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Professor Yoram Bresler
Professor Andrew C. Singer
Associate Professor Zhizhen Zhao



ABSTRACT

We solve imaging problems by recovering, transforming, and modifying what

we have—the measurements and the operator.

In the first parts of this thesis, we formulate techniques for imaging prob-

lems where the phase of the measurements is lost. We begin by showing

how to use distance geometry to recover the missing phase of these measure-

ments. This enables us to rapidly perform matrix-vector optically. Knowing

the measurement phase is also useful because it transforms the cumbersome

quadratic problem of optical imaging operator calibration into a simple linear

problem which, for typical sized operators, can be solved in minutes rather

than hours. However, unfortunately calibrated operators have errors which

can result in poor reconstructions when used for imaging. This motivates us

to next create a total least squares framework to account of operator errors

when imaging with phaseless measurements. The effectiveness of all these

phase problem techniques is verified by experiments on optical hardware.

We then use deep learning for scenarios where measurements are scarce

and training data is not available. Instead of learning a map from mea-

surements to target reconstructions, we learn a map from measurements to

low-dimensional projections of the target. The projections are viewed as

measurements from a imaging operator built of multiple projection opera-

tors. Solving this new inverse problem gives reconstructions that are more

robust to measurement noise.

Next, we solve imaging problems when the measurement coordinates such

as sensor locations or projection angles are uncertain. Using implicit neural

networks and differentiable splines, we learn a representation of the measure-

ments which can be evaluated at any measurement coordinate. By optimizing

the inputs at the same time as the measurement representation parameters,

we learn the unknown measurement coordinates. To ensure consistency we

also jointly reconstruct the final image during the optimization.
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CHAPTER 1

INTRODUCTION

If we have forgotten to label boxes when moving houses, how would we

determine what is in a particular box without unpacking it? We might lift it

to feel the weight or shake it to hear a sound. To help limit the possibilities,

we will try to remember all the items that we have packed and already

unpacked across all boxes. However, adverse factors such as multiple items

of the same weight and extra protective padding that muffles sound makes

our task harder. In many ways, this natural process of probing objects and

using known information in the face of unfavorable factors is similar to what

we as imaging scientists do when solving imaging inverse problems.

In a nutshell, to solve an imaging inverse problem means to recover an

image of an object from its measurements. These measurements are obtained

via a forward process that probes the object. As imaging scientists, our job

is to work backwards in the inverse direction. Starting with the obtained

measurements and what we know about the forward process, we set out to

reconstruct an image of the object. To help better understand this broad

description, we apply it to a range of applications:

• X-ray computed tomography (CT): In the forward process, paral-

lel x-ray beams at different angles are shined through a human body and

absorbed by body tissues. Attenuated beams that penetrate through

are measured by detectors. Given the angles and these measurements,

we seek to reconstruct an image of the body [1].

• Crystallography: X-ray beams are shined through a crystal specimen

as it is rotated. At each rotation angle, a diffraction pattern that

depends on the specimen’s internal lattice structure is measured [2].

Using the patterns and corresponding rotation angles, we form an image

of the specimen’s internal structure.

• Seismic traveltime tomography: Sensors which send and receive
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probing waves are placed on the surface of earth. Depending on the

subsurface structure and material, the waves are received by the sensors

with some delay time. Using these timings and the sensor locations,

we reconstruct an image of the subsurface [3].

• Deblurring: We capture a blurry digital image due to an out of focus

camera lens. Using the blurry image and what we know about the

blurring process we deblur the image [4].

• Super-resolution: Due to the expense of taking high resolution scien-

tific images, we measure a series of low resolution overlapping images.

We use these images and knowledge of the low resolution image acqui-

sition procedure to reconstruct a high resolution image [5].

Although there is a diverse assortment of imaging problems, there are

common notions and challenges which need addressing. One such notion

is understanding whether a reconstructed image is unique. For example,

in super-resolution, if we only have one low resolution image measurement,

multiple high resolution reconstructions can give the same measurements.

Sensitivity of the solution is another criteria. If our measurements change

due to noise, we would want the solution to remain relatively unchanged. To

handle non-unique solutions and poor sensitivity, regularization strategies

are typically employed [6]. This entails incorporating prior knowledge and

assumptions about the image into the reconstruction method. Designing

regularization strategies is another major consideration in itself.

Before we narrow down to the perspective that this thesis takes, it is helpful

to build a general formulation of an imaging problem. If we denote the object

whose image we want as x ∈ X , then we can model the forward process that

gives us measurements as

y = A(x) (1.1)

where y ∈ Y denotes the measurements, and A : X → Y is an operator that

models the forward process and maps from objects to measurements. The

inverse problem is to work backward and estimate x using what we have—

the measurements and the operator. Denoting the estimate of x as x̂, we
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write the inverse problem solution as

x̂ = S(y,A) (1.2)

where S is an inverse problem solver that uses y and A to reconstruct x̂. The

solver S is general and methods based on signal processing, statistics, and

machine learning can be derived from it. Crucially, this high level abstraction

in Equation 1.2 stresses that the measurements and operator are essential

elements when solving imaging problems. With this perspective on imaging

in mind, in this thesis we recover, transform, and modify the essential imaging

elements,

E1 Measurements y:

• Retrieve the phase of complex-valued measurements when only

their magnitude can be measured (Chapter 2).

• Transform measurements to a new set of measurements which are

projections of the object being imaged (Chapter 5).

• Reevaluate measurements to correspond to a known operator

when they originally correspond to an unknown operator (Chap-

ter 6).

E2 Operators A:

• Rapid calibration of the unknown operator when imaging through

scattering media in minutes rather than hours (Chapter 3).

• Account for and correct calibration errors in the operator when

imaging through scattering media (Chapter 4).

• Recover the parameters of an unknown operator which was used

to acquire measurements (Chapter 6).

1.1 Imaging applications in this thesis

In this thesis, we explore E1 and E2 through a mixture of imaging applica-

tions. The applications that we consider can be divided into two categories:

quadratic phase problems and linear imaging problems.
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1.1.1 Quadratic phase problems

Phase problems are ubiquitous in the applied sciences [7]. We can understand

the challenges in these problems by considering imaging through a scattering

medium as an example. The prototypical setup is shown in Figure 1.1.

Camera

|b|2 ∈ RM

Measurements

Illumination
source

b = Ax
A ∈ CM×N , b ∈ CM

Scattering medium

x ∈ CN

Figure 1.1: The setup for imaging through scattering media. The input
optical field from illuminating an unknown pattern propagates through a
scattering medium. The resulting output optical field is linearly related to
the input field by an unknown transmission matrix, A. A camera measures
the intensity of the output field. The inverse problem is to reconstruct an
image of the input pattern from the camera’s measurements.

An unknown pattern is displayed and illuminated, which results in a

complex-valued input optical field, x ∈ CN . This optical field propagates

through a scattering medium and the resulting output optical field after

scattering is denoted as b ∈ CM . Because the medium is optically linear,

the input field is linearly related to the output field by a complex-valued

transmission matrix (TM), A ∈ CM×N ,

b = Ax. (1.3)

Our goal is to recover an image of the unknown pattern from the scattered

light. This appears to be conceptually simple due to the linear relationship in

(1.3). However, in practice this is not straightforward because cameras only

measure intensity, |b|2, where |b|2 is the elementwise squared magnitude of

the vector b. As a result, the phase of the complex-valued measurements is

lost. Furthermore, the TM is typically unknown. With A = |A·|2, we can

frame the imaging problem using (1.1) as

y = |b|2 = |Ax|2, (1.4)

and the solution using (1.2) is x̂ = S(|b|2, |A ·|2). Immediately we can see
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that E2 is relevant because A is unknown and needs to be calibrated to

solve the imaging problem. Furthermore, the solver, S, needs to account for

calibration errors.

Phaseless measurements are also obtained in crystallography [8] and pty-

chography [9], after the scattering of x-ray waves, and can be modeled sim-

ilarly to (1.4). In astronomy, phase retrieval techniques were applied to

estimate aberrations in the Hubble Space Telescope hardware from intensity

measurements [10]. Accounting for the aberrations led to better reconstruc-

tions.

We can use our understanding of imaging through scattering media to solve

phase problems in optical computing. Optical Processing Units (OPUs) are

optics-based hardware that leverage the propagation of light in random media

to perform random projections of data. Figure 1.2 shows an OPU randomly

projecting data signal x ∈ RN .1 The data signal is ‘imprinted’ on laser

light and shined through a random scattering medium to produce the output

optical field b. As in Figure 1.1, the output and input are linearly related by

an unknown TM, A, and a camera measures the intensity, |b|2.

|Ax|2 = |b|2 ∈ RM

Camera
taking 8-bit
measurements

b = Ax
A ∈ CM×N

b ∈ CM

Random scattering
medium

‘Imprinting’
x ∈ RN

Laser light source

Figure 1.2: The operation of an OPU. A data signal is ‘imprinted’ on laser
light and shined through a random scattering medium whose TM is iid
standard complex Gaussian. Therefore, the output optical field is a random
projection of the data signal. The output field’s intensity is captured by a
camera. We wish to recover the random projection, b, from its intensity
measurements.

While the elements of the TM are unknown, the random scattering medium

has been designed so that the TM’s elements are independent and identically

distributed (iid) standard complex Gaussian. Therefore, the output optical

field b is a random projection of x. Such optics-based matrix multiplication

1Commercially available OPUs use this setup (https://lighton.ai/).
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can be much faster and energy-efficient than their CPU or GPU counterparts

at large scales. However, to realize this, we need to retrieve the random

projection, b, from its intensity measurements, |b|2. This connects to E1.

Improving the speed and scale of matrix multiplications is an ongoing area

of research and recently received attention with DeepMind’s work on using

machine learning to discover new algorithms for fundamental tasks [11].2

Physical explanation. We briefly explain the phase problem modeling in

Figures 1.1 and 1.2. To begin, optical waves are physical quantities with

amplitude and phase. As they have amplitude and phase, it is standard

to model them as complex-valued quantities for convenience [12, 13, 14].

Importantly, the results from the complex-valued mathematical models that

are used in optics and the quantities that we can experimentally measure,

such as field intensities, are consistent with each other.

We model scattering media as matrices due to linear optics theory which

shows that a complex-valued optical field that propagates through such media

is linearly related to the input field. Well-known linear propagation exam-

ples are propagation through free-space and using lenses to perform Fourier

transforms [12, 1]. The scattering media used in this thesis are the concate-

nation of several thin optically linear slices. Therefore, the entire scattering

medium propagates the field linearly [15, 14].

The cameras in Figures 1.1 and 1.2 measure electrical current which is

proportional to the optical intensity, I, that is incident on the camera’s

semiconductor detector [12]. To compute I, we switch to the electromag-

netic (EM) waves description of the incident optical waves so that Maxwell’s

EM equations can be used. Then, with commonly used assumptions, I is

proportional to the squared norm of the EM wave’s electric field amplitude

vector, ∥E∥22. Furthermore, due to the assumptions, these EM waves have

associated optical waves with amplitude whose magnitude is proportional to

∥E∥2 [13]. Hence, the cameras measure the squared-magnitude of the optical

field.

2DeepMind research blog on machine learning for algorithm discovery: https://www.
deepmind.com/blog/discovering-novel-algorithms-with-alphatensor
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1.1.2 Linear imaging problems

A broad range of imaging problems can be modeled as linear inverse prob-

lems. This means that a linear transform of the object being imaged gives the

measurements. If we denote the linear operator as the matrix A ∈ RM×N ,

the vectorized object whose image we want as x ∈ RN , and the measurements

as y ∈ RM , linear problems can be framed using Equation 1.1 as

y = Ax (1.5)

and the solution using (1.2) is x̂ = S(y,A).

Well-known linear imaging applications that fit Equation 1.5 are x-ray

computed tomography (CT) [1], image deblurring [4] and compressed sens-

ing imaging [16]. Imaging problems with nonlinear forward processes such as

seismic traveltime tomography and photoacoustic tomography may also be

linearized and modeled as linear problems [17, 18]. This can simplify com-

puting the forward process and allow us to use linear algebra for analysis.

Typically whenM > N , it is straightforward to obtain an accurate solution

to the inverse problem. However, many imaging problems have M ≪ N .

For example, in seismic tomography, it is not practical to densely cover earth

surfaces with sensors and so we receive few measurements. And, in x-ray CT

imaging, we try to acquire fewer measurements in order to reduce a patient’s

radiation exposure. Consequently, A has a possibly large null space and so

there are many solutions, x̂, which give the same measurements, y. This

is known as an ill-posed inverse problem, and regularization strategies are

used [6]. In Chapter 5, we explore regularization through projections (E1).

We might also face issues due to A not accurately modeling the true forward

process due to calibration errors [19]. We design methods to account for this,

and this work falls under E2.

1.2 Thesis organization and contributions

This thesis explores the essential imaging elements through E1 and E2.

Chapters 2, 3 and 4 look at quadratic phase problems, and Chapters 5 and

6 are general inverse problem methods. The effectiveness of all techniques

developed in this thesis is demonstrated through numerical simulations. In
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addition to this, we verify the applicability of all phase problems algorithms

on real optical hardware.

Chapter 2 Measurement phase retrieval (E1): We tackle the problem

of recovering the phase of complex linear measurements when only magnitude

information is available and we control the input. This is motivated by

the development of OPUs as explained in Figure 1.2. We show that even

without knowing the TM, we can recover the unknown measurement phase

and, hence, recover random projections from their magnitudes. Our proposed

method casts measurement phase retrieval as a Euclidean distance geometry

problem.

Chapter 3 Rapid TM calibration (E1 and E2): We propose a numer-

ical interferometry method to calibrate unknown TMs when only intensity

can be measured, as in Figure 1.1. Our method simplifies TM calibration

from a quadratic to a linear problem by first recovering the phase of the mea-

surements. We perform measurement phase retrieval by designing a rapid

version of the method developed in Chapter 2. Where the previous state-

of-the-art method reports hours to calibrate a TM, our method takes only a

few minutes.

Chapter 4 Total least squares phase retrieval (E2): We address prob-

lems such as imaging through scattering media (Figure 1.1) when there are

unknown TM errors. For example, the resulting TM from the calibration pro-

cess in Chapter 3 may have errors. Most image recovery methods are based

on least squares (LS) formulations which only assume errors in the measure-

ments. We extend this approach to also handle TM errors by adopting the

total least squares (TLS) framework that is used in linear inverse problems

with operator errors. We show how the specific geometry of the phase re-

trieval problem can be used to obtain an efficient TLS solution. Additionally,

we derive expressions for the solution error.

Chapter 5 Random mesh projectors (E1): We propose a deep

learning-based approach to solve imaging problems when ground truth train-

ing samples are unavailable and we can only get few measurements. We show

that the typical approach to learn a mapping from the measured data to the
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solution is unstable. Instead, we first learn an ensemble of mappings from

the measurements to random projections of the unknown image. The projec-

tions are then treated as measurements for a reformulated inverse problem

whose solution is our final reconstruction.

Chapter 6 Differentiable uncalibrated imaging (E1 and E2): We

solve imaging problems when the measurement coordinates such as sensor

locations and projection angles are uncertain. From the observed discrete

measurements, we learn a continuous representation of the measurements

which is differentiable with respect to measurement coordinates. We use

popular implicit neural networks and also develop differentiable splines as

measurement representations. Differentiability allows us to learn the mea-

surement representation and optimize over the uncertain measurement coor-

dinates at the same time. To ensure consistency, the optimization is done

jointly with reconstructing the final image.

Chapter 7 Looking forward: We summarize the key developments in

this thesis and discuss future research opportunities that this thesis moti-

vates.
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CHAPTER 2

MEASUREMENT PHASE RETRIEVAL

In this chapter, we recover the phase of complex linear measurements from

their intensity measurements when we control the input. We are motivated to

do this by the development of OPUs to optically compute random projections

as shown in Figure 1.2. This work falls under E1 as we recover the phase

information of phaseless measurements.

2.1 Phasing optical random projections

Random projections are at the heart of many algorithms in machine learning,

signal processing, and numerical linear algebra. Recent developments ranging

from classification with random features [21], kernel approximation [22], and

sketching for matrix optimization [23, 24], to sublinear-complexity transforms

[25] and randomized linear algebra are all enabled by random projections.

Computing random projections for realistic signals such as images, videos,

and modern big data streams is computation and memory intensive. Thus,

from a practical point of view, any increase in the size and speed at which

one can do the required processing is highly desirable.

This fact has motivated work on using dedicated hardware based on physics

rather than traditional CPU and GPU computation to obtain random pro-

jections. As mentioned in Chapter 1 (Figure 1.2), a notable example is the

scattering of light in random media (Figure 2.1 (left)) with an optical pro-

cessing unit (OPU). The OPU enables rapid (20 kHz) projections of high-

dimensional data such as images, with input dimension scaling up to one

million and output dimension also in the million range. It works by “im-

This work was previously published in S. Gupta, R. Gribonval, L. Daudet, and I.
Dokmanić, “Don’t take it lightly: Phasing optical random projections with unknown op-
erators,” in Advances in Neural Information Processing Systems, vol. 32, 2019 [20] and is
adapted here with permission.
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printing” an input data signal, ξ ∈ RN , onto a coherent light beam using a

digital micro-mirror device (DMD) and shining the modulated light through

a multiple scattering medium such as titanium dioxide white paint. The

scattered lightfield in the sensor plane can then be written as

y = Aξ (2.1)

where A ∈ CM×N is the transmission matrix of the random medium with

desirable properties.

One of the major challenges associated with this approach is that A is in

general unknown. Though it could, in principle, be learned via calibration

[26], such a procedure is slow and inconvenient, especially at large dimensions.

On the other hand, the system can be designed so that the distribution of A

is approximately iid standard complex Gaussian. Luckily, this fact alone is

sufficient for many algorithms and the actual values of A are not required.

Another challenge is that common camera sensors are only sensitive to

intensity, so we can only measure the intensity of scattered light, |y|2, where
|·| is the elementwise absolute value. The phase information is thus lost.

While the use of interferometric measurements with a reference could enable

estimating the phase, the practical setup is more complex, sensitive, and

does not share the convenience and simplicity of the setup illustrated in

Figure 2.1 (left).

This motivates us to consider the measurement phase retrieval (MPR)

problem. The measured sensor data is modeled as

b = |y|2 + η = |Aξ|2 + η, (2.2)

where b ∈ RM , ξ ∈ RN , A ∈ CM×N , y ∈ CM , and η ∈ RM is noise. The goal

is to recover the phase of each complex-valued element of y, yi for 1 ≤ i ≤M ,

from its magnitude measurements b when ξ is known and the entries of A

are unknown. The classical phase retrieval problem which has received much

attention over the last decade [27, 28] has the same quadratic form as (2.2)

but with a known A and the task being to recover ξ instead of y. While at

a glance it might seem that not knowing A precludes computing the phase

of Aξ, we show in this chapter that it is in fact possible via an exercise in

distance geometry.
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DMD encoding
of (xq − xr)

|⟨a,xq − xr⟩|2 = |yq − yr|2

Random scattering medium
Camera taking
8-bit measurements

a
iid∼ N (0, I) + jN (0, I)

Laser
light
source

Im

Re

yq

yr

yrq

|yq − yr|2yq

yr

|yq − yr|2

yrq

ϕ

Figure 2.1: Left: The optical processing unit (OPU) is an example
application of where the MPR problem appears. A coherent laser beam
spatially encodes a signal (xq − xr) via a digital micro-mirror device
(DMD) which is then shined through a random medium. A camera
measures the squared magnitude of the scattered light, which is equivalent
to the Euclidean distance between complex numbers yq ∈ C and yr ∈ C.
Furthermore the camera takes quantized measurements; Right: yq and yr
are points on the two-dimensional complex plane. We can optically measure
the squared Euclidean distance between points and use these distances to
localize points on the complex plane and obtain their phase. Note that
transformations such as rotations and reflections do not change the
distances.

The noise η is primarily due to quantization because standard camera sen-

sors measure low precision values—8-bit in our case (integers between 0 and

255 inclusive). Furthermore, cameras may perform poorly at low intensities.

This is another data-dependent noise source which is modelled in (2.3) by a

binary mask vector w ∈ RM which is zero when the intensity is below some

threshold and one otherwise; ⊙ denotes the elementwise product.

b = w ⊙
(
|y|2 + η

)
= w ⊙

(
|Aξ|2 + η

)
(2.3)

The distribution of A follows from the properties of random scattering

media [29, 26]. It has iid standard complex Gaussian entries, amn ∼ N (0, 1)+

jN (0, 1) for all 1 ≤ m,n ≤M,N .

The usefulness of phase is obvious. While, in some applications, having

only the magnitude of the random projection is enough (see [30] for an ex-

ample related to elliptic kernels), most applications require the phase. For

example, with the phase one can implement a more diverse range of kernels

as well as randomized linear algebra routines like randomized singular value

decomposition (SVD). We report the results of the latter on a real hardware

OPU in Section 2.3.1.
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2.1.1 Chapter overview and contributions

We develop an algorithm based on distance geometry to solve the MPR

problem (2.2). We exploit the fact that we control the input to the system,

which allows us to mix ξ with arbitrary reference inputs. By interpreting

each measurement as the magnitude of a point in the complex plane, this

leads to a formulation of the MPR problem as a pure distance geometry

problem (see Section 2.2.2 and Figure 2.1 (right)). With enough pairwise

distances (corresponding to reference signals), we can localize the points on

the complex plane via a variant of multidimensional scaling (MDS) [31, 32],

and thus compute the missing phase.

As we demonstrate, the proposed algorithm not only accurately recovers

the phase, but also improves the number of useful bits of the magnitude

information thanks to the multiple views. Established Euclidean distance

geometry bounds imply that even with many distances below the sensitivity

threshold and coarse quantization, the proposed algorithm allows for accurate

recovery. This fact, which we verify experimentally, could have bearing on

the design of future random projectors by navigating the tradeoff between

physics and computation.

2.1.2 Related work

The classical phase retrieval problem looks at the case where A is known

and ξ has to be recovered from b in (2.2) [33, 7, 34]. A modified version of

the classical problem known as holographic phase retrieval is related to our

approach: a known reference signal is concatenated with ξ to facilitate the

estimation of ξ [35]. Interference with known references for classical phase

retrieval has also been studied for known (Fourier) operators [36, 37] .

An optical random projection setup similar to the one we consider has

been used for kernel-based classification [30], albeit using only magnitudes.

A phaseless approach to classification with the measured magnitudes fed into

a convolutional neural network was reported by Satat et al. [38].

An alternative to obtaining the measurement phase is to measure, or cal-

ibrate, the unknown transmission matrix A from the measured intensities.

This has been attempted in compressive imaging applications, but the pro-

cess is impractical at even moderate pixel counts [26, 29]. Estimating A can
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take days and even the latest GPU-accelerated methods take hours for mod-

erately sized A [39]. Due to this, other approaches forego calibration and

use the measured magnitudes to learn an inverse map of x 7→ |Ax|2 [40]. On

the other hand, in Chapter 3 of this thesis, we will explore how retrieving

the measurement phase reduces calibrating A to a simple linear system.

Leaving hardware approaches aside, there have been multiple algorithmic

efforts to improve the speed of random projections [41, 22] for machine learn-

ing and signal processing tasks. Still, efficiently handling high-dimensional

input remains an ongoing challenge.

2.2 The measurement phase retrieval problem

We will denote the signal of interest by ξ ∈ RN , and the K reference anchor

signals by rk ∈ RN for 1 ≤ k ≤ K. To present the full algorithm we will need

to use multiple signals of interest which we will then denote ξ1, . . . , ξS; each

ξs is called a frame. We set the last, Kth anchor to be the origin, rK = 0.

We ascribe ξ and the anchors to the columns of the matrix X ∈ RN×Q, so

that X = [ξ, r1, r2, · · · , rK ] and have Q = K + 1. The qth column of X is

denoted xq. For any 1 ≤ q, r ≤ Q, we let yq = Axq and yqr := A(xq − xr),

with yqr,m being its mth entry. Finally, the mth row of A will be denoted by

am so that yqr,m = ⟨am,xq − xr⟩.

2.2.1 Problem statement and recovery up to a reference phase
and conjugation

Since we do not know A, it is clear that recovering the absolute phase of

Aξ is impossible. On the other hand, many algorithms do not require any

knowledge of A except that it is iid standard complex Gaussian, and that it

does not change throughout the computations.

Let R be an operator which adds a constant phase to each row of its

argument (multiplies it by diag(ejϕ1 , . . . , ejϕm) for some ϕ1, . . . , ϕm) and con-

jugates a subset of its rows. Since a standard complex Gaussian is circularly

symmetric, R(A) has the same distribution as A. Therefore, since we do not

know A, it does not matter whether we work with A itself or with R(A) for

some possibly unknown R. As long as the same effective R is used for all
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inputs during algorithm operation, the relative phases between the frames

will be the same whether we use R(A) or A.1

Problem 1. Given a collection of input frames ξ1, . . . , ξS to be randomly pro-

jected and the device illustrated in Figure 2.1 (left) with an unknown trans-

mission matrix A ∈ CM×N and a b-bit camera, compute the estimates of

projections ŷ1, . . . , ŷS up to a global row-wise phase and conjugation; that is,

so that there exists some R such that ŷs ≈ R(ys) for all 1 ≤ s ≤ S.

2.2.2 MPR as a distance geometry problem

Since the rows of A are statistically independent, we can explain our al-

gorithm for a single row and then repeat the same steps for the remaining

rows. We will therefore omit the row subscript/superscript m except where

explicitly necessary.

Instead of randomly projecting ξ and measuring the corresponding projec-

tion magnitude |Aξ|2, consider randomly projecting the difference between

ξ and some reference vector, or more generally a difference between two

columns in X, thus measuring | ⟨a,xq − xr⟩ |2 = |yq − yr|2. Interpreting yq

and yr as points in the complex plane, we see that the camera sensor mea-

sures exactly the squared Euclidean distance between them. Since we control

the input to the OPU, we can indeed set it to xq−xr and measure |yq − yr|2

for all 1 ≤ q, r ≤ Q.

This is the key point: as we can measure pairwise distances between a col-

lection of two-dimensional vectors in the two-dimensional complex plane, we

can use established distance geometry algorithms such as multidimensional

scaling (MDS) to localize points and get their phase. This is illustrated in

Figure 2.1 (right). The same figure also illustrates the well known fact that

rigid transformations of a point set cannot be recovered from distance data.

We need to worry about three things: translations, reflections, and rotations.

The translation ambiguity can be easily dealt with if one notes that for

any column xq of X, |yq| = | ⟨a,xq⟩ | gives us the distance of yq to the origin

which is a fixed point, ultimately resolving the translation ambiguity. There

is, however, no similar simple way to do away with the rotation and reflection

ambiguity, so it might seem that there is no way to uniquely determine the

1Up to a sign.
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phase of ⟨a, ξ⟩. This is where the discussion from the preceding subsection

comes to the rescue. Since R is arbitrary, as long as it is kept fixed for all the

frames, we can arbitrarily set the orientation of any given frame and use it

as a reference, making sure that the relative phases are computed correctly.

2.2.3 Proposed algorithm

As defined previously, the columns of X ∈ RN×Q list the signal of interest

and the anchors. Recall that all the entries of X are known. Using the OPU,

we can compute a noisy (quantized) version of

|yqr|2 = |⟨a,xq − xr⟩|2 = |yq − yr|2, (2.4)

for all (q, r), which gives us Q(Q − 1)/2 squared Euclidean distances be-

tween points {yq ∈ C}Qq=1 on the complex plane. These distances can be

used to populate a Euclidean (squared) distance matrix D ∈ RQ×Q as

D = (d2qr)
Q
q,r=1 = (|yqr|2)Qq,r=1, which we will use to localize all complex points,

yq.

We start by defining the matrix of all the complex points in R2 which we

want to recover as

Υ =

[
Re(y1) Re(y2) · · · Re(yQ)

Im(y1) Im(y2) · · · Im(yQ)

]
∈ R2×Q.

Denoting the qth column of Υ by υq, we have d2qr = ∥υq − υr∥22 = υT
q υq −

2υT
q υr + υT

r υr so that

D = diag (G)1T
Q − 2G+ 1Q diag (G)T =: K (G) , (2.5)

where diag(G) ∈ RQ is the column vector of the diagonal entries in the Gram

matrix G := ΥTΥ ∈ RQ×Q and 1Q ∈ RQ is the column vector of Q ones.

This establishes a relationship between the measured distances in D and the

locations of the complex points in R2 which we seek. We denote by J the

geometric centering matrix, J := I − 1
Q
1Q1

T
Q so that

Ĝ = −1
2
JDJ = JGJ = (ΥJ)T (ΥJ) (2.6)
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is the Gram matrix of the centered point set in terms of Υ. Matrices Ĝ and

J are know as the Gram matrix of the centered point set and the geometric

centering matrix because ΥJ is the points in Υ with their mean subtracted.

An estimate Υ̂ of the centered point set, ΥJ , is then obtained by eigende-

composition as Ĝ = V diag(λ1, . . . , λQ)V
T and taking Υ̂ = [

√
λ1v1,

√
λ2v2]

T

where v1 and v2 are the first and second columns of V and assuming that

the eigenvalue sequence is nonincreasing. This process is the classical MDS

algorithm [31, 32]. Finally, the phases can be calculated via a four-quadrant

inverse tangent, ϕ(yq) = arctan(υq2, υq1).

Procrustes analysis. As we recovered a centered point set via MDS with

a geometric centering matrix J , the point set will have its centroid at the

origin. This is a consequence of the used algorithm, and not the “true”

origin. As described above, we know that |yq|2 defines squared distances to

the origin and yQ = ⟨a,xQ⟩ = 0 + 0j (as xQ was set to the origin). This

means that we can correctly center the recovered points by translating the

centered point set, Υ̂, by −υQ.

The correct absolute rotation and reflection cannot be recovered. How-

ever, since we only care about working with some effective R(A) with the

correct distribution, we only need to ensure that the relative phases between

the frames are correct. We can thus designate the first frame as the reference

frame. This sets the rotation (which directly corresponds to the phase) and

reflection (corresponding to conjugation) arbitrarily. Once these are cho-

sen, the location of the anchors r1, . . . , rK are fixed, which in turn fixes the

phasing-conjugation operator R.

Since A is unknown, R is also unknown, but fixed anchors allow us to

compute the correct relative phase with respect to R(A) for the subsequent

frames. Namely, upon receiving a new input ξs to be randomly projected,

we now localize it with respect to a fixed set of anchors. This is achieved

by Procrustes analysis. Denoting by Υ̃1 our reference estimate of the anchor

positions in frame 1 (columns 2, . . . , Q of Υ̂ above which was recovered from

Ĝ in (2.6)), and by Υ̃s the MDS estimate of anchor positions in frame s,

adequately centered. Let Υ̃sΥ̃
T

1 = UΣV T be the singular value decomposi-

tion of Υ̃sΥ̃
T

1 . The optimal transformation matrix in the least squares sense

is then R = V UT so that RΥ̃s ≈ Υ̃1 [42].

Finally, we note that with a good estimate of the anchors, one can imagine
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not relocalizing them in every frame. The localization problem for ξ then

boils down to multilateration, cf. A.3 in the Appendix.

2.2.4 Sensitivity threshold and missing measurements

As we further elaborate in Appendix A.1, in practice, some measurements fall

below the sensitivity threshold of the camera and produce spurious values. A

nice benefit of multiple “views” of ξ via its interaction with reference signals is

that we can ignore those measurements. This introduces missing values in D

which can be modeled via a binary mask matrix W . The recovery problem

can be modeled as estimating Υ from W ⊙ (D + E) where W ∈ RN×N

contains zeros for the entries which fall below some prescribed threshold,

and ones otherwise. Matrix E models quantization noise.

We can predict the performance of the proposed method when modeling

the entries of W as iid Bernoulli random variables with parameter p, where

1−p is the probability that an entry falls below the sensitivity threshold. We

model E as uniform quantization noise distributed as U
(
− κ

2(2b−1)
, κ
2(2b−1)

)
,

where b is the number of bits, and κ an upper bound on the entries of D (in

our case 28 − 1 = 255).

Adapting existing results on the performance of multidimensional scaling

[43] (by noting that E is sub-Gaussian), we can get the following scaling of

the distance recovery error with K anchors (for K sufficiently large),

1

K
E
[∥∥∥D̂ −D

∥∥∥
F

]
≲

κ√
pK

, (2.7)

where ≲ denotes inequality up to a constant which depends on the number

of bits b, the sub-Gaussian norm of the entries in E, and the dimension of

the ambient space (here R2). We use D̂ to denote an estimate of the masked

Euclidean distance matrix [43]. An important implication is that even for

coarse quantization (small b) and for a large fraction of entries below the

sensitivity threshold (small p), we can achieve arbitrarily small amplitude

and phase errors per point by increasing the number of reference signals K.

Refinement with gradient descent. The output of the classical MDS

method described above can be further refined via a local search. A standard
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Algorithm 1 MPR algorithm for S frames.

Input: Squared distances
[
|yj,m − yl,m|2

]
s
for all 1 ≤ j, l ≤ Q for frames

1 ≤ s ≤ S and rows 1 ≤ m ≤M ; [ · ]s denotes frame s
Output: Y ∈ CM×S containing all localized points such that ys = R(A)ξs

for some fixed R.
1: Y ← 0M×S ▷ Initialize Y
2: m← 1
3: while m ≤M do ▷ Solve each row separately
4: Populate all frame s = 1 distances into distance matrix D ▷

D ∈ RQ×Q

5: [Υ]1 ← MDS(D) ▷ [Υ]1 ∈ R2×Q

6: [Υ]1 ← GradientDescent(D, [Υ]1)
7: [Υ]1 ← [Υ]1 − [υQ]11

T ▷ Translate to align with origin
8: s← 2
9: while s ≤ S do

10: Populate all frame s distances into distance matrix D
11: [Υ]s ← MDS(D)
12: [Υ]s ← GradientDescent(D, [Υ]s)
13: [Υ]s ← [Υ]s − [υQ]s1

T

14: R← Procrustes([υ2, . . . ,υQ]1, [υ2, . . . ,υQ]s) ▷ R aligns frames
1 and s anchors

15: [Υ]s ← Align([Υ]s,R, [υ2, . . . ,υQ]1) ▷ Align anchors
16: s← s+ 1
17: end while
18: U ←

[
[υ1]1, [υ1]2, . . . , [υ1]S

]
▷ U ∈ R2×S

19: ym ← u1 + ju2 ▷ Multiply second row of U with j and add to first
row

20: m← m+ 1
21: end while

differentiable objective called the squared stress is defined as follows,

min
Z

f (Υ) = min
Z

∥∥W ⊙
(
D −K

(
ZTZ

))∥∥2
F
, (2.8)

where K(·) is as defined in (2.5) and Z ∈ R2×Q is the point matrix induced by

row m of A. In our experiments we report the result of refining the classical

MDS results via gradient descent on (2.8).

Note that the optimization (2.8) is nonconvex. The complete procedure is

thus analogous to the usual approach to nonconvex phase retrieval by spectral

initialization followed by gradient descent [27, 28]. Algorithm 1 summarizes

our proposed method.
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2.3 Experimental verification and application

We test the proposed MPR algorithm via simulations and experiments on

a real OPU. For hardware experiments, we use a scikit-learn interface to a

publicly available cloud-based OPU. 2

Evaluation metrics. The main challenge is to evaluate the performance

without knowing the transmission matrix A. To this end, we propose to

use the linearity error. The rationale behind this metric is that with the

phase correctly recovered, the end-to-end system should be linear. That is,

if we recover y and z from |y|2 = |Aξ1|2 and |z|2 = |Aξ2|2, then we should

get (y + z) when applying the method to |v|2 = |A(ξ1 + ξ2)|2. With this

notation, the relative linearity error is defined as

linearity error =
1

M

M∑
m=1

|(ym + zm)− vm|
|vm|

. (2.9)

The second metric we use is the number of “good” or correct bits. This

metric can only be evaluated in simulation since it requires the knowledge

of the ground truth measurements. Letting |y|2 = |⟨a, ξ⟩|2 and ŷ be our

estimate of y, the number of good bits is defined as

good bits = − 20
6.02

log
(
||y|2 − |ŷ|2| / |y|2

)
. (2.10)

It is proportional to the signal-to-quantization-noise ratio if the distances

uniformly cover all quantization levels.3

2.3.1 Experiments

In all simulations, intensity measurements are quantized to 8 bits, and all

signals and references are iid standard (complex) Gaussian random vectors.

We first test the phase recovery performance by evaluating the linearity

error. In simulation, we draw random frames ξ1, ξ2, and A ∈ C100×642 . We

2https://www.lighton.ai/lighton-cloud/.
Reproducible code available at https://github.com/swing-research/opu_phase under
the MIT License.

3Note that the quantity registered by the camera is actually the squared magnitude,
hence the factor 20.
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apply Algorithm 1 to |Aξ1|2, |Aξ2|2 and |A(ξ1 + ξ2)|2 and calculate the

linearity error (2.9). We use classical MDS and MDS with gradient descent

(MDS-GD). Figure 2.2a shows that the system is, indeed, approximately

linear and that the linearity error becomes smaller as the number of reference

signals grows. In Figure 2.2b, we set the sensitivity threshold to τ = 6 and

zero the distances below the threshold per (2.3). Again, the linearity error

quickly becomes small as the number of anchors increases, showing that the

overall system is robust and that it allows recovery of phase for small-intensity

signals.

Next, we test the linearity error with a real hardware OPU. The OPU gives

8-bit unsigned integer measurements. A major challenge is that the DMD

(see Figure 2.1) only allows binary input signals. This is a property of the

particular OPU we use and, while it imposes restrictions on reference design,

the method is unchanged as our algorithm does not assume a particular

type of signal. Appendix A.1 describes how we create binary references and

addresses other hardware-related practicalities.

Figure 2.2c reports the linearity error on the OPU with suitably designed

references and the same size A. The empirically determined sensitivity

threshold of the camera is τ = 6, and the measurements below the threshold

were not used. We ignore rows of A which give points with small norms (less

than two) because they are prone to noise and disproportionately influence

the relative error. Once again, we observe that the end-to-end system with

Algorithm 1 is approximately linear and that the linearity improves as we

increase the number of anchors.

Finally, we demonstrate the magnitude denoising performance. We draw

a ∈ C100, a random signal ξ ∈ R100 and a set of random reference anchor

signals. We run our algorithm for number of anchors varying between two

and 15. For each number of anchors, we recover ŷ for |y|2 = |⟨a, ξ⟩|2 using

either classical MDS or MDS-GD. We then measure the number of good bits.

The average results over 100 trials are shown in Figure 2.3a. Figure 2.3b re-

ports the same experiment with the sensitivity threshold set to τ = 6 (that

is, the entries below τ are zeroed in the distance matrix per (2.3)). Both

Figures show that the proposed algorithm significantly improves the esti-

mated magnitudes in addition to recovering the phases. The approximately

1 additional good bit with gradient descent in Figure 2.3b corresponds to the

relative value of 21/28 ≈ 0.8% which is consistent with the gradient descent
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Figure 2.2: Experiments in simulation and on real hardware to evaluate the
linearity error as defined in (2.9). The input signals are of dimension 642, M
in (2.9) is 100 and the number of anchors signals are varied. The classical
MDS and MDS with gradient descent (MDS-GD) are used. In all cases, the
error decreases as the number of anchors increases. (a) In simulation with
Gaussian signals and Gaussian reference signals; (b) In simulation with
Gaussian signals and Gaussian reference signals with sensitivity threshold
τ = 6; (c) On a real OPU with binary signals and binary references.

improvement in Figure 2.2b.

We also test a scenario where the anchor positions on the complex plane

are known exactly and we only have to localize a single measurement. We

compare this to localizing the anchors and the measurements jointly. Lo-

calizing a single point via multilateration is performed by minimizing the

SR-LS objective (see (A.1) in the Appendix). The input signal dimension is

642 and we recover ŷ for |y|2 = | ⟨a, ξ⟩ |2. We perform 100 trials and calculate

the SNR of the recovered complex points. Figure 2.3c shows that, although

having perfect knowledge of anchor locations helps, classical MDS alone does

not perform much worse.
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Figure 2.3: (a) Magnitude denoising performance of MDS and MDS-GD
over 100 trials. Input signals are Gaussian and of dimension 100; (b)
Magnitude denoising performance of MDS and MDS-GD over 100 trials
with 100-dimensional Gaussian signals and sensitivity threshold τ = 6; (c)
Comparison between recovering a single point and recovering the point and
anchors at the same time. SR-LS is used to locate a single point when
anchors are known and MDS is used to locate all points when anchors are
unknown.

Optical randomized singular value decomposition. We use Algo-

rithm 1 to implement randomized singular value decomposition (RSVD) as

described in Halko et al. [44] on the OPU. We use five anchors in all RSVD

experiments. The original RSVD algorithm and a variant with adaptations

for the OPU are described in Algorithms 3 and 4 of Appendix A.2.

One of the steps in the RSVD algorithm for an input matrix B ∈ RM×N

requires the computation of BΩ where Ω ∈ RN×2K is a standard real Gaus-

sian matrix, K is the target number of singular vectors, and 2K may be

interpreted as the number of random projections for each row of B. We

use the OPU to compute this random matrix multiplication. An inter-

esting observation is that since in Algorithm 1 we recover the result of
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multiplications by a complex matrix with independent real and imaginary

parts, we can halve the number of projections when using the OPU with

respect to the original algorithm. By treating each row of B as an input

frame, we can obtain Y ∈ CK×M via Algorithm 1 when |Y |2 =
∣∣ABT

∣∣2
with A as defined in Problem 1 with K rows. Then, we can construct

P =
[
Re(Y ∗) Im(Y ∗)

]
∈ RM×2K which would be equivalent to computing

BΩ for real Ω. Appendix A.2 describes this in more detail.

Figure 2.4 shows the results when the OPU is used to perform the random

matrix multiplication step of the RSVD algorithm on a matrix B. Figure

2.4 (left) reports experiments with a random binary matrix B ∈ R10×104 ,

different numbers of random projections (number of rows in A), and ten

trials per number of projections. We plot the average error per entry when

reconstructing B from its RSVD matrices and singular values. Next, we

take 500 28 × 28 samples from the MNIST dataset [45], threshold them

to be binary, vectorize them, and stack them into a matrix B ∈ R500×282 .

Figure 2.4 (right) shows the seven leading right singular vectors reshaped to

28 × 28. The top row shows the singular vectors that are obtained when

using the OPU with 500 projections, and the bottom row shows the result

when using Python. The error is negligible.
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Figure 2.4: Left: Average RSVD error over 10 trials with varying number of
projections on hardware with an input matrix of size 10× 1000; Right:
Reshaped leading right singular vectors of an MNIST matrix of size
500× 282. The top rows shows the leading right singular vectors after
performing RSVD with the OPU and using our algorithm. The bottom row
shows the leading right singular vectors from Python. The relative error is
below each singular vector.
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2.4 Summary

Traditional computation methods are often too slow for processing tasks

which involve large data streams. This motivates alternatives which instead

use fast physics to “compute” the desired functions. In this chapter, we

looked at using optics and multiple scattering media to obtain linear random

projections. A common difficulty with optical systems is that off-the-shelf

camera sensors only register the intensity of the scattered light. Our results

show that there is nevertheless no need to reach for more complicated and

more expensive setups. We showed that measurement phase retrieval can

be cast as a problem in distance geometry, and that the unknown phase of

random projections can be recovered even without knowing the transmission

matrix of the medium.

Simulations and experiments on real hardware show that the OPU setup

combined with our algorithm indeed approximates an end-to-end linear sys-

tem. What is more, we also improve intensity measurements. The fact

that we get full complex measurements allows us to implement a whole new

spectrum of randomized algorithms; we demonstrated the potential by the

randomized singular value decomposition.
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CHAPTER 3

RAPID TM CALIBRATION

We build on Chapter 2 to develop a fast measurement phase retrieval method.

As we control the input and can now obtain the measurements, the only

unknown is the TM. Using the new measurement phase retrieval technique,

we rapidly calibrate the TM by solving a simple linear system rather than

a time-consuming quadratic system. We then use the calibrated TMs to

image through scattering media as explained in Figure 1.1. This work falls

under both E1 and E2 as we do measurement phase and transmission matrix

retrieval.

3.1 Imaging through scattering media

Imaging through a complex optical medium is conceptually simple. The

relationship between the optical field in the input plane, x, and the scattered

optical field, y, is given as

y = Ax, (3.1)

with A being the transmission matrix (TM) of the medium (the optical

system). Hence, to find the unknown image x from measurements y it suffices

to solve the linear inverse problem (3.1). Alas, once we set out to do so

we quickly realize that 1) the transmission matrix A is typically unknown,

and 2) A ∈ CM×N and y ∈ CM in (3.1) are complex, but typical camera

sensors only measure the intensity |y|2. Finding a solution for these two

difficulties is key to multiple applications such as imaging through fog, paint

This work was previously published in S. Gupta, R. Gribonval, L. Daudet, and I.
Dokmanić, “Fast Optical System Identification by Numerical Interferometry,” in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 1474–1478. [46] ©2020 IEEE and is adapted here with permission.
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and tissues in the human body, as well as optics-accelerated signal processing

[20] (Chapter 2).

There are several ways forward. One is to exploit the statistical properties

of A. This is useful in media like tissues or fog, where A exhibits certain

Gaussian statistics and it enables the design of correlation-based imaging

algorithms [47]. The other way, which gives better images and enables a score

of other applications, is to somehow learnA. Unfortunately, identifyingA by

probing signals in multiply-scattering media is computationally demanding.

Since the phase of the measurements is unknown, it amounts to solving a

system of quadratic equations. Due to this difficulty, state-of-the-art methods

report long calibration times even for small A. As an example, Rajaei et al.

proposed an approximate message passing algorithm known as prSAMP [48]

which would take days to reconstruct a TM of size 2562 × 642 (that is, for

input images of size 64 × 64). Sharma et al. [39] improve this by bringing

the calibration time down to under five hours for a matrix of the same size.

3.1.1 Chapter overview and contributions

In this chapter, we propose a fast numerical interferometry method to rapidly

identify A. Running on our system, our proposed method takes 6 minutes

for a calibration problem where the method of Sharma et al. [39] takes 200

minutes (3.29 hours).1

The gist of our method is in the special design of the calibration inputs

which we control. These inputs allow us to numerically find the phases of

the measurements y by “multilateration” in the complex plane, and then

numerically find A by inverting a linear system. Furthermore, instead of

direct inversion, we design calibration inputs so that the linear system is

solved efficiently by the fast Fourier transform (FFT). The outline of the

algorithm is

1. Recover the phase of the calibration measurements by solving a distance

geometry problem similar to Chapter 2 [20];

2. With the measurement phase recovered, estimate the transmission ma-

trix A by solving a linear system;

1GPU accelerated code for Sharma et al. downloaded from link in their paper. All
parameters were kept the same and the same GPU was used.
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3. With A in hand, use a phase retrieval method such as Wirtinger flow

[28] to find x from |y|2.

We build upon our previous work in Chapter 2 of casting measurement

phase retrieval as a distance geometry problem [20]. However, since here we

are after speed, we multilaterate all the entries of A by solving a suitable

linear system. We verify that the transmission matrices we compute are

correct by using them to reconstruct a known input signal. Experiments on

real optical hardware show that our method works even with quantization

and other inevitable hardware noise, and that it only takes a few minutes

compared to hours with the previous state of the art.

3.1.2 Related work

In a coherent interferometric setup the phase of y can be measured directly,

thus immediately giving a linear system to find A [49, 50, 51, 52]. The

downside is that such devices are harder and more expensive to build, often

achieve lower frame rates, and are sensitive to environmental factors [26, 50].

A numerical alternative with intensity-only measurements is the double

phase retrieval technique [26, 53]. In double phase retrieval, the TM is di-

rectly estimated from measurements obtained by known probe signals at the

input. Calibration is posed as a quadratic phase retrieval problem, with the

rows of the TM being the signals to be recovered. Here the known probe sig-

nals act as the observation matrix, and the TM is the unknown. Solving these

phase retrieval problems can be time consuming even with GPU-accelerated

implementations [39].

We previously introduced a distance geometry approach to find the phase

of y in Chapter 2 [20]. In that work, the focus was on computing the phase of

Gaussian random projections for machine learning tasks such as dimension-

ality reduction and kernel methods, without determining A. Thus, while di-

rectly adapting the approach presented there for calibration is already faster

than the double phase retrieval method, in this chapter we propose methods

that are much faster than both.

Knowing A enables reconstructing x from the magnitude of complex mea-

surements |y|2 = |Ax|2 via classical phase retrieval techniques [33, 34, 7, 28].

Furthermore, in optically-accelerated computing there are uses for fast mul-
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tiplication of large signals with known random Gaussian iid matrices. Some

applications are classification with random features [21], matrix sketching

[23], and randomized linear algebra [44].

3.2 Rapid transmission matrix computation

In this section we describe the procedure outlined in Section 3.1 in detail.

We adopt the classical system identification paradigm and probe the optical

system with a collection of K known calibration signals arranged in the

matrix Ξ = [ξ1, . . . , ξK ] ∈ RN×K ,

To convert phase retrieval into multilateration we will also use S known

signals v1, . . . ,vS, which we ascribe to the columns of V ∈ RN×S. Without

loss of generality we fix vS to be the origin. We will call Avs anchors.

We now feed the calibration signals through the optical system, forming

Y = AΞ. (3.2)

The kth column of Y will be denoted yk = Aξk. We do the same with the

differences between the columns of Ξ and the vectors vs,

rs := Avs and yks := A(ξk − vs) = yk − rs, (3.3)

for all k ∈ {1, . . . , K} and s ∈ {1, . . . S}. The mth entry of these vectors

will be denoted yk,m, rs,m and yks,m; the mth row of A will be denoted am.

Optically, we can only measure the entrywise magnitudes of these vectors

and matrices. The term numerical interferometry comes from the fact that

the optically measured magnitude of yks is the interference pattern between

Aξk and Avs.

3.2.1 Rapid measurement phase retrieval

We consider recovering the phase of the calibration measurements Y from

the system

|Y |2 = |AΞ|2. (3.4)
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Figure 3.1: Two sets of points on the complex plane which are related by
reflection and rotation transformations. yk,m is the position of calibration
signal k on the complex plane. We can optically measure the squared
distance between this point and anchor points on the complex plane to
obtain the calibration signal measurement phase. ©2020 IEEE.

We begin by noting that the absolute phase of AΞ in (3.4) cannot be recov-

ered since conjugating a subset of rows of A or adding arbitrary constant

phases leads to the same magnitude measurements. This ambiguity is stan-

dard in phase retrieval [28].

We remark that for many multiple scattering media, and in particular for

the setup used in our experiments, A is approximately iid standard complex

Gaussian. As such, adding constant phase to rows or conjugating them does

not change their distribution. As long as the relative phase between the

columns of Y does not change, our method recovers an A which is related

to the true one by row phasing and conjugation. This is innocuous for many

applications.

Without loss of generality, we explain the rapid measurement phase re-

trieval algorithm for themth row of A. This uses similar ideas to the method

in Chapter 2. We begin with the trivial observation that the magnitude of

a complex number rs,m := |rs,m| is its distance to the origin. Similarly, the

magnitude of a difference between yk,m and rs,m, yks,m := |yk,m − rs,m| =
| ⟨am, ξk − vs⟩ |, is the distance between these numbers in the complex plane

(see Figure 3.1).

Suppose for a moment that the points rs,m, s ∈ {1, . . . , S} are known and

fixed and that we wish to recover the phase of yk,m. By having access to the

distances from yk,m to at least three anchors rs,m, we can “localize” yk,m by

trilateration and hence recover its phase. In practice, having more anchors
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leads to more robust results.

To get a fast method, we now show how the phase of all the entries in the

mth row of Y can be computed at once by solving a small linear system with

multiple right-hand sides. We adapt a procedure from [54]. First we expand

the squared distance to anchors,

y2ks,m = r2s,m + y2k,m − 2rTs,myk,m,

where we abused notation by interpreting complex numbers as vectors in R2

that can be transposed. Rearranging, we get

y2ks,m − r2s,m = [−2rTs,m, 1]︸ ︷︷ ︸
=:mT

s,m

[
yk,m

y2k,m

]
︸ ︷︷ ︸

=:wk,m∈R3

. (3.5)

In (3.5), the left-hand side contains only known quantities (anchors are as-

sumed known and y2ks,m is optically measured). The row vector on the right-

hand side is also known, while the column vector contains the desired, un-

known complex point.

With S anchors we get S equations for the column vector in (3.5); the

system is invertible if S ≥ 3 and the anchors are not colinear. Let

ek,m = [y2k1,m − r21,m, . . . , y
2
kS,m − r2S,m]

T

denote the stack of the left-hand sides of (3.5) for all S anchors, and

Em = [e1,m, . . . , eK,m] ∈ RS×K a horizontal stack of ek,m for all K cal-

ibration signals. Similarly, let Mm = [m1,m, . . . ,mS,m]
T ∈ RS×3 and

Wm = [w1,m, . . . ,wK,m] ∈ R3×K . We can then write (3.5) for all anchors

and calibration signals at once as

Em = MmWm. (3.6)

By solving multiple multilateration problems in (3.6), we get Ŵm = M †
mEm.

The top two rows of Ŵm contain the real and imaginary parts of all the

entries in the mth row of Y , as shown in Figure 3.1.
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3.2.2 Initial anchor positioning

For the developments of the previous section to make sense, we need to know

the anchor positions. Here we propose to follow Chapter 2 and use classical

multidimensional scaling (MDS) as summarized below.

We begin by optically measuring the anchors and all their pairwise differ-

ences. For row m of A for all (q, s) we can get S(S−1)/2 squared Euclidean

distances between points {rs,m}Ss=1 on the complex plane,

|⟨am,vq − vs⟩|2 = |rq,m − rs,m|2. (3.7)

We arrange these distances into a squared Euclidean distance matrix, Dm ∈
RS×S, where dqs,m = |rq,m − rs,m|2. Next, denoting the geometric centering

matrix J := IS− 1
S
1S1

T
S where 1S is a column vector of S ones, we compute

the eigendecomposition of

Gm = −1

2
JDmJ (3.8)

as Gm = U diag(λ1, . . . , λS)U
T , where the eigenvalue sequence (λs)

S
s=1 is

nonincreasing. Anchor s is then located on the complex plane at the sth

element of (
√
λ1u1 + j

√
λ2u2) where u1 and u2 are the first and second

columns of U . As vS was set to be the origin, we subtract the Sth element

of (
√
λ1u1 + j

√
λ2u2) from all localized anchors.

With the anchors localized, we can solve (3.6) to retrieve the measure-

ment phase for each row. We note that for each row we can apply rota-

tion and reflection transformations to the set of anchor points in the two-

dimensional complex plane while still maintaining the optically measured

distances. As mentioned earlier, rotation and reflection correspond to adding

constant phase or conjugating rows.

We note that this approach of measurement phase retrieval varies from the

one presented earlier in Chapter 2. In that chapter, rather than using (3.6)

to obtain the phase of the measurements, we used MDS to solve a separate

distance geometry problem for each element of Y which is much more time

consuming.
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3.3 Obtaining the transmission matrix

With the phases of Y computed and recalling that the probe signals Ξ are

known, we can numerically compute the transmission matrix by solving

Y = AΞ. (3.9)

The least-squares fit Â = argminA ∥Y −AΞ∥2F is formally given by the

pseudoinverse. We design Ξ to ensure that it has full row rank and that the

the number of probe signals, K, is larger than N ; then Â = Y Ξ†, where †

denotes the pseudoinverse.

Although this method (see Section 3.4) already gives significant speed gains

over the state-of-the-art, for large signals and large K, calculating the pseu-

doinverse can be slow. We next show how to further speed up the algorithm

using fast Fourier transforms (FFTs) and a generalized right inverse of Ξ

instead of a pseudoinverse.

3.3.1 Circulant probes for FFT

We first note that due to noise and other adversarial effects, it is favorable

to have more calibration signals than the minimum number N . For simplic-

ity, in this section we choose K = 2N . If Ξ† was a circulant matrix, the

multiplication Y Ξ† would be efficiently computed by an FFT as circulant

matrices are diagonalized with the discrete Fourier transform (DFT) matrix.

With this in mind, we design Ξ instead of Ξ†. We use the following proposi-

tion with F denoting the unitary DFT matrix and ∗ denoting the Hermitian

transpose:

Proposition 1. Let C1, C2 be invertible circulant matrices of same size,

diagonalized as F ∗Λ1F and F ∗Λ2F . Then for any α, β such that α+β = 1,

[αC−1
1 , βC−1

2 ]T is a generalized right inverse of [C1, C2], with C−1
1 and

C−1
2 being the circulant matrices F ∗Λ−1

1 F and F ∗Λ−1
2 F .

We design Ξ as a concatenation of two circulant matrices of size N × N ,

Ξ = [ΞA, ΞB] ∈ RN×2N . They are diagonalized by the DFT matrix F ∈
CN×N ,

ΞA = F ∗ΛAF and ΞB = F ∗ΛBF ,
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where ΛA and ΛB are diagonal eigenvalue matrices whose entries are the

DFT of the first columns of ΞA and ΞB, and fmn = e−j2πmn/N/
√
N . With

this notation we can write

Y = A
[
F ∗ΛAF F ∗ΛBF

]
.

From here, splitting Y into halves as Y = [Y A, Y B] and applying the

proposition with α = β = 1
2
to obtain a right inverse gives

Â =
1

2

(
Y AF

∗Λ−1
A + Y BF

∗Λ−1
B

)
F (3.10)

Multiplications by F and F ∗ can be implemented efficiently using the FFT

in time O(N logN). Since ΛA and ΛB are diagonal, multiplying by them

takes time O(N) and their entries are calculated efficiently using the FFT.

3.3.2 Algorithm complexity

To evaluate our algorithm’s complexity, we first consider measurement phase

retrieval which is the same process repeated M times. Anchor localization

via MDS entails creating Gm (3.8) which is O(S2) thanks to the special

structure of J , and performing a singular value decomposition on it which is

O(S3). Next, with K = 2N , solving (3.6) requires some O(SN) operations

to obtain Em plus computing a pseudoinverse of an S × 3 matrix which is

O(S) and finally multiplying the pseudoinverse which is O(SN). As these

steps are repeated M times, the complexity of measurement phase retrieval

is O(MS3) + O(MSN). The number of anchors, S, is a fixed parameter

which gives O(MN).

Recovering A from Y = AΞ via (3.10) involves three FFT uses with each

time onM signals of length N which gives complexity O(MN logN). Multi-

plications with the diagonal matrices are O(MN) and so computing (3.10) is

O(MN logN). Putting this together with O(MN) from measurement phase

retrieval results in our algorithm ultimately being O(MN logN). Without

using the FFT, it would have been O(N3) +O(MN2).
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3.4 Experimental verification

We numerically compute TMs from real optical hardware measurements and

use them for optical imaging as described in Figure 1.1. We use the same

scikit-learn interface to a publicly available cloud-based optical processing

unit (OPU) as in Chapter 2.2 As shown in Figure 1.2, the OPU “imprints”

a signal onto a coherent light beam using a digital micro-mirror device (DMD)

which is then shined through a multiple scattering medium such as a white

polymer layer. The scattering medium acts like an iid standard complex

Gaussian matrix. A camera with 8-bit precision measures the intensity of

the scattered light.

As explained in Appendix A.1, one challenge of using this hardware is that

the DMD only produces binary inputs. Therefore, the anchor signals have

to be designed so that the difference between any two anchors is binary and

they can be used to localize anchors on the complex plane. Furthermore,

the probe signals, Ξ, should be binary and remain binary when any anchor

signal is subtracted from them. Using the scheme described in Appendix

A.1, we design anchors by summing all probe signals and existing anchors,

thresholding indices with values greater than one to one and then making

15% of the values at indices where the sum was zero to one.

From (3.9), we need all rows of Ξ to have at least one nonzero value in

order to reconstruct all columns of A. However, this results in anchors which

are all one. We therefore apply our method twice with two different sets of

probe signals with different zero rows. Each set of probe signals recovers a

subset of the columns of the TM. Since the two sets of probe signals share

some non-zero row indices, the corresponding recovered columns should be

identical. We use this fact to rotate and conjugate the rows of the two

recovered TMs so that the common columns coincide. Finally, columns of A

that are only recovered by one set of probing signals are collected to form a

complete TM.

More concretely, each Ξ ∈ RN×K is built by concatenating two circulant

matrices, each of size K/2×K/2. The entries of the non-zero columns of the

circulant matrices are drawn iid from Bernoulli
(
1
2

)
and N − (K/2) all-zero

rows are inserted at random indices so that Ξ is N ×K. When inverting Ξ

2https://www.lighton.ai/lighton-cloud/.
Code available at https://github.com/swing-research/numerical_interferometry
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N M/N
Time taken
(minutes)

Reconstructed image
relative error

322 32 0.97 10.2%
322 64 2.05 7.8%
322 128 4.01 6.2%

642 16 6.15 21.5%
642 32 11.69 15.3%
642 64 24.14 12.0%

962 16 31.36 25.8%

1282 12 71.97 32.0%

Table 3.1: The time taken to reconstruct TMs, A ∈ CM×N and the relative
error of reconstructed images using these TMs. All times were measured on
the same system. ©2020 IEEE.

to calibrate the TM, we remove the inserted zero rows to get block circulant

matrices and use (3.10) to recover a subset of the columns of A.

3.4.1 Optical imaging with numerically computed TMs

We reconstruct images of different sizes and vary the oversampling factor,

M/N , of the optically-obtained quadratic magnitude measurements which

results in different TM sizes. Wirtinger flow with random uniform initializa-

tion is used for reconstruction [28, 55]. During gradient descent, any elements

of the signal with absolute value greater than one are normalized. We do 500

iterations of gradient descent for 32 × 32 images. For the other images, the

absolute value of the recovered signal after 500 initial iterations with 4N

measurements is used to start 2000 further iterations which includes all mea-

surements. We use 20 anchor signals for all images except the 128 × 128

ones which use 15. For 32× 32 and 64× 64 images K = 1.5N , for 96 × 96,

K = 1.125N and for 128× 128, K = 1.03125N .

Table 3.1 shows the TM calibration time as well as the reconstructed im-

age relative error which we define as minφ∈[0,2π)∥x−ejφx̂∥
2/∥x∥2 where x̂ is the

reconstructed signal and x is the true signal. We note that we are doing

phase retrieval with noise as the TM has been estimated from 8-bit precision

camera measurements. The error decreases with increasing oversampling fac-

tor, which matches the theory. As mentioned in Section 3.1, a 2562 × 642
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Original 
N = 32 x 32

Reconstruction 
M/N = 128

Original 
N = 64 x 64

Reconstruction 
M/N = 32

Original 
N = 96 x 96

Reconstruction 
M/N = 16

Original 
N = 128 x 128

Reconstruction 
M/N = 12

Figure 3.2: Reconstructions with some of the transmission matrices
reported in Table 3.1. The top row shows the original, and the bottom row
shows the absolute value of its corresponding reconstruction. ©2020 IEEE.

TM took 3.26 hours when prVAMP was used [39]. In contrast, our method

takes 6.15 minutes. In fact, the biggest TM listed in Table 3.1 is 12 times the

size of this TM. Figure 3.2 displays some reconstructions using our calibrated

TMs.

3.4.2 Computation time scaling

From Table 3.1 and Figure 3.3 (left) we can see that the time taken in-

creases linearly with the oversampling factor. In Figure 3.3 (left), N = 642,

K = 1.5N and 20 anchor signals are used. In Figure 3.3 (right), the over-

sampling factor is fixed at 16, K = 1.125N , 20 anchors are used and the

input dimension is varied. As signal dimension increases, using the FFT to

solve (3.9) yields increasing gains.

3.5 Summary

Calibrating a transmission matrix with intensity-only measurements has tra-

ditionally been a time consuming process. In this chapter, we proposed a

method to reduce the calibration time for typical size matrices from hours to

minutes. The crux of our method is the rapid recovery of the measurement

phase due to probe input signals. With the obtained measurement phase
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Figure 3.3: (Left) Time taken to calibrate TM when the oversampling
factor is varied; (Right) Time taken when input dimension varies and
oversampling factor is fixed at 16. ©2020 IEEE.

and probe signals, transmission matrix calibration then amounts to solving

a simple linear system, which we do efficiently with the FFT. Experiments

on optical hardware confirm that our method is indeed faster than exist-

ing methods and reconstructs transmission matrices which can be used for

imaging.
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CHAPTER 4

TOTAL LEAST SQUARES PHASE
RETRIEVAL

In Chapter 3, we presented a method to calibrate the TMs of scattering me-

dia from real optical measurements. However, due to camera quantization

and thermal effects, these optical measurements have errors. Consequently,

the calibrated TMs have errors which are not accounted for when imaging

through scattering media (Figure 3.2 which can result in poor reconstruc-

tion. Therefore, in this chapter, we present a framework to account for both

measurement and TM errors when solving phase retrieval problems such as

imaging through scattering media. This work falls under E2 because we

correct calibrated TMs.

4.1 Phase retrieval with sensing system errors

In the classical phase retrieval problem, we seek to recover the signal x ∈ CN

from complex quadratic measurements

ym ≈ |⟨am,x⟩|2, m = 1, . . . ,M (4.1)

where ym ∈ R are observed measurements and am ∈ CN are sensing vectors.

This problem appears in applied science applications such as x-ray diffraction

crystallography or astronomy where the sensing vectors are Fourier basis

vectors [57] and imaging through scattering media where the sensing vectors

may be complex random Gaussian [46].

In a prototypical phase retrieval problem, an object, x, is illuminated

and the resulting optical field is measured with a detector. This optical

field is complex-valued but common camera sensors only measure intensity,

This work was previously published in S. Gupta and I. Dokmanić, “Total Least Squares
Phase Retrieval,” IEEE Transactions on Signal Processing, vol. 70, pp. 536–549, 2022
[56] and is adapted here with permission.
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{|⟨am,x⟩|2}Mm=1, and thus the measurement phase information is lost. The

left and right hand sides in (4.1) are only approximately equal because in

practical settings there can be errors in both the measurements and sensing

vectors. In this work, we focus on gradient-based optimization strategies to

solve (4.1) when M > N . Gradient-based methods have proven successful

when imaging through random scattering media [46] or with coded diffraction

Fourier patterns [28].

Many recent approaches for solving the phase retrieval problem solve vari-

ants of the following nonlinear and nonconvex least squares (LS) problem,

minimize
x

M∑
m=1

(
ym − |⟨am,x⟩|2

)2
, (LS-PR)

which we can alternatively rewrite as

minimize
x,

r1,...,rM

M∑
m=1

r2m (4.2)

s.t. ym + rm = |⟨am,x⟩|2, m = 1, . . . ,M

with rm ∈ R. Thus, LS seeks the smallest correction to the measurements so

that (ym + rm) can be obtained from quadratic measurements |⟨am,x⟩|2 for

eachm. This is analogous to LS for linear inverse problems where corrections

that bring the measurements into the range space of the linear operator are

required instead.

In many practical settings, the sensing vectors, {am}Mm=1, are only ap-

proximately known via calibration. In this chapter we show that properly

accounting for errors in the sensing vectors may lead to a more accurate es-

timate of x. Inspired by the total least squares (TLS) framework for linear

[58, 59] and nonlinear [60] inverse problems, we extend the LS formulation

(4.2) to find corrections for both the measurements and the sensing vectors.

In TLS phase retrieval, we optimize the objective

minimize
x,

r1,...,rM ,
e1,...,eM

M∑
m=1

λyr
2
m + λa ∥em∥22 (4.3)

s.t. ym + rm = |⟨am + em,x⟩|2, m = 1, . . . ,M
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with corrections em ∈ CN for 1 ≤ m ≤ M . Scalars λy ∈ R and λa ∈ R
are nonnegative regularization weights. Now, for each m we want to find

minimum weighted norm corrections so that (ym+ rm) can be obtained from

quadratic measurements |⟨am + em,x⟩|2. Efficiently obtaining the sensing

vector corrections {em}Mm=1 is a major challenge when moving from the LS

problem (4.2) to the TLS problem (4.3).

4.1.1 Chapter overview and contributions

We propose a TLS framework for solving the phase retrieval problem when

there are errors in the sensing vectors. In Section 4.2 we explain our gradient

descent strategy to solve the TLS phase retrieval problem which motivates

an alternating updates procedure to solve the problem. With this approach

there are additional computational challenges, which we show can be made

efficient by incorporating the geometry of the phase retrieval problem. In Sec-

tion 4.3 we derive expressions for the reconstruction errors for the TLS and

LS solutions. This gives us insight into when each method should perform

well. This derivation requires the usage of theorems about differentiation

of argmins and different matrix inversion lemmas. Through simulations in

Section 4.4 we show that the TLS approach can lead to solutions of greater

accuracy when there are sensing vector errors. We further verify the appli-

cability of our framework through experiments on real optical hardware in

Section 4.5. We see that TLS outperforms LS when aiming to recover ran-

dom signals and real images. We summarize TLS phase retrieval in Section

4.6.

4.1.2 Related work

Algorithms by Gerchberg and Saxton [61] and Fienup [62] are the most well-

known approaches for solving the phase retrieval problem when the sensing

vectors are the rows of the Fourier matrix, as in many practical imaging

scenarios [1]. These methods iteratively reduce the error between the ob-

served measurements and the measurements generated from the solution at

the current iterate. Another class of algorithms based on message passing

has also been developed [48, 39]. Despite the nonconvexity of the problem,
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these error reduction and message passing algorithms work well in practice.

They do not directly use gradient descent to obtain a solution.

Recently a series of works have shown that for suitable measurement mod-

els, the nonconvex LS objective (LS-PR) can be globally optimized via gra-

dient descent updates. The Wirtinger flow algorithm is one of the most

well-known methods and proposes the framework comprising a spectral ini-

tialization followed by gradient descent updates [28]. Spectral initialization

ensures that the iterates start in a convex basin near a global optimum when

there are enough measurements in an error-free setting. This initialization

was first proposed as part of the AltMinPhase algorithm [27]. Multiple works

have extended this approach by modifying the initialization, gradient updates

and objective for phase retrieval [63, 64], and for other quadratic problems

with sensing matrices rather than sensing vectors [65] like the unassigned

distance geometry problem [66]. There are also extensions that incorporate

signal priors such as sparsity [67, 68]. None of these gradient descent ap-

proaches, however, account for sensing vector or sensing matrix errors.

Another group of works have developed convex optimization approaches,

which are closely related to low-rank matrix recovery techniques, for solv-

ing the phase retrieval problem [69]. These methods use the fact that the

measurements in (4.1) can be expressed using the Frobenius matrix inner

product, ym ≈ |⟨am,x⟩|2 = x∗ama
∗
mx = ⟨ama

∗
m,xx

∗⟩. With this for-

mulation, phase retrieval amounts to recovering a rank-1 positive semidef-

inite matrix, X = xx∗, from linear matrix inner product measurements,

{⟨ama
∗
m,xx

∗⟩}Mm=1 [70, 71]. In practice, lifting the problem from recover-

ing vectors in CN to matrices in CN×N poses significant computational and

memory challenges for even moderately sized problems. Matrix sketching

algorithms [24] and convex methods which do not require lifting [72] have

since been developed to address these challenges.

For linear inverse problems, the TLS method is an established approach

for handling errors in both the measurements and the operator [58, 59]. For

linear problems, TLS can be efficiently solved using the singular value de-

composition (SVD). For the quadratic case considered in this chapter, such

an approach is not apparent because of the magnitude-squared nonlinearity

in (4.1). We, therefore, also cannot use the SVD to analyze the solution error

as is done in the linear case [73]. Linear TLS has been extended to settings

with structured operator errors [74, 75], sparse signals [76], and signals with
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norm constraints [77]. We note that Yagle and Bell use linear TLS to solve

a particular subproblem of a phase retrieval algorithm which only addresses

errors in the measurements [78].

There also exist algorithms for nonlinear TLS which aim to solve a general

optimization problem for inverse problems with arbitrary nonlinearities [60,

79, 80]. The general optimization problem is similar to (4.3), except for

the constraint which requires nonlinear rather than quadratic consistency.

However, by using the specific structure of the phase retrieval problem in

this chapter (4.1) we are able to obtain efficient algorithms and perform

error analysis for TLS phase retrieval.

Our gradient descent strategy uses alternating updates to solve the TLS

phase retrieval problem. While alternating updates have been successfully

utilized to solve the linear TLS problem [76], it is not straightforward to

extend this approach to phase retrieval because of its quadratic nature. We

show how to use the geometry of the optimization problem (4.3) to perform

alternating updates for TLS phase retrieval.

4.2 TLS for phase retrieval

In this section we show how to solve the TLS phase retrieval problem. Recall

(4.3),

minimize
x,

r1,...,rM ,
e1,...,eM

1

2M

M∑
m=1

λyr
2
m + λa ∥em∥22 , (4.4)

s.t. ym + rm = |⟨am + em,x⟩|2, m = 1, . . . ,M,

which has been normalized by the number of measurements by the scaling 1
M
.

We can rearrange the constraint and substitute rm = |⟨am + em,x⟩|2 − ym
for 1 ≤ m ≤M to obtain,

minimize
x

1

2M

M∑
m=1

minimize
em

λa ∥em∥22 + λy
(
ym − |⟨am + em,x⟩|2

)2
. (4.5)

Further we denote the mth corrected sensing vector as âm := (am + em)
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to obtain the equivalent formulations

minimize
x

1

2M

M∑
m=1

min
âm

λa ∥am − âm∥22 + λy
(
ym − |⟨âm,x⟩|2

)2
︸ ︷︷ ︸

Im(x)

, (TLS-PR1)

and

minimize
x,

â1,...,âM

1

2M

M∑
m=1

λa ∥am − âm∥22 + λy
(
ym − |⟨âm,x⟩|2

)2
︸ ︷︷ ︸

J (x,â1,...,âM )

. (TLS-PR2)

As each data consistency term,
(
ym − |⟨âm,x⟩|2

)2
, is proportional to ∥x∥42

in an error-free setting, we set λy =
λ†
y

∥x(0)∥4
2

in order to make the scaling of

the objective invariant with respect to the norm of x. The vector x(0) is

an initial guess for x and λ†y is a regularization parameter. Furthermore, to

account for the fact that the sensing vector corrections, (am − âm), are N -

dimensional and the data consistency terms are scalar we set λa =
λ†
a

N
where

λ†a is a regularization parameter.

In line with recent methods such as the Wirtinger flow algorithm [28], our

high level strategy is to obtain x by solving

argmin
x

1

2M

M∑
m=1

Im(x), (4.6)

using gradient descent. To perform gradient descent with respect to x we

can use Wirtinger gradient updates [28],

x(τ+1) = x(τ) − µ

∥x(0)∥22
· 1

2M

M∑
m=1

∇xIm
(
x(τ)

)
, (4.7)

where µ is the step size and
∥∥x(0)

∥∥
2
is a guess for ∥x∥2. The gradient is given

by

∇xIm(x) = 2

(∣∣∣〈â†
m,x

〉∣∣∣2 − ym) â†
mâ

†∗
mx, (4.8)

where â†
m is the solution to the following nonconvex optimization problem
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that is seen in (TLS-PR1)

â†
m = argmin

a
λa ∥am − a∥22 + λy

(
ym − |⟨a,x⟩|2

)2
. (4.9)

This motivates the following alternating updates procedure to solve the

TLS problem:

1. Obtain an initial guess, x(0) ∈ CN , for x.

2. Repeat steps 2a and 2b until convergence:

(a) With x fixed, obtain corrected sensing vectors, {â†
m}Mm=1, by solv-

ing (4.9) for 1 ≤ m ≤M .

(b) With {â†
m}Mm=1 fixed, take one gradient descent step to update x

using (4.7).

The main challenge in our approach is obtaining corrected sensing vectors

{â†
m}Mm=1 by solving (4.9) so that we can perform gradient descent updates

for x using (4.7). As (TLS-PR2) is nonconvex, a good initial guess, x(0), can

place us near a global minimum. There are multiple initialization options,

such as the spectral initialization for certain measurement models [27].

In the remainder of this section, we will examine the geometry of the

optimization problem in (TLS-PR1) and show how it can be leveraged to

efficiently solve (4.9) and obtain corrected sensing vectors. This is summa-

rized by Proposition 2 below. We will then present the complete TLS phase

retrieval algorithm. Lastly, we also interpret the regularization parameters,

λa and λy, by showing that the TLS solution is the maximum likelihood

estimator for a quadratic complex-valued error-in-variables (EIV) model.

4.2.1 Optimization geometry

Moving from the LS formulation to the TLS formulation introduces signifi-

cant computational issues. In addition to optimizing over vector x, we must

additionally optimize over M sensing vectors in (TLS-PR1), with typically

M > N . We now study the optimization geometry of (TLS-PR1) and show

that the M inner minimizations over the N -dimensional vectors, {âm}Mm=1,

can be simplified to minimizing over M scalars which improves efficiency.
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For ease of visualization in this subsection, we consider the real-valued prob-

lem (all quantities in (4.1), (LS-PR) and (TLS-PR1) are real) and we set

λa = λy = 1.

For a given vector x we compare the values of the LS and TLS objectives,

(LS-PR) and (TLS-PR1). The left column of Figure 4.1 visualizes the phase

retrieval problem with M = 5 data points, {(am, ym)}Mm=1, when N = 2 and

∥x∥2 = 1. The middle column shows the same data points from a different

viewing angle. In phase retrieval we fit a paraboloid, y(a) = |⟨a,x⟩|2 that is
parameterized by x to the data points, {(am, ym)}Mm=1. If there is no sensing

vector or measurement error, the data points lie on the paraboloid ((4.1)

holds with equality). The left and middle figure show that the surface y(a) =

|⟨a,x⟩|2 does not change in the subspace perpendicular to x, denoted as x⊥.

This can also be verified by considering the values of a that would result in

the inner product ⟨a,x⟩ being zero. Crucially, this means that the shortest

paths between the data points and the paraboloid have no component in the

x⊥ subspace. As a result, we can view the problem in 2D from a viewpoint

that looks into the x⊥ subspace as shown in the right column of Figure 4.1.

This 2D plot shows two options for measuring closeness between the surface

and the data points. The LS objective (LS-PR), is the sum of the squared

vertical distance between the 2D parabola and each data point as indicated

by the dashed lines. On the other hand, due to the minima over all âm, the

TLS objective (TLS-PR1), is the sum of the squared Euclidean or orthogonal

distance between the 2D parabola and each data point as shown by the solid

lines. A similar geometrical interpretation is seen with linear TLS [58, 59].

Considering this geometry, to solve the inner minimizations in (TLS-PR1),

we find the closest point on the paraboloid to each data point. As the shortest

path has no component in the x⊥ subspace, our task of finding the closest

point on a (N+1)-dimensional paraboloid to a (N+1)-dimensional data point

reduces to a 2D geometry problem of finding the closest point on a parabola

to a 2D data point. Rather than finding the minimizing N -dimensional â†
m

for each data point, we instead only need to find the component of â†
m in

the x direction that is closest. This component is a scalar and is given by

the inner product, νm =
〈
â†
m,x

〉
. We can then construct â†

m by adding the
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Figure 4.1: Visualization of the phase retrieval problem when ∥x∥2 = 1.
The left column shows M = 5 data points, {(am, ym)}Mm=1, when N = 2. A
paraboloid is fitted to the data points. The middle column shows the same
paraboloid and data points from a different viewing angle. The right
column shows the problem from a viewpoint that looks into the x⊥

subspace. The dashed lines show the distances minimized by the LS
objective, (LS-PR). The solid lines show the distances minimized by the
TLS objective, (TLS-PR1).

unchanged component in the x⊥ subspace,

â†
m := â†

m(νm) =
νm
∥x∥2

x̂+ (am − ⟨am, x̂⟩ x̂), (4.10)

where x̂ is x normalized.

If λa and λy are not one, a perpendicular distance is not minimized. As
λa

λy
gets larger, the solid lines in the right column of Figure 4.1 become more

vertical because there is a relatively larger penalty for correcting the sensing

vectors and the problem moves towards a LS approach. Conversely, the lines

become more horizontal as λa

λy
gets smaller. Irrespective of the values of λa

and λy, the shortest paths between the paraboloid and the data points still

have no component in the x⊥ subspace and (4.10) can be used to obtain each

â†
m. We further note that this geometry also holds for the complex-valued

phase retrieval problem (4.1).

4.2.2 Correcting complex-valued sensing vectors

Our strategy is to set up each inner minimization over âm in (TLS-PR1) as

the minimization of a fourth degree equation with respect to scalar νm =

⟨âm,x⟩ rather than vector âm. We then directly obtain the minimizer of

this equation.
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The M inner minimization problems in (TLS-PR1) are independent of

each other and we can independently solve each summand for a fixed vector

x. Consider the objective function of optimization problem Im(x),

fm(âm) =λa ∥am − âm∥22 + λy
(
ym − |x∗âm|2

)2
. (4.11)

Proposition 2 states that argminâm
fm(âm) can be obtained by solving two

scalar variable cubic equations and using (4.10).

Proposition 2. Let sets R+ and R− be the positive real solutions of

αr3 + βr ± |γ| = 0 (4.12)

where α = 2λy ∥x∥22 ∈ R, β = λa − 2λyym ∥x∥22 ∈ R and γ = −λax∗am ∈ C.
Further, with κ denoting the phase of γ, let

S+ = {ejκr | r ∈ R+} and S− = {−ejκr | r ∈ R−}. (4.13)

Then fm(âm) is minimized by â†
m

(
s†
)
where

s† = argmin
s∈S+∪S−

fm

(
â†
m(s)

)
(4.14)

and â†
m(·) is defined in (4.10).

Proof. Expanding fm(âm) gives

fm(âm) =λa(∥am∥22 − a∗
mâm − â∗

mam + â∗
mâm)

+ λy(y
2
m − 2ymâ

∗
mxx

∗âm + (â∗
mxx

∗âm)
2). (4.15)

We can use Wirtinger derivatives to calculate the derivative of the real-

valued fm(âm) with respect to the complex vector âm [28],

∇âmfm =
(
λa(−a∗

m + â∗
m) + λy(−2ymâ∗

mxx
∗ + 2|x∗âm|2â∗

mxx
∗)
)∗

=λa(âm − am) + λy(−2ymxx∗âm + 2|x∗âm|2xx∗âm). (4.16)

Setting the derivative to zero, and then left-multiplying by nonzero x∗
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gives

2λy ∥x∥22 |x∗âm|2(x∗âm) + (λa − 2λyym ∥x∥22)(x∗âm)− λax∗am = 0.

(4.17)

The left hand side is now scalar-valued and is a function of scalar νm =

⟨âm,x⟩ = x∗âm ∈ C instead of a vector. Recalling our analysis of the

optimization geometry in Section 4.2.1, we can solve for νm and then obtain

â†
m = â†

m(νm) using (4.10). If we substitute α = 2λy ∥x∥22 ∈ R, β = λa −
2λyym ∥x∥22 ∈ R and γ = −λax∗am ∈ C we wish to solve the following for

νm,

α|νm|2νm + βνm + γ = 0. (4.18)

Because the sensing vectors and ground truth signal are complex, this cubic

equation is a function of νm ∈ C and its conjugate ν̄m (|νm|2 = νmν̄m). We

therefore cannot use standard cubic root finding formulae. Further note that

the coefficients α and β are always real and γ may be complex. To solve,

first multiply by ν̄m,

α|νm|4 + β|νm|2 + γν̄m = 0. (4.19)

Next, with complex-exponential representation, νm = rejϕ and γ = |γ|ejκ
(recall γ is known), the equation becomes

αr3 + βr + |γ|ej(κ−ϕ) = 0. (4.20)

The real and imaginary parts of the left hand side should both equate to

zero. Using Euler’s identity, ejθ = cos(θ)+j sin(θ), we arrive at the following

simultaneous equations,sin(κ− ϕ) = 0

αr3 + βr + |γ| cos(κ− ϕ) = 0.
(4.21)

For the first equation to hold, cos(κ − ϕ) = ±1 and so the phase of νm has

two possible values; ϕ = κ or ϕ = (κ − π). To obtain the magnitude of νm

we can solve the following two cubic equations for r to get six values, three
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from each,

αr3 + βr + |γ| = 0 and ϕ = κ (4.22)

αr3 + βr − |γ| = 0 and ϕ = κ− π. (4.23)

As the solutions of these two cubic equations are magnitudes of complex

numbers, we let sets R+ and R− be the positive real solutions of (4.22) and

(4.23) respectively. To obtain values for νm we combine R+ and R− with

their phases to get S+ and S−—multiply the elements of R+ by ejκ and

multiply the elements of R− by ej(κ−π) = −ejκ. We then construct candidate

minimizers of fm(·) by using the possible values for νm, the set, S+ ∪ S−,

as the argument for (4.10). Finally, the global minimizer is the candidate

minimizer that gives the minimum value as the argument of fm(·).

To solve (4.22) and (4.23) for r, Cardano’s formula for cubic equations or

a general cubic root formula derived from Cardano’s formula can be used

(see Appendix B.1). Furthermore, we note that this procedure to update the

sensing vectors is independent of the sensing vector measurement model.

4.2.3 TLS phase retrieval algorithm

Now that we have a method for solving the inner minimizations in

(TLS-PR1), we present the complete TLS phase retrieval algorithm in

Algorithm 2. We say that the algorithm has converged if the value of

J (x, â†
1, . . . , â

†
M) in (TLS-PR2) between consecutive iterates is less than

some threshold. In practice all sensing vectors can be updated (lines 5-

16 of Algorithm 2) in parallel for a given x because all sensing vectors are

independent of one another.

4.2.4 ML estimator for EIV models

Proposition 3 below provides an interpretation of the regularization parame-

ters in (TLS-PR1) by connecting them to the error level. It states that under

certain assumptions the solution to (TLS-PR1) is the maximum likelihood
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Algorithm 2 TLS phase retrieval.

Input: Erroneous sensing vectors {am}Mm=1; Erroneous observations
{ym}Mm=1; Threshold T ; Regularization parameters λy and λa.

Output: Recovered signal x ∈ CN .
1: x← Initialization(y1, . . . , yM ,a1, . . . ,aM)
2: loss previous ← −∞
3: loss current ←∞
4: while |loss current - loss previous| > T do

// Update each sensing vector for a given x
5: for each m ∈ {1, . . . ,M} do
6: α← 2λy ∥x∥22
7: β ← λa − 2λyym ∥x∥22
8: γ ← −λax∗am

9: κ← Angle(γ)
10: R+ ← PositiveRealRoots(αr3 + βr + |γ|)
11: R− ← PositiveRealRoots(αr3 + βr − |γ|)
12: S+ ← ejκ ·R+

13: S− ← − ejκ ·R−

14: s† = argmins∈S+∪S− fm

(
â†
m(s)

)
15: â†

m ← â†
m

(
s†
)

16: end for
// Update x with sensing vectors fixed

17: x← x gradient step(x, â†
1, . . . , â

†
M)

18: loss previous ← loss current

19: loss current ← J (x, â†
1, . . . , â

†
M)

20: end while

(ML) estimator for the complex-valued EIV model given by

ym = |⟨ãm, x̃⟩|2 + (−ηm), am = ãm + (−δm) (4.24)

for 1 ≤ m ≤ M . With this EIV model we aim to recover x̃ and {ãm}Mm=1

from {ym}Mm=1 and {am}Mm=1 which are known. The quantities {ηm}Mm=1 and

{δm}Mm=1 are random error perturbations. This result is an extension of the

relationship between linear TLS and the linear EIV model [74, 81]. Similarly,

this result is a specific instance of what is seen for nonlinear TLS [60].

Proposition 3. Assume in (4.24) that {ηm}Mm=1 are iid zero-mean Gaus-

sian with covariance σ2
ηI, {δm}Mm=1 are independent of each other and

each is an iid zero-mean complex Gaussian vector with covariance 2σ2
δ, i.e.

vec([Re(δm) | Im(δm)]) ∼ N (0, σ2
δI). Further assume that {ηm}Mm=1 and
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{δm}Mm=1 are independent of each other and that {ãm}Mm=1 and x̃ are de-

terministic. Under these assumptions, the solution to optimization problem

(TLS-PR1), when λa =
1
σ2
δ
and λy =

1
σ2
η
, is the maximum likelihood estimator

for (4.24).

Proof. The proof follows a standard procedure and is provided in Ap-

pendix B.2.

4.3 TLS and LS solution reconstruction errors

In this section, we evaluate the reconstruction error for the TLS and LS

phase retrieval solutions by deriving their Taylor expansions. Through these

expressions, we are able to gain insight into the behavior of the TLS solution

relative to the LS solution and understand when each method performs well.

We also use these expressions to understand how the reconstruction errors

rely on the level of the measurement and the sensing vector errors when all

the errors are Gaussian. Since this analysis is cumbersome, in this section

we will consider the real-valued phase retrieval problem where the ground

truth signal, the sensing vectors and the sensing vector errors in (4.1) are

real. Simulations in Section 4.4 show that the reasoning carries through

to the complex problem. In our derivations, we will use theorems about

differentiation of argmins and various matrix inversion lemmas.

We denote the ground truth signal as x# and the TLS and LS solutions as

x†
TLS and x†

LS. If there are no errors in the sensing vectors or measurements,

x# and −x# are both optimum LS and TLS solutions for (LS-PR) and

(TLS-PR2) (with the mth corrected sensing vector being am). Due to this

inherent sign ambiguity it is standard to define the reconstruction errors as

min
σ

∥∥∥x# − σ · x†
TLS

∥∥∥
2

and min
σ

∥∥∥x# − σ · x†
LS

∥∥∥
2

(4.25)

where σ ∈ {1,−1}. Our results are unchanged if the analysis is done with

optimum solution x# (σ = 1) or with optimum solution −x# (σ = −1).
Consequently, we choose optimum solution x# with σ = 1 in the following

analysis.
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4.3.1 Reconstruction error analysis

The erroneous sensing vectors and measurements in (4.1) can be expressed as

perturbed versions of error-free sensing vectors and measurements, {ãm}Mm=1

and {ỹm}Mm=1. We denote the sensing vector and measurement error pertur-

bations as {δm}Mm=1 and {ηm}Mm=1. Stacking these into vectors we define,

t̃ =
[
ãT
1 , . . . , ã

T
M , ỹ1, . . . , ỹM

]T
∈ R(MN+M), (4.26)

γ =
[
δT
1 , . . . , δ

T
M , η1, . . . , ηM

]T ∈ R(MN+M), (4.27)

t = t̃+ γ

=
[
aT
1 , . . . ,a

T
M , y1, . . . , yM

]T ∈ R(MN+M). (4.28)

In order to calculate the reconstruction errors, we need access to expres-

sions for x†
TLS and x†

LS. We begin by noting that the solutions are functions

of the sensing vectors and measurements, x†
TLS(t) and x†

LS(t) (an application

of (1.2)). If there are no errors in the sensing vectors or measurements, an

optimum LS solution for (LS-PR) is x†
LS(̃t) = x#. Similarly, an optimum

TLS solution in (TLS-PR2) for x†
TLS(̃t) = x# with the mth corrected sens-

ing vector being am (no correction needed). Now, if we instead have sensing

vector and measurement errors, our solutions are x†
TLS(̃t+γ) and x†

LS(̃t+γ)

which we can interpret as perturbed versions of x†
LS(̃t) = x†

TLS(̃t) = x#. As-

suming ∥γ∥ is small, we can study the first-order terms in the Taylor series

expansions of x†
TLS(t) and x†

LS(t) to measure the perturbation from x#.

The Taylor series expansion of x†
TLS(t) = x†

TLS(̃t+γ) at the no error point,

t̃, is

x†
TLS(̃t+ γ) = x†

TLS(̃t) +∇tx
†
TLS(t)

∣∣
t=t̃

γ +O(∥γ∥22)
= x# +∇tx

†
TLS(t)

∣∣
t=t̃

γ +O(∥γ∥22), (4.29)

where O(∥γ∥22) represents terms with norm of order ∥γ∥22. The Taylor series
expansion for x†

LS(t) can be written similarly. Using these expansions, to the

first-order when ∥γ∥ is small, the reconstruction errors for the TLS and LS
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problems are

eTLS :=
∥∥∥∇tx

†
TLS(t)

∣∣
t=t̃

γ
∥∥∥
2

(4.30)

eLS :=
∥∥∥∇tx

†
LS(t)

∣∣
t=t̃

γ
∥∥∥
2

(4.31)

To evaluate eTLS and eLS we must calculate the derivatives ∇tx
†
TLS(t) ∈

RN×(MN+M) and ∇tx
†
LS(t) ∈ RN×(MN+M) which are the derivatives of the

argmins of (TLS-PR2) and (LS-PR). We use the method by Gould et al. to

take derivatives of argmin problems [82].

With the substitution em = âm−am and multiplicative constants absorbed

into λa and λy, the TLS optimization problem (TLS-PR2) can be rewritten

as

q† =argmin
q

M∑
m=1

λa ∥em∥22 + λy
(
ym − |⟨am + em,x⟩|2

)2
︸ ︷︷ ︸

f(q,t)

s.t. q =
[
eT
1 · · · eT

M xT
]T
∈ RMN+N . (4.32)

The solution, g(t) := q†, is a function of t and x†
TLS(t) is the last N entries

of g(t), denoted as g(t)−N ,

g(t) := q† = argmin
q

f(q, t) ∈ RMN+N , (4.33)

x†
TLS(t) = g(t)−N ∈ RN . (4.34)

The derivatives of g(t) with respect to the kth sensing vector and mea-

surement can be computed after specific second derivatives of f(q, t) are

computed [82],

∇ak
g(t) = −(∇2

qqf(q, t))
−1(∇2

akq
f(q, t)) ∈ R(MN+N)×N . (4.35)

d

dyk
g(t) = −(∇2

qqf(q, t))
−1

(
d

dyk
∇qf(q, t)

)
∈ RMN+N . (4.36)

We can then obtain ∇tx
†
TLS(t) by vertically stacking the derivatives (4.35)
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and (4.36) for 1 ≤ k ≤M to form ∇tg(t) ∈ R(MN+N)×(MN+M),

∇tg(t) =
[
∇a1g(t), · · · ,∇aM

g(t), d
dy1
g(t), · · · , d

dyM
g(t)

]
, (4.37)

and taking the last N rows. Appendix B.3.1 contains the derivations for the

last N rows of (4.35) and (4.36).

The same approach can be used for the LS problem by considering its

optimization problem,

x†
LS = argmin

x

M∑
m=1

(
ym − |⟨am,x⟩|2

)2
. (4.38)

The corresponding derivative derivations are in Appendix B.3.2.

Proposition 4 below states the expressions for eTLS and eLS. We denote

Ỹ = diag(ỹ1, . . . , ỹM) ∈ RM×M (4.39)

Ã =


— ãT

1 —
...

— ãT
M —

 ∈ RM×N (4.40)

EY = diag(η1, . . . , ηM) ∈ RM×M (4.41)

EA =


— δT

1 —
...

— δT
M —

 ∈ RM×N (4.42)

and use these quantities to define diagonal matrix, D, and vector, w,

D =

(
IM + 4

λy
λa

∥∥x#
∥∥2
2
Ỹ

)−1

∈ RM×M (4.43)

w =
(
(2Ỹ )−1EY Ã−EA

)
x# ∈ RM . (4.44)

Proposition 4. To the first-order, the reconstruction errors for the solution

x†
TLS to the TLS optimization problem (4.32), and, the solution x†

LS to the
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LS optimization problem (4.38) are

eTLS =

∥∥∥∥(ÃT
Ỹ DÃ

)−1

Ã
T
Ỹ Dw

∥∥∥∥
2

(4.45)

eLS =

∥∥∥∥(ÃT
Ỹ Ã

)−1

Ã
T
Ỹ w

∥∥∥∥
2

. (4.46)

Proof. Lemma 1 in Appendix B.3 states the Taylor series expansions around

the no error point, t̃, for the TLS and LS solutions. The result in this

proposition follows by considering only the zeroth and first-order terms.

As expected, when γ → 0, the errors EA and EY tend to zero, which

makes the vector w zero and the reconstruction errors are zero. The dif-

ference between the TLS and LS reconstruction errors in Proposition 4 is

due to the diagonal matrix D. As λy

λa
→ 0, D → IM and eTLS → eLS.

This is because the relative weighting of the sensing error consistency terms

in (TLS-PR2), ∥am − âm∥22 for all m, increases which makes modifying the

sensing vectors increasingly costly and the TLS problem moves closer to the

LS problem. Additionally, there are also error models under which the re-

construction errors are equal. For example, if EY = ryỸ and EA = rAÃ

where ry, rA ∈ R.
Furthermore, if M = N and Ã is invertible, we can again have eTLS = eLS.

However, having M = N is not a practical setting for the real-valued phase

retrieval problem because the map from x# to
[〈
ã1,x

#
〉2
, . . . ,

〈
ãm,x

#
〉2]T

is not injective, even after accounting for the sign ambiguity [83]. The same

holds for the complex-valued phase retrieval problem, even after accounting

for the global phase shift [84]. Therefore, we can expect to require more

measurements to obtain a unique solution to the phase retrieval problem

with the TLS framework.

The reconstruction errors in Proposition 4 can be further interpreted by

assuming a distribution for the measurement and sensing vectors errors; in

Proposition 5 we assume that the nonzero entries of EY and EA are iid

zero-mean Gaussian (with different variances for EY and EA).

Proposition 5. With the setting of Proposition 4, assume that the diagonal

elements of the diagonal matrix EY are iid zero-mean Gaussian with variance

σ2
η and that the rows of EA are independent zero-mean Gaussian random
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vectors with covariance σ2
δI. If EY and EA are independent of each other,

the expected squared first-order reconstruction errors are

E
[
e2TLS

]
= σ2

δ ·
∥∥x#

∥∥2
2

∥∥∥∥(ÃT
Ỹ DÃ

)−1

Ã
T
Ỹ D

∥∥∥∥2
F

+
σ2
η

4
·
∥∥∥∥(ÃT

Ỹ DÃ
)−1

Ã
T
Ỹ

1
2D

∥∥∥∥2
F

(4.47)

E
[
e2LS
]
= σ2

δ ·
∥∥x#

∥∥2
2

∥∥∥∥(ÃT
Ỹ Ã

)−1

Ã
T
Ỹ

∥∥∥∥2
F

+
σ2
η

4
·
∥∥∥∥(ÃT

Ỹ Ã
)−1

Ã
T
Ỹ

1
2

∥∥∥∥2
F

. (4.48)

Proof. The expectations are computed in Appendix B.4.

Just as in Proposition 4, the difference between the TLS and LS expressions

in Proposition 5 are due to the diagonal matrix D. Each expression is a sum

of two terms—the first term shows how the expectations depend on σ2
δ and

the second term shows how they depend on σ2
η.

4.3.2 Reconstruction error numerical experiments

The expressions in Proposition 4 provide a means to understand when each

approach should perform well. Furthermore, their squared-expectations in

Proposition 5 allow us to verify the optimal maximum likelihood parameters

stated in Proposition 3.

Impact of varying error strength and number of measurements We

compare TLS and LS by numerically evaluating (4.45) and (4.46) with dif-

ferent measurement and sensing vector error levels while varying the number

of measurements.

These experiments only consider the first-order error. The actual error is

computed in a variety of experiments in Section 4.4. We will use SNR to

quantify the measurement and sensing vector error level. The measurement

SNR is −20 log10(∥EY ∥F /∥Ỹ ∥F ) and similarly the sensing vector SNR is

−20 log10(∥EA∥F /∥Ã∥F ). Furthermore we define the relative reconstruction

errors, rel.eTLS = eTLS

∥x#∥ and rel.eLS = eLS

∥x#∥ .
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(a) Measurement SNR is 65 dB.
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(b) Measurement SNR is 40 dB.

Figure 4.2: Relative reconstruction errors, (4.45) and (4.46) for different
values of M

N
when sensing vector SNR is 40 dB and measurement SNR is

varied. All errors are Gaussian.

We plot the relative reconstruction errors as the oversampling ratio M
N

is

varied with N = 100. Regularization parameters λy and λa are set to one.

For each value of M
N

we do 100 trials, and each trial uses new sensing vectors,

ground truth signals, and errors. The standard deviation of the trials is

indicated by error bars in the plots. The sensing vectors and ground truth

signal are iid standard real Gaussian. Furthermore, the measurement and

sensing vector errors are iid zero-mean real Gaussian with variance such that

the sensing vector SNR is 40 dB. In Figure 4.2a the measurement SNR is 65

dB and TLS has lower reconstruction error than LS. When the measurement

SNR decreases to 40 dB in Figure 4.2b, LS outperforms TLS. Although these

experiments use the first-order error, they are consistent with our intuition.

The relative performance of TLS is better when most of the error is due

to sensing vector error. We also see that the performance of both methods

improves as the number of measurements increases. Lastly, from Figure 4.2b,

TLS may improve relatively faster than LS as the number of measurements

increase.

Verification of optimal ML parameters The expression for TLS (4.47)

in Proposition 5 enables us to verify the optimal maximum likelihood param-

eters for λy and λa from Proposition 3. Although Proposition 3 is stated for

the complex-valued phase retrieval problem, the same procedure shows that

the optimal parameters are the same for real-valued phase retrieval which we
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Figure 4.3: The TLS expected squared reconstruction error (4.47) is plotted
for different ratios, λy

λa
, to verify the optimal maximum likelihood

parameters. Each subplot shows a different combination of sensing vector
and measurement SNR. The minima are marked in red, and the
theoretically optimal ratio is indicated by the dashed black lines.

consider here. The theoretically optimal parameter ratio is
λy
λa

=
σ2
δ

σ2
η

.

To verify numerically whether this agrees with Proposition 5, we vary
λy

λa
(which is contained in D) around the optimal ratio and plot the TLS

expression (4.47). We do this multiple times and in each run use a different iid

standard real Gaussian ground truth signal and a different set of iid standard

real Gaussian sensing vectors. As in Proposition 5, the errors in each run are

iid zero-mean Gaussian and their variances are set to obtain different SNRs.

Figure 4.3 shows the different runs with the minima marked in red and the

theoretically optimal ratio indicated by the dashed black lines. We can see

that all the minima are at the optimal ratio which verifies Proposition 3. In

the top row, most of the error is due to measurement error and the optimal

ratio is low. This further highlights that TLS sensing vector corrections are

less important when most of the error is due to measurement error.

We further note that the consistency between Propositions 3 and 5 demon-

strates that the first-order expressions can be used to explain the performance
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of our TLS framework. Section 4.4 shows that the real reconstruction errors

follow the same trends as the numerical simulations in this section.

4.4 TLS phase retrieval simulations

We compare the performance of TLS phase retrieval against LS phase re-

trieval through simulations.1 To obtain a LS solution we use the Wirtinger

flow method [28].

In this section we set the regularization parameters of (TLS-PR2) to λa =
1
N

and λy =
1

∥x(0)∥4
2

in all experiments with x(0) being an initial guess for x#.

These regularization parameters are tuned later in Section 4.5. We fix the

ground truth signal to be iid complex Gaussian with N = 100. Furthermore,

the TLS and LS iterations are stopped when their objective function values

change by less than 10−6 between successive iterates. The ground truth

signal, TLS solution, and LS solution are denoted as x#, x†
TLS and x†

LS.

In all experiments, we generate M quadratic measurements using M clean

sensing vectors. The TLS and LS methods must then recover the signal x#

from erroneous measurements and sensing vectors. We use SNR, as defined

in Section 4.3, to quantify measurement and sensing vector error. Also as in

Section 4.3, the plots in this section indicate the standard deviation of the

trials using error bars.

4.4.1 Measurement models

In our experiments, we will consider the complex-valued Gaussian and coded

diffraction pattern measurement models. However, Algorithm 2 is not re-

stricted to these measurement models. Recently in optical computing ap-

plications, random Gaussian scattering media have been used to do rapid

high-dimensional randomized linear algebra, kernel classification, and dimen-

sionality reduction using laser light [20, 30]. The coded diffraction pattern

model modulates the signal with different patterns before taking the Fourier

transform. It is inspired by the fact that in coherent x-ray imaging the field

at the detector is the Fourier transform of the signal [1].

1Code available at https://github.com/swing-research/tls_phase.
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When using the Gaussian measurement model, the nth entry of sensing

vector m, amn, is distributed by the complex normal distribution for the

complex-valued problem, amn ∼ N (0, 1) + jN (0, 1). For the real-valued

problem, it is the standard normal distribution, amn ∼ N (0, 1). The Gaus-

sian measurement model sensing vector entries are independent of each other

and the sensing vectors are also independent of each other. A description of

the coded diffraction pattern measurement model is in Appendix B.7.

In this section, the complex Gaussian measurement model is used. In Ap-

pendix B.7.1 these experiments are repeated for the coded diffraction pattern

measurement model and the same behavior is seen.

4.4.2 Algorithm initialization

In our experiments we opt to do the initialization of the signal being recovered

(line 1 of Algorithm 2) via a spectral initialization. The method compris-

ing a spectral initialization followed by gradient descent updates has been

proven to lead to globally optimal solutions for the LS phase retrieval prob-

lem (LS-PR) in an error-free setting under the Gaussian and coded diffraction

pattern models [27, 28].

The spectral initialization is the leading eigenvector of the matrix∑
m ymama

∗
m ∈ CN×N which we efficiently compute using 50 power method

iterations. This eigenvector is scaled appropriately by estimating the norm

of the signal of interest as
(

1
2M

∑
m ym

)1/2
.

4.4.3 Signal recovery

To evaluate performance, we compute the distance between the ground truth

signal and the recovered signal. As the value of the objective function

(TLS-PR1) is the same for x and phase shifted ejφx, we cannot distin-

guish between x and its phase-shifted variant. We therefore use a standard

definition of distance that is invariant to phase shifts which is detailed in

Definition 1.

Definition 1. Denote the ground truth as x# ∈ CN and let x† ∈ CN be a

solution to the phase retrieval problem. The distance between x# and x†,
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dist(x#,x†), is defined as dist(x#,x†) = minφ∈[0,2π)
∥∥x# − ejφx†

∥∥
2
. Fur-

thermore, the relative distance is defined as rel.dist(x#,x†) = dist(x#,x†)

∥x#∥
2

and

the reconstruction SNR in dB is defined as −20 log10(rel.dist(x#,x†)).

Combinations of sensing vector and measurement error To under-

stand how performance changes with different amounts of sensing vector and

measurement error, we add different amounts of random iid complex Gaus-

sian error to sensing vectors and random iid real Gaussian error to measure-

ments. For each combination of sensing vector error and measurement error

we perform 100 phase retrieval trials. In each trial, we generate a new ground

truth signal and M new sensing vectors to produce M new error-free mea-

surements. In each trial, we then add new random error perturbations to the

sensing vectors and measurements. We evaluate performance by subtract-

ing the relative distance of the TLS solution from that of the LS solution,

(rel.dist(x#,x†
LS) − rel.dist(x#,x†

TLS)), and average across all 100 trials. If

this average is positive, TLS has outperformed LS.

We use a step size of µ = 0.5
λa

for TLS and µ = 0.02 for LS to perform the

gradient update for x in (4.7). The TLS step size is inversely proportional to

λa because the relative importance of the data consistency term is inversely

proportional to the sensing vector consistency term in (TLS-PR2). Figure

4.4 shows the performance for M
N
∈ {8, 16, 32}. Note that the minimum

sensing vector SNR is 10 dB when M
N

= 8 and 5 dB in the other cases.

For a fixed sensing vector SNR, the performance of TLS decreases when the

measurement SNR decreases. This is expected because more of the error is in

the measurements which LS is designed for. In general, TLS is better when

the sensing vector SNR decreases for a fixed measurement SNR because TLS

phase retrieval accounts for sensing vector error. However, this trend starts

to break for very low sensing vector SNR as shown at 5 dB when M
N

= 16.

Increasing the number of measurements overcomes this issue and in general

improves TLS performance as was indicated by the first-order reconstruction

errors with Gaussian error in Figures 4.2a and 4.2b.

Impact of varying the number of measurements To clearly see the

impact of varying the number of measurements we fix the measurement SNR

to 20 dB and sensing vector SNR to 10 dB and plot the reconstruction relative

distance for TLS and LS in Figure 4.5a. We do 100 trials for each value of M
N
.
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Figure 4.4: Average difference in relative distance of TLS and LS solutions,
rel.dist(x#,x†

LS)− rel.dist(x#,x†
TLS), for the Gaussian measurement model

for different measurement and sensing vector SNR combinations when
M
N
∈ {8, 16, 32}.

The performance improvement of TLS over LS increases as the number of

measurements are increased. In Figure 4.5b, we increase the sensing vector

SNR to 30 dB. When the balance of the Gaussian error shifts more towards

the measurements, LS performs better. This is identical to what was seen
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(a) Sensing vector SNR is 10 dB.
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(b) Sensing vector SNR is 30 dB.

Figure 4.5: Relative distance of reconstructions using TLS and LS for the
Gaussian measurement model for different M

N
when measurement SNR is 20

dB and measurement SNR is varied. All errors are Gaussian.

with the first-order reconstruction errors in Figures 4.2a and 4.2b.

Accuracy of first-order reconstruction errors Appendix B.5 contains

the description of an experiment where we verify the accuracy of the re-

construction error expressions in Proposition 4 against the real errors. As

expected, it shows that the first-order expressions in Proposition 4 increase

in accuracy as the sensing vector and measurement error decreases—this cor-

responds to the norm of γ in (4.27) decreasing, but that these expressions

may only serve as a rough rule of thumb when errors are large.

Sensing vectors and measurements error model The simulations in

this section use iid random Gaussian errors. In Appendix B.6, we design

errors that require access to the ground truth signal norm and to the error-

free measurements. We show that the improvement of TLS over LS can be

larger in this artificial scenario.

4.4.4 Corrected sensing vector verification

To characterize the sensing vector corrections performed by our algorithm, we

define a metric sensitive to the relative correction error of the sensing vectors.

The metric only considers corrections in the direction of the recovered signal

because our algorithm only corrects the component of the sensing vectors in

the direction of this signal due to the optimization geometry (Section 4.2.1).
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Figure 4.6: Average relative sensing vector correction error when using
TLS, rel.corr({ã, x#}, {â†, ejφx†

TLS), for the Gaussian measurement model
for different measurement and sensing vector SNR combinations when
M
N
∈ {16, 32}.

Definition 2. Denote the complex-valued ground truth signal and sens-

ing vectors as x# and a# := {a#
m}Mm=1. Let their counterparts ob-

tained by solving the TLS phase retrieval problem be x† and a† :=

{a†
m}Mm=1. Further let φ = argminφ∈[0,2π)

∥∥x# − ejφx†
∥∥
2
. Then, denot-

ing y(a,x) = [⟨a1,x⟩ , . . . , ⟨aM ,x⟩], the relative sensing vector correc-

tion error between a# and a† is defined as rel.corr({a#, x#}, {a†, x†}) =∥∥y(a#, x#)− y(a†, ejφx†)
∥∥
2

∥y(a#, x#)∥2
.

To evaluate performance, we denote the ground truth and TLS corrected

sensing vectors as {ãm}Mm=1 and {â†
m}Mm=1. For the sensing vectors in the

previous experiments of Figure 4.4 we compute rel.corr({ã, x#}, {â†, x†
TLS})

and average across the 100 trials. Figure 4.6 shows the relative correction

error when M
N
∈ {16, 32}. We see that as the sensing vector SNR increases,

the relative correction error decreases. Furthermore, as the measurement

SNR decreases, the relative correction error increases. These relative cor-

rection error increases are more pronounced when the sensing vector SNR is

high, a setting where sensing vector correction is needed less. This obser-

vation is consistent with Figure 4.4—when sensing vector SNR is high, the

TLS sensing vector corrections hinder TLS performance and LS outperforms

TLS.

Next we investigate how the number of measurements impacts the relative

correction error. We do this with the sensing vectors from the previous
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Figure 4.7: Relative sensing vector correction error when using TLS for the
Gaussian measurement model for different M

N
when measurement SNR is 20

dB. The sensing vector SNR is 10 dB or 30 dB.

experiments in Figures 4.5a and 4.5b. Figure 4.7 shows the averages over the

100 trials. Here, the measurement SNR was fixed to 20 dB and the sensing

vector SNR was 10 dB or 30 dB. Consistent with what was seen previously,

the performance of TLS improves with increasing number of measurements.

Additionally, increasing the number of measurements provides greater gains

when the sensing vector SNR is lower.

4.5 Experiments on real optical hardware

In this section, we show that TLS phase retrieval outperforms LS phase re-

trieval when using real optical hardware. We use the same optical processing

unit (OPU) that was used in the hardware experiments of Chapters 2 and

3.2 A known signal x# ∈ RN is encoded onto coherent laser light using a

digital micro-mirror device (DMD) which is then shined through a Gaussian

multiple scattering medium as shown in Figure 4.8. We denote the trans-

mission matrix of the Gaussian medium as A ∈ CM×N . The M rows of the

transmission matrix are sensing vectors, am ∈ CN for 1 ≤ m ≤ M . The

intensity of the scattered light in the sensor plane, ym ≈
∣∣〈am,x

#
〉∣∣2 for all

m, is then measured using a camera. We do phase retrieval using the optical

measurements to reconstruct the input, x#. The input signals are limited to

real-valued binary images due to the DMD.

2Visit https://www.lighton.ai/lighton-cloud/ for a publicly available cloud OPU
with a scikit-learn interface.
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Figure 4.8: The optical processing unit (OPU). A coherent laser beam
spatially encodes a signal, x, via a digital micro-mirror device (DMD)
which is then shined through a random medium. A camera measures the
squared magnitude of the scattered light.

The OPU measurements and sensing vectors both contain errors. Errors

in the optical measurements are caused by 8-bit quantized camera measure-

ments and Poisson noise which scales with the square root of the mean inten-

sity of the scattered light. Additionally, there are measurement errors due

to thermal effects and other system properties that result in a noise floor.

Thus, the lowest intensity that can be measured is not zero, even if an all-

zero signal, x# = 0, is encoded on the laser light and shined through the

scattering medium. The sensing vectors are erroneous because the entries of

A are unknown and must be calibrated from erroneous optical measurements

as explained in Chapter 3. There may also be other sources of experimental

error. Unlike in the computer simulations of Section 4.4, when using the

OPU, we do not know the exact error model and we also do not know the

levels of the errors in the measurements and sensing vectors.

In the experiments, the TLS and LS step sizes are tuned to 0.4
λa

and 0.005.

The initialization method and termination criteria are the same as in Section

4.4. Additionally, we use the fact that the images being reconstructed are

real-valued and binary to regularize both the TLS and LS methods. After

the initialization (Algorithm 2, Step 1 for TLS) and each x update step

(Algorithm 2, Step 17 for TLS), we take the elementwise absolute value of

the signal to set the phase of all elements to zero. We then normalize the

entries of x†
TLS and x†

LS with absolute value larger than one to one.

Appendix B.8 contains details of the sensing vector calibration method

used and further OPU experimental details.
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Figure 4.9: Performance when reconstructing random binary images when
using TLS and LS for phase retrieval on the OPU. Values of M

N
between five

and 48 are used.

Random ground truth signals Our ground truth signals are real-valued

random binary images of size N = 16× 16 = 256. We vary the oversampling

ratio, M
N
, and perform 100 trials for each ratio. In each trial a new ground

truth image and set of calibrated sensing vectors is used. On a held out

set of ten images and with M
N

= 8 we tune λa = 40 and λy =
∥∥x(0)

∥∥−4

2
in

(TLS-PR2) where x(0) is the initialization. Figure 4.9a shows that the SNR

of the reconstructed images using TLS is higher than when using LS for all

numbers of measurements. Additionally, in Figure 4.9b we plot the standard

deviation of the results in Figure 4.9a and show that the TLS method has

lower variability.

Real image ground truth signals We reconstruct binary images of size

N = 32 × 32 = 1024 for M
N
∈ {5, 8, 12}. On a held out set of five images

and with M
N

= 5 we tune λa = 20 and again λy =
∥∥x(0)

∥∥−4

2
in (TLS-PR2)

where x(0) is the initialization. Figure 4.10 shows the original images, their

reconstructions and their reconstruction SNR. For a given oversampling ratio,

the TLS approach reports better SNR values and reconstructs images of

better visual quality as compared to the LS approach.
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Figure 4.10: Reconstructions of 32× 32 images and reconstruction SNR
when using TLS and LS on the OPU. The oversampling ratio is varied.

4.6 Summary

We have developed a TLS framework for solving the phase retrieval problem

that accounts for both sensing vector error and measurement error. One

of the keys to solving the TLS problem via gradient descent was studying

the geometry of the TLS optimization problem to realize that the sensing

vectors can be efficiently updated by solving a scalar variable optimization

problem instead of a vector variable optimization problem. By deriving the

Taylor series expansions for the TLS and LS solutions, we have also obtained

approximate expressions for their reconstruction error. These expressions

enabled us to anticipate the accuracy of the TLS solution relative to the

LS solution and understand when which approach will lead to a better solu-

tion. We verify the TLS method through a range of computer simulations.

Furthermore, in experiments with real optical hardware, TLS outperforms

LS.
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CHAPTER 5

RANDOM MESH PROJECTORS

Motivated by settings commonly seen in the applied sciences, in this chapter

propose a deep learning method to solve inverse problems when there are few

measurements and no training data. This work falls under E1 because we

transform our measurements to solve a new inverse problem with different

measurements.

5.1 Scarce measurements and limited training data

As described in Chapter 1, a variety of imaging inverse problems can be

discretized to a linear system y = Ax + η where y ∈ RM is the measured

data, A ∈ RM×N is the imaging or forward operator, x ∈ X ⊂ RN is

the object being probed by applying A, and η is the noise. Depending on

the application, the set of plausible reconstructions X can model natural,

seismic, or biomedical images. In many cases, the resulting inverse problem

is ill-posed, either because of the poor conditioning of A (a consequence of

the underlying physics) or because M ≪ N .

A classical approach to solve ill-posed inverse problems is to minimize an

objective functional regularized via a certain norm (e.g. ℓ1, ℓ2, total variation

(TV) seminorm) of the object. These methods promote general properties

such as sparsity or smoothness of reconstructions, sometimes in combination

with learned synthesis or analysis operators or dictionaries [85].

In this chapter, we address situations with very scarce measurement data

(M ≪ N) so that even a coarse reconstruction of the unknown object is

hard to get with traditional regularization schemes. Unlike artifact-removal

scenarios where applying a regularized pseudoinverse of the imaging operator

This work was previously published in S. Gupta, K. Kothari, M. v. de Hoop, and I.
Dokmanić, “Random mesh projectors for inverse problems,” in International Conference
on Learning Representations, 2019 [17] and is adapted here with permission.
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Figure 5.1: We reconstruct an image x from its tomographic measurements.
In moderately ill-posed problems, conventional methods based on the
pseudoinverse and regularized non-negative least squares (x ∈ [0, 1]N , N is
image dimension) give correct structural information. In fact, total
variation (TV) approaches give very good results. A neural network [89]
can be trained to directly invert and remove the artifacts (NN). In a
severely ill-posed problem on the other hand (explained in Figure 5.5) with
insufficient ground truth training data, neither the classical techniques nor
a neural network recover salient geometric features.

already brings out considerable structure, we look at applications where stan-

dard techniques cannot produce a reasonable image. An example is shown in

Figure 5.1. This highly imaging setting is common in geophysics and requires

alternative, more involved strategies [86].

An appealing alternative to classical regularizers is to use deep neural

networks. For example, generative models (GANs) based on neural networks

have recently achieved impressive results in regularization of inverse problems

[87], [88]. However, a difficulty in geophysical applications is that there are

very few examples of ground truth objects available for training (sometimes

none at all). Since GANs require many, they cannot be applied to such

problems. This suggests to look for methods that are not very sensitive to

the training dataset. Conversely, it means that the sought reconstructions

are less detailed than what is expected in data-rich settings.

5.1.1 Chapter overview and contributions

In this chapter, we propose a two-stage method to solve ill-posed inverse

problems using random low-dimensional projections and convolutional neural

networks. We first decompose the inverse problem into a collection of simpler

learning problems of estimating projections into random (but structured)
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low-dimensional subspaces of piecewise-constant images.

In the second stage, we solve a new reformulated linear inverse problem

that combines the estimates from the different subspaces. We show that this

converts the original problem with possibly non-local (often tomographic)

measurements into a new inverse problem with localized measurements, and

that in expectation over random subspaces the problem becomes a deconvo-

lution. Intuitively, projecting into piecewise-constant subspaces is equivalent

to estimating local averages—a simpler problem than estimating individual

pixel values. Combining the local estimates lets us recover the underlying

structure.

We test our method on linearized seismic traveltime tomography [90, 91]

with scarce measurements and show that it outperforms learned direct inver-

sion in quality of achieved reconstructions, robustness to measurement errors,

and (in)sensitivity to the training data. The latter is essential in domains

with insufficient ground truth images.

5.1.2 Related work

Although neural networks have long been used to address inverse problems

[92, 93, 94], the past few years have seen the number of related deep learning

papers grow exponentially. The majority address biomedical imaging [95,

96] with several special issues1 and review papers [100, 101] dedicated to

the topic. All these papers address reconstruction from subsampled or low-

quality data, often motivated by reduced scanning time or lower radiation

doses. Beyond biomedical imaging, machine learning techniques are emerging

in geophysical imaging [102, 103, 104], though at a slower pace, perhaps

partly due to the lack of standard open datasets.

Existing methods can be grouped into non-iterative methods that learn a

feed-forward mapping from the measured data y (or some standard manipu-

lation such as adjoint or a pseudoinverse) to the object x [89, 105, 106, 107,

108, 109, 110]; and iterative energy minimization methods, with either the

regularizer being a neural network [111], or neural networks replacing vari-

ous iteration components such as gradients, projectors, or proximal mappings

[112, 113, 114, 115]. These are further related to the notion of plug-and-play

1IEEE Transactions on Medical Imaging, May 2016 [97]; IEEE Signal Processing Mag-
azine, November 2017, January 2018 [98, 99].
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regularization [116], as well as early uses of neural nets to unroll and adapt

standard sparse reconstruction algorithms [117, 118]. An advantage of the

first group of methods is that they are fast; an advantage of the second group

is that they are better at enforcing data consistency.

A rather different take was proposed in the context of compressed sensing

where the reconstruction is constrained to lie in the range of a pretrained

generative network [119, 87]. This scheme achieves impressive results on

random sensing operators and comes with theoretical guarantees. However,

training generative networks requires many examples of ground truth and

the method is inherently subject to dataset bias. Here, we focus on a setting

where ground-truth samples are very few or impossible to obtain.

There are connections between this work and sketching [120, 121] where the

learning problem is also simplified by random low-dimensional projections of

some object—either the data or the unknown reconstruction itself [24]. This

also exposes natural connections with learning via random features [122, 123].

5.2 Regularization by random mesh projections

The two stages of our method are 1) decomposing a “hard” learning task of

directly learning a map from measurements to the unknown object into an

ensemble of “easy” tasks of estimating projections of the unknown object into

low-dimensional subspaces, and 2) combining these projection estimates to

solve a reformulated inverse problem for x. The two stages are summarized in

Figure 5.2. The method outlined in Figure 5.2, can be interpreted as a vari-

ance reduction ensembling strategy [124] that allows us to combine multiple

“views” of the unknown object and obtain a more robust final solution.

5.2.1 Learning random projections

In imaging, numerous signal processing and machine learning methods have

relied on our ability to represent or transform signals in an effective manner.

If the goal is interpolation, splines are widely used to model signals as contin-

uous quantities [125, 126]. A general motive for finding a good representation

is that it provides some convenience. For example, representing images in

the Fourier or wavelet domain helps us remove artifacts due to noise be-
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Figure 5.2: Regularization by Λ random projections: 1) each orthogonal
projection is approximated by a convolutional neural network which maps
from a non-negative least squares reconstruction of an image to its
projection onto a lower dimension subspace of Delaunay triangulations; 2)
projections are combined to estimate the original image using regularized
least squares.

cause these domains emphasize the inherent structure in images [127]. There

are also benefits to breaking away from these predetermined domains and

learning a task-specific domain or basis using dictionaries [85].

In particular, representing signals in low dimensional spaces has proven

to be particularly beneficial in a variety of techniques [119] and has led to

projecting data into random low-dimensional subspaces becoming a funda-

mental area of development [24, 21]. As local areas of pixels in an image

are correlated, in this work we propose to use random piecewise-constant

low-dimensional subspaces to accurately learn local image structures.

We sample Λ sets of points in the image domain from a uniform-density

Poisson process and construct Λ (discrete) Delaunay triangulations with

those points as vertices. Let S = {Sλ | 1 ≤ λ ≤ Λ} be the collection of

Λ subspaces of piecewise-constant functions on these triangulations. Let fur-

ther Gλ be the map from y to the projection of the object into subspace Sλ,

Gλy = P Sλ
x. Instead of learning the “hard” inverse mapping from measure-

ments to the unknown object, we propose to learn an ensemble of simpler

mappings {Gλ}Λλ=1. Intuitively, projecting into piecewise-constant subspaces

requires estimating local averages which is a simpler task than estimating

each pixel values with an inverse mapping.

We approximate each Gλ by a convolutional neural network, Γθ(λ)(ỹ) :

RN → RN , parameterized by a set of trained weights θ(λ). Similar to [89],

we do not use the measured data y ∈ RM directly as this would require
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Figure 5.3: Orthogonal and oblique projections. There is no linear operator
acting on y or on the orthogonal projection ỹ = PR(A∗)x = A†y that can
compute the orthogonal projection into S.

the network to first learn to map y back to the image domain; we rather

warm-start the reconstruction by a non-negative least squares reconstruction,

ỹ ∈ RN , computed from y. The weights are chosen by minimizing empirical

risk:

θ(λ) = argmin
θ

1

J

J∑
j=1

∥∥Γθ(λ)(ỹj)− P Sλ
xj

∥∥2
2
, (5.1)

where
{
(xj, ỹj)

}J
j=1

is a set of J training objects and non-negative least

squares measurements.

Need for non-linear operators. Projecting x into a given known sub-

space is a simple linear operation, so it may not be a priori clear why we use

non-linear neural networks to estimate the projections. However, we do not

know x and only have access to y. Suppose that there exists a linear operator

(a matrix) F ∈ RN×M which acts on y and computes the projection of x on

Sλ. A natural requirement on F is consistency: if x already lives in Sλ, then

we would like to have FAx = x. This implies that for any x, not necessarily

in Sλ, we require FAFAx = FAx which implies that FA = (FA)2 is an

idempotent operator. Letting the columns of Bλ be a basis for Sλ, it can

be shown that the least squares minimizer for F is Bλ(ABλ)
†. However,

because R(F ) = Sλ ̸= R(A∗) (A∗ is the adjoint of A, simply a transpose

for real matrices), in general it will not hold that (FA)∗ = FA. Thus,

FA is an oblique, rather than orthogonal projection into S. In Figure 5.3

this corresponds to the point P oblique
Sλ

x which can be arbitrarily far from the

orthogonal projection P ortho
Sλ

x. Furthermore, the nullspace of the oblique

projection is N (A) = R(A∗)⊥.

Thus consistent linear operators can at best yield oblique projections which
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can be far from the orthogonal one. This can be seen geometrically from Fig-

ure 5.3. As the angle between Sλ and R(A∗) increases to π/2, the oblique

projection point travels to infinity. Note that the oblique projection always

happens along the nullspace of A, which is the line orthogonal to PR(A∗).

Since our subspaces are chosen at random, in general they are not aligned

with R(A∗). The only subspace on which we can linearly compute an or-

thogonal projection from y is R(A∗)—this is given by the Moore-Penrose

pseudoinverse of A. Therefore, to get the orthogonal projection onto ran-

dom subspaces, we must use non-linear operators.

As shown in the right half of Figure 5.3, if we assume A is injective on X ,
the existence of this non-linear map is guaranteed by construction—since y

can determine x, it can also determine P Sλ
x. We show the results of numeri-

cal experiments in Figures C.1 and C.2 of the Appendix. These illustrate the

performance difference between linear oblique projectors and our non-linear

learned operator when estimating the projection of an image into a random

subspace.

5.2.2 The new inverse problem

By learning projections onto random subspaces, we transform our original

problem into that of estimating x from
{
Γθ(λ)(ỹ)

}Λ
λ=1

. To see how this can be

done, ascribe to the columns ofBλ ∈ RN×K a natural orthogonal basis for the

subspace Sλ, Bλ = [χλ,1, . . . , χλ,K ], with χλ,k being the indicator function

of the kth triangle in subspace λ. Denote by qλ
def
= qλ(y) the mapping from

the data y to an estimate of the expansion coefficients of x in the basis for

Sλ:

qλ(y)
def
= BT

λΓθ(λ)(ỹ) (5.2)

Let B
def
=

[
B1 B2 . . . BΛ

]
∈ RN×KΛ, and let q

def
= q(y)

def
=[

qT
1 , q

T
2 , . . . , q

T
Λ

]T ∈ RKΛ. We can then estimate x using the following re-

formulated new inverse problem

q ≈ BTx, (5.3)
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by solving the corresponding regularized reconstruction problem

x̂ = argmin
x∈[0,1]N

∥∥q −BTx
∥∥2 + λφ(x), (5.4)

with φ(x) chosen as the TV-seminorm ∥x∥TV. The regularization is not

essential. As we show experimentally, if KΛ is sufficiently large, φ(x) is not

required. Note that solving the original problem directly using the ∥x∥TV
regularizer failed to recover the structure of the object (Figure 5.1).

Local information. As the number of mesh subspaces Λ grows large and

their direct sum approaches the image’s ambient space, RN , we should expect

the performance to deteriorate. To see the this consider solving (5.4) without

the regularization. This leads to a pseudoinverse solution, (BT )†q, whose sta-

bility is indicated by the reciprocal of the lowest singular value, σmin(B)−1.

Empirically we observe that σmin(B)−1 grows large as the number of sub-

spaces increases which reflects the fact that the full-resolution reconstruction

remains ill-posed despite the learning step being easier.

Estimates of individual subspace projections give correct local information.

They convert possibly non-local measurements (e.g. integrals along curves in

tomography) into local ones. The key is that these local averages (subspace

projection coefficients) can be estimated accurately (see Section 5.3).

To illustrate the impact if this, consider a simple numerical experiment

with our reformulated problem, q = BTx, where x is an all-zero image with

a few pixels “on”. For the sake of clarity, we assume the coefficients q are

perfect. Recall that B is a block matrix comprising Λ subspace bases stacked

side by side. It is a random matrix because the subspaces are generated at

random, and therefore the reconstruction x̂ = (BT )†q is also random. We

approximate E x̂ by simulating a large number of Λ-tuples of meshes and av-

eraging the obtained reconstructions. The results are shown in Figure 5.4 for

different numbers of triangles per subspace, K, and subspaces per reconstruc-

tion, Λ. As Λ or K increase, the expected reconstruction becomes increas-

ingly localized around non-zero pixels. The following proposition (proved in

Appendix C.2) tells us that this phenomenon can be modeled by a convolu-

tion.

Proposition 6. Let x̂ be the solution to q = BTx given as (BT )†q. Then
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Figure 5.4: Illustration of the expected kernel κ(u, v) with varying subspace
dimension, K, and number of subspaces, Λ. Reconstruction of a sparse
three-pixel image (left) and the cameraman image (right).

there exists a kernel κ̃(u), with u a discrete index, such that E x̂ = x ∗ κ̃.
Furthermore, κ̃(u) is isotropic.

While Figure 5.4 suggests that more triangles are better, we note that this

increases the subspace dimension, which makes getting correct projection

estimates harder. Instead, we choose to stack more meshes with a smaller

number of triangles.

5.3 Numerical results

5.3.1 Application: traveltime tomography

To demonstrate our method’s benefits we consider linearized seismic travel-

time tomography [91, 90], but we note that the method applies to any inverse

problem with scarce data.

In traveltime tomography, we measure
(
P
2

)
wave travel times between P

sensors as in Figure 5.5. Travel times depend on the medium property called

slowness (inverse of speed) and the task is to reconstruct the spatial slowness

map. Image intensities are a proxy for slowness maps—the lower the image

intensity the higher the slowness. In the straight-ray approximation, the

problem data is modeled as integral along line segments:

y(si, sj) =

∫ 1

0

x(tsi + (1− t)sj) dt, ∀ si ̸= sj (5.5)

where x : R2 → R+ is the continuous slowness map and si, sj are sensor
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Figure 5.5: Linearized traveltime tomography illustration: On the left we
show a sample object, with red crosses indicating 25 sensor locations and
dashed blue lines indicating linearized travel paths; on the right we show a
reconstruction from

(
25
2

)
= 300 measurements by non-negative least squares.

locations. In our experiments, we use a 128× 128 pixel grid with 25 sensors

(300 measurements) placed uniformly in an inscribed circle, and corrupt the

measurements with zero-mean iid Gaussian noise.

5.3.2 Architectures and reconstruction

We generate random Delaunay meshes with 50 triangles each. The cor-

responding projector matrices compute average intensity over triangles to

yield a piecewise constant approximation P Sλ
x of x. We test two distinct

architectures: 1) ProjNet, tasked with estimating the projection into a sin-

gle subspace, and 2) SubNet, tasked with estimating the projection over

multiple subspaces.2

The ProjNet architecture is inspired by the FBPConvNet [89] and the U-

Net [128], as shown in Figure C.3a in the Appendix. Crucially, we constrain

the network output to live in Sλ by fixing the last layer of the network to

be a projector, P Sλ
(Figure C.3a). A similar trick in a different context was

proposed in [129].

We combine projection estimates from many ProjNets by regularized linear

least-squares (5.4) to get the reconstructed object (cf. Figure 5.2) with the

regularization parameter λ determined on five held-out images. A drawback

of this approach is that a separate ProjNet must be trained for each subspace.

This motivates the SubNet (shown in Figure C.3b). Each input to SubNet is

the concatenation of a non-negative least squares reconstruction and 50 basis

functions, one for each triangle forming a 51-channel input. This approach

scales to any number of subspaces which allows us to get visually smoother

reconstructions without any further regularization as in (5.4). On the other

2Code available at https://github.com/swing-research/deepmesh.
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hand, the projections are less precise which can lead to slightly degraded

performance.

As a quantitative figure of merit we use signal-to-noise ratio (SNR).

The input noise SNR is defined as 10 log10(σ
2
signal/σ

2
noise) where σ2

signal and

σ2
noise are the signal and noise variance; the output SNR is defined as

supa,b 20 log10(∥x∥2/∥x− ax̂− b∥2) with x the ground truth and x̂ the re-

construction.

We train 130 ProjNets for 130 different subspaces with measurements at

various SNRs. Similarly, a single SubNet is trained with 350 different sub-

spaces and the same noise levels. We compare the ProjNet and SubNet

reconstructions with a direct U-net baseline convolutional neural network

that reconstructs images from their non-negative least squares reconstruc-

tions. The direct baseline has the same architecture as SubNet except the

input is a single channel non-negative least squares reconstruction like in

ProjNet and the output is the target reconstruction. Such an architecture

was proposed by [89] and is used as a baseline in recent learning-based in-

verse problem works [88, 130] and is inspiring other architectures for inverse

problems [108]. We simulate the lack of training data by testing on a dataset

that is different than that used for training.

5.3.3 Robustness to corruption

To demonstrate that our method is robust against arbitrary assumptions

made at training time, we consider two experiments. First, we corrupt the

measurements with zero-mean iid Gaussian noise and reconstruct with net-

works trained at different input noise levels. In Figures 5.6a, C.5 and Table

5.1, we summarize the results with reconstructions of geo images taken from

the BP2004 dataset3 and x-ray images of metal castings [131]. The direct

baseline and SubNet are trained on a set of 20,000 images from the arbitrarily

chosen LSUN bridges dataset [132] and tested with the geophysics and x-ray

images. ProjNets are trained with 10,000 images from the LSUN dataset.

Our method reports better SNRs compared to the baseline. We note that

direct reconstruction is unstable when trained on clean and tested on noisy

measurements as it often hallucinates details that are artifacts of the train-

3http://software.seg.org/datasets/2D/2004_BP_Vel_Benchmark/
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Average SNR over
102 x-ray images

Training SNR
10 dB ∞ dB

Direct ProjNets SubNet Direct ProjNets SubNet
Testing
SNR

10 dB 13.51 14.49 13.92 10.34 12.88 12.85
∞ dB 13.78 15.38 14.04 16.67 17.23 16.86

Table 5.1: Average reconstruction SNR for various training and testing
SNR combinations.

ing data. For applications in geophysics, it is important that our method

correctly captures the shape of the cavities. The direct inversion produces

sharp but incorrect geometries (see outlines in Figure 5.6a).
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b)a) p = 1/8 p = 1/10 p = 1/12

Figure 5.6: a) Reconstructions for different combinations of training and
testing input SNR. The output SNR is indicated for each reconstruction.
Our method stands out when the training and testing noise levels do not
match; b) reconstructions with erasures with probability 1

8
, 1

10
and 1

12
. The

reconstructions are obtained from networks which are trained with input
SNR of 10 dB. The direct network cannot produce a reasonable image in
any of the cases.

Second, we consider a different corruption mechanism where traveltime

measurements are erased (set to zero) independently with probability p ∈{
1
12
, 1
10
, 1
8

}
, and use networks trained with 10 dB input SNR on the LSUN

dataset. Figure 5.6b and Table 5.2 summarizes our findings. Unlike with

Gaussian noise (Figure 5.6a), the direct method completely fails to recover

coarse geometry in all test cases. In our entire test dataset of 102 x-ray

images, there is not a single example where the direct network captures a

geometric feature that our method misses. This demonstrates the strengths

of our approach. For more examples of x-ray images, see Appendix C.4.2.

81



Average SNR over
102 x-ray images

p = 1
8 p = 1

10 p = 1
12

Direct 9.03 9.62 10.06
ProjNets 11.09 11.70 12.08
SubNet 11.33 11.74 11.99

Table 5.2: Average SNR values for reconstructions from measurements with
erasure probability, p. All networks were trained for 10dB noisy
measurements on the LSUN bridges dataset. Refer to Appendix C.4.2 for
actual reconstructions.

Original
Non-negative
least squares LSUN CelebA Shapes

Figure 5.7: Reconstructions from networks trained on different datasets
(LSUN, CelebA and Shapes) with 10dB training SNR.

5.3.4 Robustness against dataset overfitting

Figure 5.7 illustrates the influence of the training data on reconstructions.

Training with LSUN, CelebA [133] and a synthetic dataset of random over-

lapping shapes (see Figure C.4 in Appendix for examples) all give comparable

reconstructions—a desirable property in applications where real ground truth

is unavailable.

We complement our results with reconstructions of checkerboard phantoms

(standard resolution tests) and x-rays of metal castings in Figure 5.8. We

note that in addition to better SNR, our method produces more accurate

geometry estimates, as per the annotations in the figure.

5.4 Summary

We proposed an approach to regularize ill-posed inverse problems in imaging.

The key idea is to decompose an unstable inverse mapping into a collection

of stable mappings which only estimate low-dimensional projections of the
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Figure 5.8: Reconstructions on checkerboards and x-rays with 10dB
measurement SNR tested on 10dB trained networks. Red annotations
highlight where the direct net fails to reconstruct correct geometry.

object. By using piecewise-constant Delaunay subspaces, we showed that the

projections can indeed be accurately estimated. Combining the projections

leads to a deconvolution-like problem. Compared to directly learning the

inverse map, our method is more robust against noise and corruptions. We

also showed that regularizing via projections allows our method to generalize

across training datasets. Our reconstructions are better both quantitatively,

in terms of SNR, and qualitatively, in the sense that they estimate correct

geometric features even when measurements are corrupted in ways not seen

at training time.
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CHAPTER 6

DIFFERENTIABLE UNCALIBRATED
IMAGING

In Chapter 4, we saw that accounting for phase retrieval operator uncer-

tainties leads to better reconstructions. In this chapter, we propose a general

framework to account for errors in the operator which are caused by measure-

ment coordinate uncertainties. Our framework jointly recovers the unknown

measurement coordinates of the true operator (E2), and the reconstructed

image. This is done by learning a continuous representation of the measure-

ments (E1).

6.1 Measurement coordinates

In computational imaging a physical process A such as 2D computed tomog-

raphy (CT) relates the object we want to image, x, to an observable field y.

Both x and y are naturally functions of continuous coordinates: x could be

a density over 2D spatial coordinates (e.g., [0, 1]2), and y a sinogram over

angles and 1D projection coordinates (e.g., [0, π)× [−1, 1]).
In practice, however, we have finite sensors. Denoting the space of con-

tinuous measurement coordinates by Ω, the sensors sample the field y at

µ̃ = (µ̃1, . . . , µ̃M) ∈ ΩM , such that the observed measurements y ∈ RM

follow

y = Aµ̃(x) + η, (6.1)

where

y
def
= y(µ̃)

def
= [y(µ̃1), . . . , y(µ̃M)]T , (6.2)

This work was previously published in S. Gupta, V. Debarnot, K. Kothari, and I.
Dokmanić, “Differentiable Uncalibrated Imaging,” arXiv preprint arXiv:2211.10525, 2022
[134] and is adapted here with permission.
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and η ∈ RM is the measurement noise. The discrete forward operator Aµ̃

parameterized by µ̃ samples the output of A. In computational imaging we

work with a discretization or some other finite-dimensional approximation of

x denoted by x ∈ RN . Hereafter, we let Aµ̃ act on x rather than on x.

This chapter addresses the scenario where the true measurement coordi-

nates µ̃ are only approximately known: the imaging system is out of cali-

bration. Consequently, the true operator Aµ̃ is unknown and we work with

an operator Aµ for measurement coordinates µ = (µ1, . . . , µM) which would

be correct if the system was calibrated. The assumed measurement coor-

dinates µ are related to the unknown true measurement coordinates µ̃ by

small perturbations.

Not accounting for the mismatch between µ̃ and µ can lead to a poor

reconstruction. The gist of our method is to learn a representation of the

measurement space that can be evaluated and differentiated at arbitrary

measurement coordinates µ. This gives us measurements y(µ) that are then

well-suited for a reconstruction method that uses µ. Our proposed framework

enables us to

1. Jointly reconstruct the image x and learn the true unknown measure-

ment coordinates µ̃ by using gradient-based optimization.

2. Learn continuous measurement representations that take measurement

coordinates as input. These representations can be evaluated at µ

and are in essence interpolations of the discrete measurements with

unknown interpolation knots.

3. Leverage standard differentiable image reconstruction methods that ex-

ist for the assumed µ even though the observations correspond to un-

known µ̃. This helps learn consistent measurement representations.

A strength of our approach is that we can use any continuous interpolation

method that admits backpropagation to input coordinates. To showcase

this, we use implicit neural networks (neural fields) but also develop fully-

differentiable variable-knot splines, which allow us to optimize spline control

points and control point weights. We show that splines perform as well as

implicit neural networks while being faster to fit and simpler to interpret.

A key property of both these representation types is that we can perform
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Figure 6.1: Visualization of the parameter mismatch between µ̃ and µ in
2D CT imaging. A mismatch in the view angles between µ and µ̃ can
produce a significant drop in reconstruction quality.

automatic differentiation with respect to their input coordinates and recover

µ̃ by gradient-based optimization.

6.1.1 Example: Computed tomography

We illustrate our framework with 2D CT, where we measure parallel beam

projections of an image at different view angles in a detector plane. Let

Ω = [0, π)× R, x ∈ L2([−1, 1]2),1 and y ∈ L2(Ω). The measured projections

y are obtained from a finite set of discrete view angles Θ̃ = (θ̃1, . . . , θ̃J), and

are sampled at a finite set of discrete detector locations T̃ = (t̃1, . . . , t̃K). The

true set of unknown measurement coordinates are then (µ̃m)
M
m=1 = Θ̃×T̃ with

M = J ·K. Furthermore, Aµ̃ is given by the discrete Radon transform for

view angles Θ̃ and detector locations T̃ . Many other computational imaging

applications such as electron cryotomography (CryoET), magnetic resonance

imaging, and optical microscopy can be parameterized similarly.

The parameter mismatch between µ̃ and µ and its severe impact is illus-

trated in Figure 6.1. We use a state-of-the-art reconstruction method that

computes a filtered backprojection estimate with µ and feeds it into a UNet

deep neural network to obtain a reconstruction of x [128, 89]. The neural

network is trained in a supervised manner using training data that is also

generated using µ. When there is parameter mismatch, the true view angles

differ from the assumed view angles and therefore µ̃ ̸= µ. Figure 6.1 shows

1We denote by L2(M) the space of square integrable functions onM.
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that in this case the reconstruction method produces a degraded reconstruc-

tion from both a visual and SNR evaluation. The middle column of Figure

6.2 shows this for another ground truth image and number of view angles.

The last column of Figure 6.2 also shows that when there is no parameter

mismatch (µ̃ = µ), the same reconstruction method performs strongly.

Ground
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w 
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Parameter
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No parameter
mismatch

26.1

12
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ng
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Figure 6.2: 2D CT reconstructions with 90 and 120 view angle. The SNRs
(in dB) are written in the bottom-left corners. When there is parameter
mismatch because the true and assumed view angles differ, the
reconstruction method performs poorly and there is a clear degradation.

6.1.2 Chapter overview and contributions

This chapter is organized as follows. In Section 6.2 we present the optimiza-

tion problem which models joint calibration and image reconstruction. We

first model measurements as continuous functions and then show how to learn

these measurement representations. To help better understand measurement

representations, we select implicit neural networks and splines and show how

they can be used as measurement representations. After this, Section 6.3 ex-

perimentally verifies that when there is measurement coordinate uncertainty,

our proposed method yields significantly improved reconstructions. The ex-

perimental verification is done by solving 2D and 3D CT imaging problems.

We show that both implicit neural networks and splines perform comparably

as measurement representations. We summarize the chapter in Section 6.4.
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6.1.3 Related work

Many of the current state-of-the-art methods for solving imaging inverse

problems are based on deep learning [101, 135]. Popular supervised ap-

proaches use the forward operator to obtain an initial estimate, which is

then enhanced by a neural network (reconstruction method in Figure 6.2 for

example) [89, 108, 17, 136]. Unrolling iterative methods or replacing op-

timization components with deep networks is another established approach

[117, 113, 137, 138, 139, 140]. A different direction involves requiring the

inverse problem solution to lie in the range of a generative neural network

[119, 141, 142]. In general all these methods utilize a forward operator in

some way but do not account for measurement coordinate uncertainty. This

can severely impact the reconstruction as shown in Figure 6.2. In this chapter

we propose to address this problem by reevaluating the measurements at the

measurement coordinates that deep neural network reconstruction methods

are designed for.

While much less common, there are some recent deep learning approaches

which address measurement coordinate uncertainty. Gilton et al. explored

fine-tuning a neural network that was trained with measurements sampled

at µ to work well with test measurements sampled at unknown µ̃ [143].

Our method is different: we reevaluate the measurements via a measurement

representation for a single example so we do not need to fine-tune. Another

appealing approach is to train a neural network on a family of operators with

different parameterizations [144]. These methods always induce a tradeoff

between the reconstruction quality and the variety of forward maps they are

trained on, and they only work well for the distribution of perturbations

seen at training time. There is also the challenge of dataset generation,

especially in compute-intensive problems. We mitigate this tradeoff by using

consistency to identify the true measurement coordinates.

Continuous representations have been used to solve a variety of science and

engineering problems. To the best of our knowledge, no prior work has used

them for imaging with measurement coordinate uncertainty. Splines have

long been used to model surfaces and curves in geometry [125, 126, 145, 146].

Moreover, differentiable splines with parameters that can be fitted using au-

tomatic differentiation have also been developed [147]. Recently deep learn-

ing methods called neural fields or implicit neural networks have proven to
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be extremely good and efficient continuous representations [148]. They have

been employed in a broad spectrum of applications ranging from representing

geometry via signed distance functions [149, 150] to solving partial differen-

tial equations [151]. Implicit neural networks have also been used to solve

tomographic imaging inverse problems [152, 153]. In particular, Sun et al.

also used them to represent 2D CT measurements [154]. Rather than for

calibration, they use implicit networks to upsample measurements for down-

stream reconstruction by a deep neural network. While upsampling may also

be performed by traditional tools such as splines, our framework relies on the

differentiability of the used representations—both neural and spline-based—

with respect to the input coordinates.

This chapter is also related to the broader theme of inverse problems with

“noisy” forward operators. On one end of the spectrum there are inverse

problems where the operator (and µ̃) is perfectly known, and, at the other

extreme, there are blind inverse problems where the operator and µ̃ are

completely unknown. Related blind imaging problems are tomography with

unknown view angles [155, 156] and cryo-electron microscopy with unknown

projection angles [157]. In between the extremes, there are semi-blind in-

verse problems where the operator and µ̃ are approximately known. Total

least squares approaches that perturb an assumed operator such as the work

in Chapter 4 [58, 59, 56] and our proposed measurement coordinate-based

framework fall under this category.

6.2 Differentiable framework

We wish to learn a continuous representation of the measurement space so

that we can sample it at specific measurement coordinates and obtain the

corresponding measurements. We model the measurement representations

as continuous functions rφ(·) that take measurement coordinates as input

and map them to the corresponding sampled measurements. The learnable

parameters, φ ∈ Φ where Φ is the space of feasible parameters, are optimized

so that

rφ(ω) ≈ y(ω) (6.3)
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where ω ∈ Ω is a measurement coordinate and y(ω) ∈ R is the sample from

the measurement space at measurement coordinate ω. For convenience we

also denote a batch evaluation of rφ(·) as

Rφ(ω)
def
= [rφ(ω1), . . . , rφ(ωQ)]

T

≈ [y(ω1), . . . ,y(ωQ)]
T (6.4)

where ω = (ω1, . . . , ωQ) ∈ ΩQ and Rφ(ω) ∈ RQ. We also require rφ(·) to be

differentiable with respect to φ and its input so that we can use gradient-

based optimization to estimate φ and the unknown measurement coordi-

nates.

6.2.1 Joint optimization objective

We want rφ(·) to accurately produce samples from the space of measure-

ments. Since we only observe measurements y at measurement coordinates

µ̃ in (6.1), we require

Rφ(µ̃) ≈ y (6.5)

However, since µ̃ is unknown we cannot use it to verify the accuracy of rφ(·).
This motivates us to jointly learn the representation parameters φ and the

unknown measurement coordinates µ̃ by minimizing a measurement fitting

loss,

Lfitting(ν,φ)
def
= ∥y −Rφ(ν)∥22 , (6.6)

with respect to the input ν ∈ ΩM and φ. Recall y ∈ RM is defined by (6.1).

Learning rφ(·) by minimizing only Lfitting(ν,φ) with respect to both the

representation’s parameters and input would not in general result in an ac-

curate measurement representation because there are too many degrees of

freedom. Therefore, we regularize and control φ by enforcing rφ(·) to be

consistent with reconstructions that could be obtained by using its output.

This is done by minimizing a consistency loss with respect to φ,

Lconsistency(φ)
def
= ∥Rφ(µ)−AµGµ(Rφ(µ))∥22 , (6.7)
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where Gµ : RM → RN is a differentiable reconstruction method that was

designed using measurement coordinates µ. Putting everything together,

our complete joint optimization objective is

µ̂, φ̂ = argmin
ν∈ΩM ,φ∈Φ

λ1 Lfitting(ν,φ) + λ2 Lconsistency(φ) (6.8)

where λ1, λ2 ∈ R≥0 are tunable weights. As the assumed coordinates µ

are close to the true unknown coordinates µ̃, we initialize ν to µ. After

completing the optimization (6.8), the learned coordinates µ̂ are close to µ̃

(verified in Section 6.3), and the final reconstruction and estimate of x ∈ RN

is given by

x̂ = Gµ(Rφ(µ)). (6.9)

6.2.2 Leveraging reconstruction methods

A key aspect of our framework is that consistency and the final reconstruc-

tion are obtained by using reconstruction method Gµ(·) that was designed

using measurement coordinates µ even though the observations in (6.1) are

sampled at measurement coordinates µ̃. This provides significant flexibility

and allows us to incorporate a variety of reconstruction methods. For exam-

ple, the reconstruction method may be a relatively straightforward adjoint or

pseudoinverse operation. Alternatively, it can be a more complex neural net-

work that provides state-of-the-art reconstructions with measurements from

µ (reconstruction method in Figure 6.2 is one example). Our framework

is particularly advantageous in this case because it may be cumbersome to

retrain a neural network for different measurement coordinates.

6.2.3 Measurement representations

In order to better understand how to use the framework to solve real imaging

problems, we now pick implicit neural networks and splines and explain how

they are suitable measurement representations. While we consider these,

we emphasize that our framework is general and is not restricted to these

representation types.
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Implicit neural representations. Implicit neural representations are

deep feedforward neural networks that represent discrete signals as continu-

ous functions. When used as the measurement representation rφ(·) in (6.3),

φ are the trainable network parameters. The input to the network are mea-

surement coordinates and the output are the corresponding measurements.

Implicit neural networks have previously been used to represent measure-

ments when there is no measurement uncertainty [154]. In this case the

network input was not optimized and consistency (6.7) was not enforced.

As implicit neural representations are neural networks, we can use auto-

matic differentiation to calculate their gradients with respect to φ and their

input coordinates to solve (6.8). In this chapter, we use an architecture com-

prising a Fourier feature mapping layer followed by standard fully-connected

layers [150, 154].

Differentiable splines. Splines use locally supported basis functions to

represent signals as a continuous surface. In this chapter, we focus on Non-

uniform Rational Basis Splines (NURBS) because of their ability to model

complex surfaces [145, 158, 159]. To aid understanding we explain NURBS

using the 2D CT imaging example that was introduced in Section 6.1.1.

The measurement coordinates µ are the Cartesian product of assumed view

angles and assumed detector locations, Θ × T where Θ = (θ1, . . . , θJ) and

T = (t1, . . . , tK). The NURBS surface sφ(·) with parameters φ evaluated at

measurement coordinate µ′ = [θ′, t′]T ∈ [0, π]× R is then

sφ(µ
′) =

J−1∑
j=0

K−1∑
k=0

bj,k(µ
′)pj,k (6.10)

where bj,k(·) ∈ R are scalar-valued rational basis functions with local support

and pj,k ∈ R3 are control point vectors. The NURBS are parameterized by

the weight parameters wj,k ∈ R of the rational basis functions, and the control

point vectors. This gives φ = {wj,k}J−1,K−1
j=0, k=0 ∪ {pj,k}J−1,K−1

j=0, k=0 . Note that the

control point vectors are three-dimensional because for each two-dimensional

measurement coordinate µ′, there is a corresponding scalar measurement.

Consequently, according to (6.10), sφ(µ
′) is also three-dimensional. We then

establish the following relationship between NURBS surfaces and our mea-
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surement representations (6.3) to get a spline measurement representation,

rφ(ω) = s⋄φ(ω), (6.11)

where s⋄φ(·) denotes the value of the measurement dimension of sφ(·).
It has recently been shown that automatic differentiation can be used to

learn spline parameters [147]. Hence, we develop differentiable spline rep-

resentations and use gradient-based optimization to learn the NURBS pa-

rameters φ and their input measurement coordinates. These differentiable

splines fit into our framework straightforwardly as measurement representa-

tions (6.11), and we can use them to solve (6.8).

In our experiments, we carefully initialize the spline parameters φ and

then learn them: wj,k is initialized to one and control point vectors pj,k are

initialized using the assumed measurement coordinates and their correspond-

ing observed measurements, pj,k =
[
θj, tk,y([θ̃j, t̃k]

T )
]T
∈ R3. Additionally,

in our experiments we also extend (6.10) to higher dimensional measurement

coordinates (see Section 6.3.2). We provide further details on NURBS and

their implementation are provided in Appendices D.2 and D.3.

6.3 Experimental verification

We experimentally verify our framework by solving 2D and 3D CT imaging

problems. These experiments demonstrate that our framework can be used to

solve imaging problems with different measurement coordinate dimensions.

Furthermore, we exhibit the flexibility of our method by using implicit neural

networks and splines as measurement representations.2

We use SNR (dB) to quantify the measurement noise and measurement

coordinate uncertainty. SNR is calculated by

SNR(c, d) = −20 log10
(∥c− d∥2
∥d∥2

)
. (6.12)

If we let y ∈ RM denote the observed measurements as in (6.1) and let ỹ de-

note the unobserved noiseless measurements, the measurement noise level is

2Code available at https://github.com/swing-research/differentiable_

uncalibrated_imaging.
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SNR(y, ỹ). For each measurement coordinate dimension, we keep the mea-

surement coordinate uncertainty level the same across all M measurement

coordinates. If we let µ̃m,d ∈ R and µm,d ∈ R denote the dth dimension

of the mth true and assumed measurement coordinates, the measurement

coordinate uncertainty level for the dth dimension is SNR(µ̃m,d, µm,d). The

measurement noise and measurement coordinate uncertainty is simulated

with zero-mean iid Gaussian noise with variance adjusted to achieve a target

SNR level.

Due to their state-of-the art performance when there is no measurement

coordinate uncertainty, we use deep neural networks for the reconstruction

method, Gµ(·), in (6.8). For 2D CT we use a 2D Unet [89] and for 3D CT

we use a 3D Unet [160]. Following standard practice, a preprocessing step

applies the pseudoinverse of the imaging operator to the measurements to

produce an initial image estimate [89]. These networks are then trained in

a supervised manner to map the initial estimates to ground truth images.

The training data generation and preprocessing step are done with the as-

sumed measurement coordinates µ. The measurements in the training data

are noisy and in each experiment we use a Unet whose training measurement

noise level matches the measurement noise level of the obtained measure-

ments.

As mentioned in Section 6.2, the solution, x̂, is given by (6.9). We use

SNR to evaluate the solution quality, SNR(x̂, x). We compare x̂ against

baseline reconstructions that are obtained by directly using the obtained

measurements with the reconstruction Unets

xbaseline = Gµ(y). (6.13)

Recall, the obtained measurements correspond to measurement coordi-

nates µ̃.

Appendix D.3 contains further hyperparameter and implementation de-

tails.

6.3.1 Two-dimensional CT imaging

In 2D CT imaging, one-dimensional projections of a two-dimensional object

at different view angles are collected and our goal is to reconstruct an im-
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age of the object from these projections. For this set of experiments, the

detectors are uniformly spaced on the normalized interval [0, 1] and have no

uncertainty. The assumed view angles are uniformly spaced on the interval

[0, π], and the true view angles have an unknown perturbation from these

assumed view angles due to experimental incertitude. The measurement co-

ordinates space is Ω = [0, π]× [0, 1]. As there is only uncertainty in the view

angle dimension and not in the detector location dimension, we only optimize

the view angle dimension of the measurement coordinates (νm)
M
m=1 in (6.8).

We explore the performance of our method compared to the baseline which

does not account for measurement coordinate uncertainty. We use images

from the the LoDoPaB-CT tomography dataset resized to 128 × 128 [161].

From this dataset, 35,000 samples were used to train the image reconstruction

2D UnetGµ(·). Test images from this dataset are used in this section to verify

our framework.

Combinations of measurement and coordinate error. To determine

how our framework performs under different settings, we consider different

combinations of measurement noise and measurement coordinate uncertainty

(in view angles). We do trials over 25 different test images, and in each trial

different measurement noise and view angle perturbations are used.

We evaluate the performance of our framework relative to the baseline by

calculating the average reconstruction SNR improvement over the baseline.

Figure 6.3a shows the performance for 90 view angles. The performance

trends are similar for both implicit neural and spline measurement represen-

tations. For a given measurement noise SNR, our method shows increasing

improvements as the angle SNR decreases (measurement coordinate uncer-

tainty increases). This shows that our method handles measurement coor-

dinate uncertainty well, especially when the uncertainties begin to dominate

over measurement noise. We can also see that for a fixed angle SNR, the per-

formance gains decrease as measurement SNR decreases and measurement

errors becomes more dominant. Figure 6.3b shows that the same trends hold

when there are 120 view angles.

In Figure 6.4, we show some example ground truth, pseudoinverse filtered

backprojection (FBP) and baseline reconstructions with their SNRs when

there are 90 view angles. The reconstructions using our framework with im-

plicit neural and spline measurement representations are also shown. Com-
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Figure 6.3: Average SNR improvement (dB) when solving (6.8) for different
combinations of measurement noise SNR and view angle uncertainty SNR.
There are 90 and 120 view angles.

pared to the baseline, solutions obtained using our framework have fewer ar-

tifacts. Figure D.1 in the Appendix shows these same reconstructions when

there are 120 view angles instead.

Learned view angles accuracy. In the next experiment we verify that the

learned measurement coordinates, µ̂ in (6.8), are close to the true unknown

measurement coordinates µ̃. As the detector locations have no error, we

verify the learned view angles only. We denote the set of true unknown view

angles and learned view angles as Θ̃ and Θ̂. We quantitatively measure the
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Figure 6.4: Example reconstructions for different measurement noise SNR
and view angle uncertainty SNR combinations when there are 90 view
angles. The reconstruction SNRs are shown for each reconstruction.

average angle error as

Average angle error =
1

J
∥sort(Θ)− sort(Θ̂)∥1, (6.14)

where sort(·) vectorizes and sorts the sets in ascending order and J is the

number of view angles.

Figure 6.5 shows how the average angle error changes as the optimization

iterations of (6.8) progress. This is shown for one test image with different

combinations of measurement noise and measurement coordinate uncertainty

when there are 90 view angles. The solid lines are for implicit neural rep-

resentations and the dashed lines are for spline representations. For both
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representation types, the angle error reduces as (6.8) is solved which confirms

that our framework learns measurement coordinates that are more accurate

than the assumed measurement coordinates which they were initialized with.

The average angle error when using the assumed measurement coordinates

for reconstruction, as is done in the baseline, is the initial point on the plots.

Figure D.2 in the Appendix shows that the same trends hold when when

there are 120 view angles.
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Figure 6.5: Average angle error for one test image with different
combinations of measurement noise and measurement coordinate
uncertainty when there are 90 view angles. The solid lines are for implicit
neural representations and the dashed lines are for spline representations.

Reconstruction with more measurements. Next, we investigate a vari-

ant of the main problem considered in this chapter: in addition to the M
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true measurement coordinates being unknown, the reconstruction method

Gµ(·) is now designed for M ′ measurements where M ′ ≥ M . In this case

µ̃ = (µ̃1, . . . , µ̃M) as before and now µ = (µ1, . . . , µM ′). As the measurement

representation rφ(·) can be evaluated at any measurement coordinate, we

can evaluate (6.7) at M ′ measurement coordinates.

In this experiment we obtain measurements from 90 view angles. As in

the previous experiments, the true view angles are unknown and we initialize

the angles of measurements coordinates ν in (6.6) to be 90 uniformly spaced

view angles in the interval [0, π]. The detector locations have no uncertainty.

We consider different values of M ′ by varying the number of view angles J ′.

The number of detectors K are not varied which gives M ′ = J ′ ·K. We try

two different reconstruction Unets: 1) GJ ′
µ (·) which was trained with training

data having J ′ view angles uniformly spaced on [0, π] and, 2) G90
µ (·) which

was trained with training data having 90 view angles uniformly spaced on

[0, π].3

Table 6.1 shows the average reconstruction SNR over 25 test images. There

is 35 dB measurement noise and the unknown true view angles are perturbed

by 35 dB from 90 uniformly spaced view angles. With Unet GJ ′
µ (·), the per-

formance fluctuates. The performance is stable with Unet G90
µ (·). With

both reconstruction methods, the best performance is seen when J ′ = 90

(M ′ = M) and evaluating more measurements does not help. This is be-

cause the fitting loss (6.6) ensures that rφ(·) accurately represents the M

obtained measurements which were sampled from the measurement space

at coordinates µ̃. Then, when M ′ = M , because the measurement coordi-

nates used for reconstruction, µ, are a small perturbation away from µ̃, they

are also represented accurately which results in good reconstructions. Fur-

thermore, when M ′ = M , there are enough measurement coordinates that

densely cover the measurement space. The accuracy of the measurement co-

ordinates for the extra measurements when M ′ > M is not enforced by the

fitting loss (6.6).

It has been shown that reconstruction with more measurements can help

when there is no measurement coordinate uncertainty and the input to the

3The number of Unet training view angles and evaluated view angles J ′ can be differ-
ent. This is because the Unet input is computed by a filtered backprojection for J ′ view
angles, which always results in an Unet input with the dimensions of the image being
reconstructed.
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Table 6.1: Average reconstruction SNR when reconstructing with more
measurements.

GJ ′
µ (·) G90

µ (·)
J ′ Implicit Spline Implicit Spline

90 23.5 23.6 23.5 23.6
110 22.6 23.1 23.7 23.6
120 23.4 23.1 23.8 23.6
130 23.2 22.8 23.7 23.5
150 22.9 22.5 23.8 23.6
180 22.3 22.0 23.9 23.6

reconstruction neural network combines the observed measurements with the

measurement representation output [154]. When there is measurement co-

ordinate uncertainty, using the original measurements in the input to the

reconstruction neural network can reduce performance as shown by Figure

6.2 and the baseline reconstructions in Figure 6.4.

6.3.2 Three-dimensional CT imaging

Similar to 2D CT imaging, in 3D CT imaging, two-dimensional projections of

a three-dimensional volume are collected by tilting it at different tilt angles.

The goal is to reconstruct the volume from the the series of projections. In-

spired by CryoET imaging, we obtain projections at 60 tilt angles which we

assume to be uniformly spaced on the interval [−π/3, π/3]. The true unknown

tilt angles are perturbed from these. This setup is challenging because there

is a ‘wedge’ of tilt angles for which we do not have projections. The detec-

tors are uniformly spaced on a two-dimensional unit square [0, 1]2 and have

no uncertainty. Combining these spaces gives the measurement coordinates

space as Ω = [−π/3, π/3]× [0, 1]2. In the same way as the 2D CT experiments,

we only optimize the tilt angle dimension of the measurement coordinates

(νm)
M
m=1 in (6.8) because the detector locations have no uncertainty.

To train the reconstruction 3D Unets, we use 3D volumes from the 2019

Brain Tumor Segmentation (BraTS) Challenge dataset [162, 163, 164]. The

volumes are resized to be 64× 64× 64. We use 478 volumes for training and

15 separate volumes to test and verify our framework.
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Combinations of measurement and coordinate error. We consider

different combinations of measurement noise and measurement coordinate

uncertainty (in tilt angles) in the same way as was done for 2D CT. The

trials are done over 15 test volumes and the results are shown in Figure 6.6.

We see that the performance trends for both implicit neural and spline repre-

sentations are similar. Furthermore, the performance is consistent with what

was seen for the 2D CT problem (Figure 6.3)—as measurement coordinate

uncertainty increases, our framework provides increasing gains.

Figure 6.7 shows two-dimensional slices through some of the test volumes.

The ground truth, psuedoinverse, baseline, and our reconstructions are shown

with the SNRs of the entire volumes. Similarly, Figure 6.8 shows 3D recon-

structions of the same test volumes. Two central orthogonal volume slices

have been plotted. Reconstructions using our framework are better than the

baseline at recovering the geometric structure of the volumes and have fewer

artifacts.
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Figure 6.6: Average SNR improvement (dB) when using our framework
(6.8) for different combinations of measurement noise SNR and
measurement coordinate uncertainty SNR. There are 60 tilt angles on the
interval [−π/3, π/3].

Learned tilt angles accuracy. Next we verify that the learned measure-

ment coordinates are accurate. The uncertainty is only in the tilt angles

and we follow the same procedure as when verifying the learned 2D CT view

angles in Figure 6.3.1. We use the metric defined in (6.14) and show the re-

sults in Figure 6.9 for one test volume with different measurement noise and

101



Ground truth

An
gl

e:
 1

0
M

ea
su

re
m

en
t: 

30

Pseudoinverse

8.1

Baseline

16.6

Implicit neural

18.1

Spline

18.9

An
gl

e:
 1

2
M

ea
su

re
m

en
t: 

35

10.9 17.6 20.1 19.8

An
gl

e:
 1

5
M

ea
su

re
m

en
t: 

35

9.5 17.9 19.5 19.6

An
gl

e:
 2

0
M

ea
su

re
m

en
t: 

25

8.7 19.7 19.4 19.7

An
gl

e:
 2

5
M

ea
su

re
m

en
t: 

30

8.4 19.4 19.5 19.5

Figure 6.7: Example reconstructed slices through the test volumes.
Reconstructions for different measurement noise SNR and measurement
coordinate uncertainty SNR are shown. The reconstruction SNRs for each
volume are stated.

measurement coordinate uncertainty combinations. Again, the solid lines are

for the implicit neural representations and the dashed lines are for the spline

representations. For both representation types, the average tilt angle er-

ror reduces as the optimization of (6.8) progresses. This demonstrates that

our framework learns tilt angles (measurement coordinates) that are more

accurate than the assumed ones.
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Figure 6.8: Example reconstructions for two of the orthogonal central slices
of each of the test volumes in Figure 6.7. The SNRs for the entire volume
are stated.

6.4 Summary

We presented a differentiable imaging inverse problem framework to jointly

reconstruct the unknown image and learn unknown measurement coordi-

nates when they are approximately known. There are two major elements

in our proposed method. Firstly, we learn continuous representations of the

measurements whose input are measurement coordinates and output are the

corresponding measurements. By optimizing with respect to their param-

eters and their input, we jointly learn the measurement representation pa-

rameters and the unknown measurement coordinates. The second aspect of

our method is that because these representations can be evaluated at any in-
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Figure 6.9: Average tilt angle error for one test volume with different
measurement noise and measurement coordinate uncertainty combinations.
The solid lines are for implicit neural representations and the dashed lines
are for spline representations.

put coordinate, we can leverage reconstruction methods that are designed for

measurement coordinates that are different from the ones of the observations.

Our 2D and 3D CT imaging experiments show that our framework produces

superior reconstructions when there is measurement coordinate uncertainty.

As our framework does not assume a particular measurement represen-

tation, we use both implicit neural networks and splines to represent mea-

surements. Splines are generally viewed as interpolation tools; however, this

chapter demonstrates that they can also be learnable differentiable represen-

tations that perform comparably to implicit neural representations. Differ-

entiable splines may provide a viable solution for current research directions
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that have been focusing on using implicit neural networks which can have

significantly more parameters and complexity [148].
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CHAPTER 7

LOOKING FORWARD

In this thesis, we reworked the essential imaging elements—measurements

and operators. By doing so we were able to solve various imaging problems

with greater accuracy and efficiency. For phase problems, we have developed

algorithms to recover all the quantities in the phase problem, |Y |2 = |AX|2.
We also proposed general inverse problem methods to solve problems in prac-

tical settings such as scarce measurements with no training data and forward

operator uncertainty.

The methods presented in this thesis open up a myriad of opportunities

for future research. We briefly outline some of them here.

7.1 Phase problems

Measurement phase retrieval has proven to be a powerful development as

shown in Chapters 2 and 3. It enables us to optically perform randomized

algorithms and calibrate the TM for imaging through scattering media. How-

ever, because we require anchor signals, these benefits come at the expense

of a reduction in data throughput for optical computing applications and

calibration speed when imaging. Future work should quantify the smallest

cost due to allocating a part of acquisition time for anchor measurements.

We are optimistic that this will not be limiting because optical data rates

are very high to begin with.

Presently, the TLS phase retrieval algorithm in Chapter 4 corrects the sens-

ing vectors based on the one signal that we wish to recover. An interesting

future line of work lies in multi-signal batch TLS for sensing vector denoising

so that subsequent signals can be recovered without requiring sensing vector

corrections if their measurements use the same set of sensing vectors.

Furthermore, there are other applications of phase retrieval with uncertain
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sensing vectors. Ptychography, which can be modeled analogously to (4.1),

is a prime example [9]. Ptychography has recently been addressed by least

squares, comprising spectral initialization followed by gradient descent [165].

It would be interesting to see whether our TLS phase retrieval algorithm

from Chapter 4 brings about accuracy improvements. Other ptychography

methods use alternating updates to recover the object and the sensing vectors

[166]. Our geometric intuition may help reduce the number of unknowns in

sensing vector updates and thus improve the overall computational efficiency

of these algorithms.

7.2 Imaging inverse problems

A strength of the framework in Chapter 6 is that no extra data is required to

learn the measurement representations. However, a drawback is that it can

be time consuming if there are multiple test images because we have to learn

separate measurement representations and measurement coordinates for each

new set of observations. Therefore, similarly to the future work on TLS phase

retrieval, extending our framework to jointly recover a batch of images and

the shared unknown measurement coordinates is an important step towards

helping practitioners adopt our framework. Batch imaging also introduces

robustness which can help learn more accurate measurement representations.

Another important endeavor is to adapt our framework in Chapter 6 to

account for operator uncertainties due to reasons other than measurement

coordinate uncertainty, which this chapter studied. For example, there may

be approximation uncertainties if the true operator is approximated to enable

faster computations and facilitate analysis. Not accounting for the approx-

imation can lead to degraded solutions [18]. Another source of operator

uncertainty arises when the object being imaged is altered in an unknown

manner during the measurement acquisition process. For example, in Cry-

oET imaging, the sample can translate and deform during imaging which

needs to be taken into account [167, 168, 169].
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system identification by numerical interferometry,” in ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 1474–1478.

[47] C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone,
“Correlation-enhanced control of wave focusing in disordered media,”
Nature Physics, vol. 13, no. 5, p. 497, 2017.

[48] B. Rajaei, S. Gigan, F. Krzakala, and L. Daudet, “Robust Phase Re-
trieval with the Swept Approximate Message Passing (prSAMP) Algo-
rithm,” Image Processing On Line, vol. 7, pp. 43–55, 2017.

[49] S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gi-
gan, “Measuring the transmission matrix in optics: an approach to the
study and control of light propagation in disordered media,” Physical
review letters, vol. 104, no. 10, p. 100601, 2010.

[50] J. Yoon, K. Lee, J. Park, and Y. Park, “Measuring optical transmission
matrices by wavefront shaping,” Optics Express, vol. 23, no. 8, pp.
10 158–10 167, 2015.

[51] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image
transmission through an opaque material,” Nature communications,
vol. 1, no. 1, pp. 1–5, 2010.

[52] Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari,
M. S. Feld, and W. Choi, “Overcoming the diffraction limit using mul-
tiple light scattering in a highly disordered medium,” Physical review
letters, vol. 107, no. 2, p. 023902, 2011.

[53] B. Rajaei, E. W. Tramel, S. Gigan, F. Krzakala, and L. Daudet,
“Intensity-only optical compressive imaging using a multiply scatter-
ing material and a double phase retrieval approach,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 4054–4058.

[54] P. Stoica and J. Li, “Lecture notes-source localization from range-
difference measurements,” IEEE Signal Processing Magazine, vol. 23,
no. 6, pp. 63–66, 2006.

[55] Y. Chen, Y. Chi, J. Fan, and C. Ma, “Gradient descent with random
initialization: Fast global convergence for nonconvex phase retrieval,”
Mathematical Programming, vol. 176, no. 1, pp. 5–37, 2019.
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APPENDIX A

MEASUREMENT PHASE RETRIEVAL

A.1 Practical considerations with hardware

Reference design. On the OPU system described in Figure 2.1, the DMD

only lets us encode and randomly project binary signals. Therefore, all pair-

wise differences (xq−xr) between the columns of X ∈ RN×Q must be binary.

To design reference signals we first collect all frames {ξs}Ss=1 and sum them∑S
s=1 ξs. The first reference r1 is initialized to ones at the indices where∑S
s=1 ξs is nonzero. Next, some of r1’s zero-valued entries are flipped to one

with probability α. A similar process is used for all subsequent references.

In general, a reference rq is initialized by assigning ones to the nonzero sup-

port of
(∑S

s=1 ξs +
∑q−1

k=1 rk

)
and then flipping some of its zero entries with

probability α.

There is a tradeoff between large and small α. If α is too large, a reference

may become all-ones before all subsequent references are generated. On

the other hand if α is too small, rq+1 − rq will have many zeros and so

|A(rq+1 − rq)|2 may not be high enough to be detected by the camera sensor.

The consequence of this tradeoff is that in practice the number of anchors

is limited. Furthermore, in general a larger N makes it easier to make K

good anchors as α can be larger which keeps |A(rq+1 − rq)|2 away from the

sensitivity threshold.

Figure A.1 shows binary references reshaped into squares which were used

for the linearity experiment on the OPU in Figure 2.2c. Here, N = 642 and

α = 0.2. The number on top of each reference is the difference in the number

of ones between itself and the previously generated reference.
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14 20 23 25 29

50 62 62 77 92

137 156 172 269

Figure A.1: Binary references reshaped into squares which were used for
the linearity experiment on the OPU in Figure 2.2c. Here N = 642 and
α = 0.2. The number on top of each anchor is the difference in the number
of ones between itself and the previously generated reference.

Minimum attainable measurement. To determine the sensitivity

threshold, τ , we randomly project an all-zero signal a few times and record

the output. The minimum, mode or mean of these measurements can be

taken to be the minimum that can be measured. Once τ is estimated, we

apply a mask and zero any measurements which are equal to or less than the

minimum.

Camera sensor saturation. It is possible for the signal reaching the cam-

era to saturate the sensor. In a b-bit system we can detect this if many mea-

surements are equal to 2b − 1. In all experiments, we ensure that there is no

saturation by adjusting the camera exposure. This again involves a tradeoff:

if exposure is too high, we saturate the sensor; if it is too low, measurements

may be too small to be detected and we are not exploiting the full dynamic

range.
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A.2 Randomized singular value decomposition

(RSVD) details

Algorithm 3 is the prototype randomized SVD algorithm given by [44]. To

implement this on hardware we replace Step 1 and 2 to formulate Algorithm

4. AsA in Algorithm 4 has iid entries following a standard complex Gaussian,

calculating P in Algorithm 4 is the same as doing step 2 in Algorithm 3. We

only need to do half the number of projections because we use an iid complex

random matrix. The real and imaginary parts are two random projections.

Algorithm 3 Prototype randomized SVD algorithm [44].

Input: Matrix, B ∈ RM×N whose SVD is required, a target number of K
singular vectors

Output: The SVD U , Σ and V ∗

1: Generate an N × 2K random Gaussian matrix A.
2: Form Y = BA.
3: Construct a matrix Q whose columns form an orthonormal basis for the

range of Y .
4: Form C = Q∗B.
5: Compute the SVD of the smaller C = ŨΣV ∗.
6: U = QŨ .

Algorithm 4 Randomized SVD algorithm on the OPU.

Input: Matrix, B ∈ RM×N whose SVD is required, a target number of K
singular vectors

Output: The SVD U , Σ and V ∗

1: Solve |Y |2 = |AB∗|2 by treating each column of B∗ as a frame and using
Algorithm 1, where A ∈ CK×N is as in the MPR problem and has K
rows.

2: Horizontally stack the real and imaginary parts of Y ∗ ∈ CM×K as P =[
Re(Y ∗) Im(Y ∗)

]
∈ RM×2K .

3: Construct a matrix Q whose columns form an orthonormal basis for the
range of P .

4: Form C = Q∗B.
5: Compute the SVD of the smaller C = ŨΣV ∗.
6: U = QŨ .
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A.3 Localization with known anchor positions

If we have perfect knowledge of the anchor locations in the complex plane,

we do not need to localize them for each frame s. The localization problem

then boils down to multilateration, which can be formulated by minimizing

the square-range-based least squares (SR-LS) objective [170],

υ̂1 = argmin
υ1

Q∑
q=2

(
∥υ1 − υq∥22 − d2q

)2
(A.1)

where υ1 and υq are as defined in Section 2.2.3 and dq is the noisy measured

distance. There exists efficient algorithms which solve (A.1) to global opti-

mality [170], as well as suboptimal solutions based on solving a small linear

system [54].
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APPENDIX B

TOTAL LEAST SQUARES PHASE
RETRIEVAL

B.1 Roots of cubic equations

Consider finding the roots of the following cubic equation

ax3 + bx2 + cx+ d = 0. (B.1)

Denote

ψ0 = b2 − 3ac (B.2)

ψ1 = 2b3 − 9abc+ 27a2d (B.3)

ψ3 =
3

√
ψ1 +

√
ψ2
1 − 4ψ3

0

2
. (B.4)

Then for k ∈ {0, 1, 2} the three roots, xk, are

xk = −
1

3a

(
b+ θkψ3 +

ψ0

θkψ3

)
(B.5)

where θ is the cube root of unity, θ = −1+
√
−3

2
.

Note that the cubic equations in Chapter 4 are with b = 0 which simplifies

the above expressions.
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B.2 Proof of Proposition 3

The ML estimator estimates both x̃ and {ãm}Mm=1 from the data {ym}Mm=1

and {am}Mm=1 by minimizing the negative conditional log-likelihood

argmin
x,e1,...,eM

− ln

(
M∏

m=1

Pr{ym,am|x̃ = x, ãm = am + em}
)

With x̃ and {ãm}Mm=1 given, the only randomness in each ym and am are

due to ηm and δm. Furthermore as {ηm}Mm=1 and {δm}Mm=1 are independent,

the negative conditional log-likelihood is,

M∑
m=1

− ln(Pr{ηm = |⟨am + em,x⟩|2 − ym})− ln(Pr{δm = em}). (B.6)

Using the assumptions on the error distributions,

ln(Pr{ηm = |⟨am + em,x⟩|2 − ym}) = Kη −
1

2σ2
η

(
ym − |⟨am + em,x⟩|2

)2
(B.7)

and

ln (Pr {δm = em}) = Kδ −
1

2σ2
δ

∥em∥22 (B.8)

where Kη and Kδ are constants independent of x and {em}Mm=1. Substituting

these into (B.6) gives

argmin
x,e1,...,eM

M∑
m=1

1

σ2
δ

∥em∥22 +
1

σ2
η

(
ym − |⟨am + em,x⟩|2

)2
.

B.3 Taylor series expansions

Lemma 1 states the Taylor series expansions around the no error point t̃ for

the TLS and LS solutions. The notation defined in Section 4.3 is used.
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Lemma 1. The Taylor series expansions for the solution x†
TLS to the TLS

optimization problem (4.32), and, the solution x†
LS to the LS optimization

problem (4.38) at the no error point t = t̃ with perturbation γ are

x†
TLS = x# +

(
Ã

T
Ỹ DÃ

)−1

Ã
T
Ỹ Dw +O(∥γ∥22) (B.9)

x†
LS = x# +

(
Ã

T
Ỹ Ã

)−1

Ã
T
Ỹ w +O(∥γ∥22). (B.10)

Proof. To compute the Taylor series expansions we require x†
TLS(̃t) and

∇tx
†
TLS(t)

∣∣
t=t̃

γ for the TLS problem (4.29) and the corresponding terms

for the LS problem, x†
LS(̃t) and ∇tx

†
LS(t)

∣∣
t=t̃

γ

In the no error setting, when γ = 0, x†
TLS(̃t) = x#. This is because with

no error the minimum objective function (4.32) value of zero is achievable

with em = 0 for all m and x†
TLS(t) = x#. Similarly for the LS problem, when

γ = 0, the LS solution, x†
LS(̃t), is also x#, as this achieves the minimum LS

objective function (4.38) value of zero.

The full derivations for the derivatives ∇tx
†
TLS(t) and ∇tx

†
LS(t) using

(4.37) are contained in Appendices B.3.1 and B.3.2. Appendices B.3.3 and

B.3.4 then evaluate these derivatives at t̃ and multiply them by γ. We again

use the fact that at t̃ the solutions are x# and that the TLS sensing vector

corrections, em, are zero for all m.

B.3.1 Gradients for TLS problem

For convenience, we restate the optimization problem (4.32),

q† =argmin
q

M∑
m=1

λa ∥em∥22 + λy
(
ym − |⟨am + em,x⟩|2

)2
︸ ︷︷ ︸

f(q,t)

s.t. q =
[
eT
1 · · · eT

M xT
]T
∈ RMN+N . (B.11)
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We denote the quantities

âm = am + em ∈ RN (B.12)

dm = (|⟨âm,x⟩|2 − ym) ⟨âm,x⟩ ∈ R (B.13)

lm = |⟨âm,x⟩|2 − ym ∈ R (B.14)

mm = 2|⟨âm,x⟩|2 ∈ R (B.15)

hm = lm +mm = 3|⟨âm,x⟩|2 − ym ∈ R (B.16)

pm =
2λy
λa

dm ∈ R (B.17)

ϕm =
hm

1 + 2λy

λa
hm ∥x∥22

∈ R (B.18)

which are used to denote

B =
λa
2λy

IMN +


h1xx

T

. . .

hMxxT

 ∈ RMN×MN (B.19)

C =


d1IN + h1x(a1 + e1)

T

...

dMIN + hMx(aM + eM)T

 ∈ RMN×N (B.20)

T =
M∑

m=1

hmâmâ
T
m ∈ RN×N (B.21)

Â = (A+E)T ∈ RN×M (B.22)

p =
[
p1 · · · pM

]T
∈ RM (B.23)

Φ = diag (ϕ1, . . . , ϕM) ∈ RM×M . (B.24)

The first derivative of the objective function with respect to q, ∇qf(q, t) ∈
RMN+N , is

∇qf(q, t) = 2λa


e1

...

eM

0

+ 4λy


d1x
...

dMx∑M
m=1 dmâm

 . (B.25)
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The second derivative of the objective function with respect to q,

∇2
qqf(q, t) ∈ R(MN+N)×(MN+N), is

∇2
qqf(q, t)

=2λa


IN

...
. . . 0MN×N

IN
...

· · · 0N×MN · · · 0N×N



+ 4λy


. . . d1IN

0MN×MN
...

. . . dMIN

d1IN · · · dMIN 0N×N



+ 4λy


l1xx

T l1xâ
T
1

. . .
...

lMxxT lMxâT
M

l1â1x
T · · · lM âMxT

∑M
i=1 liâiâ

T
i



+ 4λy


m1xx

T m1xâ
T
1

. . .
...

mMxxT mMxâT
M

m1â1x
T · · · mM âMxT

∑M
i=1miâiâ

T
i


=4λy

[
B C

CT T

]
. (B.26)

The second derivative with respect to yk,
d

dyk
∇qf(q, t) ∈ RMN+N , is

d

dyk
∇qf(q, t) = −4λy


0(k−1)N×N

xâT
kx

0(M−k)N×N

âkâ
T
kx

 . (B.27)
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The second derivative with respect to ak, ∇2
akq

f(q, t) ∈ R(MN+N)×N , is

∇2
akq

f(q, t)

= 4λylk


0(k−1)N×N

xxT

0(M−k)N×N

âkx
T + ⟨âk,x⟩ IN

+ 4λymk


0(k−1)N×N

xxT

0(M−k)N×N

âkx
T



= 4λy


0(k−1)N×N

hkxx
T

0(M−k)N×N

hkâkx
T + dkIN

 . (B.28)

We will require the inverse of the second derivative (B.26),

(∇2
qqf(q, t))

−1 ∈ R(MN+N)×(MN+N), in our calculations (4.35) (4.36). We

can use blockwise matrix inversion to invert the block matrix (B.26),

(∇2
qqf(q, t))

−1

=
1

4λy

[
B−1 +QT

CBQ
−1
S QCB −QT

CBQ
−1
S

−Q−1
S QCB Q−1

S

]
, (B.29)

where

QCB = CTB−1 ∈ RN×MN (B.30)

QS = T −CTB−1C

= T −QCBC ∈ RN×N (B.31)

andQS = T−CTB−1C is the Schur complement ofB. Furthermore because

B is a block diagonal matrix, B−1 is also block diagonal with each block

being the inverse of its counterpart block in B. Each block in B has the

same structure and, due to this structure, the Sherman-Morrison formula

can be used to invert each block,

(
λa
2λy

IN + hmxx
T

)−1

=
2λy
λa

IN −
4λ2

y

λ2
a
hmxx

T

1 + 2λy

λa
hm ∥x∥22

(B.32)

and
(
B−1

)T
= B−1.
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As we wish to understand the sensitivity of x†
TLS (4.34), we only require

the final N rows of the inverse of (B.26). More precisely we will only require

the submatrix

(∇2
qqf(q, t))

−1
−N

=
1

4λy
Q−1

S

[
−QCB IN

]
∈ RN×(MN+N). (B.33)

To calculate (B.33) we require QCB which is a block matrix with M ma-

trices horizontally stacked. The mth block is

(dmIN + hmâmx
T )

(
2λy
λa

IN −
4λ2y
λ2a

ϕmxx
T

)
= pmIN −

2λy
λa

ϕmpmxx
T

+
2λy
λa

ϕm

(
hm
ϕm

− 2λy
λa

hm ∥x∥22
)
âmx

T

= pmIN +
2λy
λa

ϕm(âm − pmx)xT . (B.34)

To obtain QS in (B.33) we can use (B.34) and the block matrix structure

of C to calculate CTB−1C = QCBC,

CTB−1C = QCBC

=
M∑

m=1

(
pmIN +

2λy
λa

ϕm(âm − pmx)xT

)
(
dmIN + hmxâ

T
m

)
=

M∑
m=1

λa
2λy

p2mIN + pmϕmâmx
T − p2mϕmxx

T

+ pmϕm

(
hm
ϕm

− 2λy
λa

hm ∥x∥22
)
xâT

m

+
2λy
λa

hmϕm ∥x∥22 âmâ
T
m

=
λa
2λy
∥p∥2 IN + ÂΦpxT − xpTΦpxT + xpTΦÂ

T

+
M∑

m=1

2λy
λa

hmϕm ∥x∥22 âmâ
T
m. (B.35)
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Then the Schur complement of B is

QS = T −CTB−1C

= − λa
2λy
∥p∥2 IN − ÂΦpxT + xpTΦpxT − xpTΦÂ

T

+
M∑

m=1

ϕm

(
hm
ϕm

− 2λy
λa

hm ∥x∥22
)
âmâ

T
m

= − λa
2λy
∥p∥2 IN − ÂΦpxT + xpTΦpxT − xpTΦÂ

T

+ ÂΦÂ
T

= − λa
2λy
∥p∥22 IN + (Â− xpT )Φ(Â− xpT )T . (B.36)

Using (B.33) with (B.36) and (B.34) we can compute the last N rows of

(4.36), d
dyk

x†
TLS(t) ∈ RN . First,

− 1

4λy

[
−QCB IN

] d

dyk
∇qf(q, t)

=
[
−pkIN − 2λy

λa
ϕk(âk − pkx)xT I

] [ xâT
kx

âkâ
T
kx

]

= âT
kx
[
−pkIN − 2λy

λa
ϕk(âk − pkx)xT I

] [ x
âk

]

= âT
kx

(
−pkx−

2λy
λa

ϕk(âk − pkx) ∥x∥22 + âk

)
= âT

kx(âk − pkx)
ϕk

hk
, (B.37)

and therefore,

d

dyk
x†
TLS(t)

=

(
− λa
2λy
∥p∥22 IN + (Â− xpT )Φ(Â− xpT )T

)−1

âT
kx(âk − pkx)

ϕk

hk
. (B.38)
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Similarly using (B.33) with (B.36) and (B.34) we can compute the last N

rows of (4.35), ∇ak
x†
TLS(t) ∈ RN×N . Again first,

− 1

4λy

[
−QCB IN

]
∇2

akq
f(q, t)

= −
[
−pkIN − 2λy

λa
ϕk(âk − pkx)xT I

]
[

hkxx
T

hkâkx
T + λa

2λy
pkIN

]

= −
(
−pkhkxxT − 2λy

λa
hkϕk ∥x∥22 (âk − pkx)xT

+hkâkx
T +

λa
2λy

pkIN

)
= −

(
λa
2λy

pkIN + hk(âk − pkx)xT

−2λy
λa

hkϕk ∥x∥22 (âk − pkx)xT

)
= −

(
λa
2λy

pkIN

+ϕk

(
hk
ϕk

− 2λy
λa

hk ∥x∥22
)
(âk − pkx)xT

)
= −

(
λa
2λy

pkIN + ϕk(âk − pkx)xT

)
, (B.39)

and therefore,

∇ak
x†
TLS(t)

= −
(
− λa
2λy
∥p∥22 IN + (Â− xpT )Φ(Â− xpT )T

)−1

(
λa
2λy

pkIN + ϕk(âk − pkx)xT

)
. (B.40)
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B.3.2 Gradients for LS problem

We restate the optimization problem (4.38)

x†
LS(t) = argmin

x

M∑
m=1

(
ym − |⟨am,x⟩|2

)2
︸ ︷︷ ︸

s(x,t)

. (B.41)

We denote similar quantities to those in the TLS derivation. The main

differences are that there are no em, λy and λa in the LS approach,

d−m = (|⟨am,x⟩|2 − ym) ⟨am,x⟩ ∈ R (B.42)

h−m = 3|⟨am,x⟩|2 − ym ∈ R (B.43)

A− = AT ∈ RN×M (B.44)

p− = 2
[
d−1 , . . . , d

−
M

]T
∈ RM (B.45)

Φ− = diag
(
h−1 , . . . , h

−
M

)
∈ RM×M . (B.46)

To derive d
dyk

x†
LS(t) ∈ RN and ∇ak

x†
LS(t) ∈ RN×N for LS, the expressions

that were derived for TLS can be used. Set {em}Mm=1 = 0, λy = λa = 1 in

the TLS expressions (B.26), (B.27) and (B.28). Then take the bottom right

N ×N block of (B.26) and the bottom N rows of (B.27) and (B.28) to get

for LS

∇2
xxs(x, t) = 4

M∑
i=1

h−mama
T
m

= 4A−Φ−(A−)T ∈ RN×N (B.47)

d

dyk
∇xs(x, t) = −4aka

T
kx = −4a−

k (a
−
k )

Tx ∈ RN (B.48)

∇2
akx

s(x, t) = 4(h−k akx
T + d−k IN)

= 4

(
1

2
p−k IN + ϕ−

k a
−
k x

T

)
∈ RN×N . (B.49)

137



Therefore

d

dyk
x†
LS(t) =

(
A−Φ−(A−)T

)−1
(a−

k )
Txa−

k (B.50)

∇ak
x†
LS(t) =−

(
A−Φ−(A−)T

)−1(
1

2
p−k IN + ϕ−

k a
−
k x

T

)
. (B.51)

B.3.3 Derivation of TLS solution Taylor series expansion

To calculate ∇tx
†
TLS(t)

∣∣
t=t̃

we need the last N rows of ∇ak
g(t)

∣∣
t=t̃

and
d

dyk
g(t)

∣∣
t=t̃

for 1 ≤ k ≤ M as in (4.37). With t = t̃, {em}Mm=1 = 0 and

x = x#, the quantities defined when deriving the gradients in Appendix

B.3.1 become

âm = am + em = ãm ∈ RN (B.52)

dm = (|⟨âm,x⟩|2 − ym) ⟨âm,x⟩ = 0 ∈ R (B.53)

lm = |⟨âm,x⟩|2 − ym = 0 ∈ R (B.54)

mm = 2|⟨âm,x⟩|2 = 2ỹm ∈ R (B.55)

hm = lm +mm = 3|⟨âm,x⟩|2 − ym = 2ỹm ∈ R (B.56)

pm =
2λy
λa

dm = 0 ∈ R (B.57)

ϕm =
2ỹm

1 + 4λy

λa
ỹm ∥x#∥22

∈ R (B.58)

Â = (A+E)T = Ã
T ∈ RN×M (B.59)

p =
[
p1 · · · pM

]T
=
[
0 · · ·0

]T
∈ RM (B.60)

Φ = diag (ϕ1, . . . , ϕM) = 2Ỹ D ∈ RM×M . (B.61)

Using these quantities with (B.38) and (B.40) in Appendix B.3.1,

∇ak
x†
TLS(t)

∣∣
t=t̃

= −
(
Ã

T
ΦÃ

)−1 (
ϕkãk(x

#)T
)

(B.62)

d

dyk
x†
TLS(t)

∣∣
t=t̃

=
(
Ã

T
ΦÃ

)−1

ãT
kx

#ãk
ϕk

hk
, (B.63)
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Therefore

∇tx
†
TLS(t)

∣∣
t=t̃

γ

=
(
Ã

T
ΦÃ

)−1

(
M∑

m=1

−ϕmãm(x
#)Tδm + ãT

mx
#ãm

ϕm

hm
ηm

)

=
(
Ã

T
ΦÃ

)−1
(

M∑
m=1

ϕm

hm
ηmãmã

T
m − ϕmãmδ

T
m

)
x#

=
(
Ã

T
ΦÃ

)−1 (
Ã

T
Φ(2Ỹ )−1EY Ã− Ã

T
ΦEA

)
x#

=
(
Ã

T
ΦÃ

)−1

Ã
T
Φ
(
(2Ỹ )−1EY Ã−EA

)
x#

=
(
Ã

T
2Ỹ DÃ

)−1

Ã
T
2Ỹ D

(
(2Ỹ )−1EY Ã−EA

)
x#

=
(
Ã

T
Ỹ DÃ

)−1

Ã
T
Ỹ Dw. (B.64)

B.3.4 Derivation of LS solution Taylor series expansion

Following the same procedure as in Appendix B.3.3 and using (B.50) and

(B.51) in Appendix B.3.2,

∇ak
x†
LS(t)

∣∣
t=t̃

= −
(
Ã

T
2Ỹ Ã

)−1 (
2ỹkãk(x

#)T
)

(B.65)

d

dyk
x†
LS(t)

∣∣
t=t̃

=
(
Ã

T
2Ỹ Ã

)−1

ãT
kx

#ãk. (B.66)

Therefore for LS

∇tx
†
LS(t)

∣∣
t=t̃

γ

=
(
Ã

T
2Ỹ Ã

)−1
(

M∑
m=1

ηmãmã
T
m − 2ỹmãmδ

T
m

)
x#

=
(
Ã

T
2Ỹ Ã

)−1 (
Ã

T
2Ỹ (2Ỹ )−1EY Ã− Ã

T
2Ỹ EA

)
x#

=
(
Ã

T
2Ỹ Ã

)−1

Ã
T
2Ỹ

(
(2Ỹ )−1EY Ã−EA

)
x#

=
(
Ã

T
Ỹ Ã

)−1

Ã
T
Ỹ w. (B.67)
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B.4 Proof of Proposition 5

We begin by noting that e2TLS and e2LS can both be written in the form

e2 = (Rw)T (Rw) where R ∈ RN×M is
(
Ã

T
Ỹ DÃ

)−1

Ã
T
Ỹ D and(

Ã
T
Ỹ Ã

)−1

Ã
T
Ỹ for TLS and LS. The vector w ∈ RM is as defined in

Proposition 4 and contains all the random quantities. Let rij be the i, jth

entry of R and let wi be the ith entry of w. Then

e2 =
[∑M

i=1 r1,iwi · · ·
∑M

i=1 rN,iwi

]
∑M

j=1 r1,jwj

...∑M
j=1 rN,jwj

 (B.68)

=
M∑
i=1

M∑
j=1

r1,ir1,jwiwj + . . .+
M∑
i=1

M∑
j=1

rN,irN,jwiwj. (B.69)

Further, wi =
ηi
2ỹi

〈
ãi,x

#
〉
−
〈
δi,x

#
〉
and so all the entries of w are

independent of each other. As a result, E[wiwj] = 0 if i ̸= j and

Wi := E[w2
i ] = E[η2i ]

〈
ãi,x

#
〉2

4ỹ2i
+ (x#)TE[δiδ

T
i ]x

# (B.70)

=
σ2
η

4ỹi
+ σ2

δ

∥∥x#
∥∥2
2
. (B.71)

Denoting rm as the mth column of R and using Wi,

E[e2] =
M∑
i=1

r21,iWi + . . .+
M∑
i=1

r2N,iWi (B.72)

=
M∑
i=1

Wi(r
2
1,i + . . .+ r2N,i) (B.73)

=
M∑
i=1

Wi ∥ri∥22 (B.74)

= σ2
δ

∥∥x#
∥∥2
2

M∑
i=1

∥ri∥22 +
σ2
η

4

M∑
i=1

1

ỹi
∥ri∥22 (B.75)

= σ2
δ

∥∥x#
∥∥2
2
∥R∥2F +

σ2
η

4

∥∥∥∥RỸ
− 1

2

∥∥∥∥2
F

. (B.76)
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Figure B.1: The average of the absolute value difference between the actual
relative distance and the relative error reconstruction from Proposition 4
when M

N
= 8. Measurement SNR is twice the sensing vector SNR.

The result in Proposition 5 then follows by substituting the TLS and LS

values for R. We also use the fact that the matrix multiplication of Ỹ and

D in the TLS expression is commutative because both matrices are diagonal.

B.5 Experimental verification of Proposition 4

We verify the derived reconstruction errors in Proposition 4. As the results

are for a first-order approximation, we expect their accuracy to reduce as ∥γ∥
increases. To vary ∥γ∥ we vary the sensing vector SNR and pin the measure-

ment SNR to be twice the sensing vector SNR. For each SNR combination we

perform 100 trials. In each trial, we generate new real-valued ground truth

signals, Gaussian sensing vectors and Gaussian errors for sensing vectors and

measurements. The ground truth signals are iid standard real Gaussian with

N = 100 and M
N

= 8.

We plot the average of the absolute difference between the relative dis-

tance from the solution of Algorithm 2 and the relative reconstruction error,∣∣∣rel.dist(x#,x†
LS)− rel.eLS

∣∣∣ for LS and
∣∣∣rel.dist(x#,x†

TLS)− rel.eTLS

∣∣∣ for TLS
in Figure B.1. The step sizes are 1.0

λa
for TLS and 0.05 for LS. We set λa =

1
N

and λy = 1

∥x(0)∥4
2

. As expected the first-order approximations are accurate

for high SNR and decrease in accuracy with decreasing SNR. The high ac-

curacy for the moderate to high SNR values also confirms that Algorithm 2

can optimize (TLS-PR2).
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B.6 Handcrafted errors

Using the results and notation of Section 4.3, we show that there exist error

models which can significantly change the relative performance of TLS and

LS. With scalars ka, ky ∈ R+ to control the SNR of EA and EY , we create

errors EA = kaD
−1E′

A for some E′
A and EY = kyD

−1E′
Y for some diagonal

E′
Y . With these errors, the expressions from Proposition 4 become

eTLS =

∥∥∥∥(ÃT
Ỹ DÃ

)−1

Ã
T
Ỹ w′

∥∥∥∥
2

(B.77)

eLS =

∥∥∥∥(ÃT
Ỹ Ã

)−1

Ã
T
Ỹ D−1w′

∥∥∥∥
2

(B.78)

where w′ = ((2Ỹ )−1kyE
′
Y Ã−kaE′

A)x
#. Compared to (4.45), eTLS in (B.77)

does not multiply w′ by D. Additionally, compared to (4.46), eLS in (B.78)

multiplies w′ by D−1. The elements of diagonal matrix D−1 are greater

than one, d−1
mm =

(
1 + 4λy

λa

∥∥x#
∥∥2
2
ỹm

)
> 1, and we investigate how this alters

performance when the sensing vectors follow the iid standard real Gaussian

measurement model. Appendix B.7.1 contains experiments using the coded

diffraction pattern model.

B.6.1 First-order reconstruction error numerical experiments

In the next set of experiments, EA = kaD
−1
1 E′

A and EY = kyD
−1
1 E′

Y ,

where D1 = (IM + 4
∥∥x#

∥∥2
2
Ỹ )−1 is free of the regularization parameters.

Matrix E′
A and diagonal matrix E′

Y are iid zero-mean Gaussian. We repeat

the experiment of Figure 4.2b using these created errors in Figure B.2. All

other experimental details are unchanged. We see that now TLS outperforms

LS with this error model.

Next we fix M
N

= 8 and the sensing vector SNR to 100 dB so there is

virtually no sensing vector error. We vary the measurement SNR over 100

trials and use the handcrafted errors. The sensing vectors and ground truth

signals are generated in the same way as in the numerical experiments of

Section 4.3. In Figure B.3 we plot the average first-order relative reconstruc-

tion error and see that with this setting TLS outperforms LS. This occurs

despite there only being measurement error, a setting where we may expect

LS to outperform TLS.
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Figure B.2: Relative reconstruction errors, (4.45) and (4.46) for different
values of M

N
when handcrafted errors are used. Measurement and sensing

vector SNRs are 40 dB.
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Figure B.3: Relative reconstruction errors with handcrafted errors when
there is only error in measurements. Here M

N
= 8.

The results in Figures B.2 and B.3 show that the type of measurement and

sensing vector error can impact performance.

B.6.2 Simulations with actual reconstruction error

To investigate the impact of this error model on the actual reconstruction er-

ror, we design handcrafted errors in the same manner as above and calculate

the actual reconstruction error. Despite the earlier analysis using real-valued

errors, we show that the ideas carry through when we use the complex Gaus-

sian measurement model with EA being complex Gaussian.

143



20 40 60 80 100
M / N

0.02

0.04

0.06

0.08

0.10

Av
er

ag
e 

re
la

tiv
e 

di
st

an
ce

LS
TLS

Figure B.4: Relative distance of reconstructions using TLS and LS for the
Gaussian measurement model for different values of M

N
when handcrafted

errors are used. Measurement SNR is 20 dB and sensing vector SNR is 30
dB.

In the first simulation, we use a step size of 0.5
λa

for TLS and 0.02 for LS

and repeat the experiment of Figure 4.5b with handcrafted errors instead.

Figure B.4 shows that in this setting TLS outperforms LS, the opposite of

what is seen with Gaussian errors in Figure 4.5b. This is consistent with the

first-order reconstruction error numerical experiment of Figure B.2.

Next we use M
N

= 8 and a step size of 0.2
λa

for TLS and 0.02 for LS. Following

the experiment of Figure B.3, in Figure B.5 the sensing vector SNR is 100

dB and there is virtually no sensing vector error. The measurement SNR

is varied and the performance of TLS and LS with handcrafted errors is

compared to TLS and LS with iid Gaussian errors. We do 100 trials at

each measurement SNR. Even though there is significant error only in the

measurements, TLS with handcrafted errors outperforms LS as was suggested

by Figure B.3. With Gaussian errors, LS outperforms TLS when there are

only measurement errors.

With M
N

= 8 and handcrafted errors, Figure B.6 shows an identical experi-

ment to that of Figure 4.4. We see that the relative performance of TLS over

LS improves with handcrafted errors compared to Figure 4.4 where random

Gaussian errors were used.

144



10 15 20 25 30
Measurement SNR (dB)

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e 

re
la

tiv
e 

di
st

an
ce

LS handcrafted
LS Gaussian
TLS handcrafted
TLS Gaussian

Figure B.5: Performance of TLS and LS with handcrafted errors when
there is only error in measurements for the Gaussian measurement model.
Here M

N
= 8.
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Figure B.6: Average difference in relative distance between TLS and LS
solutions for the Gaussian measurement model when M

N
= 8 for different

measurement and sensing vector SNR combinations when the errors are
handcrafted. This can be compared to Figure 4.4 when M

N
= 8.

B.7 Coded diffraction pattern (CDP) measurement

model

Denoting row n of the N -point DFT matrix as f ∗
n and L modulation patterns

{pl}Ll=1 ∈ CN , the M = LN quadratic coded diffraction pattern measure-

ments are then

ym ≈ |f ∗
n diag(pl)

∗︸ ︷︷ ︸
a∗
m

x|2, m = (n, l) (B.79)
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(a) L = M
N = 16
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Figure B.7: Average difference in relative distance of TLS and LS solutions,
rel.dist(x#,x†

LS)− rel.dist(x#,x†
TLS), for the octanary CDP measurement

model for different measurement and sensing vector SNR combinations
when the number of patterns is L = M

N
∈ {16, 32}.

where 1 ≤ n ≤ N , 1 ≤ l ≤ L [171]. The modulation patterns pl ∈ CN follow

the octanary pattern which means its entries are iid and follow the distribu-

tion of p where p = q1q2. The random variable q1 is one of {−1, 1,−j, j} with
equal probability and q2 =

√
2
2

with probability 0.8 or q2 =
√
3 with proba-

bility 0.2. Note that M can only be an integer multiple of N and depends

on the number of patterns used.

B.7.1 Experiments

In this section, we repeat the experiments that were done for the Gaussian

measurement model in Section 4.4 for the CDP measurement model. The

experimental setup such as the number of trials, type of ground truth signal,

step sizes, and iteration stopping criteria are the same as those used for the

equivalent simulation with the Gaussian model.

Random errors The experiments in Figures B.7, B.8a, B.8b are for the

CDP measurement model and are the same as Figures 4.4, 4.5a and 4.5b for

the Gaussian measurement model.
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Handcrafted errors Figures B.8c, B.9 and B.10 show the performance

with handcrafted errors for the CDP measurement model. With only hand-

crafted measurement error and 100 dB SNR sensing vector error, the per-

formance of TLS is better than LS for low measurement SNR in Figure B.9

compared to when there are random Gaussian errors. The performance with

different error combinations for handcrafted errors in Figure B.10 should be

compared against Figure B.7.

Sensing vector correction verification The experiments done to ver-

ify the sensing vector corrections for the Gaussian measurement model in

Figures 4.6 and 4.7 are done for the CDP measurement model in Fig-

ures B.11 and B.12.

B.8 Additional OPU experiment information

B.8.1 Sensing vector calibration

We use the method described in Chapter 3 of this thesis to calibrate the

sensing vectors of the OPU’s TM. We implemented this method with 1.5N

calibration signals and 20 anchor signals. We use the same procedure as

Chapter 3 to design the calibration signals.

B.8.2 Experiment details

When doing the experiments with random images on the OPU, we set the

camera exposure time to 700 µs to utilize and not saturate the full zero to

255 8-bit measurement range of the camera. The input display frametime

is set to 1200 µs. For the experiments with the real images, the camera

exposure is 400 µs and the frametime is 500 µs.
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To use a new set of sensing vectors in each trial, we calibrate a complex-

valued transmission matrix with 217 rows. In each trial in Figure 4.9a, we

then do phase retrieval by choosing a new set of M rows. The optical mea-

surements corresponding to the chosen M rows are used. As previously,

the TLS and LS iterations in Algorithm 2 are stopped when the objective

function value between successive iterates changes by less than 10−6 and the

initialization is done using 50 iterations of the power method.

Because the output device exposure time controls the range of the measure-

ments, the entries of the calibrated OPU transmission matrix are iid complex

Gaussian and the calibrated Gaussian sensing vectors are scaled versions of

the sensing vectors from the complex Gaussian measurement model. This

does not impact the sensing vector updates in Section 4.2.2 because the pro-

cedure does not assume a measurement model. However, the initialization

scaling and signal gradient descent updates (4.7) for both TLS and LS re-

quire minor changes. Instead of altering these steps we estimate the standard

deviation and variance of the calibrated transmission matrix from its entries

and divide the calibrated matrix by the estimated standard deviation. Cor-

respondingly, we also divide the measurements by the estimated variance.
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(a) Sensing vector SNR is 10 dB.
Gaussian errors.
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(b) Sensing vector SNR is 30 dB.
Gaussian errors.
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(c) Sensing vector SNR is 30 dB.
Handcrafted errors.

Figure B.8: Relative distance of reconstructions using TLS and LS for the
CDP measurement model for different number of patterns L = M

N
when

measurement SNR is 20 dB.
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Figure B.9: Performance of TLS and LS with handcrafted errors when
there is only error in measurements for the CDP measurement model. Here
L = M

N
= 16 octanary patterns are used.
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Figure B.10: Average difference in relative distance between TLS and LS
solutions for the CDP measurement model when L = M

N
= 16 octanary

patterns are used. Different measurement and sensing vector SNR
combinations are used and the errors are handcrafted. This should be
compared to Figure B.7 when L = M

N
= 16.
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Figure B.11: Average relative sensing vector correction error when using
TLS, rel.corr({ã, x#}, {â†, ejφx†

TLS), for the CDP measurement model for
different measurement and sensing vector SNR combinations when the
number of patterns is L = M

N
∈ {16, 32}.
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Figure B.12: Relative sensing vector correction error when using TLS for
the CDP measurement model for different number of patterns L = M

N
when

measurement SNR is 20 dB. The sensing vector SNR is 10 dB or 30 dB.
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APPENDIX C

RANDOM MESH PROJECTORS

C.1 Oblique projection experiments

We illustrate the performance difference between linear oblique projectors

and our non-linear learned operator in Figures C.1 and C.2. We refer the

reader to the captions below each figure for more details.

C.2 Proof of Proposition 6

Proof. The reconstruction of the new inverse problem can be written as x̂ =

B̃BTx where the columns of B̃ = (BT )† form a biorthogonal basis to the

columns of B. Thus

x̂ =
KΛ∑
p=1

⟨x, bp⟩ b̃p. (C.1)

Using the definition of the inner product and rearranging, we get

x̂(u) =

〈
KΛ∑
p=1

bp(·)b̃p(u), x
〉

def
= ⟨κ(u, ·),x⟩ (C.2)

where κ(u, v)
def
=
∑KΛ

p=1 bp(v)b̃p(u). Now, the probability distribution of tri-

angles around any point u is both shift- and rotation-invariant because a

Poisson process in the plane is shift- and rotation-invariant. It follows that

Eκ(u, v) = κ̃(∥u− v∥) for some κ̃, meaning that

(E x̂)(u) = E ⟨κ(u, ·),x⟩ = ⟨κ̃(∥u− ·∥), x⟩ = (x ∗ κ̃)(u) (C.3)
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Figure C.1: Comparison between perfect orthogonal projection, ProjNet
projections and oblique projection. The projections of an image, x, (same
as Figure 5.6) are obtained using ProjNet and the linear oblique projection
method. The mean-squared errors (MSE) between the obtained projections
and the perfect projections are stated. The subspaces used in this figure
were used in the ProjNet reconstructions.
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Figure C.2: We try hard to get the best reconstruction from the linear
approach. SNRs are indicated in the bottom-left of each reconstruction. In
the linear approach, coefficients are obtained using the linear oblique
projection method. Once coefficients are obtained, they are non-linearly
reconstructed according to (5.4). Both linear approach reconstructions use
the box-constraint (BC) mentioned in (5.4). For the 130 subspace
reconstruction, total-variation (TV) regularization is also used. Therefore,
once the coefficients are obtained using the linear approach, the
reconstruction of the final image is done in an identical manner as ProjNet
for 130 subspaces and SubNet for 350 subspaces. To give the linear
approach the best chance, we also optimized hyperparameters such as the
regularization parameter to give the highest SNR.
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which is a convolution of the original model with a rotationally invariant

(isotropic) kernel.

C.3 Additional training information

C.3.1 Network architectures

Figure C.3 explains the network architecture used for ProjNet and SubNet.

The network consists of a sequence of downsampling layers followed by up-

sampling layers, with skip connections [172, 173] between the downsampling

and upsampling layers. Each ProjNet output is constrained to a single sub-

space by applying a subspace projection operator, P Sλ
. We train 130 such

networks and reconstruct from the projection estimate using (5.4). SubNet

is a single network that is trained over multiple subspaces. To do this, we

change its input to be [ỹ Bλ]. Moreover, we apply the same projection op-

erator as ProjNet to the output of the SubNet. Each SubNet is trained to

give projection estimates over 350 random subspaces. This approach allows

us to scale to any number of subspaces without training new networks for

each. Moreover, this allows us to build an over-constrained system q = Bx

to solve. Even though SubNet has almost as many parameters as the direct

net, reconstructing via the projection estimates allows SubNet to get higher

SNR and more importantly, get better estimates of the coarse geometry than

the direct inversion. All networks are trained with the Adam optimizer.

C.3.2 Shapes dataset

The shapes dataset was generated using random ellipses, circle and rectangle

patches. See Figure C.4 for examples. This dataset was used in Figure 5.7.
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ProjNet:

3x3 conv + ReLU + batch norm
2x2 max pool
2x2 upsampling
skip connection concatenation

32 channels
128x128

64
64x64

128
32x32

256
16x16

512
8x8

256
16x16 128

32x32
64

64x64

32
128x128

1

concatenate as one input

SubNet:

64 channels
128x128

128
64x64

256
32x32 512

16x16
1024
8x8

512
16x16

256
32x32

128
64x64

64
128x128

1

projection into input subspace

Figure C.3: a) ProjNet architecture; b) SubNet architecture. In both cases,
the input is a non-negative least squares reconstruction and the network is
trained to reconstruct a projection into one subspace. In SubNet, the
subspace basis is concatenated to the non-negative least squares
reconstruction.

Figure C.4: Examples from the random shapes dataset which is used in
Figure 5.7.

C.4 Further reconstructions

C.4.1 Geo images

We showcase more reconstructions on actual geophysics images taken from

the BP2004 dataset in Figure C.5. Note that all networks were trained on

the LSUN bridges dataset.
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Figure C.5: Geophysics image patches taken from BP2004 dataset. Our
method especially gets correct global shapes with better accuracy even
when tested on noise levels different from training.

C.4.2 Erasure reconstructions

We show additional reconstructions for the largest corruption case, p = 1
8
,

for x-ray images (Figure C.6) and geo images (Figure C.7). Our method

consistently has better SNR. More importantly, we note that there is not

a single instance where the direct reconstruction gets a feature that our

methods do not. In a majority of instances, the direct network misses a

feature of the image. This is highly undesirable in settings such as geophysical

imaging.
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Figure C.6: Reconstructions from erasures on x-ray images with erasure
probability p = 1
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Figure C.7: Reconstructions from erasures on geo images with erasure
probability p = 1
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C.5 Comparison of proposed method with ensemble of

direct nets

In Section 5.3, we train multiple ProjNets, each focusing on a different low-

dimensional subspace. Here we train an ensemble of direct networks where

each network is as described in Section 5.3.2 and evaluate the robustness of

a method where the outputs of these networks are averaged to give a final

reconstruction. Once again, we consider scenarios where the model is trained

with data at a particular noise level and then tested with data at a different

noise level and with erasures that were unseen during training time. We show

that our proposed method is more robust to changes in the test scenario.
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Direct network reconstructions

Original

Figure C.8: Reconstructions of the original image from 10 individually
trained direct inversion networks for 10dB noise under the p = 1

8
erasure

corruptions model (described in Figure 5.6b). 9 out of the 10
reconstructions fail to capture the key structure of the original image.

Scenario 50-Ensemble ProjNets SubNet
10 dB train and 10 db test 13.404 13.15 12.72
10 dB train and ∞ dB test 10.70 13.36 11.51

10 dB train and erasures with p = 1
8 test 8.70 10.64 10.48

Table C.1: Comparison of SNRs in different scenarios. 50-Ensemble refers
to reconstructions obtained by averaging the output of 50 direct networks.

In Figure C.8, we consider the erasure model with p = 1
8
(described in

Figure 5.6b). Nine out of 10 randomly chosen direct network reconstructions

fail to capture the key structure of the original image under this corruption

mechanism. In Table C.1, we summarize this with the SNRs of reconstruc-

tions from the erasure corruption mechanism. In that table we also report

SNRs when reconstructing from measurements at different noise levels. The

ensemble of direct networks performs well when the training and test data

have the same measurement noise level. However, our method is more robust

to changes in the test noise level. This further illustrates that direct networks

are highly tuned to the training scenario and therefore not as stable as our

proposed method.
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APPENDIX D

DIFFERENTIABLE UNCALIBRATED
IMAGING

D.1 2D CT experiments with 120 view angles

In Figure D.1, we show 2D CT imaging sample reconstructions for different

combinations of measurement noise and measurement coordinate uncertainty

when there are 120 view angles. The experiment is performed as described

in Section 6.3.1. The reconstructions for when there are 90 view angles is

shown in Figure 6.4.

Figure D.2 shows average angle error plots for 2D CT imaging when there

are 120 view angles. The experimental details are in Section 6.3.1, and the

equivalent results for 90 view angles are shown in Figure 6.5.

D.2 Additional spline information

We continue using 2D CT as an example and build on Section 6.2.3 to provide

further information on NURBS. Besides the learnable weights and learnable

control point vectors explained in Section 6.2.3, there is a knot vector for

each dimension of the measurement coordinates that is not learnable. The

NURBS surface also has degrees dΘ, dT ∈ Z+ for the view angle and detector

location measurement coordinate dimensions. The knot vector for the view

angle dimension has (J + dΘ + 1) elements which are arranged in ascending

order. We design its uth element, ku, to be zero when 0 ≤ u < dΘ + 1,

uniformly spaced between zero and one when dΘ+1 ≤ u ≤ J , and one when

J < u ≤ J + dΘ [147]. The knot vector for the detector location dimension

has (J + dT + 1) elements and is made in a similar manner by using its

degree dT .
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Figure D.1: Example reconstructions for different measurement noise and
measurement coordinate uncertainty when there are 120 view angles. The
SNRs are shown for each reconstruction

The rational basis functions defined in (6.10) are

bj,k([θ
′, t′]T ) =

wj,kQj,dΘ(θ
′)Qk,dT (t

′)∑J−1
u=0

∑K−1
v=0 wu,vQu,dΘ(θ

′)Qv,dT (t
′)
. (D.1)
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Figure D.2: Average angle error for one test image with different
measurement noise and measurement coordinate uncertainty combinations
when there are 120 view angles. The solid lines are for implicit neural
representations and the dashed lines are for spline representations.

The function Qu,d(·) is the uth B-spline basis function of degree d. If ku

denotes the uth element of a knot vector, each basis function can be obtained

using the Cox-de Boor recursion method,

Qu,0(k) =

1 if ku ≤ k ≤ ku+1

0 otherwise
(D.2)

Qu,d(k) =
k − ku

ku+d − ku
Qu,d−1(k)

+
ku+d+1 − k

ku+d+1 − ku+1

Qu+1,d−1(k). (D.3)
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From (D.2), we can see that a degree zero NURBS is constructed from piece-

wise constant basis functions. The recursion (D.3) is then used to create

higher degree basis functions with larger support. If the denominator in any

term of (D.3) is zero, that term is taken to be zero.

The NURBS surface for two-dimensional measurement coordinates in

(6.10) is the tensor product of two one-dimensional NURBS curves as shown

in (D.1). To create NURBS surfaces for D-dimensional measurement coor-

dinates, we take the tensor product of D one-dimensional NURBS curves.

This is done for D = 3 in Section 6.3.2.

D.3 Implementation details

D.3.1 Framework optimization

In this section, we provide implementation details for solving our optimiza-

tion problem (6.8). All parameters were tuned on a held out set of images

for three randomly chosen measurement and operator error combinations.

To implement NURBS, we modified and extended the PyTorch source

code released by the NURBS-Diff module authors [147]. The implicit neural

representation and neural network for Gµ(·) in (6.8) are also implemented

in PyTorch. This enables us to conveniently optimize the objective function

(6.8) using automatic differentiation and the Adam optimizer.

When implicit neural networks are used, the optimization is run for at

least 8,000 iterations and at most 20,000 iterations. The optimization is

terminated when the loss value between successive iterations is below 1 ×
10−10 for 2D CT imaging and 1 × 10−11 for 3D CT imaging. When splines

are used the optimization runs for at least 2,000 iterations and at most 5,000

iterations. The optimization for all imaging problems is terminated when

the loss value between successive iterations is below 1× 10−11.

2D CT imaging. When implicit neural representations are used, λ1 = 10

and λ2 = 1 in (6.8). The learning rate for both the neural network parameters

and the input coordinates is 5 × 10−4. When splines are used, λ1 = 1 and

λ2 = 0.025. The learning rate for the neural network parameters is 5× 10−2

and for the input coordinates is 2× 10−4.
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For the implicit neural representation, we use the cosine of the view an-

gle rather than the angle when creating the measurement coordinate. This

encodes the circular nature of angular data and results in improved perfor-

mance.

3D CT imaging. When implicit neural representations are used, λ1 = 10

and λ2 = 1. The learning rate for the neural network parameters is 1× 10−3

and for the input coordinates is 1×10−4. When splines are used, λ1 = 1 and

λ2 = 0.6. The learning rate for the neural network parameters is 5 × 10−3

and for the input coordinates is 1× 10−4.

D.3.2 Reconstruction Unet training

In this section we describe the implementation details for the Unet neural

networks used for the reconstruction method Gµ(·) in (6.8).

A mean-squared error loss function is minimized using Adam during train-

ing. We train the Unets for 100 epochs where one epoch is a full pass through

the training dataset.

For the 2D Unet, a batch size of 128 and learning rate of 1× 10−3 is used.

For the 3D Unet, a batch size of 16 and learning rate of 1× 10−3 is used.

Publicly available Unet architectures were downloaded and trained. Un-

less mentioned here, the default parameters from the download sources were

used. The 2D Unet model is from https://github.com/mateuszbuda/

brain-segmentation-pytorch [174]. We used one input channel, one out-

put channel, and 16 features in the first layer. The 3D Unet model is from

https://github.com/ELEKTRONN/elektronn3. We used one input channel,

one output channel, 16 features in the first layer and a depth of four blocks.

Due to the limited size of the 3D volume training dataset for 3D CT imag-

ing, we use a data augmentation strategy. We perform random horizontal

flips, random vertical flips, and random rotations by 90, 180 or 270 degrees.
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D.3.3 NURBS

2D CT imaging. For 2D CT imaging, the NURBS degree along the view

angle measurement coordinate dimension is 18. It is two in the detector loca-

tion dimension. Furthermore, we create additional control points to ensure

the spline measurement representations satisfy the Radon transform mea-

surement consistency conditions [175]

rφ([θ + π, t]T ) = rφ([θ,−t]T ), (D.4)

and

rφ([θ − π, t]T ) = rφ([θ,−t]T ), (D.5)

where a detector location of −t refers to the tth last detector. This gives

the locally supported NURBS basis functions (D.1) a sufficient number of

control points around 0 and π radians and ensures the NURBS is accurate in

the interval [0, π] radians. Specifically, if dΘ is the degree of the spline in the

view angle dimension, we use the consistency condition to create new control

points for (6.10)

pj+J−1,k =
[
θj + π, tk,y([θ̃j,−t̃k]T )

]T
(D.6)

for 1 ≤ j ≤ dΘ and

pj−J−1,k =
[
θj − π, tk,y([θ̃j,−t̃k]T )

]T
(D.7)

for J−dΘ < j ≤ J where J is the number of view angles in the observed mea-

surements. Essentially, if there are K detectors, we create 2dΘK additional

control points.

3D CT imaging. For 3D CT, the NURBS degree along the tilt angle mea-

surement coordinate dimension is 15. It is two in the two detector location

dimensions. Additionally, for this imaging technique we fix the basis function

weights to one and do not optimize them. This makes the NURBS surface a

B-spline surface.
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