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ABSTRACT

The COVID-19 pandemic has prompted the development of numerous visualization tools

to facilitate understanding and communicating on epidemiological research findings. How-

ever, existing visualization work for agent-based epidemiology simulations often focuses on

macro-scale phenomena, while overlooking the connection between macro-scale trends and

micro-scale agent behaviors. Portraying this connection accurately for ensemble simulations

can bring substantial insights into both the epidemiology of infectious diseases and public

health intervention design and evaluation. To address this gap, we present MWEpi-Viz,

an interactive dashboard that facilitates exploration of ensemble datasets generated via epi-

demiological agent-based models. In this thesis, we describe the development process, system

design, and efficacy of MWEpi-Viz, which draws upon months of participatory research with

a computational epidemiologist. We illustrate the utility of MWEpi-Viz using an ensemble

dataset from a counterfactual COVID-19 scenario in the Champaign-Urbana community,

August 2020.
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CHAPTER 1: INTRODUCTION

Adequately visualizing the outputs from computational epidemiology ensemble simu-

lations built using agent-based models (ABMs) remains an unavoidable and challenging

task. These models were successfully applied across multiple geographical scales during the

COVID-19 pandemic from entire nations [1] to small communities [2], showcasing advantages

otherwise unattainable with other simulation methods. During the pandemic, the signifi-

cance of visually conveying such information to scientists, decision makers and the general

public became apparent. Developing correct intuitions about how a pandemic operates in

terms of how individual behaviors shape collective outcomes determines the effectiveness of

interventions on public health and society at large, the ability to adapt these measures as

predictions are obtained an updated, and compliance with specific measures as individuals

connect their behavior and individual responsibilities to the larger panorama of the unfolding

situation.

ABM introduces visualization challenges different from those found in other simulation

paradigms [3, 4, 5]. The first one arises as a consequence of why they are used in the

first place: problems where agency shapes the space of collective decisions –e.g., contrary

to passive forces operating on particles- tend to go beyond what can be expressed with

analytical models conveniently, and even when that occurs, there are no closed solutions

available to use in a convenient manner. This poses the need to map the heterogeneity not

only of the composition of a social system undergoing an epidemic process, but of the rules

governing individual agent decisions. Second, agents not only operate individually according

to rules of varying complexity while traversing environments that modulate their behavior

–e.g., how individuals may spend different amounts of time depending on the establishment

they visit during a pandemic- but they interact in non-trivial ways. Visualizations intended

to help experts and non-experts make sense of such highly diverse landscape of possible

interactions and their consequences are met with practical limits of comprehensibility and

spatial information density.

Visualizing the connection between properties derived from population-level observables

–i.e., a quantity of the macroscale model- and individual agent actions in clear and intellectu-

ally profitable ways for multiple classes of users remains an open problem in visualization of

ensemble simulations within computational epidemiology; doing so constitutes a fundamen-

tal task for crisis communication and management [6]. This gap appears to be a major source

behind model misinterpretation for decision-makers and decision uncertainty for individu-

als experiencing interventions, as evidenced by the wide spectrum public attitudes toward
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non-pharmaceutical interventions during the early days of COVID-19 [7] and patterns of

distrust [8]. More broadly, the lack of visual tools depicting this connection in an interactive

manner may contribute to increasing difficulties of the general population to understand how

their individual behavior contributes to an ongoing epidemic. This opens, in turn, future

opportunities to expose more clearly through visual metaphors how seemingly independent

biological, economic and social mechanisms work together and alter the course of actions

and decisions across time in ways that may be counter-intuitive and hard to predict.

In this manuscript, we address this challenge through the design and implementation of

MWEpi-Viz, the Many-World Epidemiological Visualization platform for simulation data

obtained from the Epidemiology Workbench [2], an ensemble simulation platform for infec-

tious diseases implemented in Python using Mesa [9]. Our platform makes use of interactive

multi-level information selection and scenario re-enacting by presenting curated views of

agents, events, and trajectories computed across individual scenarios and entire ensembles.

To better engage and benefit from the human visual system, we carefully designed an inter-

active dashboard capable of threading a single narrative, that of an epidemic across time at

multiple conceptual levels while still maintaining a coherent and unified view of the entire

phenomenology driving these processes.
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CHAPTER 2: RELATED WORK

2.1 VISUALIZING PANDEMIC OUTCOMES FROM SIMULATION ENSEMBLES

ABMs are used to uncover possible presence of emergent behavior in complex systems,

epidemics being a paradigmatic example. By emergence we mean the rise of collective

properties (i.e., the macroscale) that could not be anticipated from the dynamics of individual

agents (i.e., the microscale), a consequence of their patterns of interaction across time. These

are generative effects, surprises that bear significance at the level of the system, which often

entail a substantial exploration of the space of parameters determining the individual rules

in the system. ABMs are a powerful tool in the arsenal of generative social science for that

reason [10]. However, capturing the bridge that connects events in the microscale to changes

in the macroscale is not trivial. The non-linearity observed in macroscale behavior arises

due to the compositional effect of interactions, which are transient events but can cooperate

to endow the system with new dynamics. For instance, the standard epidemiological SIR

model produces an infected peak corresponding to a fraction of the population [11], which

can be explained analytically by the product of infected and susceptible individuals given β

contacts per day and mean recovery rate γ,

dS

dt
= −βSI, (2.1)

dI

dt
= βSI − γI, (2.2)

dR

dt
= γI. (2.3)

Visualization-wise, the peak for the infected portion of individuals is informative for sev-

eral public health issues, and became a staple during COVID-19 pandemic science and media

presentations, but offered no mechanistic insights into the processes responsible for it. To

uncover how this particular curve evolves, though, it is necessary to resort to the statistical

physics of networks [12, 13] or to interacting particle systems theory [14, 15] and reconstruct

the probabilistic processes corresponding to the interactions mentioned above. Observe that

each interaction between agents is a discrete event, that agents can choose among a finite

number of possible decision alternatives at each step, and that we now need to introduce

an ensemble to sample the space of possible trajectories may follow in any given simulation,

even if the rules they follow are deterministic. By computing various moments of the distri-
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butions obtained across the multitude of possible worlds in an ABM ensemble simulation,

whether network or an interacting particle system contagion dynamics are used, we approx-

imate the continuous SIR model expressed through the ordinary differential equations (Eqs.

2.1-2.3) above. These only portray how fractions of the population move across multiple

compartments that represent stages of the disease in question. Incidentally, the reasoning

above implies that ABMs intended for limited time forecasting of disease spread and pub-

lic policy design must introduce probability distributions at the agent level, and ensemble

simulation at the macroscale level.

Despite the fact that the mathematical reasoning needed to uncover the connection be-

tween infectious interaction processes is well known, it is by no means trivial to extend it

and include non-pharmaceutical and pharmaceutical interventions [16, 17]. Moreover, the

connection has become even more inscrutable for epidemiologists, public health experts, de-

cision makers and the general public. Due to the conceptual and analytic complexity behind

recovering the the bridge connecting microscale dynamics to macroscale observables, compu-

tational epidemiologists –and by extension, visualization experts- are often faced with hard

choices to communicate their results, often leading to presenting only one perspective of the

epidemic process. One of them is to restrict oneself to ODE-based compartment models,

simple to interpret and modify at the macroscale level to account for various interventions

[18], but uninformative of fine-grained individual dynamics that matter when devising public

policy measures to maximize compliance. ODE models are suitable for building dashboards,

since their numerical solution is inexpensive enough to embed in web pages, and moving

parameters with sliders allow users to quickly explore what the parameters do to build

intuitions.

However, as the models gain compartments to compensate for more complex diseases such

as COVID-19, the behavior of the system become less intuitive through visual inspection.

Not only we lose clarity on the response of the model as parameter changes, but now multiple

curves are needed to make sense of the process. Even worse, adding confidence intervals re-

quires a costly estimation process that is somewhat artificial. Another alternative is to resort

to a stochastic differential equations (SDE) version of SIR models, that attempts to recover

part of the microscale behavior through probability distributions [19] and gain realism. User

controls become more complex, leading to intermediate visualization of noise functions and

probability distributions modulating disease-related parameters. Neither the ODE or the

SIR admit an intuitive introduction of spatial elements, critical for realistic simulation of

geography-dependent effects. Finally, using ABMs or network models reintroduce spatial

dependencies and open the black box in terms of the microscale at the expense of greater

visual complexity were the micro-to-macro bridge were to be exposed, particularly in large
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ensemble simulations.

Though visualizations of pandemic modelling results have existed for a long time, it has

received tremendous attention with the emergence of COVID-19. In this section, we discuss

the recent works, the characteristics of ensemble data and epidemiology data, and their

related visualization challenges.

2.2 EXISTING VISUALIZATIONS FOR COVID-19 PREDICTION MODELS

As COVID-19 drastically altered the lives of billions around the world during its peak,

interest in epidemiology research and the need for better visuals to understand computational

epidemiology models have been on the rise since. Traditionally, visualizations are used for

reporting statistical summaries from epidemic simulation outcomes, and are instrumental

to better interpret and communicate complex and intricate results. While many online

COVID dashboards from governmental and public entities have swiftly appeared to inform

public about the actual recorded COVID-19 incidents [20] thanks to the maturity of web

frameworks and commercial business intelligence software, which support quickly assembly

of classical statistical graphs, e.g. line chart, map, data tables, and pictograms. These tools

are helpful for providing informative insights at a glance, but are not sophisticated enough

to explain and explore computational epidemiology results. Hence, custom-made interactive

dashboards have been becoming more popular for decision-makers or epidemiologists to

conveniently generate and analyse scenario-based forecasting.

The design of custom-made dashboards are highly dependant on the usage of the model

and are geared towards reducing time and domain expertise to execute simulations. One

example is COVIs [21], a dashboard that allows journalists to comprehend the impact of

different time-sensitive COVID-19 policies with a prediction model, by visualizing the epi-

demic curves in various countries under different scenarios defined by the user. Afzal et al.

[22] proposed a map-view dashboard for running and viewing results from their COVID-19

simulation model on state-level communities, where the interface has a control panel for tun-

ing model parameters and a map-view indicating the severity of COVID-19 across regions.

Mahmood et al. [23] built a dashboard for their dengue fever agent-based simulation to

report the geolocations of humans and mosquitoes and the epidemic curves. These viusal-

ization tools have improved accesibility and interpretibility of epidemiological models, but

were not adequate to uncover the full picture of ABM ensemble outcomes.

ABM simulates interactions between agents and environment to facilitate understanding of

complex phenomena [3] for fields such as ecology, geography, and urban planning. ABM data

is typical spatial-temporal consisting of an environment –e.g. grids or geographic area– and
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agents, and animation is common for displaying changes of agent behaviors in an environment

through time. Recent breakthroughs in ABM visualizations [24] greatly reduced the work of

translating simulation states to visual outputs, but existing visualizations are still inherently

descriptive - in a sense that they display an animation of agents moving in an environment

accompanied by statistical summaries. Neither time-persistent information of an agent nor

the environmental impact of agents can be efficiently explored. In Figure 2.1 we show a

classical visualization paradigm of ABM simulation using the Python package - Mesa [9].

Our original implementation of the ensemble simulation also uses this platform, and it offers

a real-time visualization tool while running an ABM simulation.

2.3 CHALLENGES IN VISUALIZING ENSEMBLE DATA

An ensemble data is a collection of outputs from rule-based simulations with slight per-

turbations of initial settings. Ensemble modelling is commonly used in scientific fields such

meteorology, physics, biology, for predicting complex and uncertain outcomes. Due the na-

ture of the simulations, the resulting datasets are often spatial-temporal which record the

attributes of different members at each timestamp.

There are several overarching challenges in ensemble visualizations for all types of data

[25]. Here we name two that are particularly relevant to our COVID-19 ABM. The first one

is data management – depending on the model complexity and the number of simulations, an

ensemble can be computationally expensive to run and to store. Off-the-shelve interactive

visualization tools are normally insufficient for handling a great volume of data because

responsive interactions require prior data cleaning and aggregation. Therefore, efficient

data retrieval is an indispensable part to interacting with large volume of epidemiological

data. The second one is dimensionality reduction – ensembles are used for observing many

possible evolution of a complex system at a given space, and none of the essential goals is

to compare the different worlds so to draw meaningful inferences. However, because of the

highly dimensional nature of ensemble datasets, they require careful aggregation and novel

visualizations for enabling pattern recognition.

Displaying statistically aggregated views of all simulations of an ensemble is a common

technique to flatten ensemble data and illustrate uncertainty. Spaghetti plot is a classical

technique for arranging a large volume of ensemble members simultaneously in the form of

lines, so to accentuate the overall trend and outliers, but it is prone to the problem of visual

clutters. Many ensemble visualization techniques extend the spaghetti plot. For instance,

contour Boxplots [26] fuses spaghetti plots and box plots to visualize a large ensemble of

spatial-temporal curves pressure field generated by fluid simulations, by displaying only con-
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Figure 2.1: Real-time ABM visualization using Python Mesa package for simulating COVID-
19 in a 50x50 grid. The dashboard constructed using Mesa displays a control panel for
simulation runs (top right), a panel of sliders to tune simulation parameters (left), a grid
visualization with each agent colored by their respective states at each timestamp (center),
and multiple components with statistical plots (bottom).
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tour lines on the quartile and extremes while coloring the interquartile region like box plots

to indicate the dispersion and skewness. Curve Boxplot [27] is another similar method to

characterize 2D and 3D ensemble curves efficiently using non-parametric statistical analysis

to extract representative curves from the ensemble. In order to support static ensemble

visualization, Hao et al. [28] proposed a cluster tree method to organize similar ensemble

members. Parallel coordinates plot is another popular choice [29], [30], [31] for uncovering

correlations between input parameters and model outcomes of all simulations, which dis-

plays multiple feature axes in parallel and plots all ensemble members as lines across them.

Filtering and coloring are two common techniques to reduce of visual clutters and enhance

readability.

Interactive visual explorers coupled with novel visualizations is another popular approach

to organize ensemble datasets because interactivity allows a multi-level organization for

visualizers to encode more information than static graphs. In particular, it is popular to

cluster similar outcomes in ensembles to support pattern discovery and enable drill-down

exploration through the cluster visualizations. [32] proposed an interactive visualization

for exploring isocontours of weather forecast ensembles, in which it displays a box-plot-

inspired simplified spaghetti plot of isocontours and enables users to select groups of similar

isocontours with a node-link diagram generated by a clustering algorithm. [33] proposed

an interactive visual analytics tool to compare an ensemble of real ocean currents across

time against simulated currents; they applied clustering algorithm to both ensembles and

highlight the geospatial regions of the real and model currents by their clusters, for users to

reason the accuracy of their simulations. [30] designed a three-view interactive visualization

tool for 2D functions ensemble data to facilitate a drill-down exploration pattern. They

visualized each member function as a glyph and placed all the members in accordance with

their clustering membership.

The visualizations of ensembles have always been highly tailored in accordance to the

underlying data structure. [25] argued that ensemble data is so complex that there is no single

visualization that could satisfy all the competing goals. Hence, they advocated for a multi-

view visualization containing traditional charts, novel visualizations and interactivity would

be the best approach. Most prior ensemble visualizations indeed adopted this approach and

we followed this design methodology in our work.

2.4 PARTICIPATORY DESIGN

Participatory design has long been a design method before the term was coined, where

designers incrementally collect design insights by observing users in their natural environ-
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ment, developing prototypes, and collecting feedback from users [34]. This method does

not limit itself to only software development. Richard Drew, an engineer from 3M, in-

vented the Scotch Tape in 1923 by working closely with painters from an automobile repair

shop for two years to create a secure, waterproof masking tape with the right adhesiveness

perfect for masking surfaces for painting cars. Spinuzzi in 2005 first established that par-

ticipatory design as a research methodology rather than a mere design approach [35]. She

constructed three stages in participatory research design that researchers cycle through dur-

ing development: (1) initial exploration of work, (2) discovery processes, (3) prototyping.

She argued that compared with traditional research, where the objective is to extract and

abstract knowledge transferable to other domains, participatory research aims at discover-

ing “tacit knowledge” from users that are difficult to formalize and express. Since users and

researchers collaborate closely, researchers are able to draw out hidden knowledge and create

user-centered design with a higher success in adoption. Considering the diverse needs from

different stakeholders in computational epidemiology research, in order to better scope our

project, we chose participatory design as our research methodology and collaborated with

one of the computational epidemiologists on the Epidemiology Workbench [2].
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CHAPTER 3: REQUIREMENTS

Our goal is to build an interactive dashboard that surfaces the dynamics between individ-

ual agent behaviors, public health policies, and viral transmission. MWEpi-Viz visualizes

ensemble data from the Epidemiology Workbench and is the result of a participatory design

with a computational epidemiologist, who provides the ensemble data and engages in weekly

design meetings. In this section, we explain the driving questions guiding the design of our

dashboard for exploring ABM epidemiology ensemble data.

3.1 SCIENTIFIC REQUIREMENTS

Visualization in ensemble simulations of epidemic processes addresses three separate con-

cerns. First, identifying the main points that are significant in terms of dynamical evolution

of the interaction between pathogen and the population viewed as a system. Second, once

these moments become salient, the work of computational epidemiology is to connect individ-

ual behaviors to potential interventions to measures accompanied by indicators obtainable

from public health data. We are interested for this part on the ability to qualify –and

quantify- the performance of interventions by translating them into the language of biologi-

cal and populational mechanisms. For instance, the role of mask wearing can be interpreted

at the level of its mechanical effect on droplets (i.e., reducing the magnitude of transferable

viral loads across individuals), it individual effect on the probability of infection, and its

populational effect of the spread of the virus given by drops in the count of newly exposed

individuals. Third and most significant, the role of scientific visualization is to help con-

struct and challenge hypotheses connecting the biology of the pathogen with attributes of

individuals in order to obtain a clearer picture of how, where and when risks arises the most.

This is pressingly relevant during early days of a pandemic when clinical and public health

impacts are being just understood. In consequence, visualization tools must accomplish five

main tasks.

(S1) Differentiate individual attributes that drive collective dynamics. Realis-

tic epidemic models for decision-making often introduce demographic complexity by

explicitly endowing agents with features associated with clinical health factors (e.g.,

presence of co-morbidities, age range) and well as societal risk factors (e.g., employ-

ment status, family cohabitation, transportation patterns). These may be explicitly

stated as parameters of the simulation, or indirectly given by changes in accessible pa-

rameters under a given interpretation. In some cases, the attributes map directly onto
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observable properties of individuals, while others correspond to abstract properties

connected to the mathematical formulation of the model. Selectively visualizing simu-

lation outcomes at the individual and collective level greatly simplifies the differential

study of separate populations as they undergo an epidemic regime.

(S2) Connect parameters of the ensemble to statistical moments. Ensemble sim-

ulations of dynamical epidemic processes constitute a mean-field approximation of

compartment models as indicated above. Then, given outcomes of an ensemble sim-

ulation, visualization tool need to provide access to the standard curves used in the

interpretation of retrospective studies and forecast analyses. Contrary to ODE mod-

els, ensemble simulations enable calculation of uncertainties, bound by worst and best

case scenarios across each variable of interest. Being able to associate a parameter set

with a visual representation of moments computed from these curves provides critical

insights about how reliable the resulting scenarios.

(S3) Constrain attention selectively to regions of epidemic interest. Applying

ensemble models for advanced research and decision-making often result in long time

series data that either approximately reproduce the past or enact various possible

futures. Traditional visual representations tend to concentrate statically on one of

three specific choices: 1) showing the entire epidemic process at once, 2) showing

the most recent trends to then design future modeling exercises containing new public

health interventions, and 3) focus only on certain time ranges where significant changes

occur. Even when all three are present, these are disconnected from other visual

elements that can help clarify and focus the user’s attention on changes that may

become imperceptible across the entire lifespan of the simulation.

(S4) Make relations between space and contagion processes explicit. A fundamen-

tal limitation of ODE and SDE models in contrast to ABM simulations is the ability

to recover spatial patterns derived from the movement of the agents that further drive

disease spread. ABMs are naturally multimodal in this regard. While visualizing this

at the level of an ensemble does not provide specific information when the spatial rep-

resentation does not include real data (e.g., based on GIS data), portraying selected

ensemble elements –individual runs- remains informative. In particular, connecting

specific curves from the ensemble to its specific realization in simulation space pro-

vides information about the distribution and reach of each agent, and thus about its

infectious potential. More specifically, reasoning about agent trajectories as infective

traces with finite effects can clarify why some policy measures may be easier to enforce
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than others.

(S5) Connect statistics from collective outcomes to disease transitions. Given

the statistical character of ensemble simulations, visualizing overall moments of the

resulting distributions is generally uninformative. With the particular case of the Epi-

demiology Workbench in mind, events in realistic simulation frameworks depend on

particular probability distributions to which adequate parameters are supplied. These

distributions, in turn, model specific biological, clinical or social mechanisms tied to

the spread of a disease and its consequences. Hence, the ability to design appropriate

public health interventions translates into the ability to detect and predict changes

in these distributions using data from simulations. In disease contagion models, dis-

crete stages encode periods in which clinical outcomes vary sharply and distinguishably

(e.g., changing from symptomatic to severe stages); each stage transition bears signif-

icance for specific stakeholders during the unfolding of an epidemic. Research-wise,

understanding whether it is possible to intervene in ways that challenge the robust

universality of contagion processes constitutes a fundamental and pressing question.

To the best of our knowledge, there is no visualization that connects temporally con-

strained distributions for key observables in ensemble simulations of epidemic processes

to disease stages despite it evident advantages.

3.2 PUBLIC HEALTH REQUIREMENTS

During the COVID-19 pandemic, several requirements for public health communication

became apparent. In an unfolding situation, the main goal is to communicate with a broad

range of stakeholders each of whom may need different levels of detail regarding existing

information and possible future situational changes. For instance, the general public may

interested in the individual risk they experience and the impacts of public health inter-

ventions on daily life in the short term, epidemiologists seek to understand the long term

dynamics that impact the evolution trends of the pandemic, healthcare systems try to adapt

to a changing demand altering the availability of hospital beds, and decision makers are

tasked with integrating all the prior information into policy interventions that are effective.

Effectiveness in this context means that proper communication of the state of an epidemic

should map into a common set of questions answerable across varying levels of resolution de-

pending on available information [36]. Thus, any visualization tool that addresses unfolding

scenarios, should cater to the following concerns:

(P1) Does the analysis provide graphical representation of the outcome over
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time? As mentioned before, ensemble ABM simulations are simultaneously most

reliable and hardest to convey due to their complexity. Not only the standard trends

used in standard epidemiology practice need to be present, but their collective and

individual properties as events in multiple possible worlds produce distributions that

speak of the probabilities governing the evolution of spread.

(P2) Is there sufficient pre-intervention data to characterize pre-trends in the

data? Simulations of the sort investigated here require careful calibration and ac-

counting of past events in order to become useful for forecasting purposes. The latter

entails the need to have mechanics in the visualization that help convey differences

between pre-intervention, within intervention and post-intervention data trends across

relevant state variables and compartment changes. It is worth noting that, due to the

properties of an epidemic process, the outcome of public health interventions manifests

within a delay, which also needs proper characterization. Another use case is public

health intervention imputation from simulation data. In order to ensure objectivity,

teams of modelers and public health experts not involved in devising public health

intervention design simulation can be given the outcome of ensemble ABM simula-

tion to evaluate whether the data shows specific changes of significance. The ability

to visually narrow down time periods in this manner and evaluate differences in the

resulting distributions constitutes a key tool for unbiased policy evaluation.

(P3) Is the pre-trend stable? Calibration requires choosing conditions in which the epi-

demic observables are predictable, and where the most significant intervening factors

have been identified and characterized. To this extent, providing visualization mecha-

nisms for ensemble runs allows generating and quickly testing the similarity between

past data and generated data. We note that, to do that effectively regardless of specifics

of each community, it is customary to display trends using population fractions rather

than absolute population counts.

(P4) Is the functional form of the counterfactual (e.g. linear) well-justified and

appropriate? A counterfactual scenario in computational epidemiology comprises a

parameterization that corresponds to a reality in which a particular set of policy mea-

sures are absent, used to contrast against other scenarios where some or all of them

may be implemented. Comparing between counterfactual and alternative scenarios

constitutes a complex task. Visually, counterfactual simulations will approximate the

behavior of an ODE compartment model without measures being applied to it. Hence,

providing the ability to capture images of trends per scenario and visualizing simul-
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taneously the trajectories will facilitate comparison against real data. In particular,

with emphasis on data prior to an intervention, doing so helps identify potential issues

with the calibration and thus with the quality of the parameterization of the model as

a whole.

(P5) Is the date or time threshold set to the appropriate date or time (e.g. is

there lag between the intervention and outcome)? Time lag effects exist be-

tween the formal issuing of public health intervention and its effect on the dynamics

of the epidemic process due to aspects related to the clinical progression of the disease

in exposed individuals. For example, the initial strain of SARS-CoV-2 had an aver-

age incubation time of seven days following a Poisson distribution [37]. Being able to

convey the existence of such delay to decision makers and the general public can help

increase individual compliance with policy measures only when the expected time at

which effects will manifest is known. If simulations are adequately constructed, these

lags should arise in silico as well, and visualizations generated from their outcomes

should clearly show changes in the trends associated with changes in individual be-

havior driven by such interventions. The latter is, in general, a non-trivial challenge.

In terms of simulation data analysis by teams that evaluate the quality of models,

effective interventions will appear consistently across the entire ensemble and, thus,

both the mean trends and trends per run will display these changes when visualized.

(P6) Is this policy the only uncontrolled or unadjusted-for way in which the out-

come could have changed during the measurement period? Pandemic control

is, in general, a concurrent decision process. Multiple interventions are implemented

at once, often exhibit synergistic effects [2, 38], making the imputation of outcomes

a complex task. One way in which ABM simulation can be used to understand each

effect in an isolated manner, and then their synergies, is by creating differential sce-

narios following an adequate design of experiments that aims to maximize differences

across combinations of measures and reduce the total number of scenarios to be run.

Having a tool where ensemble outcomes can be visually interrogated in terms of trends

and average, individual model runs from the perspective of collections of agents, and

distributions arising from the time-dependent stage change process is indispensable to

fully explore the consequences of measures. As an example, modeling toward cam-

pus reopening in Fall 2020 for UIUC [2] showed the synergistic effect between testing

and mask wearing as a function of changes in the proportion of asymptomatics in the

population. Even with limited visualization capabilities, the difference suggested that

the testing regime would suffice to regain control after the epidemic peak produced by
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mass ingress of students. However, standard visualization techniques do not provide

information about the spatial consequences of interventions on disease spread, despite

the fact that these can change the infective potential of individual by restricting the ef-

fectiveness of contagion or the average distance they cover during each infectious stage.

Hence, visualizing and annotating sample runs becomes useful to portray clearly how

individuals are impacted by top-level decisions.

3.3 VISUALIZATION REQUIREMENTS

To support efficient navigation of ABM ensembles at different levels of details, the visu-

alization interface should organize the data such that the macro-scale model and individual

agent actions can be reasonably linked and examined while catering the scientific and pub-

lic health requirements mentioned above. As a result of the discussions with the domain

expert, we crystallize the usability requirements and three major levels of resolutions of the

ensemble data that would benefit greatly from visualizations for communication and analysis

purposes.

In terms of usability, the visual explorer should be responsive to interactions that the la-

tency between query and response should be minimized. While Nielson [39] suggested that <

1s is ideal for an uninterrupted user experience for general events such as mouse click, a pre-

vious study on benchmarking interactive database visual query response time[40] suggested

that the response time for continuous interactions should be < 100ms. Moreover, the system

should display all visualizations reasonably large for comfortable viewing and interactions

on smaller screen-space such as laptops. All visualizations should also be downloadable for

the ease of sharing. Below are the three major levels of details:

(V1) Relationship between the ensemble average and individual runs. An overview

of the trends of the disease spread in an ensemble is essential to characterize an ABM

ensemble outcome, e.g. the number of agents at different stages across time of the

ensemble average or in each individual run. Therefore, a visualization of an ensemble

showing the time evolution viral spread through the ensemble average and of the indi-

vidual runs is needed. At the same time, it should have a high degree of interactivity to

serve as an anchor for further drill-down explorations. For example, displaying inter-

active elements connecting to other aggregated views, filtering subset of an ensemble

data, or fixing the shared variables amongst the views.

(V2) Evolution of each agent in individual runs. Tracing the development of agents

of an ABM model ”in the wild” greatly helps building an intuitive understanding of
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the model mechanics, agent behaviors, and the impact of critical events more than

pure statistical summaries as users can observe actual interactions between agents in

an environment. Standard ABM visualizations already achieved this by showing a

naive animation of agents at their respective location at each discrete timestamp, but

the discrete location recorded often results in an animation of agents hopping around,

rendering users difficult to visually track the movement of an agent. Therefore, view-

ing an ABM animation where agents are moving from location to location smoothly

becomes useful. Moreover, to create more useful depictions of agents while preserving

their linkage with their environment, showing continuous evolution of an agent and its

interactions with historical neighbors in the environment is needed. Hence, the visual

explorer should show traces of agents such as visited locations, pathways, exposure

risks.

(V3) Distributions at the agent level. The visual explorer should enable users to

dissect the ensemble results at three different moments: before an intervention, during

the change in behavior triggered by the intervention, after the intervention; with a

flexibility to adjust the intervention start period and the duration to become fully

in effect, and visualize distribution the number of days it takes for a state transition

(e.g. from becoming infected to showing symptoms) to take place. Also, to summarize

the state transitions of an ABM model succinctly, the visual explorer should have a

state transition diagram with nodes as stages and edges as possible transitions, which

summarizes an ensemble through a lens other than the classical epidemic curve.
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CHAPTER 4: METHODOLOGY

4.1 COVID-19 SCENARIO SELECTION

To assess the functionality and effectiveness of MWEpi-Viz, we made use of an existing

scenario used to calibrate and forecast disease spread trends in Champaign-Urbana during

Fall 2020 reopening at UIUC [2]. Multiple reasons motivated this choice. First, the afore-

mentioned scenario was used in a real-life situation to inform decision makers and public

health policy experts. Second, it traces closely the local history of public policy measures

at the time, with evidence of providing adequate initial calibration. Third, simulation data

after August 9, 2020 in this particular scenario contains the description of a counterfactual

–i.e., a scenario with not new policy measures after the indicated evaluation period- with

marked differences between initial policies and then an unconstrained epidemic.

We focus on the period between May 1-7, 2020, which corresponds to the establishment of

the mask mandate by the State of Illinois and gradual impact of the policy measure given the

etiology of COVID-19. Concentrating our attention in this period presents two advantages:

the effect of the mask mandate was visible both in real data and simulated scenarios, and

mask wearing exhibits distinguishable patterns due to its effectiveness and scalability [41].

Moreover, given the compute intensity involved in reproducing this scenario, bounding the

simulation period also makes this task feasible. It is worth noting that the Epidemiology

Workbench was extended to record events of individual agents, and not only values from

collective observables. Our selection satisfies requirements P2 and P3. Since we do not

perform visual comparisons across different scenarios, P4 does not need to be satisfied here.

4.2 SOFTWARE IMPLEMENTATION

Since ensemble data can become too large for any modern web browser to process efficiently

while preserving interactivity, prior data pre-processing on the backend is necessary. Our

MWEpi-Viz explorer consists of three components: a dashboard, a server, and a database as

shown in Fig. 4.1. The user first submits an ensemble data containing individual attributes

of each agent at each timestep generated by the Epidemiology Workbench to a server, then

the server generates the aggregated summaries needed by the visualizer and loads them into

a database. Thanks to the availability of pre-processed data, the web dashboard only needs

to render a small amount of data requested from the server at any given moment.
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Figure 4.1: MWEpi-Viz software architecture. Ensemble data from ABM simulations with
the Epidemiology Workbench are ingested into a Redis database via a Flask server. Finally,
the web dashboard consumes pre-processed data for display purposes.

4.2.1 Data Specification

The Champaign-Urbana counterfactual ensemble data is a scenario of 1000 agents, under-

going a random walk in a torus environment structured as a 190 × 255 grid for 153 days.

The agents have a probability to move to a new location every 15 minutes, resulting in total

14688 steps per simulation run. The simulation is repeated 5 times resulting in a ensemble

of >77 million rows of data. A final dataset size of 2.3 GB reinforces the necessity for a data

processing pipeline to achieve efficient visual queries in interactive web applications.

4.2.2 Implementation Tools

For the server, we used Python Flask [42] to create endpoints because of its simplicity.

Code development was performed using Python v3.7 in order to match the version used in

the Epidemiology Workbench [2]. Outcome datasets were processed using Python Pandas

v1.3.5 [43] for its ease of data wrangling. For the database, we use Redis because its in-

memory nature can support fast queries and its ability to store JSON strings enables seamless

communication with the web dashboard. The dashboard is implemented with Svelte [44], a

light-weight component-based front-end web framework. For most of the charts, the dash-

board uses d3.js [45], a popular graphing library that enables direct DOM manipulations

on web pages to generate interactive data visualizations. When visualizing a simulation

animation in which all the agents are simultaneously moving on a grid, it is impractical to

create a new DOM element per each agent and timestep with d3.js. Therefore, so we opted
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for THREE.js [46], a JavaScript library that animates 2D or 3D graphics with WebGL.

4.3 ITERATIVE DESIGN

We conducted weekly meetings with the computational epidemiologist throughout the

development process. At the initial exploration stage (stage 1), the scientist gave presen-

tation of their work in which we learned the significance of their work on COVID-19 ABM

simulations for the Champaign-Urbana community and the audience that would benefit

from visualizations of epidemiology research. We then entered an incremental alternating

design process between the discovery process (stage 2) and prototyping (stage 3). Before

the first prototype, we prepared various existing visualization tools for ABM simulations or

other types of epidemic models and discussed their merits and drawbacks during the weekly

meetings. We learned what is needed to support intuitive connections between macro-scale

changes and agent behaviors, and how the needs of different audience (e.g. policy mak-

ers, research scientists, general public) differ. These discussions helped us narrow down the

focus of the visual explorer. We wanted to focus on empowering researchers to articulate

the impact of the simulations, and so we excluded the user flow of comparing historical

data with generated ensemble data for calibrating model parameters. At the same time, we

ideated several visualization ideas such as coloring historical paths of an agent by its stage,

displaying dwell-time and exposure risk to COVID-19 in the environment as a heatmaps.

Conversely, the discussion also benefited the scientist to understand the technical possibility

of the visualizations we brainstormed and learn about existing visualization techniques from

other domains to visualize large-scale data.

After a few weeks of discussions, we began the process of prototyping. The first prototype

in Figure 4.2 addressed a major usability concern of the scientist with the original visual-

ization interface of the Python Mesa package - speed, where the visualizer suffered from

significant framerate drops very early on in the simulation (at the end of day 1). Since the

prototype was implemented with PIXI.js [47], a light-weight WebGL-based 2-dimensional

visualization library, it rendered a snapshot for each timestep almost instantly, whereas

Python Mesa was slower for it rendered the agents with the CanvasRenderingContext2D

interface. This high-fidelity prototype led to the development of a low-fidelity prototype of

the dashboard, which consolidated the dashboard layout where we grouped the standalone

visualization ideas into hierarchically organized components that are coordinated through

interactivity. When deciding on the dashboard composition, we referenced a recent study on

dashboard design patterns [48]. It suggested that designing dashboard as an art of arranging

information in a single screen-space by making trade-offs between level of details and the
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amount of effort to explore required through interactions. Considering the complexity of

ensemble datasets, the comfort of users on personal device, and the ease of extending the

dashboard with new levels of aggregation, we opted for a multi-page layout instead of a

single-page layout dashboard coordinated by navigation pane and interactivity.

Figure 4.2: The first prototype developed in the early phase of the project. A user first starts
a real-time ABM simulation server and the dashboard queries the server to obtain agent
data per simulation timestep. This grid visualization resembles the design of the original
visualization dashboard in Figure 2.1, but with two additional features: (1) trail of an agent
of interest, (2) fast rendering. It is a milestone at the discovery stage (stage 2) through which
we understood the data structure of the epidemic model and ensemble output and browsers’
capabilities in rendering large volume of data. In addition, the prototype sparked fruitful
inputs from the user, such as in-depth visualization ideas, color schemes, and drawbacks of
existing ABM visualizations.
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CHAPTER 5: RESULTS

In this section, we describe the interface design and how each component addresses the

requirements in section 2. The dashboard is organized into three views, namely ensemble

view, simulation view, and agent distributions view, addressing the needs for S1, S2,

and S3. When the dashboard is first loaded, the top navigation bar defaults to showing the

ensemble view and an ensemble data set pre-loaded into the server is selected. The top

navigation bar in Figure 5.1.a enables navigation between the three views, the numbering

on the views suggests the order of navigation for drill-down exploration, and any interactive

selections made in the views are preserved during switching. Below the navigation bar is a

panel for selecting any available ensembles on the server.

Figure 5.1: Ensemble view in MWEpi-Viz. Upon loading, simulation data undergoes ag-
gregation to extract individual and collective agent metrics. By default, stages that map
into the infected compartment of the SIR model are pre-selected and the resulting values
requested to the Redis database. Each trend line representing an individual run is displayed
in conjunction with an area defined by upper and lower runs, alongside a mean trend. All
trend lines other than the mean can be selected. A user-adjustable rectangular region is
used to bound moments of interest across the entire ensemble.

The ensemble view in Figure 5.1 is the default view when an ensemble dataset is first
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loaded; it serves as an overview of the disease evolution of all the runs. It consists of a panel of

checkboxes (Figure 5.1.b) for selecting stages of agents, and an ensemble chart (Figure 5.1.c)

that is a spaghetti plot depicting the fraction of agents at the chosen stages for all runs across

time P1. The spaghetti plot helps address S3 and V1, as it provides an familiar graphical

representation of the disease evolution over the number of days. To reduce visual clutter and

highlight the points of interests, upon hover on the plot, the user sees a rectangular region

(Figure 5.1.c.i) with a blue bar to the left that controls the selected step and the simulation

runs which have the maximum or minimum fraction of agents with the chosen stages at the

selected step are highlighted in pink and green respectively (Figure 5.1.c.ii). In addition,

a white line indicates the mean across all runs to illustrate the overall trend. To facilitate

sharing of the visualizations, we provide download button (Figure 5.1.c.iii) for exporting the

ensemble chart as a .png file.

The ensemble chart also connects the later two views for further inspection. User can

click to anchor the rectangular region in Figure 5.1.c.i and click on any runs of interest

to switch to the simulation view of a particular run. To separate the ensemble data

into pre-intervention, during intervention, and post-intervention periods for viewing their

distributions in the agent distributions view, users can drag the white handle in Figure

5.1.c.i to the left to set the end of the intervention, and the anchored blue line is set the be

the start of the intervention.

The simulation view provides a replay of agent behaviors in the environment for a

chosen run from the ensemble view to satisfy S1, S3, S4 and V2. The control panel

in Figure 5.2.a allows users to control the replay progress with a slider and a play/pause

button, and right below indicates all possible agent stages in the simulation in the order of

infection stages. In the center (Figure5.2.b) is a snapshot of a simulation run at a selected

time. Visual grid size is commensurate to that in the simulation, and each agent is colored

by their stage. Note that multiple agents can exist in one cell at the same time. This view

offers three additional features compared with traditional ABM visualizations. First, users

can click on any agent to reveal the path that an agent up to the point in time on the

progress slider which allows users to investigate the spatial influence an agent has and its

intersection of pathways between neighbors. In particular, agent paths can be connected

formally to the theory of random walks, from which several properties are derivable [49].

Second, we used 3D space to display a 2D environment for two reasons: (1) 3D space offers

a vertical axis to encode more information for future work, e.g. vertical bars or stacks of

agents to represent intensity of agent concentration, (2) 3D view offers a more fluid camera

control to view the agents. Third, the agents will move smoothly between their locations

instead of doing discrete jumps because we apply linear interpolation to the discrete locations
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Figure 5.2: Simulation (i.e., individual run) view in MWEpi-Viz. A user switches to
the simulation view either by clicking on the navigation bar or by selecting a run on the
ensemble chart. Then, the dashboard requests agent-level data of the run from the server.
A 3D visualization of agent positions across the environment is displayed, and a button
controls the playback of agent dynamics per simulation step. Various controls modify the
appearance of agents and their movements across space.

of the agents. Not only does it make any agent movement easier to track visually, it also

separates overlapping agents visually once the agents move unless the grid is very saturated.

The agent distributions view in Figure 5.3 showcases the distribution of the number

of days it takes for agents to undergo state transitions in the three periods of intervention

set in the ensemble view. Though there are possible 8 stages in our example simulation,

not all state transitions are possible. Hence, we designed the state transition diagram at

the bottom as show in Figure 5.3.c. It displays all the possible transitions as edges: the

white edges indicate the existence of a transition in ensemble while dashed edges indicate

the absence of the transition. Currently, this transition diagram requires prior knowledge of

the model to generate the network. The selected transition is shown on Figure 5.3.a.

For each state transition, we are interested in evaluating the effectiveness of health inter-

vention and testing the time lag between intervention and outcome, to address P2, P5, P6,

S3, S5, and V3. Each chart from Figure 5.3.b.i - 5.3.b.ii uses the pre-intervention, during

intervention, and post-intervention data respectively. The y-axis shows the accumulated

number of agents who experienced the transition at the said period, the x-axis shows the
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Figure 5.3: Agent distributions view in MWEpi-Viz. A user first selects an interven-
tion period on the ensemble chart, then switch to the agent distributions view via the
navigation bar. This view presents the distribution of the number of days it takes for a
state transition against the accumulated number of agents in the three different phases of
an intervention. By default, user views the first transition of the ABM model - Susceptible
to Exposed, which represents the transition from healthy to infected. Users can examine the
distributions other transitions by selecting an edge in the state transition diagram. Dashed
arrows are not clickable when the corresponding state transition does not happen in the
ensemble.

number of days it took an agent to undergo the transition. If there are 8 agents that took

5 days to undergo a state transition, then there is a corresponding horizontal bar of height

8 and width 5. We color the bars according to their number of agents, the more agents a

bar has the darker the color is. On hovering over each bar, there is a tooltip box indicating

the number of days and the number of agents. Note that we aggregate step-wise data into

day-wise data, because it is more meaningful to consider the transition time from a health
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intervention point of view in terms of days than granular simulation intervals.

(a) Histogram

(b) Agent view chart.

Figure 5.4: Histogram vs. agent distributions view chart. To avoid presenting a large
number of histograms per each stage transition, we focused on reconceptualizing the visual
portrayal of distributions across the ensemble. Conceptually, clicking each arrow may be
though of as revealing the dynamical structure of the underlying distribution.

At the initial development stage, we used a classical histogram to represent the distribution

for state transitions, where the x-axis is the no. of days before transition, and the y-axis is

the number of agents that underwent it. However, capturing changes in the entire simulation

would take a large amount of such plots, which in turn may produce information overload.

Moreover, detecting differences before, during and after a given policy intervention requires

organizing available information in manner that rapidly satisfies V1 and V3, by visualizing
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features of interest in S2 and S4. After substantial analysis, giving priority to transition

times in the x axis reinforces the dynamical aspect of changes due to interventions, and

the width in the vertical stacking helps users reason about histogram bins in a simpler,

homogeneous context of the entire ensemble simulation (Figure 5.4).

Regarding extensibility, the source code for the dashboard and the data generation scripts

are released on GitHub together with our Epidemiology Workbench project [2]. Users can

modify our scenario files to fine tune parameters to generate new epidemic ABM ensemble

data, then feed the ensemble output to our dashboard by running our server code locally.

Each of the three views and visualizations are organized into separate Svelte components in

hierarchical order, users can add or remove views or visualizations accordingly.
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CHAPTER 6: USE CASES

In this section, we illustrate the usage MWEpi-Viz on understanding the Champaign-

Urbana counterfactual ensemble dataset. In this scenario, asymptomatic agents has a 25%

probability of being tested and enters isolation immediately afterwards, while symptomatic

agents enters quarantine immediately once they transition from the exposed stage at the

end of the virus incubation period. Compared with other scenarios in [2], the counterfactual

scenario lifts the shelter-at-home policy in early August and does not perform massive testing

on inbound students before the Fall semester starts. Below is a sequence of events in all of

the counterfactual simulation runs:

1. April 15 (simulation day 0) - Exposure of the first representative agent, shelter-at-home

policy

2. April 21 (simulation day 6) - First symptomatic representative agent

3. May 1 (simulation day 16) - Mask order from the State of Illinois

4. August 9 (simulation day 116) - Lifted shelter-at-home policy

Using agent stage selection panel on the ensemble view, we obtained four spaghetti plots

describing the infected population fraction in various stages of infection across time (Figure

6.1) satisfying P1. Around day 16 when the mask order was executed, there was a drop in

exposed and symptoms detected population, and the trend remained steady until day 116

– an observation that is consistent across all simulation runs. Meanwhile, asymptomatic

population remained unaffected and continues to grow exponentially until the end of the

simulations, exceeding the symptomatic population. This observation echoes with the finding

in [2] that asymptomatic patients is a major contributor to the contagion process. At the

same time, we can see a sharp growth in infected population around day 120 caused by a

large volume of inbound student population.

To satisfy S4 using the agent path visualization in simulation view, we selected a run

with the highest number of infected population at the end and traced a symptomatic agent

and an asymptomatic agent throughout their journey (Figure 6.2). Initially, both agents

were in the exposed stage (Figure 6.2a). As time progressed, the top left agent turned into

symptoms detected (red) and entered quarantine immediately; whereas the mid-right agent

turned asymptomatic (blue) and continued doing random walk in its proximity. The path

length of the blue agent is significantly longer than that of the red agent (Figure 6.2c). By

the time the agents were recovered, the blue agent has travelled a much greater area than the
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(a) Exposed (b) Symptoms detected

(c) Asymptomatic (d) Recovered

Figure 6.1: Spaghetti plots from ensemble view displaying the overall epidemic evolution
across four infection stages using the Champaign-Urbana counterfactual scenario.

red agent, and along the path where the blue agent has travelled there were more infected

agents (Figure 6.2b). This visual story could help communicate the importance of massive

testing to limit the spatial influence of asymptomatic patients.

Finally, when examining the agent distributions view charts we should avoid doing

direct comparisons between the before, during, and after intervention charts because these

three charts do not share the same range in their axes. The left chart (pre-intervention)

on Figure 6.3a indicates that before the mask mandate the transition from susceptible to

exposed was likely to happen between 6 to 12 days since the start of the simulation, because
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(a) Exposed (b) Recovered

(c) Symptomatic vs. Asymptomatic

Figure 6.2: Visual comparison of reachability between an symptomatic and an asymptomatic
agent.
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there are the dark rectangular bars concentrated at the lower half of the chart. Meanwhile

after the mask mandate time lag period (Figure 6.3a, post-intervention) the lower half re-

gion is darker than the upper half, indicating that most agents who experienced the state

transition around 3 months after the mask mandate. This observation is consistent with the

fact that no massive testing was conducted towards the end of summer break where a large

number of inbound travellers arrived. As for Figure 6.3b and Figure 6.3c, the symptomatic

agents had a small likelihood of having a shorter incubation period (fewer than 4 days), but

asymptomatic agents experienced the transition between 5 to 6 days regardless of the mask

mandate well in line with the clinical expectations of the disease.
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(a) Susceptible to Exposed.

(b) Exposed to Symptoms Detected.

(c) Exposed to Asymptomatic.

Figure 6.3: State transition charts of the Champaign-Urbana counterfactual ensemble
dataset in agent distributions view with the intervention day set at day 16 and in-
tervention adoption duration set at 7 days.
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CHAPTER 7: CONCLUSION

In this article, we demonstrated the design and implementation of MWEpi-Viz, a visu-

alization platform for ensemble simulations in computational epidemiology. In doing so,

we identified a series of requirements from the scientific, public health and decision mak-

ing perspectives connected to a central concern: mapping the behavior of each agent to

population-level trends used to devise interventions. Existing visualization tools tend to fo-

cus only on one of these perspectives due to the complexity of the underlying individual and

collective dynamics involved. By taking into account the probabilistic nature of ensemble

simulations for infectious diseases, we were able to produce a visualization that connects

events at the macro level to the distributions resulting a the agent level; to solidify this con-

nection, we also allow users to explore individual runs visualized within the entire ensemble,

and to select time slices of it to explore the distributions before, during and after an policy

intervention. Each run is visualized by re-enacting agent paths using simulation data, with

a set of controls intended to increase salience of of various attributes as needed. We summa-

rize how MWEpi-Viz address the scientific, public health, and visualization requirements in

Table 7.1. To the best of our knowledge, this is the first tool to achieve an integrated view

of the entire chain of events in the phenomenology of a simulated epidemic.

Requirement Dashboard Ensemble view Simulation view Agent view

P1 ✓ ✓ ✓

P2 ✓

P3 ✓

P4
P5 ✓

P6 ✓

S1 ✓ ✓

S2 ✓

S3 ✓ ✓ ✓ ✓

S4 ✓

S5 ✓

V1 ✓

V2 ✓

V3 ✓

Table 7.1: A summary of dashboard requirements and their corresponding visualization
components. Since P4 requires a comparison between scenarios, it is out of the scope of
MWEpi-Viz.
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In the future, we plan to improve the scalability our dashboard in order to sustain a long-

term development of our project. Currently, our system architecture suffers from a data

management issue. For example, our server expects a plain text ensemble data file recording

the positions and states of all agents at each step, but the volume of plain text data a local

server can process in memory is very limited and any Redis database can at most store 4GB

of data, making the system inadequate to process any larger ensemble. We plan to build

a more robust and memory-efficient data processing pipeline to store agent-level data in a

database instead of plain text. We also plan to extend our dashboard to accommodate more

model variants and auto-generate state transition diagrams by standardizing the data format

to record epidemiological ABM simulations. To evaluate our system objectively, we plan

conduct user studies with active users of Python Mesa and computational epidemiologists.
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