
© 2023 Khanh Linh Hoang



NATURAL LANGUAGE PROCESSING TO SUPPORT EVIDENCE QUALITY
ASSESSMENT OF CLINICAL LITERATURE

BY

KHANH LINH HOANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Library and Information Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Associate Professor Halil Kilicoglu, Chair and Director of Research
Professor Bertram Ludäscher
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Abstract

Evidence Synthesis is the process of synthesizing information from clinical literature to translate the research

findings into patient care and healthcare policy. Throughout the evidence synthesis process, a critical

yet challenging step is the quality assessment of clinical studies. Quality in research can be considered

through two aspects: methodological quality which concerns how rigorously a research is designed and

conducted, and reporting quality which describes how transparently a piece of scientific work is reported

as a publication. This thesis explores natural language processing (NLP) approaches to support evidence

quality assessment of clinical studies. Specifically, I consider different levels of information granularity used

for evidence assessment, and implemented three machine learning developments: (1) Classification of evidence

types from clinical publications based on study designs, (2) Classification of sentences from randomized

controlled trials (RCTs) with checklist items recommended in reporting guidelines, (3) Extraction of fine-

grained methodological characteristics from RCTs to assist methodological quality assessment. Applications

of these NLP approaches range from assisting authors in checking their manuscripts for compliance with

reporting guidelines and supporting journal editors and peer reviewers in assessing papers (pre-publication)

to assisting systematic reviewers in synthesizing evidence and meta-researchers in studying research rigor and

transparency (post-publication).
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Evidence synthesis

Beginning in from the late 80s and early 90s, there has been a pronounced shift in healthcare towards

Evidence-based Medicine (EBM), which brings research evidence, clinical judgement, and patient values

preferences together to support decision-making in patient care (Figure 1.1) [8]. Before EBM, health

professionals relied on the advice of more experienced colleagues, often taken at face value, their intuition,

and on what they were taught as students. Experience is subject to flaws of bias and what we learn as

students can quickly become outdated. EBM is a medical paradigm that emphasizes on the integration of the

best research evidence with clinical expertise and patients’ values [8]. The idea is that rather than relying on

clinical experience alone for decision making, health professionals need to use clinical experience together

with other types of evidence-based information, such as information available from the scientific literature.

For example, physicians can use their clinical skills and prior experience to identify each patient’s unique

clinical situation, and based on the evidence findings that is learned from existing literature of the same

situations, they can come up with potential interventions tailored for the patient conditions accordingly [9].

The process of obtaining and integrating scientific evidence from literature is called Evidence Synthesis

[10], which is designed to help physicians to synthesize all available evidence for a given clinical question in a

systematic method. Evidence, in general, can be defined as “information which supports or contradicts a

hypothesis or a claim derived from scientific research” [11]. In EBM context, the evidence synthesis process

often takes form of systematic reviews or meta-analyses, where relevant existing clinical studies are considered

as “evidence” to answer a specific clinical question. Both kinds of research try to answer a defined research
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Figure 1.1: Evidence-based Medicine Components [1]

question by collecting and summarising all empirical evidence that fits pre-specified eligibility criteria [12].

However, a meta-analysis is different from a systematic review that it uses statistical methods to summarise

results of clinical studies. The process of conducting systematic reviews or meta analysis consists of five

fundamental steps [13] (Figure 1.2):

(1) Ask and formulate a clinical question: A question arises out of a clinical situation and is asked by

clinicians. Systematic reviewers/meta-analysts need to construct an appropriate clinical question that can be

answered through evidence synthesis. The question is often constructed using PICO framework, which stands

for Participants, Interventions, Comparison (often combined with Interventions) and Outcomes [14]. Using

this framework helps a clinician articulate the important parts of the clinical question most applicable to the

patient and facilitates the searching process by identifying the key concepts for an effective search strategy

[14].

(2) Find relevant papers from biomedical literature to acquire evidence: systematic reviewers/meta-analysts

search for relevant clinical studies (which resulted in publications) from multiple resources, screen through

the study papers (often via the paper abstracts) and select the ones that are relevant and potentially contain

evidence to answer the clinical question, also called included studies.

(3) Assess clinical research quality : systematic reviewers/meta-analysts examine clinical studies for their

validity and clinical usefulness. More specifically, they look at the full-text clinical papers, extract information

and use it to assess quality of the studies.

(4) & (5) Implement and evaluate: systematic reviewers/meta-analysts apply the evidence to answer the

original clinical question by synthesizing outcomes from the included studies and published the synthesized
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Figure 1.2: Steps to practice EBM in the form of systematic review [2]

evidence in a final systematic review paper.

An example for an evidence synthesis workflow could be: to discover new effective pharmaceutical

treatments for COVID-19, physicians may ask a specific clinical question: “Can chloroquine be used for the

treatment of COVID-19?”. A synthesis process then is conducted by a group of researchers in the form

of a systematic review study to answer this question. The process starts with online searches for relevant

clinical studies on the use of chloroquine in patients with COVID-19 from bibliographic databases and other

resources. Following screening of titles and abstracts, only a small number of studies is included into the

final review. These studies are then assessed for their quality. Assessing the quality of individual studies

within the synthesis process enables researchers to determine how much confidence they can have of the

study findings. To do so, researchers look at the full-text of these studies and extract specific information

to make quality assessments (e.g., study design, sample size, intervention groups, etc.). Once researchers

are confident about quality of these studies, they can make recommendations about using chloroquine for

COVID-19 treatment which are synthesized from the studies’ findings [15].

1.1.2 Evidence quality assessment

Throughout the evidence synthesis process, the most critical and yet challenging step is assessing quality of the

included clinical studies– Evidence Quality Assessment (EQA) (also called Risk of Bias Assessment

or Critical Appraisal). Physicians need reliable information about what might harm or help patients when

they make healthcare decisions. Research involves gathering data, then collating and analysing it to produce
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meaningful information. However, not all clinical research is rigorously designed and implemented. Many

studies are biased and their results are false [16]. This can lead us to draw false conclusions [17] [18]. So,

how can we tell whether a piece of research has been done properly and that the information it reports

is reliable and trustworthy? How can we decide what to believe when research on the same topic comes

to contradictory conclusions? This is where evidence quality assessment helps. According to the Grading

of Recommendations, Assessment, Development and Evaluation (GRADE) Working Group, the quality of

“evidence”, in this context a clinical study, “reflects the extent to which physicians can be confident that a

finding from the study is adequate to support a particular recommendation”. EQA is designed to help reviewers

to decide whether studies have been undertaken in a way that makes their findings reliable, make sense of

the results, and know what these results mean in the context of the decision they are making. During this

process, researchers/reviewers often try to answer questions about the clinical study which will allow them to

assess the validity, the usefulness and clinical applicability of the study, or to recognize any potential for bias,

so as to eliminate irrelevant or weak studies. Examples of questions often asked by reviewers are: What type

of research question is being asked?, Was the study design appropriate for the research question?, Did the

study methods address the potential sources of bias?, Were the statistical analyses performed correctly?, Or do

the data justify the conclusions? [19]. To answer these questions, reviewers need to look for some certain

information from the publication of the clinical study and use it as criteria to assess quality of the study

accordingly. The best practice of evidence assessment is for at least two domain experts to independently

assess each included study and then to reach consensus about the final assessment. Various guidelines and

assessment tools have been developed to provide a structured approach to the process of critical appraisal for

reviewers [20].

Quality in clinical research can be considered through two dimensions: methodological quality and

reporting quality [21] [22]. Methodological quality concerns how rigorously a research was designed and

conducted [23]. Reporting quality describes how transparently a piece of scientific work is reported in a

publication [24].

In terms of methodological quality, the most basic information used to assess methodological quality of a

clinical study is its study design, which refers to the general plan by which a study was or is to be carried out

[25]. The lack of certain qualities in the study design may make the study prone to bias, thus weakening

findings and conclusions of the clinical study. Therefore, different designs of studies yield different strengths

of evidences. For example, the evidence pyramid is widely used as the most generic guideline for levels of

evidence quality based on different study designs (Figure 1.3). Each level of the pyramid is a kind of research

design from which the evidence comes. The higher the level of research design in the pyramid, the more

reliable its evidence is considered.
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Figure 1.3: Evidence Pyramid [3]

Study design information is often explicitly mentioned in titles and abstracts of clinical studies. For this

reason, it is usually not difficult for researchers/systematic reviewers to identify the information. However, it

is not enough to make assumptions about the quality of a study based purely on the design. Indeed, besides

study design, the actual execution of the study methodology is also important. Subsequently, depending on

the study design, different and more fine-grained information will be used to assess evidence quality. For

example, in a randomized controlled trial (RCT), a study design that randomly assigns participants into

an experimental group or a control group, information to assess evidence quality is often randomization related,

such as sequence generation, allocation concealment or blinding [18]. On the other hand, for observational

studies, a study design that researchers observe the effect of a risk factor, treatment or other intervention

without trying to change who is or is not exposed to it, information to assess evidence quality is often

procedure related, such as eligibility criteria, control confounding and follow-up [26]. Even though fine-grained

methodological criteria by which the quality of a study is assessed will vary according to its study design, some

general methodological characteristics such as significance level, power, drop-out rate to calculate samples

size, underpin the evaluation of studies of many different designs [27].

Reporting quality can be assessed based on reporting guidelines which are presented in the form of a

checklist of recommendations, often specific for each study design [28]. These guidelines provide detailed

lists of information items recommended by the experts to be presented in the published paper in order to

make the study easier to evaluate and reproduce. The most intuitive way to assess reporting quality is to

compare the information items in these professional recommendations with information presented in the

full-text paper of a clinical study. By cross-checking the information items reported in the actual publications

vs. the information items recommended by the checklists, journal editors will be able to assess the adherence
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to reporting guidelines of the studies and can then require the authors to report the missing items as needed.

Examples of such guidelines are CONSORT for RCTs [29], STROBE for observational studies [30], ARRIVE

for pre-clinical animal studies [31], PRISMA for systematic reviews [32], all developed under the Enhancing

the Quality and Transparency Of Health Research (EQUATOR) Network [33]. Reporting guidelines have been

positively viewed, in the form of endorsement by medical journals (for example, the CONSORT Statement is

endorsed by over 600 journals [34]). Some journal editorials indicate their support, while others institute

mandatory submission of a guideline checklist and/or flow diagram along with manuscript submission.

Methodological quality and reporting quality are not always and necessarily related. A well-designed study

can be poorly reported, while a well-written paper may resulted from a poorly designed and implemented

study. An example of assessing methodological quality versus reporting quality of clinical studies is to

consider two RCTs, both were conducted to investigate whether hydroxychloroquine could reduce COVID-19

severity in adult patients [35], [36]. The first study involved hospitalized 11,197 patients and was conducted

at 176 hospitals in the United Kingdom [35]. The second study involved 667 hospitalized patients with

suspected or confirmed COVID-19 and also was conducted at 55 hospitals in Brazil [36]. Considering two

methodological characteristics: sample size and settings, we can see that the second study has a much smaller

sample size compared with the first study. In addition, even though both studies used multi-center settings,

the second study was conducted on a smaller scale (fewer hospitals) than the first one. Therefore, in terms of

methodological quality, the results of the first study are more likely to be generalizable, thus have better

quality, than the second study. On the other hand, in terms of reporting quality, it is undetermined which

study has better reporting quality since both of them report this information in their publications.

1.1.3 Problems with assessing clinical research quality

For researchers synthesizing evidence, assessing the rigor (methodological quality) and transparency (reporting

quality) of clinical research from the literature in a timely manner is an extremely difficult task. There are

multiple factors contributing to this. However, the most outstanding difficulties come from two aspects: the

size and growth of medical literature, and the extensive domain expertise needed to fulfill the task.

Problem 1: Size and growth of the medical literature

An obvious and worsening barrier to the implementation of evidence synthesis is the fastly growing body

of medical literature. Hundreds of thousands of medical research papers are being published every year (at

a rate of at least one every 26 seconds [37]), making it almost impossible for researchers to keep up with

the research progress even within a narrow research topic. A simple search query of clinical papers about
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COVID-19 on PubMed, the primary bibliographic database in the biomedical domain, shows that about

290,000 research on this topic were published in the last 3 years1. The amount of literature needs to be

screened in a typical systematic review is often large: in a typical systematic review, over 2000 abstracts need

to be reviewed in order to find 15 relevant studies [38]. It often takes months (or even years) to complete a

thorough systematic review (a mean of 67 weeks from deposit of a protocol to publication of the review [39]).

And by the time the review is done, new relevant evidence might be released from newly published research

that makes findings from the review obsolete. Peer review process is being used by conferences and journals

as the medium to assess research quality [40]. Peer reviewers are expected to examine papers on potential

shortcomings. However, with the increase in published papers, the need for peer reviewers has skyrocketed

and the amount of time required for a thorough review is high [41]. The time a peer reviewer spends on

reviewing a manuscript is often limited and consequently, it is not uncommon for a reviewer to miss crucial

shortcomings of the manuscript, allowing the dissemination of low-quality publications [42].

Problem 2: Extensive domain knowledge needed

In assessing quality of a clinical research, while some methodological characteristics are often explicit and easy

to recognize, such as “study design”, others are hard to identify as they require intensive domain knowledge

to fulfill the task. This is equivalent not only to the ability to assess quality based on the surface information,

but also being able to identify underlying quality issues by cross-examining information at different level of

granularity.

For example, in assessing methodological rigor, a common weakness is the use of inadequate sample size.

For scientific and ethical reasons, the sample size for a trial needs to be planned carefully, with a balance

between medical and statistical considerations [43]. Ideally, a clinical study should have a sample size that is

large enough to have a high probability (the probability that the test correctly rejects the null hypothesis)

to detect statistically significant differences between treatment outcomes. Despite the necessity of having

sufficient sample size, many published randomised trials have low statistical power [44], or fail to calculate or

report power analyses [45]. An analysis of 136,212 clinical trials between 1975 and 2014 shows that even

though statistical power of clinical trials increased over time, the number of trials with power more than 80

was still low [46]. The consequence of this is overestimation of effect size and low reproducibility of results,

which eventually undermine the reliability of the studies. That being said, to assess the sufficiency of sample

size of a clinical study, only looking at the reported sample size is not sufficient. Researchers need to consider

multiple statistical factors, such as power value, P-value or dropout rate [47] in order to examine if the sample

size calculation is done properly and correctly.

1https://www.ncbi.nlm.nih.gov/research/coronavirus/
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Or, to assess reporting transparency, another common quality issue is the inconsistency in how the

methodology is described in a clinical publication. For example, a study claims to be “double-blind”, but only

indicates one object who is involved the study (such as “patient”), being blinded. In an analysis of 622 RCTs

done by Penic et al. in 2020, even though 62% trials explicitly claimed to be “double-blind” randomized

trials, the blinded objects (e.g. patients, healthcare providers or data collectors) were only reported in 14% of

the papers. The study suggested that the “double-blind” term is overused and ambiguous [48]. As a result,

the term should not be the sole reason for researchers to make judgments in terms of blinding quality. In

fact, key individuals involved in RCTs should be reported and considered as factors for quality judgement.

Experts often need to reference consensus methodology and reporting quality guidelines (such as CONSORT

checklist for RCTs or STROBE for observational studies), and discussion between assessors is needed to

ensure that these factors have been considered appropriately [49]. However, despite the existence of assessment

guidelines as well as the endorsements from the publishing journals to encourage authors to use them, the

adoption rates of these guidelines from authors are still inadequate [50].

In recent years, the scientific community has witnessed the rise of Meta-research (also called Meta-

science), a relatively new field that has its roots in traditional meta-analysis and systematic reviews which

aims to study research itself [51]. Meta-researchers who conduct meta-research studies have the main

purpose of evaluating certain methodological aspects of published research, which includes methodological

and reporting quality characteristics from published research. However, since meta-research studies assess

quality of previous research from multiple aspects, meta-researchers are facing the same time-consuming and

intensive human labor issues which make it very difficult to scale those studies.

1.1.4 Biomedical Natural Language Processing and its application in clinical

literature quality assessment

The intense cost in time and effort has led to the development of computer support tools for the evidence

synthesis process. Previous research found that systematic reviewers typically use software such as EndNote,

Reference Manager, RefWorks, and Excel to manage references [52]. Some commercial products are designed

as end-to-end support tools: DistillerSR2 and Covidence3 primarily provide an integrated environment for

data capture and management, for tasks such as harvesting search results from databases, screening studies,

and providing questionnaires for manual data extraction for quality assessment. Another end-to-end tool,

EPPI-Reviewer4, provides (and continues to develop) advanced features such as automatic term reorganization,

2https://www.evidencepartners.com/
3https://www.covidence.org/
4https://eppi.ioe.ac.uk/cms/
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and document clustering and classification, using machine learning and data mining. Nevertheless, in a

previous interview study with 16 systematic reviewers, we identified a gap between the technology support

available and what technology is being used by our reviewers [53]. Despite the existence of the above

end-to-end advanced technology support, most steps are still done manually, making the review process

more time-consuming and inefficient than it needs to be [53]. We also found that automation is increasingly

proposed for systematic review researchers, often involving machine learning (ML) and natural language

processing (NLP). Such an approach can also play a role in supporting evidence synthesis process in general,

and in assessing quality of clinical research in particular [53].

Biomedical text mining and natural language processing (BioNLP) is a research domain that

deals with processing data from journals, medical records, and other biomedical documents (in which, a

large part of them are clinical publications) to understand biomedical text and extract knowledge from it.

The applications of BioNLP range from identification of biological entities (such as proteins, genes, chemical

compounds, drugs, or disease names), to classification of biomedical documents based on their contents and

topics, or to support information retrieval by identifying documents and concepts matching search queries

[54]. As for evidence synthesizing in particular, BioNLP has been used to develop informatics systems that

support or automate the processes of systematic review or each of the tasks of the systematic review [55].

In a most recent review of automation for systematic reviews, Dinter in 2020 listed 41 primary research

working on automating different steps in the systematic reviewing process, including: searching, screening

and selecting relevant studies, data extraction, and study quality assessment [56]. Based on the review results,

“selection of primary studies” step was automated most often; whereas, automation of “evaluation of the

selected primary studies” had fewest number of relevant studies.

Although there is less work on automated research quality assessment, Kilicoglu in 2018 in a review of

biomedical text mining for research rigor and integrity proposed several directions text mining tools can help

[57]. Two directions are relevant to quality assessment: (1) managing information overload by summarizing

and aggregating knowledge derived from the publications including claims, hypotheses, supporting evidence;

and (2) assessing adherence to reporting guidelines by assessing a manuscript against the relevant reporting

guidelines and flagging reporting quality issues [57]. Marshall and Wallace, similarly, suggested the use

of NLP tools to expedite evidence quality assessment process which entails both a data extraction task

(identifying snippets of text in the article as relevant for bias assessment) and a text classification task to

predict an article as being at high or low risk of bias [58]. In fact, in the last 5 years, a growing number of

NLP models have been developed to help researchers assess the quality of evidence extracted from clinical

literature, divided into two categories. The first category of models focuses on automatic prediction of the

evidence quality levels in a more direct manner (text classification) [59], [60]. For example, given a clinical
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paper, text classification models directly predict the level of risk of bias of the study (either high or low)

purely based on the text of the paper. The second group of automation focuses on automatic extraction of

information items (such as study design, participants, interventions) that can be used to assess the evidence

quality from the abstracts or full texts of the related clinical papers (information extraction) [61], [62].

Despite the effort, current NLP approaches to assist clinical research quality expose four major shortcom-

ings:

(1) Most information extraction tools focus on a limited set of information, mostly PICO characteristics

such as inclusion and exclusion criteria of patients, interventions or outcome measures of a clinical study [62].

However, PICO framework is mainly used by practitioners of EBM to form clinical questions and facilitate

literature search [63]. Therefore, some aspects of the PICO characteristics are relevant for quality assessment

purpose (e.g., number of participants), they are not sufficient to address the question of research quality,

instead more focusing on what the study is about.

(2) Although some extraction tools have started to consider fine-grained information such as study design,

sample size, none of the extraction tools provides a comprehensive extraction of methodological information

that can be used for evidence quality assessment.

(3) Prediction tools using text classification focus on making risk of bias assessment directly. Their output

is a risk of bias level (e.g. high, medium or low risk of bias) without having an explanation of why or what

criteria the systems use to make their decision [60]. While the predictions are sometimes supported by

highlighting relevant sentences like in Marshall et al. [59], the rationale between the predictions can still be

opaque.

(4) While existing automation approaches are sufficient to assist researchers in assessing reporting quality

at high level (e.g. by identifying sentences that describe certain information), the lack of fine-grained

information might prevent researchers/reviewers from identifying methodological flaws and inconsistencies

that are not easily identified in the clinical papers. For example, in a study to examine methodological issues

of 80 RCTs which was done manually by Altman and Dore in 1990, the authors found a information mismatch

issue between randomization block size and the number of patients in each treatment group described in

the following quotes “1 trial of 30 patients used inappropriately large blocks of 20” and “When blocking is

used without stratification the maximum difference between the numbers in the two groups should be half

the block size; this was not the case in 2 trials.” [64]. In such cases, capturing that a sentence is about

randomization or that the article has high risk of bias is not sufficient to identify the mismatch. Instead

identifying fine-grained information such as type of randomization (in this case is “block randomization”) and

corresponding attributes (in this case is “block size of 20”) is needed to detect the underlying methodological

issues and, consequently, assist with methodological quality assessment.
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1.2 Thesis statement

Understanding the pain points that researchers and other stakeholders (journals, peer reviewers, systematic

reviewers, meta-researchers) have been experiencing with assessing quality of clinical research– the deluge of

information from the bulk of clinical literature and the intensive domain knowledge need; along with the

drawbacks of current NLP attempts to address these two problems that we discussed above, in this thesis, I

study different NLP approaches that can assist researchers and other stakeholders to perform the evidence

quality assessment task. Toward that objective, two main research questions which I try to answer through

the thesis are:

• Research question 1: What information do biomedical researchers and other stakeholders

need to assess evidence quality?

• Research question 2: How can we use NLP and ML techniques to automatically extract

them?

To answer these questions, I have specifically focused on two main quality aspects of clinical research:

methodological quality and reporting quality, and identify information that can be used to assess

these quality aspects. Figure 1.4 shows summary of the thesis focus, which is evidence quality assessment,

along with the stakeholders who can be beneficial from the computer support that the thesis tries to develop.

Subsequently, I present three research studies I have conducted and contributed to during my doctoral studies,

in which three NLP tasks are proposed and developed to automatically extract the identified information.

Figure 1.4: Summary of research and the thesis focus
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Chapter 2

Literature Review, Current Issues and

Thesis Solutions

In this chapter, there are three main contents:

• First, I will review different levels of information granularity that can be use for methodological and

reporting quality assessment: starting from the most coarse-grained information which can be identified

at publication level, to more fine-grained information which can be identified in the full text publication

of a clinical study.

• Second, I then will review in depth the existing computer support for evidence quality assessment,

including workflow-based computer support and NLP-based computer support.

• Last but not least, I will discuss in details the shortcoming of the existing NLP-based approaches and

describe solutions proposed and developed in this thesis to address those shortcomings.

2.1 Criteria to assess quality of clinical research

Criteria for assessing the quality of primary research emerged in the late 1980s with the rise of EBM. This

set the stage for the development of a variety of scales, guidelines and checklists for quality assessment,

often associated with particular study designs [65], [66]. Even though the existing checklists and guidelines

are varied in terms of criteria and grading scheme [66], as mentioned previously, assessment factors mainly

involve two related quality aspects: methodological and reporting [22]. In a nutshell, methodological

quality means assessing methodology rigor of a study and often relates to the study design and conduct
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of the research [67]; and reporting quality means assessing reporting transparency and is in regards of

how well a piece of scientific work is reported as an article published by a scientific journal [68]. Often time,

the scales are designed to assess methodological quality, in which they give researchers a quantitative index

of the likelihood that the reported methodology and results are free of bias. The checklists, on the other

hand, are most useful for reporting quality assessment, in which they provide researchers with guidelines

as to what information should be included in reporting clinical research. Notice that these two aspects are

mutually inclusive since methodological quality only can be assessed through what has been reported in the

actual paper of a clinical study. Therefore, sometimes, the two aspects are being assessed simultaneously

throughout the assessment process.

2.1.1 Methodological quality assessment

Methodological quality is the extent to which the design and conduct of a trial are likely to have prevented

systematic errors and biases. Therefore, assessing methodological quality of clinical research enables researchers

determines how well a clinical study was designed and executed, thus to determine how much confidence

they can have of the study findings. To assess methodological quality, different levels of methodological

information must to be considered, which may vary depending of the type of study and on the subject of

research. In the Introduction chapter, we briefly discussed criteria to assess methodological quality such as

study designs (through the evidence pyramid). In this sections, we will review in depth criteria for quality

assessment at different levels of granularity, as well as the existing scales/guidelines that have been created to

assist reviewers to perform the task.

Coarse-grained criteria

The most coarse-grained criteria to assess quality of a clinical study is through its Study Design. According

to the Clinical Trials Dictionary, study design is “the general plan by which a study was or is to be carried out,

including details on the nature of the study population and data collection procedures and, when appropriate,

other details, such as for treatment procedures in the case of trials” [69]. Study design is considered as the

most coarse-grained information for quality assessment because: (1) it could be determined at individual

study level, and (2) different study designs indicate different levels of evidence quality.

According to the evidence pyramid (Figure 1.3), there are two groups of evidence quality levels: evidence

from primary articles that appear in peer-reviewed journals and can be found by searching databases– called

“unfiltered information”; and evidence from filtered resources that summarize and appraise evidence from

several studies– called “filtered information”. Each group is further divided into different levels– each
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ascending level represents a different type of study design and corresponds to increasing rigor, quality, and

reliability of the evidence. As we ascend through these different study designs, we become more confident

that their results are accurate, have less chance of statistical error, and minimize bias from confounding

variables that could have influenced the results. For example, in the group of filtered information study

designs, a systematic review would provide the most trustworthy evidence, higher than critically-appraised

topics (CATs) and articles (which is often a short summary of evidence or summary of an individual article

from the literature). In the group of unfiltered information, randomized controlled trials provide, in general,

stronger evidence than observational studies. Rigorous observational studies provide stronger evidence than

uncontrolled case report or case series, in which clinicians only examine patients’ medical records for exposure

and outcome. And finally, the foundation level of the pyramid consists of background information and expert

opinion. This is the lowest level of scientific quality and is not considered evidence as such.

Note that in the pyramid, the “filtered information” group contains study designs that are results of

evidence synthesis process, and the “unfiltered information” group contains study designs that are input

of the process. In this thesis, since we are only looking at study designs that are being used for evidence

synthesis, therefore we will only look into the study designs belong to the “unfiltered information” group in

further details.

From an epidemiological standpoint, “unfiltered information” group consist of primary research studies

with no external appraisal or interpretation provided. And if the research is conducted with human subjects,

it is called clinical study. In this thesis, since our focus are clinical studies - with human subjects, terms such

as “evidence quality”, “biomedical research quality” or “clinical research quality” are used interchangeably

and meant the same thing: assessing quality of clinical studies as inputs of evidence synthesis process.

There are two major types of clinical study designs: observational and experimental. Observational

studies are hypothesis-generating studies in which the aim is observation without altering or influencing that

which is observed, while experimental studies (also called interventional studies) are hypothesis testing studies,

in which an experimental treatment is conducted with specified procedure [70]. Then underneath each type,

more specific study designs are defined depending on methodological characteristics. Observational study

design is further divided into two groups of study designs: analytical, which include case-control and cohort

studies, and descriptive which includes cross-sectional studies and case reports. Experimental study design

includes clinical trials which involve subjects with a disease and place them into different treatment groups,

field trials which involve subjects without a disease being placed in different treatment groups, and community

trials which is also known as cluster trials, involve groups of individuals with and without disease who are

assigned to different intervention/experimental groups. Clinical trials are further divided into randomized

clinical trials and non-randomized clinical trials [70] (Figure 2.1). Since RCT is the most common study
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Figure 2.1: Hierarchy of study designs [4]

design from the Experimental branch, and is considered as “gold standard” of clinical research, from now on

I will mostly use RCT as the representative study kind for the experimental design.

Fine-grained criteria

Different study designs are prone to sources of systematic errors and biases. Therefore, to assess methodology

quality from a clinical study, criteria at more fine-grained levels will be varied, depending on the study design

of the study. As different scales and guidelines also developed with different quality assessment criteria

specialized to the study designs.

RCT, which is generally considered as the gold standard of experimental study design, therefore, has

most established appraisal guidelines for it. In RCT study design, patients are randomly assigned into

an experimental group or a control group [71]. To assess quality of RCTs, reviewers often look for key

methodological factors that reflect the potential bias of the study. Note that the terms “quality” and “bias”

is used interchangeably to grade the methodological quality of RCTs. A risk of bias can arise from critical

flaws in methodological design, unreliable or non-reproducible methods or improper or incomplete statistical

analysis. For RCTs, the randomization design helps to reduce the risk of bias when testing the effectiveness of

new treatments. Therefore, quality assessment factors include how the randomization was implemented and

how people who are involved in the study are prevented from being aware of the treatment process. Those

factors are: randomization generation (how the randomized treatment assignments are generated); allocation

concealment (how the random assignment process is concealed among involved parties), and blinding (how

the patients or care providers are kept unaware of the treatment process) [72]. In early days, Moher et al.

listed twenty-five scales and nine checklists which were developed to assess the quality of RCT studies [66].
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Figure 2.2: Domains and criteria to assess risk of bias from Cochrane Handbook [5]

More recently, Ma et al. in 2020 reviewed and compared fourteen assessment guidelines and scales for RCTs

[73]. Among those, perhaps the most popular guideline is “Risk of Bias Assessment” developed by Cochrane

Collaboration, an international network of professionals who produces high-quality and accessible systematic

reviews [18]. In this guideline, different domains and criteria to assess risk of bias of RCT studies are specified

in details. Based on these criteria, assessors can create a risk of bias assessment template and try to answer a

list of questions regarding these characteristics before making final judgments (e.g. high risk of bias or low

risk of bias). Figure 2.2 shows an example of domains, criteria and signaling questions recommended in the

Cochrane Handbook from its risk of bias assessment guideline [5]. Along with the guideline, Cochrane also

developed a computer-based tool to support reviewers with the assessment process, in which we will discuss

further in the computer support section.

Another popular quality assessment guideline is The Grading of Recommendations Assessment, Develop-

ment, and Evaluation (GRADE), which was developed by multiple international groups of guideline developers,

methodologists and clinicians to provide a common, transparent and sensible system for grading the quality

of evidence and the strength of recommendations [17]. While Cochrane’s guideline mainly focuses on risk of

bias assessment in the context of systematic review, the GRADE approach provides a different scheme to rate

the quality of evidence which focuses more on study design and methodological aspects of a RCT. According

to GRADE, the methodological quality of RCTs could be affected by several design and execution factors,

including: lack of concealment, intention to treat principle violated, inadequate blinding, loss to follow-up,

early stopping for benefit, selective outcome reporting [17]. Note that some criteria to assess evidence quality
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of RCTs recommended by GRADE are similar to those in the Cochrane Handbook (such as “adequate if

stating the use of any type of blinding”), some of them are outcome-specific and are at a more fine-grained

level. For example, consider the quality assessment of an RCT about the effects of an intervention on acute

spinal injury with two different outcome measures: all-cause mortality and motor function. The patients of

the study were blinded throughout the whole treatment process. However, the outcome assessors were not

blinded for any outcomes. According to the Cochrane signaling questions regarding blinding, the quality of

evidence based on blinding methods can be considered high since the blinding mechanism is reported (in

this case patients were blinded). However, according to GRADE, blinding methods need to be examined

specifically by the objects and by the outcome measures. In this case, blinding of outcome assessors is less

important for the all-cause mortality outcome measure, but crucial for the motor function outcome measure.

Therefore, based on the GRADE assessment scheme, the quality for the motor function outcome may be

downgraded .

Fine-grained criteria to assess observational studies, including cohort studies, case-control studies, cross-

sectional studies, and case reports, are different from experimental studies because in this study design,

researchers only observe the effect of a treatment or other intervention on patients without trying to interfere

with the treatment process [74]. Since there is no randomization factor, assessment criteria of observational

studies are involved the risk of failure to develop and apply appropriate eligibility criteria (inclusion of control

population), flawed measurement of both exposure and outcome, failure to adequately control confounding,

and incomplete or inadequately short follow-up [74]. Similar to experimental studies, scales and checklists have

been developed to specify domains and criteria to assess quality of observational studies. These guidelines are

also divided to further sub design types such as the Critical Appraisal Skills Programme (CASP) checklists for

cohort study vs. case-control study, the Scottish Intercollegiate Guidelines Network (SIGN) critical appraisal

checklists for cohort vs. case-control study, the National Institutes of Health (NIH) quality assessment tool

for observational cohort and cross-sectional studies.

2.1.2 Reporting quality assessment

Incomplete reporting and lack of transparency in clinical papers can affect the research quality assessment

because important methodological details may be missing. When key elements such as randomization/blinding

procedures (in a RCT study) are missing, it can be difficult to assess the rigor and reliability (methodological

quality) of a study for evidence synthesis. Similar to methodological quality, multiple checklists and guidelines

have been developed to improve transparency and accuracy of reporting of clinical research depending on

study designs of the studies such as CONSORT for RCTs [75] (and other CONSORT extensions for other
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RCT design types such as cluster RCT), ARRIVE for preclinical animal studies [76], and PRISMA for

systematic reviews [77], and STROBE for observational studies [30].

Among these, Consolidated Standards of Reporting Trials (CONSORT) is the most well-known checklist

that provides a comprehensive list of 25 information items that should be reported in a RCT study. Many

of these information items correspond to the criteria to assess methodological quality of RCT such as trial

design, randomization generation, allocation concealment, or blinding [34]. The main CONSORT Statement

is based on the standard two-group parallel design. However, there are several variations to the standard

trial methodology, including different design aspects (e.g., cluster), interventions (e.g. herbals) and data

(e.g. harms). Therefore, to help improve the reporting of these trials, the main CONSORT Statement has

been extended and modified by members of the CONSORT group for application in these various areas.

This results in multiple CONSORT extensions, each corresponding to a specific sub-design of RCT such

as cluster trials, non-inferiority and equivalence trials, pragmatic trials, etc. [75]. While the majority of

information items in these extensions are similar to each other, some specific fine-grained methodological

items are specified corresponding to each type of design. For example, the information item regarding trial

design (item 3a) in the standard CONSORT checklist is described as “Description of trial design (such as

parallel, factorial) including allocation ratio”, while the same information item in the CONSORT cluster

trial checklist is described as “Definition of cluster and description of how the design features apply to the

clusters” [78]. The difference between a standard RCT and a cluster randomized trial is that cluster trials

randomize interventions to groups of patients (e.g., families, medical practices) rather than to individual

patients. Therefore, a proper reporting of the 3a item in a cluster trial should contain the information of

criteria for grouping patients. An example of such description could be: “We report the rationale and design

of a planned pragmatic, cluster randomized, double-blinded trial, with 1500 newly diagnosed individuals with

COVID-19 infection, together with up to one close household contact each ( 1200 contacts), randomized to

either vitamin D3 (loading dose, then 3200 IU/day) or placebo in a 1:1 ratio and a household

cluster design.” [79].

Similar to the CONSORT statement for the reporting of randomized trials, the Strengthening of the

Reporting of Observational Studies in Epidemiology (STROBE) statement was developed with recommenda-

tions to improve the quality of reporting observational studies. The STROBE statement consists of a checklist

of 22 items. Many of those are methodological information items which are the same in the CONSORT

checklist for RCTs, such as study design, participants (eligible criteria) or statistical methods. The list

contains methodology-related information items that are specific for observational studies such as exposures,

predictors, potential confounders, and effect modifiers [30]. STROBE also developed different versions of the

checklist corresponding to sub-types of observational study design, including cohort study, case-control study
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and cross-sectional study. Fine-grained information items for each sub-design type are specified accordingly.

For example, the information item regarding statistical methods in the STROBE checklist for cohort study is

described as “explain how loss to follow-up was addressed”, while the same item in the STROBE checklist for

case-control study is described as “explain how matching of cases and controls was addressed”.

To a certain extent, reporting quality is related and more general than methodological quality. To make

methodological quality assessment, researchers often have to rely on how it is reported. For this reason, many

criteria used to assess methodological quality are also being used to assess reporting quality. For example,

typical methodological information of RCTs such as “randomization”, “blinding” or “allocation concealment”

are all listed in the CONSORT checklist (as for reporting quality) [29] as well as the GRADE guideline (as

for methodological quality) [17]. However, even if a clinical study is well-reported, it does not mean it is a

rigorous study. To assess reporting quality, researchers can just purely reply on the text and make a binary

judgement if a certain information is reported or not. In contrast, to assess methodological quality, assessors

often need to consider multiple methodological characteristics at the same time and at a more detailed level.

For example, “blinding”, a well-known aspect used to assess both reporting and methodological quality, refers

to the concealment of group allocation from one or more individuals involved in a clinical research study

(most commonly a RCT) and is a critical methodological feature to reduce risk of bias after randomization

[80]. Considering two RCT studies on the same topic: one reported the usage of a “double-blind” method in

which both patients and physicians were blinded during the treatment process, and one was an open-label

RCT which means it employs no blinding during the study. From the reporting quality assessment point of

view, as long as the authors of these two studies properly report blinding information on their publications, it

can be considered a good reporting quality. However, from the methodological quality assessment point of

view, the former is considered to have higher methodological quality since it employed a blinding mechanism

to reduce risk of bias [80].

2.2 Computer support for clinical research quality assessment

The high cost, in terms of time and effort, of evidence quality assessment has led to the development of

computer support tools. In terms of computer support for evidence synthesis (in a form of systematic reviewing

process) broadly, some commercial products are designed as end-to-end tools, such as DistillerSR [81] and

Covidence [82] or EPPI-Reviewer [83] which all provide an integrated environment for data capture and

management along with advanced features (such as automatic term reorganization, and document clustering

and classification). In this section, I will only review non-commercial tools that have been developed to assist

reviewers assessing quality of evidence, which can be divided into two main categories: tools that construct
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the assessment workflow and provide templates needed throughout the workflow; and tools that automate

some steps of the process using NLP approaches.

2.2.1 Workflow-based computer support

Workflow-based computer support focuses on assisting reviewers by mimicking the assessment workflow and

providing centralized platforms that contain templates needed (such as list of questions for reviewers) for

the quality assessment. The templates are mainly designed based on existing quality guidelines or checklists

to ensure that reviewers do not miss any of the required criteria. In the review of methodological quality

(risk of bias) assessment tools, Ma et al. listed 27 workflow-based tools developed by different organizations

associated with different study designs [73]. These include tools to assess RCT studies (such as: Risk of Bias

tool from Cochrane [18] [5], The Effective Practice and Organisation of Care (EPOC) tool [84]); tools to

assess non-RCT studies (such as: the Canada Institute of Health Economics (IHE) Quality Appraisal Tool

[85]); tools to assess observational studies such as the NIH quality assessment tool for observational cohort

and cross-sectional studies [86].

Among these tools, the Cochrane Risk of Bias tool for randomized trials (which is called RoB) is the most

commonly recommended tool for RCTs [18]. A revised revision of this tool (RoB 2.0) was published in 2019

[5]. The RoB 2.0 tool consists of five bias domains (as shown in Figure 2.2) and is suitable for assessing

individually-randomized, parallel-group, and cluster-randomized trials. It provides a template interface with

lists of signaling questions corresponding to each domain for users to answer. Then underlying reasoning

algorithms will combine the answers and use them to make bias judgements. Similar to RoB, ROBINS-I is a

tool for assessing risk of bias, however designed for non-randomised studies of interventions [87]. ROBINS-I

has the same approach as RoB by providing a template with signaling questions and running an algorithm

behind the scene to formulate risk of bias judgements for each of bias domains, informed by answers to the

signalling questions. Nevertheless, tools like RoB or ROBINS-I are not fully automated since users’ answers

for the signaling questions are needed to run the algorithm.

2.2.2 NLP-based computer support

To support researchers in evidence synthesis, NLP has been offered as a potential solution to automate some

of the steps throughout this process [58]. Two common categories of NLP-based automated computer support

have been developed: information extraction and text classification . Information extraction is

applied to develop models that can automatically identify snippets of text needed for the synthesis process

in general and for quality assessment in particular (e.g. extract the number of patients randomized from a
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clinical trial paper). Text classification is applied to develop models that can automatically categorize

texts (in the form of abstracts, full-text, sentences or fragments of sentences) into predefined categories (e.g.

determining whether a paper reports an RCT or an observational study). For quality assessment purposes,

application of classification is often to predict evidence quality levels (e.g. high quality evidence or low quality

evidence) of a clinical study.

Automatic information extraction

Conceptually, information extraction is considered as a sub-task of the evidence quality assessment process. In

this task, information items from titles, abstracts or full-text of clinical papers are extracted and represented

in a structured template, so that they can be used by researchers during the evidence quality assessment.

The information extracted could be in the form of a whole paragraph, a specific sentence or a snippet of text

within a sentence.

In a literature review of automatic information extraction that supports systematic reviews, Jonnalagadda

et al. (2015) listed 26 NLP models which support automatic information extraction from RCTs [61]. Note

that not all of these data extraction tools are designed to support evidence quality assessment specifically,

but rather the evidence synthesis process in general (which includes other tasks such as searching for relevant

articles). Therefore, the tools in Jonnalagadda et al.’s review extract different information items that could

be used for different purposes. The majority of them focus on extracting PICO-related information. However,

only some, not all, PICO-related information is in regard to study methodology, thus can be used for quality

assessment. Some examples of fine-grained methodological information belonging to the PICO framework

that could be helpful for quality assessment are information about participants such as settings, sample

size or information about interventions such as treatment duration, doses, etc. In a review of automation

technologies to support systematic reviews in 2019, Marshall et al. specifically discussed the two most popular

data extraction tools that support the evidence synthesis process, ExaCT and RobotReviewer. The authors

also highlighted the fact that tools which facilitate the screening process are widely accessible and usable,

while information extraction tools are still at the piloting stage or require higher amounts of human input

[58]. Most recently, in 2020, Schmidt et al. started a living review protocol with the purpose of reviewing all

available information extraction methods for systematic review semi-automation [62]. The team published

the first results of the review in May 2021, in which they reviewed 53 information extraction tools/models

that support systematic review. In addition, according to Systematic Review Toolbox, which is a web-based

catalogue of tools that support various tasks within the systematic review and wider evidence synthesis

process (last updated in 2021), there are a total 51 software/tools that support the information extraction

task [88]. Among those, there are 7 tools that indicate “automatic” or “automation” in their descriptions.
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Table 1 shows a summary review of 56 automatic information extraction tools from Jonnalagadda et al.

in 2015, Marshall et al. in 2019, and Schmidt et al. in 2021 reviews, and additional relevant studies from the

literature. The table contains the following information:

• Study Reference: reference to the publication.

• Year: year of the publication, sorted in ascending order.

• Level of information:

– Sentence level*: the system classifies each sentence into different categories of information item.

– Entity level: the system extracts chunks of text (could be words or phrases) that contains a specific

information item.

*Note that some studies tried to extract information at sentence level. Thus, the task is “sentence

classification”, in which models are built to classify sentences into different categories of information.

However, conceptually, such task is still considered as a information extraction.

• Information Items: what are the information extracted from the work of the publication.

• Study Design: what kind of study designs used as data from the work of the publication.

• Full text (Y or N): binary field indicates if the work used full text of publications as data (N means it

only used either Title or Abstract, or both).

• NLP Methods: description of NLP techniques, ML models used.

Table 2.1: Summary of 56 automatic information extraction tools that support clinical research quality
assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

Demner

-Fushman

et al. [89]

2005
Sentence

Entity

PICO

Problem

RCT, Cohort,

Case series,

Case control,

Diagnostic test,

Other

N
Rule-based

Naive Bayes
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Table 2.1 (cont.): Summary of 56 automatic information extraction tools that support clinical research
quality assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

Demner

-Fushman

et al. [90]

2006 Sentence Outcomes RCT N
Rule-based

Naive Bayes

Fiszman et al. [91] 2007 Entity
Intervention,

Comparison

RCT,

Comparative

Studies

N Rule-based

Chung et al. [92] 2007 Sentence

Aim,

Methods,

Participants,

Results,

Conclusion

RCT N

Conditional

Random Field

(CRF)

Support Vector

Machine (SVM)

Hara et al. [93] 2007
Sentence

Entity

Disease,

Treatment,

Patients

RCT N
Rule-based,

CRF, SVM

Xu et al. [94] 2007
Sentence

Entity

Participants,

Demorgraphic,

Number of

participants

RCT N

Rule-based,

Naive Bayes,

Hidden markov

model

(HMM)

Dawes et al. [95] 2007 Entity

Patient;

Exposure;

Comparisons,

Outcome;

Duration of

follow up;

Results

N Rule-based
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Table 2.1 (cont.): Summary of 56 automatic information extraction tools that support clinical research
quality assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

De Bruijn et al. [96] 2008
Sentence

Entity

Eligibility criteria,

Intervention

parameters

(dosage, frequency,

duration),

Sample size,

Start

and end date

of enrollment,

Primary

and secondary

outcomes,

Relevant

time points,

Funding information,

Publication details

(date, authors).

RCT N
Rule-based

SVM

Hansen et al. [97] 2008 Entity Participants RCT N
Rule-based,

SVM

Chung et al. [98] 2009 Sentence

Intervention,

Participants,

Outcome Measures

RCT N CRF, SVM

Chung et al. [99] 2009 Entity Intervention arm RCT N
Rule-based,

CRF

Summerscales et al. [100] 2009 Entity

Treatements

Groups

Outcomes

RCT N CRF
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Table 2.1 (cont.): Summary of 56 automatic information extraction tools that support clinical research
quality assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

Kiritchenko et al. [101] 2010
Sentence

Entity

Eligibility criteria,

Intervention

parameters

(dosage, frequency,

duration),

Sample size,

Start

and end date

of enrollment,

Primary

and secondary

outcomes,

Relevant time points,

Funding information,

Publication details

(date, authors).

RCT Y
SVM, CRF,

Rule-based

Boudin et al. [102] 2010 Sentence PICO RCT N

SVM,

Naive Bayes

Random Forest

Xu et al. [103] 2010 Entity Exposure

Cohort,

Case series,

Case control,

Other

N Rule-based

Boudin et al. [104] 2010
Sentence

Entity

PICO RCT N

Rule-based,

SVM,

Naive Bayes,

Random Forest
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Table 2.1 (cont.): Summary of 56 automatic information extraction tools that support clinical research
quality assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

Lin et al. [105] 2010 Entity

Intervention,

Number

of Participants,

Age,

Setting, Design,

Enrollment dates,

Funding Organization

RCT, Cohort Y
Regex,

CRF

Kim et al. [106] 2011 Sentence
PICO

Study Design

RCT N CRF

Summerscales et al. [107] 2011
Sentence

Entity

Groups

Outcomes

Group Size

RCT N

Regex,

CRF,

Naive Bayes;

Decision Tree;

Regression

Huang et al. [108] 2011 Sentence PICO RCT N

Naive Bayes;

Decision Tree;

Regression

Verbeke et al. [109] 2012 Entity
PICO

Study Design

RCT N
SVM,

HMM

Zhao et al. [110] 2012
Sentence

Entity

Participants (Sex,

Age, Race,

Condition)

Results,

Intervention,

Study Design,

Research Goal.

RCT Y CRF

Amini et al. [111] 2012 Sentence PICO, Design RCT N

CRF, SVM,

Naive Bayes;

Decision Tree;

Regression.

Zhu et al. [112] 2012 Entity
Participants

(Age, Gender, Race)

RCT N Regex
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Table 2.1 (cont.): Summary of 56 automatic information extraction tools that support clinical research
quality assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

Hsu et al. [113] 2012
Sentence

Entity

Hypothesis,

Statistical Methods,

Outcomes

and estimation,

Generalizability.

SVM, CRF

Huang et al. [114] 2013 Sentence PICO RCT Y

Naive Bayes;

Decision Tree;

Regression

Kelly et al. [115] 2013 Entity

Age of Subjects,

Duration of Study,

Ethnicity of Subjects,

Gender of Subjects,

Health Status

of Subjects,

Number of Subjects.

RCT N Rule-base regex

Hassanzadeh et al. [116] 2014 Sentence
PICO

Study Design,

RCT N CRF

Karystianis et al. [117] 2014 Entity

Participant,

Outcomes,

Design,

Exposure, Other

Cohort,

Case series,

Case control,

Other

N Regex,

Chabou et al. [118] 2015 Sentence PICO RCT N
Regex,

CRF

Blake et al. [119] 2015 Entity Outcomes
RCT,

Animal studies

Y

Regex,

SVM,

Naive Bayes,

Decision Tree,

Regression.

Suwarningsih et al. [120] 2015 Sentence PICO RCT N Regex

Wallace et al. [121] 2016 Sentence PICO RCT N
Regex,

CRF, SVM
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Table 2.1 (cont.): Summary of 56 automatic information extraction tools that support clinical research
quality assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

Raja et al. [122] 2016
Sentence

Entity

Participants

(Age, Gender,

Condition or disease)

Intervention

Outcomes

RCT, Other N

Regex,

Naive Bayes;

Decision Tree;

Regression.

Basu et al. [123] 2016 Sentence Eligibility Criteria RCT Y SVM

Bui et al. [124] 2016
Sentence,

Entity

PICO

Number of participants

RCT Y
Regex,

SVM

Raja et al. [122] 2016
Sentence,

Entity

Participant

(Condition or disease),

Intervention,

Comparison

RCT Y

Regex,

APIs

metadata

retrieval

Singh et al. [125] 2017 Entity PICO RCT Y CNN

Marshall et al. [126] 2017
Sentence,

Entity

Participant

( Condition or disease),

IC, O, Age, Gender,

Randomisation,

Blinding, Design,

Eligibility criteria,

Race, Other

RCT Y

CNN, SVM,

distance

supervision

Karystianis et al. [127] 2017 Entity

Participants,

Country,

Exposure,

Outcomes

Cohort,

Cross sectional

survey,

Case control

N Rule-base regex

Lucic et al. [128] 2017 Entity Outcomes
RCT,

Animal studies

Y
Rule-base regex,

SVM

Jin et al. [129] 2018 Sentence

Background,

Participants,

Interventions,

Outcomes,

Study Design,

Others.

RCT N

CNN, RNN,

BERT-based

Transformer

Models
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Table 2.1 (cont.): Summary of 56 automatic information extraction tools that support clinical research
quality assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

Jin et al. [130] 2018 Sentence

Aims,

Participants,

Interventions,

Outcomes,

Methods

(Design and Settings),

Results,

Conclusion.

RCT N

CRF,

Bidirectional

Long short-term

memory

(Bi-LSTM)

Nye et al. [131] 2018 Entity PICO RCT N
CRF,

Bi-LSTM & CRF

Demner

-Fushman

et al. [132]

2018 Entity

IC (Drug dose;

strength; route;

frequency; duration),

Other

RCT,

Animal studies
Y

CRF,

LSTM

Chabou et al. [133] 2018 Sentence PICO RCT N
Regex,

CRF

Baladron et al. [134] 2018 Entity Number of participants RCT N

Regex,

Naive Bayes,

Decision Tree,

Regression

Brockmeier et al. [135] 2019 Entity PICO RCT N
CRF,

Bi-LSTM & CRF

Kang et al. [136] 2019 Sentence PICO RCT Y BiLSTM & CRF

Xia et al. [137] 2019 Sentence PICO RCT N SVM

Guo et al. [138] 2019 Entity Drug RCT N SVM

Norman et al. [139] 2019
Sentence

Entity

Diagnostic tests: index

and reference standard,

Participants

(Condition or disease)

Diagnostic test Y
BERT models,

PDF extraction

Brassey et al. [140] 2019 Entity

Participants,

Intervention,

Number of Participants

RCT N Rule-base regex
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Table 2.1 (cont.): Summary of 56 automatic information extraction tools that support clinical research
quality assessment

Study

Reference

Year
Level of

information

Information

Items

Study Design

Full

text

(Y

or N)

NLP Methods

Yuan et al. [137] 2019 Sentence

Aims,

Participants,

Interventions,

Outcomes,

Methods,

Results,

Conclusion.

RCT N SVM

Marshall et al. [141] 2020 Entity

PICO,

Number of participants,

Design

RCT N

CRF,

LSTM, CNN,

SVM

Schmidt et al. [62] 2020
Sentence,

Entity

PICO RCT N
BERT models,

PDF extraction

According to the summary table, 53 out of 56 studies extracted information from RCTs. Majority of

the studies took text from abstracts, only 14 studies extracted information from the full texts. 22 studies

extracted information at entity level only, 19 studies extracted information at sentence level, 15 studies

extracted information at both levels. 50 out of 56 studies extracted at least one kind of information in the

PICO framework (either Participants, Intervention, Comparison, Outcomes, or all), in which, fine-grained

information regarding characteristics of participants (such as: age, gender, race, ethnicity, etc.) is extracted

by the highest number of the studies. Only small number of studies extracted information that can be used

for quality assessment. In particular, only 5 studies extracted “Study Design” information [106], [109], [110],

[116], [130]; of which three work on the same dataset created by Kim et al. in 2011 known as PIBOSO-NICTA

dataset [106]. Five other studies also extracted more fine-grained methodological information, such as

“Duration of the Treatments” [95], [96], [101], [115]; 2 studies extracted “Sample Size” [96], [101]; 1 study

extracted statistical analysis methods [113]. The two most comprehensive and well-known data extraction

systems are ExaCT [101] and RobotReviewer [121]. We are going to discuss these two tools in details later

in this section. Two newer studies which work on a similar problem, extracting PICO information items,

however, at a more granular level, were published by Nye et al. in 2018 [131] and Kang et al. in 2019 [136].

In both research, a information extraction model was developed on a new corpus of RCT papers in which

PICO information elements were manually annotated at mention level.

In term of machine learning algorithms, Support Vector Machine (SVM) and Conditional Random Field
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(CRF) are the most popular ML algorithms that were used for data extraction, which are used by 20 and 21

studies respectively. Interestingly, a large number of studies, 29, used rule-based methods (often with regular

expression) either alone or in combination with ML methods to identify and extract information. Commonly

used features along with these ML algorithms include lexical features (such as n-grams), syntactic features

(such as speech of tags) and positional features (such as position of sentences in a paragraph or position

of words in a sentence). Some studies applied deep learning method (such as bidirectional long short-term

memory– BiLSTM) in combination with CRF which takes word embeddings [130]–[132], [135], [141], [142]

or contextual embeddings (such as BERT) as inputs [62], [130], [139]. In terms of performances, all of the

studies used popular performance metrics including precision, recall and F1 scores to report the tools/models’

performances. Since the way the studies set up these problems (sentence classification vs. entity extraction)

are different, it is hard to compare the models’ performances from one to another. Overall, performances

reported in these studies were all in the 70s or 80s range.

In the next section I will review in depth two data extraction tools: ExaCT and RobotReviewer. The

reasons are two-fold: (1) ExaCT, perhaps, is the tool that extracts the most comprehensive list of both

PICO-related and methodology-related information (21 items in total), in which some of them, such as study

design, sample size, can be used for evidence quality assessment; (2) RobotReviewer is the only tool that not

only extracts PICO-related information, but also automatically detects (and highlights) sentences.

ExaCT is designed to extract key trial characteristics (e.g. eligibility criteria, sample size, drug dosage,

primary and secondary outcomes, early stopping, etc.) from full-text journal articles reporting on RCTs

[101]. More specifically, ExaCT consists of two parts: an information extraction (IE) engine that searches the

article for text fragments that best describe the trial characteristics, and a web browser-based user interface

that allows human reviewers to assess and modify the suggested selections. The IE engine uses a statistical

text classifier to locate the sentences with the highest probability of describing a trial characteristic. Then,

the IE engine’s second stage applies “weak” rules to these sentences to extract text fragments containing the

target answer (for example, start date of enrollment is extracted as the first string that looks like “a date”,

sample size is an integer number with a reference to people, funding organization is a sequence of words with

the first letter capitalized). The same approach is used for all 21 trial characteristics selected for ExaCT. In

their evaluation, the ExaCT team found that, averaged over 21 information elements, both precision and

recall were 80%. While ExaCT is able to capture a wide range of information from an RCT study, it is not

designed specifically to support the quality assessment purpose. Some extracted information such as funding

number, funding organization, DOI, authors, are not directly relevant to study quality. In contrast, the tool

does not capture important randomization-related information that reviewers need when assessing evidence

quality such as randomization generation or concealment allocation.

RobotReviewer provides two features: PICO extraction [121] and risk of bias prediction [59]. Regarding

the data extraction feature, RobotReviewer takes RCT reports in PDF format, automatically retrieves
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sentences which describe PICO-related information and represents them into three groups of information:

population, intervention and outcomes. Besides PICO, RobotReviewer also extracts sentences that describe

the conduct of randomization from RCTs and groups them into three categories: random sequence generation,

the allocation concealment, and blinding. This information is relevant to biases and eventually is used to

assess risk of bias of RCT studies according to the Cochrane Handbook. According to internal evaluations

conducted by the RobotReviewer team, in terms of PICO extraction, the tool achieved high precision (≥ 0.88)

for all PICO items (the team did not report recall).

Both ExaCT and RobotReviewer show some advantages over other NLP tools/models:

• ExaCT extracts a wide range of information that could be used for multiple purposes throughout the

evidence synthesis process, while RobotReviewer is the only tool that explicitly extracts randomization-

related information that could be used for quality assessment.

• Different from other systems, which were trained mainly on abstracts of RCTs, both ExaCT and

RobotReviewer classification models were trained on text from the full-text articles. Compared with

abstracts, full-texts of articles are richer in terms of contents which would give the models better/more

representative training examples.

• Compared with other tools/methods (which are mostly one-off methods), both ExaCT and RobotRe-

viewer were more mature and used in practice. Both tools provide user-friendly interfaces and try to

incorporate humans into the process. In the ExaCT case, the tool provides a user-friendly interface that

shows candidate sentences and allows users to decide if each of the sentences is relevant or not (through

a checkbox). In the RobotReviewer case, the tool also provides a separate interface that shows the

full-text articles and actively highlights sentences relevant for predictions.

Automatic risk of bias prediction

Besides data extraction, another NLP approach to assist evidence quality assessment is to develop models

that directly predict the level of biases based on text from the articles. More specifically, such NLP systems

will take input which are full-text articles, abstracts or a paragraph from the full-text, and use them as

textual resources for features to train machine learning models. The models then predict outputs which are

quality levels, such as low quality or high quality. This approach can be done as a text classification task

with or without data extraction. According to the Systematic Review Toolbox, there are 32 software/tools

that support the quality assessment (risk of bias assessment) task. Only four of them mentioned “automatic”

in the tool descriptions. And only two tools (RobotReviewer and TrialsStreamer) support quality prediction.

RobotReviewer is the only NLP tool that starts to tap into both aspects of data extraction and risk of

bias prediction. The tool not only attempts to identify information at the sentence level that can be used to

assess risk of bias of a clinical study, but also tries to predict the levels of risk of bias at document level [59],
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[141]. Following the guideline for risk of bias assessment provided by Cochrane, RobotReviewer considers

six domains and uses them for risk of bias level prediction. Six separate machine learning models were

developed separately for prediction. The models were trained on a corpus of 2200 clinical trial papers which

was originally derived from the Cochrane Database of Systematic Reviews using a distant supervision method.

The papers were labeled as being at low, high or unclear risk of bias for each domain, and sentences were

labeled as being informative or not. The risk of bias prediction features of RobotReviewer were evaluated

multiple times, both by the tool creators themselves and also by others [143]–[145]. In the internal evaluation

done by the tool creators, F1 scores range from 0.57 - 0.75 for the six information items. In the three external

evaluations, RobotReviewer was used to predict risk of bias levels of RCT studies and compared with human

judgments. The first evaluation study showed that the mean level of agreement between RobotReviewer and

human researcher assessment was 72% [143]. The second evaluation found that RobotReviewer’s reliability

was moderate, ranging from 0.34-0.48 for different information items [144]. The third evaluation study showed

that RobotReviewer yielded a moderate degree of agreement with human reviewers: Cohen’s kappa for

randomization was 0.52, for allocation concealment was 0.60, and for blinding of personnel/patients was

0.43 [145]. Notably, blinding of outcome assessors had only slight agreement (0.04). In a study comparing

RobotReviewer performances with human, Jardim et al. found that RobotReviewer had equal performance

to humans, though participating reviewers were not interested in modifying standard procedures to include

automation [146]. Both data extraction and risk of bias prediction features from RobotReviewer were adopted

and used to empower a new product named TrialStreamer, a automatically updated database of clinical trial

reports, from the same research group [141]. TrialStreamer integrates different features to automatically

annotate RCT studies including extraction of PICO elements (from RR), prediction of risk of bias levels

(also from RR) and extraction of sample size. All this information is then used to represent the RCTs in a

structured representation and curated in a database for subsequent use 1.

Similar to RobotReviewer, Millard et al. in 2016 developed a machine learning model to assist risk-of-bias

assessments for systematic reviews [60]. Millard’s model took the same approach with RobotReviewer by

implementing two models: (1) a sentence model to identify relevant sentences. In particular, sentences from

full-text articles are input to a classification model and predicted with labels “relevant” (or “not relevant”) if

they belong (or not belong) to either randomization, allocation concealment and blinding group of information;

(2) a article-level model to predict the risk-of-bias value of each article. The scores output by the model

are used to rank articles by predicted risk of bias. The two models were trained and evaluated separately.

According to the results, sentences can be successfully ranked by relevance with area under the receiver

operating characteristic (ROC) curve (AUC) ≥ 0.98. This is useful to assist reviewers by indicating which

parts of the article text are particularly relevant to risk of bias. They were also able to rank articles according

to risk of bias with AUC ≥ 0.72, which would help reviewers to prioritize articles to look at first (e.g from

low to high risk of bias).

1https://trialstreamer.ieai.robotreviewer.net/
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2.3 Problems with the existing NLP-based approaches and thesis

solutions

2.3.1 Problems

Based on the review of existing literature, there are several shortcomings of NLP approaches in addressing

the automation of evidence quality assessment:

• Most information extraction tools focus on a limited set of information– mostly PICO, which is more

important for identifying relevant articles than assessing their quality. RobotReviewer seems to be the

only tool that extracts specific information items (randomization generation, allocation concealment

and blinding) that are used for evidence quality assessment of RCTs.

• The methodological information extracted from the existing tools are mostly at sentence or document

level. More specifically, both RobotReviewer and Millard’s model identify randomization, allocation

concealment and blinding information at sentence level. For example, given the sentence “Participants

and the research assistant were blinded to group allocation at baseline; and, this could be maintained

at 6 and 13 weeks.”, these models are able to predict that the sentence discusses blinding; however,

they are unable to capture who was blinded (participants and the research assistant) and when they

were blinded (at baseline). This is because these models do not capture fine-grained information such

as who was blinded (e.g. Participants and the research assistant) and how they were blinded (e.g. at

baseline and be maintained at 6 and 13 weeks). The lack of fine-grained information makes it difficult

and time-consuming for researchers/reviewers from identifying methodological flaws (such as measuring

outcomes on individual patient in a cluster trial), weaknesses (such as under-powered sample size) or

inconsistencies (such as the mismatch between randomization block size and number of patients) while

assessing methodology quality of clinical studies.

• Prediction tools make evidence quality judgment directly without explanation of the criteria that lead

the systems to make the judgment. For example, given a RCT article, RobotReviewer and Millard’s

model extract textual features from the article, and based on these features, the models give predictions

of high/low or undecided risk of bias directly to users. In the case of Millard’s model, this may result in

users missing the insights of how the predictions are actually driven and what are the reasons for such

assessment decisions. In the case of RobotReviewer, although supporting sentences are highlighted,

once again, the lack of fine-grained information that would be helpful to detect methodological flaws

could be missed. In fact, in an evaluation study in which we assessed the use of RobotReviewer risk of

bias assessment feature by asking an expert to use the tool in his on-going systematic review project,

we found that even though RobotReviewer successfully captured sentences that contain “blinding”

information in general pretty well (such as sentences that mentioned “double-blind”), the tool only
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successfully captured sentences that contain “blinding object” information 4 out of 10 times. Most of

the work on data extraction from published evidence has been for RCT reports; extracting data from

other types of research (e.g. non-randomized treatment studies or cross-sectional observational studies)

are also important [147].

• Lack of adequate data: Data extraction or prediction tools are based on supervised models that rely

on manually labelled data in order to “learn” to do a task. Yet, in the biomedical domain, manually

labeling data is expensive and time-consuming. Most of existing data sets are specially designed for

PICO information. None of them comprehensively contains methodological characteristics for quality

assessment. On the other hand, majority of the existing models used text from titles ad abstracts

only, which is limited and misses out important methodological details which only reported in full-text.

In addition, the existing tools such as ExaCT or RR both faced the problem of sparsity of training

data to train their models. ExaCT, for example, was trained on a small set (132 total) of full-text

articles. RobotReviewer was trained using a much larger dataset, but the “labels” were induced

semi-automatically, using a distant supervision strategy which is known for noisy data. Nye et al. in

2018 released a new corpus of 5,000 richly annotated abstracts of medical articles describing clinical

randomized controlled trials in which fine-grained information of PICO elements were annotated mainly

by non-expert workers. Even though such a corpus could be helpful to resolve data scarcity problems,

the quality of the annotation is still questionable (e.g. the average Cohen’s kappa agreement F1 score

between expert annotators –medical students– was 67%, and between the non-expert annotators was

53%).

2.3.2 Thesis solutions

I hypothesize that NLP tools could assist researchers in evidence quality assessment by automatically

identifying fine-grained, explicitly stated, methodological characteristics of a clinical study and representing

them in a structured representation that computers could reason with. Existing NLP computer support for

evidence quality assessment such as RobotReviewer achieves comparable results with human assessments and

it has been shown that it helps to reduce the time required for conducting evidence synthesis. Nevertheless,

given information (highlighted sentences) provided by RobotReviewer, researchers would not be able to

identify potential methodological flaws, weaknesses and inconsistencies between methods and results of a

clinical study, which requires further analysis of fine-grained information.

My overall research goal is investigate and develop NLP methods to assist researchers to assess evidence

quality from clinical studies. Towards this goal, I investigate NLP methods to extract information from

clinical publications that can be used for evidence quality assessment at different levels of granularity.

In particular, I not only extract quality information at document level (as we called it “coarse-grained”

granularity) and sentence level (as we called it “medium-grained” granularity), but also take a further step
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comparing with current approaches by looking at quality information at term level (as we called “fine-grained”

granularity). To my best knowledge, currently there are no automated approaches using NLP and ML to

capture methodological information at term granular level to support quality assessment. My thesis will

present three research toward that objective as shown in Figure 2.3.

Figure 2.3: Hierarchy of study designs

• Research 1: Automatic extraction of study design to support methodological quality

assessment

– What is the task: A development of classification models to automatically classify clinical papers

into different evidence types based on study designs. This development was built based on the

consideration that study design is the most coarse-grained criteria to assess evidence quality.

– Level of information: Document level

– Input/Output: The model takes clinical papers as inputs, and predicts study designs of the

papers as outputs.

– How does it help: Identifying study design of an article is particularly helpful because it helps

to specify which methodological information should be considered next in the pipeline of evidence

quality assessment.

• Research 2: Automatic classification of CONSORT checklist items to support reporting

quality assessment

– What is the task: A development of classification models to map sentences from RCT papers to

CONSORT checklist items as a step toward computer supported reporting transparency assessment.

36



– Level of information: Sentence level

– Input/Output: The model takes sentences from RCTs as inputs, and predicts what information

the sentences describe, using CONSORT items as predicting labels (e.g. sentences about sample

size determination or blinding, or trial design).

– How does it help: This model takes one step further by considering more fine-grained information

that is used to assess reporting transparency of RCTs. Results of such a model would be helpful

for further methodology quality assessment because if the paper is not transparent, we have little

to judge whether the study is rigorously done.

• Research 3: Automatic extraction of methodological characteristics to support method-

ological quality assessment

– What is the task: A development of information extraction systems to extract fine-grained

methodological information items from RCT papers and represent them in a structured represen-

tation.

– Level of information: Term level

– Input/Output: The model takes full text of RCTs as inputs, and extract methodological

characteristics in the format of text mentions that can be used for quality assessment and map

them into a hierarchical data model.

– How does it help: This model takes one step further by considering lowest level of information

granularity, at mention level. Extracted information can be represented in a structure that can be

reasoned and queried for quality assessment purposes later on.

The three developments are connected in such a way that they address different levels of information

granularity used for evidence assessment: starting from the most coarse-grained information, study design,

which can be identified at the document (individual paper) level; then going to more fine-grained yet still

at the sentence level within papers; and finally the most fine-grained entity-level information which can be

identified through the text mentioned within sentences. Multiple users, who work in different fields but

have the same focus on research quality, can all benefit from these developments. Those include: systematic

reviewers who do evidence synthesis, journal editors and peer reviewers who review papers, or authors

themselves who might need to authorize their manuscripts before publishing. Extracting information in

different levels of information granularity is particularly helpful because at each stage of the evidence quality

assessment process, different stakeholders might have different needs. For example, systematic reviewers at

the screening step might be only interested in a certain type of clinical study (e.g. RCT), thus can use “study

design” as the information for better retrieving relevant publications. Or, journal editors at reviewing step,

might be interested in assessing how much a submitted manuscript in compliance with reporting guidelines,
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thus information reported at sentence level could be used. Finally, extracting fine-grained methodological

information allows reviewers to identify any methodological weaknesses, inconsistencies or flaws that are not

explicit and easy to spot from the lengthy full text articles. More than that, the extraction of fine-grain

methodological characteristics from clinical study could also be beneficial beyond the quality assessment

purpose by enabling semantic searching of the literature based on methodological characteristics of the

articles.
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Chapter 3

Natural language processing

preliminaries

Before going into details of the research presented in this thesis, in this chapter, I will review some basic

natural language processing (NLP) and machine learning (ML) concepts that I used in my research. Readers

who are already familiar with these concepts may decide to skip this chapter. More specifically, in this

chapter, I will:

• First, discuss the broad NLP paradigms that I used: (1) rule-based approaches; (2) traditional supervised

ML approaches; (3) representation learning-based approaches.

• Second, review the NLP methods and techniques that are applied for two specific tasks: Text Classifi-

cation and Information Extraction , which are the two categories of NLP-based automatic computer

support for EQA as discussed in chapter 2, and also the focus of my research. For each task, I will

discuss: (1) Task description; (2) NLP/ML models ; and (3) Evaluation metrics to assess performances

of NLP/ML models.

3.1 General NLP paradigm

NLP includes many different techniques for interpreting human language, ranging from statistical and machine

learning methods to rules-based and algorithmic approaches. While supervised and unsupervised learning,

and specifically deep learning, are now widely used for modeling human language, there is also a need for

syntactic and semantic understanding and domain expertise that are not necessarily present in these machine

learning approaches. Here, we are going to discuss further three approaches that are used in the field for

different downstream applications in general, and have been applied for this thesis in particular. Those are:
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(1) rule-based; (2) supervised machine learning approach; and (3) representation learning approach.

3.1.1 Rule-based NLP approach

A rule-based NLP system is commonly comprised of a set of rules defined by human which tend to focus

on pattern-matching or parsing depending on the NLP task that it is designed for, and can be tailored for

domain-specific use cases. For text classification, rule-based approaches classify text into organized groups

by using a set of handcrafted linguistic rules based on characteristics of the text (e.g., lexical, syntactic,

semantic). These rules instruct the system to use semantically relevant elements of a text to identify relevant

categories based on its content. In general, each rule consists of an antecedent or pattern and a predicted

category. For information extraction, a dictionary of terms/phrases or several rules are created based on

the existing knowledge-base or vocabulary for an information type. In the subsequent step, these dictionary

terms are tagged in the text using a string exact match or a variation term that follows the defined rule.

Figure 3.1 shows the input/output flow of a typical rule-based NLP model. Rule-based approaches, though

are the oldest approaches to NLP, have been proven to work well in many downstream NLP tasks and in

various domains (especially the domain that has unique language characteristics, a sub-language [148], and a

large number of knowledge sources). The advantages of rule-based approaches are: they can be flexibly and

incrementally developed, they do not require massive training corpus, and they tend to have high performance

in specific use cases (high precision). However, rule-based models often suffer performance degradation when

generalized (low recall), require skilled developers and linguists.

Figure 3.1: Rule based system input/output flow

3.1.2 Traditional supervised machine learning

A machine learning-based NLP system relies on more modern “statistical inference” techniques. There are

two main types of ML-based approaches: supervised machine learning and unsupervised machine learning.

Supervised learning is trained using data that is labeled (or tagged), and during training, those models learn
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the best mapping function between a known data input and expected known output. Unsupervised learning

is a learning approach using unlabeled data which means no labeled data is required for training. In this

section, we will discuss further supervised machine learning approach, which is the focus of the research in

this thesis.

As mentioned, this machine learning approach is called “supervised” because its way of learning from

training data mimics the same process of a “teacher” supervising the end-to-end learning process. In

supervised machine learning, a batch of text documents are tagged or annotated with examples of what the

machine should look for and how it should interpret that aspect. These documents are used to “train” a

statistical model, which is then given untagged text to analyze. For text classification, by using pre-labeled

examples as training data, supervised machine learning algorithms can learn the different associations between

pieces of text, and that a particular output (as labels) is expected for a particular input (as text). For

information extraction, the ML-based systems use statistical-based models for detecting the named entities.

These models try to make a feature-based representation of the observed data. Figure 3.2 shows the general

design of a supervised machine learning system, which typically contains three main components:

• Feature extractor: is the component to transform each text into a numerical representation in the form

of a vector. This process is also referred as “feature engineering” process. Note that this component is

required for traditional ML algorithms, but not for representation learning approaches (in which we

will discuss in the next section) since it can be automatically learnt during the training process.

• Machine learning algorithm: is the component that learns a model from the features that are defined.

Once the model is trained with enough training samples, the trained model can be applied to make

predictions on unseen data.

• Trained ML model: The same feature extractor is used to transform unseen text to feature sets, which

can be fed into the model to get predictions on labels.

Figure 3.2: General design of a supervised machine learning system

Depending on downstream tasks, different ML algorithms can be used. Examples of some most popular

traditional supervised NLP machine learning algorithms are: Naive Bayes, Logistic Regression, and Support
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Vector Machines; Maximum Entropy and Conditional Random Field (for named entity recognition/information

extraction).

3.1.3 Representation learning approach

Representation learning is a class of machine learning approaches that allows a system to discover the

representations required for feature detection or classification from raw data. The concept of “representation

learning” often appears in conjunction with deep learning which is a machine learning method based on neural

network architectures with multiple layers of processing units [149]. In a deep learning model, the requirement

for manual feature engineering is reduced by allowing a machine to be fed with raw data and to automatically

discover latent representations and processing needed for text classification or information extraction. The

approach thus avoids the feature engineering process, yet is able to learn complex and intricate features from

data [150]. Figure 3.3 shows the comparison between typical (more traditional) supervised ML model (as

shown in Figure 3.2) vs. deep learning model.

Figure 3.3: Comparison between traditional supervised ML model vs. deep learning model

Since deep learning models do not require human defined features as inputs, the most common way to

represent an input instance (e.g. text) to a deep learning model is by its embedding vector. By definition,

embedding vector is a low dimensional dense vector, where each dimension represents a latent feature and

words that appear in similar context are expected to be represented with similar vectors [151]. Several

approaches could be applied to produce word embedding:

(1) Static embeddings: In static embedding methods, a global vocabulary that contains all of the unique

words from large corpora will be built. Then, similar representations are learnt for the words that appear in

similar contexts. Two most popular architectures to learn the underlying word representations are Continuous

Bag of Words (CBOW) and Skip-gram [152]. In the CBOW model, the distributed representations of context

(or surrounding words by defining a fixed window size of words) are combined to predict the word in the
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middle; while in the Skip-gram model, the distributed representation of the input word is used to predict

the context [152]. Two popular pre-trained static embeddings models which were trained by CBOW and

Skip-gram methods are Word2Vec [153] and GloVe [154].

Static embeddings like Word2Vec or GloVe can be used for transferring word embedding weights and using

them to train deep learning models. The problem of such methods is that the words’ contextual meaning is

ignored. For example, only one representation is learnt for the “bank” word even though it can appear in two

different contexts: “I went to a bank to withdraw money” and “I walked along the bank of the river.”.

(2) Contextual embeddings : Contextual embedding methods are used to learn sequence-level semantics by

considering the sequence of all words in the documents. Contextual embeddings assign each word/phrase a

representation which is a vector based on its context, thereby capturing uses of words across varied contexts

(e.g. in the example above, the contextual embeddings of the word “bank” will be different in each sentence

depending on the context of the sentence in which the word appears). The most convenient way to obtain

contextual embeddings is through pretrained language models which were trained on large corpora such as

BERT, which is a linguistic representation model developed as an encoder of the Transformer model from

Google AI [155] or ELMo, which is a deep contextualized word representation developed by AllenNLP [156].

Figure 3.4 shows the pipeline from raw text to embedding vector as input of deep learning model.

Figure 3.4: Pipeline from raw text to embedding vector as input of deep learning model

In the next section, we will discuss in details the BERT pretrained model and its variants since we used

those as contextual embeddings sources for our research in this thesis.

BERT pretrained language model

Before introducing the BERT pretrained language model and discussing in details how it was developed, we

will briefly introduce Transformer which is the architecture in which the BERT model was originally built

upon.

Transformer is a type of neural network model that contains two main components: an encoder and a

decoder as shown in the Figure 3.5 [155]. The input words of the model are represented using some form of

embedding. The encoder maps an input sequence of symbol representations to a sequence of representations.

Each encoder has two sub-layers: a multi-head self attention mechanism on the input vectors, and a simple,

position-wise fully connected feed-forward network. Then the decoder generates an output sequence of
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symbols one element at a time. Each decoder has three sub-layers: a masked multi-head self attention

mechanism on the output vectors of the previous iteration, a multi-head attention mechanism on the output

from encoder and masked multi-headed attention in decoder, and a simple, position-wise fully connected

feed-forward network. The advantage of Transformer model over other deep learning models is the attention

mechanism. Attention allows models to focus on parts of their input sequence while they predicted the output

sequence. Multi-headed attention expands this concept by calculating attention in parallel multiple times.

This allows the model to attend a word to multiple sub-structures within a given sentence at once [155].

Figure 3.5: The Transformer model architecture: Input embeddings are passed to an attention layer which
are then passed to a feed forward layer. The output of the encoder is passed to the decoder, which also
includes an encoder-decoder attention layer [155]

BERT or Bidirectional Encoder Representations from Transformers, a pretrained language model, was

developed as an encoder of the Transformer architecture and has been used to create state-of-the-art models

for a wide range of NLP tasks [7]. We usually create a language model by training it on some unrelated task

but tasks that help develop a contextual understanding of words in a model. The BERT model implementation

improves standard Transformer by training the model through two different tasks: masked language modeling

and next-sentence prediction. The Masked Language Model (MLM) randomly masks certain elements of the

input, and the objective is to predict the original masked word based solely on its context. The objective of

the MLM allows the representation to merge the left and right context, which allows us to pre-train a deep

bidirectional Transformer. In addition to the masked language model, BERT uses a next sentence prediction

task that jointly pre-trains the text pair representations. In this task, two sentences— A and B — are chosen

for pre-training (50% of the time B is the actual next sentence that follows A; and 50% of the time B is
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a random sentence from the corpus). The model was trained to predict if two sentences are next to each

other given context surrounding them. With this design, outputs of the pretrained BERT is rich context

aware representation of each token in the text that can be used for downstream tasks. There are different

biomedical-focused variants of BERT model, such as BioBERT [157] or PubMedBERT [158], which used the

same Transformer architecture with the original BERT. While BioBERT continues to pre-train the original

BERT, the PubMedBERT is pretrained from scratch using abstracts and full-text articles from PubMed.

By having a pre-trained model that integrates both general and biomedical domain corpora, developers and

practitioners could now encapsulate biomedical terms that could specifically be used for biomedical NLP

tasks. Given the success of BERT model and the domain specific expertise that BERT variant models provide,

in this work, we used both BioBERT and PubMedBERT to develop our systems.

Thus far in this chapter, we have discussed the general NLP and ML concepts that can be applied for any

downstream tasks. In the next section, I will discuss in details how these methods are used for two specific

tasks, which are also the focus of our research: text classification , and information extraction .

3.2 Text classification

3.2.1 Task definition

Text classification is one of the fundamental tasks in NLP with broad applications such as sentiment analysis,

topic labeling, spam detection, and intent detection. The task is to assign a label from a set of predefined

categories to unstructured text of arbitrary length (e.g., a document, a sentence). For example, sentiment

analysis is one of the most common text classification tasks. In which, given a text (e.g. a movie review),

a sentiment analysis classification system tries to predict the sentiment of the text to either “positive”,

“negative” or “neutral”. Automatic text classification applies ML and NLP to automatically classify text in a

faster, more cost-effective, and more accurate manner than human annotation.

3.2.2 Methods for text classification

The general architecture of ML classification models is similar to the general supervised learning model

that we have discussed. It contains 3 main components: feature extractor, ML algorithm and the trained

model. Some of the most popular machine learning algorithms that have been used for text classification task

include the Naive Bayes family of algorithms, logistic regression, support vector machines (SVM)– which are

known as “traditional ML” approaches; and neural network which is known as the “deep learning” approach.

Depending on which approach is used (traditional or deep learning), the feature extraction methods can be

different.
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Traditional ML algorithms for text classification

Traditional ML algorithms learn from the data, where choice of algorithm and features (inputs) to be fed into

algorithms are made by subject matter experts, who engineer features to be passed into the models. Some of

the most common traditional algorithms used for text classification are: Naive Bayes, Logistic Regression,

and Support Vector Machine (SVM) [159]. Next, I discuss the SVM algorithm in details since we used it for

some research in this thesis.

The SVM is a model used for both classification and regression problems though it is mostly used to

solve classification problems. In a nutshell, SVM draws a line or “hyperplane” that divides a space into two

sub-spaces. One subspace contains vectors (labels) that belong to a group, and another subspace contains

vectors that do not belong to that group. The optimal hyperplane is the one with the largest distance between

each label. The idea of SVM algorithm is shown in Figure 3.6. SVM is based on geometrical properties of the

data while other algorithms such as logistic regression is based on statistical approaches. Therefore, SVM

often works well with unstructured and semi-structured data like text and images.

Figure 3.6: SVM algorithm [6]

Traditional ML algorithms require human defined the features that can be used to train models. The most

basic (and popular) features for traditional ML algorithms such as SVMs are bag-of-words and bag-of-ngrams.

The bag-of-words (BOW) is a feature extraction method that turns arbitrary text into fixed-length vectors

by counting how many times each word appears. This process is often referred to as vectorization. For

example, consider a corpus that contains the following words: [“This”, “is”,“a”, “randomized”, “controlled”,

“trial”], and we wanted to vectorize the text “randomized controlled trial” we would have the following vector

representation of that text: (0, 0, 0, 1, 1, 1). Bag-of-ngrams method does the same idea but not on single

word, rather on n-grams. An n-gram is a contiguous sequence of n items from a given sample of text or

speech. N-gram of size 1 is referred to as a “unigram” which contains one word only; size 2 is a “bigram”

which contains 2 words; size 3 is a “trigram” which contains 3 words. For example, in the above text, we

would have the following bigrams: “this is”, “is a”, “a randomized”, “randomized controlled”, and “controlled

trial”. That way, Bag-of-ngrams features take into account the co-occurrences of words in the text instead of
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considering the words independently like BOW approach.

Deep learning algorithms for text classification

Several deep learning models have been proposed in the past decade for text classification. Most popular

models are Convolutional Neural Networks (CNNs) [160] and Recurrent Neural Networks (RNNs) [161]. A

CNN model is a feed forward neural network using filtering and pooling, while a RNN model is a recurring

network that feeds the results back to the network. CNNs are preferred in interpreting visual data, sparse data

or data that does not come in sequence (e.g. images). RNNs, on the other hand, are designed to recognize

sequential or temporal data (e.g. text). They make better predictions considering the order or sequence of

the data as they relate to previous or the next data nodes. LSTM– Long Short Term Memory, which is a

special kind of RNNs, capable of learning long-term dependencies, is another popular deep learning algorithm

for text classification [162]. A LSTM layer consists of a set of recurrently connected blocks, known as memory

blocks. Each one contains one or more recurrently connected memory cells and three multiplicative units

named as: forget gate (to decide how much of the past you should remember), input gate (to decide how

much of this unit is added to the current state), output gate (decides which part of the current cell makes it

to the output) [162]. With this design, LSTM model address the limitation of a regular RNN model which is

not able to keep track of long-term dependencies.

Nevertheless, the appearance of the Transformer model with and attention mechanisms [155], which

can generate contextualized word vectors as discussed before, has been a significant turning point in the

development of text classification and other NLP tasks. Many researchers have studied text classification

models which used the Transformer model as a transfer learning resource, which achieves better performance

than the above models. Transfer learning is the reuse of a pre-trained model on a new problem. Deep learning

text classification models can use the pretrained embeddings from Transformer-based language model such

as BERT as the inputs of a new output layer which can be a feed-forward neural network with sigmoid

or softmax function (sigmoid is used for binary classification methods where we only have 2 classes, while

softmax applies to multiclass problems). This process is called “fine-tuning”, which essentially is a transfer

learning technique. Fine-tuning is the process of using the weights of pre-trained model (such as BERT)

as initialization for a new model trained on data from the same domain. Figure 3.7 shows the fine-tuning

process from source model to target model. This process consists of four main steps:

• Use a pretrained neural network model as the source model (such as PubMedBERT).

• Create a new neural network model as the target model. This copies all model designs and their

parameters on the source model except the output layer. We assume that these model parameters

contain the knowledge learned from the source dataset and this knowledge will also be applicable to the

target dataset.
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• Add an output layer to the target model, whose number of outputs is the number of categories in the

target dataset. For example, for text classification task, output layer could be a fully connected layer

with softmax. Then randomly initialize the model parameters of this layer.

• Train the target model on the target dataset. The output layer will be trained from scratch, while the

parameters of all the other layers are fine-tuned based on the parameters of the source model.

Figure 3.7: Fine-tuning from source model (e.g. PubMedBERT) to target model

3.2.3 Evaluation metrics to assess text classification models

To evaluate performances of classification models, common evaluation metrics have been used include:

Precision, Recall, F-measure (F1). Essentially, Precision and Recall are calculated based on the number of

true positives (TP), false positives (FP) and false negatives (FN), which can be described as:

• True Positive (TP): is the number of the correctly predicted labels.

• False Positive (FP): is the number of wrongly predicted labels.

• False Negative (FN): is the number of actual labels that are missed by the models.

F1 is the harmonic mean score of Precision and Recall. The formulae of these metrics are provided below:

Precision = TP
TP+FP (3.1)

Recall = TP
TP+FN (3.2)
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F1 = 2∗Precision∗Recall
Precision+Recall = 2∗TP

2∗TP+FP+FN (3.3)

The Area Under the Receiver Operating Characteristic curve (AU-ROC) is also another popular evaluation

metric. The AU-ROC is the measure of the ability of a classifier to distinguish between classes and is used

as a summary of the ROC curve. The higher the AU-ROC, the better the performance of the model at

distinguishing between the positive and negative classes. AU-ROC is calculated as the Area Under the

Sensitivity (TPR)- Specificity (FPR) Curve:

Sensitivity = Recall = TP
TP+FN (3.4)

Specificity = TN
FP+TN (3.5)

3.3 Information extraction (Named entity recognition)

3.3.1 Task definition

Named entity recognition, NER (also known as entity identification, entity chunking and entity extraction) is

a sub-task of information extraction that seeks to locate and classify named entities in text into predefined

categories. The exact entity types that are of interest vary across different settings of the problem. When

using supervised learning, NER is generally cast as either a token classification task or a sequence labeling

task. In a sense, sequence labeling is also token classification, in which the goal is to classify each token

(word) in a sequence of words (e.g. a sentence) with a categorical label [163]. However, different from

the standard classification problem which assumes individual inputs (tokens) are independent, in sequence

labeling tasks, labels of tokens are dependent on the labels of other tokens in the sequence, particularly their

neighbors [163]. In this sense, the sequence labeling model takes into consideration the start and end of every

relevant phrase according to the classification categories the model is trained for and tries to optimize the

label sequence. For example, considering a disease entity extraction task the following sentence: “The novel

coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), remains a global challenge.”. To extract “disease” entity from this sentence, the sequence

labeling model will not only predicts that the word “acute” is belong to “disease”, but also considers this

prediction into predicting that the next word “respiratory” and “syndrome” are belong to “disease” as well.
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3.3.2 Methods for NER

Data encoding

In order to represent this as a sequence labeling problem, we need to convert the entity annotations into

a sequence of labels. This labelling needs to handle the fact that multi-word phrases (such as “cluster

randomized control trial”) can refer to a single entity (study design). This process is called “data encoding”.

Different ways of encoding information in a set of labels make different chunk representations. The two most

popular schemes are BIO and BILOU [163]. BIO stands for Beginning, Inside and Outside of a text segment.

An NER system tries to predict the boundary of an entity which is encoded into the beginning (B) and inside

(I) labels. Similar but more detailed than BIO, BILOU encodes the Beginning, the Inside and Last tokens of

multi-token chunks while differentiating them from unit-length chunks.

For example, consider the sentence:

“The study design was a double-blind, parallel, randomized, controlled superiority trial.”.

Then, a BIO scheme for study design entity could be represented as the following:

“The[O] study[O] design[O] was[O] a[O] double [B-blinding] blind[I-blinding] parallel[B-study design]

randomized [I-study design] controlled[I-study design] superiority [B- Comparative Intent] trial[O].”

Deep learning algorithms for NER

A typical deep learning model for NER contains two components as shown in Figure 3.8: (1) a context

encoder to obtain vector representations of the input which often are word level embeddings. Additional

features (such as POS tags) can be added by obtaining their embeddings and concatenate with the word

embeddings to get new representation of the words; and(2) a tag decoder to predict tags for each token in

the input sequence.

Figure 3.8: General Architecture of DL-based NER model

Context Encoder

For the NER task, there are two common encoder architectures:
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(1) Bidirectional long short-term memory networks (BiLSTM): which is a part of the recurrent neural

network (RNN) family that operates on sequential data [164]. Unlike standard LSTM that we discussed

before, the input flows in both directions, and it is capable of utilizing information from both sides. BiLSTM

adds one more LSTM layer, which reverses the direction of information flow. Therefore, it is a powerful tool

for modeling the sequential dependencies between words and phrases in both directions of the sequence.

(2) Transformer-based pretrained language models : Transformer-based pretrained language models such as

BERT and its variants, PubMedBERT and BioBERT have been used as contextual embeddings resources and

have achieved good results for many NER tasks. One major advantage of the Transformer-based pretrained

embedding models over others (e.g. versus BiLSTM), is that the original Transformers do not rely on past

hidden states to capture dependencies with previous words. They instead process a sentence as a whole.

That is why there is less risk to lose (or “forget”) past information. Moreover, multi-head attention and

positional embeddings both provide information about the relationship between different tokens [155].

Tag Decoder

There are two common tag decoders that can be used in a deep learning NER model: (1) Token

Classification and (2) CRF as shown in Figure 3.9.

Figure 3.9: NER model with Token classification layer or CRF layer as decoder and BERT as encoder

(1) Token classification: This tag decoder is essentially a classification model. The decoder is a linear

fully-connected classifier layer in the end of the whole NER model to get predictions for each of the tokens in

the input independently.

(2) Conditional Random Fields (CRF): This tag decoder puts a CRF layer instead of a token classification

layer in the end of the NER model to get token prediction.

Conditional Random Fields (CRF) is a class of discriminative models best suited to prediction tasks

where contextual information or state of the neighbors affect the current prediction [165]. Essentially, CRF is

a probabilistic model, in which, given a sentence (also called an “observation” or “sequence of observations”),

the model tries to predict the best sequence of labels that corresponds to the input sequence of observations.

CRFs maximize a conditional probability of labels given an observation sequence, consider all possible

sequences of labels and choose the label sequence which is most probable given the observation sequence
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input [165]. CRFs find their applications especially successfully in NER and part of speech tagging tasks,

and has been proved to achieve high performances in various NER tasks with biomedical text [166], [167].

3.3.3 Evaluation metrics to assess NER models

Similar to the text classification task, the most common metrics to evaluate performances of NER models are:

Precision, Recall and F1 score. In information extraction context, these metrics can be calculated at different

levels: at the token level and at the full named-entity level. At the token level, the metrics are determined

by comparing predicted labels vs. actual labels of each token in the text using the formula as provided in

section 3.2.3. At the entity level, these metrics need to be calculated in a consideration if a model is able to

identify the exact span of an information item and if it is able to assign the correct entity type. Message

Understanding Conference (MUC) in 1993 introduced new metrics for NER task, which consider different

categories of errors in which these metrics can be defined as in terms of comparing the response of a system

against the ground-truth annotation [168]:

• Correct (COR): both are the same;

• Incorrect (INC): the output of a system and the ground-truth annotation do not match;

• Partial (PAR): system and the ground-truth annotation are somewhat “similar” but not the same;

• Missing (MIS): a ground-truth annotation is not captured by a system;

• Spurious (SPU): system produces a response which does not exist in the ground-truth annotation;

In 2013, The International Workshop on Semantic Evaluation (SemEval) introduced four different ways

to measure precision/recall/f1-score results based on the metrics defined by MUC:

• Strict: the system predicts an entity correctly and the predicted text span is exactly matched with the

ground-truth text span.

• Type: the system predicts an entity correctly and the predicted text span is partially matched with

the ground-truth text span.

Table 3.1 shows examples of how each of the metrics defined by MUC falls into each of the scenarios:

For Strict, Precision and Recall are calculated by the following formula:

Precision = COR
COR+INC+PAR+SPU (3.6)

Recall = COR
COR+INC+PAR+MISS (3.7)
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Table 3.1: Examples of NER evaluation metrics

Golden Standard System Prediction Evaluation Schema
Entity Type Surface String Entity Type Surface String Type Strict
brand warfarin MIS MIS

brand healthy SPU SPU
drug warfarin drug of warfarin COR INC
drug propranolol brand propranolol INC INC
drug phenytoin drug phenytoin COR COR
group contraceptives drug oral contraceptives INC INC

For Type, Precision and Recall are calculated by the following formula:

Precision = COR+0.5∗PAR
COR+INC+PAR+SPU (3.8)

Recall = COR+0.5∗PAR
COR+INC+PAR+MISS (3.9)
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Chapter 4

Automatic extraction of study design

to support evidence quality assessment

In chapter 1 and 2, I have discussed how to use study design as the most basic information to assess

methodological quality of clinical research. This idea mainly derives from the concept of evidence hierarchy

(Figure 1.3) that is well applied in EBM, in which studies are assigned to different levels of evidence quality

based on their designs. Motivated by this possible use of study design, in this chapter, I present an approach

of using NLP and ML to develop a classification model to automatically extract study design from clinical

research and use that information to support clinical study quality assessment. The high-level implementation

of such a model is shown in the diagram below (Figure 4.1), in which the model takes clinical papers as input,

and classifies them into different study designs as outputs. This approach considers study design as the most

coarse-grained level of information for EQA because of two reasons: (1) it can be determined at document

level, which is the highest granularity of information can be determined per paper, and (2) it also helps to

identify more fine-grained criteria applicable for a specific study design. In this chapter, we will present

a development of such study design classification system and its application in the use case of drug-drug

interaction (DDI) literature. More specifically, two classification models were developed and will be presented

in this chapter: a model using Support Vector Machine (SVM) algorithm which was reported in a paper

published in AMIA Annual Symposium 2020 [169] and a poster at Automatic Knowledge Base Construction

conference 2019 [170]; and a deep learning model which is newly developed and only presented in this thesis.
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Figure 4.1: Classification of evidence quality types based on clinical study designs

4.1 Study design to assess evidence quality in drug-drug interaction

literature

Identifying drug combinations that could result in a clinically meaningful alteration to patient safety or

therapeutic efficacy is an important patient care activity, especially given that clinicians are known to have

incomplete knowledge about drug-drug interactions (DDIs) [171], [172]. Computerized alerting systems can

help clinicians by providing relevant reference information and suggestions, intelligently filtered and presented

at appropriate times [173]. Unfortunately, the knowledge bases underlying these systems have long been

known to be incomplete and inconsistent with one another. For example, a recent study by Fung et al. found

that only 5% of 8.6 million unique interacting drug pairs were present in all 3 of the knowledge bases they

included in the study [174].

We refer to individuals who maintain knowledge bases used by clinicians for DDI clinical decision

support as compendium editors. Romagnoli et al. established the workflow of compendium editors which

generally involves 4 main steps: topic identification, evidence search, evidence synthesis, and generating

recommendations [175]. Focusing on the evidence synthesis step, compendium editors tend to evaluate

evidence informally, with no dedicated support from information tools such as reference management software

or databases. Although there exist systematic approaches to evaluate a collection of evidence relevant

to establishing DDIs [176], [177], compendium editors generally reported using heuristic and subjective

approaches to determine when sufficient evidence had been gathered to make a recommendation. Variation

in evidence assessment suggests a potentially important factor underlying the lack of agreement that exists

among different DDI knowledge bases.

Grizzle et al. introduced a guideline, named DRIVE (Drug Interaction eVidence Evaluation), to aid

compendia editors as they assess DDI evidence. The guideline provided six evidence categories considered
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sufficient for establishing the existence of a DDI, in which three of the categories are determined based on

study design of the studies where the evidence comes from. Those include evidence from: well-designed and

executed prospective controlled studies; well-designed and executed observational studies; and

case reports that demonstrate probable or highly probable causality of an interaction [49]. The evidence

categories then can be divided into sub-categories based on more fine-grained study design types. For example,

prospective pharmacokinetic (PK) DDI study types include fixed-order studies, parallel group studies, and

randomized crossover studies; while observational studies use claims or electronic medical records data to

evaluate DDIs using cross-sectional, cohort, case-crossover, or case-control study designs.

Evaluating study design of research in clinical domain in general, and in DDI literature in particular, can

present challenges because the nuances of flawed studies are not always obvious [178]. The research from

Grizzle et al. found that inter-rater agreement on evidence sufficiency among compendia editors is poor

[49]. On the other hand, the editors considered many studies insufficient because of flaws in study design.

Small sample size, lack of transparency in methods, insufficient references to support extrapolations, and no

inclusion of risk factors were a few of the examples cited for problematic study designs. Not all study flaws

were as clearly delineated, as demonstrated by the following comment, “This study design does not allow

you to draw conclusions on causality of DDI” [49]. Among the possible explanations for the finding from

Grizzle’s research is that experts tend to be subjective when assessing an evidence item’s type and study

design. For this reason, we think that a particularly promising future research direction would be using NLP

and machine learning to automatically identify study design of DDI research, which will help experts be more

efficient and objective in assessing DDI evidence from clinical literature.

While bibliographic databases such as MEDLINE include an article publication type, such as RCT

publication type, the annotation is not applied with 100% accuracy or coverage. Studies have found that

only about 85% of articles in MEDLINE considered RCTs for the purpose of systematic reviews are actually

annotated with the publication type “Randomized Controlled Trial” [179], [180]. Because of that, automatic

classification of study design has been a focus from computer scientists who develop tools to support evidence

synthesis. However, those automatic classification models are often developed for biomedical literature

retrieval purposes (e.g. searching for relevant studies for a systematic review), thus mostly are designed

to recognize RCT studies only since this is the most common study design used in systematic reviews and

meta analysis. Recently, Cohen et al. and his team developed a multi-tag machine learning model that

recognizes 50 different publication types, including not only the core study designs of experimental and

observational studies (RCT, cohort studies, case-controlled studies), but also the less common study designs

such as follow up studies, longitudinal studies, etc. [181]. Nevertheless, none of the existing tools are designed

specifically for evidence quality assessment. Therefore, in most cases, the study designs that they covered

are not specific enough for this purpose. For example, most DDI studies in humans compare drug substrate

(D) concentrations with and without the interacting drug (I), thus focusing on the pharmacokinetic type of
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interaction. Therefore, the study designs that are often used for this purpose include: a randomized parallel

group design (D in one group of subjects and D + I in another), a randomized crossover with a washout

period (e.g., D followed by D + I, or D + I followed by D), or a randomized one-sequence crossover (e.g., D

always followed by D + I or the reverse) [182]. These are the more fine-grained design types of RCTs that

typical classification systems designed for retrieval purposes do not capture.

With this in mind, we developed and evaluated a classification system that identifies study designs that

can be used for quality assessment purpose in the DDI literature. Our classification system was developed in

conjunction with an ontology called DIDEO—the Potential Drug-drug Interaction and Potential Drug-drug

Interaction Evidence Ontology, which defines 44 study types used in in vitro and in vivo pharmacokinetic

DDI research [183]. Different from the existing models, by incorporating the study designs defined by the

DIDEO ontology, our model captures not only high level study designs (e.g, RCT) but also low level study

designs (RCT parallel-group) that are applicable for quality assessment purpose.

4.2 Methods

In this section, we will describe the methods to apply NLP models and techniques into the development of

a classification system that identifies study designs and use it for quality assessment purpose in the DDI

literature. Readers might want to refer back to chapter 3 for definitions of the NLP and ML concepts used in

this method section.

We first will introduce the DIDEO ontology which is used as the backbone to develop our classification

system, then we will discuss in details the steps of the development.

The DIDEO ontology is a foundational domain representation that specifies the necessary and sufficient

conditions for 44 study design types that can be used to assess evidence from DDI research using terms

either defined in DIDEO or imported from other formal ontologies [184]. We set out to test machine learning

classifiers that predict 7 of the 44 specific types being reported in a DDI paper (blue boxes in Figure 4.2).

These 7 types were chosen because they are commonly used in in vivo study designs that we thought would

be useful for showing proof-of-concept and identifying requirements for a larger scale study. During the

development of the training corpus for this study, we found a need to create additional types. For example,

for those papers that were annotated as Pharmacokinetic (PK) Trial at the second level but were neither

Genotype PK trial nor Phenotype PK trial at the third level, we labeled them as non-polymorphic

enzyme/transport PK Trial which provides a novel alternative type at the second level. Figure 4.2 also

shows the novel study types that we added (in orange).

The machine learning approach tested in this study was an ensemble of hierarchical classifiers (which

means we combine multiple sub-classifiers into one single hierarchical classifier). This was chosen based on the

observation that there exist multiple logical distinctions between the study designs. For example, participant
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Figure 4.2: Study types hierarchy that was used in the classification system. The blue boxes represent the
portion of DIDEO’s study design type hierarchy that we used in this study. The orange boxes were added to
cover the full range of study types identified in the training corpus. Numbers of papers in the training set for
each category are shown below each box.

randomization is the major distinction between a randomized DDI clinical trial and a non-randomized

DDI clinical trial. Similarly, genetic genotyping is the factor that distinguishes the two polymorphic

enzyme/transport PK trial types. The hierarchical approach is a combination of multiple sub-classifiers– each

is developed to classify a specific pair of study designs, therefore will be able to pick up on the primary

distinguishing features better than a single model that forms the non-hierarchical approach. The development

of the classification system consisted of four main steps:

• Prepare data: This step consists of two sub-steps:

Annotate data: Since our task is the first of it kind, there was no available dataset to train the ML

models that we were developing. Therefore, we manually annotated data from scratch.

Preprocess data: We then preprocessed the annotated data to be ready for ML training and testing.

• Design and develop baseline models: in which we implemented two approaches to develop

classification models: a support vector machine (SVM) classifier and a neural network classifier using

PubMedBERT.

• Evaluation of the baseline models: in which we evaluated performances of the models (sub-classifiers

individually, and hierarchical classifier as the whole) using Precision, Recall and F1; and discussed the

comparison between the two approaches.

• Error analysis in which, we analyzed the wrong predictions of the two models on the testing data

set; and also looked closer to the features used by the SVM model to understand the weaknesses and

strengths of that model.
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4.2.1 Prepare data

The training data set for this study contained 214 papers about DDIs that were systematically collected

by DDI experts during previous knowledge representation research involving 65 drugs [185], [186]. The

papers were manually annotated to assign study design labels from the DIDEO ontology using an annotation

guideline by two experts of DDI literature. The annotation process was repeated to add two additional data

sets that were used for “hold out” testing of the classifiers. One data set contained 32 DDI studies involving

the same 65 drugs as for the training set. The other data set contained 94 papers identified using the same

search strategy used for the other two data sets but focusing on drugs other than the 65 that were the focus

of prior research.

In the pre-processing step, we automatically collected the papers’ metadata, including titles, abstracts

and PubMed publication types through the PubMed API [187]. We also manually collected full-text PDFs of

these papers and converted them to plain text using the PDFMiner Python library [188]. For PDFs that were

scanned images, we manually copied text from the PDFs and saved them as plain text. We then standardized

the plain text files by converting the text into lowercase and removing English stop words from the Natural

Language Toolkit (NLTK) library version 3.4.5 run on Python version 3.7 [189]. We also used MetaMap, a

tool for recognizing biomedical concepts in text [190], to remove all of the drug and enzyme names from the

text as well as regular expression to eliminate numeric strings, including numbers tied with measurement

units. The reason for this is because we want to develop the models to be not limited to specific drugs, so as

to generalizable as much as possible.

4.2.2 Design and development of classification system

To develop the classification system, we implemented two models, each corresponding traditional ML approach

and deep learning approach that we discussed: (1) a model using Support Vector Machine (SVM); and (2) a

model using neural network using pretrained PubMedBERT model. As discussed in chapter 3, we described

how we implemented three components of the classification model including: feature extractor, machine

learning algorithm to train model, and design of the classification model in the following.

Feature Engineering

For the SVM model, the features extracted from the papers included stemmed unigrams taken from the

titles, abstracts, and the Methods sections of the papers. The Methods sections were included based on

our observation during the annotation process that the section often contained information needed to

determine the DDI study design that was not present in the title or abstract. Stemming was applied based

on our observation that many words that experts use to distinguish study designs have the same roots (e.g.

genotyped, genotyping and genotype) and should not be treated by the classification system as different
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features. After the final feature engineering process, our feature space contained 11325 features for the 214

instances, corresponding to the 214 papers in our training set.

For the PubMedBERT model, feature engineering is not required. However, to use the pre-trained BERT

model, we needed to pre-process the data in the same way it was trained. Figure 4.3 shows the input

representation in PubMedBERT. To get the input ready for the PubMedBERT model, we transformed the

original text through the following steps: (1) tokenize the input sequences; (2) insert [CLS] at the beginning;

(3) insert [SEP] between each pair of sentences; (4) generate segment ids to indicate whether a token belongs

to the first sequence or the second sequence; and (5) generate valid length depending on the max sequence

length that our model accepts. We used the pre-trained PubMedBERT base-uncased-abstract-fulltext version

to obtain initial embeddings for the inputs.

Figure 4.3: The input representation of BERT-variant models, including PubMedBERT [7]

Machine learning algorithm

We built a SVM model with linear kernel and applied class weights for balanced training data. The class

weights was applied because we had an imbalanced data sets and some labels had very low number of examples

(e.g. the number of articles that belong to ”DDI clinical trial” group is much higher than the number of

articles in the ”Pharmacokinetic Trial” group). The class weights helps to penalize the mis-classification

made by the minority class by setting a higher class weight and at the same time reducing the weight of the

majority class. We used scikit-learn library1 to implement this model.

The neural network model was essentially a fine-tuned model. Specially, we kept all layers of the original

PubMedBERT model (as discussed in chapter 3), and only added a fully-connected linear layer with softmax

to perform the classification task as the last layer of the model. During the training process, the weights

from all the layers we kept from our original model will stay the same, and only the weights in our new layer

was being updated. The model was trained with different set of hyper-parameters. However, here we only

reported the one that achieved best performances: batch size (4), learning rate (1e-5), number of epochs (20),

optimizer (Adam), and max sequence length (512). We used Huggingface library2 to implement this model.

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
2https://huggingface.co/docs/transformers/model doc/bert
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Classification system design

The design of our classification system is shown in Figure 4.4. Corresponding to the hierarchy of study designs

from the DIDEO ontology, our classification system is a combination of five sub-classifiers, each designed as

a binary classifier that distinguished a specific pair of study design, hierarchically divided into three levels.

Input of the whole hierarchical classification system will be DDI clinical papers. As the papers go through

different sub-classifiers of the hierarchy at different levels, they will be given predicted study designs that

belong to the corresponding level where they are at. The prediction results of the higher level sub-classifiers

will decide which branch in the hierarchy a particular paper should go next. Subsequently, when the paper

reaches to the lowest level of the hierarchy, the paper will be predicted with a final study design that belong

to the lowest level.

Figure 4.4: Design of the hierarchical classifier.

In both models, we use the same implementation setup, in which we use 5-fold cross-validation to randomly

split the train and test sets to develop the sub-classifiers in order to prevent over-estimation of the classification

system’s accuracy. More specifically, in each cross-validation iteration, data was randomly split into a training

set and a testing set. All papers in the training dataset were used to train and test the top-level sub-classifier.

A subset of the training set from the top-level classifier was passed down to and used to train the next lower

level sub-classifiers following a particular path in the hierarchy. Similarly, a subset of the testing set from the

top classifier was used to test the next level sub-classifiers. This process was repeated until the sub-classifiers

at the lowest level were trained and tested.
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4.2.3 Evaluation of the classification system

We used Precision, Recall, F1 and AU-ROC metrics to evaluate performances of each sub-classifier and the

hierarchical classifier as a whole. These metrics were calculated based on the predictions of each sub-classifier

at each level against the actual labels of the papers at the same level. The four metrics were calculated in each

sub-classifier for each cross-validation iteration. We then calculated the average of each metric, by dividing

their sum by the number of cross-validation iterations (five). To take into account the hierarchical classifier

structure, we supplemented these metrics with hierarchical precision, hierarchical recall, and F1 metrics for

hierarchical classification systems [191]. We describe this in more detail in the next paragraph. The weighted

average of the hierarchical classifier was calculated by dividing the sum of the hierarchical metrics by the

number of cross validation (5 of them). After training the hierarchical classifier, we evaluated its performance

on the two held-out data sets mentioned above. The hierarchical metrics aggregate the predictions of all

sub-classifiers for every single data point into their formula [191]. For example, suppose that an instance is

classified into the label “Non RCT non parallel DDI Clinical trial” while its actual label is “Non RCT parallel

DDI Clinical trial” (Figure 3.3). To calculate our hierarchical measure, we extend the set of real labels:

Actual Label = “Non RCT parallel DDI Clinical Trial” with all its ancestors: Actual Labels’ =

“Non RCT parallel DDI Clinical Trial”, “Non RCT DDI Clinical Trial”, “DDI Clinical Trial”.

We also extend the set of predicted labels:

Predicted Label = “Non-RCT non-parallel DDI Clinical Trial” with all its ancestors: Predicted

Label’ = “Non-RCT non-parallel DDI Clinical Trial”, “Non RCT DDI Clinical Trial, “DDI

Clinical Trial”.

Then, the hierarchical precision (hP), recall (hR) and F1 (hF) score were calculated based on the extended

label sets as following:

hP = {ActualLabels}′∩{PredictedLabels}′
{PredictedLabels}′ (4.1)

hR = {ActualLabels}′∩{PredictedLabels}′
{ActualLabels}′ (4.2)

hF = (β2+1).hP.hR
(β2.hP+hR) (4.3)

In which, β = 1 giving precision and recall equal weights.

According to these formulas, the number of correctly assigned labels for this instance from the extended

set would be the union of the actual labels and the predicted labels, which is 2, instead of 0. This approach

reduces the penalty for mis-classification when the predicted label is “near” the actual label in the hierarchy.
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Error Analysis

To better to understand how the models worked and what are the potential improvements that we can make

in the future, we further analyzed the SVM model because it allows us to look into the features used by the

model to make predictions. Specifically, we obtained insight into the SVM model’s behavior by examining the

most informative features (unigrams) that were associated with each study design as ranked by a Pearson’s

Chi-squared statistical test. We also further ran the SVM model on the set of 32 papers what are about

different drugs, and compared the results between the hierarchical approach with non-hierarchical approach (a

single classification that classifies all labels at the same level). We then looked at the papers that were given

wrong predictions by the hierarchical classification system on the held-out data sets and analyzed the papers’

titles, abstracts and Method sections in order to identify the possible reasons for the wrong predictions.

4.3 Results of automatic classification

4.3.1 Classification Performance

SVM model

Table 4.1 reports the sub-classifiers’ prediction performance on the training data set using SVM. According

to the results, all sub-classifiers in the hierarchy achieved average F1 scores, ranging from 0.77 to 0.87. The

two sub-classifiers that have the highest performances are Randomized vs. Non-randomized DDI clinical

trial classifier, and Genotyped vs. Phenotype PK trial. The classifier that has the lowest performance is

the one that distinguishes polymorphic vs. non-polymorphic enzyme/transport PK trial. Randomized vs.

non-randomized clinical trial classifier has a relative balanced performance between Precision and Recall,

while other sub-classifiers yields larger differences between the two metrics.

PubMedBERT model

Table 4.2 reports the sub-classifiers’ prediction performance on the training data set using PubMedBERT.

According to the results, all sub-classifiers in the hierarchy achieved average F1 scores range from 0.87

to 0.96 which are higher than the performances of the SVM model. Comparing with the SVM model,

the PubMedBERT model especially achieved much higher performances in the cases that have limited

number of training data. Those are: the sub-classifier that distinguishes Polymorphic vs. Non-polymorphic

enzyme/transport PK Trial (F1 scores are 0.77 vs. 0.88 for SVM vs. PubMedBERT respectively); and the

sub-classifier that distinguishes Genotyped PK Trial vs. Phenotype PK Trial (F1 scores are 0.87 vs. 0.96 for

SVM vs. PubMedBERT respectively).

Table 4.3 shows the performance of the SVM hierarchical classifier and the PubMedBERT classifier as a

whole with the two held-out testing data sets. Overall, the PubMedBERT model achieved better results than
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Table 4.1: Hierarchical classification system performance with 5-fold cross validation using SVM. Shown is
the performance of each individual classifier at each level in the evidence hierarchy

Level Sub-classifier
Average

AUC ROC
Average
Precision

Average
Recall

Average
F1

1
DDI Clinical Trial

vs. Pharmacokinetic Trial
0.79 0.87 0.87 0.86

2
Randomized

vs. Non-randomized
DDI Clinical Trial

0.87 0.89 0.88 0.87

2
Polymorphic

vs. Non-polymorphic
enzyme/transport PK Trial

0.78 0.79 0.77 0.77

3
Non-randomized parallel

vs. Non-randomized non-parallel
DDI Clinical Trial

0.78 0.87 0.85 0.85

3
Genotyped PK Trial vs.

Phenotype PK Trial
0.78 0.92 0.88 0.87

Table 4.2: Hierarchical classification system performance with 5-fold cross validation using PubMedBERT.
Shown is the performance of each individual classifier at each level in the evidence hierarchy

Level Sub-classifier
Average

AUC ROC
Average
Precision

Average
Recall

Average
F1

1
DDI Clinical Trial

vs. Pharmacokinetic Trial
0.79 0.88 0.88 0.88

2
Randomized

vs. Non-randomized
DDI Clinical Trial

0.88 0.90 0.90 0.89

2
Polymorphic

vs. Non-polymorphic
enzyme/transport PK Trial

0.89 0.92 0.88 0.88

3
Non-randomized parallel

vs. Non-randomized non-parallel
DDI Clinical Trial

0.80 0.87 0.88 0.87

3
Genotyped PK Trial vs.

Phenotype PK Trial
0.80 0.97 0.96 0.96

the SVM classifier in both testing sets. Individually, the SVM classifier achieved much better results with the

data set about the same drugs as training data, compared with the data set about different drugs, especially

in Recall. Similarly, the PubMedBERT model achieved significantly better results with the data set about

the same drugs.

4.3.2 Error Analysis

To better to understand how the models worked, we further analyzed the SVM model because it allows

us to look into the features used by the model to make predictions. More specifically, we printed out the

most informative features (unigrams) used by the SVM model associated with each study design, ranked

by Chi-square scores. We found that study designs that have terms strongly associated with them are
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Table 4.3: Classification performance of the hierarchical classifiers, SVM and PubMertBERT, on the two
held-out datasets

Dataset
Hierarchical

SVM
Hierarchical

PubMedBERT
Precision Recall F1-score Precision Recall F1-score

Performance on the
held-out 32 papers
about the same drugs
as in the training set

0.80 0.86 0.83 0.92 0.92 0.92

Performance on the
held-out 94 papers
about entirely
different drugs than
in the training set

0.81 0.51 0.63 0.71 0.71 0.71

Table 4.4: Examples of the common unigrams used by SVM model between different study designs and
their rankings

Ancestor study type
Study
Type

Examples of features and their ranks
(unigrams in stemmed format)

DDI Clinical Trial Randomized
Placebo (rank 7), random (rank 26),
crossov (rank 24), doubl (rank 61),
blind (rank 64), Pharmacokinetic (rank 1149)

Non-randomized
non-parallel

Placebo (rank 26), random (rank 84),
crossov (rank 807), doubl (rank 317),
blind (153), Pharmacokinetic (rank 3807)

Non-randomized
parallel

Placebo (rank 579), random (rank 3898),
crossov (rank 166), doubl (rank 1670),
blind (847), Pharmacokinetic (rank 7518)

PK Trial
Non-polymorphic
enzyme/Transport

Pharmacokinetic (rank 580), phenotyp (rank 389),
genotype (rank 84)

Genotyped
Pharmacokinetic (rank 398), phenotyp (rank 1218),
genotype (rank 1)

Phenotype
Pharmacokinetic (rank 182), phenotyp (rank 49),
genotype (rank 1394)

easier to predict. For example, “Randomized DDI clinical trial” has terms related to this study design,

including “random”, “double”, “blind”, while “Genotyped PK Trial” has terms related to drug metabolism

and excretion, including “genotype” and “polymorphism”. Another observation is that certain unigrams are

highly correlated with some of the study designs but not others, based on their Chi-square score ranking. For

example, the “random” unigram and its variants (e.g. randomis, nonrandom) were given higher Chi-square

scores and thus is more highly relevance ranked for RCT DDI Clinical Trial than any other types. In contrast,

while the “genotyp” unigram was ranked as the most important unigram for Genotype evidence, it was ranked

as less important for the others. Similarly, the “phenotyp” unigram is one of the top relevant unigrams for

Phenotype , but not for Genotype . Table 4.4 shows the list of study design-associated features and their

corresponding ranks in each study design.

We continued the error analysis by looking at the incorrect predictions of the SVM on the held-out 32

65



papers. Two examples are shown in Table 4.5. We found that the unigram features are not sufficient to

assist the hierarchical classifier in making correct predictions in some cases where the study designs should be

determined based on the whole context rather than single words. For example, in the first example of Table

4.5, the actual label is “Non RCT parallel group DDI trial”, however, there are no mentions of “parallel” in

the text. Instead, the authors described the parallel design differently by using phrases such as “simultaneous

and time-separated administration” and “in two treatment groups”. In the second example in Table 3.4,

the classifier’s incorrect prediction of “RCT DDI Trial” was likely caused by the “doubl”, “blind” and

“random” unigrams which are among the most informative features for the RCT DDI Trial study design.

However, in this case, they occur in the context of describing a population pharmacokinetics study rather

than a DDI study.

Table 4.5: Examples of incorrect predictions of the hierarchical classifier on the held-out 32 papers

Actual
study design

Predicted
study design

Sample text from the paper

Non RCT parallel
DDI Trial

Non RCT
non
parallel
DDI Trial

Title: “Almorexant effects on CYP3A4 activity studied by its
simultaneous and time-separated administration
with simvastatin and atorvastatin.”

Abstract: “. . . To characterise further the previously
observed cytochrome P450 3A4 (CYP3A4) interaction
of the dual orexin receptor antagonist almorexant.
Pharmacokinetic interactions were investigated
(n = 14 healthy male subjects in two treatment groups)
between almorexant at steady-state when administered
either concomitantly. . . ”

Non polymorphic
enzyme transport
PK Trial

RCT
DDI Trial

Title: “Population pharmacokinetics and pharmacodynamics
of rivaroxaban–an oral, direct factor Xa inhibitor
in patients undergoing major orthopaedic surgery.”

Abstract: “. . . This analysis was performed to characterize
the population pharmacokinetics and pharmacodynamics
of rivaroxaban in patients participating in two phase II,
double-blind, randomized, active-comparator studies
of twice-daily rivaroxaban for the prevention of venous
thromboembolism after total hip- or knee-replacement surgery. . . ”

We also compared the prediction results of the SVM model vs. the PubMedBERT model on the data set

of different drugs. We found that the PubMedBERT model performed much better than the SVM model

in the cases that textual distinction is clear as shown in an sample in Table 4.6. For example, “Genotyped

PK Trial” vs. “Phenotyped PK Trial” is the sub-classifier that the PubMedBERT model achieved highest

performance during cross-validation training process (F1 = 0.96). This trend continues with the testing set

of different drugs, in which, out of 19 “Genotyped PK Trial” in the testing set, the PubMedBERT model

predicted correctly 9; while the SVM model only predicted correctly 3. Looking at the text of these 19 trials,

we found that popular keywords of genotyped studies such as “pharmacokinetic” or “genotype” appear in
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Table 4.6: Example of SVM prediction vs. PubMedBERT prediction

Actual Study Design Genotyped PK Trial
SVM Predicted
Study Design

DDI Randomized clinical trials

PubMedBERT
Predicted
Study Design

Genotyped PK Trial

Title
Comparison of lansoprazole and famotidine for gastric acid
inhibition during the daytime and night-time in different
CYP2C19 genotype groups

Abstract Fifteen healthy volunteers were given 20 mg famotidine twice a day

Methods Section
All subjects were first given a placebo dose in order to
obtain the control or baseline 24-h intragastric pH data
.... in a randomized, crossover manner for two separate 8-day periods...

all 19 trial (this aligned with the unigrams analysis that we performed above). However, at the same time,

common keywords of “DDI clinical trials” such as ”random”, “healthy volunteers”, or “crossover” also appear

in 9 trials as shown in the example below. The SVM model made incorrect predictions for these articles. This

can be interpreted as PubMedBERT taking the context surrounding keywords into account more successfully.

4.3.3 Discussion on the classification results

The results of both SVM and PubMedBERT models suggest that it is feasible to accurately automate the

classification of a subset of DDI study designs. They also suggest that the hierarchical ensemble approach we

tested based on the DIDEO evidence is a promising approach to build upon in future work. To our knowledge,

this is the first study to test a hierarchical approach for classifying DDI clinical studies into highly specific

evidence types based on study designs. A 2020 study on extracting evidence of drug repurposing classified

studies into more basic evidence types such as “Pre-clinical” (F1 = 0.96), “Clinical observational study” (F1

= 0.84), and “Clinical trial” (F1 = 0.80) [192]. Another study in the same topic was published by Cohen et

al. in 2021, in which the authors present a machine learning model that classifies 55 different publication

types and study designs [181]. While both studies target broader sets of articles, our study focused on a more

fine-grained detailed set of evidence types at lower levels of the evidence type ontology. While further work

will be necessary to expand the classifiers to in vitro evidence types, this study is an important step towards

more sophisticated computer support for DDI evidence synthesis.

Our study has several potential limitations. The training and held out datasets were relatively small.

To overcome this problem, we need to obtain and have experts annotate more data. Alternatively, a

computational approach to increasing the annotated data would be to semi-automatically collect and label

the data using techniques such as rule-based distant supervision [193]. Each modeling approach has its own

limitation and can be improved. For example, the SVM model used all features (unigrams) to train all of

the sub-classifiers regardless of which labels they were predicting. In the future, developing different feature
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selection strategies tailored to different sub-classifiers could be helpful, because in the error analysis, we found

that some specific words and phrases (especially the ones indicating study design) are more important for

some labels than others. As for the PubMedBERT model, we only fixed the learning rates. Using warmup

learning rate schedule and trying out adaptive learning rate might help to improve the performances.

4.4 Summary of the chapter

In this work, drawing on an existing ontology of evidence types, DIDEO, we built a hierarchical classifier,

which combined a series of sub-classifiers to categorize evidence types of DDI studies based on their study

designs. In the future, such an automatic classification system could be a key component of a computerized

system to help experts be more efficiently assess DDI evidence. Similar NLP approach could be developed

to distinguish different study designs, beyond DDI literature, as the most coarse criteria to assess evidence

quality of clinical studies in general. For example, a hierarchical classification model could be developed to

classify study designs beyond the ones included in this study. And the output of such a model can help to

determine what fine-grained information needs to be extracted for evidence quality assessment.
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Chapter 5

Automatic reporting quality

assessment of randomized clinical

trials using CONSORT guidelines

In Chapter 1 and 2, we discussed the two aspects to assess quality of a clinical study: methodological

quality and reporting quality. In Chapter 4, we presented an NLP approach to extract study designs as the

most coarse-grained information to support EQA, mainly from methodological quality standpoint. In this

chapter, we will focus on reporting quality and seek to classify randomized controlled trial result publications

at finer granularity to allow their assessment for compliance with the CONSORT guidelines, a checklist

recommended by many clinical journals. In particular, we used NLP and ML to develop a classification model

that automatically maps sentences in full-text RCT publications to the information items recommended in

the CONSORT guidelines. The high level implementation of such a model is shown in the diagram below

(Figure 5.1), in which the model takes sentences from RCT publications as input, and classifies them into

different information items recommended from reporting guidelines as outputs. Outputs of such a model will

be helpful for quality assessment purpose in several ways: (1) it helps to assess compliance of authors with

the guidelines, which is the most efficient way to assess reporting quality of a research, (2) by highlighting

relevant methodological information at sentence level (since many CONSORT items are about methodology),

this paves the way for more fine-grained automated analysis of methodological quality assessment in Chapter

6. The content of this chapter is based on a journal article in Journal of Biomedical Informatics [194], a

conference publication in AMIA Informatics Summit 2022 [195], and a poster presented at the AMIA Annual

Symposium 2020 [196].
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Figure 5.1: Classification of CONSORT Items from RCTs

5.1 Current practices of reporting quality assessment and NLP

support

In Chapter 1, we briefly introduced the CONSORT Statement, which is an evidence-based, minimum set of

recommendations for reporting RCTs. The statement comprises two components: a 25-item checklist (called

the CONSORT checklist), which focuses on reporting how the trial was designed, analyzed, and interpreted;

and a flow diagram, which is designed to display the progress of all participants through the trial. In chapter

2, we also discussed how the CONSORT checklist has been used as a guideline to facilitate the process of

assessing RCT reporting quality. In this section, we will look deeper into that practice, to understand how

researchers and other stakeholders leverage the existing reporting checklists such as CONSORT to assess

reporting quality of clinical studies, as well as the existing NLP and ML research that have been developed

to automate such process.

Using reporting guidelines to assess reporting quality of clinical studies is a well established practice

and being applied in many quality assessment studies for a couple of decades [197]–[200]. Since RCTs are

considered as gold standard for evaluating the effectiveness of interventions due to their potential to limit all

sorts of bias, the CONSORT checklist is the most commonly used and recommended by journal editors. For

example, in a survey of the editors from 165 high impact journals, Hopewell et al. in 2008 found that 88% of

journals recommended authors comply with the CONSORT Statement, in which 62% said they would require

authors using the statement as reporting mandate [201]. The use of CONSORT checklist has been shown to

enhance the reporting quality of RCTs [202]. In an analysis of reporting quality in RCTs after adoption of

the CONSORT statement, Kane et al. found that the CONSORT guideline helped to improve in all aspects

of RCT reporting significantly and consistently when they were implemented [202]. Nevertheless, despite

the importance and extensive applications of the CONSORT checklist into the current quality assessment

practices, the process of cross-checking information reported in clinical publications against information

items recommended in CONSORT checklist is still done manually. For example, in one of the most recent

meta-research studies to examine the reporting quality and transparent research practices, Schulz et al.
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2022 used checklist items from CONSORT as criteria to assess methods and results reporting quality of

sports medicine and orthopaedic clinical trials [203]. In this study, assessors/reviewers needed to manually

extract methodology-related information from full-text articles and compared with criteria recommended in

CONSORT [203], which makes the process time-consuming and hard to scale.

From technical standpoint, NLP and ML can be applied to develop a system that mimic the current

assessment practices by automatically mapping information items recommended from the checklist with

sentences from full text clinical papers. In fact, in the same meta-research study, Schulz suggested automated

screening tools may efficiently flag missing information for assessors. However, the authors also pointed out

that most of the existing tools are available to screen for risk of bias (such as RobotReviewer), and there

is much less focus on tools that leverage reporting checklists to extract reporting quality criteria that can

assist assessors in quality assessment task [203]. In a another screening study to assess reporting quality of

COVID-19 preprints, Weissgerber et al. used variety of tools that help to automate the screening process

[204]. Those are SciScore, an automated tool that evaluates research articles based on their adherence to key

rigor criteria [205]; ODDPub, a text mining model to detect data sharing in biomedical publications [206];

JetFighter, a screening tool for preprints which use color maps to improve data presentation [207], and an

automatic recognition model of self-acknowledged limitations from clinical trials [208]. However, none of these

tools considers the use of reporting checklists as a comprehensive guideline for automatic quality assessment

(except the limitation recognition model, which covers one information item –”limitation”, recommended

in the CONSORT checklist [208]). In a study to assess quality of 176,620 RCTs (including methodological

quality via risk of bias assessment and reporting quality via checking reporting compliance), the authors used

a very simple approach– searching for the “CONSORT” keyword in the full-text publications [209] and used

that as an indication for reporting quality, e.g. article that mentioned CONSORT keyword in the full text was

assumed to be complied with the guideline. Motivated by the opportunity to leverage CONSORT checking

to automate quality assessment process, we developed a classification model to recognize information items

recommended in the CONSORT checklist from full-text clinical articles as described in the following sections.

5.2 Methods

From technical standpoint, we cast the problem of associating sentences with CONSORT items as a sentence

classification task. Readers might need to refer to the NLP and ML preliminaries in chapter 3 for details of

models, techniques, as well as evaluation metrics that we used for the classification model development in

this chapter.

We limit the experiment to the text that was taken from Methods sections of RCT papers and try to map

them with methodology-related CONSORT items which cover the key methodological details most relevant

to trial methodological quality. The reason is because, in general, Methods are the major focus of studies of
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reporting quality as well as rigor and replication/reproducibiliy. Also, almost half of the CONSORT items

are methods-related. In addition, Output of this work could be used to support the development of later

research in chapter 5, in which we look at fine-grained methodological characteristics of RCTs that can be

used for methodological quality assessment. As a result, in this work, we focus on 17 specific information

items that are associated with the trial methodology in the CONSORT checklist as shown in Table 5.1.

Table 5.1: List of information items from CONSORT checklist that are used as label outputs of our
classification system

Section/Topic
Item

Number
Item Description

Trial design 3a
Description of trial design (such as parallel, factorial)
including allocation ratio

3b
Important changes to methods after trial commencement
(such as eligibility criteria), with reasons

Participants 4a Eligibility criteria for participants
4b Settings and locations where the data were collected

Interventions 5
The interventions for each group with sufficient details to
allow replication, including how and when they were actually
administered

Outcomes 6a
Completely defined pre-specified primary and secondary outcome
measures, including how and when they were assessed

6b Any changes to trial outcomes after the trial commenced, with reasons
Sample size 7a How sample size was determined

7b Explanation of any interim analyses & stopping guidelines
Randomization:
Sequence
generation

8a Method used to generate the random allocation sequence

8b Type of randomisation; details of any restriction
Randomization:
Allocation
concealment
mechanism

9
Mechanism used to implement the random allocation sequence
(such as sequentially numbered containers), describing any steps
taken to conceal the sequence until interventions were assigned

Randomization:
Implementation

10
Who generated the random allocation sequence, who enrolled
participants, and who assigned participants to interventions

Blinding 11a
If done, who was blinded after assignment to interventions
(for example, participants, care providers, those assessing outcomes)
and how

11b If relevant, description of the similarity of interventions
Statistical
methods

12a
Statistical methods used to compare groups for primary
and secondary outcomes

12b
Methods for additional analyses, such as subgroup analyses
and adjusted analyses

Similar to the work in chapter 3, the development of the classification model contains 4 main steps:

• Prepare data: since our task is the first of it kind, there was no available dataset to train ML models.

We built models based on a dataset that had already been annotated by experts involved in the study.

• Design and develop baseline models: in which we implemented two baseline classification models
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corresponding to each of the machine learning approaches: a traditional ML model using support vector

machine (SVM); and a deep learning model using BioBERT.

• Evaluation of the baseline models: in which we evaluated the performances of baseline models

using Precision, Recall and F1; and provide a comparison between the two models.

• Improvement of baseline models using automatic labeled data: in which we tried to address a

limitation of the baseline models (their small training data set). In particular, we attempted to improve

the baseline models by applying weak supervision to automatically generate labeled data that can be

used for training models.

5.2.1 Prepare Data

To develop the classification model, we used the data set which was manually annotated by the co-authors in

an annotation study conducted prior to the development of the classification system. We referred to this

data set as CONSORT-TM. In the scope of this thesis, we will only briefly introduce the data set, and will

focus more on model development.

The data set contained 50 articles from 11 journals annotated with the full-list of 37 items from the

original CONSORT guidelines. The 50 RCT papers were annotated by an annotation team of six. A subset

(31 articles) was double-annotated and adjudicated, while 19 were annotated by a single annotator and

reconciled by another. The annotators annotated each sentence in every article with the relevant CONSORT

items (or none). Inter-annotator agreement was measured at article level using the Measuring Agreement on

Set-Valued Items (MASI), which is a distance metric to quantify the degree of similarity across annotations

[210], and at checklist item level using Krippendorff’s alpha, which is a reliability coefficient to measure the

agreement among observers [211]. The inter-annotator agreement at both levels was moderate (mean MASI =

0.60, median = 0.63; and average Krippendorff alpha = 0.47). After the annotation study, the corpus contains

over 10K sentences, 45% of which were annotated with CONSORT checklist items (all were considered). In

the end, the CONSORT-TM data set was created with a total of 10,709 sentences, 4,845 (45%) of which

were annotated with 5,246 labels. About 6.5% of the annotated sentences were annotated with multiple

CONSORT items. An example of a sentence labeled with multiple CONSORT items is “After screening,

patients were randomised to bosentan or placebo (1:1 ratio) by sequential allocation of randomization

numbers distributed to each center in blocks of four”. This item was annotated with items 8a and 8b

since it indicates both information: method used to generate the random allocation sequence and type of

randomisation (highlighted in bold). Since we only focus on 17 methodology-related information items, only

sentences that belong to the Methods sections were used for development. This resulted into a corpus with

total of 2,564 sentences.

73



5.2.2 Develop baseline models

Since there are sentences which were annotated with more than one CONSORT item in our data set, the

classification model was built as a multi-label classifier. Two ML models were developed: a SVM model and

a BioBERT model. Similar to the classification model development in Chapter 4, the process included 3 main

steps: feature engineering, ML algorithm and classification model.

Feature Engineering

The SVM model used the following features: tf-idf representations of unigrams of the sentence and the

enclosing subsection header. More specifically, the section header was prepended to the sentence and included

in TF-IDF calculation. The reason we included section headers as features is because the Methods sections

of RCT papers often contain sub-sections, each often describing different aspects of the RCT methodology

such as inclusion and exclusion criteria, randomization or statistical methods. Therefore, the section headers

can be strong indicators that help to classify sentences (e.g. sentences which appear in “randomization”

sub-section of the “methods” section are likely to map to CONSORT items related to randomization such as

8a, 8b, 9 or 10). We excluded common English words using the NLTK stopword list.

As for the deep learning model, we used BioBERT, another variant of the original BERT language model

as a pre-trained model of our classifier. BioBERT has the same architecture as the original BERT model,

and was also trained on PubMed abstracts and PubMed Central full-text articles as PubmedBERT. The

main difference between BioBERT vs. PubmedBERT is that PubMedBERT was trained on a larger set of

biomedical corpora, which contains total 16.8 billion words and it was trained from scratch; while BioBERT

was trained on a slightly smaller corpora which contains total 13.5 billion words and used the original BERT

weight initialization. Even though, it is known that PubMedBERT is able to obtain consistent gains over

BioBERT in most tasks [158], by the time this project was developing, PubMedBERT was not released

yet, therefore, we used BioBERT as the state-of-the-art language model at that point. To use pre-trained

BioBERT, we also transformed original text into the input representation of BERT model (which contained

three components: token embeddings, section embeddings and position embeddings) as described in Chapter

4.

Machine learning algorithm and classification model

Similar to SVM model in Chapter 4, the SVM model was linear kernel. We also used the LIBLINEAR SVM in

the scikit-learn package to implement this. C regularization parameter was set to 10 after a grid search. The

classifier was embedded into a one-vs-rest classifier to enable prediction of multiple labels for each sentence.

As for the BioBERT model, sentence text and its subsection header were fed as input to the BioBERT

encoder, whose output was then used to train the final sigmoid layer for multi-label classification. We used
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the simpletransformers package1 to implement multi-label text classification. The following hyperparameters

were used for model training and evaluation: batch size (4), learning rate (3e-5), number of epochs (30),

optimizer (Adam), dropout (0.1).

5.2.3 Results of baseline models

The results of the experiments with two methods (SVM and BioBERT) are shown in Table 5.2. Overall, the

BioBERT-based model performed better in the majority of categories (average 0.82 precision, 0.63 recall,

0.72 F1 score). This model performed particularly well for items with larger numbers of annotations, such

as Interventions (5), Primary and Secondary Outcomes Measures (6a), Statistical Methods (12a). However,

it performed poorly for rare items yielding no correct predictions for several items, such as Changes to

Trial Outcomes (6b), Interim Analyses and Stopping Guidelines (7b), Allocation Concealment (9) which

led to its lower macro-averaged performance, compared to macro-averaged performance of the linear SVM

classifier. The results based on model combinations are provided in Table 5.3. We only provide the micro-

and macro-averaged results for these combinations. The SVM and BioBERT model combination (SVM +

BERT) improves upon the best base model by about 2 F1 points (0.72 to 0.74).

5.2.4 Discussion on the baseline results

Both models, SVM and BioBERT, achieved better performances for common checklist items such as

Intervention (5), Primary and Secondary Outcomes (6a), and Statistical Methods (12a) comparing with

the rare items. This suggests the need for large quantities of labeled data for training effective supervised

machine learning models. We found that approaches that combine predictions from different models can also

improve classification performance. We used standard settings for supervised learning, and it may be possible

to achieve better performance with more advanced features or modeling approaches [155]. In the case of

SVM classification, we experimented with semantic features derived from MetaMap [212] (entities and their

semantic types extracted from sentences). Semantic types feature slightly improved results, although not

statistically significantly. However, this approach could be explored further using more sophisticated methods.

In another approach, we can cast the problem as a sequence labeling task, leveraging the fact that discussion

of items often follows a predictable sequence (e.g., Methods sections generally begin with Study Design

sentences). In training the BioBERT-based model, a simple sigmoid layer was used on top of the BERT

encoder for classification, which can be substituted by more layers or a more complex neural architecture,

such as convolutional or recurrent neural network (CNN or RNN) for higher classification performance. Note,

however, that the BioBERT model is already much more complex than and takes orders of magnitude longer

to train than the SVM classifier (hours vs. seconds). Improvements due to additional layers or architectural

features may not be sufficiently large to justify the added complexity. Overall, our preliminary results were

1https://simpletransformers.ai/
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Table 5.2: Classification results per CONSORT Items from SVM model vs. BioBERT model. 3a: Trial
Design; 3b: Changes to Trial Design; 4a: Eligibility Criteria; 4b: Data Collection Setting; 5: Interventions;
6a: Outcomes; 6b: Changes to Outcomes; 7a: Sample Size Determination; 7b: Interim Analyses/Stopping
Guidelines; 8a: Sequence Generation; 8b: Randomization Type; 9: Allocation Concealment; 10: Randomiza-
tion Implementation; 11a: Blinding Procedure; 11b: Similarity of Interventions; 12a: Statistical Methods for
Outcomes; 12b: Statistical Methods for Other Analyses.

CONSORT
Item

Number of
instances

SVM BioBERT

Precision Recall F1 Precision Recall F1
3a 67 0.70 0.58 0.62 0.93 0.49 0.63
3b 10 0.00 0.00 0.00 0.00 0.00 0.00
4a 160 0.87 0.60 0.70 0.90 0.82 0.85
4b 39 0.88 0.46 0.59 0.8 0.24 0.36
5 269 0.66 0.5 0.56 0.76 0.69 0.72
6a 655 0.74 0.64 0.69 0.84 0.78 0.81
6b 6 0.00 0.00 0.00 0.00 0.00 0.00
7a 113 0.93 0.70 0.79 0.88 0.80 0.84
7b 16 0.80 0.64 0.70 0.00 0.00 0.00
8a 43 0.92 0.64 0.74 0.86 0.26 0.38
8b 49 0.67 0.46 0.54 0.71 0.29 0.38
9 22 0.28 0.19 0.22 0.00 0.00 0.00
10 57 0.68 0.25 0.36 0.72 0.15 0.24
11a 57 0.84 0.45 0.58 0.77 0.29 0.42
11b 18 0.20 0.13 0.16 0.00 0.00 0.00
12a 269 0.72 0.64 0.67 0.75 0.76 0.75
12b 72 0.32 0.13 0.17 0.05 0.03 0.04

Micro - 0.74 0.56 0.64 0.82 0.63 0.72
Macro - 0.60 0.41 0.48 0.52 0.33 0.38

Table 5.3: Results of combining SVM and BioBERT models

Model Micro-average Macro-average
Precision Recall F1 Precision Recall F1

SVM 0.74 0.56 0.64 0.60 0.41 0.48
BioBERT 0.82 0.63 0.72 0.52 0.33 0.38

SVM + BioBERT 0.73 0.74 0.74 0.67 0.50 0.54

encouraging, although it is clear that there remains much room for improvement. Performance for several

items may be acceptable for practical use (e.g., Eligibility Criteria, Sample Size Determination), whereas

more work is needed for others.

A limitation of this study is that our data set consists of a small number of publications from 11 journals,

which may not be representative of all RCT articles and also prevent us from improving the neural network

approach which often requires a large amount of data to enhance the performance. However, manual

annotation at sentence level takes a tremendous amount of time and human effort. In addition, our results

show that the current text mining methods can recognize CONSORT items that are commonly reported

with relative success, whereas they struggle with those items that are not commonly reported. To address

this limitation, in the next section, I will present an extension of this work, in which, we explored weak
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supervision to automatically annotate a larger number of clinical trial publications using simple heuristic

rules and then use the resulting (somewhat noisy) data with the goal of training more effective classifiers,

reported in the next section [193].

5.3 Improving baseline models with automatic labeled data gener-

ated by weak supervision

Considering the high cost and time demands of annotation and the need for large amounts of annotated data

for training effective machine learning models, methods to automatically assign (somewhat noisy) labels to

unlabeled data have been proposed. One well-known technique of weak supervision is distant supervision,

originally proposed for relation extraction [193]. It is based on the assumption that any sentence that contains

a pair of entities that participates in a known relation in a knowledge-base is likely to express that relation in

some way. Similar approaches have been applied in biomedical text mining, as well. For example, Marshall

et al. used risk-of-bias judgements as well as related text snippets that those judgements are based on in

the Cochrane database of systematic reviews to automatically label sentences in RCT publications and used

the noisy labels to train models for assessing risk of bias in the publications [121]. In this subsequent work,

we investigated whether weak supervision techniques can be used to effectively label additional data and

improve the baseline models that we had developed. More specifically, we focused on weak supervision using

the Snorkel– a machine learning tool that can automatically generate labels for data based on human-defined

labeling functions derived from a small number of available human labeled training examples [213] and used

the labels that it generated as additional data for the baseline BioBERT-based model.

5.3.1 Snorkel

Snorkel has been proposed as a general weak supervision framework [213]. Snorkel is a ML model that learns

the quality and correlations of multiple labeling functions using statistical modeling techniques. Labeling

functions (LFs) are heuristic rules that assign weak labels to unlabeled instances. In practice, rules based on

keywords, syntactic structures, or derived from external knowledge bases are commonly used. Generally, it is

desirable for LFs to have high coverage and low overlap. In other words, we would like them to apply to as

many instances as possible in our dataset, while remaining “unique” enough to distinguish instances with

different labels. Given a set of LFs, Snorkel applies each to all instances to generate a label matrix. Next, it

pools noisy signals from the label matrix into a generative model to learn the agreements and disagreements

of the LFs, to assess the weights of accuracy for each LF. The model then takes into account these accuracies

to make the final label prediction for each sentence. The predictions from the previous step can be used as

probabilistic training labels for a noise-aware discriminative model which is intended to generalize beyond
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Figure 5.2: Training and evaluation with weakly supervised data

the information expressed in the labeling functions. Snorkel has been applied to several biomedical text

mining tasks, outperforming distant supervision baselines and approaching manual supervision [213]. Other

weak supervision approaches have also been developed for biomedical NLP tasks, including smoking status

classification from clinical notes [214], semantic indexing [215], and clinical entity classification [216].

5.3.2 Materials and methods

We explored how to use Snorkel to automatically generate labeled data that can be used for training, thus

improving the performance of the baseline BioBERT-based model. In this section, we first described the

collection and pre-processing of unlabeled RCT data from PubMed Central (PMC). Then, we discussed

the methodology to use Snorkel framework to automatically generate labelled data. Lastly, we used the

automatically labeled data to train the BioBERT model and compared the results with baseline model to

determine if Snorkel data help. The overall procedure is illustrated in Figure 5.2.

Data collection and pre-processing

We followed the data collection strategy used in the development baseline models to obtain a large set of

RCT articles. Cochrane precision-maximizing search query2 was used on 1/15/2021 to search PMC Open

Access subset (PMC-OA) for RCT articles published between 1/1/2011 and 12/31/20203. The results were

further limited to articles that have full-text XML in PMC-OA. To get a more reliable RCT subset (since

publication types in PubMed can be inaccurate), we filtered the results through RCT Tagger [217], a machine

learning model that determines whether a publication is a RCT or not. Its accuracy was found to be 99.7% in

predicting RCT studies included in Cochrane systematic reviews [218]. Lastly, we eliminated publications with

the word protocol in their titles (which indicates that the article is a protocol, not a result RCT publication)

for which CONSORT checklist items are not applicable.

2https://work.cochrane.org/pubmed
3The start date is chosen based on the most recent publication of CONSORT guidelines (2010) [29]
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We used NCBI e-utilities API4 to retrieve publications in XML format, and split them into sentences

using our custom sentence splitter [219]. Only sentences that belong to Methods section of the publications

were taken into account, again following the baseline model setup. Stanford CoreNLP package was used for

tokenization and part-of-speech tagging [220]. We eliminated the sentences meeting the following criteria from

further consideration, since they are unlikely to indicate CONSORT methodology items: (1) Contains fewer

than five tokens; (2) Contains numbers only; (3) Is a section header or a table/figure caption. The reason we

filtered out sentences that are empty and have less than 5 words is because we think short sentences might

not convey a full meaning, thus are not good examples for the automatic labeling process.

Models setup

Our best-performing baseline model was the BioBERT-based, which was implemented using simpletransformers5

package. We refer to this model as baseline below. In this extension experiment, we used the huggingface6

BioBERT implementation. While mostly using the same hyperparameters as baseline (batch size: 4, number

of epochs: 30, optimizer: Adam, dropout: 0.1), we modified two hyperparameters. First, we used adaptive

learning rate instead of a fixed learning rate to optimize the algorithm with different rates based the model

performance during training. Second, we set the gradient accumulation steps to 1 (16 for baseline), which

increases the frequency of model parameter updates. We refer to this optimized model as baseline opt

below.

Generating weak labels using Snorkel

Snorkel generates weak labels in three steps: a) Labeling functions construction; b) Creation of a generative

model to capture label agreements/disagreements; and c) Generation of probabilistic labels for sentences.

Input for Snorkel pipeline are unlabeled sentences from RCT publications from PMC-OA.

For labeling functions construction, we used three approaches to label CONSORT items: keyword-based,

section header-based, and sentence similarity-based. 17 individual LFs were created for each approach (one

corresponding to each label).

Keyword-based LFs: Each CONSORT item is associated with a set of keywords or phrases (e.g., power

to detect with Sample Size Determination (7a)). A total of 232 phrases are used. Each LF checks whether an

input sentence contains one of its key phrases, and if so, returns the corresponding label as a weak label (or

NO-LABEL, if the sentence does not contain any relevant keyword/phrase). An example of keyword-based

labeling function for Blinding information item is provided below. In this example, a keyword-based LB is

defined by a list of keywords that are most common for Blinding (11a) item in the CONSORT checklist.

When applying this LB, Snorkel model will detect the appearances of these keywords in the text and assign

4https://https://www.ncbi.nlm.nih.gov/books/NBK25501/
5https://simpletransformers.ai/
6https://huggingface.co/
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label 11a to the text accordingly.

keyword_label_CONSORT_11a = make_keyword_lf(keywords=["to treatment allocation",

"masked to treatment", "masked", "blinded to",

"blind to","blinding", "double-blinded to",

"masking","not have access"],

label = CONSORT_11a)

Section header-based LFs. These LFs also mimic a baseline method from the previous work. In this

case, common subsection headers in Methods sections are associated with CONSORT labels. 48 section

header keywords/phrases are mapped to CONSORT items (e.g., the word concealment to the item Allocation

Concealment (9)). These LFs check whether the header of the section to which the sentence belongs matches

one of the relevant key phrases. An example of section header-based labeling function for Blinding information

item is provided below. In this example, a section header-based LB is defined by searching for ”masking”

and ”blinding” in the section headers using regular expression. When applying this LB, Snorkel model will

detect the appearances of these keywords in the headers and assign label 11a to the instance accordingly.

@labeling_function()

def regex_11a(x):

if ((re.search(r"blinding", x["section_hierarchy"], flags=re.I))

or (re.search(r"masking", x["section_hierarchy"], flags=re.I))):

return CONSORT_11a

else:

return CONSORT_0

Sentence similarity-based LFs. These LFs assign weak labels to unlabeled sentences based on their

similarity to a set of “ground truth” sentences (95 sentences provided as examples for checklist items in the

CONSORT Explanation and Elaboration document [75] and the CONSORT website7). We used BioBERT

to generate vector representations of these sentences. Given an unlabeled sentence, we calculate its cosine

similarity with every ground truth sentence and consider two labels based on similarity scores: the label of

the sentence with the highest similarity and the label that appears most frequently for the top 10 most similar

ground truth sentences. If two labels are the same, we use it as the sentence label. Manual checks showed

this combination to be more accurate than the most similar sentence label only. An example of sentence

similarity-based labeling function is provided below:

@labeling_function()

def similarity_lookup_CONSORT_11a(x):

7http://www.consort-statement.org/examples/sample
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if ((x["highest_frequency_label_in_top10"] == x["highest_similarity_label"]) and

(x["highest_frequency_label_in_top10"] == "11a")):

return CONSORT_11a

else:

return CONSORT_0

Snorkel applies all LFs to generate a LF matrix that shows the coverage, overlaps, and conflicts between

the LFs. Coverage information indicates the fraction of the dataset to which a particular LF is applied.

Overlap shows the fraction of dataset where a particular LF and at least one other LF agree. Conflict

indicates the fraction of dataset where a particular LF and at least one other LF disagree. Snorkel pools

noisy signals from the these three features into a generative model to learn the agreements and disagreements

of the LFs, thus assessing the weights of accuracy for each LF. The model then takes into account these

accuracies to make a final label prediction for each sentence.

Evaluation

To evaluate whether weak supervision generated labels useful for improving sentence classification performance,

we compared the results obtained with baseline model using 5-fold cross validation to results obtained

when weakly labeled examples from different strategies are added to the training portion of the folds in cross

validation. In this setup, data used for validation and testing in each fold remain the same for all the models.

We used precision, recall, and their harmonic mean, F1 score, and calculated 95% confidence intervals. In

addition to calculating these measures per CONSORT item, we also report micro- and macro-averaged results

and the area under ROC curve (AUC).

5.3.3 Results

Automatic labeled data from Snorkel results

Our search strategy retrieved 608K RCTs from PubMed, 155,183 of which have XML full text in PMC. RCT

Tagger predicted 71,948 of these as RCTs. Considering only those predicted with a confidence score over 0.95

reduced the dataset to 14,534 publications. Further eliminating publications with protocol in the title, we

obtained a set of 11,988 papers. A total of 721,948 sentences from these publications was reduced to 551,936

sentences after filtering.

We processed 551,936 unlabeled sentences using the Snorkel model, which generated 17 probabilities

for each sentence. We empirically set a probability threshold of 0.8 to predict the final weak labels for the

unlabeled sentences. If no label was predicted with a probability higher than 0.8, no label was assigned. The

distribution of weak labels generated by Snorkel are shown in Table 5.4. Most weak labels corresponded

to items that are already relatively well-represented in the dataset; thus, we limited the number of weakly
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Table 5.4: The frequency of each methodology item in the original human annotated data set and the
augmented data generated by Snorkel

CONSORT Item Snorkel
Number of instances

Snorkel
Number of instances

Original Data
Trial Design (3a) 3,932 67
Changes to Trial Design (3b) 0 10
Eligibility Criteria (4a) 17,182 160
Data Collection Setting (4b) 740 39
Interventions (5) 11,415 269
Outcomes (6a) 24,104 655
Changes to Outcomes (6b) 0 6
Sample Size Determination (7a) 6,674 113
Interim Analyses / Stopping Guidelines (7b) 124 16
Sequence Generation (8a) 7 43
Randomization Type (8b) 2,915 49
Allocation Concealment (9) 274 22
Randomization Implementation (10) 1,785 57
Blinding (11a) 525 57
Similarity of Interventions (11b) 3 18
Statistical Methods for Outcomes (12a) 45,353 269
Statistical Methods for Other Analyses (12b) 49 72
NO LABEL 436,854

labeled examples for each CONSORT item to a pre-determined threshold in our classification experiments

and randomly sampled these examples. We report the results with the threshold that performed best in our

experiments (500).

5.3.4 Classification results

We evaluated baseline and baseline opt models using 5-fold cross-validation. For brevity, we only report

the weak supervision results for the best-performing model-data size combinations. This is baseline opt

model augmented with maximum 500 examples per label from Snorkel. The results are provided in Table 5.5.

The results show that hyperparameter tuning (baseline opt) makes a significant difference in performance

(5% increase in micro-F1 and 36% in macro-F1); while Snorkel data does improve the original baseline and

it also leads to a slight performance degradation comparing with the (baseline opt).

5.3.5 Discussion

Approximately 21% of unlabeled sentences were weakly labeled by Snorkel. The number of weak labels

reflected to some extent the distribution of labels in the original dataset. Many sentences were weakly labeled

with common labels (e.g., Outcomes (6a)). On the other hand, Snorkel failed to weakly label any sentences

with the two least frequent labels (Table 5.4). The quality of Snorkel labels depends largely on the quality

of LFs. We used two LFs based on heuristics explored in previous work. Micro-F1 for both methods were
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Table 5.5: Classification results using the original human annotated data set and weakly supervised
data. SNORKEL(500) uses BASE-LINE OPT with additional 500 instances per label from Snorkel data.
3a: Trial Design; 3b: Changes to Trial Design; 4a: Eligibility Criteria; 4b: Data Collection Setting;
5: Interventions; 6a: Outcomes; 6b: Changes to Outcomes; 7a: Sample Size Determination; 7b: Interim
Analyses/Stopping Guidelines; 8a: Sequence Generation; 8b: Randomization Type; 9: Allocation Concealment;
10: Randomization Implementation; 11a: Blinding Procedure; 11b: Similarity of Interventions; 12a: Statistical
Methods for Outcomes; 12b: Statistical Methods for Other Analyses. P: precision; R: recall; F: F1 score; CI:
confidence interval; AUC: Area Under ROC Curve.

CONSORT Item
BASELINE

F1 [CI]
BASELINE-OPT

F1 [CI]
Snorkel (500)

F1 [CI]
3a 0.63 [0.46, 0.80] 0.82 [0.69, 0.95] 0.75 [0.63, 0.88]
3b 0.00 [0.00, 0 00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]
4a 0.85 [0.76, 0.95] 0.89 [0.82, 0.96] 0.88. [0.82, 0.94]
4b 0.36 [0.06, 0.65] 0.87 [0.74, 1.00] 0.79 [0.61, 0.97]
5 0.72 [0.66, 0.78] 0.75 [0.68, 0.81] 0.73 [0.66, 0.81]
6a 0.81 [0.74, 0.88] 0.82 [0.75, 0.89] 0.83 [0.72, 0.87]
6b 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]
7a 0.84 [0.76, 0.92] 0.88 [0.87, 0.90] 0.90 [0.86, 0.94]
7b 0.00 [0.00, 0.00] 0.70 [0.47, 0.94] 0.70 [0.17, 1.22]
8a 0.38 [0.15, 0.60] 0.88 [0.77, 1.00] 0.86 [0.60, 0.91]
8b 0.38 [0.10, 0.67] 0.73 [0.53, 0.93] 0.67 [0.51, 0.83]
9 0.00 [0.00, 0.00] 0.45 [0.35, 0.54] 0.40 [0.03, 0.76]
10 0.24 [0.05, 0.43] 0.53 [0.36, 0.71] 0.50 [0.22, 0.77]
11a 0.42 [0.12, 0.71] 0.66 [0.59, 0.74] 0.59 [0.46, 0.72]
11b 0.00 [0.00, 0.00] 0.45 [0.06, 0.85] 0.41 [0.04, 0.77]
12a 0.75 [0.69, 0.81] 0.77 [0.69, 0.85] 0.78 [0.69, 0.87]
12b 0.04 [-0.06, 0.14] 0.32 [0.27, 0.38] 0.24 [0.07, 0.40]

Micro-average 0.72 [0.66, 0.76] 0.77 [0.71, 0.84] 0.76 [0.69, 0.82]
Macro-average 0.38 [0.34, 0.41] 0.62 [0.55, 0.69] 0.58 [0.48, 0.68]
AUC 0.812 0.876 0.875
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found to be around 0.50 in previous work (0.50 for keyword-based and 0.45 for section header-based). More

accurate LFs could improve Snorkel results.

To better understand the quality of Snorkel-generated weak labels, we sampled 318 sentences, I and

another researcher independently labeled the sentences, without access to Snorkel labels. We calculated

the agreement of these annotations with Snorkel-generated labels, using Krippendorff’s α with the distance

metric MASI which accounts for partial agreement in the case of multiple labels. Krippendorff’s α agreements

between Snorkel and each annotator were found to be 0.46 and 0.61, respectively. While the inter-annotator

agreement between the annotators was 0.59. Interestingly, agreement between Snorkel and simple majority

vote was 0.93. These results suggest that Snorkel may converge to this simple heuristic in some cases, and

that it behaves more or less like another annotator in the process.

We found that a large percentage of annotator disagreement with Snorkel came from randomization-related

labels (items 8a, 8b, 9, and 10). These items often appear in the same sentence and the clues for them can be

overlapping, making it a challenge to label them accurately for both humans and automated methods. Snorkel

tends to pick a single label for sentences, and this was especially problematic for randomization-related

sentences.

We did not observe significant improvements in classification performance due to weakly supervised data,

which did not led to any correct predictions for the two least frequent labels (3a, 6a).

In addition, somewhat to our surprise, we found that model hyperparameters made a much more significant

difference in model performance. baseline opt model yielded about 5% improvement in micro-F1 and 36%

improvement in macro-F1 over the baseline model, with improvements in almost all labels. To assess how

hyperparameters interacted with weak supervision, we also measured performance when baseline model

(instead of baseline opt) was trained with weakly supervised data. Using Snorkel for weak supervision

in this scenario improved micro-F1 from 0.72 to 0.75, suggesting that hyperparameter optimization may, in

some cases, obviate the need for additional (noisy) data.

Our investigation was limited to one relatively small corpus. The findings regarding weak supervision

may not be generalizable to other corpora. We used few heuristics with modest performance as LFs and

Snorkel label quality is likely to be improved with with additional more accurate LFs; however, this requires

significant domain expertise. While we performed some hyperparameter tuning, we did not do an exhaustive

search, and it is possible that more optimal hyperparameters can improve results further.

In summary, we demonstrated weak supervision approach to automatically label data that could be used

for machine learning classification models. Even though the approach does not show significant improvements

in term of model performances, we believe that certain further enhancements can be done. For example,

position of a sentence in a particular section could be used as a potential labeling function. We found that

the first sentence of Methods section often time is the sentence that describes overall study design of the trial,

which is item 3a in the CONSORT checklist. Or sentences that describe sample size calculation often appear
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by the end of the Methods section.

5.4 Summary of the chapter

In this chapter, we present a preliminary study to use ML and NLP to develop classification models that map

sentences from full-text RCT papers to information items recommended in the CONSORT checklist. This

work demonstrates a potential direction to apply NLP in supporting researchers to assess reporting quality of

clinical research. Instead of reading and checking full text clinical publications manually, researchers (including

journal editors, reviewers, meta researchers, and other stake holders) can use such tool to automatically check

the appearances of certain information items recommended by reporting guidelines in the full text, so as to

assess reporting quality of the research accordingly. Even though, our preliminary classification model has

limitations and has not yet achieved practically useful results (especially for those items that have rare data),

our experiment shows that it is possible to develop and improve the models with more data and perhaps

with other NLP and ML techniques such as data augmentation, few-shot learning, prompt learning. The

output of this work could be useful for our next development, which is an information extraction system

that extracts relevant mention-level information. We can use this classification model to pre-filter sentences

that contain fine-grained methodological information to be extracted, especially sentences belonging to those

CONSORT items that achieved high accuracy (e.g. Eligibility Criteria, Sample Size Determination). In the

long term, the principles learned with CONSORT can also be applied to annotating corpora targeting other

reporting guidelines, such as STROBE for observational studies.
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Chapter 6

Automatic extraction of

methodological characteristics from

RCT publications

In Chapter 5, we presented an NLP approach to extract information items at sentence level from full-text

randomized controlled trials (RCTs) that can be used for reporting quality assessment. In this chapter, we

will focus on methodological quality and present an NLP approach to extract methodological characteristics

at the most fine-grained level– term level, to support EQA. In particular, we used NLP and ML to develop

a named entity recognition (NER) model that automatically extracts methodological characteristics from

full-text RCT publications. The high level implementation of such a model shown in the diagram below

(Figure 6.1), in which, the model takes sentences from RCT publications as input, and extracts mentions that

correspond to different methodological characteristics of the studies as outputs. Outputs of such a model will

be helpful since methodological details at fine-grained level can be stored in a structured representation, in

which information are organized in key-value pairs so as can be retrieved, queried and reasoned with. Some

parts of the content of this chapter are based on a conference publication at AMIA Annual Symposium 2022

[221].

6.1 Why is fine-grained information needed?

The developments described in Chapter 4 and Chapter 5 look at information that is used for EQA at a coarse

granularity, document level and sentence level respectively. NLP models such as the one that we developed

in Chapter 5 help end users to check whether an information item is reported or not. However, it is not
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Figure 6.1: Information Extraction model from RCTs

sufficient to determine the rigor and robustness (i.e. methodological quality) of the study. Sometimes authors

acknowledge their methodological issues as limitations. However, methodological quality issues can be implicit

and hard to identify as they require domain knowledge and further analysis. For this, the sentences need to

be analyzed at finer granularity, and different information items need to be cross-checked to identify potential

pitfalls, weaknesses, and inconsistencies.

One of the most common methodological pitfalls in clinical research is the use of small sample size .

The purpose of estimating the appropriate sample size is to produce studies capable of detecting clinically

relevant differences. Power is the probability of rejecting the null hypothesis when the null hypothesis is

false. A Type II error can occur if there is not enough power in statistical tests, often resulting from sample

sizes that are too small. In an empirical analysis of 48 neuroscience studies, Button et al. estimated the

median statistical power of these studies is between 8% and 31%. Such low statistical power numbers shows

serious consequences in overestimates of effect size and low reproducibility of results [222]. For this reason,

for reviewers to examine the quality of a clinical study, looking at the sample size reported in the clinical

publication is not sufficient. More importantly, reviewers need to be able to examine the validity of the

sample size calculation. This task requires them to look at fine-grained information including power and other

relevant statistical factors, such as statistical significance value, dropout rate, to replicate the calculation,

similar to what Button et al. did in their studies. In such use case, automatic extraction of fine-grained

information items from Sample Size sentences (as outputs of CONSORT classifier in Chapter 5) would be

helpful.

To illustrate how methodological weaknesses can be identified by capturing fine-grained information, take

the following example. In the process of conducting a clinical trial, Blinding is the act of masking the nature

of the treatment from not only participants. Insufficient blinding of persons involved in RCTs is associated

with performance bias [223]. Often time, blinding method is reported in a clinical publication. However, to

assess the quality of a clinical study, further information might be needed. Considering an open-label RCT

which reported in its full-text publication that “Participants, investigators, or other medical or nursing staffs
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was aware of study group assignments during the trial”: in terms of reporting quality, sentence classification

models such as the CONSORT classifier in chapter 4 could label this sentence as item 11a, and indicate

that reporting quality is good since the blinding strategy was explicitly provided. However, in terms of

methodological quality, it is problematic because there is no blinding of patients or care providers which

indicates potential risk of bias. In this case, extracting specific blinding type (open-label/no blinding) would

allow reviewers to more easily assess methodological quality.

In the same Blinding topic, let’s look at another example of how extracting fine-grained information

could help to examine the methodological consistency. Considering a RCT study which claimed to be “double

blind” in its title; however, in its Methods section, it said “Only participants were blinded from their treatment

allocation. Clinicians and assessors were informed of the allocated treatment.”. In this sentence, only one

blinded object was mentioned (Participants). Thus, readers can interpret this as “single blind” method, and

point out the inconsistency between what was reported in the study title vs. Methods section. Without

capturing fine-grained information, in this case are Blinding Type (double blind) and Blinded Objects

(participant), reviewers will not be able to flag the inconsistency accordingly. In fact, Saltaji et al. in a study

that quantified the extent of bias associated with different blinding methods in RCTs, suggested that detailed

information of blinding strategy, not only the blinding type (e.g. double-blind or single-blind) but also the

corresponding attributes such as blinded objects (patients, doctors, and/or data analysts, etc.) should be all

considered when assessing methodological quality of a study [224]. By capturing fine-grained information of

blinding types and blinding objects, and represent it in a structure format, reviewers will not only be able to

retrieve the information faster (e.g. find clinical publications that look at drug A for disease B where care

provider is blinded); but also reason to detect inconsistencies by cross-checking the information, and also

make this information machine-readable (allowing computational reasoning down the line).

Extracting fine-grained methodological information in this manner also offers benefits for researchers

to compare methodological quality between clinical studies. For example, considering different methods of

Allocation Concealment, which is a technique of ensuring that implementation of the random allocation

sequence occurs without knowledge of which patient will receive which treatment during trial conduction

[72]. Good methods of generating a random allocation sequence include using a “central randomization”, in

which the individual recruiting the patient contacts a center by phone or secure computer after the patient is

enrolled; or a “Sequentially numbered, opaque, sealed envelopes” in which trial operators use sequentially

numbered, opaque sealed envelopes to perform randomization concealment [225]. Even though both methods

are widely used, it is also acknowledged that the latter method has a higher potential risk of bias due to its

vulnerability to manipulation. Therefore, identifying exactly which method is used for allocation concealment

(instead of just identifying that there is an allocation concealment process in place), would be informative for

quality assessment.

Extraction of such fine-grained information would also enable semantic searching of the literature based
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on methodological quality of the articles. Retrieval of relevant biomedical scientific publications is essential

directly to researchers in search of specific information, as well as to a range of downstream tasks, including

technologically assisted reviews and question answering. Semantic indexing and searching thus has been one

of the main focuses of researchers in the biomedical domain especially due to the tremendous amount of

research published every year. While search engines used for biomedical literature incorporate some semantic

features (e.g., MESH expansion of terms, Publication type search), semantic search based specifically on

methodological characteristics remains under-explored. In a review of web tools for searching biomedical

literature, only five systems aim to analyze search results and present summarized knowledge of semantics

(biomedical concepts and their relationships) based on information extraction techniques [226]. The idea of

using fine-grained semantic indexing of biomedical literature, beyond the descriptors of MeSH, at the semantic

level of corresponding concepts just has been newly explored [215]. At a fine-grained level, researchers will be

able to perform semantic search with complex queries based on methodological characteristics of the studies.

For example, one could perform a semantic search query to retrieve diabetes studies in which the participants

have been masked to the treatment.

To my best knowledge, currently there are no automated approaches to comprehensively capture method-

ological information at a granular level to support quality assessment and information retrieval. In this

chapter, I will present our development of such a model, which can not only support systematic reviewers,

journal editors, meta researchers to speed up the process of assessing quality of clinical studies, but also

support semantic search of biomedical literature.

6.2 Overview of methods

Continuing the work that has been developed in Chapter 5, the work in this chapter focus on RCT studies

only. There are four major stages of the work:

• Design an methodological quality assessment data model: In this stage, we proposed and

developed a data model that captures the relevant RCT methodological characteristics that can be

used for EQA. In particular, first we reviewed existing data models that represent RCT studies in the

literature. Then we consolidated information items from these existing models that can be used for

quality assessment. Lastly, we characterized each of the information with fine-grained attributes and

sub-categories (if there are any) and represented them into a structured semantic representation. This

representation is eventually used as the guideline for our annotation study and also the backbone of

information extraction model later on.

• Preliminary Annotation Study: In this stage, we conducted an annotation study in which a set

of RCT publications are manually annotated based on the information items in the data model that

we developed. We designed annotation guidelines, conducted training for annotators, measured and
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analyzed the inter-agreement between the annotators accordingly.

• Information extraction model development: In this stage, we implemented several Information

Extraction models using different NLP and ML approaches, including: token-based classification,

sequence labeling and rule-based.

• User Study: In this stage, we conducted an user study with a potential end user. The goal is for

the user to use the model output and to evaluate if the prediction results from the system is correct

or incorrect, and whether the model output can be helpful for the end user in downstream quality

assessment tasks.

6.3 Data model development

6.3.1 Existing representations of Randomized Controlled Trials

Representations to describe components of a RCT and guidelines of how to report one have been developed

[227]–[229]. In this section, we will review the existing data models that represent RCT study design and

discuss how we leverage them to design our data model that can be used specifically for EQA.

The most popular representation of RCTs is the PICO model which is widely used by the systematic

review community as well as evidence-based medicine, more broadly [227]. The PICO model defines the four

most important information that defines an RCT study, including:

• Patients (also called Participants or Population) refers to the description of the study’s patients;

• Intervention refers to the main treatment that is being used in the study;

• Comparison refers to the alternative treatment that is compared to the main treatment;

• Outcomes refers to the characteristics that are measured to determine the effect of interventions.

The PICO model provides a minimum structure that describes basic information about an RCT. Therefore,

reviewers often start with identifying information related to PICO in order to understand the topic of a clinical

study (what is it about). Corresponding to this model, Cochrane Collaboration has created PICO ontology

that defines more fine-grained elements belonging to the high level PICO components and relations between

them [227]. In the PICO ontology, each information item is defined as an entity, and relations between entities

are defined as well. For example, “Population” entity has the following attributes: age, gender, condition,

inclusion criteria and exclusion criteria; “Intervention” entity has relations with the following attributes:

dose, schedule, duration, settings. Nevertheless, it is important to keep in mind that the PICO ontology

was originally designed to model the questions asked and answered in Cochrane’s systematic reviews [227].

While PICO-related information is helpful for researchers/systematic reviewers to understand the topics
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and characteristics of a clinical study, they are less informative for quality assessment. The class from the

PICO ontology that we found potentially relevant to quality assessment is Settings of an intervention (e.g.

multicenter or single center, and locations). A study suggested that Setting information should be considered

when the results of RCTs and meta-analyses are interpreted since it might have a certain effect on the overall

quality of the studies [14].

Different from the PICO ontology, RCT schema developed by Sim et al. in 2004 with the same goal of

representing RCT, consists of a hierarchy and is not limited to the PICO framework [228]. In particular, the

RCT schema identifies RCT methodology components based on the actual tasks that need to be executed,

from the top-level target tasks to the decomposed sub-tasks and the methods by which each sub-task is to be

accomplished. For example a top-level target task could be assessing RCT validity, and the corresponding

first level sub-tasks are judging internal validity and external validity. Depending on the tasks, a list of

questions to fulfill the tasks were then identified, such as to judge the internal validity, questions could be

“Was the statistical design of the trial appropriate? Were the intervention groups comparable? Was there any

intervention assignment bias?”. Finally, based on the list of tasks and questions, Sim et al. developed RCT

Schema that captures details of a RCT in regards of administration, design, execution, and results needed to

answer the questions and fulfill the tasks. According to the authors, the RCT schema contains 147 unique

information items organized in hierarchical order corresponding to the tasks and questions from high level

information items (e.g. Participants, Interventions, Outcomes) to some of more complex information items

(e.g. description of the outcome measurements, rate outcomes need a denominator, cost outcomes need a

discount rate).

In a subsequent research, Sim et al. developed a more comprehensive ontology that represents clinical

research in general called The Ontology of Clinical Research (OCRe) [229]. In this work, instead of focusing

on RCT only, the OCRe ontology contains other study designs such as Observational study design. Each

study design is a class in the data model, as shown in Figure 6.2. Under the Interventional study design,

fine-grained study designs are also defined, depending on the patient-treatment allocation methods, which

include: parallel group, cross over, single group, and N-1 crossover.

Figure 6.2: List of study designs captured in OCRe ontology
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Figure 6.3: Methodological characteristics of RCT captured in OCRe ontology

Corresponding to these study designs, the ontology also defines a list of study characteristics as shown in

Figure 6.3. Many of these characteristics are relevant for methodological quality assessment. For example:

“Allocation concealment method value” helps us to understand the method used to allocate patients to

treatments, yet at the same time to preserve the randomness of the allocation in the study; “blinding type”

helps us to understand the method used to masking the treatment to the study personnel and also the objects

who are blinded; and “allocation scheme” (which includes random allocation) provides information about

different types of randomization.

On the other hand, based on the work presented in Chapter 5, we know that CONSORT reporting

guideline has been successfully used to improve reporting quality and transparency of RCT publications.

The checklist contains some methodological information items (e.g., study design, blinding, randomization,

statistical methods). Therefore, conceptually, we also can use the CONSORT checklist as another resource to

get the list of characteristics that can be used for EQA.

6.3.2 Data Model Development

The process of designing and developing data model is a iterative exercise of (1) reviewing existing data

models that represent RCTs (such as PICO, OCRe, CONSORT), (2) getting a list of initial methodological

characteristics that can be used for EQA purposes, (3) checking in the literature for additional information,

and (4) piloting an annotation study to confirm the data model components. In particular, we largely used

OCRe Ontology and the CONSORT checklist as the two main resources to collect the initial list of information

items1. After that, we also conducted a preliminary annotation study to examine the initial components that

are identified in the preliminary model and discover more information items that are relevant to be added

into the data model. After the preliminary data model was developed, we annotated several articles to assess

the feasibility of annotating the items in the model. As a result, the data model was also refined.

1PICO also provides some methodological characteristics that can be used for EQA such as Settings and Location. However,
since both of these information are also covered in the CONSORT checklist, we do not use any information items from PICO
directly
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In OCRe, we primarily focused on sub-classes of Interventional Study Design and Study Design Char-

acteristic classes, including Blinding Type and Randomization Type. Some relevant characteristics were

derived from data properties (e.g., Planned Sample Size and Actual Sample Size). Additional characteristics

relevant for methodological quality were drawn from the CONSORT methodology checklist. For example,

fine-grained information related to Sample Size Calculation (CONSORT item 7a) and Trial Settings (4b) were

included, such as Power and Alpha values, and Multicenter vs. Single-center distinction. The main criterion

for inclusion was whether the characteristic provides any information about methodological quality, which we

ensured through literature review, and whether they can be identified in RCT publications. For example,

through literature review, we affirmed the reason for the additional Settings characteristics. Single-center

trials are available only at the study creator’s hospital, while multi-center trials are conducted at various

locations and offer diversity advantages and lower risk of bias over single-center trials [230]. For sample

size calculation characteristics, knowing the sample size (number of patients) is not sufficient for quality

assessment purpose. More importantly, understanding how the sample size estimation was calculated allows

reviewers to examine statistical quality of trials (e.g. if targeted sample size is large enough to statistically

detect different effects between treatments)[231]. We also noted that some characteristics have properties

whose values can be important in interpreting them (e.g., Block Size for Block Randomization). These

properties were included in the data model, as well. In the end, overall, each information item is identified

based on the following conceptual questions:

• What is the definition of the information item?

• What is the corresponding information item in the OCRe Ontology?

• What is the corresponding information item in the CONSORT checklist?

• What attributes does the information item have?

• What are the subcategories of the information item?

6.3.3 Data Model

Our final data model contains main seven domains: Trial Design, Blinding, Randomization, Allocation

Concealment, Settings, Sample Size and Sample Size Calculation. In each domain, there are in total 19

top-level characteristics (note that the Allocation Concealment domain has no top-level characteristics). For

each of the characteristics, we defined their sub-types and properties relevant to the sub-types accordingly.

The resulting data model is provided in Figure 6.4.

We provided the descriptions of the seven domain captured in our data model below. Detail descriptions

the 19 top level characteristics, their subcategories and attributes are provided in the Appendix A.
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Figure 6.4: Our proposed data model to capture methodological characteristics from RCT publications.
Domains (Trial Design, Blinding, etc.) are shown in gray boxes. Top-level characteristics are shown in blue
rectangles. Their subtypes are shown in yellow, and properties relevant to the subtypes are shown in green.

Table 6.1: Methodological items in Trial Design domain

Top level domain Trial Design

Definition
Contains methodological characteristics that are related to the design of
the trial

Corresponding
CONSORT item

Study Design (3a) - Description of trial design (such as parallel, factorial)
including allocation ratio

Corresponding
OCRe characteristic

Study Design (http://purl.org/net/OCRe/study design.owl#OCRE100056)

Top level
methodological
characteristics

Trial Design Type: a categorical information item which refers to
how participants are assigned into different
treatment groups (e.g. parallel-group, cross-over, factorial).

Trial Phase: describes the level of a trial required of drugs before (and after)
they are routinely used in clinical practice (e.g. Phase 1, Phase 2).

Comparative Intent: refers to the intent of comparison made in a study with
two or more interventions (e.g. non-inferiority, superiority).
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Table 6.2: Methodological items in Blinding domain

Top level domain Blinding

Definition
Blinding or masking is the process of keeping the study group assignment
hidden after allocation, which is commonly used to reduce
the risk of bias in clinical trials with two or more study groups.

Corresponding
CONSORT item

Blinding (11a) - If done, who was blinded after assignment to interventions
(for example, participants, care providers, those assessing outcomes) and how.

Corresponding
OCRe characteristic

Blinding Type (
http://purl.org/net/OCRe/OCRe.owl#OCRE574000)

Top level
methodological
characteristics

Blinding Method : refers to the act of masking the nature of the
treatment from parties involved such as patients, doctors, statisticians, etc.

Blinding Objects: refers to who are the people that were blinded.

Table 6.3: Methodological items in Randomization domain

Top level domain Randomization

Definition

Refers to the sequence by which participants will be allocated to the study
groups. This practice is meant to keep researchers and participants unaware
of the sequence, with the goal of preventing the researchers from
(unconsciously or consciously) influencing the group assignment of study
participants.

Corresponding
CONSORT item

Randomization Sequence Generation (8a) - Method used to generate the
random allocation sequence.

Randomization Sequence Generation (8b) - Type of randomization; details
of any restriction (such as blocking and block size).

Randomization Implementation (10) -Who generated the random
allocation sequence, who enrolled participants, and who assigned participants
to interventions.

Corresponding
OCRe characteristic

Random Allocation (
http://purl.org/net/OCRe/study design.owl#:OCRE100033)

Top level
methodological
characteristics

Randomization Type: what type of randomization that describes how patients
are assigned into different treatment groups (e.g. block randomization,
stratification randomization).

Randomization Ratio: Ratio of randomization into treatment groups.
This attribute is not tied to any particular type of randomization.

Randomization Sequence Generation Method: How the randomized sequence
is generated (e.g. using a computer random number generator;
random number table; coin tossing; shuffling cards or envelopes; throwing dice).

Randomization Personnel: refers to the person, people, organization, who is
involved in creating/generating the randomization sequence.
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Table 6.4: Methodological items in Allocation Concealment domain

Top level domain Allocation Concealment

Definition

Allocation concealment is performed when the treatment
allocation system is set up so that the person enrolling participants does
not know in advance which treatment the next person will get.
Different from blinding, allocation concealment ensures that the treatment
to be allocated is not known before the patient is entered into the study.
Blinding ensures that the patient/physician is blinded to the treatment
allocation after enrollment into the study.

Corresponding
CONSORT item

Allocation Concealment (9) - Mechanism used to implement
the random allocation sequence (such as sequentially numbered containers),
describing any steps taken to conceal the sequence until interventions
were assigned.

Corresponding
OCRe characteristic

Allocation Concealment Method Value
(http://purl.org/net/OCRe/OCRe.owlOCRE825000)

Top level
methodological
characteristics

Allocation Concealment Methods

Table 6.5: Methodological items in Sample Size domain

Top level domain Sample Size

Definition
Refers to the number of patients based on the required sample size
calculation, or actual sample size of the trial.

Corresponding
CONSORT item

Sample Size Calculation (7a) - How sample size was determined (e.g.
what is the number of required sample size).

Participants Flow (13a) - For each group, the numbers of participants
who were randomly assigned, received intended treatment, and were
analysed for the primary outcome.

Corresponding
OCRe characteristic

has required sample size
(http://purl.org/net/OCRe/OCRe.owlOCRE855955)
has planned sample size
(http://purl.org/net/OCRe/OCRe.owlOCRE900203)
has actual sample size
(http://purl.org/net/OCRe/OCRe.owlOCRE900200)

Top level
methodological
characteristics

Required Sample Size: The number of patients based on the required
sample size calculation.

Target Sample Size: The target number of patients based on the
required sample size.

Actual Sample Size at Enrollment: The number of patients who actually
enrolled in the study at the beginning of the study.

Actual Sample Size at Outcome Analysis: The number of patients who
actually completed the study and collected data for analysis.
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Table 6.6: Methodological items in Sample Size Calculation domain

High level domain Sample Size Calculation
Definition Refers to the statistical values used to calculate required sample size of a trial.
Corresponding
CONSORT item

Sample Size Calculation (7a) - How sample size was determined

Corresponding
OCRe characteristic

has power calculation
(http://purl.org/net/OCRe/OCRe.owlOCRE900204)

Top level
methodological
characteristics

Power Value: What is the power value used to calculate required
sample size.

Alpha Value: What is the alpha value used to calculate required sample size.
Sometimes, this value is also provided as a significance level or p-value.

Drop Out Rate Value: The sample size estimation formula will provide a
number of evaluated subjects required for achieving desired statistical
significance for a given hypothesis. However in practice we may need to enroll
more subjects to account for potential dropouts.

Table 6.7: Methodological items in Settings domain

High level domain Settings
Definition Settings and location of the study
Corresponding
CONSORT item

Participants (4b) - Settings and locations where the data were collected.

Corresponding
OCRe characteristic

N/A

Top level
methodological
characteristics

Settings Type: what is the setting of the study? Choose between two values:
Single center or Multi center

Location: Describes the location of the study. This information should be city,
country, area names.
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6.4 Annotation Study

6.4.1 Annotation process and guideline

The annotation study was conducted through two phases. Phase one is a preliminary annotation study as

mentioned above to piloting the annotation process as well as refining the data model. In phase two, we

annotated 150 articles based on the refined model. In this section, I describe the annotation study from data

collection, annotator training and inter-annnotator agreement calculation to annotation reconciliation and

ground truth generation.

Collect data

For annotation, we collected a set of RCT publications from PubMed Central Open Access Subset.

25 publications came from the CONSORT-TM corpus [194]. We collected another set of 125 articles by

issuing a search query that limited by the publication type “Randomized Controlled Trials” and full-text

availability2. We eliminated publications reporting study protocols or multiple RCT studies from the search

results. We then also filtered and collected only the RCTs that have ClinicalTrials.gov identification numbers.

ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted around the world

maintained by the U.S. National Library of Medicine. Before conducting trials, clinical teams are required

to register their protocols which include details of the study designs and methodology into the database.

By limiting to the RCTs that have ClinicalTrials.gov registrations, we can potentially use methodological

information registered in the database to evaluate our information extraction results. From the remaining

articles, we randomly selected 125 articles, for a total of 150 articles.

Annotation environment setup

Three annotators conducted the annotation, two PhD students and a faculty member with experience in

biomedical literature and annotation. As for annotation tool, we used the same annotation tool, Brat3 [232].

The full-text of RCT publications, including their titles and abstracts, were imported into Brat. Figure 6.5

shows a fragment of a RCT publication annotated using Brat. The system was set up on a web server, data

was uploaded for each user separately and information items defined within the system as shown in Figure

6.6.

Figure 6.5: Annotation example on brat interface.

2PubMed search query: ”randomized controlled trial”[Publication Type]) AND (fft[Filter])
3https://brat.nlplab.org/
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Figure 6.6: Example of information items in our data model for annotation on Brat.

Annotation guidelines

The annotation guidelines were created in an iterative process. A initial draft was created, containing

definition of information items, general rules that show how to annotate them, examples of typical annotations.

In the guideline, information items are divided into two types: categorical items or free-text items. For

categorical items, based on the text in the article, the annotator needs to decide which sub-category the

information item belongs to and annotate the text span that supports the judgments. For free-text items,

there are no predefined categorical values to choose, the annotators highlight the text span that describes

the information item in the text. All three annotators annotated the first 10 articles. Disagreements and

inconsistencies were discussed and resolved. The annotation guideline was refined accordingly. We also added

examples of edge cases and solutions how to annotate them. The final annotation guideline is provided in

the Appendix A. After the annotation guideline was finalized and all annotators agreed on the annotation

rules and process, three annotators continued to annotate the next 20 articles, which were used to calculate

inter-annotator agreements. In the final annotation round, two annotators with the highest agreement in the

previous round individually labeled 70 and 50 articles each.

Annotation process and reconciliation

We adopted a minimal annotation approach, focusing on annotating the shortest meaningful text spans

for a given item, often a clause. The categories that have sub-classes (e.g., Patient, Investigator, etc. for

Blinding Object) were annotated at the finest granularity justified by the text span. We focused primarily

on abstracts and Methods sections, as they were most likely to contain methodological information. Some

categories, particularly those related to Sample Size, were also annotated in the Results sections, where they

were often reported. During the annotation process, the annotators were instructed to annotate a mention
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only once for a particular characteristic in a given section, although different mentions corresponding to the

same concept (e.g., no blinding and open label for the Open Label category) were expected to be annotated.

This helped reduce annotation burden while generating a diverse set of examples.

For example, consider the following sentence:

“The study is a multicenter, randomized, open, parallel group trial conducted at 33 centers in four European

countries (France, Germany, Italy, and Spain) with a target enrollment of 153 patients accessible for the

primary end point analysis in each group.”

Below is how the sentence was annotated.

“The study is a multicenter [multicenter], randomized, open [blinding type], parallel-group [trial

design type] trial conducted at 33 centers [multicenter] in four European countries (France, Germany,

Italy, and Spain [locations]) with a target enrollment of 153 [targeted sample size] patients accessible

for the primary end point analysis in each group.”

We then reconciled annotations from the annotators into one single final data set that can be used for

model development through several different approaches. For the first set of 10 articles which were annotated

by all three annotators, one annotator checked and finalized them into a single set. For the set of 50 articles

which were annotated by an individual annotator, the other annotator checked and finalized the annotations.

For the whole data set, as methodological information that we model appears in different places throughout a

RCT publication (e.g. “double-blind” not only appears in sentences that describe blinding methods, but also

ones that describe study design), we generated additional annotations by automatically labeling all instances

of the mentions that already appear in the same section of the document in the manually annotated set.

Some of these automatic annotations were incorrect, we manually removed them (e.g., not all instances of

the mention blind are about the blinding type of the study). Automatic annotation helped us increase the

number of examples in the data set without significantly increasing annotator burden.

Inter-annotator agreement

We calculated inter-annotator agreement at the span and document levels. For span level agreement,

we used exact match for all categories considered. We used F1 score for span level agreement, considering

annotations from one annotator to be the ground truth and those from the other as predictions [233]. Document

level agreement was calculated for items with subcategories: Trial Design Type, Phase, Comparative Intent,

Blinding Type, Randomization Type, and Setting. In this case, we examined whether two annotators agreed

on whether the publication reported a particular study characteristic (e.g., Double-Blind as the Blinding

Type). We used both Cohen’s κ and F1 score for inter-annotator agreement at the document level.
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6.4.2 Annotation Study Results

We annotated a total of 150 RCT articles in this pilot study. Table 6.8 shows the descriptive statistics of

the annotated corpus. Among the top level categories, Sample Size had the highest number of annotations

(637) followed by Randomization (557), Trial Design (481), Blinding (442), and Settings (210). Allocation

Concealment Method was rarely discussed (19 instances). At the fine-grained level, Parallel Group (258),

Actual Sample Size (227), Double-Blind (191), and Multicenter Settings (188) were annotated most frequently.

Although we represented some characteristics in the data model to maintain consistency with OCRe, we did

not find any instances of these in the corpus: N-of-1, Factorial Factor/Treatment, Triple-Blind.

Table 6.8: Statistical information of the annotated corpus.

Statistic
Completed
Corpus

Train Set Test Set

Total number of articles 150 135 15
Total number of sentences 22,000 20,490 1,510
Total number of sentences with annotations 1417 1238 179
Total number of tokens 674,277 624,563 49,714
Total number of annotated tokens 9,199 7758 1,441
Total number of annotations 2724 2346 378

Table 6.9 shows pair-wise inter-annotator agreement results obtained on 20 articles at span and document

levels using Cohen’s κ and F1 score. The results show overall high agreement. Cohen’s κ scores indicate

substantial to perfect agreement between the annotators (0.74-0.83). F1 score agreement is over 0.9 in all

cases. Overall, annotators 1 and 2 achieved higher agreement at both span and document levels. These two

annotators annotated the last 120 articles.

Table 6.9: Pair-wise agreement at span and document levels. Document level agreement is calculated for
categories with sub-classes only.

Ann1 vs. Ann2 Ann2 vs. Ann 3 Ann1 vs. Ann3
Cohen’s κ F1 Cohen’s κ F1 Cohen’s κ F1

Span level 0.94 0.90 0.90
Document level 0.83 0.95 0.74 0.92 0.79 0.93

Our annotation study showed that annotating RCT methodological items at the span level was feasible.

We obtained high inter-annotator agreement, indicating that these characteristics can be more or less reliably

annotated. Several items were challenging. For example, Parallel Group is easy to annotate when it is explicit

(e.g., parallel-group). However, it is often implicit and can only be determined from the description of the

intervention (e.g., intravenous rhEPO 40 000 IU or placebo fortnightly). While annotators were instructed to

annotate such implicit cases in the annotation guidelines, their annotations were less consistent for these

cases.
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6.5 NER Model Development

We approach the task of identifying mentions of methodological items and their characteristics as a named

entity recognition (NER) task. In our case, entities are the methodological characteristics that we defined in

our data model as described above.

The NLP approaches that we applied to develop our NER models are: (1) supervised learning approaches:

the model is built using traditional ML and deep learning algorithms; and (2) Rule-based approaches: the

model is built based on hand-crafted rules. Since majority of our implementation is supervised learning

approach using deep learning. Readers might need to refer back to Chapter 3 for the technical details of the

methods used in this section.

6.5.1 Methods

Model setup

Machine learning-based models

As reviewed the most common methods for NER models development, in this work, we experimented

with NER models based on current baseline neural network architectures using pretrained language model as

context encoder, and Token classification and CRF as tag encoder. More specifically, we applied BIO tag

scheme to represent token labels in sentences. Similar to the work in Chapter 4, we used PubMedBERT

(base-uncased-abstract-fulltext) model [234] as the sentence encoder and experimented with two different

classification layers: (1) a fully-connected token classification layer; and (2) a classification layer based on

CRF. We used the prebuilt TokenClassification model from the huggingface library4 to implement the token

classification model; and a public BERT-CRF implementation5 to implement the CRF-based model. Both

models were developed with the same settings of hyper parameters: batch size of 4, Adam optimizer, learning

rates of 1e-5, 2e-5, 3e-5, and 5e-5, and number of epochs of 10, 20, 30. For final training, we used the learning

rate of 5e-5 for the token classification model and 3e-5 for the CRF-based model and 20 epochs for both

models, which yielded the best performances.

Methodological information that we model generally occurs over a handful of sentences in a RCT

publication. Including all sentences of the publication in training leads to a very imbalanced data set. To

address this problem, we adopted four strategies to sample sentences for inclusion in training:

• Positive sentences only : Only sentences that include at least one annotated span are included.

• Random sampling: Positive sentences + a random sentence with no annotations (i.e., negative sentence)

for each positive sentence

4https://huggingface.co/docs/transformers/tasks/tokenclassification
5https://github.com/Louis-udm/NER-BERT-CRF
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• Similarity sampling: Positive sentences + negative sentence with the highest cosine similarity with

positive sentence

• Random+Similarity sampling: Positive sentences + random sampling for half of the positive sentences

+ similarity sampling for the other half.

For cosine similarity calculation, we generated vector representations of the sentences using pretrained

PubMedBERT embeddings. The dataset was split into training and test sets, 135 articles and 15 articles

respectively6.

Rule-based model

Along side with machine learning-based NER models, we also developed a rule-based model with human-

defined hand-crafted rules. Rules were learnt from the training set which are essentially lexical patterns for

each of the entities in our data model. An example of a lexical rule for Blinding information item is provided

below:

# Blinding Method information item

# No examples of triple and quadruple blind methods

blinding_double_blind_patterns = ["double-blind", "double-masked", "double-blinded",

"double-mask", "double blind"]

blinding_single_blind_patterns = ["single-blind", "single-blinded", "assessor-blind",

"examiner-blind", "patient-blind"]

blinding_open_label_patterns = ["open-label", "were not masked", "were not blinded",

"aware of treatment"]

Besides lexical rules (based on key-words), we also defined syntactical rules for some information items if

they are applicable. For example, “parallel group trial design” can be identified by not only the keyword

“parallel group”, but often time, via a text span that describes the treatments of the study. A syntactic

pattern from many parallel-group design examples could be represented as ”patients received treatment A vs.

placebo”. Based on this syntactic structure, we defined a syntactical rule accordingly as following:

# Parallel group

patterns = ["received", "were randomized to", "were located", "were randomised to"]

for pattern in patterns:

results = re.search(pattern+’(.*)or placebo’,sentence)

if results:

print (results.group(1))

6The set of 15 articles for testing was fixed from the very beginning of the project when we only had 35 articles for training
at the first point we developed our model. We did not change the test set even the training set was expanded to keep the
implementation consistent.

103



Model evaluation

We evaluated the two machine learning-based models: token classification and CRF-based at two levels:

• Span-level evaluation: which was done for each information item. It means B-tagged tokens and I-tagged

tokens of the same information item should be considered together for a full predicted entity. We

particularly focus on two metrics that take into account the entity type predictions: Strict and Type

(discussed in Section 3.3.3). For each metric, we calculated their Precision, Recall and F1 following the

formula that we provided in the NLP and ML background review.

• Document-level evaluation: some categorical information items in our data model could be evaluated at

document level. For example, given an RCT, we may want to know whether or not a model is able

to predict correctly type of the blinding method in which the trial used. For document level, we only

calculated regular Precision, Recall and F1 score for categorical information items, including: Trial

Design Type, Randomization Type, Blinding Type, Settings (multicenter vs. single center) and Phase.

As for the rule-based model, we evaluated it at document level only and compared the results with the best

performing machine learning-based model.

6.5.2 Results for NER models

For each machine learning-based NER approach (token classification vs. CRF-based), we developed four

models each corresponding to a sampling strategy for training: Positive Sentences, Random Sampling,

Similarity Sampling, and Random+Similarity Sampling.

Table 6.10 shows the performances of the NER models at the span level. In both strict and partial

evaluation, CRF-based classification using Similarity Sampling achieved the best F1 scores. The results with

token classification are consistently lower than CRF-based results. While using Positive Sentences only for

training yields lowest F1 results, its recall is among the highest. Sampling strategy has a more significant

effect on precision than on recall.

Table 6.10: Model performances at the span level with four sampling strategies for training.

Sampling Strategy Token classification CRF-based
Strict Type Strict Type

P R F1 P R F1 P R F1 P R F1

Positive Sentences 0.24 0.58 0.34 0.30 0.71 0.42 0.28 0.62 0.39 0.35 0.77 0.48
Random Sampling 0.51 0.53 0.52 0.63 0.66 0.65 0.47 0.61 0.53 0.60 0.76 0.67
Similarity Sampling 0.51 0.53 0.52 0.64 0.66 0.65 0.52 0.77 0.54 0.66 0.73 0.69
Random
+ Similarity Sampling

0.49 0.47 0.48 0.63 0.61 0.62 0.49 0.58 0.53 0.61 0.72 0.66

We analyzed the results of the best-performing model (PubMedBERT with CRF layer trained with

Similarity Sampling strategy) in more detail. These results, obtained with span level evaluation, are shown in
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Table 6.11. The results show that the results vary widely among different characteristics. Some characteristics

were recognized by the model relatively well, such as Power for sample size calculation and randomization Ratio

(0.95 F1 and 0.94 F1 respectively), Stratification Criteria for stratified randomization cases (0.86 F1), and

sample size Alpha Value (0.78 F1). Except Stratification Criteria, these characteristics are generally expressed

in a small number of ways in publications, which may explain the higher performance. Another factor is that

these characteristics are relatively frequent in the dataset. The model fails on several characteristics, such as

Allocation Concealment Method and Period/Treatment for crossover design, which only had a few examples

in the data set. In contrast, the model had more success with some other characteristics, which also had few

examples, such as Comparative Intent. This can also be attributed to the fact that the expressions for these

characteristics are less diverse than those for, say, Randomization Personnel, which include a wide range of

expressions such as individuals not associated with study conduct or separate unblinded statistical team. For

some items, strict vs. partial evaluation results are the same (e.g., Comparative Intent), while there is a

significant different for others that involve numbers, which deserves further investigation (e.g., Block Size,

randomization Ratio).

Table 6.11: Performances of the best model (CRF-based model trained with Similarity Sampling) at the
span level. Characteristics with * next to their name are fine-grained items, while others have subtypes.For
characteristics with subtypes, the results are aggregated for brevity. For example, Trial Design:Type results
include predictions for Parallel Group, Factorial, etc. Similarly, Sample Size:Type aggregates the results
for different sample size calculations: Required, Targeted, Actual at Enrollment, and Actual at Outcome
Analysis.

Strict Type
Domain Characteristics P R F1 P R F1

Type 0.35 0.41 0.38 0.63 0.72 0.67
Phase 0.91 0.72 0.80 0.91 0.72 0.80
Comparative Intent 0.50 0.87 0.63 0.50 0.87 0.63
*Crossover Period/Treatment 0.67 1.00 0.80 0.67 1.00 0.80

Trial Design *Factorial Factor/Treatment 0.43 0.60 0.50 0.43 0.60 0.50
Type 0.82 0.73 0.77 0.82 0.73 0.77

Blinding Objects 0.40 0.50 0.44 0.43 0.54 0.48
Type 0.75 0.32 0.45 0.75 0.32 0.45
*Block Size 0.20 0.33 0.25 0.60 1.00 0.75
*Minimization Criteria 0.44 0.50 0.47 0.56 0.63 0.59
*Stratification Criteria 0.64 0.67 0.65 0.84 0.88 0.86
*Personnel 0.07 0.20 0.10 0.27 0.80 0.40
*Ratio 0.88 0.88 0.88 0.94 0.94 0.94

Randomization *Sequence Generation 0.15 0.21 0.17 0.56 0.79 0.65
Type 0.54 0.72 0.62 0.63 0.85 0.72
*Alpha 0.52 0.55 0.54 0.68 0.87 0.76
*Dropout Rate 0.25 0.43 0.32 0.42 0.71 0.53

Sample Size *Power 0.91 1.00 0.95 0.91 1.00 0.95
Type 0.75 0.66 0.70 0.82 0.72 0.77

Settings *Location 0.50 0.50 0.50 0.77 0.77 0.77
Allocation
Concealment

*Allocation Concealment
Methods

0.00 0.00 0.00 0.00 0.00 0.00

OVERALL 0.52 0.57 0.54 0.66 0.73 0.69
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We also evaluated the models at document level.

Table 6.12 shows the performances of the two machine learning-based NER models at the document level,

which are largely consistent with the results at the span level. CRF-based models consistently outperform the

token classification counterparts. Similarity Sampling yields highest F1 score and precision performance, while

its recall is lower than of the Positive Sentence sampling. Since we are ultimately interested in summarizing

methodological characteristics of a study at the document level, we consider document-level evaluation results

as the main results for this study.

Table 6.12: Document-level performances of four models using two different classification layers

Sampling Strategy Token classification CRF-based
P R F1 P R F1

Positive Sentences 0.71 0.83 0.77 0.81 0.82 0.81
Random Sampling 0.82 0.76 0.78 0.87 0.71 0.78
Similarity Sampling 0.84 0.76 0.80 0.91 0.74 0.82
Random + Similarity Sampling 0.86 0.76 0.81 0.92 0.73 0.82

The document-level results with the best sampling strategy (Similarity Sampling) were also compared to

the results of the rule-based method. This comparison is limited to the methodological characteristics in the

data model with subtypes. We looked closer at the best performing models, the TokenClassification-based

and CRF-based models using Similarity sampling method, and compared them to a rule-based model. The

CRF-based model, once again, achieved the best performances. Table 6.13 shows a comparison between the

three models, and breakdown of their performances on five categorical information items that we evaluated

at document-level: Clinical Trial Design Type, Randomization Type, Blinding Type, Phase and Settings.

Table 6.13: Document-level performances of TokenClassification-based model vs. CRF-based model using
Similarity sampling method, vs. rule-based model.

Categorical Information Item Token Classification CRF Rule-based
P R F1 P R F1 P R F1

Trial Design Type 0.83 0.71 0.77 1.00 0.79 0.88 0.69 0.73 0.71
Randomization Type 1.00 0.67 0.8 0.85 0.65 0.77 0.72 0.72 0.72
Blinding Type 0.93 1.00 0.97 0.93 0.93 0.93 0.86 0.86 0.86
Phase 0.5 0.90 0.64 0.5 0.91 0.65 0.50 1.00 0.64
Settings 0.90 0.82 0.86 1.00 0.79 0.88 0.77 0.77 0.77
OVERALL 0.84 0.76 0.80 0.91 0.74 0.82 0.73 0.77 0.75

6.5.3 Discussion of NER results

CRF-based models performed comparatively better than token classification models in NER, indicating that

capturing label sequences is important for methodological IE. This is not surprising, since sentences where

many methodological characteristics of the RCT are mentioned together are common (e.g., This phase 2b,

double-blind, placebo-controlled, parallel-group, dose-ranging randomized clinical trial. . . ) and capturing such
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patterns may benefit the models. Since only a small number of sentences in each article was annotated,

we sampled un-annotated sentences to increase the training set size. Similarity-based sampling yielded the

best results overall, indicating that providing more difficult negative examples to the training procedure is

beneficial.

We printed out predictions of the best performing PubMedBERT-CRF model and also rule-based model for

data of the test set to compare differences between the two approaches. We found that machine learning-based

model predicted exceptionally well for those information items that are more descriptive. One of the most

popular information items that encounter this phenomenon is “Parallel Group Trial Design”. According to

our annotation guideline, there are edge cases in which the article does not explicitly mention “parallel-group”

keyword (which is used to identify this information item in our rule-based model). However, it lists several

treatment groups, then we can assume that it is a parallel design type. In such cases, annotators should

highlight the names of the treatments as an annotation of parallel trial design. Accordingly, while it is very

hard to define rules to capture such cases, the PubMedBERT-CRF model with its design to aware of the

context between word sequences, can capture these cases very well. For example, considering a sentence from

the test set: “26 patients presenting with acute myocardial infarction randomised to receive an intravenous

infusion of etanercept (10 mg) or saline placebo.”. Comparing with human annotation, the PubMedBERT

model predicted correctly both “Sample Size Actual at Enrollment” information item (“26 patients”) and

the “Design Parallel Group” information item (“an intravenous infusion of etanercept (10 mg) or saline

placebo”). While, rule-based model missed out both information items. In contrast, the PubMedBERT

model tends to generate more false negatives than the rule-based model for information items that can be

easily captured by keyword based rules. One of the common items for which this phenomenon occurs is “Trial

Phase”. For example, considering the following sentence from the test set: “Bosentan treatment of digital

ulcers related to systemic sclerosis : results from the RAPIDS-2 randomised , double-blind , placebo-controlled

trial”, the PubMedBERT model gave a wrong prediction of “RAPIDS-2” as “Phase 2”, most likely because

of the number “2” in the text that the model learnt from training data. On the other hand, the rule-based

methods accurately identifies this item. We also observed that, it appears easy to identify some characteristics

with limited examples using simple lexical rules, such as Comparative Intent types such as Superiority,

Non-inferiority. As the results, the rule-based model achieved a slightly better performance comparing to the

deep learning models. For example, the rule-based model gave correct prediction of the Comparative Intent

information item in this sentence This was a superiority trial, with prednisolone as the control intervention..

But without sufficient training data, the PubMedBERT model totally missed it out.
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6.6 User Study

6.6.1 User Study Design

To extrinsically evaluate the performances as well as examine the utility of our information extraction model,

we conducted a pilot user study with a methodology and meta-research expert who conducts research on

manual and semi-automated methods to improve research and reporting quality. The goal of the study is to

have the end user looking at outputs of our model and performing two evaluation tasks: (1) evaluate if the

prediction results from the model is correct or incorrect; and (2) provide feedback/comments if the extraction

result would be helpful for the end user in any downstream tasks (e.g quality assessment).

We randomly selected 10 RCTs and ran our best performing NER model (PubMedBERT-CRF) to extract

information from their full text publications. We designed an evaluation template which contained 10 tabs,

each corresponding to one RCT. In each tab, we listed down the list of information items extracted by the

model, including: the information item name, the text span, the sentence where the predicted span located,

and the section to which the sentence belongs. We asked the end user to go through the list and make

judgements whether a prediction is correct or not. If not, the end user was recommended to make comments

to explain for their judgements. In the end, we asked the end user put a narrative feedback that he/she might

have for the tool overall. (e.g. does the evaluator find the tool helpful? If yes, in which use cases? If not, why

and does evaluator have any suggestions for future improvements?). The user evaluation template and results

are provided in the Appendix B.

6.6.2 User Study Results

In all 10 articles, the model yielded a total of 225 predictions. Based on evaluation results from the end user,

166 predictions were marked as correct (75%); 53 predictions were marked as incorrect (24%); 6 predictions

were marked as partly correct (1%).

“Randomization”, “Sample Size” and “Allocation Concealment Method” are the domains that got the

highest number of incorrect predictions (21, 12 and 6 respectively). Within the “Randomization” domain,

majority of them were predicted for Randomization Personnel and Randomization Sequence Generation

Method; which are the two most descriptive information items in this group. The model often picked up some

common keywords that connect to randomization sequence generation methods such as “interactive web-based

program”, “standard automated calling system” or “telephone” and predicted those as the information items.

However, as pointed out by the end user, the phrases appear in sentences that are not related to randomization.

Similarly, the model picked up text spans that describe human subjects, such as “research team”, “local study

team”, “trial team” and predicted those as Randomization Personnel. Nevertheless, our end user determined

those appear in sentences in that related to Intervention, not randomization. It was no surprise that the

model made a high number of wrong predictions for Allocation Concealment information since this item has
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very limited examples in the training data set, and is also one of the most descriptive information items in

our data model (e.g. the span of text that describe allocation concealment is often lengthy and also can vary

substantially). As for Sample Size domain, the model struggled to differentiate different types of sample size

(e.g. actual at enrollment, actual at outcome analysis, required vs. target). This is not a surprise given how

similar the language describing these information is. The end user’s overall feedback aligns with what we

have discussed. In the narrative feedback, the end user stated that “Overall, the algorithms performed better

than I expected, and most errors seemed to occur when classifying details related to randomization and sample

size.”

The end user also pointed out some limitations of the model and provided suggestions for future

improvements. For example, according to the end user’s comment, sometimes sentences with predictions were

picked up in the background or discussion that describe other studies. Even though, these sentences contain

methodological information, it does not belong to the current study. The end user suggested that “restricting

the screening to title, abstract, methods, results sections could improve this”. Secondly, the end user noted “in

a few places, there are some opposing classifications that could likely be dealt with with conditional logic. For

example, if a classification is made as “Settings/Multicenter” with high confidence, a subsequent classification

of “Settings/Single center” could be excluded.” Another example is the “Setting/Location” item; the end user

suggested some location logic could be used to determine what is a broader country-level setting vs. local

setting. More importantly, the end user pointed out that the model seem to miss relevant sentences that

contain important methodological details for evaluating the design and execution of each trial. Therefore, he

suggested the important next step would be to evaluate what the model did not pick up at all.

Finally, the end user provided overall feedback about the tool and how it can be used to support researchers

in different contexts. Direct quote is provided below:

“I could see this being useful in several contexts. First, when extracting information for systematic reviews

or meta-research projects, it is possible that this would save time so the screener could see the information

in context beside the paper. Second, for general evaluation/peer review of the literature, it could help to

evaluate the rigor/transparency of trials. An interesting next step could be to further classify sentences beyond

just whether they reported something to whether it was implemented. For example for blinding, if it was

explicitly stated that investigators or analysts were not blinded. Finally, automated extractions could be used

to build a large database of trials so one could filter by randomization type, ratio, blinding, and so on if they

wished to study a specific corpus of articles with certain methodological characteristics, or to track trends in

methodological characteristics over time and over disciplines.”

Overall, the user study results show that our model outputs are promising and can be useful in different

use cases. There are multiple directions for improvements as suggested by the end user. For example, instead

of running the model on all sentences from the full text publications, maybe focusing on certain parts of the

full-text (e.g. only Methods section) will improve the model accuracy. Combining logical rules to validate
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prediction results (e.g. a study is predicted with multicenter settings cannot be single center) could be

helpful as well. Our user study has some limitations. First, it was conducted with only a single person.

The user study needs to be expanded to reach broader set of end users. Second, the design of the user

study evaluation was still informal (we only asked the end user to go through the list and make judgements

whether a prediction is correct or not; and asked for general comments/feedback in the end). A more formal

evaluation approach can be used. For example, a formal user acceptance testing can be conducted with more

informative evaluating mechanism such as rating-scale questions.

6.7 Chapter Summary

We presented an annotation study and baseline NER models for recognizing methodological characteristics

in RCT publications. We focused on characteristics that may affect the methodological quality of and

strength of evidence from a RCT study. To our knowledge, this is the first study to focus on representing,

annotating, and extracting these methodological characteristics at a fine-grained level and in a comprehensive

manner. Our work complements the PICO-based characterizations which, while very important, do not

address methodological quality, and automated risk of bias assessment models, which focus on classification

rather than IE and thus, do not provide granular information. Our data model was adopted from OCRe

and CONSORT. OCRe, by formalizing various aspects of clinical studies, and CONSORT, by detailing the

characteristics of a RCT study that needs to be reported in a publication for transparency, provide a solid

foundation for methodological IE.

Our NER models have limitations. First, the annotated corpus needs to be expanded to cover rare

information items, so as to be more broadly useful. We anticipate that NER models would benefit from

additional training data, as well. This study showed the feasibility of reliably annotating methodological

characteristics at the span level and we plan to expand our corpus in future work. It would be particularly

important to capture a larger number of infrequently discussed characteristics, such as allocation concealment

methods, since the current models fail at recognizing them.

We only experimented with baseline NER models. While they yield promising results, more advanced NER

methods can be applied (e.g., BERT with BiLSTM+CRF layers). We experimented with the learning rate

hyperparameter, but tuning other hyperparameters could also be beneficial. A simple rule-based approach

seems adequate for some items and it may be worthwhile to use them, especially for the items that do not

have sufficient training examples.

We created a set of 16 lexical rules based on regular expressions for characteristics that can be categorized

into subtypes (e.g., Blinding or Randomization Types). Although it covers only a subset of the items, this

method yielded comparable results to token classification model for the characteristics that it covered. This

indicates that an expanded set of such rules may be effective in methodological IE, although this involves
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some manual effort and requires expertise.

We conducted a pilot user study to examine the utility of the model in practice with a methodology and

meta-research expert. Though our user study has limitations (a single user, informal evaluation approach),

the results shows that that our model outputs are promising and can be useful in different use cases. All

in all, the pilot user study was encouraging and showed that our models can be expanded and refined to

support tools for methodology and meta-research experts, and other stakeholders.
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Chapter 7

Conclusions and Future Directions

7.1 Revisiting thesis research questions

This thesis builds on a motivation rooted from the evidence synthesis process, a critical yet challenging

step is assessing quality of clinical research. Existing issues of this process include the fast growing body

of medical literature and the extensive domain knowledge needed to fulfill the task. These motivated us to

explore different approaches of using artificial intelligence, specifically NLP and ML methods, to automate

some steps, so as to assist the stakeholders in the quality assessment process. With that motivation, at the

beginning of the thesis, we asked two research questions:

• Research question 1: What information do biomedical researchers and other stakeholders need to assess

evidence quality?

• Research question 2: How can we use NLP and ML techniques to automatically extract them?

To answer these two questions, this thesis presented three research studies where we looked at different levels

of information granularity that can be used for clinical research quality assessment, and developed NLP

models to automatically extract the information from full-text clinical publications:

• At the highest level of information granularity–document level, we built a classification model to

distinguish different clinical study designs. This work answers the two research questions as following:

– RQ1: we proposed to use “study design” as document-level information to assess quality of clinical

research.

– RQ2: we built two different ML models (one based on SVM and the other on PubMedBERT archi-

tecture) to automatically identify “Study Design” information from full-text clinical publications.
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• At the second highest level of information granularity–sentence level, we built a classification model to

map information items from reporting guidelines to sentences of full-text RCT publications. This work

answers the two research questions as following:

– RQ1: we proposed to use information items from reporting checklist–CONSORT as sentence-level

information to assess quality of clinical research.

– RQ2: we built two different ML models (one based on SVM and the other on BioBERT architecture)

to automatically identify information items in CONSORT checklist from full-text RCT publications.

• Finally, at the lowest level of information granularity–mention level (token level), we developed an

information extraction model that automatically identifies and extracts fine-grained methodological

characteristics from full-text RCT publications. This work answers the two research questions as

following:

– RQ1: we developed our own data model that captures fine-grained methodological characteristics

as mention-level information to assess quality of clinical research.

– RQ2: we demonstrated how to use three different ML models (Token classification, CRF and rule-

based) to automatically identify these fine-grained characteristics from full-text RCT publications.

All three studies follow the same theme of implementation in which our approach is to combine existing

knowledge representations with the NLP and ML methods: the first development used DIDEO ontology

as the backbone of the hierarchical classification model of study designs; the second development used

CONSORT checklist as the data model to capture reporting information items and used them as labels of the

classification model; and finally, in the third work, we developed our own data model (drawn from existing

clinical research ontology OCRe and CONSORT) and leveraged their classes as labels for our information

extraction model. Even though, the three developments were built separately, they conceptually connect

to each other by looking at information used for quality assessment from coarse-grained to fine-grained

granularity. Identifying information at different granularity levels is particularly helpful because at each

stage of the evidence quality assessment process, different stakeholders have different needs. For example,

systematic reviewers at the screening step can use the Study Design classifier to filter a certain type of clinical

study (e.g. RCT). Journal editors at manuscript reviewing step can use the CONSORT classifier to check

how much a submitted manuscript in compliance with reporting guidelines. And finally, meta researchers,

who want to examine the effective sample size of a clinical study, can use our methodological characteristics

extractor to identify relevant information such as sample size, power, alpha, dropout rates for the assessment.

In a single scenario in which models from all three studies could be used at once, a stakeholder (such as a

systematic reviewer) can start with using the first development to retrieve clinical trials with randomized

controlled study design, then using the second development to identify sentences from the full text that report

CONSORT information items to assess reporting quality (e.g. sentences describe blinding), then using the

113



third development to extract fine-grained methodological characteristics from those sentences and use the

information to appraise the studies accordingly.

As mentioned in Chapters 4, 5, and 6, for each study, we made specific data and methodological choices.

Our selections have several limitations. Data in all three developments are relatively small. Several factors

contribute to this drawback. First, domain expertise is much needed to annotate data but it is costly (in

terms of time and effort) and hard to find. Second, our work mostly are preliminary studies, therefore, we do

not have existing data sets to rely on and need to create new data sets from scratch. On the other hand, in the

development of the CONSORT classification model, we explored methods to use weak supervision to expand

the data set but results has not shown improvement over models trained on manually annotated corpus

(compare with simple hyperparameter tuning). Or in the development of the methodological characteristics

extraction model, we only experimented baseline machine learning models such as pure token classification or

CRF layer with the fine-tuned PubMedBERT. Even though, this thesis more focuses on making methodological

contribution, and is less concerned with ML innovation, future work is needed to expand the methodologies

and frameworks proposed in this thesis to better explore and apply.

7.2 Future Directions and Research

This thesis opens up several research avenues that are worth further pursuit. First, I discuss a few possible

avenues of investigation from a technical point of view. Then, I discuss future direction from a application

point of view to combine the three models into a single pipeline of automation tools that can be used to

assist researchers in EQA and other tasks.

7.2.1 Technical improvements

First and foremost, to overcome the limitation of small data, since obtaining human annotated data is

time-consuming and costly, different automatic labeling data approaches need to be explored. In recent

years, research on few-shot learning (FSL) [235] or zero-shot learning (ZSL) [236] have been established.

These are types of machine learning methods that allow to train models on a very small number of samples.

Using prior knowledge, FSL or ZSL have the potential to rapidly generalize to new tasks containing only a

few samples with supervised information. Such methods could be applied to address the limitation of data

for our developments. Some data augmentation (DA) techniques also can be used to generate additional,

synthetic data based on the existing data that we have [237]. For example, “back translation” is a DA

technique to translate the text data to some language and then translate it back to the original language.

This can help to generate textual data with different words while preserving the context of the text data. Or

“synonym replacement” is another technique to replace each of words in the text with one of its synonyms

to generate new data. At the same time, as shown in the Chapter 5 study, fine-tuning hyper-parameters of
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machine learning model could play an important role to improve the performances. In such cases, methods to

experiment with different hyperparameters could be applied such as using adaptive learning rate.

Second, instead of using the original model architecture from the existing pretrained language models

(e.g. PubMedBERT or BioBERT) and only fine-tuning last layer, more complex model architectures could

be explored. For example, to develop the NER model, instead of using BERT and CRF only, we can add

one more layer of BiLSTM model, which has been applied and seems to get promising results in some NER

tasks [238]. Or recent years have seen the paradigm shift of NER systems from sequence labeling to span

prediction [239]. And the combination of traditional sequence labeling model with span prediction model

have shown improvements in some NER tasks [240]. Therefore, incorporating span prediction models into

our work could be helpful to improve the model performances.

7.2.2 Application improvements

Each study in this thesis, individually, can be expanded in order to be applicable for more use cases. For

example, the model in Chapter 4 was built based on 7 specific evidence types from DIDEO ontology (out of

total 44 evidence types defined by the ontology). This indicates that there are a lot of potential to expand

this model to a broader and more comprehensive classification system that covers all 44 evidence types. The

model in Chapter 5 was built based on the CONSORT checklist which is specifically design for only RCTs

and also only focus on methodology-related information items. Expending our current model to capture other

items such as Outcomes, Results would be helpful for downstream tasks. The same classification model can

also be developed using other similar checklists and guidelines for other study designs (such as STROBE

for observational studies [87]). Or the model in Chapter 6 only extracts the information items defined by

our data model. Some other methodological characteristics that meta-researchers are interested in to know

more, such as statistical methods, are not covered in our data model. Therefore, expanding our information

extraction model to broader set of information would be helpful. Also, our work so far look at information

from the body of the full text publications, while some relevant information for EQA can be extracted from

tables or figure captions. For example, authors often report baseline characteristics of the studies in tables,

including information about number of patients for each treatment arm or statistical analysis methods and

results [241]. Expanding our extraction models to capture those information from tables could be an useful

enhancement.

More importantly, in the end, we want apply these models in practice to assist researchers in EQA tasks.

Before that, for all three studies, we should conduct extensive user studies at a much larger scale and in a

more formal way compared with the one we did for the work in Chapter 6, to make sure the tools that we

develop meet requirements and expectations from potential users. After the tools being maturely developed

and evaluated, we envision a broader transparency and rigor portal to access a database of clinical studies and

have all the three models in the back end. That portal will assist multiple stakeholders (could be systematic
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reviewers, journal editors, meta researchers, authors) through a streamlined process of quality assessment

which include the following features:

• Search for and filter specific study design publications on different topics.

• Classify sentences from full text publications to information items recommended by reporting guideline,

so as to assess compliance and reporting quality.

• Extract and view methodological characteristics of the publications a structured representation, so as

to assess methodological quality and spot any issues.

• Further filter relevant publication by different methodological characteristics (such as randomization

type, ratio, blinding), and so on if end users wish to study a specific corpus of articles with certain

methodological characteristics.

Figure 7.1 shows the idea of how the models can be connected into one single pipeline to assist researchers

in the EQA process. The idea of such as streamlined portal is complimentary to the existing tools such as

TrialStreamer, a living annotated database of 803,727 RCTs [141]. While TrialStreamer focuses on curating

and representing RCTs based on PICO framework, our models capture other characteristics that can be used

alongside PICO elements, so as to serve different purposes, even beyond EQA.

Figure 7.1: Connect three models into one single pipeline of automation tools

7.3 Final Statement

The COVID-19 pandemic in the last 3 years shows the importance of high-quality medical research for

addressing global health challenges. However, research is being created in greater quantity, faster than ever

before, posing challenges to identifying trustworthy scientific knowledge. In this context, quality assessment

of clinical research comes into the picture as the crucial step for judging the overall strength of evidence on
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given research topic and helping to answer the question whether or not a research can be applied. In this

thesis, we have contributed to the growing research on using NLP techniques to automate parts of evidence

synthesis, in particular evidence quality assessment. We believe that practical tools that build on such models

can accelerate the evidence synthesis process and contribute to evidence-based medicine and better patient

care.
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[18] J. P. Higgins, J. Savović, M. J. Page, R. G. Elbers, and J. A. Sterne, “Assessing risk of bias in a

randomized trial,” Cochrane handbook for systematic reviews of interventions, pp. 205–228, 2019.

[19] J. M. Young and M. J. Solomon, “How to critically appraise an article,” Nature Clinical Practice

Gastroenterology & Hepatology, vol. 6, no. 2, pp. 82–91, 2009.
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[176] Y. Böttiger, K. Laine, M. L. Andersson, et al., “Sfinx—a drug-drug interaction database designed

for clinical decision support systems,” European journal of clinical pharmacology, vol. 65, no. 6,

pp. 627–633, 2009.

[177] K. Seden, S. Gibbons, C. Marzolini, et al., “Development of an evidence evaluation and synthesis

system for drug-drug interactions, and its application to a systematic review of hiv and malaria

co-infection,” PLoS One, vol. 12, no. 3, e0173509, 2017.

[178] R. Boyce, C. Collins, J. Horn, and I. Kalet, “Computing with evidence: Part i: A drug-mechanism

evidence taxonomy oriented toward confidence assignment,” Journal of biomedical informatics, vol. 42,

no. 6, pp. 979–989, 2009.

[179] L. S. Wieland, K. A. Robinson, and K. Dickersin, “Understanding why evidence from randomised

clinical trials may not be retrieved from medline: Comparison of indexed and non-indexed records,”

Bmj, vol. 344, 2012.

[180] T. Edinger and A. M. Cohen, “A large-scale analysis of the reasons given for excluding articles that

are retrieved by literature search during systematic review,” in AMIA Annual Symposium Proceedings,

American Medical Informatics Association, vol. 2013, 2013, p. 379.

[181] A. M. Cohen, J. Schneider, Y. Fu, et al., “Fifty ways to tag your pubtypes: Multi-tagger, a set of

probabilistic publication type and study design taggers to support biomedical indexing and evidence-

based medicine,” medRxiv [Preprint under review], 2021.

[182] L. Lewis, “Drug–drug interactions: Is there an optimal way to study them?” British journal of clinical

pharmacology, vol. 70, no. 6, p. 781, 2010.

[183] M. Brochhausen, Drug-drug interaction and drug-drug interaction evidence ontology, [Online; accessed

10 01, 2022], 2022. [Online]. Available: http://purl.obolibrary.org/obo/dideo/release/2022-

06-14/dideo.owl.

[184] M. Brochhausen, J. Schneider, D. Malone, P. E. Empey, W. R. Hogan, and R. D. Boyce, “Towards

a foundational representation of potential drug-drug interaction knowledge,” in CEUR workshop

proceedings, NIH Public Access, vol. 1309, 2014, p. 16.

133

http://purl.obolibrary.org/obo/dideo/release/2022-06-14/dideo.owl
http://purl.obolibrary.org/obo/dideo/release/2022-06-14/dideo.owl


[185] R. D. Boyce, C. Collins, J. Horn, and I. Kalet, “Modeling drug mechanism knowledge using evidence

and truth maintenance,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 4,

pp. 386–397, 2007.

[186] J. Schneider, M. Brochhausen, S. Rosko, et al., “Formalizing knowledge and evidence about potential

drug-drug interactions.,” in BDM2I@ ISWC, 2015.

[187] National Center for Biotechnology Information, National Library of Medicine, Pubmed apis, [Online;

accessed 10 01, 2022], 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/home/develop/

api/.

[188] pdfminer.six, Pdfminer.six’s documentation, [Online; accessed 10 01, 2022], 2019. [Online]. Available:

https://pdfminersix.readthedocs.io/en/latest/.

[189] NLTK Team, Natural language toolkit, [Online; accessed 10 01, 2022], 2022. [Online]. Available:

https://pdfminersix.readthedocs.io/en/latest/.

[190] National Library of Medicine. National Institutes of Health, Metamap - a tool for recognizing umls

concepts in text, [Online; accessed 10 01, 2022], 2020. [Online]. Available: http://metamap.nlm.nih.

gov/.

[191] S. Kiritchenko, S. Matwin, A. F. Famili, et al., “Functional annotation of genes using hierarchical text

categorization,” in Proceedings of the ACL Workshop on Linking Biological Literature, Ontologies and

Databases: Mining Biological Semantics, 2005.

[192] S. Subramanian, I. Baldini, S. Ravichandran, et al., “A natural language processing system for

extracting evidence of drug repurposing from scientific publications,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, 2020, pp. 13 369–13 381.

[193] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for relation extraction without

labeled data,” in Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the

4th International Joint Conference on Natural Language Processing of the AFNLP, 2009, pp. 1003–

1011.

[194] H. Kilicoglu, G. Rosemblat, L. Hoang, et al., “Toward assessing clinical trial publications for reporting

transparency,” Journal of biomedical informatics, vol. 116, p. 103 717, 2021.

[195] L. Hoang, L. Jiang, and H. Kilicoglu, “Investigating the impact of weakly supervised data on text

mining models of publication transparency: A case study on randomized controlled trials,” in AMIA

Annual Symposium Proceedings, American Medical Informatics Association, vol. 2022, 2022, p. 254.

134

https://www.ncbi.nlm.nih.gov/home/develop/api/
https://www.ncbi.nlm.nih.gov/home/develop/api/
https://pdfminersix.readthedocs.io/en/latest/
https://pdfminersix.readthedocs.io/en/latest/
http://metamap.nlm.nih.gov/
http://metamap.nlm.nih.gov/


[196] H. Kilicoglu, L. K. Hoang, and S. Wadhwa, “Identifying sample size characteristics in randomized

controlled trial publications,” in AMIA Annual Symposium Proceedings, 2020.

[197] J. C. Sánchez-Thorin, M. C. Cortés, M. Montenegro, and N. Villate, “The quality of reporting of

randomized clinical trials published in ophthalmology,” Ophthalmology, vol. 108, no. 2, pp. 410–415,

2001.

[198] R. Agha, D. Cooper, and G. Muir, “The reporting quality of randomised controlled trials in surgery:

A systematic review,” International Journal of Surgery, vol. 5, no. 6, pp. 413–422, 2007.

[199] N. Parsons, R. Hiskens, C. Price, J. Achten, and M. Costa, “A systematic survey of the quality of

research reporting in general orthopaedic journals,” The Journal of Bone and Joint Surgery. British

Volume, vol. 93, no. 9, pp. 1154–1159, 2011.

[200] Y. Yin, F. Shi, Y. Zhang, X. Zhang, J. Ye, and J. Zhang, “Evaluation of reporting quality of randomized

controlled trials in patients with covid-19 using the consort statement,” PloS one, vol. 16, no. 9,

e0257093, 2021.

[201] S. Hopewell, D. G. Altman, D. Moher, and K. F. Schulz, “Endorsement of the consort statement by

high impact factor medical journals: A survey of journal editors and journal ‘instructions to authors’,”

Trials, vol. 9, no. 1, pp. 1–7, 2008.

[202] R. L. Kane, J. Wang, and J. Garrard, “Reporting in randomized clinical trials improved after adoption

of the consort statement,” Journal of clinical epidemiology, vol. 60, no. 3, pp. 241–249, 2007.

[203] R. Schulz, G. Langen, R. Prill, M. Cassel, and T. L. Weissgerber, “Reporting and transparent research

practices in sports medicine and orthopaedic clinical trials: A meta-research study,” BMJ open, vol. 12,

no. 8, e059347, 2022.

[204] T. Weissgerber, N. Riedel, H. Kilicoglu, et al., “Automated screening of covid-19 preprints: Can we

help authors to improve transparency and reproducibility?” Nature medicine, vol. 27, no. 1, pp. 6–7,

2021.

[205] J. Menke, M. Roelandse, B. Ozyurt, M. Martone, and A. Bandrowski, “The rigor and transparency

index quality metric for assessing biological and medical science methods,” Iscience, vol. 23, no. 11,

p. 101 698, 2020.

[206] N. Riedel, M. Kip, and E. Bobrov, “Oddpub – a text-mining algorithm to detect data sharing in

biomedical publications,” Data Science Journal, vol. 19, p. 42, 2020.

[207] S. Saladi, “Jetfighter: Towards figure accuracy and accessibility,” Elife, 2019.

135
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Appendix A

Annotation Guideline - Methodological

characteristics of RCTs

A.1 Introduction of the project

Evidence Synthesis is the process of synthesizing information from clinical literature to translate the research

findings into patient care and healthcare policy. Throughout the evidence synthesis process, a critical yet

challenging step is the quality assessment of clinical studies. Quality in research can be considered through

two aspects: methodological quality which concerns how rigorously a research is designed and conducted, and

reporting quality which describes how transparently a piece of scientific work is reported as a publication. This

research explores natural language processing (NLP) approaches to support evidence quality assessment of

clinical studies. Specifically, in this project, we are developing an information extraction system of fine-grained

methodological characteristics from RCTs to assist methodological quality assessment. The information items

to be extracted are information in regards to how a clinical study (Randomized Control Trials) is conducted,

including: what is the study design of the study? What are the blinding and randomization methods?, etc.

The outcome of the project will be information extraction models that can create a structured methodological

summary of a RCT from its publication. This is a guideline of the annotation study to support the project

“Methodological information to assess quality of evidence from Randomized Control Trials”, in which full-text

RCTs will be annotated with a list of pre-defined methodological information items. This guideline is intended

to provide guidance for annotators who participate in this study. The annotation will be carried out using

the teamTat annotation tool. The outcome of this annotation study will be an annotated dataset that can be

used as the training/testing data for machine learning models that extract methodological information from

RCT publications.
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A.2 Annotation tool introduction

Annotation Tool– Brat, is located at: http://ec2-3-144-241-74.us-east-2.compute.amazonaws.com/brat/.

Login information for each annotator will be provided in the first training session. Each annotator will be

assigned a separate folder which contains 50 annotation files, corresponding to 50 RCTs. In each annotation

file, there are three sections of text: text from the title, the abstract, and the Method section of the paper.

Each of them is broken down into sentences.

To open the annotation data file, go to the Brat link above, navigate to your annotation folder, open

a specific annotation file. To annotate a particular information item, highlight the chunk of text that you

want to annotate, a dropdown list of information items will be popped up in another window, select the

appropriate information item.

A.3 List of information items

There are two types of information items:

• Categorical information items: are the items that you have to choose between predefined sub-

categories. Based on the text in the article, the annotator needs to decide which sub-category the

information item belongs to and annotate the text span that describes/supports the decision.

• Free-text information items: are the items that there are no predefined categorical values to choose.

You rather highlight the text span that describes the information item in the text.

A.3.1 Trial Design Type

• Definition: this is a categorical information item which refers to how participants are assigned into

different treatment groups.

• Subcategories:

– Parallel group:

∗ Definition: Parallel group trials allocate each participant to a single intervention for compar-

ison with one or more alternative interventions

∗ Examples: “This multicenter, randomized, double-blind, placebo-controlled,parallel-group

study compared self-administered low-dose colchicine and high-dose colchicine with placebo.”

∗ Complex cases and rule of thumb:

· The article doesn’t explicitly mention “parallel-group” and nothing else about design type.

However, it lists several treatment groups, then we can assume that it is a parallel design

type. In such cases, you should highlight the names of the treatments as an annotation
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of parallel trial design. E.g.: “Young adults with elevated levels of depression symptoms

and who habitually consume a poor diet were randomly allocated to a brief 3-week diet

intervention (Diet Group) or a habitual diet control group (Control Group).”

· “Placebo-controlled” only should NOT be sufficient enough to conclude that it is parallel-

group trial design. So you should NOT annotate this phrase only and mark it as

“Trial Parallel Group”. However, if the trial lists several treatments including placebo,

you should annotate the whole text span as an annotation of parallel trial design. E.g:

“Patients with probable laboratory-supported, probable or definite ALS were enrolled by 25

Italian centres and randomly assigned (1:1) to receive intravenous rhEPO 40000IU

or placebo fortnightly as add-on treatment to riluzole 100mg daily for 12months.”

– Crossover:

∗ Definition: Cross-over trials allocate each participant to a sequence of interventions. In this

design, over time, each participant receives (or does not receive) an intervention in a random

sequence. The sequences should be determined a priori and the experimental units are random-

ized to sequences. The most popular crossover design is the 2-period, 2-treatment crossover

design, with sequences AB and BA, sometimes called the 2 × 2 crossover design [2]. If the trial is

crossover design, sometime, you will be able to annotate “Design Crossover Period Treatment”

information item.

∗ Examples: “A crossover randomized controlled trial (RCT) for investigating the primary

aim and a cross-sectional study for investigating the secondary aim of this study.”

– Factorial:

∗ Definition: Factorial clinical trials test the effect of two or more treatments simultaneously

using various combinations of the treatments. The simplest factorial design is known as a

2x2 factorial design, whereby participants are randomly allocated to one of four combinations

of two interventions (e.g. A & B). These combinations are A alone, B alone, both A and B;

neither A nor B (control) [3]. If the trial is factorial design, sometime, you will be able to

annotate “Design Factorial Factor Treatment” information item.

∗ Examples: “In this blinded factorial trial, we randomly assigned 1223 critically ill adults in

40 intensive care units (ICUs) in Canada, the United States, and Europe.”

– N-of-1:

∗ Definition: N-of-1 or single subject clinical trials consider an individual patient as the sole

unit of observation in a study investigating the efficacy or side-effect profiles of different

interventions

∗ Examples: “The study was an N-of-1 trial design, divided into 3 blocks of 10 weeks.”
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– Other design:

∗ Definition: other trial design types. Select this option if you see any text that describes how

the study is designed but does not fall into any of the above subcategories. Make sure to note

your thoughts and discuss with other annotators during the check-up meeting.

A.3.2 Design Crossover Period Treatment

• Definition: If a trial has crossover design, sometimes, the trial will provide detailed char-

acteristics of the crossover design, including number of periods and number of treatments

(e.g. 2-period, 2-treatment crossover design, with sequences AB and BA, is called the 2 × 2

crossover design).

• Example: “This was a randomized 3x3 crossover design study with 26 healthy overweight

adults.”

A.3.3 Design Factorial Factor Treatment

• Definition: If a trial has factorial design, sometime, the trial will provide detailed charac-

teristics of the factorial design, including number of factors and number of treatments (e.g.

2-factor, 2-treatment factorial design, is called the 2 × 2 factorial design).

• Example: “In this blinded 2-by-2 factorial trial, we randomly assigned 1223 critically ill

adults in 40 intensive care units (ICUs) in Canada, the United States, and Europe.”

A.3.4 Comparative Intent

• Definition: refers to the intent of comparison made in a study with two or more interventions.

• Subcategories:

– Equivalence:

∗ Definition: An equivalence trial is designed to determine whether the response to two or more

treatments differs by an amount that is clinically unimportant. This is usually demonstrated

by showing that the true treatment difference is likely to lie between a lower and an upper

equivalence level of clinically acceptable differences.

∗ Examples: “TWe did this randomised, phase 3, equivalence trial (NSABP B-39/RTOG

0413) in 154 clinical centres in the USA, Canada, Ireland, and Israel.”

– Non-inferiority:
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∗ Definition: A non-inferiority trial is designed to determine whether the effect of a new

treatment is not worse than a standard treatment by more than a pre-specified amount. A

one-sided version of an equivalence trial.

∗ Examples: “We performed a multicenter, non-inferiority randomized trial comparing

HFNT and noninvasive ventilation (NIV) in nine centers in Italy.”

– Superiority:

∗ Definition: When the aim of the study is to show that an experimental (E) treatment is

superior to a control (C) treatment, the RCT is called a superiority trial and the associated

statistical test is a superiority test. With a significant result, one concludes in a superiority

trial that E is different in effect from C, and when the observed result is in favor of E, we

conclude that E is statistically significantly better performing than C.

∗ Examples: “Superiority analysis was performed on the secondary outcome reductions in

glucose-lowering medication”

– N-of-1:

∗ Definition: N-of-1 or single subject clinical trials consider an individual patient as the sole

unit of observation in a study investigating the efficacy or side-effect profiles of different

interventions

∗ Examples: “The study was an N-of-1 trial design, divided into 3 blocks of 10 weeks.”

– Other design:

∗ Definition: other trial design types. Select this option if you see any text that describes how

the study is designed but does not fall into any of the above subcategories. Make sure to note

your thoughts and discuss with other annotators during the check-up meeting.

A.3.5 Phase

• Definition: Phase describes the level of a trial required of drugs before (and after) they are routinely

used in clinical practice.

• Subcategories:

– Phase 1:

∗ Definition: trials assess toxic effects on humans (not many people participate in them, and

usually without controls)

– Phase 2:

∗ Definition: trials assess therapeutic benefit (usually involving a few hundred people, usually

with controls, but not always)
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– Phase 3:

∗ Definition: trials compare the new treatment against standard (or placebo) treatment (usually

a full randomised controlled trial). At this point, a drug can be approved for community use.

– Phase 4:

∗ Definition: trials monitor a new treatment in the community, often to evaluate long term

safety and effectiveness.trials monitor a new treatment in the community, often to evaluate

long term safety and effectiveness.

• Examples: “In this multicentre, open-label, phase 3, randomised controlled trial (the ENDURANCE

trial; E1A11), we recruited patients aged 18 years or older.”

A.3.6 Blinding Method

• Definition: Blinding or masking (the process of keeping the study group assignment hidden after

allocation) is commonly used to reduce the risk of bias in clinical trials with two or more study groups.

• Subcategories:

– Open Label:

∗ Definition: All parties are aware of the treatment the participant receives.

∗ Examples: “This is an open label, placebo controlled trial.”

∗ Complex cases and rule of thumb:

· The trial may not be explicitly mentioned as open-label. However, the trial might say “all

participants are aware of the treatments”. In such cases, the annotator should highlight

the text span and assign it for the “blinding open label” information item. E.g: “In this

study, both patients and physicians are aware of treatment allocation.”

– Single Blind:

∗ Definition: A single blind trial involves blinding of any one group of individuals. Usually,

the subjects (patients) receiving the intervention are blinded to the intervention assignments.

∗ Examples: “This is a parallel-group, single-center, single-blind randomized controlled trial”

∗ Complex cases and rule of thumb:

· The trial may not be explicitly mentioned as single blind. However, the trial might mention

only ONE party of the object being blinded. In such cases, the annotator should annotate

the text span and assign it for the “single blind” information item. E.g.: “In this study,

only patients are blinded.”

– Double Blind:
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∗ Definition:In a double blind trial, any two groups of individuals are blinded.

∗ Examples: “Double-blind, randomized, fully remote (contactless) clinical trial of fluvoxamine

vs placebo.”

∗ Complex cases and rule of thumb:

· The trial may not be explicitly mentioned as double blind. However, the trial might

mention TWO parties of the object being blinded. In such cases, the annotator should

annotate the text span and assign it for the “double blind” information item. E.g.: “In

this study, patients and caregivers are blinded.”

– Triple Blind:

∗ Definition: Three groups of people are blinded to the intervention assignments in a triple

blinded study.

∗ Examples: “This is a triple-blind randomized two-group clinical trial to evaluate the effect

of Aloe Vera gel on the prevention of pressure ulcers in patients.”

∗ Complex cases and rule of thumb:

· The trial may not be explicitly mentioned as triple blind.. However, the trial might

mention THREE parties of the object being blinded. In such cases, the annotator should

annotate the text span and assign it for the “triple blind” item. E.g.: “In this study,

patients, doctors, and investigators are blinded.”

– Quadruple Blind:

∗ Definition: Four groups of people are blinded to the intervention assignments in a triple

blinded study.

∗ Examples: “This will be a parallel group, quadruple blind-randomised controlled pilot trial

with an add on laboratory based study.”

∗ Complex cases and rule of thumb:

· The trial may not be explicitly mentioned as quadruple blind. However, the trial might

mention FOUR parties of the object being blinded. In such cases, the annotator should

annotate the text span and assign it for the “quadruple blind” item. E.g.: “Patients,

intervention provider, outcome assessor and the data collection officer will be

blinded.”

A.3.7 Blinding Objects

• Definition: who are the people that were blinded [6].

• Subcategories:
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– Patients:

∗ Definition: patients (or participants) are the people who are recruited to take part in the

trial.

∗ Examples: “In this study the patients, the trained nurse and the statistician did not know

anything about the Aloe-Vera gel and placebo containers in two intervention and control

groups.”

– Care Providers (Caregivers):

∗ Definition: care providers, in general, are doctors, nurses, clinical workers, pharmacists who

provide health care diagnosis and treatment services, and are authorized to practice the trial.

These are the people who are often involved directly in the actual implementation of the RCT

(e.g. give treatments/medicines to the patients, take care of the patients during hospital stays,

etc.).

∗ Examples: “In this study the patients, the trained nurse and the statistician did not

know anything about the Aloe-Vera gel and placebo containers in two intervention and control

groups.”

∗ Complex cases and rule of thumb:

· Sometimes, the article uses a more general term to describe care providers such as “clinical

staff”. If you are able to confirm the role of the object which is clinical related, you can

annotate the object as “care providers”. E.g: “Patients were randomized by MEDUMO

software, and physicians, clinic staff, and patients were blinded.”

– Investigators:

∗ Definition:Investigators often are the researchers who are conducting and managing the trial.

∗ Examples: “The investigator, pharmacist, and trial participant were blind to group alloca-

tion.”

– Outcomes Assessors:

∗ Definition: Outcomes assessors are often people who are involved in the analysis of the trial

AFTER the outcomes of the trial are already collected. They are often statisticians, data

analysts (however, that might not always be the case).

∗ Examples: “In this study the patients, the trained nurse and the statistician who analyzed

outcome data did not know anything about the Aloe-Vera gel and placebo containers in two

intervention and control groups.”

– Other Blinded Objects:

∗ Definition: - It is important to understand what is the role of the object in the trial in order

to categorize him/her/them into an appropriate subcategory of blinding objects.
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- If you find any other objects that are being blinded in the trial but it is unclear what their

roles are. Then assign them with Other Blinding Objects. Those often are described using

general terms such as “staff”, “site personnel” and their roles in the trial are unclear.

∗ Examples: “Study team members, apart from the study pharmacist and the unblinded

statistical staff, are blinded.”

A.3.8 Randomization Type

• Definition: is a random allocation scheme that describes how patients are assigned into different

treatment groups.

• Subcategories:

– Simple Randomization:

∗ Definition: Randomisation based solely on a single, constant allocation ratio is known as

simple randomisation [7]. In this type of randomization, there are no randomization restrictions

or conditions mentioned.

∗ Examples: “In this study, we used simple randomization.” – note that here we also include

“randomization” into the annotation if it is available.

∗ Complex cases and rule of thumb:

· E.g: “After screening, patients were randomised to bosentan or placebo (1:1 ratio) by

sequential allocation of randomisation numbers.”

– Block Randomization:

∗ Definition: Block randomization is done by creating blocks of sequences, which will ensure

that the same number of participants will be allocated to the study groups within each block

[8]. If it is block randomization, you should be able to annotate the “randomization block

size” information item, too.

∗ Examples: “In this study the patients, the trained nurse and the statistician did not

know anything about the Aloe-Vera gel and placebo containers in two intervention and control

groups.”

∗ Complex cases and rule of thumb:

· Sometimes, the article uses a more general term to describe care providers such as “clinical

staff”. If you are able to confirm the role of the object which is clinical related, you can

annotate the object as “care providers”. E.g: “Patients were randomized by MEDUMO

software, and physicians, clinic staff, and patients were blinded.”

– Stratified Randomization:
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∗ Definition: When specific variables are known to influence the outcome, stratification of the

sample is required to keep the variables (e.g., age, gender, weight, prognostic status) as similar

as possible between the treatment groups [9]. If it is stratified randomization, you should be

able to annotate the “randomization stratification criteria” information item, too.

∗ Examples:“Randomization schedules were generated that were stratified by age (18-44, 45-54,

55-64, and 65 years).”

– Minimization Randomization:

∗ Definition: Minimisation is a method of adaptive stratified sampling that is used in clinical

trials. The aim of minimisation is to minimise the imbalance between the number of patients in

each treatment group over a number of factors [10, 11]. Minimisation calculates the imbalance

within each factor should the patient be allocated to a particular treatment group. The various

imbalances are added together to give the overall imbalance in the study. The treatment

group that would minimise the imbalance can be chosen directly, or a random element may be

added. If it is minimization “randomization minimization criteria” information item, too.

∗ Examples:“We used a minimisation algorithm to assign 62 women with early-onset pre-

eclampsia (24+0 -31+6 weeks of gestation) to receive pravastatin 40 mg daily (n = 30) or

matched placebo (n = 32), from randomisation to childbirth.”

– Minimization Randomization:

∗ Definition: other randomization types. Select this option if you see any text that describes

how the randomization is conducted but does not fall into any of the above subcategories.

Make sure to note your thoughts and discuss with other annotators during the check-up

meeting.

A.3.9 Randomization Ratio

• Definition: Ratio of randomization into treatment groups.This attribute is not tied to any particular

type of randomization.

• Example:“We randomly assigned women aged 39-41 years, using individual randomisation, stratified

by general practice, in a 1:2 ratio.”– note that you should only annotate the ratio number (don’t include

the “ratio” phrase in the annotation)

A.3.10 Randomization Sequence Generation Method

• Definition: How the randomized sequence is generated (e.g. using a computer random number

generator; random number table; coin tossing; shuffling cards or envelopes; throwing dice.
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• Example:

“The randomization sequence was computer generated by an experimenter who was not involved in

recruitment.”

“Patients were randomly assigned (1:1:1:1) to one of three dosing regimens of quilizumab or placebo using

an interactive web response system.” – note that you don’t need to include “a” in your annotation

here.

• Complex cases and rule of thumb:

– If the randomization sequence generation method is a combination of multiple devices, you

should annotate the whole text span. E.g: “Clinicians entered baseline data via a telephone

voice-activated or a secure web-based randomisation system.”

A.3.11 Randomization Personnel

• Definition: refers to the person, people, organization, who is involved in creating/generating the

randomization sequence.

• Example: “The computer-generated sequentially numbered randomisation list (with variable block sizes)

containing both allocations was pre-prepared by the trial statistician.”

• Complex cases and rule of thumb:

– Sometimes, randomization personnel is not a single person, but an organization/third party, you

should annotate the name of the organization and assign it to the information item. E.g.: “The

randomisation list was generated by Boehringer Ingelheim Pharma GmbH & Co. KG,

Biberach an der Riss, Germany, using a validated pseudo-random number generator and a supplied

seed number.”

A.3.12 Randomization Block Size

• Definition: If the randomization type is “block randomization”, the trial should provide information

about the block size of randomization accordingly.

• Example:“Treatments were randomly allocated using alternating block sizes of 2 and 4.”

A.3.13 Randomization Stratification Criteria

• Definition: If the randomization type is “stratified randomization”, what are the criteria for stratifica-

tion and what are the values of the criteria.
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• Example:“Randomization schedules were generated that were stratified by age (18-44, 45-54, 55-64,

and 65 years).”

• Complex cases and rule of thumb:

– If there are multiple stratified criteria, annotate them separately. You should not include the “and”

phrase in your annotation. E.g.: “Both factorial randomisations were stratified by centre and age

(<7, 7–12, 13 years).”

A.3.14 Randomisation Minimisation Criteria

• Definition: If the randomization type is “minimisation randomization”, what are the criteria for

minimisation and what are the values of the criteria.

• Example:“The system used a minimisation algorithm to achieve optimum balance for key prognostic

factors by world region and on all the other key factors within regions.”

A.3.15 Allocation Concealment Method

• Definition: Allocation concealment is performed when the treatment allocation system is set up so

that the person enrolling participants does not know in advance which treatment the next person will

get. Allocation concealment methods refer to the methods used to conceal the allocation. Such as:

Sequentially labeled drug containers, sequentially labeled opaque sealed envelopes, telephone, web-based,

etc.

• Example: ‘This randomisation sequence was concealed by using sequentially numbered, opaque,

sealed, and stapled envelopes.”

A.3.16 Required Sample Size

• Definition: The number of patients based on the required sample size calculation.

• Example: “Based on 80% power, an level of .05, a rate of 20% for clinical deterioration in the placebo

group, a total sample size of 152 participants was required.”

• Complex cases and rule of thumb:

– If the sample size information includes some specific details of the patients’ characteristics (such as

“children”, “female”, “male”, you could include those details into your annotation by annotating

the phrases). E.g.: “Based on 80% power, an level of .05, a rate of 20% for clinical deterioration

in the placebo group, a total sample size of 152 children was required.”
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A.3.17 Target Sample Size

• Definition: The target number of patients based on the required sample size.

• Example: “Based on the required sample size, our target sample size is 200.”

A.3.18 Actual Sample Size at Enrollment

• Definition: The number of patients who actually enrolled in the study at the beginning of the study.

• Example: “Of 1337 patients screened, 834 (62%) were excluded, 322 (24%) were contacted and declined

participation, and 181 (14%) were randomized and provided with study materials.”

A.3.19 Actual Sample Size at Outcome Analysis

• Definition: The number of patients who actually completed the study and collected data for analysis.

• Example: “At the time of completion of the study, 78 participants had completed testing at baseline

and Day 21.”

A.3.20 Sample Size Calculation Power Value

• Definition: What is the power value used to calculate required sample size.

• Example: “Based on an estimated effect size of d = .80, alpha level = .01 (one-tailed as direction was

hypothesised), power = 80%, we estimated that we would require a total of n = 36 participants.” – note

that you should only annotate the power value, don’t include the “power =” phrase in your annotation.

A.3.21 Sample Size Calculation Alpha Value

• Definition: What is the alpha value used to calculate required sample size. Sometimes, this value is

also provided as a significance level or p-value.

• Example: “We considered a significance level of 0.05 and 80% power to detect a moderate difference

(Standardized difference<0.05) of hospitalization duration across two groups. Based on these criteria,

the sample size was calculated as 50 per group.” – note that you should only annotate the significant

level value (don’t include “significance level of” phrase in your annotation).

• Complex cases and rules of thumbs: Sometimes, instead of providing alpha value or p-value, the

trial used “confidence interval” to infer this value. In such a case, we should annotate the whole phrase

“confidence interval 95%” (not only “95%”). That way, we will know this number refers to “confidence

interval” and could be used to infer the alpha value accordingly.
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A.3.22 Sample Size Calculation Drop Out Rate Value

• Definition: The sample size estimation formula will provide a number of evaluable subjects required

for achieving desired statistical significance for a given hypothesis. However in practice we may need to

enroll more subjects to account for potential dropouts.

• Example: “Dropout rate is expected to not exceed 15 to 20% in the study.”

A.3.23 Settings - Multicenter/Single Center

• Definition: what is the setting of the study? Choose between two values: Single center or Multi center.

• Subcategories:

– Multicenter:

∗ Definition: the trial is conducted in multiple different settings/locations.

∗ Example: “This is a multicenter, randomized controlled trial.”

∗ Complex and edge cases: Sometimes, an article doesn’t explicitly indicate if it is a multi

center setting. However, it mentions the number of centers/hospitals/locations where the trial

is conducted. In such cases, highlight such information and annotate with the corresponding

setting types. E.g.: “49 usual care primary care practices in the Netherlands.”

– Single center:

∗ Definition: the trial is conducted in multiple different settings/locations.

∗ Example: “The study was conducted at a level 1 trauma centre in the Netherlands.” →

this should indicate “single center” settings.

A.3.24 Settings - Location

• Definition: Highlight the span of text that describes the location of the study. This information should

be city, country, area names.

• Example: “49 usual care primary care practices in the Netherlands.”

A.4 Annotating rules

1. Minimal annotation:

• Rule: Only annotate the minimum amount of text span that provides the exact information item that

you are looking for. Surrounding general/non specific phrases should not be annotated.
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Table A.1: Examples of minimal annotation rules

Information Item
What you

SHOULD annotate
What you

SHOULD NOT annotate
Sample Size Required 6000 6000 patients
Design Crossover crossover crossover study
Sample Size Calculation Alpha Value 0.1 =0.10
Randomization Sequence
Generation Method

computer generated list a computer generated list

Sample Size Calculation Power Value 84 % 84 % power
Randomization Ratio 1 to 1 1 to 1 allocation ratio

• Examples:

• Exceptions:

– In some cases, if the text you want to annotate contains two components (e.g. two interventions),

then you should also include the article “a” or “an” into your annotation. For example: “Young

adults with elevated levels of depression symptoms and who habitually consume a poor diet were

randomly allocated to a brief 3-week diet intervention (Diet Group) or a habitual diet

control group (Control Group).”

2. Annotating specific useful information:

• Rule: Even though we try to follow the “minimal annotation” rule above, sometimes, if the surrounding

text provides important/specific details about the information item, you should include those details

into your annotation.

• Examples:

Table A.2: Examples of annotating specific useful information

Information Item
What you

SHOULD annotate
What you

SHOULD NOT annotate
Sample Size Required 6000 children 6000
Randomization Type Block balanced incomplete-block block

3. Annotate the same information with different values:

• Rule: Sometimes, a trial can contain more than one values/implementations for a certain information

item. For example: a trial can contain multiple phases. And in each phase, different blinding methods

are applied or different sample size calculations are implemented. You should annotate ALL the

information available.
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Table A.3: Examples of annotating same information with different values

Information Item
What you

SHOULD annotate
What you

SHOULD NOT annotate
Sample Size Calculation Alpha Value 0.10 — 0.15 0.10
Sample Size Calculation Power Value 84 % — 70 % 84 %

• Examples:

4. Annotate information from different sections:

• Annotate information items in the Title, Abstract and the Body of each paper separately. For

example, if you see “blinding type” information item in both sections Abstract and Body, you should

annotate both places.

• Within the Body of the paper, start annotating the Methods section first. Then, if you cannot

find certain information items in the Methods section, but you see the items in the Results or

Introduction sections, you can annotate the information there (give priority to the Results section over

the Introduction section). For example: if you cannot find “Actual Sample Size at Outcome Analysis”

in the Methods section, but in the Results section, annotate it there.

• In each section (either Title, Abstract, Body), only annotate one time for the same information item

with the same value. For example, if you see the trial design “parallel group” information in multiple

places in the Methods section in the body, only annotate the first place that you see the information.

• You need to annotate the most specific information regarding the trial. For example, it is common

to see that a trial is only identified as “randomized” (which may suggest “simple randomization”) in

the Title. However, later on in the Methods section, you see “block randomization”. In this case,

you should only annotate “block randomization” in the Methods section. If you’ve already annotated

“randomized” in the Title, you should delete it.

• Exception of “Simple Randomization”: If you only see “randomized” phrase in ALL sections (Title,

Abstract, Body), and nothing else in regard of randomization type, you can annotate the phrase

“randomized” in ALL sections separately and assign them to “Simple Randomization”.

5. Other rule of thumbs:

• The annotator should not limit yourself to looking for the keywords that are often tied to a particular

information item (for example: look for “open label” keyword for “open label” blinding type). Sometimes,

the information item is described in a different context (for example, “no personnel is blinded during

the trial” is also equivalent to “open label” blinding type).
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• For information items that are meant to be numerical values (such as: sample size, power value, alpha

value, etc.), it is ok to annotate the numerical values only. However, if the information items are not

numerical values, you should annotate all the text span (including numerical values plus their units) as

supporting text for your annotation. For example: for “Settings multicenter” information item, you

should annotate the text span “100 centers” or “100 sites” (not only “100”) as your supporting text.

• To categorize blinding objects, you should consider the whole context and only put them into a specific

category if the role is explicitly mentioned. If the role of the person is unclear, you can put him/her/them

into the Blinding Object Others category instead.

• For categorical information items, if the information item is the same, but you can find multiple

supporting text in different places, give priority to annotate the EXACT phrase that describes the

corresponding category. For examples:

– If you see two supporting texts “multicenter” and “100 sites” in the Methods section, both texts

could be used to infer “multicenter settings”. You can annotate BOTH. However, it is also ok to

give priority to the phrase “multicenter” and annotate it only.

– If you see two supporting texts “parallel group” and “treatment A, B and placebo” in the Methods

section, both texts could be used to infer “parallel group design”. You can annotate BOTH.

However, it is also ok to give priority to the phrase “parallel group” and annotate it only.

• For free text information items, if the information item is the same, but you can find multiple supporting

text in different places, you should annotate the most specific information regarding that information

item. For example:

– For Actual Sample Size at Enrollment, you find two supporting texts “100” and “50 for treatment

A and 50 for treatment B”, you should annotate BOTH supporting text and assign them to the

information item.
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Appendix B

RCT Methodological Characteristics

Extraction - User Study

B.1 Description and methods

• Description: This is an evaluation template to assess the Information Extraction system of the RCT

Methodological Characteristics. The goal is for a potential end users to evaluate if the prediction results

from the system is correct or incorrect. And also if the extraction result is helpful for the end user in

any other downstream task (e.g annotation, quality assessment).

• Task:

– End user goes through 10 articles and fills in the evaluation table (one article is in one tab).

Evaluation table glossary is provided below.

– End user provides a summary feedback in the end about usefulness of the extraction (for example:

does the end user find these extractions are helpful and can be used for any downstream relevant

task?

• Glossary:

– ID: Identifier number of the extracted span.

– Predicted Information Item: the information item in our RCT Methodological Characteristics

Data Model that the Information Extraction system predicts.

– Predicted Text Span: the span of text that the Information Extraction system predicts.

– Sentence: Sentence in which the predicted span located.
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– Section: Section in which the predicted span located.

– Evaluator’s judgement (correct or not correct): Evaluator indicates if the prediction is

correct or incorrect.

– Evaluator’s comment: This field is optional. If the judgment is incorrect, evaluator could

elaborate his/her evaluation (e.g. if it is incorrect prediction, explain why do you think so if

needed).

B.2 Results

Overall comments from evaluator:

“Overall, the algorithms performed better than I expected, and most errors seemed to occur when classifying

details related to randomization and sample size. Given that the language describing randomization can vary

substantially, this isn’t a surprise and perhaps more examples would improve accuracy. There are a few things

that could be improved probably quite easily. First, sometimes methods are picked up in the background or

discussion that describe other studies. Restricting the screening to title, abstract, methods, results sections

could improve this. Second, as I noted in a few places, there are some opposing classifications that could likely

be dealt with with conditional logic. For example, if a classification is made as “Settings/Multicenter” with

high confidence, a subsequent classification of “Settings/Single center’ could be excluded. Another example is

the Settings/Location; perhaps some location logic could be used to determine what is a broader country-level

setting vs. local setting. An important next step would be to evaluate what the model did not pick up at all -

there are likely relevant sentences from these articles that have methodological details important for evaluating

the design and execution of each trial. I could see this being useful in several contexts. First, when extracting

information for systematic reviews or meta-research projects, it is possible that this would save time so the

screener could see the information in context beside the paper. Second, for general evaluation/peer review

of the literature, it could help to evaluate the rigor/transparency of trials. An interesting next step could

be to further classify sentences beyond just whether they reported something to whether it was implemented.

For example for blinding, if it was explicitly stated that investigators or analysts were not blinded. Finally,

automated extractions could be used to build a large database of trials so one could filter by randomization

type, ratio, blinding, and so on if they wished to study a specific corpus of articles with certain methodological

characteristics, or to track trends in methodological characteristics over time and over disciplines.”
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