected

leader. This protocol converges quickly if membership lists happen to be

mostly consistent system-wide.

Example—Hybrid Protocol: In Fig. 5.2 there are 5 nodes (with re-

spective hash values 0, 1, 2, 3, 4), and the parameters are set as: x← 2, y ←
2, c← 2, f ← 0, and c+ f + 1← 3. The unhealthiness metric takes integer

values. Consider the following snapshot of the system operation. For each

line, the first number denotes which node’s membership list we are looking

at, and the corresponding dictionary of (key : value) pairs indicate (node :

unhealthiness metric) pairs:

0 : {1 : 2, 2 : 1, 3 : 4, 4 : 0}

1 : {0 : 5, 2 : 0, 3 : 2, 4 : 1}

2 : {0 : 2, 1 : 2, 3 : 3, 4 : 1}

3 : {0 : 3, 1 : 0, 2 : 2, 4 : 1}

4 : {0 : 0, 1 : 1, 2 : 0, 3 : 2}

Suppose node 4 is the initiator and it sends Query to nodes 0, 1, 4. They

reply back with their top y = 2 unhealthy nodes and the lowest x = 2 hash

30

Algorithm 4 Preferred Protocol

1: function InitiateElection(x, y) // At Initiator
2: candidates, excludes, receivedIds← ∅
3: Send Query{x, y} to arbitrary c+ f + 1 nodes
4: while size(receivedIds) < c+ 1 do
5: if no new Response after Timeout then
6: Send Query to c+ f +1− size(receivedIds) nodes excluding

receivedIds
7: end if
8: {candidate, exclude} ← Response from node i
9: receivedIds.add(i)

10: candidates← candidates ∪ candidate
11: excludes← excludes ∪ exclude
12: end while
13: leaders← candidates− excludes
14: if leaders = ∅ then
15: x←GetNextX(x), y ←GetNextY(y)
16: InitiateElection(x,y)
17: return
18: end if
19: id← min(leaders)
20: Send NotifyLeader to node id
21: if No Leader message from id after Timeout then
22: InitiateElection(x,y)
23: end if
24: end function
25:

26: function RecvMessage(msg from node i) // Any Node
27: if msg is of type Query then
28: {x, y} ← Query
29: exclude← top y unhealthy nodes
30: candidate← x lowest hash (excludes exclude)
31: Send Response{candidate, exclude} to node i
32: else if msg is of type NotifyLeader then
33: Multicast Leader
34: else if msg is of type Leader then
35: Mark node i as leader
36: end if
37: end function
38:

39: function GetNextX(x): return min(N, x+ 1)
40: function GetNextY(y): return max(0, y − 1)

31

Algorithm 5 Optimistic and Preferred (Hybrid) Protocol

1: function InitiateElection(x, y) // At Initiator
2: candidates, excludes, receivedIds← ∅, id←∞
3: Send Query{x, y} to arbitrary c+ f + 1 nodes
4: while size(receivedIds) < c+ 1 do
5: if no new Response after Timeout then
6: Send Query to c+ f +1− size(receivedIds) nodes excluding

receivedIds
7: end if
8: {candidate, exclude} ← Response from node i
9: receivedIds.add(i)

10: candidates← candidates ∪ candidate
11: excludes← excludes ∪ exclude
12: leaders← candidates− excludes
13: if leaders = ∅ then
14: x←GetNextX(x), y ←GetNextY(y)
15: InitiateElection(x,y)
16: return
17: end if
18: leaderId← min(leaders)
19: if id ! = leaderId then
20: id← leaderId
21: Send NotifyLeader to node id
22: end if
23: end while
24: if No Leader message from id after Timeout then
25: InitiateElection(x,y)
26: end if
27: end function
28:

29: function RecvMessage, GetNextX, and GetNextY are identical
to the Preferred Protocol

32

nodes. Below is one possible execution outcome of the Hybrid Protocol:

• Initiator receives Response from node 4

- excludes← {3 : 2, 1 : 1}

- candidates← {0, 2}

- leaders← {0, 2}

- Node 0 becomes the tentative leader and the initiator sends Noti-

fyLeader to node 0

- Node 0 multicasts Leader to everyone

• Initiator receives Response from node 0

- excludes← {3 : 6, 1 : 3}

- candidates← {0, 2}

- leaders← {0, 2}

- Node 0 remains the tentative leader

• Initiator receives Response from node 1

- excludes← {3 : 8, 0 : 5, 1 : 3}

- candidates← {2}

- leaders← {2}

- Node 2 becomes the tentative leader and the initiator sends Noti-

fyLeader to node 2

- Node 2 multicasts Leader to everyone

• At this point the initiator has received all the Response messages,

thus the confirmed leader is node 2

33

0

1

23

4

excludes

3
1

Node Unhealthy
2
1

0

1

23

4
Notify

Lead
er

Multicast
Leader

0

1

23

4
leaders: {0,2}

Resp
onse

{1:2, 3:4}

excludes

3
1

Node
6
3

Unhealthy

0

1

23

4

Query

Query

Initiator

Query

leaders: {0,2}

0

1

23

4
Response
{0:5, 3:2}

excludes

3
0
1

Node Unhealthy
8
5
3

leaders: {2}

Response
{3:2, 1:1}

0

1

23

4
NotifyLeader

Multicast
Leader

Figure 5.2: Hybrid Protocol Example

5.3 Formal Analysis

We formally analyze the properties of the four protocols. Readers may skip

this section without loss of continuity—for such readers, we provide here a

summary of our findings:

1. The Base Protocol and Optimistic Protocol both satisfy Safety and

elect the lowest hash ID node as the leader. (Note that the Preferred

Protocol and Hybrid Protocol may not elect the lowest hash ID leader

if it is unhealthy.)

34

2. All our four protocols (Base, Optimistic, Preferred, Hybrid) satisfy

Liveness: they complete and elect a leader.

3. The Base Protocol is optimal in message complexity.

4. The Preferred Protocol and Hybrid Protocol do not elect top unhealthy

nodes as leaders, with high probability.

Theorem 1. (Safety) Both the Base Protocol and Optimistic Protocol satisfy

Safety (as defined in Sec. 2.3)).

Proof. We prove this by contradiction. Assume the would-be leader is the

non-faulty node Mi (with lowest hash) but instead there exists at least one

node that sets another node Mj (j ̸= i) as its confirmed leader. This can

only occur if all the initiator’s received (c+1) responses contain Mj but not

Mi. However, Mi is missing in ci nodes’ membership lists, and hence this

implies that ci > c, which is a contradiction to the definition of c.

Theorem 2. (Liveness) If the initiator and would-be leader remain alive, all

our four protocols (Base, Optimistic, Preferred, Hybrid) satisfy Liveness (as

defined in Sec. 2.3)).

Proof. We prove the theorem by contradiction. Assume the leader is never

elected and the protocols do not finish. This may occur due to three reasons:

(1) If the initiator does not receive at least (c + 1) Response messages:

Since the initiator sends Query to (c + f + 1) arbitrary nodes and the

maximum number of failed nodes is f , at least (c + 1) nodes are alive and

will send back a Response. Because messages are eventually delivered, the

initiator receives at least (c+ 1) responses.

(2) If the initiator never receives Leader message from the lowest hash

node: Since multicast is reliable, this happens only if:

• The would-be leader is dead: in this case, the election will be restarted

after the initiator times out; or

• The would-be leader does not receive NotifyLeader: this cannot hap-

pen as messages are delivered eventually.

(3) For the Preferred Protocol and Hybrid Protocol, if leaders set (Al-

gorithm 4 and 5) is empty: Then the protocol will restart with the new

x and y values. If this keeps reoccurring then according to GetNextX

35

and GetNextY, eventually we have x = N and y = 0. Then, candidates

contains all the N nodes and excludes is empty, which makes leaders =

candidates− excludes = candidates non-empty. Thus, there will always be

a leader elected in this case.

Hence all four protocols satisfy Liveness.

Lemma 1. Assume unicast is reliable and nodes don’t fail. Then, the Base

Protocol involves (2 · (c+ f + 1) + 1) unicasts and 1 multicast.

Proof. The leader multicasts Leader only once at the end of the election

process. The initiator sends c + f + 1 Query messages to arbitrary nodes,

and these nodes will reply back with c + f + 1 Response messages. The

initiator also sends another NotifyLeader to the would-be leader.

Theorem 3. (Message Optimality) Assume unicast is reliable and nodes

don’t fail. Then (among all initiator-based election protocols) the Base Pro-

tocol is optimal in message complexity in order to satisfy Safety.

Proof. For any leader election protocol, we need at least 1 multicast message

to let everyone know the new leader. The single NotifyLeader unicast is

also necessary since the leader needs to be informed by the initiator that it

is the leader. Thus, at least 1 multicast and 1 unicast are required by any

election protocol.

Next, suppose there exists a leader election protocol that works with less

than 2 · (c + f + 1) unicast messages. We prove by contradiction that this

would violate Safety. Suppose only (c+f) nodes are contacted by the initiator

(and thus 2 · (c + f) total unicasts). If f of these nodes fail, the initiator

will only receive c replies. In the worst case scenario, the would-be leader

Mi (non-faulty node with the lowest hash) is absent in ci node’s membership

lists, and these are the c = ci nodes that send Response messages to the

initiator. This will result in a different node than Mi being elected as leader,

thus violating Safety. Therefore, we conclude that at least 2 · (c + f + 1)

unicasts are necessary.

Together with Lemma 1, this proves the theorem.

Since the Preferred Protocol and Hybrid Protocol may not elect the lowest

hash ID leader if it is unhealthy, we define:

Definition 5. Preference: The elected leader does not belong to the system-

wide top y unhealthy nodes.

36

Theorem 4. (Preference w.h.p.) With only a logarithmic number of mes-

sages, the Preferred Protocol and Hybrid Protocol satisfy Preference with high

probability (w.h.p.).

Proof. Denote r as the number of Response messages the initiator receives.

Denote p as the average percentage of nodes that belongs to system-wide

top-y unhealthy nodes but do not exist in an arbitrary Response message

(top-y unhealthy nodes in local membership lists). Then, the probability

that a given top-y system-wide unhealthy node will be in at least one of the

r Response is 1−pr. To achieve this with high probability> (1− 1
N
), we need

r > log1/p(N). This implies the Preferred Protocol and Hybrid Protocol only

require a logarithmic number of Response messages to satisfy Preference

w.h.p.

Theorem 4 in Practice: Practically, we observed that the value of p stays

small. Via multiple runs of Medley [13], we find that p only depends on the

topology size N (and is independent of topology and message drop rate). In

fact, Table 5.2 shows that p converges to 0.5 as N increases. Further, the

r values never exceed (c + 1). Since the initiator receives at least (c + 1)

Response messages, this suffices to satisfy Preference w.h.p.

Table 5.2: r and (c+ 1) values with different topology sizes

Topology Size N 32 49 64 128 256

p 0.34 0.43 0.48 0.5 0.5

r 3 5 6 7 8

c+ 1 3 5 6 10 18

37

CHAPTER 6

LEADER ELECTION EXPERIMENTS

In this chapter, we present the experiment results of Churn-tolerant leader

election protocols. The results include the comparison between the Base Pro-

tocol, Optimistic Protocol, Preferred Protocol, and Hybrid Protocol. Sec. 6.1

shows the simulation results, and Sec. 6.2 shows the Raspberry Pi deployment

results.

6.1 Trace-Driven Simulation

The research questions addressed by our trace-driven simulation in this sec-

tion are:

1. What is the bandwidth and leader election completion time for our four

c-tolerant election protocols?

2. How well do the Base Protocol and Optimistic Protocol satisfy Safety?

3. Do the Optimistic Protocol and Hybrid Protocol shorten the comple-

tion/convergence time?

4. How healthy are the leaders elected by the Preferred Protocol and

Hybrid Protocol?

We wrote and tested a custom simulator incorporating our four election

algorithms. Our custom simulator allows us more agility to vary parameters

than stock simulators (like NS-3) and also allows us to scale simulations

better. In our simulator, messages can be dropped or delayed. Because we

are dealing with ad-hoc routing topologies, packets are routed via Dijkstra’s

shortest path protocol.

Simulations are driven by real membership traces that we collected from

running a weakly-consistent membership protocol, Medley (code obtained

38

and run from the authors of [13]). We configured the membership protocol

to run with the identical network configuration (e.g., message drop rate,

topology, etc.) as our leader election protocols. We collect membership traces

only after its warm-up phase has finished. These traces are injected into our

election protocols—our simulator continually reads the latest membership list

at each node (along with information such as suspicion counts as a health

metric) and updates it, and our election protocol implementation has to

automatically cope with any changes.

Our default system size is 49 (we vary this). We evaluate using three

topologies: Grid topology (default 7x7 grid), Random, and Cluster (total of

5 clusters with 7, 7, 9, 10, and 16 nodes respectively). Topologies with 49

nodes are simulated in a 15m x 15m space. Topologies with other sizes have

a fixed node density of around 0.22 node/sq meter.

Each plotted data point is from 100 simulation runs using different seeds

and different initiators. Message delay on each hop is randomly chosen in

(0, 50] (time units), and the communication range is 4 meters. Default pa-

rameter values in Sec. 5.2’s pseudocode are: Timeout = 500 time units,

x = 5, and y = 5. We set the value of c according to Table 5.1.

In order to show the benefit of the Preferred Protocol and Hybrid Protocol,

our network simulator has higher drop rates for messages sent and received

by nodes with lower hash values. The consequence is that nodes with higher

hashes will be healthier than nodes with lower hash. This forces the protocols

to avoid electing the lowest hash node as the leader.

We show and discuss data for bandwidth, completion/convergence time,

and leader health.

6.1.1 Bandwidth

Fig. 6.1, 6.2, and 6.3, show the bandwidth for our four protocols, measured

as end-to-end bytes (summed across all hops for each packet’s route).

Among our four protocols, we observe that while the bandwidth of the

Base Protocol, Optimistic Protocol, and Preferred Protocol are similar, the

Hybrid Protocol incurs relatively more bandwidth. This is because the un-

healthiness information varies across nodes, and thus “top unhealthy” lists

may look different at different nodes. Consequently (in the Hybrid Proto-

39

col), received Response messages at the initiator may frequently update the

leader, leading to more Leadermulticast messages, and thus higher network

bandwidth.

Figure 6.1: Bandwidth with different topology types

Bandwidth rises linearly with message drop rate and system size, as ex-

pected (Fig. 6.2 and 6.3). Larger system sizes or higher message drop rates

naturally require higher values for c, thus increasing bandwidth via the

(c+f+1) Query and Response messages. Across different topology types,

the comparative trends do not vary much (Fig. 6.1).

Figure 6.2: Bandwidth with different drop rates

40

Figure 6.3: Bandwidth with different topology sizes

6.1.2 Completion Time (or Convergence Time)

The completion time of leader election is defined as the difference between

when the initiator initiates the election and when the last non-faulty node

knows the correct leader (i.e., receives Leader). Fig. 6.4, 6.5, and 6.6 show

the completion time across topology types, message drop rates, and system

sizes.

We observe that the completion time of the Base Protocol and Preferred

Protocol are large since both of them wait for all (c+1) Response messages

before notifying the leader. On the other hand, the completion time of the

Optimistic Protocol is 42.6% less than the Base Protocol on average, and

the completion time of the Hybrid Protocol is 33.3% less than the Preferred

Protocol on average. These small completion times of the Optimistic Protocol

and Hybrid Protocol indicate they are able to naturally leverage the existing

consistency across membership lists and converge faster.

Fig. 6.5 and 6.6 show that, as expected, higher message drop rates and

system sizes prolong completion times. Higher drop rates mean some mes-

sages (e.g., Query, Response) may be resent. Large system sizes mean

higher values of c and thus longer wait time for the initiator to get (c + 1)

responses.

41

Figure 6.4: Completion time with different topology types

Figure 6.5: Completion time with different drop rates

42

Figure 6.6: Completion time with different topology sizes

6.1.3 Leader Health

Recall that the Preferred Protocol and Hybrid Protocol (Sec. 5.2) are aimed

at optimizing the health of the leader, i.e., attempt to elect a leader that

is not among the top unhealthy nodes in the system, while the Optimistic

Protocol and Hybrid Protocol are aimed at finishing quickly.

We measure the implications of these optimizations by measuring three

different metrics: the number of times the leader is changed within the same

election run, the unhealthiness of the elected leader, and the hash rank of

the elected leader.

Leader Change Count: This is the number of times that a different leader

multicasts Leader message within the same election run. This metric mea-

sures the disruption to the application (running at nodes) which may need

to take actions (e.g., contacting the leader) right after it recognizes a new

leader. Fig. 6.7 shows that, as expected, the leader change count for both the

Base Protocol and Preferred Protocol are small (= 1, since they only send

one leader notification per run). The Optimistic Protocol has a small leader

change count because membership lists are largely consistent. The Hybrid

Protocol has the highest leader change count, increasing with message drop

rate—28% worse than the Base Protocol at 0.05 message drop rate, and 157%

worse at 0.2 drop rate. Hence, the tradeoff achieved by the Hybrid Protocol

is frequent leader changes (during the election) vs. a higher quality leader

(next paragraph).

43

Unhealthy Rank: This is the system-wide unhealthiness rank of the elected

leader, where a higher value means the leader is healthier (0 represents the

most unhealthy node and N represents the healthiest node in the system).

Fig. 6.8 shows that: (a) the Base Protocol and Optimistic Protocol may be

lucky and elect healthier leaders at low message drop rates (0.05) since many

nodes are healthy, but as the drop rate rises to 0.1 and beyond, these protocols

start electing largely unhealthy leaders, and (b) the Preferred Protocol and

Hybrid Protocol elect healthier leaders with 1.5× better healthiness ranks

than the Base Protocol at 0.05 message drop rate and 28.5× at 0.2 message

drop rate (the Optimistic Protocol is similar).

Hash Rank: This metric shows how close our protocol comes to electing the

“best attribute” (lowest hash) leader. Concretely, it is the rank of the leader

node hash, with 0 representing the lowest hash node (and N the highest

hash). Fig. 6.9 shows that both the Base Protocol and Optimistic Protocol

only elect node 0 (lowest hash ID), as expected. While the Preferred Protocol

and Hybrid Protocol elect higher hash ranks, the hash rank values stay low

and range from around 0.5 to 2.0 (out of large N)—this indicates that the

Preferred Protocol and Hybrid Protocol are able to elect healthy leaders (as

we saw in Fig. 6.8) while still being able to minimize the “best attribute”

(hash ID) of the elected leader.

Figure 6.7: Leader change count with different drop rates

44

Figure 6.8: Leader unhealthy rank with different drop rates

Figure 6.9: Leader hash rank with different drop rates

45

6.2 Deployment with Raspberry Pis

We implement our four c-tolerant leader election protocols for Raspberry

Pi 4 devices, using about 2500 lines of Java code. We reuse code from

the authors of the Medley system [13] as the membership layer (with their

default configuration parameters) and layer our election protocols atop it.

Separately, we also deployed Zookeeper [23] on the same Raspberry Pis, and

compare it against our protocols.

6.2.1 Raspberry Pi Deployment Results

Deployments involve a default of 16 Raspberry Pi 4 devices connected in an

ad-hoc mesh network. The topology is a 4x4 grid shown in Fig. 6.10b and

the actual lab placement is shown in Fig. 6.10a. Each device is a Raspberry

Pi 4 model B, with 2GB LPDDR4 RAM and Broadcom BCM2711, 1.5 GHz

quad-core Cortex-A72 CPU. Based on recommendations [13], we attenuate

the transmit power of each device to about 15 dBm. We use OLSRD for

packet routing due to its easy configurability and popularity.

(a) Lab placement (b) Deployment topology

Figure 6.10: Topology of Raspberry Pi deployment

The parameters and the network configurations are similar to those used in

the simulation results of Sec. 6.1. The c values are set to 2, 3, 5, 7 for message

drop rates 0.05, 0.1, 0.15, 0.2 respectively, based on our measurements from

5-minute runs of the failure detector [13].

Fig. 6.11 shows the completion time vs. message drop rates. Overall, the

46

comparative performance among the four protocols is similar to the simula-

tion results (Fig. 6.5), thus validating that our simulator of Sec. 6.1 success-

fully models practically observed behavior. We do observe that the comple-

tion time (across protocols) varies a bit less in the Pi deployment than in the

simulation. This is because the deployment topology is smaller (16 nodes)

compared to the simulation (49 nodes)—lower system size results in lower c

values and thus fewer messages.

Fig. 6.12 shows the number of leader change counts (during a given run) vs.

message drop rates. Again, the comparative trends parallel simulation results

(Fig. 6.7), with a couple of exceptions. We do observe that the leader change

count for the Optimistic Protocol is relatively higher than in the simulation

results. This is because the effective message drop rates in deployment are

higher than the drop rates we set, e.g., Raspberry Pis themselves can drop

packets even with message drop rate set to 0. This higher drop rate leads

to more missing entries in membership lists and thus more leader changes.

On the contrary, leader change count for the Hybrid Protocol is less than

in simulation at high drop rates—this is because the initiator receives fewer

Response (lower c) messages thus limiting the number of leader changes.

Figure 6.11: Completion time with different drop rates on Raspberry Pis

47

Figure 6.12: Leader change count with different drop rates on Raspberry Pis

6.2.2 Resource Utilization Comparison with Zookeeper

Carefully designed protocols for edge settings can offer significant benefits

over “stock” open-source software. To illustrate this, we compare against

a state-of-the-art coordination and election system. Specifically, we enabled

Zookeeper [23] to run on the Raspberry Pi 4 devices, and we compare against

our c-tolerant leader election protocol (our Hybrid Protocol) on the same

settings as Sec. 6.1 (16 Raspberry Pis connected in a 4x4 grid mesh). Both

Zookeeper and our c-tolerant election run continuously for around 10 minutes,

and we record their memory usage, CPU usage, and network traffic (via

tcpdump [68]). For Zookeeper, we set parameter values as suggested by the

official documentation [69] (tickT ime = 2000, initLimit = 5, syncLmit = 2).

Fig. 6.13 shows the memory utilization and Fig. 6.14 shows the CPU uti-

lization (averaged across all nodes). In the stable state (after time t = 100s),

our c-tolerant election utilizes 26.9% less CPU and 5.9% less memory than

Zookeeper. During the warm-up phase (t < 100s), there is a spike in memory

used by c-tolerant election when it runs the election, however even the spike

uses less than 4% memory and it’s less than 13% above the stable memory

usage.

Fig. 6.15 shows the total network bandwidth across all nodes during the

10-min run. The average bandwidth consumed by our c-tolerant election

protocol is 20 Kbps, which is 82.9% less than Zookeeper’s average bandwidth

(117 Kbps). Further, our c-tolerant election’s network usage is more stable

48

Figure 6.13: Memory Utilization Comparison

Figure 6.14: CPU Utilization Comparison

49

than Zookeeper, with a standard deviation over 10× lower: the respective

standard deviations are 2.1 Kbps and 25.1 Kbps.

Figure 6.15: Network Bandwidth Comparison

50

CHAPTER 7

ESTIMATING CHURN PARAMETER c

In this chapter, we aim to estimate the value of c accurately as the underlying

membership changes continuously. Sec. 7.1 presents the motivation. Sec. 7.2

presents the design of the two protocols: Z-score Sampling Protocol and

Feedback Protocol. Sec. 7.3 presents the simulation of our protocols as well

as the effect of underestimating churn c.

7.1 Motivation

Our churn-tolerant leader election protocols [18] are effective due to their

ability to utilize an appropriate value of c for different network configurations.

Underestimating c can lead to safety violations, where a node that does not

have the lowest hash may be elected as the leader. On the other hand,

overestimating c can result in unnecessary network bandwidth consumption,

as the protocols will need to send extraQuery andResponsemessages. For

instance, Table 5.1 presents the c values for several network configurations

running with Medley-F. However, these values may not be effective if some

parameters change, or the leader election protocol operates on top of another

membership service.

Our objective is to accurately estimate the value of c by employing two dif-

ferent protocols: the Z-score Sampling Protocol and the Feedback Protocol.

The Z-score Sampling Protocol obtains a sample of membership lists from

neighboring nodes and utilizes this information to estimate c. On the other

hand, the Feedback Protocol estimates c based on the number of different

proposed leaders during leader election. We have conducted simulations and

experiments to demonstrate the effectiveness of both protocols and the con-

sequences of underestimating c. Our aim is to estimate c dynamically as the

underlying membership changes. It is assumed that an initial value of c is

51

set before the protocol commences.

7.2 Protocol Design

7.2.1 Z-score Sampling Protocol

The Z-score Sampling Protocol centers on estimating the value of c by an-

alyzing membership lists from a small subset of nodes in the system. The

protocol is based on the underlying assumption that if a particular node Mi

is absent from the membership lists of other nodes, then the absence of Mi

is uniformly distributed across all nodes in the system. This allows for a

small sample of nodes to be representative of the entire network. While the

leader node is typically chosen to initiate the protocol for simplicity, any

node within the system can perform this function.

The Z-score Sampling Protocol is initiated by the leader node, who requests

membership lists from a randomly-selected subset of s nodes. Each node

responds with its full membership list, and the leader then identifies the node

(denoted as Mi) that is absent from the most membership lists. Assuming

that Mi is absent from k membership lists, the leader calculates an estimate

of c using the formula c = k ·N/s, where N is the total number of nodes in the

system. Once the estimate of c is calculated, the leader broadcasts this value

to the entire network. The specific steps of the Z-score Sampling Protocol

are described in Algorithm 6. If the membership of the network changes

continuously, the leader can run the protocol periodically to maintain an

accurate estimate of c.

An important consideration when implementing the Z-score Sampling Pro-

tocol is determining the appropriate sample size s. Suppose we aim to esti-

mate c within a margin of error ±E (expressed as a percentage of the true

value) with a confidence level of x, and let p be the probability that a node

is missing from a given membership list. In this case, the minimum required

sample size can be calculated using the following formula:

s = p× (1− p)× (
z

E
)2

52

Algorithm 6 Z-score Sampling Protocol

1: function InitiateSample(s) // At Leader
2: freqs← empty dictionary
3: Send SampleQuery to arbitrary s nodes
4: for msg in received SampleResponse do
5: membership← msg
6: for node in membership do
7: if node not in freqs then
8: freqs[node]← 0
9: end if

10: freqs[node]← freqs[node] + 1
11: end for
12: end for
13: k ← 0
14: for node in freqs do
15: k ← max(k,N − freqs[node])
16: end for
17: c← k ·N/s
18: Broadcast c to all nodes
19: end function
20:

21: function RecvMessage(msg from node i) // Any Node
22: if msg is of type SampleQuery then
23: Send SampleResponse (← entire membership) to node i
24: end if
25: end function

53

where

z = x+
1− x

2

is the z-score for confidence level x. Based on Table 5.1, we find that p is

at most 10% for most network configurations. Assuming p = 0.1, Table 7.1

provides a set of sample sizes s for different combinations of confidence levels

x and margins of error E. For instance, if a system comprises 1000 nodes

and we require the estimated c value to be within ±20 (equivalent to 5% of

1000) of the actual c value with a 90% confidence interval, the sample size

must be at least 32.

Table 7.1: s values with different confidence level x and marge of error E

E
x

90% 95%

2% 203 214

5% 32 34

10% 8 9

One disadvantage of the Z-score Sampling Protocol is that to achieve high

accuracy with high confidence, the required sample size can increase sig-

nificantly. Furthermore, the protocol does not leverage estimation results

obtained from multiple protocol runs, which can be wasteful if the system

needs to dynamically estimate c by running the Z-score Sampling Protocol

multiple times. To address these issues, we introduce the Feedback Protocol,

which will be discussed in the following subsection.

7.2.2 Feedback Protocol

The aim of the Feedback Protocol is to refine the estimate of c based on in-

termediate results obtained during the leader election process (via the Base

protocol and Optimistic protocol). The fundamental idea is that if the initia-

tor receives Response messages containing different candidates, the current

c value may be underestimated. Conversely, if the Response messages con-

tain only a single candidate, this suggests that the current c value is accurate

or potentially overestimated.

Once the leader election process is complete, each initiator sends a message

54

to the leader indicating whether they received multiple candidates. Specifi-

cally, an initiator sends the value 1 if they received only one candidate, and

2 otherwise. The leader then computes the average of all the received values

and assigns it to the variable d. Assuming the actual c value of the system is

denoted as c1, and the current c value estimated by the protocol is denoted

as c2, we can represent d as follows:

d = (1− p) · 2 + p · 1

= (1− (1− c1
N
)c2+1) · 2 + (1− c1

N
)c2+1 · 1

= 2− (1− c1
N
)c2+1

where

p = (1− c1
N
)c2+1

is the probability that a node is not missing in any of the (c2+1) Response

messages received by the initiator. By solving the equation, we get

c1 = N · (1− exp(
ln(2− d)

c2 + 1
))

Since the result from a single leader election run may be skewed, we set the

c2 value with an exponentially-weighted moving average:

c2 = α · c1 + (1− α) · c2 (7.1)

We set α = 0.1 for our protocol. The detailed protocol description is shown

in Algorithm 7.

The Feedback Protocol has a limitation in that each estimation necessi-

tates a leader election run. If the system conducts frequent leader elections,

the estimated c value can converge to the actual c value relatively quickly.

However, if leader elections are infrequent, it may take a considerable amount

of time to obtain an accurate estimation of c.

To explore the benefits of both the Z-score Sampling Protocol and the

Feedback Protocol, we implemented the exponentially-weighted moving av-

erage into our Z-score Sampling Protocol, which we call the Sample-Window

Protocol. We use c1 to represent the result from the Z-score Sampling Pro-

tocol and c2 as the current estimate of c. To estimate the new value of c,

55

Algorithm 7 Feedback Protocol

1: function InitiateFeedback(c2) // At Leader
2: count← 0, total← 0
3: for msg in received FeedbackValue do
4: val← msg
5: count← count+ 1, total← total + val
6: end for
7: d = total

count

8: c = N · (1− exp(ln(2−d)
c2+1

))
9: c2 = α · c+ (1− α) · c2

10: Broadcast c2 to all nodes
11: end function
12:

13: function InitiateFeedback // Any Initiator
14: if Only receive a single candidate from all Response messages then
15: val← 1
16: else
17: val← 2
18: end if
19: Send val to leader
20: end function

we apply Eqn. 7.1. To obtain an accurate estimation of c, the system can

execute the hybrid protocol multiple times.

7.3 Simulation

We would like to address the following questions through our simulation:

1. What is the effect of using underestimated c for our churn-tolerant

election protocol? And how does the election result change if multiple

initiators exist?

2. How accurate is the c estimation for our Z-score Sampling Protocol and

Feedback Protocol?

3. For the Feedback Protocol, how quickly does the estimated c converge

to the actual c value?

To simulate our churn-tolerant election protocols, we developed a custom

simulator using Java. To control the actual value of c, we generated the

56

underlying membership at each node differently from the trace in Medley-

F. Specifically, we generated memberships such that nodes with low hashes

were absent from exactly c memberships of other nodes, as predetermined.

The data points presented in the figures were collected from 100 independent

simulation runs.

7.3.1 Effect of Underestimating Churn

To demonstrate the significance of selecting the appropriate c, we executed

the leader election protocol Base Protocol with a lower c value than the actual

c value for the specified network configurations. The system comprised of 128

nodes, and we generate the membership such that node 0 is absent from the

membership lists of exactly 25 arbitrary nodes. During the simulation, each

leader election round involved 5 initiators.

Fig. 7.1 shows the average hash rank of the elected leader with different c

values, where all of them are less than the actual c value for the system. As

expected, when c is low, the leader hash rank is high because some initiators

do not receive adequate responses to determine the correct leader. However,

as c increases, the hash rank decreases, eventually reaching 0, which implies

that the protocol meets the safety property.

Figure 7.1: Base Protocol hash rank with different c

57

Fig. 7.2 shows the average hash rank of the elected leader with different

numbers of initiators, with the fixed value of c = 3 which is less than the

actual c value. As the number of initiators increases, hash rank increases

only slightly, implying that the number of initiators does not affect safety

too much.

Figure 7.2: Base Protocol hash rank with different number of initiators

In summary, the probability of selecting the incorrect leader increases as c

decreases or the number of initiators increases. However, even in the worst-

case scenario, the hash rank remains small. Nonetheless, the protocol must

still choose the appropriate c to satisfy the safety property.

7.3.2 Protocol Simulation

We simulate both the Z-Score Sampling Protocol and the Feedback Proto-

col. During simulation, the underlying membership is generated continuously

with moving churn rates (different c values). The c value is randomly chosen

with mean of N
10

and standard deviation of N
20
, where N is the total number

of nodes in the system.

Fig. 7.3 shows the difference between the estimated c and the actual c

value for the Feedback Protocol, Z-Score Sampling Protocol, and Sample-

Window protocol with different sample sizes. As the sample size increases,

58

the estimation becomes more precise, but at the cost of additional network

bandwidth usage due to extra messages. The Feedback Protocol exhibits a

smaller standard deviation and more accurate estimation than the Z-Score

Sampling Protocol at smaller node numbers. However, it has a tendency to

underestimate the actual c value. Furthermore, the Feedback Protocol is only

executed during leader election, whereas the Z-Score Sampling Protocol can

be executed without restriction. On the other hand, the Sample-Window

Protocol has significantly lower standard deviation than the Z-Score Sam-

pling Protocol, but the estimated value is less accurate on average.

Figure 7.3: Difference between estimated and actual value of c

Fig. 7.4 shows an example of Feedback Protocol run with 100 rounds of

leader election. There are 128 nodes in the system and we set α = 0.2. We

can see that the estimated value matches closely to the actual value of c

during most of the time.

In the previous example, the estimated starting value of c was close to

the actual value. However, what if we do not know the actual value at the

beginning? To determine how quickly the Feedback Protocol converges from

an arbitrary starting point, we fixed the underlying membership and initiated

the Feedback Protocol with c = 1. The simulation consists of 128 nodes, and

59

Figure 7.4: Example of the Feedback Protocol experiment run

the actual value of c is set to 13. Fig. 7.5 illustrates the distribution of

convergence time (number of election rounds) against the difference between

the estimated and actual values of c. The figure indicates that the estimate

becomes more accurate with additional election rounds and that it takes

roughly 20 rounds for the Feedback Protocol to converge to the actual value

of c.

Figure 7.5: Number of election rounds v.s. difference between estimated and
actual value of c

60

7.4 Conclusion

We conclude that the Feedback Protocol has the smallest standard deviation,

and the Z-score Sampling Protocol has the largest standard deviation. The

Feedback Protocol estimates accurately with small topologies, but it tends

to underestimate with large topologies. On the other hand, both the Z-score

Sampling Protocol and the Sample-Window Protocol tend to overestimate,

especially at large topologies. We recommend that:

• If the system has regular leader election events, the Feedback Protocol

is preferred. Otherwise, the Z-score Sampling Protocol and the Sample-

Window Protocol are preferred.

• The Feedback Protocol is preferred at small (≤ 512 nodes) topologies.

• The Sample-Window Protocol is preferred at large topologies, but the

result of the estimation needs to be adjusted “down” carefully.

61

CHAPTER 8

CONCLUSION

8.1 Summary

We summarize our contributions as follows:

• We presented Medley-F, a decentralized membership service for distributed

IoT systems that operate on wireless ad-hoc networks. Medley-F can

identify failures as quickly as the traditional SWIM method while re-

ducing the product of failure detection time and communication cost by

37.8%. By using active and passive feedback, we can lower tail detection

time by up to 31% and dissemination time by up to 54%.

• We presented a family of four churn-tolerant (c-tolerant) leader election

protocols intended for edge environments that face churn. Our proto-

cols only require a weakly-consistent membership protocol running un-

derneath it. Our four protocols satisfy Safety and Liveness, use provably

minimal messages, and elect healthy leaders with high probability. Our

experiments with both trace-driven simulations, as well as a Raspberry

Pi deployment, showed that: (i) our Optimistic Protocol reduces leader

election completion time by 42.6% (vs. Base Protocol), (ii) our Pre-

ferred Protocol elects healthier leaders, and (iii) compared to “stock”

Zookeeper, our c-tolerant election’s bandwidth usage is 82.9% less and

10× more stable, and its memory and CPU usage are respectively 5.9%

and 26.9% lower.

• We presented two protocols that estimate churn dynamically with con-

tinuous membership changes. Our Z-Score Sample Protocol utilizes in-

formation from a small subset of memberships to estimate churn, and

our feedback protocol utilizes intermediate results during leader election

to estimate churn. We also presented the Sample-Window Protocol that

combines the idea of both protocols. Our simulation shows that all proto-

62

cols (with sample size = 50) can estimate churn within 4.5% of accuracy

on average. Our simulation also shows that even with underestimated

churn value, safety property is only violated with 4% of all election runs

in the worst case.

8.2 Future Work

We discuss three major future directions:

• One possible direction is to design additional distributed protocols that

can tolerate churn. These may include protocols for mutual exclusion,

task scheduling, consensus, and distributed hash tables. Most current

research is based on the assumption of complete and accurate membership

knowledge and only focuses on tolerating failures rather than missing

entries.

• Another possible direction is in leader election for systems with high churn

rates. Our churn-tolerant election protocols are most effective when the

churn rate is low. However, in high-churn scenarios, our protocol may

require potentially O(N) messages, where N is the size of the system.

Examples of high-churn systems include distributed file-sharing systems

such BitTorrent, Distributed web crawling, and Blockchain networks. The

churn rate is high since each node can join and leave at any time, and the

system should be adapted to these changes. In these situations, where

bandwidth usage is already high due to churn, it is important to mini-

mize additional bandwidth incurred. Possible solutions include designing

election protocols that can operate with high churn rates while using

less bandwidth, even if they take longer to complete. Additionally, high

churn rates may require protocols that can tolerate frequent leader fail-

ures, which may require further optimization.

• Future research could explore applications that leverage leader election to

achieve agreement among nodes in distributed systems. In smart farms,

leader election can enable sensors to coordinate actions based on their

readings, such as when to water crops or apply fertilizers. Similarly, leader

election can be used in satellite constellations to select a leader satellite

that can coordinate actions, such as adjusting orbits or coordinating data

63

transmission. Robust leader election protocols that can handle failures

and adapt to changes in network topology will be critical to building such

applications.

Other minor optimizations that are feasible on our work:

• For ease of usage, one may combine our churn-tolerant election protocols

and a weakly-consistent membership protocol into a single application.

It can have functionalities and APIs similar to widely-used software like

Zookeeper.

• Current election protocols do not have any mechanism if safety is violated

due to churn underestimation. Ideally, the system should be able to

recover from any incorrect state, i.e., multiple leaders are elected.

• Our sample protocol for churn estimation assumes that the given node is

uniformly missing in other memberships and relies on this uniformity for

its algorithm. However, this assumption may not hold as false positives

tend to cluster in certain regions. For instance, if node x incorrectly

identifies node y as failed, it is more likely that the nodes around node x

will also incorrectly mark node y as failed. To address this, one potential

optimization is to utilize topology-aware sampling and a more advanced

algorithm to estimate churn accurately.

64

REFERENCES

[1] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[2] “Global edge computing market to reach $156 billion by 2030,”
2022. [Online]. Available: https://www.techrepublic.com/article/
global-edge-computing-market/

[3] “Internet of Things: Key stats for 2022,” 2022. [Online]. Available:
https://techinformed.com/internet-of-things-key-stats-for-2022/

[4] “EarthSense TerraSentia robots,” 2022. [Online]. Available: https:
//www.earthsense.co

[5] “EarthSense cover crop robots,” 2022. [Online]. Available: https:
//www.earthsense.co/regen

[6] A. N. Sivakumar, S. Modi, M. V. Gasparino, C. Ellis, A. E. B. Velasquez,
G. Chowdhary, and S. Gupta, “Learned visual navigation for under-
canopy agricultural robots,” arXiv preprint arXiv:2107.02792, 2021.

[7] “Planet Inc. dove satellite constellation,” 2022. [Online]. Available:
https://www.planet.com/our-constellations/

[8] “Starlink satellite constellation,” 2022. [Online]. Available: https:
//www.starlink.com/

[9] M. A. Khan, H. E. Sayed, S. Malik, T. Zia, J. Khan, N. Alkaabi, and
H. Ignatious, “Level-5 autonomous driving—are we there yet? a review
of research literature,” ACM Computing Surveys (CSUR), vol. 55, no. 2,
pp. 1–38, 2022.

[10] H. Sukhwani, J. M. Mart́ınez, X. Chang, K. S. Trivedi, and A. Rindos,
“Performance modeling of pbft consensus process for permissioned
blockchain network (hyperledger fabric),” in 2017 IEEE 36th Symposium
on Reliable Distributed Systems (SRDS). IEEE, 2017, pp. 253–255.

[11] “Java Transaction API,” 2022. [Online]. Available: https://www.oracle.
com/java/technologies/jta.html

65

https://www.techrepublic.com/article/global-edge-computing-market/
https://www.techrepublic.com/article/global-edge-computing-market/
https://techinformed.com/internet-of-things-key-stats-for-2022/
https://www.earthsense.co
https://www.earthsense.co
https://www.earthsense.co/regen
https://www.earthsense.co/regen
https://www.planet.com/our-constellations/
https://www.starlink.com/
https://www.starlink.com/
https://www.oracle.com/java/technologies/jta.html
https://www.oracle.com/java/technologies/jta.html

[12] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[13] R. Yang, J. Wang, J. Hu, S. Zhu, Y. Li, and I. Gupta, “Medley: A
membership service for iot networks,” IEEE Transactions on Network
and Service Management, vol. 19, no. 3, pp. 2492–2505, 2022.

[14] K. Kapitanova, E. Hoque, J. A. Stankovic, K. Whitehouse, and S. H.
Son, “Being smart about failures: assessing repairs in smart homes,” in
Proceedings of ACM UbiComp, 2012, pp. 51–60.

[15] J. Ye, G. Stevenson, and S. Dobson, “Detecting abnormal events on bi-
nary sensors in smart home environments,” Pervasive and Mobile Com-
puting, vol. 33, pp. 32–49, 2016.

[16] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thsense: A context-
aware sensor-based attack detector for smart devices,” in Proceedings
of USENIX Security, 2017, pp. 397–414.

[17] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim,
“Detecting and identifying faulty IoT devices in smart home with con-
text extraction,” in Proceedings of IEEE International Conference on
Dependable Systems and Networks (DSN), 2018, pp. 610–621.

[18] J. Wang and I. Gupta, “Churn-tolerant leader election protocols,” in
Proceedings 43rd International Conference on Distributed Computing
Systems. IEEE, in press.

[19] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer net-
works,” in Proceedings of the 6th ACM SIGCOMM Conference on In-
ternet Measurement, 2006, pp. 189–202.

[20] A. Binzenhöfer and K. Leibnitz, “Estimating churn in structured p2p
networks,” in Managing Traffic Performance in Converged Networks:
20th International Teletraffic Congress, ITC20 2007, Ottawa, Canada,
June 17-21, 2007. Proceedings. Springer, 2007, pp. 630–641.

[21] P. B. Godfrey, S. Shenker, and I. Stoica, “Minimizing churn in dis-
tributed systems,” ACM SIGCOMM Computer Communication Review,
vol. 36, no. 4, pp. 147–158, 2006.

[22] R. Yang, S. Zhu, Y. Li, and I. Gupta, “Medley: A novel distributed fail-
ure detector for iot networks,” in Proceedings of the 20th International
Middleware Conference, 2019, pp. 319–331.

66

[23] “Apache Zookeeper,” 2022. [Online]. Available: https://zookeeper.
apache.org/

[24] M. Kawazoe Aguilera, W. Chen, and S. Toueg, “Heartbeat: A timeout-
free failure detector for quiescent reliable communication,” in Distributed
Algorithms: 11th International Workshop, WDAG’97 Saarbrücken,
Germany, September 24–26, 1997 Proceedings 11. Springer, 1997, pp.
126–140.

[25] R. Van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Middleware’98. Springer, 1998, pp. 55–70.

[26] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and
M. Snir, “SP2 system architecture,” IBM Systems Journal, vol. 34, no. 2,
pp. 414–446, 1995.

[27] I. Gupta, T. D. Chandra, and G. S. Goldszmidt, “On scalable and effi-
cient distributed failure detectors,” in Proceedings of the 20th Annual
ACM Symposium on Principles of Distributed Computing, 2001, pp.
170–179.

[28] A. Das, I. Gupta, and A. Motivala, “SWIM: Scalable weakly-consistent
infection-style process group membership protocol,” in Proceedings of
IEEE International Conference on Dependable Systems and Networks
(DSN). IEEE, 2002, pp. 303–312.

[29] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp.
225–267, 1996.

[30] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[31] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed
systems,” in Proceedings of the 11th ACM Symposium on Operating sys-
tems principles, 1987, pp. 123–138.

[32] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), 2014, pp. 305–319.

[33] Y. Amir, D. Dolev, S. Kramer, and D. Malki, Transis: A communica-
tion sub-system for high availability. Hebrew University of Jerusalem.
Leibniz Center for Research in Computer Science, 1991.

67

https://zookeeper.apache.org/
https://zookeeper.apache.org/

[34] O. Babaoglu, R. Davoli, L.-A. Giachini, and M. G. Baker, “RELACS: A
communications infrastructure for constructing reliable applications in
large-scale distributed systems,” in Proceedings of 28th HICSS, vol. 2.
IEEE, 1995, pp. 612–621.

[35] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, pp. 205–220, 2007.

[36] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,”
IEEE/ACM Transactions on Networking, vol. 14, no. 3, pp. 479–491,
2006.

[37] K. Birman, “The promise, and limitations, of gossip protocols,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 5, pp. 8–13, 2007.

[38] I. Gupta, K. P. Birman, and R. Van Renesse, “Fighting fire with fire:
using randomized gossip to combat stochastic scalability limits,” Quality
and Reliability Engineering International, vol. 18, no. 3, pp. 165–184,
2002.

[39] S. Rhea, D. Geels, T. Roscoe, J. Kubiatowicz et al., “Handling churn
in a dht,” in Proceedings of the USENIX Annual Technical Conference,
vol. 6. Boston, MA, USA, 2004, pp. 127–140.

[40] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh, “Efficient epidemic-style
protocols for reliable and scalable multicast,” in 21st IEEE Symposium
on Reliable Distributed Systems, 2002. Proceedings. IEEE, 2002, pp.
180–189.

[41] J. Dunagan, N. J. Harvey, M. B. Jones, D. Kostic, M. Theimer, and
A. Wolman, “FUSE: Lightweight guaranteed distributed failure notifi-
cation,” in Proceedings of USENIX OSDI, 2004.

[42] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Es-
trin, “Sympathy for the sensor network debugger,” in Proceedings of the
3rd International Conference on Embedded Networked Sensor Systems,
2005, pp. 255–267.

[43] S. Rost and H. Balakrishnan, “Memento: A health monitoring system
for wireless sensor networks,” in 2006 3rd Annual IEEE Communica-
tions Society on Sensor and Ad Hoc Communications and Networks,
vol. 2. IEEE, 2006, pp. 575–584.

68

[44] B.-r. Chen, G. Peterson, G. Mainland, and M. Welsh, “Livenet: Using
passive monitoring to reconstruct sensor network dynamics,” in Dis-
tributed Computing in Sensor Systems: 4th IEEE International Confer-
ence, DCOSS 2008 Santorini Island, Greece, June 11-14, 2008 Proceed-
ings 4. Springer, 2008, pp. 79–98.

[45] R. N. Duche and N. P. Sarwade, “Sensor node failure detection based on
round trip delay and paths in WSNs,” IEEE Sensors Journal, vol. 14,
no. 2, pp. 455–464, 2014.

[46] M. Asim, H. Mokhtar, and M. Merabti, “A fault management architec-
ture for wireless sensor network,” in 2008 International Wireless Com-
munications and Mobile Computing Conference. IEEE, 2008, pp. 779–
785.

[47] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R.
Ports, “Building consistent transactions with inconsistent replication,”
ACM Transactions on Computer Systems (TOCS), vol. 35, no. 4, pp.
1–37, 2018.

[48] G. Kakivaya, L. Xun, R. Hasha, S. B. Ahsan, T. Pfleiger, R. Sinha,
A. Gupta, M. Tarta, M. Fussell, V. Modi et al., “Service fabric: a dis-
tributed platform for building microservices in the cloud,” in Proceedings
of the 13th EuroSys Conference, 2018, pp. 1–15.

[49] I. Gupta, R. Van Renesse, and K. P. Birman, “A probabilistically correct
leader election protocol for large groups,” in International Symposium
on Distributed Computing. Springer, 2000, pp. 89–103.

[50] I. Gupta, R. Van Renesse, and K. P. Birman, “Scalable fault-tolerant
aggregation in large process groups,” in Proceedings of IEEE Interna-
tional Conference on Dependable Systems and Networks (DSN). IEEE,
2001, pp. 433–442.

[51] C. Sengul, M. J. Miller, and I. Gupta, “Adaptive probability-based
broadcast forwarding in energy-saving sensor networks,” ACM Trans-
actions on Sensor Networks (TOSN), vol. 4, no. 2, pp. 1–32, 2008.

[52] F. Kuhn, S. Schmid, and R. Wattenhofer, “A self-repairing peer-to-
peer system resilient to dynamic adversarial churn,” in International
Workshop on Peer-to-Peer Systems. Springer, 2005, pp. 13–23.

[53] S. Legtchenko, S. Monnet, P. Sens, and G. Muller, “Relaxdht: A churn-
resilient replication strategy for peer-to-peer distributed hash-tables,”
ACM Transactions on Autonomous and Adaptive Systems (TAAS),
vol. 7, no. 2, pp. 1–18, 2012.

69

[54] H. Garcia-Molina, “Elections in a distributed computing system,” IEEE
Transactions on Computers, vol. 31, no. 01, pp. 48–59, 1982.

[55] L. Lamport, “The part-time parliament,” in Concurrency: the Works
of Leslie Lamport, 2019, pp. 277–317.

[56] N. Malpani, J. L. Welch, and N. Vaidya, “Leader election algorithms
for mobile ad hoc networks,” in Proceedings of the 4th International
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications, 2000, pp. 96–103.

[57] S. Vasudevan, J. Kurose, and D. Towsley, “Design and analysis of a
leader election algorithm for mobile ad hoc networks,” in Proceedings
of the 12th IEEE International Conference on Network Protocols, 2004.
ICNP 2004. IEEE, 2004, pp. 350–360.

[58] S. Dolev, A. Israeli, and S. Moran, “Uniform dynamic self-stabilizing
leader election,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 8, no. 4, pp. 424–440, 1997.

[59] M. Fischer and H. Jiang, “Self-stabilizing leader election in networks of
finite-state anonymous agents,” in International Conference on Princi-
ples of Distributed Systems. Springer, 2006, pp. 395–409.

[60] S.-T. Huang, “Leader election in uniform rings,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 15, no. 3, pp.
563–573, 1993.

[61] R. Chandra, V. Ramasubramanian, and K. Birman, “Anonymous gos-
sip: Improving multicast reliability in mobile ad-hoc networks,” in Pro-
ceedings 21st International Conference on Distributed Computing Sys-
tems. IEEE, 2001, pp. 275–283.

[62] J. C. Lin and S. Paul, “RMTP: A reliable multicast transport proto-
col,” in Proceedings of IEEE INFOCOM’96. Conference on Computer
Communications, vol. 3. IEEE, 1996, pp. 1414–1424.

[63] “Raspberry Pi 4 model B,” 2016. [Online]. Available: https:
//www.raspberrypi.com/products/raspberry-pi-4-model-b/

[64] “Optimized link state routing protocol.” [Online]. Available: https:
//tinyurl.com/olsrd-wiki

[65] D. Mazieres, “The stellar consensus protocol: A federated model for
internet-level consensus,” Stellar Development Foundation, vol. 32, pp.
1–45, 2015.

70

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://tinyurl.com/olsrd-wiki
https://tinyurl.com/olsrd-wiki

[66] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the 13th EuroSys Conference, 2018, pp.
1–15.

[67] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco, “Single secret
leader election,” in Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, 2020, pp. 12–24.

[68] “Tcpdump,” 2022. [Online]. Available: https://www.tcpdump.org

[69] “Apache Zookeeper guide,” 2022. [Online]. Available: https://
zookeeper.apache.org/doc/r3.3.3/zookeeperStarted.html

71

https://www.tcpdump.org
https://zookeeper.apache.org/doc/r3.3.3/zookeeperStarted.html
https://zookeeper.apache.org/doc/r3.3.3/zookeeperStarted.html

	CHAPTER 1 INTRODUCTION
	Contributions of this Thesis
	Thesis Organization

	CHAPTER 2 BACKGROUND
	Failure Detector
	Membership Protocol
	Leader Election
	Related Work
	Related Work in Failure Detection
	Related Work in Churn-tolerant Leader Election

	System Model

	CHAPTER 3 MEDLEY-F MEMBERSHIP SERVICE
	Motivation
	Medley-F: Feedback-Based Target Selection
	Active Feedback Strategy
	Passive Feedback Strategy

	CHAPTER 4 MEDLEY-F EXPERIMENTS
	Simulation
	Simulation Results
	Scalability
	Performance Under Mobility

	Deployment

	CHAPTER 5 CHURN-TOLERANT LEADER ELECTION
	Motivation
	Protocol Design
	Base Protocol
	Optimistic Protocol
	Preferred Protocol
	Hybrid Protocol: Combining Optimistic and Preferred

	Formal Analysis

	CHAPTER 6 LEADER ELECTION EXPERIMENTS
	Trace-Driven Simulation
	Bandwidth
	Completion Time (or Convergence Time)
	Leader Health

	Deployment with Raspberry Pis
	Raspberry Pi Deployment Results
	Resource Utilization Comparison with Zookeeper

	CHAPTER 7 ESTIMATING CHURN PARAMETER c
	Motivation
	Protocol Design
	Z-score Sampling Protocol
	Feedback Protocol

	Simulation
	Effect of Underestimating Churn
	Protocol Simulation

	Conclusion

	CHAPTER 8 CONCLUSION
	Summary
	Future Work

	REFERENCES

