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ABSTRACT 

 Solid waste generation is increasing at alarming rates, globally. Challenges to decreasing 

solid waste generation and landfill disposal are widespread, and U.S. Army installations are a 

unique basis for providing qualitative and quantitative data from a breadth of geographical 

locations. The purpose of this study was to assess the modeling prediction capability of solid 

waste streams from data of 12 Army installations at the aggregate material and building type 

level. Solid waste generation data was collected by quantifying materials found that have 

potential for diversion (e.g., source reduction, ruse, recycling, composting, etc.) and are currently 

being sent to landfill. In coordination with key personnel, buildings were selected that were 

representative of the main activities conducted at each of the installations. These buildings 

represent 28 different building categories as defined by the System Master Planning 

classification tool. Over the period of one week, 100-pound random samples from dumpsters at 

selected buildings were obtained for each installation studied. Materials were manually separated 

into 22 categories, weighed, and recorded. Results from the study identified considerable 

amounts of materials with value and diversion potential in the solid waste stream. A total of three 

building types and five material types were down selected for model construction and validation 

based on robustness of data available and applicability outside military contexts. Models were 

constructed for each material and building type combination to avoid error with multiplication 

factors of coefficients for each independent variable. Results showed statistical significance (p-

value ≤ 0.05) for 12 of 15 modeling combination predictions, indicating that these 12 models for 

each material and building type are uniquely capable of predicting solid waste generation. P-

values for the 12 significant models ranged from 6.94e-07 to 0.033. Each of the 12 statistically 

significant models differed in R-squared and adjusted R-squared values, ranging from 0.823 to 
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0.997 and 0.764 to 0.996, respectively. This study provides a unique data source demonstrating 

the ability to use predictive modeling to forecast solid waste generation at the aggregate building 

and material type level. Using Army installations as a case study may increase data available 

across the continental U.S. to focus targeted source reduction efforts. 
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CHAPTER 1: INTRODUCTION 

Solid waste generation is increasing at an alarming rate across the globe (Byrnes and 

Frohlich, 2019; Curry and Pillay, 2011; Hoornweg et al., 2013; Kaufman et al., 2004; Koh and 

Raghu, 2019; Statistics Norway, 2001; U.S. EPA, 2019; The World Bank, 2018; Yesmin, 2019) 

due mainly to increases in economic, industrial, and population growth and urbanization 

(Kanchanabhandhu and Woraphong, 2016; Korai et al., 2017). Other factors, like lifestyle and 

production/consumption behaviors, have contributed to fluctuations in solid waste generation 

over time (Kipperberg, 2007; Rimaitytė et al., 2012; Unnikrishnan and Singh, 2010). According 

to Hoornweg et al., 2013, global solid waste production per day was approximately 3.3 million 

tons and is expected to rise to 11 million tons per day by 2100. Many solid waste materials that 

are landfilled have value and potential for recovery (Kipperberg, 2007). Source reduction, 

recycling, and composting are examples of waste management recovery methods used across the 

world to reduce solid waste generation and divert materials from landfill. 

In addition to overall solid waste generation rising, per capita generation is also steadily 

increasing. Figure 1 shows per capita municipal solid waste (MSW) landfilled was 2.3 pounds 

per day in 2017 and has increased by 70% since 1960 (U.S. EPA, 2019). The total amount of 

solid waste generated in the United States (U.S.) increased from 88 million tons in 1960 to 268 

million tons in 2017, a 204% increase in annual waste generation (U.S. EPA, 2019). Figure 2 

shows the proportion of solid waste recycled has increased by 19% over that period, yet 52% of 

materials are still being landfilled or incinerated as of 2017 (U.S. EPA, 2019). This means more 

than half of the solid waste generated each year still does not have an alternative disposal method 

to landfilling (U.S. EPA, 2019). Most importantly, of those materials, more than 34% of the 52% 

of materials still being landfilled have the potential for alternative disposal methods such as 

recycling as shown in Figure 3 (U.S. EPA, 2022). Note from Figure 3 that plastic waste to 
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landfill begins increasing around 1990. This may be due to increased demands for plastic waste 

for reuse and recycling in packaging and other generated items that led to increased production, 

trade, and availability for use (EEA, 2021). 

 

 

Figure 1. Municipal solid waste total and per capita generation for 1960-2018. Source: U.S. EPA, 2022. 
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Figure 2. Municipal solid waste generation by disposal category from 1960-2018. Source: U.S. EPA, 2022. 

 

 

Figure 3. Municipal solid waste generated and landfilled categorized by material type. Source: U.S. EPA, 2022. 
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Increases in solid waste generation landfilled can lead to increased greenhouse gas 

(GHG) emissions. Landfill emissions are considered scope 3 emissions and further contribute to 

impacts of climate change. Methane, a GHG, comprises 50% of landfill gas byproduct and traps 

heat 28 to 36 times more than carbon dioxide over a 100-year period (IPCC, 2014). Landfills 

were the third highest contributor of methane emissions in 2020, contributing to 15% of total 

U.S. methane emissions as shown in Figure 4 (U.S. EPA, 2023). Further, policies such as 

Executive Orders (EOs) 13990, 14008, and 14057 all commit to GHG emissions reduction to 

combat impacts of climate change. EO 14057 explicitly directs agencies to a 50% reduction in 

GHG emissions by 2032 and net-zero emissions portfolio by 2045.  

 

 

Figure 4. Categorized sources of U.S. methane emissions in 2020. Source: U.S. EPA, 2023. 
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Prediction of solid waste generation and composition is critical for informed and 

sustainable best management practices and planning (Abbasi and Hanandeh, 2016; Azadi and 

Karimi-Jashni, 2016; Batinic et al., 2008; Beigl et al., 2008; Cherian and Jacob, 2012; Cho et al., 

2012; Ghinea et al., 2016; Intharathirat et al., 2015; Kolekar et al., 2016; Kumar et al., 2011; 

Kumar and Samadder, 2017; Niessen, 1977; Younes et al., 2015). These estimations can improve 

understanding and decision making on waste management design; system planning (both short-

term and long-term), implementation, and optimization; handling, collection, treatment, and 

disposal and associated costs; transfer systems and stations; equipment investment; greenhouse 

gas emissions reductions; selection of treatment technologies or waste-to-energy (WTE) 

initiatives; size and selection of landfill sites; disposal capacity; and understanding the impact of 

or informing new policies and initiatives (Abdoli et al., 2011; Afroz et al., 2008; Beigl et al., 

2008; Brunner and Ernst, 1986; Chang and Li, 1997; Chang and Lin, 1997; Cho et al., 2012; 

Everett and Jacobs, 1993; Intharathirat et al., 2015; Kannangara et al., 2018; Kolekar et al., 2016; 

Lund, 1990; Matsuto and Tanaka, 1993; Movassaghi, 1992; Niessen, 1977; Rhyner and Green, 

1988; Sengupta and Agrahari, 2017; Sun and Chungpaibulpatana, 2017; Yu and Maclaren, 

1995).  

There are studies that have built predictive models for solid waste generation; however, 

these studies vary in their methodology, focus of interest, and level of granularity. Most 

forecasting models have been constructed at a macro-level, but only nine have been in the U.S. 

(Daskalopoulos et al., 1998; Dyson and Chang, 2005; Feiock and Kalan, 2001; Gill and Lahiri, 

1980; Hockett et al., 1995; Johnson et al., 2017; Kollikkathara et al., 2010; Vu et al., 2019; 

Zaman and Lehmann, 2013). Golbaz et al. (2019) was the only forecast modeling study to look 
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at waste generation for a specific building type, outside of residential homes. The study was 

conducted in the city of Karaj, Iran, looking at hospital building waste.  

In the study conducted by Golbaz et al. (2019), solid waste generated by eight hospitals 

was characterized. This study compared artificial intelligence modeling methods to regression 

methods. The researchers found artificial intelligence to improve modeling results. However, this 

study was only conducted over a one year (2016) as compared to over time. Thus, time and data 

are limited to one year and may have contributed to great success of artificial intelligence versus 

regression models. Additionally, the study categorized solid waste into only three broad 

categories: infectious, general, and total waste. These categories still do not account for specific 

material types, such as different plastics, papers, and metals, by building type. There is more to 

be explored in the relationship of building types and the materials being generated. 

This thesis study utilizes data from multiple municipal- and university-like settings across 

geographical locations within the U.S., including Hawaii, and outside the U.S. in Korea, for solid 

waste forecasting using a multiple linear regression analysis. Multiple linear regression is 

commonly used for forecasting predictions that are dependent upon several variables and when a 

large enough data set exists. No studies have been done within the continental U.S. across a 

widespread breadth of geographic locations with access to solid waste data specified for more 

than 20 material categories by building type across multiple years. Often specific data down to 

the disaggregate level is not being measured (Beigl et al., 2008), especially at municipal and 

university campus levels.  

Challenges to decreasing solid waste generation and landfill disposal are widespread, and 

U.S. Army installations are a unique basis for providing qualitative and quantitative data from a 

breadth of geographical locations. This study focused on predicting the quantification of solid 
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waste generation from a data subset of 12 Army installations located in the continental U.S. to 

better understand challenges that best waste management and diversion practices face in this 

setting, which may have external applicability to municipalities and university campuses. 

Understanding the many challenges presented to solid waste and recycling programs is critical to 

informing future recycling practices and other waste reduction initiatives for safeguarding these 

alternative disposal resources and diverting materials with value and potential from the landfill. 
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CHAPTER 2: OBJECTIVES 

The overall objective of this thesis research was to build a forecasting model to predict solid 

waste generation at the aggregate material and building type level. Modeling was based on 

historical installation solid waste generation data. Modeling is an effective tool that may 

substitute the need for full waste characterizations in the future and lead to higher participation in 

diversion efforts, such as recycling and composting programs. The model was trained and tested 

using data from three building types and five material types across 12 installations. The three 

building types chosen were child development center (CDC), dining facility (DFAC), and 

general instruction building (GIB). These can be compared to daycares, cafeterias, and classroom 

buildings, respectively, outside of military contexts. The five material types chosen were #1 

plastic (polyethylene terephthalate (PET)), corrugated cardboard, food, soiled paper, and white 

paper. These were chosen based on reliability of data available for these material types from the 

three building types chosen for applicability purposes. The specific objectives of this research 

were to: 

1) Evaluate the data collected from 12 military installations for predictable trends in waste 

generation based on building type and size; and 

2) Develop and validate a model through statistical analyses of the built model predictions 

for solid waste generation given building type and size for the targeted material types. 
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CHAPTER 3: LITERATURE REVIEW 

Solid waste can be defined as everyday items used and discarded by consumers on a 

municipal level such as in homes, schools, and businesses (U.S. EPA, 2019; U.S. EPA, 2022). 

For optimal protection of human health and the environment in a way that is financially 

sustainable, solid waste must be managed properly and efficiently (Beigl et al., 2008; Giusti, 

2009; Kipperberg, 2007; Koroneos and Nanaki, 2012; Pan et al., 2010; Rimaityte et al., 2012; 

Sun and Chungpaibulpatana, 2017; UN Habitat Programme, 2010). In the 1980s communities 

began to anticipate shortages of landfill capacities with the ever-increasing generation of solid 

waste (Ackerman, 1997; Glebs, 1988; Office of Technology Assessment, 1989; Peretz, 1998; 

Pettit, 1988; U.S. EPA, 1989). The total number of landfills operating in the U.S. has decreased 

from approximately 8,000 in 1988 to 1,754 in 2007, with the size and capacity of landfills 

increasing over time (U.S. EPA, 2007). The State of Florida is an example, passing the Solid 

Waste Management Act (SWMA) of 1988 to combat growing costs and environmental concern 

over landfills, ultimately leading to some landfill closure and implementation of diversion goals 

(Feiock and Kalan, 2001).  

While the U.S. seems to have sufficient landfill space for now (U.S. EPA, 2022), the 

capacity of landfills in other countries has been a significant waste management challenge due to 

limited additional land space for expansion or creating new landfills (Bartelings and Sterner, 

1999; Van Lohuizen, 2017). For example, in Dhaka City, Bangladesh, horizontal expansion of 

the city combined with its increasing population has proved difficult for waste management 

planners to find adequate space for landfill sites that can accommodate the increasing capacity 

(Afroz et al., 2008). This has led to extensive efforts for increasing domestic infrastructure, 

incentivizing alternative disposal, and creating policy that supports diversion efforts. The U.S. 
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does not have an endless supply of land that is appropriate for landfill and the possibility of 

running out of, or shrinking, landfill space should be considered (Folz, 1999).  

Italy, for example, has increased capabilities of their domestic infrastructure for 

processing its own recyclables, notably plastics, and diverting materials from the landfill. 

Landfill capacities are low, and there is little-to-no geographic space for new development of 

landfills. They currently exceed the European Union (EU) region average rate in recycling, 

process most of their domestic plastics, and use the post-processed material for manufacturing 

domestically (Cooper, 2012; Dalberg Advisors, 2019; European Commission, 2020; Stellini, 

2012). Some studies have shown that when legislation and regulation intervene in earlier stages 

of waste generation and places responsibility for diversion upstream in the waste lifecycle, such 

as on the producer, there may be improved results (Eichner and Pethig, 2001; Fullerton and 

Kinnaman, 1996; Kohn, 1995; Palmer and Walls, 1997; Sigman, 1995). This is conceptualized 

via “extended producer responsibility,” or EPR, the idea that manufacturers and producers 

should take responsibility in reducing their products’ environmental footprint (U.S. EPA, 2016). 

Policies have been implemented in support of EPR in Japan and many European countries 

(Calcott and Walls, 2005; Tojo, 2010). Sweden implemented a producer responsibility policy 

around 1994 for packaging materials, newspapers, cars, and tires (Berglund, 2003). Germany is 

another example, enacting the “Green Dot” in 1991 (implemented 1993), which required 70% of 

packages sold be recycled. Responsibility for recycling was placed on the product manufacturers 

and success was achieved by 1994 (Ackerman, 1997). The European packaging directive 

followed that same year, with Austria, France, Belgium, Poland and Argentina standing up 

similar laws (Lavee, 2007). Additionally, the EU has implemented policies, such as “A European 

Strategy for Plastics in a Circular Economy” (2018) that outline ways in which countries can 
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better plan for and address challenges to plastics recycling while considering their lifecycle 

(European Commission, 2018).  

Often these alternatives to landfilling materials are incentivized to encourage maximum 

implementation. One way some countries have incentivized decreasing landfill disposal rates is 

by increasing landfill taxes (Folz, 1999). Landfill taxes are used as a source of revenue for the 

construction and operating costs of public MSW landfills, sometimes in conjunction with landfill 

tipping fees (U.S. EPA, 2014). For example, in the European Union 23 member states have a 

landfill tax that ranges from five € per ton to more than 100 € per ton (CEWEP, 2021). Within 

the U.S., each county or city determines whether to use tip fees, tax fees, or a combination of to 

support these costs (U.S. EPA, 2014). Austria, Netherlands, Belgium, United Kingdom, Norway, 

Denmark, Australia, Sweden, Finland, and France all have higher landfill tax rates (above 30 €) 

that have shown decreased landfill rates (5-35%) according to the Organization for Economic 

Cooperation and Development (OECD) (2013). This is in comparison to other countries with 

lower landfill tax rates (below 30 €) but higher landfill rates (35-85%), including Poland, Italy, 

Spain,  Czech Republic, Hungary, Isreal, Portugal, Latvia, and the United States (OECD, 2013).  

Other studies have shown that deposit programs, or charging a fee for end-use 

treating/recycling of the purchased products, serve as good incentive for diversion from landfill 

(Ackerman, 1997; Ayalon et al., 1999; Brisson, 1997; Collins et al., 2006; Dinan, 1993; Eichner 

and Pethig, 2001; Fullerton and Kinnaman, 1996; Harder et al., 2006; Highfill and McAsey, 

1997; Hong and Adams, 1993; Huhtala, 1997; Jenkins, 1993; Jenkins et al., 2003; Kohn, 1995; 

Mirdanda et al., 1994; Palatnik et al., 2005; Palmer and Walls, 1997; Peretz et al., 2005; Ready 

and Ready; 1995; Sigman, 1995; Van Houtven and Morris, 1999). This tactic is often combined 

as a deposit-refund that provides monetary incentive to recycling while circumventing 
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encouragement of illegal dumping. Prior literature has shown that when landfill lifespan is 

considered, recycling can be an economically efficient alternative (Ready and Ready, 1995; 

Highfill and McAsey, 1997). For example, landfill closure due to capacity may result in hauling 

waste a further distance for disposal or there may be large costs associated with opening a new 

landfill. 

Research in this area can also aid policymakers in creating achievable, rather than 

aspirational, policies that are future facing by evaluating the importance of certain materials by 

building type and targeting cost-effective policy options for those materials contributing the most 

to waste costs and environmental concerns in support of local, state, or Federal mandates or 

goals (Kipperberg, 2007). It is important that there is both economic and environmental benefit 

from diversion efforts (Berglund, 2003). When creating policy, sustainment is an important 

factor (Patashnik, 2003; U.S. National Research Council, 2010). By modeling the solid waste 

profiles of buildings with historical data, it is possible to predict the waste profiles of a system’s 

building portfolio and target best practices for decreased waste output. It may also allow 

managers to determine potential cost savings and revenue by understanding the individual 

material outputs of a specific building. 

For example, if a building is predicted to generate a lot of recyclables, there may be value 

in targeting diversion initiatives to recover these materials. Diversion alternatives, such as 

recycling, have been shown to be economically and environmentally beneficial for communities 

to invest in. A study by Folz (1999) showed that mean net cost per ton for recycling was $85 

versus $131 for solid waste. Taking into consideration extended life of landfill, this cost 

differential would be even higher and more compelling for the argument of investment in 

diversion options, though the magnitude will vary by location and population (Folz, 1999). 
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Recycling has been shown to be financially and economically beneficial in practice even when 

factors such as total lifecycle assessment of recyclable items or land scarcity are not considered 

(Lavee, 2007). Data from a study by Folz (1999) suggest that recycling may be more 

economically feasible than traditional waste disposal when operating efficiently. Additionally, 

studies like Callan and Thomas, 2001, found that when diversion options are implemented in 

combination with waste disposal, such as curbside recycling and solid waste disposal, an 

approximate 5% cost savings can be reached which provides strong economic incentivization for 

public officials making decisions on solid waste management. When the added layer of 

regulation, such as through state laws, is present, mandated recycling programs can increase 

diversion upwards of 13% (Kinnaman, 2005).  

A challenge to recycling as a diversion tactic is market instability. Lack of stability in 

commodity pricing may reduce, or in some cases remove, recycling efforts due to infeasibility 

and uncertainty (Ackerman, 1997; Ackerman and Gallagher, 2002; Eichner and Pethig, 2001; 

Folz, 1999; Lavee, 2007). In addition to swings in material pricing, variable levels of local, state, 

and federal support for recycling programs due to competition for resources also present 

challenges for program managers (Folz, 1999). Governmental intervention with policy that 

addresses recycling market volatility and steep program start-up costs may be beneficial for 

supporting recycling market stability and increasing program participation. Studies by Calcott 

and Walls (2000; 2005) have shown that even the simplest incentive-based policies combined 

with market availability aid in achieving environmental goals. 

While some countries may have policy framework in place (see Table 6-1 in Tojo, 2010 

for more), this does not always result in full participation for implementation (Zamparutti et al., 

2019). Policy should incentivize both upstream (product design and source reduction) and 
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downstream (alternatives to landfill) for maximum effectiveness (Calcott and Walls, 2005). 

Economic incentives are more likely to spur change. One way to achieve this is consumer 

payment for product recycling, leading to a higher recycling rate and incentivizing producers to 

design more recyclable products (Calcott and Walls, 2005). Tax incentives for new construction 

to utilize recyclable materials were implemented in 27 U.S. states by 1998 to encourage 

participation in diversion efforts (Kinnaman, 2005), though these standards of incentivization are 

largely limited to the construction and demolition industry (Tojo, 2010). In another example, 

previous research suggests that mandatory recycling programs who issue sanctions for improper 

separation resulted in higher participation, increases in source reduction, decreased 

contamination of solid waste streams, and increased purchasing of recyclable/reusable materials 

(Folz, 1991; Folz and Hazlett, 1991; Menell, 1990; Peretz et al., 2005). Voluntary recycling 

programs in comparison resulted in less participation, but were able to increase participation near 

that of mandatory programs through incentives like free recycling bins (Feiock and West, 1996; 

Folz, 1991). Increases in market pricing also have a positive impact on promoting diversion 

(Cuthbert, 1994; Miranda et al., 1994; Powers & Thompson, 1994; Skumatz, 1990). Pricing 

variability, such as quantity-based pricing or variable fees for solid waste disposal may also be a 

means of economic incentive for reduction or diversion (Allen et al., 1993; Canterbury, 1998; 

Fullerton & Kinnaman, 1996; Grazhdani, 2016; Halal, 1997; Hong et al., 1993; Miranda, 1993; 

Owens et al., 2000; Peretz et al., 2005; Reschovsky and Stone, 1994; Samarasinghe, 2004; Ward, 

1995). A study from Owens et al., 2000, observed a 17% reduction in solid waste generation 

going to landfill after implementation of commingled recycling and unit-based pricing for solid 

waste disposal. 
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In addition to recycling policy framework, it is important to have legislation outlining 

specific target metrics for solid waste diversion. Solid waste diversion, or material recovery, is 

the ratio of solid waste repurposed for secondary use (i.e., diverted from landfill or incineration) 

to total solid waste generated and is often presented in percentages (Kipperberg, 2007). For 

example, in Ireland (Dennison et al., 1996a) and Germany (Beigl et al., 2008), public authorities 

must guarantee disposal for solid waste 10 years in advance. In the U.S., some states, like New 

Jersey, have instated mandates for minimum recycling or diversion rates (Sidique et al., 2010). 

Often solid waste prevention and diversion are prioritized at the top of any waste hierarchy, such 

as in Figure 5, but only generic directives and frameworks exist to enforce, monitor, and quantify 

these priorities. This can be seen in the Framework Directive 2008/98/EC in Europe and in the 

2018 EO 13834 in the U.S. (Namlis and Komilis, 2019). According to the European 

Environment Agency (EEA) (2018), waste prevention programs vary drastically across 

countries. Approximately 47% of these programs utilize policy actions, 35% informational tools, 

10% regulatory strategies, and 8% economic measures (EEA, 2018). Implementing only one of 

these tactics at a time is unlikely to ensure the highest success rate possible. For example, 

Salhofer et al., 2008, showed that the use of informational tools alone had reduced success, 

whereas Cole et al., 2014, showed the addition of local authority support increased proper 

recycling participation. Being proactive in the actions taken to prevent waste “can affect (i) the 

framework conditions related to waste generation (research on achieving less wasteful products 

and technologies, inclusion of pay-as-you throw systems), (ii) the design and production and 

distribution phase (e.g. awareness campaigns, promotion of reliable environmental management 

systems, etc.), (iii) the consumption and use phase (ecolabeling, economic instruments etc.)” 

(Namlis and Komilis, 2019; Waste Framework Directive, 2008). 
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Figure 5. Department of Defense Solid Waste Hierarchy 

 

In the U.S., aging landfills, increases in solid waste generation and disposal costs, and 

increase of environmental restrictions have been drivers for policy reform surrounding diversion 

at all governmental levels (Callan and Thomas, 2001; Gill and Lahiri, 1980; Jamelske and 

Kipperberg, 2006). The long-standing federal legislation regarding waste generation challenges 

and respective goals is the 1976 Resource Conservation and Recovery Act (RCRA). This policy 
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leaves implementation for specific options to state and local jurisdictions while offering a 

national framework overseen by the U.S. Environmental Protection Agency (EPA). Some states, 

such as California, have implemented more progressive policies than others and offer more 

diversion options such as curbside composting programs. Many states, such as Florida, have 

implemented their own recycling diversion goals and garnered recycling interest locally through 

grants and other incentives as a means for stimulating recycling efforts and its programmatic 

success (Feiock and Kalan, 2001; Kinnaman, 2005). The Commonwealth of Massachusetts 

Integrated Solid Waste Master Plan of 1990 set a 46% recycling diversion goal by 2000. Some 

studies have shown that national policy objectives that are clearly defined at federal government 

levels result in increased implementation of state and local efforts of environmental concern 

(Chubb, 1985; Hedge et al., 1991). Although solid waste management best practices have shifted 

in the past several years, a quarter-century has passed since the RCRA was last modernized. 

Nonetheless, Army Regulation (AR) 420-1 was last updated in 2008 and, more recently, DoD 

Instruction (DoDI) 4715.23 was revised in 2018. These two policies should be trusted as the 

most recent interpretation of Congressional legislation. Additionally, while subject to 

administrative changeover, EOs such as EO 13990, EO 14008, and EO 14057 and their various 

implementing instructions provide goals and metrics for solid waste and environmental 

stewardship that have influence over federal diversion initiatives. Overall solid waste diversion 

rose 20% from 1980 (<10%) to 1999 (~30%) (EPA, 1999). However, improvement does not 

equal eradication. Given U.S. per capita waste generation is still on the rise, public officials are 

seeking additional policy tools that will discourage landfill and encourage diversion alternatives 

(Callan and Thomas, 2001).  
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These international challenges are also faced by the U.S. Army. As the largest branch of 

service within the Department of Defense (DoD), the Army is a significant contributor to solid 

waste generation within the U.S. and its installations across the world. Out of the 268 million 

tons of solid waste generated in 2017 (U.S. EPA, 2019), 1.73 million tons, or 0.65%, was 

generated by the U.S. Army (Installation Management Command, 2018). While these data are 

based off the most recent Solid Waste Annual Reporting (SWAR) database, often times the 

individuals entering data do not always have access to the most accurate data and the data 

become too inconsistent for determining the true effects of policy on recycling programs. 

 Solid waste generation is complex in nature due to its relation to many demographic, 

economic, and social factors that may change with time (Intharathirat et al., 2015; Younes et al., 

2013). Many studies in the literature have shown the influence these factors can have on solid 

waste generation trends and predictions (Abu Qdais et al., 1997; Abel, 2007; Banar and Ozkan, 

2008; Beigl et al., 2008; Buenrostro et al., 2001; Daskapoulos et al., 1998; Dennison et al., 

1996b; Gómez et al., 2009; Hazra and Goel, 2009; Hibiki and Shimane, 2006; Hockett et al., 

1995; Ojeda-Benítez et al., 2008). Examples are shown in Table 1 below. These all have impacts 

on overall solid waste generation, diversion participation, per capita generation, and recycling 

demand (Callan and Thomas, 2006; Grazhdani, 2016; Johnstone and Labonne, 2004; Kinnaman 

and Fullerton, 2000; Podolsky and Spiegel, 1998).  
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Table 1. Example factors influencing solid waste generation trends and predictions. 

Factor Citation 
Population related Abdoli et al., 2011; Ackerman, 1997; Afroz et 

al., 2008; Al-Momani, 1994; Boyd and 
Hawkins, 1971; Daskalopoulos et al., 1998; 
Dyson and Chang, 2005; Folz, 1991a; Ghinea 
et al., 2016; Golbaz et al., 2019; Grazhdani, 
2016; Grossman et al., 1974; Hong and 
Adams, 1999; Hong et al., 1993; Intharathirat 
et al., 2015; Jamelske and Kipperberg, 2006; 
Jenkins, 1993; Jenkins et al., 1999; Jenkins et 
al., 2003; Kannangara et al., 2018; 
Kipperberg, 2007; McBean and Fortin, 1993; 
Medina, 1997; Mohd et al., 1993; Ordonez-
Ponce, 2004; Oribe-Garcia et al., 2015; Peretz 
et al., 2005; Reschovsky and Stone, 1994; 
Rudzitis and Bonus, 1982; Sakawi and 
Gerrard, 2013; Salhofer, 2000; Samarasinghe, 
2004; Sidique et al., 2010; Singh and Satija, 
2016; Bartelings and Sterner, 1999; Sun and 
Chungpaibulpatana, 2017; Van Houtven and 
Morris, 1999; Wertz, 1976 

Number and type of households/buildings Boyd and Hawkins, 1971; Folz, 1999; Golbaz 
et al., 2019; Grazhdani, 2016; Hornik et al., 
1995; Intharathirat et al., 2015; Jamelske and 
Kipperberg, 2006; Jenkins et al., 2003; 
Katzev et al., 1993; Kipperberg, 2007; 
Margai, 1997; Ordonez-Ponce, 2004; Owens 
et al., 2000; Sakawi and Gerrard, 2013; 
Samarasinghe, 2004; Sun and 
Chungpaibulpatana, 2017; Van Liere and 
Dunlap, 1990; Vining and Ebreo, 1990 
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Table 1. Example factors influencing solid waste generation trends and predictions (cont.). 

Factor Citation 
Employment and income Abdoli et al., 2011; Afroz et al., 2008; Boyd 

and Hawkins, 1971; Callan and Thomas, 
1997; Duggal et al., 1991; Dyson and Chang, 
2005; Feiock and West, 1993; Feiock and 
West, 1996; Gamba and Oskamp, 1994; 
Grazhdani, 2016; Grossman et al., 1974; 
Hong and Adams, 1999; Hong et al., 1993; 
Intharathirat et al., 2015; Jakus et al., 1996; 
Jamelske and Kipperberg, 2006; Jenkins, 
1993; Jenkins et al., 1999; Jenkins et al., 
2003; Kannangara et al., 2018; Kinnaman, 
2005; Kipperberg, 2007; Medina, 1997; 
Ordonez-Ponce, 2004; Oribe-Garcia et al., 
2015; Oskamp et al., 1991; Owens et al., 
2000; Peretz et al., 2005; Rudzitis and Bonus, 
1982; Sakawi and Gerrard, 2013; Saltzman et 
al., 1993; Samarasinghe, 2004; Schwarz and 
Shelstad, 1987; Sidique et al., 2010; Sudhir et 
al., 1997; Sun and Chungpaibulpatana, 2017; 
Van Houtven and Morris, 1999; Wertz, 1976 

Age Afroz et al., 2008; Ghinea et al., 2016; 
Intharathirat et al., 2015; Jakus et al., 1996; 
Jamelske and Kipperberg, 2006; Jenkins et 
al., 2003; Kannangara et al., 2018; Kinnaman, 
2005; Kipperberg, 2007; Sakawi and Gerrard, 
2013; Samarasinghe, 2004; Sidique et al., 
2010; Bartelings and Sterner, 1999; Sun and 
Chungpaibulpatana, 2017; Vining and Ebreo, 
1990 

Education level Afroz et al., 2008; Al-momani, 1994; Callan 
and Thomas, 1997; Duggal et al., 1991; 
Grazhdani, 2016; Grossman et al., 1974; 
Hong and Adams, 1999; Intharathirat et al., 
2015; Jakus et al., 1996; Jamelske and 
Kipperberg, 2006; Jenkins et al., 2003; Judge 
and Becker, 1993; Kannangara et al., 2018; 
Katzev et al., 1993; Kinnaman, 2005; 
Kinnaman and Fullerton, 1997; Kinnaman 
and Fullerton, 1999; Kipperberg, 2007; 
Ordonez-Ponce, 2004; Oribe-Garcia et al., 
2015; Owens et al., 2000; Reschovsky and 
Stone, 1994; Sidique et al., 2010; Van Liere 
and Dunlap, 1990; Vining and Ebreo, 1990 
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Table 1. Example factors influencing solid waste generation trends and predictions (cont.). 

Factor Citation 
Public awareness/education Afroz et al., 2008; Commonwealth of 

Massachusetts, 1997; Everett, 1989; 
Grazhdani, 2016; Jamelske and Kipperberg, 
2006; Kannangara et al., 2018; Lavee, 2007; 
Owens et al., 2000; Peretz et al., 2005; 
Sidique et al., 2010; Singh and Satija, 2016 

Policy and politics Aberg et al., 1996; Barr et al., 2003; Chubb, 
1985; Feiock and Kalan, 2001; Folz, 1999; 
Gamba and Oskamp, 1994; Hage et al., 2009; 
Hedge et al., 1991; Hornik et al., 1995; 
Jamelske and Kipperberg, 2006; Katzev et al., 
1993; Kannangara et al., 2018; Kinnaman, 
2005; Kipperberg, 2005; Ronis et al., 1989; 
Roy et al., 2013; Schultz et al., 1995; Sidique 
et al., 2009; Sidique et al., 2010; Thogersen, 
1996; Tonglet et al., 2004 

Consumption and economics Abdoli et al., 2011; Boyd and Hawkins, 1971; 
Daskalopoulos et al., 1998; Hage et al., 2009; 
Intharathirat et al., 2015; Kannangara et al., 
2018; Kinnaman, 2005; Roy et al., 2013; 
Samarasinghe, 2004; Singh and Satija, 2016 

Accessibility and convenience Ackerman, 1997; Commonwealth of 
Massachusetts, 1997; Duggal et al., 1991; 
Feiock and West, 1993; Feiock and West, 
1996; Folz, 1991a; Folz, 1999; Folz and 
Hazlett, 1991; Gamba and Oskamp, 1994; 
Grazhdani, 2016; Hage et al., 2009; Hornik et 
al., 1995; Jakus et al., 1997; Jamelske and 
Kipperberg, 2006; Kannangara et al., 2018; 
Katzev et al., 1993; Kinnaman and Fullerton, 
1997; Kipperberg, 2007; Lavee, 2007; Peretz 
et al., 2005; Reid et al., 1976; Reschovsky 
and Stone, 1994; Roy et al., 2013; Sakawi and 
Gerrard, 2013; Sidique et al., 2010; Bartelings 
and Sterner, 1999; Vining and Ebreo, 1990; 
Ward, 1995 

Weather and seasonality Abdoli et al., 2011; Chung, 2010; Dayal et al., 
1993; Intharathirat et al., 2015; Kannangara et 
al., 2018; Oribe-Garcia et al., 2015; Roy et 
al., 2013; Samarasinghe, 2004; Singh and 
Satija, 2016; Sun and Chungpaibulpatana, 
2017 
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Table 1. Example factors influencing solid waste generation trends and predictions (cont.). 

Factor Citation 
Geographics Aadland and Caplan, 2013; Afroz et al., 2008; 

Grazhdani, 2016; Intharathirat et al., 2015; 
Kannangara et al., 2018; Ordonez-Ponce, 
2004; Oribe-Garcia et al., 2015; Reid et al., 
1976; Roy et al., 2013; Samarasinghe, 2004; 
Singh and Satija, 2016 

Disposal funding, cost, and tax/sanctions Aadland and Caplan, 2013; Ackerman, 1997; 
Callan and Thomas, 1997; Canterbury, 1998; 
Commonwealth of Massachusetts, 1997; 
Duggal et al., 1991; Feiock and Kalan, 2001; 
Feiock and West, 1993; Feiock and West, 
1996; Ferrera and Missios, 2005; Folz, 1991a; 
Folz, 1999; Folz and Hazlett, 1991; Fullerton 
and Kinnaman, 1996; Grazhdani, 2016; Halal, 
1997; Hong, 1999; Hong et al., 1993; Hornik 
et al., 1995; Intharathirat et al., 2015; Jakus et 
al., 1997; Kannangara et al., 2018; Katzev et 
al., 1993; Kinnaman, 2005; Kinnaman and 
Fullerton, 2000; Kipperberg, 2007; Owens et 
al., 2000; Peretz et al., 2005; Podolsky and 
Spiegel, 1998; Reschovsky and Stone, 1994; 
Roy et al., 2013; Sakawi and Gerrard, 2013; 
Samarasinghe, 2004; Sidique et al., 2010; 
Singh and Satija, 2016; Bartelings and 
Sterner, 1999; Ward, 1995 

Ethnicity/race/culture Al-Momani, 1994; Bacot et al., 1993; 
Grossman et al., 1974; Hong et al., 1993; 
Jamelske and Kipperberg, 2006; Peretz et al., 
2005; Roy et al., 2013; Rudzitis and Bonus, 
1982; Samarasinghe, 2004; Singh and Satija, 
2016), relationship status (Reschovsky and 
Stone, 1994; Sakawi and Gerrard, 2013 

Personal attitudes Aadland and Caplan, 2013; Aberg et al., 
1996; Al-Momani, 1994; Feiock and Kalan, 
2001; Gamba and Oskamp, 1994; Grossman 
et al., 1974; Jamelske and Kipperberg, 2006; 
Katzev et al., 1993; Kinnaman, 2005; 
Mitchell, 1989; Ronis et al., 1989; Bartelings 
and Sterner, 1999 
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There are studies that have built predictive models for solid waste generation; however, 

these studies vary in their methodology and focus of interest. A list of different methodologies is 

included, but not limited, to those shown in Table 2. Solid waste generation modeling 

methodologies from the literature can be broadly placed into one of three categories: those based 

on grey systems theory, causal and time series. Grey systems theory models include grey 

dynamic models and grey relational models. Time series forecasting includes those like artificial, 

neural, and machine learning techniques. Causal forecasting includes the various regression and 

linear type models. Grey systems forecasting techniques are used frequently when historical data 

is limited, and the system being modeled is not well-defined or includes so-called “grey” areas 

(Chen and Chang, 2000). Time series forecasting techniques rely on a significant amount of 

consistent historical data (often year-after-year) to make predictive outcomes based on data 

trends. The unavailability and unreliability of data, such as seasonal-related, is a significant 

challenge to sustainable solid waste forecasting and planning (Mrayyan and Hamdi, 2006), 

making grey systems and time series methods ideal in these cases. Additionally, both modeling 

techniques tend to have a singular focus region and disregard cross-sectional data from multiple 

regions or households. Causal forecasting techniques are often used for determining relationships 

between the dependent variable and various independent variables. Its main limitation is that 

accuracy can be impacted if there is not enough data to make accurate predictions, as too many 

assumptions may have to be made. However, this type of forecasting is flexible and can be 

revised over time as more information becomes available to continually improve the model and 

its predictions long-term (Chambers et al.,1971). Thus, causal models may have a larger 

potential benefit and may prove more usable in nature (Joosten et al., 2000).  
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Table 2. Predictive modeling types used for forecasting solid waste generation. 

Model Type Citation 
General linear analysis Sun and Chungpaibulpatana, 2017; Owens et 

al., 2000 
Regression analysis Abdoli et al., 2011; Afroz et al., 2008; Azadi 

and Karimi-Jashni, 2016; Bach et al., 2004; 
Boyd and Hawkins, 1971; Bridgwater, 1986; 
Chang and Lin, 1997; Chowdhury et al., 
2017; Daskalopoulos et al., 1998; Dyson and 
Chang, 2005; Fabbricino, 2001; Feiock and 
Kalan, 2001; Ghinea et al., 2016; Gill and 
Lahiri, 1980; Golbaz et al., 2019; Grossman 
et al., 1974; Hockett et al., 1995; Johnson et 
al., 2017; Katzev et al., 1993; Kumar and 
Samadder, 2017; Li et al., 2014; Namlis and 
Komilis, 2019; Oribe-Garcia et al., 2015; 
Richter et al., 2017; Rimaityte et al., 2012; 
Sakawi and Gerrard, 2013; Samarasinghe, 
2004; Sokka et al., 2007; Wang et al., 2005; 
Wang et al., 2007; Wang et al., 2016 

Artificial intelligence Abbasi and Hanandeh, 2016; Golbaz et al., 
2019; Jalili and Noori, 2008; Noori et al., 
2009b 

Machine learning Kannangara et al., 2018; Meza et al., 2019 
ARIMA/SARIMA Chang and Lin, 1997; Navarro-Esbri et al., 

2002; Rimaityte et al., 2012; Wang et al., 
2017; Xu et al., 2013 

Time series Chang et al., 1993; Denafas et al., 2014; 
Ghinea et al., 2016; Matsuto and Tanaka, 
1993; Samarasinghe, 2004; Skovgaard et al., 
2005; Zaman and Lehmann, 2013 

Grey systems Chen and Chang, 2000; Dyson and Chang, 
2005; Intharathirat et al., 2015; Karavezyris et 
al., 2002; Kollikkathara et al., 2010; Li et al., 
2003; Xu, 2013; Xu et al., 2013 

Neural networks Antanasijevic et al., 2013; Azadi and Karimi-
Jashni, 2016; Noori et al., 2009a; Noori et al., 
2010; Patel and Meka, 2013; Shahabi et al., 
2012; Sodanil, 2014; Sun and 
Chungpaibulpatana, 2017; Vu et al., 2019; 
Younes et al., 2015; Younes et al., 2016; Zade 
and Noori, 2008; Zheng, 2014 
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These forecast modeling studies have investigated solid waste generation at various 

levels. These levels of investigation are shown in Table 3. While many have been done at a 

municipal level, none have been done across a breadth of geographic locations within the same 

study.  

Table 3. Levels of predictive modeling for solid waste generation. 

Investigation Level Citation 
Household Afroz et al., 2008; Boyd and Hawkins, 1971; 

Bridgwater, 1986; Grazhdani, 2016; 
Kannangara et al., 2018; Katzev et al., 1993; 
Kumar and Samadder, 2017; Matsuto and 
Tanaka, 1993; Owens et al., 2000; Sakawi 
and Gerrard, 2013; Bartelings and Sterner, 
1999; Zheng, 2014 

City/municipality/county Abbasi and Hanandeh, 2016; Abdoli et al., 
2011; Bach et al., 2004; Chang et al., 1993; 
Chang and Lin, 1997; Chen and Chang, 2000; 
Denafas et al., 2014; Dyson and Chang, 2005; 
Feiock and Kalan, 2001; Ghinea et al., 2016; 
Golbaz et al., 2019; Grossman et al., 1974; 
Jalili and Noori, 2008; Johnson et al., 2017; 
Karavezyris et al., 2002; Kollikkathara et al., 
2010; Li et al., 2003; Li et al., 2014; Meza et 
al., 2019; Namlis and Komilis, 2019; 
Navarro-Esbri et al., 2002; Noori et al., 
2009a; Noori et al., 2009b; Noori et al., 2010; 
Patel and Meka, 2013; Rimaityte et al., 2012; 
Shahabi et al., 2012; Sodanil, 2014; Sun and 
Chungpaibulpatana, 2017; Vu et al., 2019; 
Wang et al., 2005; Wang et al., 2007; Wang et 
al., 2017; Xu, 2013; Xu et al., 2013; Younes 
et al., 2015; Younes et al., 2016; Zade and 
Noori, 2008; Zaman and Lehmann, 2013 

Region/state/province Azadi and Karimi-Jashni, 2016; Chowdhury 
et al., 2017; Fabbricino, 2001; Hockett et al., 
1995; Oribe-Garcia et al., 2015; Wang et al., 
2016 

Country Antanasijevic et al., 2013; Daskalopoulos et 
al., 1998; Gill and Lahiri, 1980; Hekkert et 
al., 2000; Intharathirat et al., 2015; Joosten et 
al., 1999; Reynolds et al., 2016; Richter et al., 
2017; Samarasinghe, 2004; Skovgaard et al., 
2005; Sokka et al., 2007 
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CHAPTER 4: METHODOLOGY 

This thesis research incorporated data collected from 12 Army installations over the 

period of 2015-2020. The study sites were from a variety of geographic locations, both within 

and outside the continental U.S. as shown in Figure 6 below (with exception of Korea). Within 

the continental U.S., site locations included Arizona (1), California (1), Georgia (2), Kansas (1), 

Maryland (1), Massachusetts (1), New York (1), Pennsylvania (1), and Texas (1). Outside the 

continental U.S. site locations included Hawaii (1) and Korea (1). The geographical footprint of 

each site ranged from approximately 200 acres to more than 214 thousand acres. Mission types 

also varied, including readiness (5), training (6), and sustainment (1). Additionally, one of the 12 

sites was a reserve installation whereas the remaining 11 were active-duty sites. Each installation 

study consisted of three overarching stages: a preliminary survey, an on-site waste 

characterization, and data compilation and analysis. This data underwent a quality assurance / 

quality control cleaning before the model type was selected. The model was then constructed and 

trained for testing validation using the cleaned data. The following cs summarize each stage. 
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Figure 6. U.S. map marking waste characterization sites by state. Original map source: Nations Online (n.d.). 

 

4.1 Preliminary Data Collection 

Preliminary data collection was conducted with installation solid waste management 

personnel. Preliminary data from 12 installations were collected over the period of 2015-2020. 

The purpose was to collect all the background information necessary to complete the waste 

characterization. These data were collected using references from previous projects and visits, 

via conference calls, email, and a pre-visit to the installation. Information gathered during this 

preliminary collection included: 

• Installation building inventory 

• Detailed installation map 

• Waste pickup schedules 
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• Population data 

• Building size  

• Building occupancy (where able) 

• Installation mission 

• Waste program points of contact (internal or contracted) 

• Waste policies, regulatory and reporting requirements (local, state, Federal) 

• Existing waste permits 

• Waste program operational costs and revenue 

• Existing and potential waste diversion programs (on or off the installation) 

Visits to the installations were conducted to coordinate each study with key personnel. 

During the forward meeting, personnel were able to confirm length and time needed to conduct 

the waste characterization based on unique features of the installation. At this time, the type and 

number of buildings to be assessed, number of dumpsters affiliated with each site, and a remote 

satellite location for sampling of materials were confirmed. During these visits, a copy of the 

installation’s refuse and recycling pick-up schedule were obtained. 

 

4.2 Selection of Representative Buildings 

After obtaining each installation’s building inventory and detailed map, all buildings on 

the installation were categorized. The System Master Planning (SMPL) classification tool was 

used to assign building types to selected representative buildings. The SMPL building types 

represented are listed in Table 4. These building types cover traditional building facilities found 

at Army installations, many of which have worldly applicability. Data in this study represented 

195 total buildings across 28 SMPL building types. 
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Table 4. NZP Building Type Categories Represented. 

Army Reserve Center (ARC) Outpatient Healthcare Center (OHC) 
Brigade Headquarters (BDEHQ) Physical Fitness Facility (PFF) 
Battalion Headquarters (BNHQ) Post Exchange (PX) 
CDC Religious 
Company Operations Facility (COF) Residential 
DFAC Restaurant – Quick-service  
GIB Retail – Stand-alone 
General Purpose Warehouse (GPW) Retail – Strip Mall 
Healthcare – Hospital Retail – Supermarket  
Hotel – Small School – Primary  
Information Systems (InfoSys) Tactical Equipment Maintenance Facility (TEMF) 
Office – Large  Training Barracks 
Office – Medium Unaccompanied Enlisted Personnel Housing (UEPH) 
Office – Small Warehouse 

 

4.3 On-site Waste Characterization 

Each on-site waste characterization was conducted over a one-week period. The period 

selected was in coordination with on-site personnel to ensure the most representative sample 

(i.e., when the site would have its most representative population and data would not be 

influenced by factors such as large training events). Although the quantitative results of this 

characterization were estimated based on a week-long assessment and might be biased given the 

conditions of that week, the data provided a thorough representation of the materials generated at 

Army installations. To avoid empty or unrepresentative container capacities, data were collected 

from buildings representative of normal daily occupancy and usage verifiable on-site with 

building managers with exception of those data collected during COVID-19. There were 2 

installation sites where data were collected during COVID-19, with the remaining 10 installation 

sites collected prior to COVID-19. Additionally, while there may be some bias within 

installations characterized, each of the 12 installations were characterized during different week-

long time periods thereby removing bias amongst the data sets. During this event, samples from 
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dumpsters at selected representative buildings were obtained. Both refuse and recycling 

components were manually separated and weighed. This waste characterization method was 

derived in part from the Standard Test Method for Determination of the Composition of 

Unprocessed Municipal Solid Waste, a standard published in 2008 by the American Society for 

Testing and Materials (D5231 – 92). 

Refuse and recycling categories sorted and evaluated are listed in Table 5. These 

categories include a range of materials covering organics, metals, and plastics. In addition, a 

category that is dedicated to materials with no means for diversion was included. This category, 

named “non-recyclable MSW,” includes any materials with no outlet for composting, 

dehydration, digestion, or recycling. Examples of these materials are condiment packaging, retort 

packaging and other materials with no markets available. Items, such as packaging, that included 

more than one type of recyclable material were categorized with the material that was presumed 

to have the highest weight. If the item included multiple materials, but one or more was 

classified as non-recyclable MSW that was unable to be separated, this item was included in the 

non-recyclable MSW category.  

Selected representative buildings were categorized using the SMPL classification tool 

and are listed in Table 4. The study required a clean, flat floor surface away from the main 

installation activities where the team could set up operations. This site was used for staging of 

operations, i.e., vehicle unloading, sample weighing, and solid waste sorting during the week of 

collection. Once the samples were transported, the team proceeded to classify the solid waste. 

The waste characterization evaluated and identified materials found in solid waste stream 

containers present for the selected representative buildings at each installation. Data obtained 

was normalized to pounds per day using hauler collection schedules. This is a one week, 
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snapshot representation of the buildings’ refuse generation, and as such, some of the buildings 

may have lower or higher quantities than presented in this study.  

 
Table 5. Refuse and recycling waste categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Material Type Disposal Type 

Food Compostable 
Soiled Paper Compostable 
Yard Trimmings  Compostable 
E-waste Non-Recyclable MSW 
Non-Recyl. MSW Non-Recyclable MSW 
Textiles Non-Recyclable MSW 
#1 PET Recyclable 
#2 HDPE Recyclable 
#3 PVC Recyclable 
#4 LDPE Recyclable 
#5 PP Recyclable 
#6 PS Recyclable 
#7 Other Recyclable 
Aluminum Recyclable 
Corrugated Cardboard Recyclable 
Glass Recyclable 
Gloves Recyclable 
Mixed Paper Recyclable 
Newspaper Recyclable 
Paperboard Recyclable 
Steel/ Ferrous Metals Recyclable 
White Paper Recyclable 
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4.4 Selection of Modeling Approach 

As mentioned in Chapter 3, causal models are ideal for determining variable relationships 

and utilizing those to make predictions with potential for added data revisions over time. 

Multiple linear regression is a popular causal model often used in cases when relationships 

between waste generation and various demographic and socio-economic variables are being 

evaluated with cross-sectional data. Regression models are often utilized due to their mature 

theory and simple algorithms. While time series modeling has become increasingly popular for 

solid waste forecasting as they are able to model non-linear behavior such as seasonality, they do 

not provide thorough explanation of variable relationships that are causing solid waste 

generation. Additionally, the studies used in this thesis specifically avoided seasonality as much 

as possible during field data collection periods via coordination with installation personnel to 

show the most representative annual waste generation rates for each site. Thus, a linear 

regression model was selected for simplicity and applicability with assumptions of linear 

relationship, avoided seasonality, and ability to explain variable relationships. There is no hard 

and fast rule in modeling for splitting datasets into train versus test data. Common splits include 

80/20, 75/25, 70/30, 67/33, and 60/40. For this study’s model validation, the dataset was split 

70/30: 70 percent training data and 30 percent testing data. This was determined based on the 

installation sites ranging from eight to 12 for each of the three building types. Using a split such 

as 80/20 would have left too few test and validation sites (as little as one), whereas using a split 

such as 60/40 would have left too few sites for training data (as little as three). Thus, a 70/30 

split was considered the best approach for this data set. 

A combined linear model was run first to represent all building types by material type. 

However, these yielded a less significant statistical output and did not represent the unique 

aggregate relationships by building and material type. Results from the combined linear model 
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by material type are included in Appendix A. Thus, 15 individual models by building and 

material type combinations were chosen to represent unique relationships and better understand 

intricacies of the data. 

 

4.5 Input Data Selection 

Data was cleaned and validated manually using intimate data knowledge of hauler pick-

up and custodial servicing schedules as well as operational use from building managers. The 

research data collected was done in close collaboration with the installation sites selected. 

Detailed information was provided, such as solid waste pick-up dates, which were important to 

check for consistency where possible. Otherwise, this information was dependent on schedules 

provided and assumptions made that these were in fact accurate in pick-up and generation 

timelines. Some discrepancies were found and corrected, but it was uncommon. Additionally, the 

calculations for total materials generated in the waste characterization reports were compared to 

the raw data collection. Those buildings for which data was inconsistent were either corrected 

based on the raw data or, if unable to resolve, were removed. Some building data discrepancies 

were found with raw materials collected and those reported. For example, one building at an 

installation had dumpsters full of broken office furniture. While this data was recorded initially, 

these can be hard to characterize as they are mixed waste but often reusable or recyclable as 

scrap if deemed unserviceable. Installation personnel noted this as an anomaly, as typically 

office furniture goes through reuse/donation programs on site. So, the raw data total calculations 

differed from the reported totals based on assumptions of irregular generation. Buildings that 

were assumed anomalies with complex data differences were also removed from analysis. The 

raw data utilized in the model via csv file are included in Appendix B. 
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4.6 Variable Selection 

While it is important to consider all potential factors, the availability, reliability, and 

quality of data to inform solid waste generation forecasting makes it near impossible to consider 

every factor. Most often socio-economic and demographic factors are used due to their data 

availability. In addition, there are cons to considering too many or too few factors affecting solid 

waste generation. Too many may complicate the development of a model, whereas too few may 

result in an unreliable model. Younes et al. (2015) chose seven inputs and one output for their 

solid waste generation model. These inputs were then parsed down to the most optimal 

combinations that minimized statistical error (in this case, RMSE). This provides a simplistic 

model structure for a more general application.  

Population factors are arguably the most influential on solid waste generation rates, since 

the number of people in a given area may be directly correlated to the amount of waste 

generated. In some studies, it has been shown to be the best factor for explaining increase solid 

waste generation (Chen et al., 2010; McBean and Fortin, 1993). Independent variables selected 

for this study were based on the literature review, data availability, and best representation based 

on relationship to the dependent variable. The independent variables used for this study were 

building type and building square footage (a static measure of population). Building square 

footage was utilized versus occupancy for two main reasons. First, the SMPL tool utilizes square 

footage for other data usage inputs such as energy and water metering and monitoring. To ensure 

ability to feed into this already-established tool, waste generation was also collected alongside 

building square footage to assist in facility-level planning of energy, water, and waste. Second, 

building occupancy was not collected in every study and proved uniquely complex to capture at 

sites characterized during COVID-19. Thus, to maintain relevant and consistent measurements 

building square footage was used in this study. 
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4.7 Model Construction 

When using a linear model, two independent variables (here building type and square 

footage) can be interconnected. Thus, at times building type will influence square footage, in 

turn influencing solid waste generation (dependent variable). There is likely a nonlinear 

relationship between solid waste generation by material and the square footage of various 

building types. Since linear regression may not fully account for this, if at all, the model was 

constructed to make predictions for one building and material type combination at a time and 

determine the statistical significance of these relationship-based predictions. For example, model 

predictions for food waste at a CDC versus a DFAC will be different. The rate of food generation 

per square foot will be larger for a DFAC than a CDC. If only one linear model was constructed 

that combines both square footage and building type variables it will not represent the varying 

rates of change by building type and will only provide an average rate of change in material 

generation for the combination of building types. Once a base linear model was created to predict 

total generation for each material type with building type as the input variable, the different 

combinations could be run in R Studio and a statistical summary of each linear regression 

combination was collected (R Core Team, 2021). The base model was constructed in the R code 

shown in Figure 8, which resulted in the following linear model equation: 

model_1 = lm (`Total Pounds/Day` ~ `Characterized BldgSF`, data = train) Eq. (1) 

The results of this linear model function in R can be interpreted algebraically as a simple 

regression model: 

y = β0 + β1 x + ε where ε ∼ N (0, σ2)  Eq. (2) 

Here, y is the dependent variable (solid waste generated in total pounds per day), β0 is the 

constant or intercept value, β1 is the slope or coefficient of x, x is the independent variable 
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(characterized building square footage), and ε is the residual standard error term described as a 

normal distribution (~ N) with mean zero and variance σ2. This residual error term represents the 

difference between the true value (expressed by β1x) and the observed response value in the 

reported dataset. It assumes a normal distribution, zero mean, and constant variance. The 

variance term (σ2) is calculated by taking the square of the standard deviation of the error term 

estimated from the dataset residuals (e.g., the residual error). Variance represents the error term 

by demonstrating the spread of data points from the regression line. While the error term will 

always be represented as “ε” in the equation calculation, one can understand what the deviation 

from the regression line is (plus or minus) based on normal distribution. An example visual is 

shown below in Figure 7. 

 

 

Figure 7. Standard error and deviation about a linear regression line. Source: Devore, 2011. 
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Figure 8. Linear Model Construction in R Studio (R Core Team, 2021). 

 

Note that the set.seed() function was not utilized in this study to ensure the same test 

versus train data split for all 15 models. This is because for each building type modeled the 

associated installations were not the same in number nor location. For example, only eight of 12 

installations characterized and used in this study had CDCs on site whereas 11 of 12 had DFACs. 

These differences prevented use of the set.seed() function and its abilities for a reproducible test 
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versus train split. Therefore, all 15 models were run for the best fit line individually for best 

achievable results.  

 

4.8 Statistical Analysis 

Application of a correlation analysis between dependent and independent variables is 

necessary to determine the most significant factors impacting solid waste generation rates 

(Gujarati, 1992; Kostas and Chrysostomos, 2006). When independent variables are highly 

correlated with each other it is important to choose one parameter per category (social, 

economic, demographic) to include in the model development (Ordonez-Ponce et al., 2006). The 

variable with the highest correlation to the dependent variable and lowest correlation to the rest 

of the independent variables is preferable, often with a correlation coefficient greater than 0.7 

(Mason et al., 1999).  

The summary of model results was captured for each material and building type 

combination. Since there were a total of five materials and three buildings selected for initial 

modeling, this yielded a total of 15 combinations modeled. Statistical outputs of most interest 

included p-values, multiple R-squared, and adjusted R-squared. 
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CHAPTER 5: RESULTS AND DISCUSSION 

 Table 6 shows the linear regression equations that resulted for each of the 15 model 

combinations algebraically. A summary of the statistical results from those 15 linear models of 

each building and material combination is provided in Table 7 below. Two values for coefficient 

of determination, multiple R-squared and adjusted R-squared, are included. Multiple R-squared 

differs from adjusted R-squared, where adjusted R-squared will account for the number of 

independent variables used to predictively model the dependent variable output and multiple R-

squared does not. The closer a multiple R-squared value and an adjusted R-squared value are to 

one the better the fit of the model. For this study, we used a common cutoff of 0.90 as indication 

of model prediction success. An additional factor for determining statistical significance is the p-

value. A p-value of ≤ 0.05 is determinant of statistical significance in the scientific field.  

Out of the 15 model combinations, nine had a multiple R-squared and an adjusted R-

squared value above 0.90. Additionally, 12 of 15 model combinations had a p-value of ≤ 0.05 

indicating statistical significance of the model’s predictive capabilities. The same 12 of 15 model 

combinations had both R-squared and adjusted R-squared values above 0.75. The p-values 

indicate the statistical significance of the model’s described relationship while the R-squared 

values indicate the model’s degree of data explanation.  
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Table 6. Linear Regression Equation by Model Combination. 

Linear Model Combination Linear Regression Equation 
#1 Plastic + CDC y = 0.13 + 5.64e-05 x + ε where ε ∼ N (0, 0.592) 
Corr. Cardboard + CDC y = -29.38 + 0.0015 x + ε where ε ∼ N (0, 6.092) 
Food + CDC y = -22.91 + 0.0049 x + ε where ε ∼ N (0, 36.542) 
Soiled Paper + CDC y = -47.95 + 0.0049 x + ε where ε ∼ N (0, 14.772) 
White Paper + CDC y = -1.49 + 1.84e-04 x + ε where ε ∼ N (0, 0.142) 
#1 Plastic + DFAC y = -55.76 + 0.0024 x + ε where ε ∼ N (0, 9.952) 
Corr. Cardboard + DFAC y = -145.10 + 0.0097 x + ε where ε ∼ N (0, 37.992) 
Food + DFAC y = -353.40 + 0.061 x + ε where ε ∼ N (0, 141.72) 
Soiled Paper + DFAC y = -127.90 + 0.012 x + ε where ε ∼ N (0, 29.312) 
White Paper + DFAC y = -1.76 + 1.77e-04 x + ε where ε ∼ N (0, 1.212) 
#1 Plastic + GIB y = -5.35 + 1.17e-04 x + ε where ε ∼ N (0, 1.132) 
Corr. Cardboard + GIB y = -7.19 + 1.12e-04 x + ε where ε ∼ N (0, 1.442) 
Food + GIB y = -29.31 + 6.26e-04 x + ε where ε ∼ N (0, 8.492) 
Soiled Paper + GIB y = -28.89 + 5.94e-04 x + ε where ε ∼ N (0, 0.982) 
White Paper + GIB y = -16.10 + 2.31e-04 x + ε where ε ∼ N (0, 5.162) 

 
 

Table 7. Statistical Summary for Linear Model by Combination. 

Linear Model Combination Multiple R-squared Adjusted R-squared p-value 
#1 Plastic + CDC 0.636 0.515 0.106 
Corr. Cardboard + CDC 0.823 0.764 0.033 
Food + CDC 0.566 0.421 0.142 
Soiled Paper + CDC 0.943 0.925 0.006 
White Paper + CDC 0.997 0.996 7.59e-05 
#1 Plastic + DFAC 0.989 0.988 3.94e-06 
Corr. Cardboard + DFAC 0.992 0.990 2.04e-06 
Food + DFAC 0.997 0.996 1.73e-07 
Soiled Paper + DFAC 0.997 0.996 2.03e-07 
White Paper + DFAC 0.468 0.362 0.090 
#1 Plastic + GIB 0.973 0.968 3.97e-05 
Corr. Cardboard + GIB 0.968 0.962 6.35e-05 
Food + GIB 0.968 0.961 6.36e-05 
Soiled Paper + GIB 0.983 0.980 1.20e-05 
White Paper + GIB 0.871 0.845 0.002 

 

In addition to collecting statistical summaries, the results of each model were plotted for 

visual determination with best fit line and 95% confidence interval bands. The y-axis (“Total 

Pounds/Day”) represented total pounds per day of the selected material type for the building type 
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selected. The x-axis (“Characterized BldgSF”) represented the square footage of each of the 

buildings characterized across the 12 installations for the selected building type modeled. The 

legend shows the testing versus training data points. Data plot results for each of the 15 model 

combinations can be seen in Figures 8-22 below. Note that the y-intercept is not set to zero in 

every case. This means that it is possible, based on this model, to have a building with zero 

square footage generating waste and a building with square footage to generate zero or negative 

amounts of waste. The data collected do not account for buildings under 1,000 square feet due to 

most of those including equipment rooms, rest stops, picnic areas, and more. Thus, the data do 

not well represent smaller square footage and may not have as much predictive power for those 

very small footprints. For linear models, it is possible to predict values outside of the training set 

bounds. This may be true for those negative values present, and increased data collection may 

strengthen those modeled combinations for which the y-intercept is not set to zero. 

The results of this study indicated statistically significant relationships (p-value ≤ 0.05) 

between corrugated cardboard and CDC, soiled paper and CDC, white paper and CDC, #1 

plastic and DFAC, corrugated cardboard and DFAC, food and DFAC, soiled paper and DFAC, 

#1 plastic and GIB, corrugated cardboard and GIB, food and GIB, soiled paper and GIB, and 

white paper and GIB. The model results for #1 plastic and CDC, food and CDC, and white paper 

and DFAC were not statistically significant. Some contextual explanations may apply in these 

instances and are discussed briefly in the following subchapters. 
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5.1 CDC Building Type Model Results by Material Type 

In looking at the solid waste generation data for CDC, corrugated cardboard, soiled 

paper, and white paper all produced statistically significant model results while #1 plastic and 

food did not. CDCs typically produce a generous amount of food, however, not nearly as much 

as a DFAC. In looking at the data plots, it is clear there was high variability within the available 

dataset. Additional data points would help improve the model, as well as running outlier testing 

on the datasets.  

The modeled relationship of CDC and #1 plastic is shown in Figure 9. This material type 

is of very low mass. While there may have been high volume amounts of this material generated, 

its low mass can result in inaccuracies when being weighed for data collection. It is possible that 

this contributed, in part, to a lower significance in the model results (p-value = 0.106 and 

adjusted R-squared = 0.515). 

 

 

Figure 9. Linear Model Results Plot for #1 Plastic and CDC 
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The modeled relationship for corrugated cardboard and CDC proved significant, with a p-

value of 0.033 and adjusted R-squared of 0.764 as shown in Figure 10. Cardboard is not a heavy 

material but is heavier than plastics and visibly distinct. The graph shows a few outliers. While 

outlier detection could improve model results, outliers varied based on building and material 

type. Removing different outliers for different model combinations would provide biased model 

results for the study, and thus was not conducted. 

 

 

Figure 10. Linear Model Results Plot for Corr. Cardboard and CDC 
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Figure 11 shows the model for food and CDC was insignificant, with a p-value of 0.142 

and an adjusted R-squared of 0.421. As shown in the plot, data points were scattered making 

determination of relationship difficult. Additional data collection could improve the reliability 

and robustness of the model for this building and material combination. 

 

 

Figure 11. Linear Model Results Plot for Food and CDC 
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The modeled relationship between CDC and soiled paper, shown in Figure 12 below, 

resulted in a p-value of 0.006 and an adjusted R-squared of 0.925. CDC’s have consistent 

occupancy when open, resulting in consistent use of restroom facilities. Additionally, CDC’s 

provide meals resulting in further generation of soiled paper. Larger amounts of soiled paper 

measured compared to other materials may have allowed for more accurate data collection and 

model results.  

 

 

Figure 12. Linear Model Results Plot for Soiled Paper and CDC 
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 The white paper and CDC model in Figure 13 yielded a p-value of 7.59e-05 and adjusted 

R-squared value of 0.996. This model combination tied with both the DFAC and food and DFAC 

and soiled paper combinations for the highest adjusted R-squared value of any modeled 

relationship in this study. This indicates a high degree of data explanation by the model. This 

could be due to a strong correlation of building size to occupancy and usage that results in white 

paper generation. 

  

 

Figure 13. Linear Model Results Plot for White Paper and CDC 
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5.2 DFAC Building Type Model Results by Material Type 

All model results for DFAC were significant except for white paper. At a DFAC, it is 

typical to see high throughput of #1 plastic, corrugated cardboard, food, and soiled paper given 

the operations within a DFAC. In comparison, there is not a lot of white paper generation at a 

DFAC. This small weight of material may have contributed to more data variation that did not 

perform well with the linear model. Additionally, in looking at the data plots the model results 

may perform better after outlier testing. All except for one data point falls below 50,000 square 

feet in building size. For all material types except for white paper, the data point with square 

footage above 50,000 is contributing to the positive slope of the best fit line. However, removal 

of this large square footage data point would remove any understanding of those building sizes 

between approximately 50,000 and 125,000 square feet. Leaving this outlier data point in the 

model results showed that significant predictions can be achieved, regardless of building sizes in 

the data set, for all material types except for white paper which will be discussed in further detail 

below. 
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The relationship modeled between #1 plastic and DFAC in Figure 14 was significant, 

resulting in a p-value of 3.94e-06 and an adjusted R-squared value of 0.988. DFACs produce 

large amounts of plastic due to the nature of grab-n-go stations and pre-packaging to increase 

service capabilities for large amounts of soldiers in short amounts of time. This likely contributes 

to accuracy in DFAC to #1 plastic modeled relationship predictions. 

 

 

Figure 14. Linear Model Results Plot for #1 Plastic and DFAC 
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 Figure 15 shows the model for corrugated cardboard and DFAC was also significant, 

with a p-value of 2.04e-06 and an adjusted R-squared value of 0.992. DFACs receive large 

amounts of food shipments packaged in corrugated carboard daily, likely contributing to one of 

the most predictive relationships when modeled. 

 

 

Figure 15. Linear Model Results Plot for Corr. Cardboard and DFAC 
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 Food and DFAC model results in Figure 16 had the most significant p-value of any 

modeled relationship with a p-value of 1.73e-07 and tied for best adjusted R-squared value of 

0.996. DFACs, by nature, generate large amounts of food and food waste. Larger amounts of 

data collected allow for better predictions in the relationship between this material and building 

type. 

 

 

Figure 16. Linear Model Results Plot for Food and DFAC 
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 The relationship modeled between soiled paper and DFAC in Figure 17 was significant 

with a p-value of 2.03e-07 and an adjusted R-squared value of 0.996. Serving food requires large 

amounts of disposable napkins and paper towels for cleanup and restrooms. Despite any outliers 

in building square footage, this relationship resulted in significant prediction power. 

 

 

Figure 17. Linear Model Results Plot for Soiled Paper and DFAC 
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 Figure 18 shows the model results for white paper and DFAC, which were insignificant. 

It had a resultant p-value of 0.09 and the lowest adjusted R-squared value of 0.362. DFACs do 

not have an administrative focus and do not generate high amounts of white paper by nature of 

its intended purpose of service. However, outlier removal in this specific model may have 

resulted in better prediction capabilities and may be explore in future studies.  

 

 

Figure 18. Linear Model Results Plot for White Paper and DFAC 
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5.3 GIB Building Type Model Results by Material Type 

For GIB, all model results were statistically significant. Corrugated cardboard, food, and 

soiled paper performed the best and had R-squared values above 0.95. While #1 plastic and 

white paper had R-squared values below 0.90, each of these material predictions performed well 

with the linear model constructed. Given results, it is likely the data were robust enough to make 

significant predictions of solid waste generation by material types studied.  

The model for #1 plastic and GIB in Figure 19 resulted in a significant p-value of 3.97e-

05 and an adjusted R-squared value of 0.968. This material and building combination had 

significant modeling capabilities while data explanation could be improved through tailored 

outlier removal. 

 

 

Figure 19. Linear Model Results Plot for #1 Plastic and GIB 
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Figure 20 shows the model for corrugated cardboard and GIB, which also had a 

significant p-value of 6.35e-05 and an adjusted R-squared value of 0.962. Most instructional 

buildings receive supplies and resources via shipment, most often resulting in higher generated 

amounts of corrugated cardboard related to building size.  

 

 

Figure 20. Linear Model Results Plot for Corr. Cardboard and GIB 
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 Food and GIB modeling results in Figure 21 had a p-value of 6.36e-05 and an adjusted R-

squared value of 0.961. These instructional buildings host training events and courses that run all 

day. This can result in food brought in from outside sources for lunch breaks, catering events, 

and vending machines contributing to higher food generation and better predictive capabilities 

based on size of the building which is often correlated to occupancy. 

 

 

Figure 21. Linear Model Results Plot for Food and GIB 
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 The model in Figure 22 for soiled paper and GIB was significant, resulting in a p-value of 

1.20e-05 and an adjusted R-squared value of 0.980. Instruction buildings have various restrooms 

and can turnover large amounts of students or trainees in a period which could result in stronger 

relationship between building size and generation. 

 

 

Figure 22. Linear Model Results Plot for Soiled Paper and GIB 
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Results for the white paper and GIB model shown in Figure 23 were significant with a p-

value of 0.002 and an adjusted R-squared value of 0.845. GIBs by function and purpose utilize 

large amounts of white paper for instruction, training materials, and administrative functions. 

This may result in correlation between generation and building size, though note the plot shows 

this is variable. 

 

 

Figure 23. Linear Model Results Plot for White Paper and GIB 

 

It is important to recognize that while significant results were achieved, the linear 

regression model may not be the best model in all future cases. Recall that the accuracy of linear 

regression is limited by the amount of data available and number of assumptions made. This 

study only includes two independent variables and a limited dataset; there are far more 

contextual factors to include, such as geographical and socioeconomic factors, and data to add 

robustness as more is collected over time. The benefits of using this type of forecasting are that it 



58 
 

is the most flexible and can be revised over time as more data becomes available to continually 

improve the model and its predictions long-term (Chambers et al.,1971). 
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CHAPTER 6: CONCLUSIONS 

Overall, the 15 unique combination models (Table 6) provided a good proof-of-concept 

given data available for an output with statistical significance in most cases. This demonstrated 

the capability to model solid waste generation at the aggregate material and building type level to 

understand detailed building-level solid waste profiles for targeted messaging, diversion 

initiatives, and management. Utilizing the predictive power of these models may provide a more 

resource-effective tool that substitutes the need for a full solid waste stream characterization in 

the future. These models utilized data from Army installations that could provide useful for local, 

state, and Federal applications beyond military installation contexts given building type 

similarities should historical data exist (Sakawi and Gerrard, 2013).  

For decision-makers to ensure successful solid waste management, it is necessary to 

know more information about the current waste stream. A solid waste generation model with 

statistically significant prediction capability at the aggregate material and building type level 

provides a cost-effective, detailed solution for determining solid waste profiles that could inform 

decision-makers with data necessary to target resources in the future. The developed linear 

models in Table 6 can be refined and improved over time as solid waste profiles change and data 

increases in availability, providing both current and future potential solutions for understanding 

solid waste generation. While there is no minimum data threshold for proof-of-concept to 

application, the more data becomes available the better the model will perform. This is an 

iterative process with continued improvability throughout time. Data should be added and 

incorporated as often as possible and available to increase reliability and statistical significance. 

With high amounts of recoverable materials being landfilled, and landfill capacity being 

an issue on the horizon (EPA, 2007; EPA, 2022), this study showed the importance of collecting 

data on solid waste generation to better understand the challenges faced by these programs in 
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diverting recyclable and compostable materials into the future. Increasing the information 

available on solid waste generation at this aggregate level can aid in targeted diversion at an 

aggregate level, and potentially even increase diversion through targeted messaging efforts. This 

may provide actionable information to decrease greenhouse gas emissions associated with solid 

waste transportation and disposal via landfill to alleviate climate change and other environmental 

concerns. Domestic infrastructure investments, along with incentivizing alternative disposal 

methods, will become even more critical in the coming years as recycling markets continue to 

prove unstable. This research provided a predictive data source for solid waste generation by 

material type demonstrating the ability to target recyclable and compostable materials being sent 

to landfill for increased diversion and decreased costs. Using Army installations as case studies 

may increase model data available across the U.S. to better understand solid waste generation 

profiles for individual building types and the challenges posed to furthering solid waste 

diversion.  

In conclusion, the results of this study demonstrated statistical significance in 12 of 15 

modeled relationships between material type generation and building type. Demonstrating 

predictive modeling capability to this aggregate level will aid solid waste managers and policy 

makers in understanding the make-up of material composition generated at a campus or 

installation. This will provide more informed assessments of future recycling, composting, or 

other program diversion efforts without the need to perform a full, on-site waste characterization 

which can be time-consuming and costly. It will also allow for future diversion of materials 

which provides increased cost-effectiveness for waste management programs.  
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CHAPTER 7: RECOMMENDATIONS FOR FUTURE WORK 

The developed models can and should be used as a base model for other installations or 

external civilian organizations sharing similar characteristics, such as municipalities and 

university campuses. As additional on-site waste characterizations are performed, this data 

should be incorporated into the models for increased robustness and improved statistical 

performance of model results. The more data utilized the better the models will perform. With 

additional data, exploration of other models outside of linear models should be explored (e.g., 

time series). Future studies should consider additional material and building types across 

installations characterized. This study limited to five material and three building types as a proof-

of-concept. However, now that the 15 unique model combinations have been demonstrated the 

dataset can be easily manipulated to add additional material and building types for existing data. 

Additionally, more variables information should be collected and expanded on in future work. 

For example, population data may provide more detailed and accurate depictions of waste 

generation. Gathering this information at the building level would provide an additional 

independent variable for the models. Other demographic, socioeconomic, and geographic 

variables should also be considered. The developed models are a basic undertaking with 

applicability to any location. Future work should build on this foundation that has adaptability 

for location-dependent variables later. 
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APPENDIX A: COMBINED LINEAR MODEL RESULTS 

 The results of the combined linear model by material type for all building types is 

included in Figures 24-28. The statistical output summary for each is shown in Table 8 below. 

The results show that the predictive power of a combined linear model that does not account for 

building type square footage produces poor statistical significance compared to modeling each 

relationship individually as done in this thesis study. 

Table 8. Statistical summary of combined linear model by material type. 

Material Type Linear Model Equation P-value Multiple 
R-squared 

Adjusted 
R-squared 

#1 Plastic y = 1.42 + 2.36e-04 x + ε 
where ε ∼ N (0, 42.52)  

0.125 0.0850 0.0511 

Corr. Cardboard y = 2.54e01 + 7.22e-04 x + ε 
where ε ∼ N (0, 197.12) 

0.306 0.0388 0.00321 

Food y = 2.96e02 + 3.95e-03 x + ε 
where ε ∼ N (0, 13232) 

0.402 0.0262 -0.00992 

Soiled Paper y = 3.68e01 + 1.12e-03 x + ε 
where ε ∼ N (0, 2332) 

0.181 0.0652 0.0306 

White Paper y = 4.51 + 4.43e-05 x + ε 
where ε ∼ N (0, 14.342) 

0.386 0.0280 -0.00803 
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Figure 24. Combined linear model for #1 plastic. 

 
 

 

Figure 25. Combined linear model for corrugated cardboard. 
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Figure 26. Combined linear model for food. 

 
 

 

Figure 27. Combined linear model for soiled paper. 
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Figure 28. Combined linear model for white paper. 
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APPENDIX B: RAW DATA 

Table 9. Solid waste characterization raw data used as linear regression model input. 
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Installation A 8225 #1 0.74 9.00E-05 CDC 80500 7.24 16.81 2.04E-03 

Installation A 8225 
Corr. 
Cardboard 2.02 2.45E-04 CDC 80500 19.74 16.81 2.04E-03 

Installation A 8225 Food 6.04 7.34E-04 CDC 80500 59.07 16.81 2.04E-03 

Installation A 8225 
Soiled 
Paper 7.89 9.60E-04 CDC 80500 77.26 16.81 2.04E-03 

Installation A 8225 
White 
Paper 0.12 1.50E-05 CDC 80500 1.21 16.81 2.04E-03 

Installation C 9437 #1 0.89 9.40E-05 CDC 9437 0.89 100.63 1.07E-02 

Installation C 9437 
Corr. 
Cardboard 3.22 3.41E-04 CDC 9437 3.22 100.63 1.07E-02 

Installation C 9437 Food 51.47 5.45E-03 CDC 9437 51.47 100.63 1.07E-02 

Installation C 9437 
Soiled 
Paper 44.83 4.75E-03 CDC 9437 44.83 100.63 1.07E-02 

Installation C 9437 
White 
Paper 0.22 2.35E-05 CDC 9437 0.22 100.63 1.07E-02 

Installation J 15835 #1 2.47 1.56E-04 CDC 725754 113.31 165.43 1.04E-02 

Installation J 15835 
Corr. 
Cardboard 0.85 5.39E-05 CDC 725754 39.10 165.43 1.04E-02 

Installation J 15835 Food 20.13 1.27E-03 CDC 725754 922.66 165.43 1.04E-02 

Installation J 15835 
Soiled 
Paper 136.68 8.63E-03 CDC 725754 6264.36 165.43 1.04E-02 

Installation J 15835 
White 
Paper 5.30 3.35E-04 CDC 725754 242.80 165.43 1.04E-02 

Installation H 16758.82 #1 2.96 1.77E-04 CDC 39563 6.99 208.95 1.25E-02 

Installation H 16758.82 
Corr. 
Cardboard 40.97 2.44E-03 CDC 39563 96.72 208.95 1.25E-02 

Installation H 16758.82 Food 142.67 8.51E-03 CDC 39563 336.80 208.95 1.25E-02 

Installation H 16758.82 
Soiled 
Paper 20.71 1.24E-03 CDC 39563 48.89 208.95 1.25E-02 

Installation H 16758.82 
White 
Paper 1.64 9.79E-05 CDC 39563 3.87 208.95 1.25E-02 
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Table 9. Solid waste characterization raw data used as linear regression model input (cont.). 
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Installation F 22463 #1 0.49 2.17E-05 CDC 75332 1.64 189.89 8.45E-03 

Installation F 22463 
Corr. 
Cardboard 0.49 2.17E-05 CDC 75332 1.64 189.89 8.45E-03 

Installation F 22463 Food 126.43 5.63E-03 CDC 75332 423.98 189.89 8.45E-03 

Installation F 22463 
Soiled 
Paper 60.04 2.67E-03 CDC 75332 201.35 189.89 8.45E-03 

Installation F 22463 
White 
Paper 2.44 1.09E-04 CDC 75332 8.18 189.89 8.45E-03 

Installation I 23800 #1 0.48 2.00E-05 CDC 36182 0.72 110.90 4.66E-03 

Installation I 23800 
Corr. 
Cardboard 1.90 8.00E-05 CDC 36182 2.89 110.90 4.66E-03 

Installation I 23800 Food 41.43 1.74E-03 CDC 36182 62.99 110.90 4.66E-03 

Installation I 23800 
Soiled 
Paper 58.05 2.44E-03 CDC 36182 88.26 110.90 4.66E-03 

Installation I 23800 
White 
Paper 9.04 3.80E-04 CDC 36182 13.74 110.90 4.66E-03 

Installation E 24316 #1 1.72 7.09E-05 CDC 134488 9.53 93.91 3.86E-03 

Installation E 24316 
Corr. 
Cardboard 1.29 5.31E-05 CDC 134488 7.15 93.91 3.86E-03 

Installation E 24316 Food 77.54 3.19E-03 CDC 134488 428.85 93.91 3.86E-03 

Installation E 24316 
Soiled 
Paper 12.49 5.14E-04 CDC 134488 69.09 93.91 3.86E-03 

Installation E 24316 
White 
Paper 0.86 3.54E-05 CDC 134488 4.77 93.91 3.86E-03 

Installation K 37298 #1 2.55 6.82E-05 CDC 61392 4.19 203.42 5.45E-03 

Installation K 37298 
Corr. 
Cardboard 29.16 7.82E-04 CDC 61392 48.00 203.26 5.45E-03 

Installation K 37298 Food 20.73 5.56E-04 CDC 61392 34.12 174.17 5.45E-03 

Installation K 37298 
Soiled 
Paper 145.53 3.90E-03 CDC 61392 239.54 157.13 5.45E-03 

Installation K 37298 
White 
Paper 5.45 1.46E-04 CDC 61392 8.98 14.34 5.45E-03 

Installation I 11565 #1 0.40 3.46E-05 DFAC 47498 1.64 335.60 2.91E-02 

Installation I 11565 
Corr. 
Cardboard 2.90 2.51E-04 DFAC 47498 11.91 335.60 2.91E-02 

Installation I 11565 Food 304.80 2.64E-02 DFAC 47498 1251.83 335.60 2.91E-02 
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Table 9. Solid waste characterization raw data used as linear regression model input (cont.). 
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Installation I 11565 
Soiled 
Paper 26.80 2.32E-03 DFAC 47498 110.07 335.60 2.91E-02 

Installation I 11565 
White 
Paper 0.70 6.05E-05 DFAC 47498 2.87 335.60 2.91E-02 

Installation D 13618 #1 11.03 8.10E-04 DFAC 27263 22.08 378.01 2.78E-02 

Installation D 13618 
Corr. 
Cardboard 25.14 1.85E-03 DFAC 27263 50.33 378.01 2.78E-02 

Installation D 13618 Food 301.94 2.22E-02 DFAC 27263 604.48 378.01 2.78E-02 

Installation D 13618 
Soiled 
Paper 39.90 2.93E-03 DFAC 27263 79.88 378.01 2.78E-02 

Installation D 13618 
White 
Paper 0.00 0.00E+00 DFAC 27263 0.00 378.01 2.78E-02 

Installation B 14354 #1 6.24 4.35E-04 DFAC 14354 6.24 144.05 1.00E-02 

Installation B 14354 
Corr. 
Cardboard 2.88 2.01E-04 DFAC 14354 2.88 144.05 1.00E-02 

Installation B 14354 Food 110.44 7.69E-03 DFAC 14354 110.44 144.05 1.00E-02 

Installation B 14354 
Soiled 
Paper 23.53 1.64E-03 DFAC 14354 23.53 144.05 1.00E-02 

Installation B 14354 
White 
Paper 0.96 6.69E-05 DFAC 14354 0.96 144.05 1.00E-02 

Installation F 15306 #1 12.20 7.97E-04 DFAC 233621 186.21 1075.30 7.02E-02 

Installation F 15306 
Corr. 
Cardboard 2.20 1.44E-04 DFAC 233621 33.58 1075.30 7.02E-02 

Installation F 15306 Food 967.70 6.32E-02 DFAC 233621 14770.35 1075.30 7.02E-02 

Installation F 15306 
Soiled 
Paper 92.60 6.05E-03 DFAC 233621 1413.39 1075.30 7.02E-02 

Installation F 15306 
White 
Paper 0.60 3.92E-05 DFAC 233621 9.16 1075.30 7.02E-02 

Installation J 20326 #1 6.20 3.05E-04 DFAC 123698 37.71 956.48 4.71E-02 

Installation J 20326 
Corr. 
Cardboard 2.15 1.06E-04 DFAC 123698 13.10 956.48 4.71E-02 

Installation J 20326 Food 818.57 4.03E-02 DFAC 123698 4981.56 956.48 4.71E-02 

Installation J 20326 
Soiled 
Paper 107.37 5.28E-03 DFAC 123698 653.42 956.48 4.71E-02 

Installation J 20326 
White 
Paper 22.19 1.09E-03 DFAC 123698 135.04 956.48 4.71E-02 
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Table 9. Solid waste characterization raw data used as linear regression model input (cont.). 
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Installation H 21126.3 #1 1.60 7.57E-05 DFAC 69672 5.28 1471.20 6.96E-02 

Installation H 21126.3 
Corr. 
Cardboard 250.60 1.19E-02 DFAC 69672 826.45 1471.20 6.96E-02 

Installation H 21126.3 Food 1138.30 5.39E-02 DFAC 69672 3754.00 1471.20 6.96E-02 

Installation H 21126.3 
Soiled 
Paper 77.20 3.65E-03 DFAC 69672 254.60 1471.20 6.96E-02 

Installation H 21126.3 
White 
Paper 3.50 1.66E-04 DFAC 69672 11.54 1471.20 6.96E-02 

Installation E 24223 #1 0.30 1.25E-05 DFAC 260220 3.26 101.52 4.20E-03 

Installation E 24223 
Corr. 
Cardboard 3.64 1.50E-04 DFAC 260220 39.06 101.52 4.20E-03 

Installation E 24223 Food 72.12 2.98E-03 DFAC 260220 774.78 101.52 4.20E-03 

Installation E 24223 
Soiled 
Paper 24.85 1.03E-03 DFAC 260220 266.94 101.52 4.20E-03 

Installation E 24223 
White 
Paper 0.61 2.50E-05 DFAC 260220 6.51 101.52 4.20E-03 

Installation K 26780 #1 6.29 2.35E-04 DFAC 238421 55.96 1533.32 5.73E-02 

Installation K 26780 
Corr. 
Cardboard 243.13 9.08E-03 DFAC 238421 2164.62 1533.32 5.73E-02 

Installation K 26780 Food 1244.26 4.65E-02 DFAC 238421 11077.62 1533.32 5.73E-02 

Installation K 26780 
Soiled 
Paper 35.90 1.34E-03 DFAC 238421 319.66 1533.32 5.73E-02 

Installation K 26780 
White 
Paper 3.73 1.39E-04 DFAC 238421 33.24 1533.32 5.73E-02 

Installation A 28400 #1 13.73 4.83E-04 DFAC 629348 304.19 1763.93 6.21E-02 

Installation A 28400 
Corr. 
Cardboard 87.30 3.07E-03 DFAC 629348 1934.61 1763.93 6.21E-02 

Installation A 28400 Food 1516.70 5.34E-02 DFAC 629348 33610.25 1763.93 6.21E-02 

Installation A 28400 
Soiled 
Paper 146.00 5.14E-03 DFAC 629348 3235.37 1763.93 6.21E-02 

Installation A 28400 
White 
Paper 0.20 7.12E-06 DFAC 629348 4.48 1763.93 6.21E-02 

Installation G 30225 #1 0.77 2.56E-05 DFAC 209302 5.36 48.41 1.60E-03 

Installation G 30225 
Corr. 
Cardboard 0.00 0.00E+00 DFAC 209302 0.00 48.41 1.60E-03 

Installation G 30225 Food 28.46 9.42E-04 DFAC 209302 197.07 48.41 1.60E-03 
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Table 9. Solid waste characterization raw data used as linear regression model input (cont.). 
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Installation G 30225 
Soiled 
Paper 19.18 6.35E-04 DFAC 209302 132.81 48.41 1.60E-03 

Installation G 30225 
White 
Paper 0.00 0.00E+00 DFAC 209302 0.00 48.41 1.60E-03 

Installation L 120718 #1 237.86 1.97E-03 DFAC 224719 442.79 9545.53 7.91E-02 

Installation L 120718 
Corr. 
Cardboard 1033.42 8.56E-03 DFAC 224719 1923.74 9545.53 7.91E-02 

Installation L 120718 Food 6971.94 5.78E-02 DFAC 224719 12978.41 9545.53 7.91E-02 

Installation L 120718 
Soiled 
Paper 1302.31 1.08E-02 DFAC 224719 2424.27 9545.53 7.91E-02 

Installation L 120718 
White 
Paper 0.00 0.00E+00 DFAC 224719 0.00 9545.53 7.91E-02 

Installation H 15329.27 #1 26.14 1.71E-03 GIB 660743 1126.72 283.99 1.85E-02 

Installation H 15329.27 
Corr. 
Cardboard 19.56 1.28E-03 GIB 660743 843.10 283.99 1.85E-02 

Installation H 15329.27 Food 105.78 6.90E-03 GIB 660743 4559.48 283.99 1.85E-02 

Installation H 15329.27 
Soiled 
Paper 63.96 4.17E-03 GIB 660743 2756.89 283.99 1.85E-02 

Installation H 15329.27 
White 
Paper 68.55 4.47E-03 GIB 660743 2954.74 283.99 1.85E-02 

Installation J 49600 #1 2.39 4.82E-05 GIB 599460 28.91 9.57 1.93E-04 

Installation J 49600 
Corr. 
Cardboard 0.07 1.38E-06 GIB 599460 0.83 9.57 1.93E-04 

Installation J 49600 Food 3.69 7.44E-05 GIB 599460 44.60 9.57 1.93E-04 

Installation J 49600 
Soiled 
Paper 2.73 5.51E-05 GIB 599460 33.04 9.57 1.93E-04 

Installation J 49600 
White 
Paper 0.68 1.38E-05 GIB 599460 8.26 9.57 1.93E-04 

Installation G 64390 #1 1.59 2.46E-05 GIB 344142 8.48 30.41 4.72E-04 

Installation G 64390 
Corr. 
Cardboard 1.55 2.41E-05 GIB 344142 8.30 30.41 4.72E-04 

Installation G 64390 Food 12.48 1.94E-04 GIB 344142 66.72 30.41 4.72E-04 

Installation G 64390 
Soiled 
Paper 13.73 2.13E-04 GIB 344142 73.36 30.41 4.72E-04 

Installation G 64390 
White 
Paper 1.06 1.64E-05 GIB 344142 5.65 30.41 4.72E-04 
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Table 9. Solid waste characterization raw data used as linear regression model input (cont.). 
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Installation F 73473 #1 3.60 4.90E-05 GIB 1465637 71.81 32.40 4.41E-04 

Installation F 73473 
Corr. 
Cardboard 0.20 2.72E-06 GIB 1465637 3.99 32.40 4.41E-04 

Installation F 73473 Food 8.00 1.09E-04 GIB 1465637 159.58 32.40 4.41E-04 

Installation F 73473 
Soiled 
Paper 3.80 5.17E-05 GIB 1465637 75.80 32.40 4.41E-04 

Installation F 73473 
White 
Paper 16.80 2.29E-04 GIB 1465637 335.13 32.40 4.41E-04 

Installation L 75860 #1 3.10 4.08E-05 GIB 3086259 126.00 32.96 4.35E-04 

Installation L 75860 
Corr. 
Cardboard 2.43 3.21E-05 GIB 3086259 99.00 32.96 4.35E-04 

Installation L 75860 Food 8.18 1.08E-04 GIB 3086259 332.99 32.96 4.35E-04 

Installation L 75860 
Soiled 
Paper 16.81 2.22E-04 GIB 3086259 683.98 32.96 4.35E-04 

Installation L 75860 
White 
Paper 2.43 3.21E-05 GIB 3086259 99.00 32.96 1.25E-03 

Installation I 77977 #1 2.60 3.33E-05 GIB 730514 24.36 22.20 2.85E-04 

Installation I 77977 
Corr. 
Cardboard 1.20 1.54E-05 GIB 730514 11.24 22.20 2.85E-04 

Installation I 77977 Food 13.40 1.72E-04 GIB 730514 125.54 22.20 2.85E-04 

Installation I 77977 
Soiled 
Paper 4.20 5.39E-05 GIB 730514 39.35 22.20 2.85E-04 

Installation I 77977 
White 
Paper 0.80 1.03E-05 GIB 730514 7.49 22.20 2.85E-04 

Installation I 94017 #1 5.00 5.32E-05 GIB 730514 38.85 81.65 8.69E-04 

Installation I 94017 
Corr. 
Cardboard 1.40 1.49E-05 GIB 730514 10.88 81.65 8.69E-04 

Installation I 94017 Food 42.00 4.47E-04 GIB 730514 326.34 81.65 8.69E-04 

Installation I 94017 
Soiled 
Paper 30.80 3.28E-04 GIB 730514 239.32 81.65 8.69E-04 

Installation I 94017 
White 
Paper 2.45 2.61E-05 GIB 730514 19.04 81.65 8.69E-04 

Installation A 111714 #1 1.96 1.75E-05 GIB 1380487 24.21 8.92 7.97E-05 

Installation A 111714 
Corr. 
Cardboard 0.00 0.00E+00 GIB 1380487 0.00 8.92 7.97E-05 

Installation A 111714 Food 3.86 3.45E-05 GIB 1380487 47.64 8.92 7.97E-05 
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Table 9. Solid waste characterization raw data used as linear regression model input (cont.). 
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Installation A 111714 
Soiled 
Paper 1.90 1.70E-05 GIB 1380487 23.43 8.92 7.97E-05 

Installation A 111714 
White 
Paper 1.20 1.07E-05 GIB 1380487 14.84 8.92 7.97E-05 

Installation E 207769 #1 11.85 5.70E-05 GIB 738561 42.13 238.13 1.15E-03 

Installation E 207769 
Corr. 
Cardboard 15.17 7.30E-05 GIB 738561 53.93 238.13 1.15E-03 

Installation E 207769 Food 106.66 5.13E-04 GIB 738561 379.15 238.13 1.15E-03 

Installation E 207769 
Soiled 
Paper 96.50 4.64E-04 GIB 738561 343.04 238.13 1.15E-03 

Installation E 207769 
White 
Paper 7.94 3.82E-05 GIB 738561 28.22 238.13 1.15E-03 

Installation B 209092 #1 19.50 9.33E-05 GIB 209092 19.50 260.98 1.25E-03 

Installation B 209092 
Corr. 
Cardboard 17.40 8.32E-05 GIB 209092 17.40 260.98 1.25E-03 

Installation B 209092 Food 94.39 4.51E-04 GIB 209092 94.39 260.98 1.25E-03 

Installation B 209092 
Soiled 
Paper 93.61 4.48E-04 GIB 209092 93.61 260.98 1.25E-03 

Installation B 209092 
White 
Paper 36.08 1.73E-04 GIB 209092 36.08 260.98 1.25E-03 
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