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ABSTRACT

Millimeter wave (mmWave) technology promises to revolutionize wireless networks. The huge abun-
dance of bandwidth available at the mmWave frequencies (above 24 GHz) allows us to build ultra-low
latency and high-data rate wireless links. This opens up completely new application domains, such as
multi-user wireless VR/AR for education and professional training, large-scale robotic factory automa-
tion based on real-time video streams, and multiplayer gaming. Additionally, the availability of large
bandwidth also enables very high resolution sensing and imaging capabilities, since sensing resolution is
directly proportional to signal bandwidth.

However, leveraging these capabilities of mmWave networks to build communication and sensing sys-
tems at scale is challenging due to the unique characteristics of mmWave signals that set it apart from
legacy wireless technologies. As a result, traditional wireless networking architectures do not translate
well to mmWave networks and cannot exploit the opportunities made available by the millimeter-wave
modality. This shift in paradigm that accompanies mmWave signals is also the reason why past work has
been able to demonstrate the performance leaps with mmWave only in the context of single communica-
tion links, and in controlled and small scale setups.

The central question that this dissertation asks is – ”How can we design and build millimeter-wave sys-

tems that allow it to scale to realistic large-scale deployments with multiple heterogenous nodes, while

also expanding the capabilities of these next-generation systems?” This dissertation investigates the de-
sign of such scalable millimeter-wave communication and sensing systems for a number of different ap-
plication domains such as Wireless LANs, Massive Multicore Processors, High Performance Computing
(HPC), and IoT localization and tracking. We propose new networking architectures and protocols opti-
mized for mmWave wireless links, that can naturally scale to many nodes in the network while providing
seamless multi-Gbps connectivity. We also build mmWave sensing systems that can scale hyper-precise
sensing and localization to large networks with ubiquitously deployed heterogenous nodes, without re-
quiring any additional infrastructure support or modifications. Finally, we also show how mmWave
could transform new application domains such as high-performance computing and address the practical
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scalability challenges in these new fields. This dissertation introduces hardware-software co-designed
systems for mmWave networks that can seamlessly scale to very large deployments, and we build proof-
of-concept testbeds to demonstrate the efficacy of our proposed systems and present our learnings and
insights from these real world deployments.
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Chapter 1

INTRODUCTION

The future of networking systems that we envision goes far beyond communication alone and strives
to deliver high resolution and ubiquitous sensing capabilities as well, in addition to robust and high
data rate connectivity. The next-generation of wireless networks will move towards this goal by provid-
ing unprecedented new capabilities – gigabyte communication speeds, hyper-precise localization, and
vision-like environmental perception. As a result, this will enable new applications – wireless virtual and
augmented reality, fully-autonomous driving, space communications, precision agriculture in connected
farms, and high-performance computing (HPC).

At its core, the key feature of next-generation wireless networks that enables all these applications
is the availability of higher bandwidth as the technology transitions into higher frequency bands of op-
eration, specifically the millimeter-wave (mmWave) frequency bands from 30 GHz to 300 GHz. At a
fundamental level, this higher bandwidth will benefit both the communication and sensing performance
of next-generation wireless networks. For instance, the latest WiFi standard of 802.11ad/ay [1, 2] op-
erating in the millimeter wave (60 GHz) frequency bands, allocates channels spanning up to 2.16 GHz
bandwidth which in turn allows for communication data rates up to 20 Gbps. In contrast, today’s WiFi
networks operating at sub-6 GHz frequencies can only allocate channel bandwidths up to 40 MHz, and
consequently, can achieve only up to 600 Mbps data rates. Similarly, next-generation 5G signals in the
millimeter-wave band can span up to 400 MHz which can enable localization and sensing accuracy of
75 centimeters. On the other hand, current 4G signals are allocated only up to 20 MHz channels, thus
resulting in poor localization resolution of 15 meters (20x worse).

While the benefits of exploiting these mmWave frequency bands are significant, past work has been
able to demonstrate these performance leaps only in the context of single communication links, and in
controlled and small scale settings. The problem of scaling millimeter-wave technology to large network
deployments with multiple heterogenous nodes while maintaining the same next-generation performance
gains is still largely unsolved. For instance, while the higher bandwidth in 802.11ad WiFi can easily
support a single wireless VR user in a room, being able to support multiple concurrent users is challeng-
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ing given the unique characteristics of 802.11ad WiFi such as directional transmissions which requires
rethinking of the interference model between links. Similarly, while 5G base stations can support trans-
missions up to 400 MHz in bandwidth, not every client device will be capable of receiving such high
bandwidth transmissions. For example, low power IoT devices will typically have much slower Analog-
to-Digital Converters (ADCs) and can capture only a very small portion of the wideband transmitted
signals. As a result, we need to develop techniques that can preserve the wideband localization resolu-
tion, and scale the system to accommodate such ubiquitously deployed narrowband IoT devices. Lastly,
millimeter-wave technologies are positioned to make a big impact in new application domains such as
novel interconnect paradigms for massive multicore processors. While it has been shown in the computer
architecture community that parallel processing performance can significantly benefit from wireless in-
terconnects for cache coherency, to truly realize the benefits of wireless interconnects and to scale the
multicore beyond 100 cores or more, we need to design novel networking protocols for the wireless
network-on-chip that can make the most efficient use of the shared millimeter-wave wireless medium by
optimizing for the underlying traffic statistics of the applications.

This dissertation tackles this question of scalability in next-generation millimeter-wave wireless net-
works. In this dissertation, I describe several end-to-end systems that we built to advance the state-of-
the-art and enable multiple application domains: Wireless VR/AR streaming, Ambient Localization of
Low Power IoT Devices, and Scaling Wireless Networks-on-Chip to massive multicore processors. In
building these systems, we develop novel algorithms and techniques by leveraging unique insights from
across all layers of the computing and network stack, from the hardware all the way to the application
context. Finally, we also deployed these systems in real world environments and I present our deploy-
ment experiences and insights in this dissertation. Below, I describe the systems that we designed and
built, with each system addressing a unique scalability challenge faced by millimeter-wave technologies
across varied application domains.

1.1 Systems Developed

1.1.1 Many-to-Many Beam Alignment for Scaling mmWave WLANs by leveraging
Dense Spatial Reuse

Millimeter-Wave (mmWave) networks can deliver multi-Gbps wireless links which will enable new ap-
plications like multi-user wireless VR and AR for education and professional training, 8K video content
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streaming, and large scale robotic factory automation which relies on real-time video feeds. Enabling
the above vision, however, requires scaling mmWave networks from a single communication link to a
network of many links without compromising the throughput of each user. Fortunately, next-generation
millimeter-wave radios offer a new dimension for scalability, since they use very directional steerable
narrow beams. This allows for dense spatial reuse that can enable many links to simultaneously commu-
nicate without interfering. In order to communicate at the highest data rates, the mmWave APs and clients
need to align their narrow beams towards each other. While past work focuses on developing algorithms
and protocols to quickly find the best alignment for a single communication link, in [3] we show that in
a network with multiple links, selfishly choosing the best alignment for each AP-client link independent
of other links can create significant interference due to multipath reflections. We introduce BounceNet
in [3], a system that addresses this scalability bottleneck and presents the first “Many-to-Many Beam

Alignment” protocol that can enable extremely dense spatial reuse in millimeter-wave networks where
many links can communicate simultaneously at multi-Gbps data rates without interfering.

BounceNet’s key intuition is to leverage the sparsity in the mmWave wireless channel to reformulate
the many-to-many alignment problem as a signal level routing problem at the physical layer using multi-
layered graph constructs. We demonstrate that such a cross-layer protocol design which optimizes across
both the sparsity in the mmWave PHY along with the network-layer configuration of the links, allows
BounceNet to leverage both direct and reflected propagation paths to route the signals and densely pack
as many links as possible in the confined 3D space. We show that in dense networks, BounceNet is able
to deliver 3.1×-13.5× higher throughput per client. BounceNet introduces a new bridge between the link
layer and PHY layer of the mmWave network stack to enable “Physical Signal Routing”, and, in turn,
allows the network to scale easily.

1.1.2 Scaling Millimeter-Wave Wireless Networks-on-Chip for Massive Multicore
Processors

Wireless Network-on-Chip (NoC) has emerged as a promising solution to scale chip multicore processors
to hundreds and thousands of cores. The broadcast nature of a wireless network allows it to significantly
reduce the latency and overhead of many-to-many multicast and broadcast communications, which forms
the bulk of the NoC traffic. However, the traffic patterns on wireless NoCs tend to be very dynamic and
can change drastically across different cores, different time intervals, and different applications. Further,
due to thread synchronization primitives likes barriers and locks that are commonly used in parallel
programming, the wireless NoC exhibits complex hard-to-model dependencies between packet delivery
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time on the NoC and the progress of execution on the threads. As a result, traditional wireless MAC
protocols perform very poorly in wireless NoCs since they remain agnostic to these domain specific
dependencies and cannot adapt to the fast varying traffic.

To address this challenge, we propose a unified approach in NeuMAC [4], that combines networking,
architecture, and deep learning to generate highly adaptive medium access protocols for wireless NoC
architectures that can directly optimize for the non-trivial dependencies between threads purely through
experience. NeuMAC leverages the key insight that many building block functions like FFT, graph search
and sorting, repeatedly appear in many applications as common subroutines, which leads to predictabil-
ity in traffic traces. NeuMAC capitalizes on this predictability by leveraging a reinforcement learning
framework with deep neural networks to generate new MAC policies that can learn the structure, cor-
relations and statistics of the traffic patterns. NeuMAC can adapt quickly to optimize performance for
different applications leading to low latency, high throughput and an overall reduction in execution time
of 1.37×-3.74× for a diverse set of parallel applications.

1.1.3 Scaling High-Resolution Self-Localization for Massive IoT Network
Deployments using Ambient 5G Signals

Recent years have witnessed a tremendous growth in the number of connected IoT devices, which form
a critical component of the network infrastructure in applications such as precision agriculture, smart
city monitoring, and Industry 4.0. With such ubiquitous deployment of IoT nodes, the ability to localize
and track them with high accuracy is critical. In [5, 6], we introduce ISLA, which enables low power
IoT devices to accurately self-localize themselves simply by snooping on ambient 5G signals, without
requiring any coordination or synchronization with 5G base stations. The 5G standard supports very
high communication bandwidths (up to 400 MHz), which, in turn, enables very high resolution in ToF
(Time-of-Flight) estimates (up to 75 cm resolution) for localization. Further, the ability to self-localize
allows ease of deployment at scale since there is no need to modify the 5G base stations to support the
localization feature.

However, leveraging these opportunities on power-constrained and low-cost IoT devices is challenging.
IoT devices are equipped with cheap and low-speed Analog-to-Digital converters (ADCs) which cannot
capture the large bandwidth of 5G signals, and, in turn, significantly lose out on the high ToF resolution.
In ISLA [5, 6], we introduce the first RF-acoustic system that leverages MEMS acoustic resonators to
design a new kind of RF filter that can stretch the effective localization bandwidth by 16× on these nar-
rowband IoT devices. Specifically, we design a MEMS filter that emulates a spike-train in the frequency
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domain. This allows us to subsample and sparsify the 5G signal in the frequency domain such that the
end-to-end bandwidth spanned by the filtered signal is preserved. This, in turn, means that the high ToF
resolution is also preserved. The sparsified signal is then subsampled below Nyquist by the IoT device
which causes aliasing. To retrieve the wideband channel measurements from this aliased spectrum, we
introduce a novel channel recovery algorithm that co-designs the MEMS hardware with the subsampling
rate, and formulate a joint inverse problem that optimizes for the channel ToF’s in the continuous domain
to achieve super-resolution. Through extensive experiments in three large outdoor testbeds, we demon-
strate that ISLA can improve localization accuracy by 4-11×, and it achieves localization performance
that is comparable to having a broadband 100 MHz receiver, despite using a narrowband IoT receiver at
16× lower sampling rates.

1.2 Contributions

In pursuit of building these next-generation millimeter-wave systems and delivering new applications,
this dissertation draws on tools from diverse areas including networking, signal processing, deep learn-
ing, computer architecture and RF-acoustics microsystems. We build on a deep understanding of wireless
signals and work across hardware-software boundaries to solve core problems in networking and sensing.
Further, this dissertation takes an inter-disciplinary approach that couples core networking innovations
with application domain specific knowledge. Specifically, this dissertation presents the first system design
and protocol that could enable extreme dense spatial reuse in next-generation millimeter wave networks,
to maximize the number of concurrently operating links. It also introduces the first suite of networking
protocols for mmWave Wireless Networks-on-Chip that could learn and adapt to the highly dynamic
traffic patterns of parallel applications. Lastly, this dissertation also contributes the first localization algo-
rithm that allows narrowband IoT devices to accurately localize themselves using only ambient wideband
5G signals.

The work in this dissertation advances a broad array of capabilities promised by the next-generation of
millimeter-wave systems, ranging from improving networking performance to deliver ultra-low latency
and high-data rate communications, super-resolution in wireless localization, and transforming new ap-
plication domains like high performance computing (HPC). This dissertation particularly focuses on the
question of how to scale these technologies to more realistic deployments with multiple heterogenous
nodes, while also extending the capabilities of these next-generation systems.
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1.3 Organization

The rest of the dissertation delves deeper into the algorithms, techniques and implementation details
of the systems described above. Chapter 2 describes BounceNet [3] and how it enables dense spatial
reuse to allow multiple links to communicate simultaneously without interfering. Chapter 3 discusses
NeuMAC [4], and how it leverages Deep Reinforcement Learning to generate new MAC protocols that
allow the multicore processor to optimize for end-to-end execution of the parallel workload. Chapter 4
discusses ISLA [5, 6], and how it leverages recent advances in RF-acoustics microsystems to enable low
power IoT devices to accurately self-localize by only listening to ambient 5G signals in the air. Finally,
we conclude in Chapter 5 with a discussion of possible future research directions.
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Chapter 2

MANY-TO-MANY BEAM ALIGNMENT FOR DENSE
SPATIAL REUSE IN MILLIMETER-WAVE NETWORKS

2.1 Introduction

Millimeter wave (mmWave) is emerging as the de facto technology for next generation wireless net-
works [7, 8]. The abundance of bandwidth available in mmWave frequencies (above 24 GHz) led to
the design of wireless radios that can operate at several Gbps [9, 10, 11], and the wireless industry is
constantly pushing towards incorporating these radios in wireless products [12, 13, 14, 15, 16, 8]. Hence,
mmWave will significantly change the future of wireless LANs by delivering links at fiber-like speed.
This will allow wireless LANs to handle the surge in IoT and mobile devices. Furthermore, it will en-
able new applications like multi-user wireless VR for education, professional training, and multiplayer
games, where high bandwidth data must be streamed to each user in real-time [17, 18, 19]. It will also
enable large scale robotic factory automation where many robots stream continuous real-time video back
to servers that run AI algorithms and generate decisions to coordinate the robots [20, 21].

Enabling the above vision, however, requires scaling mmWave networks from a single communication
link to a network of many links without compromising the throughput of each user. Fortunately, mmWave
radios use very directional steerable narrow beams to focus their power. This presents a significant
new opportunity for exploiting dense spatial reuse to enable many links to simultaneously communicate
at multi-Gbps data rates without interfering. Consider the example shown in Fig. 2.1. In the current
broadcast model for 802.11 WLANs, whenever a node is transmitting, all other nodes must stay silent
to avoid interference. With more users, the throughput is divided since the entire medium is shared. In
contrast, the use of very narrow beams in mmWave networks allows several APs and clients to transmit
and receive simultaneously on the same channel without interfering as shown in Fig. 2.1(b). Hence,
mmWave can potentially scale the network throughput with the number of users by adding more APs.

The directional nature of communication, however, brings its own new challenges. Millimeter wave
APs and clients need to align their narrow beams towards each other in order to communicate at very
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Figure 2.1: Spatial reuse in traditional WiFi vs mmWave networks.

high data rates. Past mmWave research focused on developing algorithms and protocols to quickly find
the best direction to align the beams for a single communication link [18, 22, 23, 24, 25, 26]. However, in
a network with multiple links, selfishly choosing the best alignment for each AP-client pair independent
of other APs and clients can create interference that severely harms the throughput of interfering links.
First, due to multipath reflections, even if two nodes are transmitting in completely different directions,
their packets might still collide. The problem is further complicated by the fact that carrier sense is
ineffective at detecting interference since the narrow beams prevent mmWave radios from hearing nearby
transmissions unless these transmissions are specifically directed towards them. Hence, we can rely on
neither carrier sense nor the direction in which the nodes transmit to avoid interference.

In this chapter, we introduce BounceNet, the first many-to-many millimeter wave beam alignment
protocol that efficiently aligns the beams of many APs and clients in a manner that allows them to simul-
taneously communicate without interfering. To achieve this, we must address two key questions:

(1) How does BounceNet align the beams of all the APs and clients in 3D space to densely pack as

many links as possible? The challenge arises from the fact that the choice of beam alignment at any node
is intertwined with the choices at other APs and clients. To address this, BounceNet leverages the sparsity
in the mmWave channel. There is much past work that shows that mmWave signals travel along a small
number of paths, e.g., 2 or 3 paths [27, 28]. This means that there is a small number of paths connecting
any two nodes in the network. BounceNet leverages this sparsity to reformulate the problem as a signal
level routing problem at the physical layer where wireless signals are routed along different “air paths”
in a manner that avoids interference and maximizes network throughput. Routing physical signals is
possible in mmWave due to the lack of scattering effects at such high frequencies which ensures the
signal reflects off obstacles and does not scatter in many directions [27]. Hence, BounceNet can choose
to route the signal along an isolated path by aligning the narrow beam towards that path.

By choosing a combination of direct and reflected paths to route the wireless signals, BounceNet can
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align the beams of all APs and clients in the network. While this allows it to maximize the number
of links that can operate concurrently without interfering, it forces some APs and clients to communi-
cate along reflected paths which typically achieve lower data rates. To address this issue, BounceNet
generates several combinations of beam alignments and schedules them in different time slots; i.e., the
transmissions of the links are routed along different paths in each time slot to ensure that each client gets
high data rate while still maximizing the number of links that can operate simultaneously. BounceNet
jointly solves the alignment and scheduling problems. We also model paths belonging to the same link
as a supernode in a multilayer conflict graph and weight them by the SNR of the path. This ensures that
paths which deliver higher data rates are used more often as we describe in detail in section 2.6.

(2) How does BounceNet quickly learn the paths and interference patterns in order to adapt the beam

alignment in dynamic and mobile environments? In dynamic environments, the propagation paths and
the interference patterns constantly change. Thus, we must periodically perform a beam search to learn
the directions of the paths along which an AP and client can communicate.1 BounceNet must also learn
the propagation paths that can result in interference between two links and, hence, needs to perform the
beam search between all APs and clients in the network to learn all the possible paths. Past work has
shown how to leverage sparsity to quickly learn the paths without scanning all directions and reduce the
search time to a millisecond [22, 23]. However, for a network of N APs and clients, this process must
be performed O(N2) times. For N = 10, even with fast algorithms like [22, 23], the overhead is 100 ms
which is prohibitively expensive especially at multi-Gbps data rates.

Instead of performing the search independently for all APs and clients, BounceNet redesigns the beam
search protocol to jointly find all the paths between the nodes. BounceNet coordinates the APs’ trans-
missions and then shares their measurements over the Ethernet which allows it to amortize the cost of the
search and reduce it to O(N). Since the beam search is inherent to mmWave and is required to maintain
connectivity between clients and APs, BounceNet’s design does not introduce additional overhead com-
pared to current standards. This allows BounceNet to quickly learn the paths and reconfigure the beam
alignment to maintain high throughput as we describe in detail in section 2.5.

Implementation & Results: We have designed BounceNet to be backward compatible with the current
mmWave wireless LAN standard 802.11ad/ay making it easy to integrate into future standards. Our
design also addresses several practical challenges like side-lobe leakage from imperfect beam patterns
and interference estimation. We have implemented BounceNet by using extensive real measurements
from three indoor wireless testbeds:

1Typically, the beam search is repeated every 100 ms in current standards like 802.11ad in order to track mobile users and
maintain alignment.
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• A 60 GHz testbed with 3◦ beam directional antennas.
• A 60 GHz testbed with 12◦ beam directional antennas.
• A 24 GHz testbed with 8-element phased arrays.
For a testbed with 10 APs and clients packed in an area of 860 sq.ft., our results show that BounceNet

can scale the overall network data rate with the number of clients delivering over 39 Gbps for 10 clients.
Furthermore, compared to the current 802.11ad standard that exploits spatial reuse, BounceNet can in-
crease the average client throughput by 6.6×, 5×, and 3.1× for each of the above testbeds respectively.
Compared to a baseline that aligns the beams of each link independent of other links, BounceNet in-
creases the average client throughput by 1.27×, 2.7×, and 3.4× for each of the above testbeds respec-
tively. BounceNet also improves the minimum data rate among all clients by up to 13.5× compared to
the baseline which can create interference that severely harms some clients. Finally, Fig. 2.2 shows an
example snapshot of a time slot where BounceNet exploits multipath to enable all 10 APs and clients,
in the 60 GHz testbed with 12◦ beams, to communicate at the same time without interfering, hence
demonstrating BounceNet’s ability to enable extreme spatial reuse.

Contributions: We make the following contributions:
• We present the first many-to-many beam alignment protocol that can efficiently align the beams of a

network of APs and clients to maximize the number of links that can operate concurrently.
• We demonstrate the opportunity of routing physical signals along different paths that bounce off the

environment to improve the spatial reuse of the network. We harness this opportunity to design new
algorithms that maximize network throughput while maintaining a lower bound of fairness for each
client.

• We extensively evaluate our system through micro-benchmark measurements, trace-driven simulations,
and experiments using 3 testbeds. Our results demonstrate the first design of a wireless LAN that can
deliver more than 39 Gbps to 10 clients.
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Figure 2.2: Example of BounceNet’s signal routing in practice.
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2.2 Related Work

Millimeter Wave Networks: BounceNet is related to recent work on increasing the speed and robustness
of beam alignment in mmWave networks to enable mobility [22, 23, 24, 25, 26, 29, 30, 31, 32, 33] and
avoid blockage [25, 34, 35, 36, 37, 18, 38]. All this work, however, focuses on a single communication
link. BounceNet is the first to demonstrate many-to-many beam alignment. It is complementary to these
systems and can benefit from faster beam search to discover the paths between nodes.

BounceNet also builds on past work in mmWave that uses 60 GHz wireless links in data centers [39,
40, 41] and leverages reflections off the ceiling to improve the throughput and avoid blockage [41]. Data
centers, however, have static and known topologies with predictable interference models [41], and this
does not hold in 802.11 LANs where the clients can move.

Our work is also related to recent mmWave work that deploys multiple APs to deal with block-
age [42, 43]. [42] leverages multiple APs and allows clients to switch between them whenever blockage
occurs in VR applications. However, it requires brute-force training to map all reflectors in the envi-
ronment and relies on sensors in VR headsets to track the direction of users. [43] addresses blockage
by having multiple APs jointly transmit the same signal to the clients. However, the method works
only for downlink traffic and requires phase and frequency synchronization to ensure the signals sum up
coherently. Achieving such level of synchronization is difficult and adds significant complexity to the
design [44, 45]. BounceNet opts for a simpler design that scales the throughput of the network for both
downlink and uplink traffic without requiring phase, frequency or packet level synchronization. It also
learns the reflected paths in real-time.

Some recent simulation-based work for mmWave wireless PANs (Personal Area Networks) [46, 47,
48, 49, 50, 51] and mmWave mesh networks [52] tries to exploit spatial reuse. However, these solu-
tions assume that the exact locations of the nodes are known a priori and can be used to compute the
interference between links while ignoring multipath. BounceNet, on the other hand, designs and empir-
ically tests a system that can work in the presence of multipath without prior assumptions of the clients’
locations.

Finally, [53, 54] use MU-MIMO in mmWave and demonstrate concurrent transmissions to two clients
from one MU-MIMO AP. BounceNet’s beam alignment algorithm is complementary to MU-MIMO and
can benefit from having APs that support MU-MIMO to further scale the gains.

Enterprise WiFi and WLANs with Directional Antennas: Past work has designed protocols for mo-
bile ad-hoc networks and WLANs with directional antennas [55, 56, 57, 58]. However, past work can
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support only large cone beams (e.g. 45◦ and 60◦ cones) at data rates of at most tens of Mbps. The scale
of the problem is far more extreme in mmWave with narrow pencil beams of few degrees to sub-degree
beamwidth at data rates of multi-Gbps. Hence, the overhead of past protocols can be prohibitively ex-
pensive in mmWave. Moreover, most of these protocols assume the locations of the nodes are known and
ignore multipath [55, 56, 57].

The closest to our work is [58], which leverages directional phased arrays at 2.4 GHz to increase
spatial reuse. However, [58] assumes only APs to have directional antennas which simplifies the problem
since the clients can easily perform interference detection in the omnidirectional mode. Furthermore, the
scheduling algorithm in [58] is exponential in the number of APs and hence is only shown to work for 3.

Past work had designed centralized scheduling algorithms for enterprise WiFi networks [59]. However,
WiFi networks are omni-directional. Extending past algorithms to deal with directionality is non-trivial
since the interference or conflict graph used for scheduling is itself dependent on the choices of beam
alignment and there is a combinatorial number of choices as we discuss in section 2.5. BounceNet jointly
solves the beam alignment and scheduling problems to deliver an efficient algorithm.
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Figure 2.3: 802.11ad/ay Beacon Interval Structure.

2.3 Background

BounceNet is designed to be backward compatible with 802.11 millimeter wave standards for indoor
wireless LANs. In this section, we provide a brief overview of the 802.11ad standard for 60 GHz net-
works [60, 1].2

The standards divide time into transmission cycles typically referred to as Beacon Intervals (BI) which
consist of two phases, shown in Fig. 2.3. The first is the association phase which is referred to as the
Beacon Header Interval (BHI). It is used to associate the clients with the AP and perform beam alignment.
The second is the transmission phase which is referred to as Data Transmission Interval (DTI) where time
slots are allocated for communication between the AP and associated clients. We will first describe these
phases for the case of a single AP and multiple clients. We will then extend our description to multiple
APs.

A. Association Phase:

The beacon header shown in Fig. 2.3 is used to associate the clients with the AP and perform beam
alignment so that both the clients and the AP know which direction they should point their beam during
data transmission.

The beacon header starts with a Beacon Transmission Interval (BTI) where the AP transmits announce-
ment frames in all directions by sequentially sweeping its narrow beam along different sectors. During
this time, the clients listen to the channel in all directions using a quasi-omnidirectional beam pattern so
that they can receive packets from all paths. The announcement frames are marked with the sector ID
along which they are sent allowing each client to discover the directions which the AP can use to send it
data packets.

BTI is then followed by Association Beamform Training (A-BFT) which reverses the above operation.
The AP uses a quasi-omnidirectional beam pattern so that it can hear clients from all directions while

2Note that another standard in the works is 802.11ay. However, it fully inherits the same PHY and MAC structure of
802.11ad. The main difference is the introduction of MIMO [61].
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the clients sweep their narrow beam along different sectors. This allows the AP to discover the beam
directions which the client can use to send its data packets and send it feedback to inform it of these
directions. A-BFT is divided into multiple slots. Each client selects a random slot to perform its sweep.
If two clients collide in an A-BFT slot, they will not get feedback from the AP and they can try again in
another random slot.

The above process enables the AP and client to align their beams towards each other so that they can
boost their SNR and use very high data rates for data transmission. However, during this association
phase and before aligning their beams, the AP and clients use a control PHY with a low data rate of
27.5 Mbps to ensure the frames can be decoded correctly at low SNR. The beacon header finally ends
with Announcement Transmission Interval (ATI), where the AP and associated clients exchange control
frames such as information regarding time slots that have already been allocated to the client.

B. Transmission Phase:

The data transmission interval (DTI) is divided into time slots. The AP either uses TDMA to allocate
each slot to a certain client or it allows the clients to contend for each time slot using CSMA. CSMA,
however, does not work for directional networks [58, 56]. Hence, TDMA is more commonly used espe-
cially for video streaming applications where clients require dedicated slots in every beacon interval to
ensure high quality and reliability.

For data transmission, the standard provides 32 different modulation and coding schemes (MCS) in-
cluding single carrier modulation and OFDM modulation. Commercial products, however, adopt single
carrier modulation due to the high power consumption of OFDM [62, 63]. Hence, in this chapter, we will
focus on single carrier: MCS1 to MCS12 which provide data rates between 385 Mbps and 4.62 Gbps [60].

C. Multiple Access Points:

In the case of multiple APs, a lead AP is selected. The lead AP divides the beacon interval into smaller
beacon intervals called beacon service periods (BSP). Each BSP has its own beacon header and data
transmission period, and it is allocated to one AP. All other APs must stay silent during this service
period. In order to enable spatial reuse, the lead AP can allocate a service period to two APs and request
that they measure mutual interference and report back. If no interference occurs, it allocates the same
service period to these APs in subsequent beacon intervals. Unfortunately, our results show that such a
greedy mechanism for exploiting spatial reuse is unable to scale the network throughput with the number
of clients.
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Figure 2.4: BounceNet’s System Architecture.

2.4 BounceNet Overview

BounceNet’s goal is to align the beams of all APs and clients in the network in a manner that maximizes
spatial reuse. This allows WLANs to add additional APs to quickly scale their throughput with the
number of clients.

We have designed the BounceNet protocol to support independent flows. This means that for an AP-
client pair that is assigned to communicate along a path in a time slot, its link flow runs independently of
other links for that time slot. The AP and client can transmit packets on the uplink or downlink without
interfering with other links. The pair does not have to share any data packets or synchronize the individual
packet transmissions with other APs or clients.

BounceNet is also backward compatible with 802.11ad/ay. It maintains the same high-level structure.
BounceNet’s architectural flow is shown in Fig. 3.4. It uses a controller that sits between the association
phase and the data transmission phase of the protocol. BounceNet uses association phase to learn the
paths and interference in the network and then runs its signal routing algorithm which dictates the many-
to-many beam alignment in the data transmission phase.

BounceNet starts with an association phase similar to 802.11 where the APs and clients sweep their
beams to collect information about the directions in which their signals can reach other APs and clients.
This information is then aggregated at the APs, and fed to the BounceNet controller which allows it to
discover all the paths connecting any two nodes in the network. We refer to this as multipath discovery
(Section 2.5.1). BounceNet then uses the phased array beam patterns and the learned paths to estimate
the interference created by routing signals along each path (Section 2.5.2).
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BounceNet uses the results to route physical signals along propagation paths in a manner that maxi-
mizes the number of AP-clients pairs that can communicate simultaneously. Ideally, we would have liked
to treat all APs as one large AP with many paths to all clients and find the optimal routing. However,
this significantly increases the complexity of the problem and will require very fast handoff between APs
to allow clients to switch APs within a beacon interval.3 Hence, BounceNet assigns a single AP to each
client for communication during the entire Beacon Interval.

To reduce the complexity of the system and ensure fairness, BounceNet performs signal routing in
three stages:

• Stage 1: Associate each client to communicate with one AP for the duration of the entire beacon
interval. (Section 2.6.1)

• Stage 2: Route the signal of each AP-client pair along their direct or highest throughput path in a man-
ner that maximizes the number of links that can communicate in a given time slot without interfering.
(Section 2.6.2)

• Stage 3: Route additional signals of AP-client pairs along their indirect paths to increase throughput
without interfering with existing transmissions. (Section 2.6.3)

The above signal routing results in several beam alignments that are used for transmissions between
APs and clients during each time slot of the data transmission phase. The entire process is repeated every
beacon interval to adapt to changes in the environment and accommodate client mobility.

3Such fast handoffs are not feasible in mmWave networks because they require transferring the buffer at one AP to another
AP at the time scale of few ms which would overwhelm the backhaul.
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2.5 Learning Paths & Interference

BounceNet must first map all the paths between all nodes in the network and discover the potential
interference between paths. Typically, for a network with N APs and N clients, this would require
collecting O(N2) measurements. BounceNet instead redesigns the 802.11ad/ay protocol and exploits
its beam alignment phase to extract all the paths from O(N) measurements that are already part of the
standard protocol.

2.5.1 Multipath Discovery

As described earlier, in case of multiple APs, the current standard divides the beacon interval into smaller
beacon intervals and dedicates each interval to one AP. Instead, BounceNet aggregates them into one
beacon interval with one beacon header and one data transmission interval. In particular, BounceNet
only expands the BTI, shown in Fig. 2.3, to allow all APs to perform their beam scan of sequentially
sweeping all sectors. While an AP is performing a sweep, all other clients and APs set their antenna to a
quasi-omnidirectional mode and record the sector IDs of the frames they receive along with the SNR of
the signals. A-BFT is then performed by assigning each client to a slot. While some client is performing
its sweep, all other clients and APs set their beam to quasi-omnidirectional and record the sector IDs and
SNRs of the frames received from the client. Algorithm 1 shows pseudocode for BounceNet’s association
phase.

The above process recovers a list of directions from which any node (AP or client) in the network can
reach any other node. However, this might not be sufficient for discovering the paths between an AP and
a client. Consider the example shown in Fig. 2.5(a) where there are three paths between an AP and a
client. During BTI, we discover that the AP can reach the client by transmitting in one of three directions:
30◦, 60◦ or 150◦ as shown in Fig. 2.5(b). During A-BFT, we discover that the client can reach the AP by
transmitting in one of three directions: 30◦, 110◦ or 150◦ as shown in Fig. 2.5(c). Unfortunately, since
we do not know the position and orientation of the client, we do not know which direction at the AP
corresponds to which direction at the client.

To address this, BounceNet needs to match the directions corresponding to the same paths by correlat-
ing the SNRs recorded from the client side and from the AP side. For instance, the directions correspond-
ing to the direct path can be easily identified since typically the direct path delivers significantly higher
SNR compared to indirect paths as we empirically show in Fig. 2.14(a) in section 2.8. However, in some
cases, there could be two indirect paths that show similar SNR values (within 1 dB of each other). In
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Algorithm 1 BounceNet Multipath Discovery
N ← Number of APs
∀ Clients → Set quasi-omnidirectional beam
∀ APs → Set quasi-omnidirectional beam
Begin BTI:
for m ∈ {1, · · · , N} do

AP(m)→ Set directional beam
for θ ∈ Sectors do

AP(m)→ Transmit frame in direction θ
∀ Clients & APs
if Frame Received then

Paths.AP(m){θ} ← SNR

AP(m)→ Set quasi-omnidirectional beam
Begin A-BFT:
Repeat the above process for clients.
Report Paths back to APs in transmitted frames.

C

AP

C

AP

C

AP

(a) 3 Paths connecting 
AP and client 

(b) Directions from AP 
side after BTI

(c) Directions from 
client after A-BFT
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Figure 2.5: Multipath Discovery in BounceNet.

such situations, correlation might lead to erroneous matching due to the inherent noise in SNR measure-
ments. Fortunately, though, as we show in section 2.8, the number of reflected paths between a pair of
nodes in millimeter wave is quite small, e.g. 1 to 2 paths [27, 28]. Hence, at most, only two paths would
remain ambiguous after the correlation step. BounceNet can then leverage the beam refinement option in
802.11ad which allows AP-client pairs to test pairwise directions to resolve such ambiguity. This incurs
four more measurements. However, these measurements are taken while both AP and client beams are
directional. Hence, they are transmitted at high data rate and incur negligible overhead.
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2.5.2 Interference Estimation

Once we have discovered all the paths between the nodes in the network, we can estimate the interference
caused by using any two paths simultaneously. BounceNet defines interference between paths as opposed
to between nodes. If two paths interfere, then signals cannot be simultaneously routed along these two
paths. We would like to keep the flows independent and avoid synchronization. Hence, at any point in
time, both paths can be used to transmit uplink traffic, downlink traffic, or one path is used on the uplink
while the other is used on the downlink. Consider a path between AP 1 and client 1 and another path
between AP 2 and client 2 as shown in Fig. 2.6. Interference can occur in one of four cases: between AP
1 and AP 2, client 1 and client 2, AP 1 and client 2, or AP 2 and client 1 if there is a path connecting any
of these pairs.

Formally, each path is defined by two angles corresponding to the direction from which it leaves one
node and arrives at another node. We distinguish two types of paths:

• Communications Paths: defined as (θAPi, θCi) between AP 1 and client 1 as well as between AP 2 and
client 2.

• Interference Paths: defined as (ϕAPi, ϕCj) between AP 1 and client 2 or AP 2 and client 1. They can
also be defined as (ϕAPi, ϕAPj) or (ϕCi, ϕCj).

Ideally, it would be sufficient to check the directions of the paths to discover if interference occurs.
Suppose AP 1 and client 1 can communicate along the path (θAP1, θC1) and AP 2 and client 2 communi-
cate along the path (θAP2, θC2). In this case, for example, AP 2 will create interference at client 1 only
if there exists an interference path (ϕAP2, ϕC1) where ϕAP2 is in the direction of θAP2 and ϕC1 is in the
direction of θC1. A similar rule can be used to detect interference between the other pairs.

Unfortunately, such a simple interference detection scheme will not work in practice. This is because
the antenna beam patterns are not ideal cones. They have side lobes and can leak signal in other directions.
Consider the example in Fig. 2.6, while AP 2 is transmitting in direction θAP2 = 90◦, its signal might
leak along another direction ϕAP2 = 160◦ and reach client 1. To address this, BounceNet incorporates the
phased array transmit and receive beam patterns into its interference estimation.4 Specifically, to estimate
interference between any pair of nodes, we consider all the interference paths between the two nodes and
weight them by the beam pattern gains. Formally, when AP 2 directs its beam towards client 2 in the
direction θAP2, it will have a beam pattern of BθAP2

(ϕ). Similarly, when client 1 directs its beam towards
AP 1 in the direction θC1, it will have a beam pattern of BθC1

(ϕ). The interference created by AP 2 on

4Such patterns can be modeled or measured to account for imperfections in the mmWave phased arrays.
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Figure 2.6: Estimating Interference using phased array beam patterns.

client 1 due to an interference path P = (ϕAP2, ϕC1) can be calculated as:

BθAP2
(ϕAP2) ·BθC1

(ϕC1) · SNR(P )

where SNR(P ) is the normalized SNR5 of the path P from AP 2 to client 1 measured during multipath
discovery.

The maximum interference AP 2 causes can then be estimated as the constructive sum of leakage along
all paths between AP 2 and client 1:

INR =
∑

P=(ϕAP2,ϕC1)

BθAP2
(ϕAP2) ·BθC1

(ϕC1) · SNR(P )

where INR is the interference-to-noise ratio. BounceNet repeats this estimation eight times: from AP 1
to AP 2 and client 2, from AP 2 to AP 1 and client 1, from client 1 to AP 2 and client 2 and from client
2 to AP 1 and client 1. BounceNet then defines the INR between the two communication paths as the
maximum INR of all these 8 values.

Two points are worth noting:

• The above interference estimation does not assume to know the location or orientation of the APs or the
clients. It also does not rely on knowing the room geometry or the use of ray tracing. It only requires
the direction of the propagation paths (ϕ1, ϕ2) between nodes in the network and the associated signal
strength along the paths.

• BounceNet is able to constantly maintain an up-to-date view of the multipath and interference pattern
in the network since it obtains fresh measurements from the AP and client sweeps at the start of every

5The SNR is normalized by the antenna beam patterns used during the measurement of the SNR value in the multipath
discovery phase.
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Beacon Interval (which is approximately 100 ms). This feature allows BounceNet to deal with dynamic
network conditions and accommodate for client mobility.
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2.6 BounceNet’s Signal Routing

Once BounceNet knows all the paths connecting the nodes and all the interference between the paths, it
can route signals to/from clients in a manner that maximizes the number of AP-client pairs that can com-
municate in parallel. The choice of routing will govern the many-to-many beam alignment. BounceNet
simplifies the problem by dividing it into three stages: AP-Client Association, Direct Path Routing, and
Indirect Path Routing. We will elaborate on each stage below.

2.6.1 AP-Client Association

In the first stage, our goal is to associate each client to one AP for communication during the subsequent
Data Transmission Phase of the Beacon Interval. Each client can associate with one AP, whereas each
AP can serve multiple clients. Hence, for a network with N APs and N clients, we have NN possible
assignments. Trying all assignments is computationally infeasible. Thus, we develop an algorithm that
sequentially assigns the clients to APs, with the objective of increasing throughput while minimizing the
interference in the network. The intuition behind our algorithm is based on the following observations:

• In indoor settings, clients can typically achieve the highest data rate if they have a direct line-of-sight
path to an AP. Hence, to ensure fairness, we should assign each client to an AP with a direct line-of-
sight path.

• To maximize spatial reuse and throughput, we should avoid assigning multiple clients to the same AP
unless the client cannot find any unassigned AP with a direct path.

Our algorithm works as follows. For each client, BounceNet keeps a list of best APs which have a
direct path (high SNR path) to that client. BounceNet starts with the client with the least number of best
APs and assigns it to one of the APs in its best AP list. It then adds this AP-Client pair to a list of already
assigned links. For every subsequent client, BounceNet finds an AP from its best AP list such that: (1)
the AP has not yet been assigned to a client, and (2) when communicating along their direct path, the
AP-Client pair creates the minimum amount of interference on the direct paths of the already assigned
links.6 If no such AP exists, BounceNet simply picks the AP from the client’s best AP list that creates
the least interference.

The above algorithm is a best effort algorithm to assign each client to an AP with a direct path that
creates the least amount of interference between the links. In the worst case, the best AP list of each
client contains N APs. Then, while assigning the ith client, BounceNet must compute the interference

6The amount of interference is estimated as the sum of the INRs computed in Section 2.5.2.
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created by choosing one of the N − i remaining APs on the i assigned links. Hence, the complexity is:∑N
i=1 (N − i)i = O(N3). This reduces the complexity from exponential O(NN) to polynomial O(N3).

2.6.2 Direct Path Routing

Once each client is assigned to an AP, we will have N unique direct paths. BounceNet starts by rout-
ing signals to/from clients along these direct paths. Decoupling the signal routing along the direct and
reflected paths simplifies the problem and allows us to ensure fairness among links when it comes to
routing signals through their highest throughput paths, i.e. their direct paths. In the next section, we will
show how BounceNet routes additional signals along indirect paths to enhance throughput.

A. Scheduling of Direct Paths

BounceNet uses graphs to solve the problem. It starts by building the Direct Path Conflict Graph:
G(V,E). V represents the set of vertices in the graph. Each vertex v corresponds to a direct path between
an AP-client pair. E represents the set of edges in the graph. An edge eu,v exists between vertices u and v
if the corresponding paths interfere. We use the estimation from section 2.5.2 to compute the interference
between paths, and if the INR > 0 dB, we assign the paths as interfering.

In each time slot, BounceNet’s goal is to schedule routing signals along as many paths as possible.
Traditionally scheduling is modeled and solved as a minimum graph coloring problem on the conflict
graph [64, 65, 66, 67]. This finds the minimum number of colors required to color the graph such that
no two vertices connected by an edge share the same color. Thus, paths corresponding to vertices of the
same color can be scheduled and used concurrently in the same time slot. This will minimize the number
of time slots needed to schedule the paths while ensuring that each path gets one time slot to route signal
to/from the client. Fig. 2.7(a) shows a possible minimum coloring of a graph which requires 3 colors.
This means that we can schedule all paths within 3 time slots as shown in Fig. 2.7(b). Since there are
6 paths, this will give 2× higher throughput than a scheduling which does not utilize spatial reuse and
routes signals only along one path at any point in time.

B. Fairness in Millimeter Wave Networks

The above formulation can leverage spatial reuse to increase throughput while ensuring that each
client gets an equal share of the time on the channel. This notion of fairness, however, is suboptimal
in mmWave networks and needlessly wastes throughput. Due to the use of very directional beams in
mmWave networks, the medium is no longer “equally” shared among all clients. Consider the example
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Figure 2.7: Scheduling of Direct Paths.

in Fig. 2.7(a). Paths 2 and 5 do not interfere with any other path and hence we should route signals
through these paths in every time slot. Not doing so would reduce the throughput without benefiting
anyone in the network. On the other hand, paths 4 and 6 share their medium with two other paths since
they interfere with two other paths. Hence, a path should get a share of the medium which is at least a
fraction of the number of paths it shares its medium with. For example, we should route signals through
paths 4 and 6 in 1/3 of the time slots, whereas we should route signals through paths 2 and 5 in all time
slots since they interfere with no one.

Formally, if a path interferes with d other paths, it shares its medium with these d paths and hence
should get a share of at least 1/(d + 1). In the conflict graph G, d will correspond to the degree of
the vertex, i.e. the number of edges that the vertex has. Using this new notion of fairness, we develop
an algorithm to route signals through direct paths in a manner that achieves higher throughput while
maintaining fairness.

C. BounceNet’s Algorithm

BounceNet starts by trying to maximize the number of paths that can be used in each time slot. Max-
imizing the number of paths is theoretically equivalent to solving a maximum independent set problem.
The maximum independent set refers to the maximum number of vertices that do not share any edges.
For example, in Fig. 2.7(a), the maximum independent set can be formed of paths 1, 2, 4, and 5 since
none of these paths share edges, i.e. none of them interfere. Routing signals through these paths in every
time slot will achieve the highest possible throughput. However, it will result in starvation of some clients
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Algorithm 2 BounceNet Scheduling of Direct Paths

G(V,E)← Direct Path Conflict Graph
M ← Number of time slots in beacon interval
F1(u) =M ∀u ∈ V
for t ∈ {1, · · · ,M} do

Wt ← WEIGHTEDMAXINDEPENDENTSET(G,Ft)
for u ∈ Wt do

if Ft(u) > 2(d(u) + 1) then
Ft+1(u) = Ft(u)− (d(u) + 1)

else
Ft+1(u) = 0

whose paths are never included in the maximum independent set, e.g. Path 3 in Fig. 2.7(a).
Instead, BounceNet uses a variant of the same problem referred to as the Weighted Maximum Inde-

pendent Set. The idea is to give each vertex u a weight F (u) ≥ 0. We then find the set of vertices W that
maximize the sum of weights such that no two vertices in W share an edge. More formally, we find the
set W that satisfies:

maximize
∑
u∈W

F (u) such that ∀u, v ∈ W, eu,v /∈ E (2.1)

BounceNet solves the above optimization problem for every time slot and schedules to route paths cor-
responding to the vertices in W to each of the time slots. After each time slot, BounceNet decrements
the weights of each of the vertices in W by an amount proportional to the interference it creates in the
network, i.e. the degree of the vertex d. Hence, if we initialize all the weights equally, then for the first
time slot, BounceNet will pick a Maximum Independent Set. However, as the algorithm proceeds, the
weights of the scheduled paths keep getting decremented, and eventually paths that interfere with the
paths in the Maximum Independent Set start to get picked in W , and in turn get scheduled.

Pseudocode of this algorithm is shown in Algorithm 2. Fig. 2.7(c) shows an example of the output
of BounceNet’s direct path routing. In this example, BounceNet’s algorithm achieves 3.66× higher
throughput while ensuring fairness, i.e. each path gets scheduled at least 1/(d+ 1) of the time.

D. Analysis

If BounceNet wishes to schedule the nodes intoM slots, it initializes all the weights toM . Then, every
time a vertex u is picked, its weight is decremented by d(u) + 1 where d(u) is the degree of this vertex.
After this vertex has been picked up M/(d(u) + 1) times, its weight becomes 0. Once the weight of a
vertex becomes zero, its inclusion in W can no longer help maximize the sum of weights, and hence it
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does not get picked up (or in our context, the path is no longer used) after that. However, by the time the
weight of the vertex reaches 0, it has already been scheduled in 1/(d(u) + 1) of the time slots and hence
fairness is achieved. For example, if a vertex has degree d = 0, i.e. it does not interfere with anyone,
it will be picked up every time since it will always help maximize the sum of weights. Every time it is
picked, its weight is decremented by 1. Its weight will reach 0 only after it has been scheduled M times
which means it has been scheduled in all time slots. In Appendix A, we prove the following lemma:

Lemma 2.1 If t = O(M log(NM)), then Ft(u) = 0 ∀u ∈ V

Algorithm 2, however, requires solving a Weighted Maximum Independent Set problem which is NP-
hard [68]. This would require an exponential time algorithm to find the optimal solution, which would be
infeasible for any real-time implementation. We use the approximation algorithm from [68] to solve this
problem. Empirically we find that the algorithm is at most two timeslots worse than optimal. However,
in many cases, the algorithm achieves the optimal. This is because the sparsity renders the Direct Path

Conflict Graphs in mmWave networks as chordal with very high probability. Chordal graphs are graphs
in which all cycles of four or more vertices have a chord. For such graphs, [68] is optimal.

2.6.3 Indirect Path Routing

In this section, we will show how BounceNet will route additional signals along indirect multipath routes
to increase the throughput without creating interference to signals being routed along the direct path.

BounceNet’s indirect path routing is best understood through an example. Let us consider the direct
path scheduling result shown in Fig. 2.7(c). During the first time slot, paths 1, 2, 5 and 6 were scheduled.
Hence, clients 1, 2, 5 and 6 can communicate on their direct paths during this time slot. Note that a client
can route its signal through only one path during any time slot. As a result, we only need to consider
whether we can route signals through multipath for clients 3 and 4.

To this end, BounceNet forms an Indirect Path Conflict Graph. This graph includes vertices corre-
sponding to the direct paths that have been scheduled as well as vertices corresponding to indirect paths
of AP-client pairs that have not been scheduled in this time slot. Fig. 2.8(a) shows an example of this
graph where client 3 has two indirect paths to its AP and client 4 has three indirect paths to its AP. Indi-
rect path vertices corresponding to the same client are always in conflict since the client can use only one
of those indirect paths. Hence, vertices corresponding to indirect paths of the same client form a fully
connected subgraph which we will refer to as a supernode. We then estimate the interference that the
indirect paths can create on direct paths that are already scheduled as well as other indirect paths.
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Figure 2.8: Indirect Path Conflict Graph before & after pruning.

Direct paths have already been scheduled and, hence, they are locked. Any indirect path that interferes
with the direct path cannot be used in this time slot and hence can be eliminated from the indirect path
conflict graph. Thus, BounceNet prunes the graph by removing all vertices that interfere with direct paths
as well as vertices corresponding to direct paths as shown in Fig. 2.8(b). The resulting graph is typically
much smaller and formed only of supernodes and vertices corresponding to indirect paths. BounceNet
can route signals through any of the remaining indirect paths without interfering with signals being routed
through the direct paths.

In order to schedule indirect paths, BounceNet uses the same algorithm as before where it maximizes
throughput by solving a maximum weighted independent set problem on the Indirect Path Conflict Graph.
However, BounceNet has to take into account two key differences:
• Unlike direct paths where there is small variance in SNR, the SNR of indirect paths can vary signifi-

cantly as we will show in section 2.8. Hence, BounceNet should give indirect paths with higher SNR
more weight. To do so, BounceNet gives each supernode a weight ofM and divides this weight among
its indirect path vertices in a manner proportional to the data rate that each indirect path can achieve.
For example, if supernode 4 in Fig. 2.8 has indirect paths with SNRs 3 dB, 5 dB, and 7 dB, then it
can deliver data rates of around 1.1 Gbps, 1.9 Gbps, and 2.5 Gbps respectively. Hence, its indirect
paths will be weighted as 0.2M, 0.35M, and 0.45M . This ensures that the higher data rate paths have
a higher chance of getting picked.

• The degree d of a vertex no longer corresponds to the number of other clients it shares the medium
with since vertices of the same supernode belong to the same client. Hence, instead of decrementing
the weight of the node by d+ 1, we decrement it by d− s+ 1 where s is the number of other vertices
that remain in the supernode after pruning the graph. For example, in Fig. 2.8(b) the indirect path in
supernode 3 has s = 0 whereas in supernode 4 have s = 1.
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Figure 2.9: Indoor Experimental Space: (a) Lecture Hall (b) Atrium (c) Lounge (d) Empty Room (e)
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Figure 2.10: Experimental hardware used to evaluate BounceNet.
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Figure 2.11: Example beam patterns of the 24 GHz phased arrays.
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Figure 2.12: Placement of APs in the 60 GHz and 24 GHz testbeds.

2.7 Testbed and Implementation

We evaluated BounceNet using three indoor testbeds that operate at 60 GHz and 24 GHz. The 60 GHz
testbeds used Pasternack PEM009 radios [69] shown in Fig 2.10(a). One testbed is equipped with direc-
tional antennas with beamwidth 3◦ and the other with 12◦ antennas shown in Fig. 2.10(b). The 60 GHz
Pasternack modules are connected to USRP software defined radios through a Balun circuit to sample
the signal. They are also mounted on a steerable platform shown in Fig 2.10(c) controlled through an
Arduino.

The 24 GHz testbed used two radios, each equipped with an 8-element phased array shown in Fig. 2.10(d).
The radios use HMC815B and HMC977 IQ up/down converters from Analog Devices which operate be-
tween 21 GHz and 27 GHz with 3.75 GHz of bandwidth. The integrated boards shown in Fig. 2.10(d)
also include RF amplifiers and a frequency doubler. The boards are fed a clock in the range 10.5 GHz
to 14.5 GHz from a TI LMX2594 PLL which is doubled to the 24 GHz range. The I and Q signals are
connected to USRP software defined radios where the signals are collected. Fig. 2.11 shows examples
of the beam patterns of the phased array that we obtain from our own empirical measurements. Note
that while the beam patterns from some commercial phased arrays have much larger side lobes, we are
able to achieve beam patterns as shown in Fig. 2.11 by leveraging the online algorithm for phased array
calibration presented in [70].

We use the Tektronix DPS77004SX oscilloscope which samples at 200 GS/s and has a bandwidth of
70 GHz to calibrate the transmitted power of both 60 GHz and 24 GHz radios to match FCC regulations.
We also use it to calibrate the measured power and noise floor of the USRPs.
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Due to the large overhead of real-time processing and the limited bandwidth of USRPs, we use the
software radios to measure interference and signal-to-noise ratio, which we map to the minimum achiev-
able data rate using the receiver sensitivity table of 802.11ad [60] with 1% packet loss rate. We then
used these testbed measurements to run trace-driven simulations using an 802.11ad ns3 library that takes
phased array beam patterns into account [71]. We also modified this library to implement BounceNet.
We then empirically verified the results by testing the interference and making sure any pair of paths
used in a given time slot does not interfere. We then report the data rates per client as well as the overall
network data rate. Finally, we also study the impact of our system when integrated with higher layer
protocols like TCP and UDP and report application level throughput results.

We collected measurements in different rooms in order to evaluate the level of multipath and verify
that BounceNet can exploit this multipath to maximize the number of links. We tested in six different
types of rooms shown in Fig. 2.9: a lecture hall, an atrium, a lounge, a completely empty room, a lab
space, and an office space. The full BounceNet protocol was evaluated in the lab which is 860 sq.ft. of
space. The APs were deployed along the walls of the lab with the clients scattered across the room as
shown in Fig. 4.3. We vary the number of APs and clients from 1 to 10. In every run, the clients are
assigned randomly to these locations. We tested 5000 different configurations of locations. To emulate
mobility, we move the clients in 5 cm steps along a path where we run scans and collect measurements
for each step in the path.
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Figure 2.13: Beam Alignments computed by BounceNet for 12◦ beam testbed.

2.8 Microbenchmark Results

We start our evaluation with a few microbenchmarks that provide insights into the working of the system
as well as the characteristics of mmWave networks before we present the evaluation results.

A. Multipath in mmWave Networks:

BounceNet leverages multipath in mmWave networks to maximize the number of links that can operate
at the same time. Table 2.1 shows the distribution of the number of reflected multipath per link in each
of the six rooms shown in Fig. 2.9. The results show that for all rooms except the atrium, in about 80%
of the cases the client has 1 to 2 reflected paths through which it can route its signal to the AP. This is
expected as the atrium is a large open space with limited reflectors. The results also show that very few
clients see 3 or 4 indirect paths due to sparsity in mmWave.

Fig. 2.14(a) shows the CDF of the SNRs of the direct and reflected paths respectively measured from
our testbeds. We observe that direct paths always provide sufficient SNR to support the highest data
rate of 4.62 Gbps. The variation in direct path SNRs is small and the median SNR of direct paths is
15 dB larger than the median SNR of reflected paths which motivates BounceNet’s design to split routing
signals along direct and indirect paths into two stages. Furthermore, the SNRs of indirect paths can vary
between 5 dB to 20 dB and hence it is important to take the SNR of indirect paths into account when
deciding which indirect path to route signals through as we have described in section 2.6.3.

B. Accuracy of Interference Estimation:

Here, we evaluate the accuracy of BounceNet’s ability to correctly estimate interference. We choose
100 different pairs of links from our testbed and measure the ground truth interference between every pair.
For each pair, we consider both the direct path and indirect paths. To obtain the interference estimates
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Figure 2.14: Microbenchmarks: (a) SNR of indirect vs. direct paths. (b) Interference estimation error.

Table 2.1: Percentage of Links with n Reflected Paths

Room n = 0 n = 1 n = 2 n = 3 n = 4

Lecture Hall 0 20 46.6 26.6 6.6
Atrium 5 95 0 0 0
Lounge 0 46.6 50 3.3 0

Empty Room 0 21.0 52.6 26.4 0
Lab 0 37.4 41.4 21.2 0

Office Space 0 30 45 15 5

from BounceNet, we perform the association phase using the experimental setup. Then, we use the
measurements to find all the paths and compute the INR as described in section 2.5.2. Fig. 2.14(b) shows
the CDF of the absolute error between the ground truth interference measurements and the estimated
values from BounceNet. BounceNet’s median error is 0.52 dB and 90th percentile error is 1.54 dB which
is within the 3 dB tolerance for various mmWave MCSs. BounceNet is able to achieve such high accuracy
in predicting the interference in the network because it accounts for both the multipath in the environment
as well as the imperfections in antenna beam patterns. Furthermore, it is able to do this using only a linear
number of measurements O(N), therefore avoiding the need to explicitly measure interference between
every pair which would be O(N2).

C. BounceNet’s Signal Routing

In Fig. 2.13, we present additional examples of BounceNet’s beam alignments in the 12◦ testbed. We
pick one client configuration and plot the beam alignments computed by BounceNet for the first three
time slots. We can see that BounceNet makes use of both direct and reflected paths in order to squeeze
in as many links as possible for communication during the time slot. Furthermore, over the three time
slots, BounceNet schedules the direct paths for different clients, thus clients get a chance to use their
direct paths in different time slots. Clients that create less interference such as C1 and C10 get to use
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their direct paths in all time slots whereas clients that create more interference such as C2 or C7 get to
use it once.
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Figure 2.15: Data rates in BounceNet, 802.11ad and baseline for (a) 24 GHz phased array (b) 60 GHz
with 12◦ beams (c) 60 GHz with 3◦.

2.9 Evaluation Results

We will present our main evaluation results here. We will start by describing our baselines and evaluation
metrics.

A. Compare Schemes: We compare BounceNet to:
(1) 802.11ad with Spatial Reuse: As described in section 2.3, the current standard provides a greedy
mechanism for exploiting spatial reuse by measuring pairwise mutual interference and merging links that
do not interfere into the same slots. If the nodes detect changes in the interference in the network, they
reset to transmitting in exclusive time slots.
(2) Baseline: Our baseline will consider independently aligning the beams of each AP and client and
letting them transmit. To give the baseline an edge, we assume that the APs and clients can perform their
beam search without creating any interference. Hence, they can find the right alignment in O(N) and
then use it for data transmission.
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B. Metrics: We evaluate BounceNet using these metrics:

• Total Network Data Rate: The aggregate data rate of all the clients in the network.
• Average Client Data Rate: The average data rate of the clients in the network.
• Minimum Client Data Rate: The minimum data rate among all clients in the network.
• Fraction of Time on the Channel: The fraction of time slots a client gets to transmit in; used to

evaluate fairness.
• Average Client Throughput: The average application layer throughput of a client using TCP or UDP

flows.

C. BounceNet Data Rate Gain:

(a) 1 Mobile Client (b) 3 Mobile Clients (c) 5 Mobile Clients
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Figure 2.16: Mobility: This figure shows that BounceNet can adapt to changing and mobile clients
whereas 802.11ad is unable to exploit spatial reuse in mobile networks.
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Figure 2.18: BounceNet’s Application Level Average Throughput
Under (a) TCP and (b) UDP.

We start by evaluating the gains in total network data rates. Fig. 2.15(i) shows the total network data
rate as a function of the number of clients in a network with 10 APs for BounceNet, 802.11ad, and the
baseline. As the number of clients increases, BounceNet is able to scale the total network data rate with
the number of clients to deliver a total of 39.2 Gbps and 32.8 Gbps data rates for 10 clients using 60 GHz
with 3◦ and 12◦ beams respectively. For 24 GHz, BounceNet is able to achieve 18.2 Gbps for 10 clients.
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This is expected, as sidelobe leakage of phased arrays creates more interference in the network which
limits spatial reuse.

802.11ad, on the other hand, is unable to properly exploit spatial reuse and shows limited gains. Specif-
ically, for the case of 10 clients, BounceNet achieves 6.6×, 5×, and 3.1× gain in network throughput as
compared to 802.11ad for 3◦ beam, 12◦ beam, and the phased array respectively. This is due to 802.11ad’s
inefficiency which stems from requiring pairs of links to measure mutual interference during data trans-
mission and merge these links during the following beacon interval only if they do not interfere. The
baseline can exploit spatial reuse for 3◦ beam since the interference in this case is very limited. Hence,
for 10 clients with 3◦ beam, BounceNet only achieves 1.27× gain over the baseline. This gain, how-
ever, increases to 2.7× and 3.4× for 12◦ beam and the phased array respectively where there is more
interference. In fact, the baseline is unable to exploit spatial reuse and scale network throughput in such
cases.

In Fig. 2.15(ii) we plot the CDF of the average data rate achieved by the clients across all the runs
with 10 clients in the network. A client in BounceNet can achieve a 50th percentile average data rate of
3.8 Gbps for 3◦ beam, 3.25 Gbps for 12◦ beam, and 1.81 Gbps for the phased array. Whereas in 802.11ad,
the 50th percentile average data rate is around 0.6 Gbps in all three cases. The baseline, however, shows
high average data rate of 3.4 Gbps for 3◦ beam which decreases to 1.26 Gbps for 12◦ and 0.5 Gbps for
the phased array. Hence, with wider beams, simply ignoring interference would result in an even worse
performance than 802.11ad.

Two points are worth noting. First, each of the 10 clients in BounceNet can achieve a 90th percentile
average data rate of 3.9 Gbps for 3◦, 3.7 Gbps for 12◦, and 2 Gbps for the phased array. This is a small
deviation from the median data rate which shows that BounceNet is fair in dividing the rate across the
clients. Second, while BounceNet scales the network throughput, the overhead of beam alignment starts
to kick in. This, however, can be addressed by employing faster beam alignment protocols [22, 23, 26].

We also plot the CDF of the minimum data rate among all clients in Fig. 2.15(iii), across all the runs
with 10 clients in the network. The figure shows that BounceNet can significantly improve the minimum
and benefit worst case clients which can suffer from interference. BounceNet can improve the minimum
data rate of any client in the network by 13.5× for 12◦ beam and 7.5× for phased arrays as compared to
the baseline. This is because the baseline does not try to avoid interference, and hence clients that suffer
from interference can really benefit from BounceNet.

In Appendix B, we present additional results when there are only 5 APs in the network. This allows
us to evaluate BounceNet in scenarios where clients outnumber the APs.

D. Adapting to Changes and Mobile Clients:
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To understand BounceNet’s ability to adapt to mobile clients, we examine what happens to the total
network data rate as clients move for both BounceNet and 802.11ad. As the baseline does not actively
try to optimize for spatial reuse, we expect the total network data rate to remain smooth albeit lower than
BounceNet.

We run an experiment where there are five clients in the network and we vary the number of clients
that are moving. Fig. 2.16 shows the total network data rate versus time, when one client, three clients
or five clients are moving. This figure shows that BounceNet can continue to maintain a high data rate
as the clients move. For one client moving, BounceNet achieves almost a constant data rate. As more
clients move, the interference patterns in the network change, and, hence, the maximum achievable data
rate changes. The figure shows that BounceNet can quickly adapt to changes and continue to exploit
spatial reuse.

On the other hand, the data rate in 802.11ad fluctuates significantly and keeps falling back to the
case of no spatial reuse. This is because 802.11ad merges AP-client pairs only after measuring the
mutual interference during the data transmission phase. Hence, it takes 802.11ad several beacon intervals
(≈ 100ms) to exploit spatial reuse. By that time, the client has moved and the interference patterns have
changed. Even if one client moves, it can affect the interference patterns of many links. Fig. 2.16
shows that as more clients move, the interference patterns change faster, and hence 802.11ad is unable to
properly exploit spatial reuse.

E. BounceNet Fairness:

Recall from section 2.6.2 that fairness in mmWave networks depends on how much each client inter-
feres with other clients. If a client interferes with d other links, it should get at least a fraction of 1/(d+1)

of time on the channel. For each of our 5000 experiments, we compute the fraction of channel time that a
client interfering with d other links in the network obtains as a result of BounceNet’s algorithm. Fig. 2.17
plots this fraction for all clients against their degree in the conflict graph (equivalent to their number of
interfering links). The figure shows that the algorithm guarantees that all points lie above the line denoted
by Fraction = 1/(d+ 1). Hence, every link gets at least its fair share of channel time in BounceNet.

F. Application Level throughput in BounceNet:

In order to understand whether BounceNet’s gains translate to higher layer network throughput, we
evaluated the application level throughput achieved using BounceNet and 802.11ad under TCP and UDP
traffic flows in ns3. Fig. 2.18 shows the throughput versus the number of clients. BounceNet’s scal-
ing properties are maintained with roughly the same gain over the 802.11ad standards. For 10 links,
BounceNet can achieve a UDP throughput of 1.44 Gbps for 60 GHz with 12◦ beamwidth and 2.23 Gbps
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for 3◦ beamwidth. As expected, the application level throughput is lower than the MAC data rates due to
the overhead of headers. For TCP the throughput is even lower with 360 Mbps for 12◦ beamwidth and
740 Mbps for 3◦ beamwidth. This is expected as TCP has larger overhead and does not perform well in
wireless networks.

G. Results Summary:

802.11ad requires multiple beacon intervals to detect interference in the network and schedule concur-
rent transmissions. While this would work in completely static scenarios where the paths do not change,
it is inefficient in mobile or dynamic environments. Our results show that in such cases, 802.11ad keeps
resetting to a configuration with no spatial reuse. BounceNet, on the other hand, is able to maintain an
up-to-date view of the paths and interference every Beacon Interval which allows it to achieve significant
gains especially for narrower beams (e.g. 3◦) where the potential for spatial reuse is very high.

The baseline, on the other hand, performs well with narrow beams (e.g. 3◦) and on average achieves
comparable results to BounceNet. However, the tail of the distribution is very long. Specifically,
clients that experience interference would achieve significantly lower data rates than both BounceNet
and 802.11ad. The performance quickly degrades for wider beams where there is more interference be-
tween links. BounceNet can achieve the best of both worlds by combining efficient path learning and
interference estimation algorithms with signal routing and beam alignment. Hence, BounceNet can ex-
ploit spatial reuse for both very narrow beams and wide beams and can perform well in both static and
mobile environments.
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2.10 Limitations and Discussion

Few points are worth noting.

• Our current evaluation is limited by today’s hardware, which makes it infeasible to implement a full-
fledged real-time version of our system. Cheap commercial mmWave devices [9, 10, 11] do not pro-
vide access to the lower layers: PHY and MAC. On the other hand, the hardware we used costs around
$14, 000 for the RF front end of one TX/RX pair, making it prohibitively expensive to scale the imple-
mentation. Note, however, that our simulations are not based on ray-tracing or any channel modeling.
Rather, they are based on actual measurements of SNRs and beam scanning through a labor-intensive
study that generated over 5000 configurations. We have also used two pairs of links to verify that our
interference estimates are accurate. Our results show a significant opportunity to scale the throughput
in mmWave networks, and we believe the protocol can be implemented on cheap commercial devices
if the chip manufacturers open up the firmware.

• BounceNet’s protocol is mainly designed for continuous traffic in applications like VR, 3D video
streaming, and Robotics. To deal with bursty traffic, one can leverage the polling mechanism avail-
able in 802.11ad [60] to obtain a real-time view of the traffic demands for different clients during the
Beacon Interval, and adjust the conflict graph based on the traffic.

• BounceNet’s interference estimation relies on accurate measurements of the SNR. The high directional-
ity in mmWave networks reduces multipath fading and channel fluctuations which allows us to achieve
accurate estimates as we show in section 2.8. However, to address the case of noisy and unstable SNR
measurements, we take a more conservative approach for determining when two links interfere (Sec-
tion 2.6.2.A). The threshold to determine interference can be adjusted as a trade-off between robustness
to noisy SNR estimates and maximizing spatial reuse.
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2.11 Conclusion

In this chapter, we introduced BounceNet, the first many-to-many millimeter wave beam alignment sys-
tem that can efficiently align the beams of many APs and clients in a manner that allows them to simul-
taneously communicate without interfering. We evaluated BounceNet using three experimental testbeds
and demonstrated that it can enable dense spatial reuse and scale the total network throughput with the
number of APs and clients.
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Chapter 3

SCALING WIRELESS NETWORKS-ON-CHIP FOR
MASSIVE MULTICORES USING DEEP

REINFORCEMENT LEARNING

3.1 Introduction

Recently, there has been an increasing interest from both industry and academia to scale network-on-
chip (NoC) multicore processors to hundreds and thousands of cores [72, 73, 74, 75]. To enable such
massive networks on chip, computer architects have proposed to augment NoC multicore processors
with wireless links for communication between the cores [76, 77, 78, 79, 80]. The broadcast nature of
wireless networks enables the NoC to significantly reduce the number of packets that the cores need to
communicate to each other as well as the latency of packet delivery [81, 82]. Both aspects play a central
role in scaling the number of cores on an NoC multicore processor (See Background Section 4.3 for
details) [81, 82, 83, 84, 85]. These benefits have motivated RF circuits designers to build and test wireless
NoC transceivers and antennas that can deliver multi-Gbps links while imposing a modest overhead (0.4–
5.6%) on the area and power consumption of a chip multiprocessor [86, 87, 88, 89].

While the use of wireless can significantly benefit NoCs, it brings on new challenges. In particular,
the wireless medium is shared and can suffer from packet collisions. Designing efficient medium access
protocols for wireless NoCs is, however, difficult. The traffic patterns in NoCs tend to change drastically
across applications. Even during the execution of a single application the traffic pattern can change as fast
as tens of microseconds [81, 90]. As a result static MAC protocols such as TDMA, FDMA and CSMA
perform poorly [91, 92, 93, 94, 95, 96, 97]. Further, due to thread synchronization primitives likes barri-
ers and locks in parallel programming, the wireless NoC exhibits complex hard-to-model dependencies
between packet delivery on the network and execution time. As a result, even adaptive protocols that try
to switch between TDMA and CSMA or optimize for long-term throughput [80, 98, 99], perform poorly
in the context of wireless NoCs since they remain agnostic to these domain specific and intricate depen-
dencies. Hence, the design of efficient medium access protocols has been identified as a key bottleneck
for realizing the full potential of a wireless NoC multiprocessor [100, 101].
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In this chapter, we present BounceNet, a unified approach that combines networking, architecture
and deep learning to generate highly adaptive medium access protocols for a wireless network on chip
architecture. BounceNet leverages a reinforcement learning framework with deep neural networks to
generate new MAC protocols that can learn traffic patterns and dynamically adapt the protocol to han-
dle different applications running on the multi-core processor. Reinforcement Learning (RL) has proved
to be a very powerful tool in AI for generating strategies and policies that can optimize for complex
objectives [102, 103]. RL allows BounceNet to make better decisions by learning from experience. In
particular, many basic functions, like FFT, graph search, sorting, shortest path, etc., tend to repeatedly
appear in many applications. Past work also shows that a number of unique periodic traffic patterns
emerge in multiple different programs, and as the number of cores increases, the traffic patterns show in-
creasingly predictable spatiotemporal correlations and dependencies [104, 90]. BounceNet learns these
statistics and correlations in the traffic patterns, to be able to both predict future traffic patterns based
on traffic history and adapt its MAC protocol to best suit the predicted future traffic. Furthermore, RL
enables BounceNet to account for hard-to-model complex dependencies between execution time and de-
livery of packets. In particular, we carefully engineer the reward function in RL to optimize for execution
time rather than to simply improve the latency and throughput of the network.

Indeed, RL has been leveraged for wireless MAC protocols in the context of heterogenous wireless
networks [105, 106], sensor networks [107], and IoT networks [108]. However, bringing these benefits
to wireless networks on chip faces a number of unique challenges. First, past work runs RL inference
for every packet at each time step, which is not feasible for WNoCs since the time scale of operation in
a multicore processor is in the order of nanoseconds. Hence, per time-slot inference would significantly
delay every packet transmission. Second, due to compute resource constraints, it is also not feasible to
run RL inference at every core of the wireless NoC. While the second challenge can be addressed using
a centralized controller for the RL model, it would still incur significant communication overhead and
latency to collect the states from the nodes (e.g. traffic injections or buffer occupancy) and to inform the
nodes when to transmit.

BounceNet addresses these challenges by designing a framework where the controller is trained to
generate high-level MAC policies simply by listening to on-going transmissions on the wireless medium.
This allows BounceNet to eliminate any communication from the cores to the controllers. Moreover, to
amortize the overhead of inference and policy updates, BounceNet only updates the cores with a new
MAC policy once every interval spanning many execution cycles (e.g. ten thousand cycles). We also
train BounceNet to learn policies that are highly adaptive and simple to update, to reduce communication
overhead from the controller to cores.
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Finally, BounceNet also needs to operate within the strict timing and resource constraints of the mul-
ticore processor. Modern deep neural networks, however, are designed with up to a billion tunable
parameters and operate on high dimensional input spaces [109, 110]. Consequently, they require large
amounts of memory and computational resources, and also suffer high inference latencies (tens of mil-
liseconds) [111, 112]. To address this, we design BounceNet’s RL framework such that the input and
output of the neural network scale linearly with the number of cores. This ensures that BounceNet is
expressive enough to service the highly dynamic network traffic while at the same time operate under the
limited memory and computational resources. Specifically, BounceNet’s neural network requires three
orders of magnitude less parameters, and adds a small area overhead to the multicore processor. It also
has an inference latency that is small enough to meet the strict timing constraints of the multicore during
run-time as we show in detail in Appendix C.

We evaluate BounceNet by integrating it with a cycle-level architectural simulator for CPU-GPU het-
erogeneous computing that faithfully models the intricacies of multi-core processors [113]. We aug-
mented the simulator with an on-chip wireless network that accurately models transmissions, collision
handling and packet losses. We test BounceNet’s performance on real applications chosen from diverse
domains such as graph analytics, vision and numerical simulations. We compare BounceNet against
six baselines including wired NoC, standard CSMA, TDMA, optimal CSMA protocols [114], adaptive
protocols [80, 81], and an optimal oracle. Our evaluation reveals the following:

• For a 64-core NoC, BounceNet is capable of learning traffic patterns and adapting the medium access
protocol at a granularity of 10µs to achieve a median gain of 2.56 × −9.18× in packet latency and
1.3×−17.3× in network throughput over different wireless NoC baselines.

• BounceNet’s throughput and latency gains translate into an average of 10%−47% speedup in execution
time over wireless NoC baselines which goes up to 1.37×−3.74× for certain applications. The results
also show a 3.4× speedup on average over a purely wired NoC.

• BounceNet’s gains in execution time are close to the upper bound that can be achieved by a wireless
network with infinite capacity and zero latency.

• As the number of cores scale up to 1024 cores, BounceNet’s performance gain increases to 3 orders of
magnitude lower latency and up to 64× higher throughput over baseline protocols.

• BounceNet is robust to lossy channels, and sees minimal degradation in performance with upto 10%
packet losses. We also test BounceNet’s sensitivity to noise in the observed state and show almost no
loss in performance.

Contributions: We make the following contributions:
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• We introduce the first MAC protocol that can learn and adapt to the highly dynamic traffic at very
fine granularity in a wireless NoC processor. The protocol also accounts for non-trivial dependencies
between packet delivery and computation speedups by optimizing for execution time.

• We design a lightweight deep reinforcement learning framework that introduces little overhead to the
multi-core processor and can operate within tight timing, power and area constraints of chip multicore
processors.

• We extensively evaluate our design and demonstrate significant improvement in network performance
and reduction in the overall execution time on the multicore processor.
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Figure 3.1: Illustrative Examples: (a) Traffic Pattern on a 16-core multiprocessor for different
applications. The X-axis shows clock cycles, and the Y-axis corresponds to each of the 16 cores. The
figures depict the scatter plots representing the packet injections into the buffer of each core. The
different colors for packet injections are used for different cores. (b) BounceNet can quickly adapt to
fast changing traffic thus ensuring efficient network utilization throughout the application’s execution.
In the generated protocol, high probability values (closer to yellow in colormap) represent a CSMA-like
protocol whereas low probability values (closer to blue) represent a TDMA-like protocol. (c)
BounceNet can learn and optimize for the intricate dependencies between the executions on different
cores, and in turn optimize directly for end-to-end execution.

3.2 Motivation and Insights

The wireless traffic patterns on a multicore processor have been shown to vary significantly across differ-
ent applications. Even for a single application, the traffic can vary across different cores (spatially) and
across different time intervals (temporally) [81, 90, 115, 100, 101].

Fig. 3.1(a) shows examples of traffic traces captured from a cycle-level architectural simulator for
three different common benchmark applications on a 16-core multiprocessor. The x-axis shows the time
in clock cycles, the y-axis shows the core ID, and the scatter points show the injection of traffic at
each core. For clarity, we only show a portion of the execution spanning ten thousand cycles. Some
applications, like PageRank shown in Fig. 3.1(a)(i), have almost constant traffic on all cores and can
benefit from a contention-free protocol like TDMA. Other applications, like computing the Shortest Path

in a Graph shown in Fig. 3.1(a)(ii), have very bursty traffic and can benefit from a contention-based
protocol like CSMA. Moreover, in most applications, the traffic pattern changes within the execution
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of the application. For example, Fig. 3.1(a)(iii)-(iv) show the traffic patterns at different times in the
execution of BodyTrack, a computer vision application for tracking body pose. In the first time interval,
since there is steady injection of packets into the network on the 10 active cores, a contention-free scheme
will be optimal to minimize collisions, whereas in the second time interval, a CSMA-like based scheme
for all 16 cores will perform better due to the sparse traffic injection. Next, we present concrete examples
showcasing the range of protocols that BounceNet can generate for different traffic patterns.

A. Adapting to Dynamic Traffic Patterns: To further appreciate the spatial and temporal changes
across the execution of an entire application, we show the traffic trace for the application CC (Connected
Components of a graph), running on a 64-core processor in Fig. 3.1(b)(i). Here we can see that the traffic
varies significantly across the application’s execution.

Fig. 3.1(b)(ii) presents the protocol generated by BounceNet. At a very high level, BounceNet’s pro-
tocol is simple. Each core gets its own dedicated time slot where it can transmit with probability 1 if
it has traffic. Additionally, core i can also transmit in time slots assigned to the other cores with some
contention probability pi. By setting these probability values pi for each core, BounceNet dictates the
MAC protocol on the wireless NoC. The figure shows these contention probabilities pi’s for each core
generated by BounceNet. We present BounceNet’s protocol design in more detail in Section 3.4.3.

From Fig. 3.1(b)(ii), we can see that BounceNet is able to adapt quickly to the changes in the traffic
patterns, becoming more TDMA-like when the traffic is dense (contention probabilities pi’s are 0 and
everyone transmits only in their assigned slot), and becoming more CSMA-like with sparse traffic (con-
tention probabilities pi’s are high and cores can start transmitting in other’s assigned time slots). In
the case of CC, we can see that initially the traffic pattern is extremely sparse and structured such that
a simple “Aloha” protocol would suffice. As a result, in the beginning the cores contend for the chan-
nel aggressively under BounceNet’s protocol. However, once the traffic pattern becomes more dense,
BounceNet adapts the protocol to be more TDMA-like, thus ensuring high network utilization. Finally,
once the traffic pattern becomes less dense after 18 ∗ 104 cycles, the cores again start to contend for the
channel with higher probability, thus emulating a CSMA-like protocol. Note that, while BounceNet is
able to quickly detect traffic changes from dense to sparse at time steps 11 and 18 (From Fig. 3.1(b)(ii)),
it does not immediately increase contention probabilities for the cores. Instead the change is gradual,
and this is because of the outstanding packets remaining in the buffers immediately after the phase with
dense traffic injection. As a result, immediately switching the probabilities would lead to large number
of collisions.

The above example demonstrates that BounceNet is able to learn fine-grained highly dynamic MAC
protocols that can quickly adapt to support different kinds of traffic patterns, while accounting for subtle
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characteristics of network operations such as buffer build-ups even though this information is not ex-
plicitly fed into BounceNet’s RL model. While there has been a lot of work on adaptive and optimal
CSMA protocols [116, 117, 118, 119], these works are theoretical and make unrealistic assumptions. In
particular, they optimize for long term throughput and assume that the protocol can reach a steady-state
operation much faster than the variation in traffic patterns, which does not hold for wireless NoCs. As a
result, these protocols perform poorly as we show in section 4.10.

B. Optimizing for Synchronization Primitives: Another challenge in designing efficient protocols
stems from synchronization primitives. These primitives impose intricate dependencies between the
execution of threads on different cores, leading to a non-trivial relationship between the delivery time
of packets on the NoC and the progress of execution on each core. For example, in parallel computing
it is common practice for software developers to use barriers for synchronization. These barriers
are placed throughout the code of a multithreaded application in order to force each thread to stop at a
certain point, blocking its execution until all participating threads catch up. Most standard libraries for
parallel programming use barriers in many of its primitive routines in order to ensure the correctness
of the program, such as OpenMP’s For loop [120], or MPI’s Send/Recv [121]. Therefore, there is
complex but predictable structure in the traffic patterns caused by these synchronization primitives that
can be exploited to improve parallel speedup and scalability of high performance applications. Hand
tuning protocols to account for these dependencies is non-trivial. For example, the cores themselves do
not explicitly know that they are involved in a barrier before they actually reach the barrier and execution
halts. [122, 123]. Past work on designing MAC protocols mainly optimizes for throughput and latency,
and is agnostic to such dependencies.

As a concrete example, consider the multiapplication jobset comprising of three concurrent applica-
tions, namely a 4-core BFS, a 4-core CC and a 8-core Pagerank, running on a 16-core multiprocessor as
shown in Fig. 3.1(c)(i). In the traffic trace, one can observe two sets of barrier packets in the execution
of BFS, denoted by black squares. The other two applications have no barriers in this portion of their
executions. Here, note that core 16 has significantly more packets to transmit before arriving at its barrier,
whereas core 13, 14 and 15 arrive at their barriers sooner. As a result, the execution on cores 13, 14 and
15 is blocked until core 16 clears its barrier, thus rendering the compute resources of these three cores
useless as they idly wait for core 16. Additionally, at the same time core 16 also has to contend for the
channel with traffic from CC, which itself has a lot of ongoing communication. Ideally, the MAC proto-
col in this case should prioritize traffic of the core that is falling behind, so that it arrives to the barrier
and clears it as soon as possible, allowing the blocked cores to proceed execution and thus optimizing
overall execution time. In Fig. 3.1(c)(ii), we can see that BounceNet can learn to account and optimize
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for such dependencies. At the start, BounceNet assigns high contention probabilities to cores 13 to 16 so
that it can clear the barrier point at the earliest, while assigning low contention probabilities to cores 9
to 12. Once the barrier is cleared, BounceNet increases the contention probabilities for the CC cores, so
that it can transmit on the channel while the other applications go through low communication periods,
thereby ensuring high network utilization.

Protocols like CSMA, TDMA and even adaptive protocols cannot optimize for such situations, as they
would treat every packet in the network as equally important, thus sharing the channel equally between
BFS and CC here. This would result in core 16 clearing its barrier much later, thus harming end-to-end
execution time. However, since BounceNet is trained to directly optimize the high-level objective of end-
to-end execution time instead of network metrics like latency, it is able to learn to prioritize the packets
of some cores over others. In this example, with BounceNet’s protocol, core 16 arrives at its barrier 2.4×
faster as compared to CSMA, and 3.75× faster as compared to TDMA. This in turn leads to an overall
improvement in execution time of 43% and 81% over CSMA and TDMA respectively.
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3.3 Background

3.3.1 Wireless Network on Chip

Network-on-Chip (NoC) architectures have played a fundamental role in scaling the number of process-
ing cores on a single chip which led to unprecedented parallelism and speedups in execution time [124,
125, 126, 127]. Prior to NoC, multicore processors used a shared bus architecture which had very poor
scalability. As the core count increases, the power required to drive the bus grows quickly due to the
increase in the capacitance of the bus wires [128]. The bus also starts to suffer from large latency [129].
As a result, shared buses become impractical for designs beyond 16 cores [130].

Unlike a shared bus, wired NoCs use packet-switched communication with every core connected to
a router as shown in Fig. 3.2 [131]. As the packet moves from source to destination, it is buffered,
decoded, processed, encoded, and retransmitted by each router along the multi-hop path. However, as we
scale the number of cores, computation slows down due to the high communication latency and overhead
of the network [132, 133, 134]. This problem is known as the “Coherency Wall” [135], where the
execution on each core is faster than the NoC’s ability to ensure that the memory caches of the cores are
coherent. Hence, the speedup gained by parallelism and multithreading is outweighed by the network’s
communication cost for keeping the caches coherent [135, 136, 85].

Recent work proposes to augment NoC multicore processors with wireless links for communication
between the cores [76, 77, 78, 79, 80]. Wireless links benefit chip multicore processors in two important
aspects:1

• Lower Latency: Wireless enables every core to reach every other core in just a single hop. In contrast,
in a purely wired NoC, a packet must go through multiple NoC routers, incur queuing, transmission,
and processing delay at every hop which ends up taking multiple execution cycles [82]. Hence, as the
number of cores increase, wireless can deliver packets with significantly lower latency and within the
tight timing requirements of execution on the cores [82].

• Broadcast: Since wireless is a broadcast medium, transmitted packets are directly heard at all other
cores which significantly simplifies the NoC’s ability to ensure the coherency of the memory caches. In
particular, any local changes in the memory cache of a core can instantaneously be replicated at all other
cores through a single packet transmission [81]. In contrast, today’s wired NoCs must send multiple
parallel unicast/multicast transmissions to synchronize the caches, which leads to a large overhead that

1Note that other technologies such as optical links have poor performance [79, 137, 138].
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Figure 3.2: NoC Architecture with Wireless Links

scales poorly as the number of cores increases [83, 84, 85].

Several wireless NoC transceivers and antennas have been built and shown to deliver 10 to 50-Gbps
links while imposing modest overhead (0.4–5.6%) on the area and power consumption of a chip multi-
processor [86, 139, 87, 88, 89]. The wireless transceivers typically operate in the millimeter-wave and
sub-THz spectrum which enables miniaturizing the antennas and avoids antenna coupling. Antennas are
either planar integrated dipoles or vertical monopoles drilled through the silicon die [140, 141]. The wire-
less signals propagate through the enclosed chip packaging and attenuate by few tens of dBs [142, 140].
On-Off Keying (OOK) is the choice of modulation since it requires significantly lower powerand achieves
a very low Bit Error Rate (BER) for on-chip wireless links [89, 143, 139]. We adopt the collision and
packet loss handling protocols from past work [81, 82].

3.3.2 Deep Reinforcement Learning

We provide a brief primer on RL based on [144]. In RL, an agent interacts with an environment, and
learns to generate a policy directly from experience as shown in Fig. 3.3. In our case, BounceNet is the
agent, the multiprocessor is the environment, and the generated MAC protocol is the policy.

•Agent & Environment: The agent starts with no apriori knowledge. Then, at each time step t, the agent
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Figure 3.3: Deep Reinforcement Learning Framework.

observes the state st of the environment, and takes an action at. Following the action, the environment
transitions to state st+1, and the agent receives a reward rt. The state transitions and the rewards are
stochastic and assumed to have the Markov property. During training, the agent gains experience by
taking actions and observing the state transitions and rewards in response to these actions. The actions
the agent takes aim to maximize an objection function known as the expected cumulative discounted
reward: E

[∑∞
t=0 γ

trt
]
, where γ ∈ (0, 1] is the discount factor for future rewards.

• Policy: The action at picked by the agent is dictated by a policy π, where π represents a probability
distribution over the space of actions and states : π(s , a)→ [0,1]. That is, π(s, a) is the probability that
action a is taken in state s by the agent following policy π. For most large-scale practical problems, the
policy π is modeled with a Deep Neural Network (DNN), as they are very powerful function approxima-
tors. The DNN is parameterized by θ, which are the learnable parameters of the model, and we represent
the policy as πθ(s, a). θ is also referred to as the policy parameters.

• Training: The objective of training in RL is to learn the policy parameters θ so as to maximize the
expected cumulative reward received from the environment. Towards this end, we focus on a class of
RL algorithms called policy gradient algorithms, where the learning takes place by performing gradi-

ent descent on the policy parameters. In practice, the training methodology follows the Monte Carlo

method where the agent samples multiple trajectories obtained by following the policy πθ, and uses the
empirically computed cumulative discounted reward as an unbiased estimator of the expected value. This
empirical value is then used to update the policy parameters via the gradient descent step. The result is
a known algorithm: REINFORCE which we use in this chapter. For more details, we refer the reader
to [144].
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Figure 3.4: An Overview of BounceNet’s Protocol

3.4 BounceNet Design

3.4.1 Overview

BounceNet consists of two components. (1) A standard NoC multicore processor with N cores where
each core has been augmented with a wireless transceiver as shown in Fig. 3.2. (2) A BounceNet agent
that periodically generates new medium access policies based on the traffic patterns it sees on the wireless
NoC. The agent is housed in a simple neural accelerator that resides on the same chip with a small area
and power overhead (See Appendix C for hardware details).

Fig. 3.4 shows the working of BounceNet. The BounceNet agent is equipped with a wireless transceiver
through which it can listen on the channel, and also send protocol updates to the cores. The BounceNet
agent listens on the wireless channel for a period called the “Listening Interval” where it collects traffic
data about core transmissions, collisions, and idle slots. It, then, feeds this data to a trained RL neural
network that implicitly predicts the future traffic patterns and generates a new policy to be used as the
medium access protocol during the next Listening Interval. BounceNet updates the policies at the cores
by sending an update message with the policy parameters. Each Listening Interval and Update Interval

constitute a single step in the RL framework.
One point to note is that, although the cores share a common clock for their normal CPU operation2,

it is infeasible to coordinate medium access for each clock cycle through a shared centralized scheduler,
since the exchange of control messages between the cores and the scheduler would itself incur latencies
of multiple clock cycles. [101]

2Unlike a distributed system of machines, a shared clock for a manycore system is feasible since all cores are housed on
the same silicon die.
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3.4.2 Design Challenges

The above design is governed by several strict timing and resource constraints of wireless NoC. In partic-
ular, it must address the below challenges while at the same time ensuring BounceNet’s ability to generate
versatile and expressive medium access protocols to service the dynamic and fast-varying traffic patterns.

C1. Centralized Agent: Ideally, we would have wanted BounceNet to adopt a distributed design where
every core is equipped with its own BounceNet agent that dictates its own MAC protocol. However,
introducing a neural accelerator at every core would be prohibitively expensive in terms of area and
power. Hence, BounceNet is constrained to a centralized approach with a single agent.

C2. Cores to Agent Communication Overhead: To obtain an accurate view of traffic patterns, BounceNet
must obtain the packet injection rate and buffer occupancy across time at each core in the network.
However, relaying this information from every core back to the centralized agent would result in huge
communication overhead. Instead, BounceNet leverages the broadcast nature of wireless networks to
collect traffic patterns simply by listening for transmissions on the wireless medium. While the collected
information is less expressive than the history of packet injection and buffer occupancy at each core,
it retains sufficient information to allow BounceNet to predict traffic patterns while at the same time
completely eliminating communication overhead from the cores to the centralized agent.

C3. Agent to Cores Communication Overhead: One option is to have the agent tell each core whether
to transmit or not at every CPU clock cycle. However, this would require running inference and relaying
information to each core at every clock cycle which would lead to prohibitively large communication
overhead. To address this, BounceNet amortizes the communication overhead (Update Interval) from
the agent to the cores by performing inference once every Listening Interval spanning thousands of clock
cycles. In our implementation, we use an interval of L =10,000 clock cycles (10µs) which is large
enough to reduce the overhead to less than 6% and small enough to ensure that the traffic patterns remain
stable and can be learned by the RL agent.

C4. Complexity of the MAC Policy: BounceNet generates a policy that dictates the MAC protocol of each
core for the following Listening Interval. Ideally, BounceNet would generate a deterministic transmission
schedule for every core to follow. Such a design is extremely expressive since it could allow BounceNet
to generate any possible schedule. However, such a design would require the RL deep neural network to
output an action space with N × L dimensions where N is the number of cores and L is the number of
clock cycles (e.g. 10,000). Such a neural network would be unsuitable for a resource-constraint setting
like NoC. To address this, we carefully design a parameterized MAC policy that can support a flexible
range of medium access protocols while ensuring that the neural network only needs to output a few
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parameters to dictate the desired policy.

C5. Reward engineering: The reward during training needs to be designed so as to guide BounceNet
towards the high-level objective. While most past work on learning link-layer and network-layer proto-
cols only use network-level metrics such as throughput and latency for the reward signal, in our case we
need to choose domain specific rewards so as to optimize for the end goal, which is application execution
speedup on the multicore.

C6. Low Footprint Neural Network: BounceNet’s neural network must adhere to strict timing, power
and area constraints of a chip multiprocessor. Thus, our design cannot simply adapt a known RL model
as it would require large amounts of memory and computational resources, and would also suffer high
inference latencies (tens of milliseconds) [111, 112]. To address this, we design BounceNet’s RL frame-
work such that the state space (input to the neural network) and action space (output) scale linearly with
the number of cores. Our design ensures that BounceNet is expressive enough while at the same time can
operate under NoC’s resource constraints.

3.4.3 BounceNet’s MAC Policy

As discussed above, the MAC policy that the agent dictates to the cores should have the following prop-
erties:

1. The policy should span a wide range of protocols, all the way from TDMA to CSMA.

2. It should be possible to describe the policy with few parameters to reduce the communication overhead
and the output of the neural network.

3. It should allow for a simple neural network architecture to learn a mapping from observed traffic
patterns to the most efficient MAC protocol.

In order to achieve these properties, we adopt a two-layer protocol design. The first layer consists of
a deterministic underlying TDMA schedule, where each core is assigned a unique time slot for transmis-
sion in a round-robin fashion. For example, for time slots j ∈ [1, · · · , L], core i is assigned the slots
{j | j mod N = i} where N is the number of cores. The second layer consists of a probabilistic
transmission schedule like CSMA, where each core is assigned a contention probability. Specifically,
during its assigned time slot, core i transmits on the channel with probability 1 if it has an outstanding
packet in its buffer. During other cores’ assigned time slots, core i can transmit with probability pi. In
the event of a collision, exponential backoff is implemented by halving pi of the colliding cores similar
to CSMA. On the other hand, if a transmission is successful, pi is reset to its initial value.
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Algorithm 3 BounceNet Protocol
L← Number of Clock Cycles in Listening Interval
[a1,t, a2,t, . . . , aN,t]← Action space generated by RL agent at time stept
[p1, p2, . . . , pN ]← [a1,t, a2,t, . . . , aN,t]

At core i:
for j ∈ {1, · · · , L} do

Bufferi(j)← Outstanding packet in the buffer for core i
if Bufferi(j) ̸= ∅ then

if j mod N = i then ▷ TDMA Slot Assigned to Core i
Transmit with probability 1

else
Transmit with probability pi

if Transmission from Core i collides then
pi = pi/2

else
pi = ai,t

To generate this policy for an NoC with N cores, the RL neural network needs to output an action
space that can be defined as at = [a1,t, a2,t, . . . , aN,t] where ai,t ∈ [0, 1] represents the initial contention
probability of core i during “Listening Interval” t (i.e., time step t in the RL framework). The contention
probability of core i is then initialized as pi = ai,t. Different choices of at result in different protocols
on the multicore. For instance, setting ai,t = 0 for all i results in a simple TDMA protocol since every
core only transmits on the channel during its assigned slot. On the other hand, ai,t = c > 0 for all i
mimics a CSMA-like protocol with varying degrees of aggressiveness on the channel. The pseudo code
for BounceNet’s protocol is presented in Alg. 3.

The above formulation satisfies our design objectives. First, it enables BounceNet to gracefully shift
between a pure TDMA and a CSMA scheme, while supporting all intermediate protocols. The design
also gives the flexibility to control each core individually, so that the BounceNet can potentially increase
contention probabilities for cores that observe high traffic intensity. Second, since the MAC protocol
at core i is characterized by only one number (the contention probability ai,t), there is very small com-
munication overhead during the Update Interval, where the BounceNet agent has to transmit a single
broadcast packet with N numbers. Each core, receives the packet and extracts it own contention prob-
ability. Finally, the design keeps the action space constrained and linear in the number of cores, which
allows for a simple neural network that can be easily trained and is more likely to converge.
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3.4.4 RL Formulation and Training

Given the above design, we now formalize the state space, reward, policy and training of BounceNet’s
RL framework.

• State Space Design: The BounceNet agent takes state information st as input and generates a MAC
policy characterized by the action space at described above. The state information is generated purely
by listening to ongoing transmissions on the channel. As described earlier, this allows us to eliminate
all communication overhead from the cores to the RL agent. However, it only provides information
about the activity on the channel rather than the traffic injection into the network. Moreover, in the event
of a collision, BounceNet cannot know which cores attempted to transmit. Despite these limitations,
BounceNet’s state space retains enough information to infer traffic patterns. In particular, during each
CPU cycle, BounceNet will either detect an idle channel, a collision, or a successful transmission from
some core i. We define our state at time step t, st, as an (N +1)×1 vector that keeps track of the number
of successful transmissions from each core and the number of collisions observed during the cycles in
the RL time step (Listening Interval). Specifically, the ith element of st counts the number of successful
packet transmissions by core i, and the N + 1th element counts the number of collisions. The number
of idle slots is implicitly encoded in the state since it is equal to L −

∑N+1
i=1 si,t where L is the number

of cycles in a Listening Interval. The state st is then used by the BounceNet agent to generate the MAC
protocol policy for the next time step.

• Reward Engineering: The reward signal is designed to guide the agent towards policies that opti-
mize for the desired objective. Most past work that uses RL for learning networking protocols employs
network-level metrics like throughput or latency as the reward signal. However, in our case, we need the
reward signal to directly represent our end goal, which is to optimize for speedups in application execu-
tion time on the multicore. While network-level metrics like throughput are correlated to the execution
time, they do not always capture the intricate dependencies between the execution on threads and packet
delivery on the network. In Section 4.10, we see that there are instances where a protocol performs
significantly worse in terms of average network throughput, but still has better end-to-end application
execution time.

As a result, we design our reward signal to reflect our high level objective of minimizing application
execution time. Specifically, for each time step t, the reward is set to −Lt where Lt represents the
number of clock cycles where the application was executing. Hence, for all but the last time step, the
reward signal rt is set to −L. For the last time step, reward is set to −k, where k is the number of clock
cycles at which the application terminates execution. The intuition behind this choice for the reward
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signal is as follows. Recall that the objective of reinforcement learning is to maximize the cumulative
reward, i.e. −

∑
t Lt. This is equivalent to minimizing

∑
t Lt, which ultimately means the application

utilizing fewer CPU clock cycles for execution. While this choice of reward signal does correlate with
improving network-level metrics such as packet latency and throughput, it is not the central objective
and thus it is possible that sometimes the BounceNet agent compromises on network performance for
improvement in execution time. Note that in our formulation, we set the discount factor γ = 1.

• Policy: We represent our policy π as a deep neural network (also called policy network) which takes
as input the state st, and maps it to at in the action space. Note that in our problem, the action space
is continuous. In such cases, it is common to discretize the continuous action space a ∈ [0, 1]N similar
to [145], and convert the problem into a classification problem where the agent now chooses which
combination of ai’s to pick. However, an obvious issue with this approach is the curse of dimensionality.
Even with 2 quantization levels for each ai, the total number of discretized actions in a ∈ [0, 1]N becomes
2N . Thus the neural network architecture needs to have an output dimension of 2N which becomes
infeasible for our resource constrained environment.

Therefore, we avoid discretizing the action space and, instead, model the actions as following a Gaus-
sian distribution with mean µ and variance σ. The deep learning model is now trained to output the
parameters of this Gaussian distribution, as described in [144]. The BounceNet agent picks the action for
the next time step simply by sampling from the distribution N (µ, σ). In BounceNet, the policy network
outputs N parameters µi corresponding to N distributions, one for each core i. The variance σ is set
to 1 at the start of training to encourage exploration, and annealed down to 0.05 as BounceNet’s policy
improves. Finally, during inference, the variance σ is set to 0.05, the action ai,t for core i is sampled from
the corresponding distribution N (µi, σ), and clipped to ensure that ai,t ∈ [0, 1].

• Training Algorithm: We train our policy network end-to-end in an episodic setting. In each episode,
an instance of an application is executed on the multicore, and the wireless network on chip follows
the MAC protocol as dictated by the BounceNet’s policy network. The episode terminates when the
application completes execution. In order to learn a policy that generalizes well, we train the network for
multiple episodes with each episode observing a different application trace. For every episode, we run M
separate Monte Carlo simulations to explore the probabilistic space of possible actions using the current
policy, and use the resulting data to improve the policy for all applications. Specifically, we record the
state, action, and reward information for all time steps of each episode. We then use this data to train
our policy using the popular REINFORCE algorithm along with a baseline subtraction step, as described
in [146].
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3.4.5 Neural Network Architecture

Our network is composed of three fully connected layers with 128, 128 and 64 neurons respectively. The
first two layers are followed by ReLU activation units, whereas the final layer is followed by a sigmoid
unit to output the probability values ai’s between 0 and 1. During training, the weights use 16 bit floating
points. Once trained, the learned weights are quantized to 8 bit fixed points for the inference stage. This
is standard for run-time optimization in deep learning [147] and does not adversely affect performance.

The proposed fully connected network architecture here is simple and ties in very well with our de-
sign objectives. Recall that BounceNet performs one inference step every 10,000 CPU clock cycles,
and we require the inference step to add little overhead. The architecture here is composed of 32,000
learnable parameters, and at 8-bit quantization, it can be stored in a 32 KB on-chip SRAM cache to
ensure fast memory accesses. Since inference latencies in most neural network architectures tend to be
memory bound (including Fully connected and CNN architectures) [148, 147], improving memory ac-
cess latencies plays a big role in speeding up overall inference time. Further, the simple structure of
a fully connected network allows for straightforward memory access patterns, since the inference step
is a straightforward computation amounting to consecutive matrix multiplications. In Appendix C we
provide energy-delay characterization of this architecture.

One point to note is that BounceNet’s deep RL agent is trained offline, and does not undergo any
training during run-time since training is resource intensive. However, retraining can be triggered pe-
riodically depending on performance requirements, and this retraining will be performed offline. The
updated model parameters can then be migrated to the neural hardware accelerator by simply rewriting
the SRAM memory blocks on the accelerator corresponding to the neural network’s model parameters.
This update can happen through the multicore’s wireless NoC communication channel and will not add
much overhead, since our model is restricted to just 32,000 parameters, each of 8 bits.
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Name Description
BFS [149] Breadth-first search
Bodytrack [150] Tracking a body-pose through images
Canneal [150] Compute optimal routing for gates on a chip
CC [149] Compute connected components of a graph
Pagerank [149] Compute pagerank for nodes in a graph
SSSP [149] Single source shortest path
Volrend [151] Rendering of 3D objects
StreamCluster [150] Cluster streams of points
Community [149] Compute modularity of a graph

Table 3.1: Summary of Applications

3.5 Implementation

Evaluation Environment: We evaluate BounceNet on a cycle-level execution-driven architectural sim-
ulator, Multi2sim [113]. Multi2sim is a popular end-to-end heterogenous system simulator tool used in
the architecture community to test and validate new hardware designs with standard benchmarks. We
evaluate BounceNet for multicores with core count n = 64 at 22nm technology running at 1GHz. We
use the same architecture parameters as [81]. We augment Multi2sim with an on-chip wireless network
that accurately models transmissions, collision handling and packet losses.

While BounceNet could be potentially trained directly using multi2sim, it is extremely slow and
would result in prohibitively large training times. Therefore, for BounceNet’s training phase, we use
a light-weight custom-built Wireless Network-on-Chip simulator along with traffic traces captured from
Multi2sim. Our custom simulator models the data dependencies and synchronization primitives (such as
locks and barriers) in the applications, so as to faithfully mimic the behavior of multi-threaded applica-
tions.

In order to evaluate BounceNet’s generalizability and effectiveness for a broad use case, we test
BounceNet on 9 different applications chosen from diverse domains such as graph analytics, vision,
and numerical simulations (Summary in Table 3.1). Additionally, we also test with multi-application
jobsets where different groups of cores are executing different multithreaded applications. While train-
ing is performed using our custom simulator, we evaluate BounceNet using Multi2sim. We integrate
Multi2sim with BounceNet’s trained RL agent, and our evaluations account for the RL agent’s DNN
inference latency and communication latency between the multicore and RL agent.

Training and Evaluation Details: For each application, we collect 500 different traces, each generated
with different inputs to the applications in order to capture the variations between different runs. We
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evaluate BounceNet using k-fold cross validation, where we train the model on 8 applications and test
performance on the ninth application. Thus, we ensure that the BounceNet agent is never explicitly
trained on the application it is being evaluated on, and our results show that BounceNet can generalize
well to different applications. We train BounceNet for a total of 4000 episodes, and for each episode
we run M = 16 Monte Carlo simulations in parallel. The policy network is trained using ADAM
optimizer [152] with a learning rate of 0.001.
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3.6 Evaluation Results

3.6.1 Baselines

We compare with the following baselines:

(1) CSMA with Exponential Backoff: CSMA/CA protocol from 802.11 networks, with backoff win-
dow ranging from 1 to 1024. [82, 97] use CSMA MAC in the context of WNoCs.

(2) TDMA: Cores are allocated fixed slots for transmission in round-robin fashion. [136, 153] evaluate
TDMA for WNoCs.

(3) Switch-thresh: [81, 80] propose a protocol that switches between a static CSMA and a static TDMA
protocol based on per-core preset thresholds for channel activity and buffer occupancy. The optimal
threshold values vary across applications and we choose values that are best in the average case.

(4) Optimal CSMA Algorithm: There is a large body of work that designs throughput optimal CSMA
algorithms. However, most of these works are theoretical, and make simplifying assumptions like ig-
noring collisions or static traffic arrival rates, due to which they perform significantly worse than even
regular CSMA protocols in practice. Among the optimal CSMA algorithms we tested, we found queue-
based algorithms to perform best. We implement an extension of the popular Q-CSMA algorithm [114],
where each node uses its buffer queue buildup to infer its transmission aggressiveness on the channel.
While this algorithm is not truly distributed in nature, we ignore the global communication overheads in
evaluations to favor the baseline performance.

(5) Wired Baseline: We also compare performance against a purely wired baseline, where all cache
coherency traffic is serviced through the wired network-on-chip.

(6) Infinite Capacity Channel: We also compare BounceNet’s performance against an oracle with infi-
nite channel capacity where the wireless medium can support multiple concurrent transmissions without
suffering collisions, and every packet can be transmitted immediately without any channel contention
delays. This baseline gives us an upper bound on how much improvement in end-to-end execution time
is possible from improving the wireless NoC performance.
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Figure 3.5: Gains in Wireless Network Throughput. (y axis in logscale)

3.6.2 Quantitative Results

We first evaluate BounceNet’s performance against baselines on single application executions, followed
by evaluations on the more realistic scenarios where multiple applications are running on the multicore.
We also test BounceNet’s performance under lossy network conditions, and conclude by presenting scal-
ing results where we demonstrate that BounceNet’s gains increase as the multicore scales to thousands
of cores.

A. Single Application Wireless Network Performance:
We begin by evaluating the wireless network performance against baselines along three metrics – (i)
Wireless network throughput, (ii) Packet latency on the wireless network, and (iii) Number of collisions
on the channel. We note that while BounceNet is not explicitly trained to optimize for network metrics,
their performance is correlated to faster execution times on the NoC.

(i) Network Throughput: In Fig. 3.5, we plot the gains in average network throughput achieved by
BounceNet against the baselines. Compared to CSMA and TDMA, BounceNet achieves a mean im-
provement of 1.8× and 9.63× respectively across the benchmarks, and a maximum improvement of
3.3× and 32.1× respectively. TDMA has poor performance for average network throughput since cores
have to wait for their turn to transmit even when the traffic is sparse, which leads to underutilization of
channel.

Compared to Switch-thresh and Q-CSMA, BounceNet achieves a mean improvement of 1.2× and
1.33×, and a maximum improvement of 1.7× and 1.9× respectively. While these protocols are im-
prove over CSMA and TDMA, they still cannot react and adapt quickly enough to accommodate the fast
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Figure 3.6: CDF of packet latency

changing traffic patterns on the multicore.

(ii) Packet Latency: In Fig. 3.6, we plot the CDF of packet latency due to queuing in the Wireless
Network-on-Chip across all applications. It is interesting to note that while at the tail TDMA performs
better than CSMA, in the median case TDMA performs significantly worse than CSMA. This is because
the high packet latencies at the tail are due to dense traffic in the network which TDMA is better suited
for, whereas at the median where traffic is less dense, TDMA leads to much higher packet latencies.
BounceNet, on the other hand, is able to adapt to all these different scenarios and provides an improve-
ment in packet latency across all baselines. Over CSMA and TDMA, BounceNet improves median
packet latency by 4.11× and 9.18×, and improves 90th percentile latency by 3.89× and 1.92× respec-
tively. Over Switch-thresh and Q-CSMA, the gains respectively are 4.66× and 2.56× at the median, and
1.47× and 2.13× at 90th percentile.

(iii) Collisions on Wireless Channel: In Table 4.1 we show % of collisions on the wireless channel across
different benchmarks. We omit TDMA here, since TDMA by design does not suffer from collisions. As
observed, BounceNet has significantly fewer collisions than the CSMA algorithms. Switch-thresh is the
next best performing protocol, but BounceNet in most cases still has fewer collisions.

B. Single Application End-to-End Execution Speedup:

(i) Speedups over Purely Wired Network-on-Chip: In Table 3.3, we show application speed-ups achieved
by BounceNet and the Infinite Capacity baseline respectively, over the purely wired NoC. BounceNet can
speed up benchmarks by up to 9.7× for StreamCluster and 6.53× for BFS, and on average provides a
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Apps CSMA Switch-thresh Q-CSMA BounceNet
CC 75.30% 55.58% 76.24% 8.72%
BFS 50.42% 28.28% 49.57% 3.81%
Pagernk 77.36% 11.26% 77.79% 2.19%
SSSP 11.08% 9.48% 9.44% 8.88%
Volrend 44.17% 7.93% 46.11% 2.49%
Strmclstr 62.57% 19.21% 62.69% 31.24%
Canneal 2.55% 2.87% 2.09% 2.04%
Bdytrck 30.5% 29.06% 29.8% 28.87%
Cmmnty 46.76% 32.02% 49.24% 5.8%

Table 3.2: % of Collisions
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Figure 3.7: Execution Time Results (y axis in logscale)

speedup of 3.42× across benchmarks. Additionally, we see that BounceNet gets very close to the upper
bound of the speedup value, achieving up to 99.5% of the maximum speedup possible in the case of BFS,
and 98% of the maximum speedup possible on average. This result demonstrates that BounceNet is able
to fully exploit the potential offered by the wireless NoC.

(ii) Speedups over Baselines: Fig. 3.7 shows execution time gains of BounceNet over the baselines
on the wireless NoC. As can be observed, there is no one baseline protocol that performs well across
all applications. While in applications like Pagerank, TDMA performs the best, in other applications
such as BFS it is significantly worse. BounceNet, on the other hand, performs well across all bench-
marks. In Table 3.4, we see that BounceNet achieves a maximum of 69.18% speedup over CSMA for
CC and 274.56% speedup over TDMA for Community, and compared to Switch-thresh and Q-CSMA,
BounceNet offers speedups up to 37.09%-55.94%.
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Apps BounceNet Inf. Cap. baseline % Achieved
CC 1.96x 2.06x 95%
BFS 6.53x 6.56x 99.5%
Pagerank 1.07x 1.11x 96.4%
SSSP 2.24x 2.25x 99.5%
Volrend 1.32x 1.33x 99.2%
Strmclstr 9.70x 9.77x 99.28%
Canneal 1.14x 1.15x 99.13%
Bodytrack 1.37x 1.38x 99.3%
Community 3.77x 3.82x 98.6%

Table 3.3: Speedups over Purely Wired Network-on-Chip.
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Figure 3.8: Scaling Trends in BounceNet’s Gains for (a) Wireless Network Throughput (b) Median
Packet Latency and (c) 90th Percentile Packet Latency

C. Multi-Application Jobs: In Table. 3.5, we present execution time speedup results for multiapplication
runs on the multicore. For each run, we randomly choose one application among the 9, and execute it
using either 4, 16 or 32 threads. We choose a sufficient number of applications such that all 64 cores are
utilized, and in total we test on 100 different multiapplication jobsets. Note that the BounceNet agent
was never explicitly trained on such multiapplication traffic traces. From Table. 3.5, we can see that
BounceNet’s gains increase over the baselines compared to single benchmark experiments (Table. 3.4),
and goes as high as 6.15× (515.04%) speedup over TDMA. These higher gains in multiapplication jobsets
can be attributed to the more complex nature of packet dependencies between threads, which BounceNet
can exploit to further speed up execution time as illustrated in Section 3.2.

C. Lossy Networks: To evaluate BounceNet’s robustness to varying channel conditions, we conduct
experiments in lossy network settings. We vary the packet loss rates in the wireless NoC from 0% up
to 10%, and in the event of a loss, the packet is retransmitted. In Fig. 3.9, we compare the average
application speedup achieved over the baselines as the loss rate increases. We observe that BounceNet
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Speedups CSMA TDMA Switch-thresh Q-CSMA
Max 69.18% 274.56% 37.09% 55.94%
Min 1.26% 4.88% 0.63% 1.12%

Mean 18.21% 46.90% 9.73% 11.94%

Table 3.4: Summary of Execution Time Speedups by BounceNet. The per-application speedups are
shown in Fig. 3.7.

Speedups CSMA TDMA Switch-thresh Q-CSMA
Max 93.18% 515.04% 48.16% 26.78%
Min 13.3% 24.72% 4.41% 5.82%

Mean 33.93% 166.32% 19.97% 17.48%

Table 3.5: Summary of Execution Time Speedups by BounceNet for Multiapplication runs

is able to generalize very well to varying channel conditions and loss rates, and can maintain the same
gains over the baselines throughout. Note that BounceNet was never trained explicitly for lossy network
settings. Despite this, it is able to generalize since it can implicitly infer the channel conditions from the
channel activity like increased number of collisions.

We also test BounceNet’s sensitivity to errors in the observed state caused by packet losses at the
BounceNet agent’s transceiver during the ”Listening Interval”. We conduct experiments where we vary
the packet loss rate from 0% to 2% in order to introduce noise in the observed state. We find that even
under 2% loss rate, BounceNet’s suffers a median performance degradation of only 0.85% across all
benchmarks compared to its performance with perfect state information.

D. Scaling Trends: We believe that a learning based approach like BounceNet can greatly benefit the
wireless NoC performance as the number of cores scale to thousands of cores. To demonstrate this we
show the gains that BounceNet achieves over baseline protocols for different metrics as the cores vary
from 4 to 1024 in Fig. 3.8. Since multi2sim and other architectural simulators cannot scale beyond a
hundred cores, we evaluate these results in our custom simulator by training a separate BounceNet model
for each core count. From Fig. 3.8, we can see that BounceNet’s gains over the baselines scale favorably
with the number of cores. This is because BounceNet is able to generate fine-grained MAC protocols by
controlling the actions of each core individually, and thus can generate highly optimized protocols that
improve substantially upon the baselines at high core counts.
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Figure 3.9: Effect of Packet losses on BounceNet’s application speedup performance compared to
Baselines.
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3.7 Related Work

A. Wireless Network-on-Chip Protocols: The majority of past networking research on wireless NoC
does not leverage the broadcast nature of wireless to enable instantaneous cache synchronization and
instead focuses on using wireless only between far apart cores to reduce the latency. These comple-
mentary works focus on problems related to optimizing network topology [92, 154, 155], packet rout-
ing [156, 93, 157], flow control [158, 159] and improving the reliability of the PHY layer for far apart
cores [160, 140, 142]. However, such designs have limited gains over wired NoCs [90]. More recent
work in architecture research exploits the broadcast nature of wireless to boost the performance of wire-
less enable NoCs [153, 97, 81, 80]. These systems either use contention-free mechanisms such as token
passing [153] or contention-based mechanisms such as carrier sense with exponential backoff [161, 97].
The closest to our work are [81, 80] which attempt to adapt to traffic patterns by switching between a
CSMA or a token passing protocol based on a preset threshold. However, hand tuning the threshold val-
ues is a challenging task and does not provide the flexibility and expressibility of BounceNet to support
complex and highly variable traffic patterns.
B. Network-on-Chip Technologies: Past work on wired NoCs proposes the use of deep learning
and RL to learn efficient packet routing protocols [162], learn memory access patterns to reduce cache
misses [163], and reduce static and dynamic power consumption on an NoC [164]. To the best of our
knowledge, ours is the first work that attempts to exploit deep reinforcement learning techniques to gen-
erate medium access protocols for Wireless NoCs.
C. Deep Learning in Wireless Networks: Deep RL has recently been applied in wireless networks
to optimize duty cycling in sensor networks [165], resource allocation in cellular networks [166, 167],
dynamic spectrum access [168, 169], rate adaptation in CSMA networks [170],and control policies at the
PHY layer [145]. [171] provides an extensive survey of deep learning in wireless networks. The closest to
our work are [105, 172, 173, 174] which use reinforcement learning to modify the backoff parameters in
CSMA or decide whether to transmit or not for every packet at every time step. However, such designs are
not applicable in the context of wireless NoCs owing to the unique set of constraints imposed by the NoC,
such as the much smaller time-scale of operation rendering neural network inference per transmission
slot infeasible, the limited SRAM memory to store model parameters and the enormous action space to
explore. These constraints require significant redesign to BounceNet’s deep RL framework where it has
to now generate high-level, versatile and adaptable protocols that can be deployed for thousands of clock
cycles, and generating such protocols cannot be reduced to a simple classification task per transmission-
slot (e.g. transmit or not).
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3.8 Limitations and Discussion

Some points are worth noting: First, given the enormous costs and engineering efforts involved in pro-
totyping a full chip with integrated processors, memory, and NoC, it is outside the scope of this work to
implement BounceNet in hardware. As a result, we evaluate BounceNet on a full-system cycle-accurate
architectural simulator, as is the norm among computer architecture researchers. These full-system sim-
ulators exhaustively model all components of a CPU and also ensure that all timing dependencies are
simulated accurately [113]. As a result, the trends and insights obtained from such architectural simula-
tions often carry over to full fledged prototypes. Moreover, the wireless channel in this WNoC application
domain is in fact very stable as opposed to WLAN channels which are extremely dynamic. This is be-
cause the multicore is isolated in a chip package, and the wireless channel can be precisely measured and
characterized, thus allowing compensation for multipath fading and other artifacts. As a result, the wire-
less BER in these environments can be as low as 10−16 [91], making such a simulation based evaluation
representative.

Second, in parallel programming for multicore processors, programmers today try hard to avoid broad-
cast transmissions as the overhead of running the cache coherency protocol is high. With wireless NoC,
the overhead of broadcast traffic is now limited which opens the door to rewriting applications in a manner
that embraces broadcast, and can in turn benefit even more from an adaptive protocol like BounceNet.

Lastly, in this chapter we focus on the MAC layer since it is considered a roadblock to realize the full
potential of wireless NoCs. However, studying the challenges and opportunities at the other layers such
as PHY remains exciting and promising avenue which we leave for future work.
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Chapter 4

ENABLING IOT SELF-LOCALIZATION USING
AMBIENT 5G SIGNALS

4.1 Introduction

Recent years have witnessed a tremendous growth in the number of connected IoT devices, with surveys
projecting up to 31 billion deployed IoT nodes by 2030 [175]. With such ubiquitous deployment of IoT
nodes, the ability to localize and track these nodes with high accuracy is essential for many applications.
For example, in data-driven agriculture, it can enable real time micro-climate monitoring and livestock
tracking [176]. In smart cities, IoT sensors are deployed throughout the city for tasks such as air quality
monitoring, tracking buses, trains, and cars, and monitoring the structural health of infrastructure [177].
In the era of Industry 4.0, it can also enable wide area inventory tracking and facilitate factory automa-
tion [178].

Today, the most prevalent outdoors localization technology is GPS which is mainly used in cars and
mobile phones. However, off-the-self GPS chips can consume about the same power as the entire IoT
device, thus reducing the battery life to half, in addition to the extra hardware costs [179]. Due to this,
past work has proposed the use of cellular networks or dedicated IoT base stations for localization [180,
181]. These solutions, however, either achieve very low resolution of 100s of meters [180, 182] or
require active participation of the base stations to jointly compute the location or tightly synchronize the
base stations [181, 183, 184]. Realizing such solutions in practice requires the cooperation of cellular
providers to bear the additional cost of modifying the base stations and a back end server to support the
localization feature.

In this chapter, we ask whether an IoT device can accurately localize itself simply by listening to

ambient 5G cellular signals, without any coordination with the 5G base stations? Doing so would allow
us to easily deploy self-localizing IoT nodes is wide areas without the need to modify the cellular base
stations or deploy new base stations for localization.

5G cellular networks present unique opportunities for enabling accurate localization. First, the small
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Figure 4.1: ISLA’s pipeline. (a) wideband OFDM signal and its corresponding CIR. (b) narrowband
OFDM signal and its corresponding lower resolution CIR. (c) ISLA’s spike train MEMS filter that
sparsifies the wideband signal. (d-f) follow the signal journey through ISLA’s pipeline that recovers the
original CIR.

cell architecture in 5G networks will lead to a very high density of 5G base stations, with up to 40 to 50
base stations deployed per square km [185], thereby allowing us to leverage more anchor points in the
network for increased localization accuracy. Second, the 5G standard is designed to support very high
data rates and can have OFDM signals spanning up to 100 MHz in bandwidth in the sub-6 GHz frequency
range, and up to 400 MHz bandwidth in the mmWave frequency range [186]. Such large bandwidth can
be used for accurate localization. To see how, consider the 5G OFDM signal shown in Fig. 4.1(a) where
data bits are encoded in N frequency subcarriers. We can use the preamble which contains known bits
to compute the channel impulse response (CIR) by taking an inverse FFT. The CIR in Fig. 4.1(a) shows
the Time-of-Flight (ToF) of different signal paths. Estimating the ToF from few base stations allows us
to localize the device. The larger the bandwidth of the signal, the higher the resolution. In fact, we can
achieve a resolution of 3 meters for 100 MHz and 0.75 meters for 400 MHz signals.1

Leveraging these opportunities, however, is challenging since power-constrained and low-cost IoT
nodes cannot capture the large bandwidth of the 5G signals. They are equipped with low-power and low-
speed Analog-to-Digital Converters (ADCs) that can only capture a narrow bandwidth. In fact, while
IoT has been one of the cornerstone applications in the design of 5G, it is only supported in narrowband
chunks for low data rate applications [187, 188]. Therefore, while the 5G standard does allocate higher
bandwidth (up to 400 MHz) for mobile broadband and high data rate applications, IoT nodes can capture
only a very small fraction of this bandwidth (∼ 20× smaller [186]). As a result, they significantly
lose out on the ToF resolution that was made possible by the high bandwidth 5G signals as shown in
Fig. 4.1(b). Moreover, it is infeasible to measure the absolute time-of-flight without any coordination or
synchronization with the base stations.

1The resolution is computed as c/B where c is the speed of light and B is the bandwidth of the signal.
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In this chapter, we present ISLA, a system that enables IoT Self-Localization using Ambient 5G
signals. ISLA does not require any coordination with or modifications to the base stations. The key
enabler of ISLA is the use of MEMS (micro-electro-mechanical-system) acoustic resonators. Past work
[189, 190] has demonstrated that we can use such MEMS resonators to design new kinds of RF filters
that look like a spike-train in the frequency domain, as shown in Fig. 4.1(c). To understand how we can
leverage such MEMS spike-train filters, consider the 5G OFDM signal shown in Fig. 4.1(a). Passing
this signal through the filter allows us to keep a few subcarriers of the wideband OFDM symbol while
suppressing all other subcarriers as shown in Fig. 4.1(d). There are two important features of the resulting
signal: (1) Since the remaining subcarriers that are passed by the filter span the entire wideband, we
should, in principle, be able to recover the channel impulse response at the same high resolution of the
original signal. (2) Since the remaining subcarriers create a sparse signal in the frequency domain, it
should be possible to recover these subcarriers by sampling the signal below the Nyquist sampling rate
using the same low-power low-speed ADCs on the IoT nodes.2

However, recovering the channel impulse response from a signal sampled with the low-speed ADCs
is non-trivial. First, sampling the signal below the Nyquist rate leads to aliasing in the frequency domain
as shown in Fig. 4.1(e). Some subcarriers might collide by aliasing on top of each other making it hard
to recover these subcarriers. Past work in sparse recovery addresses this problem by using two co-prime
subsampling rates [191]. Unfortunately, we do not have the flexibility to choose co-prime subsampling
factors. In fact, since the number of OFDM subcarriers in the 5G standard is a power of 2 (e.g. 1024,
2048, 4096), we can only subsample the signal by powers of 2 otherwise the values of the subcarriers will
be corrupted as we prove in section 4.5.3 To address this, we carefully co-design the MEMS hardware
with the recovery algorithm. In particular, we jointly optimize the filter shape (spacing between peaks,
width of each peak, frequency span) with the subsampling rate to minimize the number of colliding
OFDM subcarriers as we describe in detail in section 4.5.

Second, the recovered OFDM subcarriers are not uniformly distributed across the wideband band-
width. This is because non-idealities in the MEMS filter make it hard to design a uniform spike train
like the one shown in Fig. 4.1(c). As a result, we can no longer recover the CIR using standard super-
resolution algorithms like MUSIC with spatial smoothing [192, 193] as they require uniform measure-
ments. Instead, we formulate an inverse optimization problem that accounts for non-idealities and opti-
mizes the CIR in the continuous time domain to achieve super resolution as described in Sec. 4.5.

2Note that the MEMS filter is passive and does not consume any power.
3For example, for a 100 MHz OFDM signal, we can only sample at 50 MS/s (2×), 25 MS/s (4×), 12.5 MS/s (8×), 6.25

MS/s (16×), ...
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Finally, while the above can provide very precise ToF measurements, these ToF estimates are not going
to capture the true time taken by the signal to travel between the base station and the IoT device. This
is because the 5G base stations are not time-synchronized with each other or the IoT device. To localize
the device without any synchronization with the base station, ISLA leverages a second antenna on the
receiver to compute the differential ToF of the propagation paths. While the absolute ToF measurements
are corrupted by synchronization offsets, these offsets are constant across the 2 antennas on the IoT node,
and hence can be eliminated by subtracting the measurements from the 2 antennas. Using this differential
ToF at the IoT receiver, we show in section 4.7 that with measurements from four or more base stations,
the IoT device can localize itself regardless of its orientation. We integrate our approach into a full system
that addresses additional system challenges such as figuring the base station ID and accounting for carrier
frequency offsets.

Evaluation: We implemented and evaluated ISLA indoors for microbenchmarks and outdoors for overall
localization performance. We ran experiments in three outdoor settings:(1) Between campus buildings
(52 m×85 m), (2) a large parking lot (240 m×400 m), and (3) an agricultural farm (480 m×860 m).
We use USRP X310 radios as base stations that can transmit high-bandwidth packets of 100 MHz. Our
custom IoT nodes are equipped with 2 antennas and subsample the 5G signals at 6.25 MS/s which is
16× below the Nyquist rate. We fabricated a MEMS spike-train filter operating at a center frequency of
400 MHz and used it to demonstrate accurate reconstruction of the channel impulse response. However,
due to significant interference at the 400 MHz band outdoors in our city, we ran experiments at 1 GHz
and applied the filter response in digital. Our results reveal that with 5 base stations in range, ISLA can
achieve a median accuracy of 1.58 m on campus, 17.6 m in the parking lot, and 37.8 m in the farm where
the IoT node can be as much as 500 meters away from most base stations. For the parking lot testbed,
the accuracy improves to 9.27 m with 15 base stations and 4.26 m with 25 base stations in range. We
compare ISLA’s localization approach with several baselines [192, 194, 180] and show up to 4−11×
higher localization accuracy. Finally, we show that ISLA achieves a comparable performance to having
a full 100 MHz receiver while using a 16× lower sampling rate.

Contributions: We make the following contributions:
• We present, to the best of our knowledge, the first system that allows IoT nodes to localize themselves

using ambient 5G signals without any coordination with the base stations.
• We demonstrate the ability to reduce the sampling rate by 16× while retaining the benefits of high

bandwidth 5G signals by leveraging recent advances in MEMS RF filters.
• We implement and evaluate ISLA to demonstrate accurate localization in 3 outdoor settings.
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4.2 Related Work

Localization has been extensively studied in cellular, WiFi, and IoT networks. Our work differs from
past research in that it is the first to enable self-localization using ambient 5G signals without requiring
coordination with the base stations.

A. Cellular Based Localization: Several studies [195, 182, 180, 196, 197] have proposed to use nearby
cell tower information and statistics in order to localize a mobile device. These methods, however, have
a median accuracy of around 100 to 500 meters, and are mostly useful for very coarse localization.
To improve localization accuracy, [198, 199] propose to combine WiFi APs with cellular base stations.
Despite their relatively higher accuracy, these methods require fingerprinting the surroundings and as
such require extensive training and do not generalize to new locations. More recent work exploits massive
MIMO and millimeter wave for localization in 5G [200, 31, 201]. However, all of this work requires
coordination with base stations and assumes the devices can capture the entire bandwidth of the 5G
signals which does not work for IoT devices.

B. IoT Based Localization: [179] leverages TV whitespaces to achieve high localization accuracy for
LoRA IoT devices. However, it requires all base stations to be tightly synchronized at the physical layer
(time and phase) in order to measure TDoA (Time Difference of Arrival). Recent work [181] designs
low power backscatter devices that leverage LoRa for localization to achieve high accuracy. However,
the system mainly targets indoor applications where software radios can be deployed as base stations
to sample the I/Q of the signal and localize the IoT node. Moreover, its current system design [181]
supports only a single node. The authors of [202] propose an outdoors localization technique for SigFox
IoT devices based on fingerprinting. However, as mentioned earlier, fingerprinting requires constant
training and cannot scale to new environments. Finally, there is a lot of work on using UWB or RFID
nodes for localization [203, 204, 205]. However, these works focus on indoors and short range as the
range of UWB and RFIDs is limited to 10-30 meters [206, 207].

C. IoT Self-Localization: LivingIoT [208] enables self-localization on IoT nodes. It designs a minia-
turized device that can be carried by a bumblebee and uses backscatter for communication. The node
localizes itself by extracting the angle to the Access Point from the amplitude measurements using an
envelop detector. The technique, however, requires the APs to switch the phase across two antennas to
change the received amplitude at the IoT node, and hence, cannot be applied to 5G without modifying
the base stations. [209] enables self-localization by placing a camera on a WISP RFID but only operates
within a range of 3.6 m from the RFID reader.

D. WiFi Based Localization: There has been a lot of work on indoor localization using WiFi [183, 192,
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210, 211, 212, 171, 213, 193, 194]. The closest to our work are [192, 183, 194], which estimate the
channel impulse response (CIR) and time of flight (ToF) from the WiFi access point (AP). Chronos [183]
hops between WiFi channels to compute the CIR at high resolution. However, it requires tight timing
coordination with the AP to compensate for carrier frequency offset (CFO) and ensure phase coherence
across the measurements. ISLA, on the other hand, captures measurements from many frequencies across
a wideband without hopping by using the MEMS filter, and hence, does not require any coordination
with the base stations. SpotFi [192] combines measurements across antennas with large WiFi bandwidth
to separate Line of Sight (LoS) path from multipath reflections in the CIR using MUSIC along two
dimensions: ToF and Angle of Arrival (AoA). mD-Track [194] also incorporates Doppler shifts and
Angle of Departure (AoD) in addition to ToF and AoA and iteratively refines the CIR to achieve a better
estimate of the LoS path. In section 4.10, we adapt SpotFi’s and mD-Track’s CIR estimation algorithms
to our setting and demonstrate that ISLA’s algorithm achieves 4 − 11× higher accuracy. It is worth
noting, however, that for our application, these past works cannot benefit from the doppler or AoA/AoD
dimensions.

E. MEMS Filter: Recent work has used MEMS spike-train filters for the application of wideband spec-
trum sensing [190]. However, [190] can only detect signal power at different frequencies and cannot
recover complex I and Q samples needed for estimating the CIR. Furthermore, [190] deals with colli-
sions resulting from aliasing by using co-prime sub-sampling rates. Such approach does not apply in the
context of 5G OFDM signals, since, as we show in section 4.5 the sub-sampling factor can only be a
power of 2. ISLA instead co-designs the hardware filter together with sampling rate to avoid collisions.

4.3 Background

A. Spike-Train MEMS Filters: Our work builds on recent advances in MEMS RF filters. MEMS
filters can work between a few MHz and 30 GHz and can be integrated with ICs to form a chip-scale
RF front-end solution for IoT devices. Past work on MEMS RF filters optimize for filters with a single
passband [214, 215], however, the MEMS filter used by ISLA leverages MEMS resonators that have an
assortment of equally spaced resonance frequencies to create a spike train in the frequency domain as
shown in Fig. 4.1(c).

A MEMS filter works by leveraging the inverse piezoelectric effect to convert RF signals into acoustic
vibrations for filtering and processing. It then converts acoustic waves in the device back to the RF
signals through piezoelectric effect. In this process, the frequency filtering is achieved because not all
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frequencies can be efficiently converted between RF and acoustic domains. Frequencies that match the
resonance frequencies of the piezoelectric structure can go through the conversions with little loss, while
other frequencies are filtered out. Hence, the spike train frequencies can be designed by changing the
dimension of the piezoelectric material in the MEMS device as well as the placement of electrodes
shown under the microscope in Fig. 4.1(c).

B. Wireless Channel Impulse Response (CIR): The wireless channel can be modeled as the super-
position of the signal along all the different paths it takes to travel from the transmitter to the receiver.
The channel at frequency fi can be written as: hi =

∑L
l=1 al exp

−j2πfidl/c, where L is the number of
propagation paths between the transceivers, dl is the distance traversed by path l, al is the complex path
attenuation of path l, and c is the speed of light.

In OFDM systems, data is transmitted over multiple frequency subcarriers {f0, . . . fN−1}. If the fre-
quency spacing between these subcarriers is ∆f , then the bandwidth spanned by the signal is B =

∆f × (N − 1). Now, given the channel measurements {h0, . . . hN−1} across these frequencies, the
Channel Impulse Response (CIR) can be computed as the inverse FFT of the channel measurements.

CIR(τ) =
N−1∑
n=0

( L∑
l=1

al exp
−j2π

dl
c
fn
)
expj2πτfn (4.1)

where τ = { 0
B
, . . . (N−1)

B
} seconds. There are two important things to note here. First, the resolution

in Time-of-Flight in the CIR is 1/B seconds, that is inversely proportional to the bandwidth B. Hence,
larger bandwidth results in higher ToF resolution and more accurate ranging. Second, the maximum
unambiguous ToF that can be measured from the CIR is (N−1)

B
= 1/∆f seconds. This means, if some

physical propagation path in the environment has ToF > 1/∆f then it would alias and appear at a
different tap value in the estimated CIR in Eq. 4.1. For 5G OFDM signal with B = 100 MHz bandwidth
and ∆f = 60 kHz , we have a resolution of 10 ns (3 meters) and a range of 16.6 µs (5 km).

4.4 System Overview

ISLA enables self-localization on narrowband IoT devices by leveraging the MEMS spike-train filter to
capture ambient wideband 5G signals. ISLAconsists of 3 main components:

(1) Capturing the wideband 5G OFDM signal using the MEMS filter: The received 5G signal is
passed through the MEMS filter which samples the OFDM symbol in the frequency domain. Specifi-
cally, the MEMS filter passes the OFDM frequency bins that align with the filter passbands while sup-
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Figure 4.2: Overview showing the flow of ISLA’s system

pressing all other frequency bins. The resulting output from the filter is a sparse spectrum as shown in
Fig. 4.2(b). This sparse signal is then subsampled by the narrowband IoT device significantly below
the Nyquist rate (16× lower) which results in aliasing the remaining subcarriers into the narrowband as
shown in Fig. 4.2(c). We co-design the filter hardware with the recovery algorithm to easily reconstruct
the wideband OFDM subcarriers as we describe in section 4.5.

(2) Super-Resolution CIR Estimation: Using the recovered wideband channel measurements, ISLA
then reconstructs a high resolution Channel Impulse Response (CIR) by leveraging its super-resolution
algorithm which estimates the off-grid positions of the propagation paths as described in Section 4.6.
This high-resolution CIR allows ISLA to filter out the LoS path from the multipath in the channel for
high resolution time-of-flight estimation as shown in Fig. 4.2(e).

(3) Localization Algorithm: Since the IoT node is not synchronized with the base station, the measured
ToF will be corrupted by a timing offset. To address this, ISLA leverages two antennas on the IoT device
and computes the differential CIR across the antennas to eliminate the synchronization offsets. This
results in the locus of the IoT device to lie on a circle that is defined by the locations of the base stations
and the angle subtended by the base stations at the IoT device’s location, as we explain in Section 4.7.
Thus, by looking at the intersection of such circles, we can accurately infer the position of the IoT device
as shown in Fig. 4.2(f). Finally, we show how to integrate ISLA with the 5G-NR standard by addressing
additional system challenges in section 4.8.
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4.5 Capturing 5G Signals Using MEMS Filter

ISLA leverages the MEMS spike-train filters to capture the wideband channel measurements on a nar-
rowband receiver. We explain this sensing process through Fig. 4.2. Consider a preamble OFDM symbol
transmitted from the base station with N subcarrier frequencies at {f0, . . . , fN−1}, shown in Fig. 4.2(a).
Let the received time domain symbol be x(t) and its frequency domain representation be X(f). We have
X(f) =

∑N−1
n=0 cnhnδ(f − fn), where cn are the data bits modulated onto the subcarriers and hn are

the channel values at fn. We want to extract this channel information to compute the Channel Impulse
Response CIR(τ). Since the preamble bits cn are known, we can compensate for cn and compute the
CIR(τ) by taking an IFFT of the channel values hn. However, this requires capturing the entire band-
width of the 5G OFDM signal. Our goal is to recover the CIR using a narrowbandwith. To do so, we
leverage the MEMS spike-train filter.

The spike-train filter response is made up of uniformly spaced passbands as shown in Fig. 4.2(b). The
spike-train filter serves to sparsify the OFDM symbol by selectively passing subcarriers that fall inside
the MEMS passbands, while suppressing all other frequencies. Let the set of frequencies passed by the
spike-train be indexed by M . Then, the frequency domain of the signal X̃(f) (x̃(t) in the time domain)
after passing through the spike-train filter will be X̃(f) =

∑
i∈M cihiδ(f − fi).

This sparse spectrum is shown in Fig. 4.2(b). Next, the IoT receiver subsamples the signal x̃(t) using
a low-speed ADC that samples at a rate R = B/P , where B is the bandwidth of the transmitted symbol
and P is an integer corresponding to the subsampling factor. Let y(t) be the subsampled signal, that is,
y(t) = x̃(P × t), and let Y (f) be its frequency domain representation. Then Y (f) is an aliased version
of X̃(f):

Y (f) =
P−1∑
i=0

X̃(f + iR) (4.2)

Y (f) will cover a narrow bandwidth equal toRMHz as depicted in Fig. 4.2(c). The process of aliasing
is as follows. Any frequency fj , j ∈ M , that falls outside the narrowband of the IoT device, will alias
onto the frequency bin f̃j inside the narrowband after subsampling, such that fj − f̃j = z × R, where
z is some integer. Note that for every fj , we have a unique f̃j . So given the measurement at the aliased
frequency f̃j , we can potentially recover the channel value hj at the corresponding unaliased frequency
fj .

However, recovering these channel values from the aliased spectrum is non-trivial because multiple
of the frequency subcarriers passed by the spike-train filter may collide by aliasing on top of each other
and summing up. This is unfavorable since now we are unable to extract the channel values for any of
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the colliding frequencies. Past work addresses this by leveraging multiple co-prime subsampling factors,
which ensures that the same frequencies do not collide repeatedly.

Unfortunately, we do not have such flexibility to choose any sub-sampling factor here. This is because
in order to recover the channel value hj from the aliased frequency f̃j , we need to ensure that the complex
scaling factor cj × hj encoded on subcarrier fj remains preserved upon aliasing. This is crucial because
the wireless channel information is contained inside this scaling factor. The following lemma states the
condition that ensures this:

Lemma 4.1 For a sub-sampling factor P and N OFDM subcarriers, the complex valued scaling factors

for each subcarrier will be preserved upon aliasing if N = z × P , for some integer z, given the aliasing

results in no collisions.

The proof for the above lemma is in Appendix D. Thus, to be able to recover channel values, we are
restricted to subsample the signal by an integer factor of N . Further, since the OFDM subcarriers in the
5G standard are set to powers of 2, we can only subsample the wideband signal by powers of 2.

Due to this lack of choice in subsampling factors, we instead shift our focus on designing the spike-
train filter such that the frequencies passed by the filter do not collide upon aliasing. We achieve this by
leveraging the structured periodic sparsity of the spike-train, and design a filter that ensures no collisions
for the given subsampling factor P .

Doing so significantly simplifies our recovery algorithm. In particular, given that (1) the frequency
response of the spike-train filter and its collision-free aliasing patterns are known, and that (2) the scaling
factors at the frequency subcarriers remain preserved upon aliasing, we can now simply rearrange the
frequencies in Y(f) to their corresponding unaliased frequency positions as shown in Fig. 4.2(d). Further,
we can extract the channel values at these unaliased frequencies by dividing the complex scaling factor
cj × hj by the known preamble bit cj . Thus, by leveraging the spike-train filter, ISLA is able to extract
wideband channel values on a narrow band IoT device. Next, we discuss the design parameters of the
spike-train filter that ensures no collisions.

Spike-Train Filter Design: We explain the spike-train filter design with a specific example, shown in
Fig. 4.3(a). Let the wideband transmitted OFDM signal (B MHz bandwidth) be comprised of 32 fre-
quency subcarriers, indexed from -16 to 15, with 0 denoting the carrier frequency bin. From Lemma 4.1,
we want the subsampling factor P to divide N = 32. So, we choose P = 4, that is, the IoT receiver
subsamples the signal by 4×. This implies that the IoT receiver is only able to capture N

P
= 8 frequency

bins centered around the carrier frequency as shown by the shaded region in Fig. 4.3(a). Let this narrow
band set of frequencies be denoted as fNB.
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Recall that when you subsample a B MHz signal by P×, then all frequency subcarriers spaced by
R = B

P
MHz will alias onto the same frequency bin in the narrow band spectrum. Here, this translates

into all frequencies spaced by 8 subcarriers aliasing onto the same narrowband bin. This is depicted in
Fig. 4.3(a) through the color coding scheme. For instance, the subcarriers at {−9,−1, 7, 15} (represented
as purple colored) would all appear at frequency bin -1 in the narrow band spectrum upon aliasing. For
a given subcarrier k in the narrow band spectrum, that is, k ∈ {−4, . . . , 3}, let us denote the set of
subcarriers that would alias into k as Ik. So we have I−1 = {−9,−1, 7, 15}.

The spike-train filter will selectively pass frequency subcarriers in the wideband OFDM signal, which
after aliasing can be recovered from the narrow band signal at the receiver. Let the set of frequency
subcarriers passed by the spike-train filter be denoted by fM , where M ∈ [−15, . . . , 16]. We want the
following conditions to hold:

1. No Collisions: To ensure that we can successfully recover the wideband channels, no two subcarriers
in fM should alias and collide in the same narrowband frequency bin upon subsampling. To achieve
this, the spike-train filter must satisfy: For any set Ik where k ∈ {−4, . . . , 3}, fM must contain at

most one subcarrier from Ik.

2. Extract Maximum Possible Channel Values: Given that the narrowband spectrum spans 8 frequency
subcarriers, this means that the receiver can successfully recover at most 8 channel values after sub-
sampling. In the presence of noise, we want to recover as many channel measurements as possible for
robustness. Hence, every narrowband subcarrier in fNB should yield one channel measurement from
the wideband signal. This translates to: For any set Ik where k ∈ {−4, . . . , 3}, fM must contain at

least one frequency subcarrier from Ik.

1 and 2 put together, dictates that the spike-train filter should pass exactly one frequency subcarrier
from each Ik.

3. Span the Wideband OFDM symbol: To retain the high ToF resolution, we want the set of frequencies

81



in fM to span the entire wideband signal.

The above conditions can be met leveraging the structured sparsity in the spike-train filter response.
Specifically, we can design three key parameters of the spike-train filter: (1) spacing between consecutive
spikes ∆F , (2) width of the spikes ∆S, and (3) the starting frequency subcarrier f 0

M in the spike-train, to
follow Lemma 4.2. We prove in Appendix D that such a filter response satisfies the above conditions.

Lemma 4.2 Consider an OFDM symbol withN frequency subcarriers, indexed as {f−N
2
, . . . , 0, . . . , fN

2
−1}

with inter-frequency spacing of ∆f , and a narrowband receiver that subsamples by P×. If P 2 di-

vides N , then the ideal filter parameters that meet all three requirements are: (1) f 0
M = f−N

2
, (2)(

N
P 2 − 1

)
×∆f < ∆S < N

P 2 ×∆f , and (3) ∆F = N
P
(1 + 1

P
)×∆f .

Furthermore, we can achieve the required filter response by designing the topology of the MEMS
resonators, which we explain in more details in Appendix E.

In Fig. 4.3(a), we show the ideal frequency response of the spike-train filter designed with the above
parameters as the red dotted line. In theory, such a filter should allow us to leverage all fNB subcarriers to
recover the wideband channel measurements from the aliased signal. However, in practice, MEMS spike-
train filters are non-ideal i.e., the roll-off of the passband boundaries are not as sharp as perfect rectangular
functions, the spikes are not perfectly equally spaced, and the passband widths are not identical. These
imperfections can be observed in the frequency response shown in Fig. 4.3(b). As a result of these non-
idealities, there will still be collisions at the boundary regions of the spikes after aliasing, as shown in
Fig. 4.3(c). To avoid collisions from polluting our CIR estimates, we only consider the subcarriers that
do not collide as shown in Fig. 4.3(c). However, this results in non-uniform sampling of the OFDM
subcarriers across the wideband channel. In sec. 4.6, we show how to leverage ISLA’s super-resolution
algorithm to recover high resolution CIR estimates from these non-uniform channel measurements.

Tradeoff Between Range and Resolution: Recall from section 4.3 that the resolution in ToF depends
on bandwidth, whereas the maximum unambiguous ToF (range) depends on the inter-frequency spacing
between channel measurements. In the 5G OFDM signal with bandwidth B = 100 MHz and subcarrier
spacing ∆f = 60kHz, ISLA is able to retain the high ToF resolution of 10 ns (3 m) by collecting
wideband channel measurements that span the entire 100 MHz. However, in doing so, the frequency
spacing between the channel measurements in ISLA increases, thus reducing the maximum ToF range.
Specifically, the frequency spacing increases by P = 16× in ISLA, thus reducing the maximum range
from 5 km to 312 meters. This is an issue since now it becomes difficult to identify the LoS path from
the CIR for localization. You could have the case where the LoS path is at 200 meters, but a reflected
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path at 400 meters aliases and appears at the bin corresponding to 88 meters in the CIR. Thus, you cannot
simply pick the first peak as LoS.

To address this, ISLA combines the wideband channel measurements from the spike-train filter, hM ,
with the narrowband channel measurements hNB collected at the subcarriers fNB, and formulates a joint
optimization with both these channels to estimate the CIR. Since the narrowband channel measurements
hNB retain the same subcarrier spacing of ∆f = 60kHz, it increases the effective maximum ToF range
back to 5 km, thus resolving the LoS ambiguity in the CIR.

4.6 Super-Resolution CIR Estimation

Here, we describe our super-resolution algorithm that can retrieve high resolution ToF estimates τl’s
along with the associated complex attenuations al for the L multipath components in the channel. As
discussed in Sec. 4.5, the IoT device can recover channel measurements htot = hM ∪ hNB at the sub-
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carriers ftot = fM ∪ fNB where fM are recovered from the spike-train filter and fNB without the filter.
Since these channel values are sampled at non-uniformly spaced frequencies, we cannot apply stan-
dard super-resolution algorithms like MUSIC with spatial smoothing [192, 193] as they require uniform
measurements. Instead, we optimize for the channel impulse response in the continuous time domain by
leveraging an off-grid estimation technique that can estimate high resolution ToF values from the channel
information.

We begin by framing this as an inverse problem. We start by modeling the forward operator F : htot =
F(τ1, . . . , τL, a1, . . . , aL), which maps physical path parameters to the wireless channel. F comprises of
the following distinct transformations, as illustrated in Fig. 4.4:

(1) CIR in Continuous Domain: (Fig. 4.4(a)) Given path parameters {τ1, . . . , τL, a1, . . . , aL}, the con-
tinuous domain CIR can be written as: CIRcont =

∑L
l=1 alδ(τ − τl), with each path represented as an

impulse positioned at its respective ToF τl, and scaled by its complex attenuation al.

(2) Off-Grid Estimation: (Fig. 4.4(b)) The OFDM symbol spans a bandwidth B MHz and comprises of
N subcarriers. Due to this discretization and truncation in the frequency domain, the observed CIR at the
receiver will also be discretized, and computed on the grid defined by τg, where τg = { 0

B
, . . . , (N−1)

B
}.

However, as with most natural signals, the ToFs of the physical propagation paths τl will rarely align with
this discretized τg grid, that is, the τl’s will lie at an off-grid position. As a result, the leakage from the
continuous off-grid CIR component from path l to the discrete CIR grid positions at τg can be computed
as CIRl(τg) = alψN(τg − τl), where ψN is the discretized sinc function defined as:

ψN(τ) =
sin (πτ)

sin
(
πτ
N

) exp(−πj (N − 1

N

)
τ

)
(4.3)

(3) Superposition: (Fig. 4.4(c)) With multiple propagation paths in the channel, the net observed CIR
at the receiver is the sum of the CIR profiles contributed by each propagation path: CIRnet(τg) =∑L

l=1 alψN(τg − τl).
(4) Discrete Fourier Transform: (Fig. 4.4(d)) Finally, the channel htot can be computed by sampling
the corresponding frequencies ftot from the DFT of the superposed CIR. Let us denote theN×N Fourier
matrix as FN , and let V be the matrix that chooses the rows corresponding to ftot from FN . Then we
have: htot = V FN CIRnet where CIRnet is a N × 1 dimension vector.

Putting the above four transformations together, the forward operator F can be expressed as:

htot = F({τl, al}Ll=1) = V FNΨa⃗ (4.4)

where Ψ is a N × L matrix with Ψi,j = ψN(τi − τj), and a⃗ is a L × 1 vector comprising the complex
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attenuations al for each path. Now that we have the forward operator, the inverse problem to retrieve the
path parameters from observed channel vector h′

tot can be formulated as a L-2 minimization:

{τ ∗l , a∗l }Ll=1 = argmin
τ1,...,τL,a1,...,aL

∥h′

tot − VFNΨa⃗∥2 (4.5)

Solving the Optimization: Note that if we are given Ψ, then Eq. 4.5 becomes a linear optimization
problem in a⃗. Thus, given Ψ, the closed form solution for a⃗ that minimizes Eq. 4.5 is a⃗ = (VFNΨ)†h

′
tot,

where † represents the pseudo-inverse. Thus, the objective function in Eq. 4.5 can be rewritten as:

{τ ∗l }Ll=1 = argmin
τ1,...,τL

∥h′

tot − VFNΨ(VFNΨ)†h
′

tot∥2

s.t. τl ≥ 0 ∀ l ∈ {1, 2, . . . , L}
(4.6)

The objective function is now reduced to just the ToF variables τl’s. This optimization problem is non-
convex and constrained, and we use the well-known interior-point method to solve this [216]. For the
initialization point to the optimization algorithm, we use approximate ToF values from the CIR computed
by taking the inverse FFT of the observed channel h′

tot. While these ToF estimates are distorted by the
discretization and superpositioning artifacts described previously, it gives a good starting point for the
optimization.

Also, note that the number of paths N in the wireless channel is not known a priori. As we keep
increasing the number of paths N that the algorithm is initialized with, it keeps finding a better and better
fit to the channel data, and after a point, starts overfitting to the noise. In order to avoid overfitting and
yet yield accurate estimates for the path parameters, we run the optimization problem multiple times,
each time increasing the number of paths it is initialized with by 1. We terminate the algorithm when the
decrease in the value of the objective function falls below some threshold ϵ, and set the current value of
N to be the number of paths in the channel.

4.7 ISLA’s Localization Algorithm

The above off-grid estimation algorithm gives us highly precise ToF estimates for the propagation paths.
However, since the 5G base stations are not time synchronized with the IoT device, there is going to be
an offset between the sampling clocks in their RF chains. As a result, the measured ToF at the IoT node
also includes delays from the sampling time offset (STO) between the different base stations and the IoT
node, and hence cannot provide accurate distance estimates.
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Figure 4.5: ISLA’s Localization Algorithm

To address this, ISLA leverages two antennas on the IoT node to compute the differential ToF rather
than the absolute. The key idea here is that while the absolute ToF measurements are corrupted by
synchronization offsets, these offsets are constant across the two antennas on the IoT node. Hence, the
offsets can be eliminated by differencing the two measurements. Let the ToF values to the two antennas
be τ1 and τ2, and their corresponding distances be d1 and d2, as denoted in Fig. 4.5(a). Then the locus of
the base station from the IoT device’s frame of reference is a hyperbola with the two antennas being the
foci, and the difference in distances to the two foci equaling d2 − d1. At large distances, this hyperbola
can be approximated as two rays along the asymptotes of the hyperbola, depicted by the red dashed lines
in Fig. 4.5(a).

By overhearing packets from different base stations, the IoT device can infer the locus of each base sta-
tion to lie on approximated rays originating from the IoT device’s location. This is shown in Fig. 4.5(b),
where base station 1 can lie on the rays at angles θ1 or −θ1, and similarly the base station 2 can lie on the
rays at angles θ2 or −θ2. Both θ and −θ are possible, since there is the ambiguity that the signal might
have arrived from the front or the back of the device. Given this, we can see that the angle subtended by
the two base stations at the location of the IoT device will be ∥θ2 − θ1∥, and this is going to be constant
irrespective of the orientation of the IoT node. There is ambiguity in that the angle subtended can also be
∥θ2 + θ1∥, and we will address this shortly.

Given the angle subtended by the base stations and the known locations of the base stations, according
to the Inscribed Angle Theorem, we can determine the locus of the IoT device to lie on the arc of a
circle, where the line segment connecting the two base stations is the chord and the corresponding in-
scribed angle is equal to the angle subtended by the base stations. This is illustrated in Fig. 4.5(b) as the
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green dashed arc. Leveraging different pairs of base stations, ISLA can draw multiple such arcs and the
intersection points of these arcs will give us the IoT device’s location.
Sources of Ambiguity: There are some sources of ambiguity that need to be resolved. First, the angle
subtended by the two base stations in Fig. 4.5(b) could also be ∥θ2 + θ1∥, and second, the arc drawn with
the base stations at the end points could also be pointing towards the north rather than south, as depicted
in Fig. 4.5(b). These ambiguities can be resolved easily by leveraging 4 base stations as anchor points.
Keeping one base station common, we have three base station pairs which yields three unique arcs. Only
the right configurations of angles subtended and arcs drawn will give us a common intersection point
for all three arcs. ISLA’s localization algorithm tries all configurations and picks the one where all arcs
coincide at the same point.

4.8 Integrating ISLA with 5G-NR Standard

Similar to the LTE standard, the 5G-NR packet consists of 10 subframes, each of duration 1 ms [217].
To allow for coherent packet demodulation, the 5G frame appends known preamble bits on each sub-
frame which enables channel estimation and correction across the entire bandwidth of the 5G channel.
Additionally, in the first subframe of the packet, the base station also includes all information required
by devices to associate with the network, which comprises of the synchronization signals (PSS and SSS
frames) for CFO correction and frame timing, and the Base Station ID. To allow every device in the
network to receive this critical information, it is always encoded in the narrowest supported bandwidth
of the wideband packet, which is 4.32 MHz in the 5G standard [217].

ISLA’s hardware circuit, discussed in Section 4.9, is designed such that it can switch between captur-
ing the 6.25 MHz narrowband spectrum, or the wideband spectrum via the spike-train filter. ISLA begins
by capturing the first subframe of the 5G packet through its narrowband RF path, and extracts the syn-
chronization frames and base station ID encoded in the narrowband subcarriers of the wideband packet.
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Using publicly available databases like [218], ISLA can retrieve the location of the Base Station given its
ID. The synchronization frames help eliminate coarse CFO and SFO. From the subsequent subframes,
ISLA first estimates the narrowband channel, and then switches to the RF path with the spike-train filter
to sense wideband channel. Note that ISLA does not need to meet tight timing constraints to switch since
each subframe lasts 1 ms and there are multiple such subframes in each packet that can be leveraged for
channel estimation. Thus, ISLA can simply skip a subframe while switching.

However, because ISLA captures the narrowband channel and wideband channel from different sub-
frames, there is going to be an additional phase accumulation between the two measurements due to
residual CFO. To address this, we slightly modify Eq.4.6, and the detailed description for this modifica-
tion is presented in Appendix F.

4.9 System Implementation

System Design: We have built a prototype ISLA device by combining our MEMS spike-train filter
with commodity, off-the-shelf, low-power components. Figure 4.7(a) shows the circuit diagram, and
Fig. 4.7(b) shows the actually prototype. It receives ambient 5G transmissions with two antennas fol-
lowed by identical RF chains. Depending on whether the IoT devices wants to receive the full 100 MHz
spectrum using the spike-train filter or the narrowband spectrum, the RF chains can switch between two
paths: (1) the received wideband spectrum first be filtered by the MEMS spike-train filter, and then down-
converted and sampled without using the anti-aliasing filter. (2) the MEMS spike-train filter is bypassed
but the down-converted signal will first go through an anti-aliasing filter before sampling. We select
between the two paths using RF switches controlled by a single microcontroller.

Implementation: We fabricated a MEMS spike-train filter at 400 MHz center frequency. However, due
to the strong interference from the amateur radios in this band, we were not able to run experiments
outdoor using this filter. Hence, the above prototype was only used indoors. In the outdoor experiments,
we transmitted in a vacant 100 MHz wide spectrum between 950 and 1050 MHz, and we emulate the
IoT radio front-end described above with the MEMS spike-train filters in digital using an X310 USRP
software-defined radio (SDR). We would like to note that in practical deployments we do not expect
interference to play a major issue since ISLA will be deployed in the proprietary frequency bands licensed
by cellular companies, which in turn will have limited interference.

The X310 SDR has two identical RF chains, and can sample the full 100 MHz bandwidth with UBX160
daughterboards. To emulate the MEMS spike-train in digital, we first measure the spike-train filter fre-
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Figure 4.8: ISLA’s localization accuracy compared against baselines across different testbeds: (a)
Campus (b) Parking lot (c) Farm.

quency response once using a vector network analyzer (VNA), and we apply this filter frequency response
to the received signals sampled at 100 MHz. Then, we downsample the filtered signal by simply keeping
every 16th sample. This is equivalent to filtering the RF signal in analog and sample it below the Nyquist
sampling rate. We also used a bandpass filters between the antenna and SDRs to remove out-of-band
interferences and synchronized the two RF chains in time and phase through the GNU Radio Python
API. In section 4.10.3, we present mircobenchmarks demonstrating the equivalence between applying
the filter in digital and the above hardware prototype.

Testbed: Additionally, we also built 5G base station TX prototypes to transmit ambient 5G communi-
cation signals. As shown in Fig 4.6(d), the base station prototype consists an X310 USRP SDR with
a UBX160 daughterboard, a 9 dBi Yagi directional antenna, and an RF Bay MPA-22-30 30 dB power
amplifier. The base stations transmit 100 MHz OFDM packets. Using five base station prototypes, we
created three testbeds with different dimensions and at different locations to conduct our experiments.
Figure 4.6 shows the satellite images of our testbeds with the base stations and clients locations marked.
The first testbed is 85 m long and 52 m wide on a university campus, surrounded by buildings on all
sides. We designated 11 basestation locations in this testbed and chose five of them for each experiment.
The second testbed is a 400 m by 240 m parking lot with 27 base station locations. The third testbed is
at a 102 acre farmland with 860 m length 480 m width. We selected five out of the 17 potential locations
to place the base stations in each experiment. For ground truth locations, we used differential GPS RTK
with real-time RTCM correction data, which provides centimeter-level positioning accuracy.
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4.10 Experimental Evaluation

4.10.1 Baselines

(1) Spot-Fi: [192] proposes a 2D MUSIC algorithm with spatial smoothing, which can localize clients
by separating the multipath components jointly along the ToF and AoA domains.
(2) mD-Track: [194] separates propagation paths by leveraging multiple dimensions of the wireless signal
(ToF, AoA, AoD and Doppler), and proposes an iterative algorithm that goes through multiple rounds of
error computation and path re-estimation. In our experimental setup, leveraging the AoD and Doppler
dimensions provides little benefit since the base station is equipped with a single antenna and the IoT
device does not have high mobility relative to the base station.
Note that, systems like Spot-Fi and mD-Track were not designed for ambient localization, and thus need
to be adapted here. Specifically, we leverage the ToF estimates provided by these baselines for the LoS
path, and, in turn, self-localize the client by computing the relative ToF, as described in Section 4.7.
(3) RSSI: Past work leverages RSSI measurements to localize clients in outdoor cellular networks, by
either using approximate path loss models for trilateration, or by using the known locations of nearby
cells as coarse estimates. We implemented one recent RSSI baseline [180].
(4) Spike-train filter-adapted baselines: To provide a fair comparison against ISLA, we modify Spot-Fi
and mD-Track to leverage the spike-train filter and utilize the wideband channel measurements for local-
ization. It is non-trivial to adapt Spot-Fi for the spike-train filter since the spatial smoothing technique
used in Spot-Fi requires uniformly spaced channel measurements across frequency, whereas the spike-
train filter samples the OFDM frequency bins non-uniformly. To address this, we restructure the spatial
smoothing subarray from [192] that allows Spot-Fi to be applied across the non-uniform frequencies
sampled by the spike-train filter.

4.10.2 Results

Unless otherwise specified, for all results, we utilize 5 randomly chosen base stations as the anchor points.

A. Localization Accuracy Comparison against Baselines: We compare ISLA’s localization against the
baselines in Fig. 4.8. Note that, while ISLA is designed specifically to leverage the wideband channel
sensed by the MEMS filter, the baselines are implemented without modification and thus utilize only the
narrowband channel for localization.
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Figure 4.9: ISLA’s localization accuracy compared against MEMS filter adapted baselines at: (a)
Campus (b) Parking lot (c) Farm.
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Figure 4.10: (a-c) Comparison of ISLA’s localization accuracy when leveraging different amounts of
spectrum across all three testbeds. (d) ISLA’s localization error with different number of visible base
stations.

From Fig. 4.8, ISLA achieves a median localization accuracy of 1.58 meters in the campus testbed,
17.6 meters in the parking lot testbed, and 37.8 meters in the farm testbed. Across the same three testbeds,
Spot-Fi achieves median accuracies of 17.05 meters, 61.2 meters and 156.6 meters, whereas mD-Track
achieves 18.11 meters, 71.8 meters, and 183.1 meters respectively. Thus, ISLA improves the localization
accuracy over Spot-Fi and mD-track by∼ 11× in the campus testbed, and by∼ 4× in the parking lot and
farm. ISLA is able to achieve such high gains since it leverages the spike-train filter to sense wideband
channel on the narrowband device, which allows for much higher resolution compared to the baselines
operating solely in the narrowband. Further, the localization improvement over the narrowband baselines
is most significant in the campus testbed, since it has the most multipath from surrounding buildings, and
thus ToF resolution is critical to separate out the LoS path from reflections.

Lastly, the RSSI baseline achieves median accuracies of 64.54 meters, 120.7 meters, and 260.8 meters
respectively across the three testbeds. RSSI based methods generally have poor performance, as they
tend to oversimplify path loss models that map RSSI values to distance, which does not hold for real
world multipath channels.

B. Comparison against Spike-train-adapted Baselines: Next, we evaluate how leveraging the spike-
train filter would benefit the performance of our narrowband baselines. Fig. 4.9 shows the CDF of
localization accuracy comparing ISLA against the modified baselines that utilize the wideband channel
from the spike-train filter. The RSSI baseline is not included here since its localization performance
does not depend on bandwidth. Compared to its narrowband implementation, Spot-Fi’s median accuracy
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Figure 4.11: (a) Using ISLA to track object trajectory. (b) ToF difference between ISLA’s prototype
with fabricated MEMS filter and digitally implemented MEMS filter. (c) Deployment of 4G base
stations in the downtown area of a major US city. (d) Number of visible 4G base stations at various
downtown locations.

improves to 11.08 meters in the Campus testbed, 49.07 meters in the Parking Lot, and 137.76 meters in
the farm. Similarly, mD-Track’s median performance improves to 15.48 meters, 51.45 meters and 103.78
meters in the three testbeds respectively. Thus, Spot-Fi and mD-Track see improvements in localization
accuracy by up to 54% and 76% respectively. This shows that other localization techniques can also
benefit from the wide-band channel sensing capabilities enabled by the spike-train filter.

Additionally, Fig. 4.9 shows that given the same channel information, ISLA’s off-grid CIR estimation
algorithm is able to better resolve and estimate the relative ToF compared to Spot-Fi and mD-Track. This
is because these baselines were designed to leverage multiple information dimensions to separate out
the multipath components, with both baselines leveraging 3 or more antennas for separation in the AoA
domain, and mD-Track further using the additional dimensions of Doppler and AoD as well. In contrast,
here the IoT device has to separate out multipath in the ToF domain alone, and ISLA is able to achieve
very accurate localization owing to its off-grid estimation algorithm.

C. ISLA Leveraging Different Amounts of Spectrum: In this experiment, we compare ISLA’s lo-
calization algorithm applied across three different amounts of spectrum utilization — (1) ISLA applied
only to the wideband sparse channel sensed by the spike-train filter (without combining with narrowband
channel), (2) ISLA applied only to the narrowband channel of IoT device, and (3) ISLA applied across
the entire 100 MHz bandwidth of the received 5G signal. Fig. 4.10 plots the CDF of localization accuracy
achieved across the three testbeds.

ISLA applied on the narrowband channel performs the poorest, achieving median accuracies of 7.9
meters, 58.9 meters and 142.52 meters in the campus, parking lot and farm testbeds. In contrast, ISLA
along with the spike-train filter can achieve corresponding median accuracies of 1.68 meters, 18.8 meters
and 45.04 meters. Thus, ISLA along with spike-train, achieves an improvement in localization accuracy
of 3.16×−4.7× compared to ISLA applied in the narrowband spectrum, despite both baselines capturing
the same amount of channel measurements. The advantage of spike-train stems from the fact that it
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enables the narrowband receiver to capture channel measurements that span a much larger bandwidth,
which results in much higher ToF resolution.

On the other hand, ISLA’s localization algorithm applied on the full 100 MHz spectrum achieves
median accuracies of 1.38 meters, 11.44 meters and 25.8 meters respectively on the three testbeds. Thus,
ISLA with the spike-train filter reduces the localization accuracy by only 1.21×, 1.64×, and 1.74×
respectively compared to this upper bound. This demonstrates that the spike-train filter can enable a
narrowband device to achieve localization accuracy within a factor of 2× compared to a broadband
receiver, despite the fact that it subsamples the signal by 16× below Nyquist.

D. Localization with Number of Anchor Base Stations:
In Fig. 4.10(d), we compare ISLA’s localization performance with 5, 15 and 25 base stations used as
anchor points respectively, in the parking lot testbed. With 5 base stations, ISLA achieves a median
accuracy of 17.6 meters, which improves to 9.27 meters with 15 base stations, and 4.26 meters with 25
base stations. This improvement becomes even more significant at the tail, with ISLA achieving 90th

percentile accuracy of 73.16 meters with 5 base stations, which improves to 10.9 meters accuracy with
25 base stations at 90th percentile. Thus, leveraging more base stations can significantly improve the
localization accuracy achieved by ISLA.

E. Tracking Objects: We move the IoT device across an L-shaped trajectory (160 meters in length and
85 meters in width) in the parking lot testbed, and collect packet transmissions from the base stations
at different points along this trajectory. In this experiment, we pick 7 fixed base stations to utilize as
anchor points, and we show the ground truth trajectory and corresponding estimated trajectory by ISLA
in Fig. 4.11(a). As can be observed, ISLA’s high localization accuracy allows to faithfully capture the
shape of the ground truth trajectory.

4.10.3 Microbenchmarks

A. CIR Estimation using Fabricated MEMS Spike-train Filter: To verify the equivalence between
our outdoor implementation and using the prototype with the fabricated MEMS spike-train filter at 400
MHz, we conduct indoor experiments at 400 MHz. Specifically, we evaluate the error in reconstructed
CIR and estimated ToF values between the prototype with the fabricated filter and ISLA with the digital
filter implementation. In Fig. 4.11(b), we show the CDF of the errors in ToF values (converted to distance
(meters)) recovered by the two approaches, for both LoS and NLoS paths. We can see that the position of
the LoS path in the CIR estimated from both approaches are very close, with the median error between
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Direction NW NE SE SW
Median 1.3535 m 1.3544 m 1.3267 m 1.3681 m
Std Dev 0.4948 m 0.6026 m 0.4908 m 0.512 m

Table 4.1: Invariance of Localization Error to Orientation

their estimates being 0.075 meters. The error in the NLoS paths is higher, with a median error of 1.05
meters. However, this will not affect the localization performance between the two since localization
only uses the LoS path. This microbenchmark demonstrates that ISLA’s approach of applying the filter
and subsampling in digital is equivalent to using the fabricated filter from a localization perspective, and
that the results shown here are representative of a fully implemented system.

B. Density of Deployed Base Stations: In Section 4.10.2D, we have shown that ISLA’s localization ac-
curacy increases substantially as we use more anchor base stations. Here, we study the distribution of how
many base stations can the client overhear at a given location. Using publicly available databases [218],
we retrieved the locations of 4G LTE base stations belonging to 4 major carriers in the United States. We
chose 4G LTE for this analysis since 5G deployment is still in its nascent stage in the USA, but we expect
the target coverage for 5G networks to exceed the 4G deployment.

In Fig. 4.11(c), we show the scatter plot of the 4G base stations located in the downtown area of a major
metropolitan city in the USA. Using the cell coverage information provided in [218] for the different base
stations, in Fig. 4.11(d), we plot the CDF of the number of base stations that the client can overhear at
different locations on the map. We can see that at the 10th percentile, the number of visible base stations
is 11, thus implying that less than 10% of client locations see less than 11 base stations. Further, the
median number of base stations visible to the client is 29. This demonstrates that the cellular deployment
is dense enough to allow many anchor points, which in turn can achieves high localization accuracy.

C. Invariance to Orientation: Here, we demonstrate that the localization performance is independent
of the orientation of the IoT device. This is because the arcs that define the locus of the IoT node,
depend only on the angle subtended by the base stations at the IoT device’s location, which is invariant
to device rotation. At a given location in our campus testbed, we orient the IoT device along 4 different
directions and perform 100 localization experiments at each orientation. From Table 4.1, we can see that
the median and standard deviation in localization error is almost the same across the 4 orientations, thus
demonstrating invariance to orientation.
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Figure 4.12: mm-ISLA pipeline. (a) Wideband 5G PDSCH-DMRS Spectrum Allocated to 2 Antenna
Ports. (b) MEMS Spike-Train Filter Frequency Response. (c) Filtered Sparse Spectrum. (d)
Sub-Nyquist Sampled Spectrum Aliased to the Narrow ADC Bandwidth. (e) Recovered DMRS
Subcarriers. (f) Recover Channel Impulse Response. (g) AoD-Based Triangulation Localization.

4.11 Extending ISLA to mmWave

4.11.1 Motivation and Challenges

Our original implementation of ISLA is limited to sub-6GHz bands. However, leveraging the mmWave
bands 5G signals for localizing IoT nodes is even more appealing, because of two characteristics of 5G
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mmWave networks: 1) The small cell sizes lead to very dense deployments of base stations, up to 40
to 50 BS per square km [185], resulting in more potential anchor points for accurate localization. 2)
The unprecedentedly wide signal bandwidth, up to 400 MHz in mmWave eMBB channels, provides
high-resolution Time of Flight (ToF) estimation and, hence, high localization accuracy.

However, adapting ISLA’s coordination-free localization protocol to mmWave bands would be im-
practical, because ISLA avoids coordination with the gNBs by measuring the Time Difference of Arrival
(TDoA) between two antennas on the IoT node. Such IoT design requires two antenna front-ends with
tightly synchronized RX chains, which is infeasible in mmWave frequencies because of the expensive
and power-consuming mmWave front-ends. Therefore, mm-ISLA abandons the dual front-end IoT design
and the TDoA-based localization algorithm of ISLA. Instead, mm-ISLA overcomes the coordination-free
challenge by leveraging the additional degree of freedom provided by the MIMO antenna arrays at the
5G gNBs. mm-ISLA first resolves channels from multiple TX antennas at the gNBs leveraging a unique
5G-NR waveform – DeModulation Reference Signal (DMRS) in the Physical Downlink Shared Channel
(PDSCH). The unique resource allocation pattern in the DMRS waveforms allows mm-ISLA to distin-
guish the OFDM subcarriers allocated to each antenna in the gNB MIMO antenna array. Therefore, mm-

ISLA can then leverage the channel differences across the antennas to estimate the Angle of Departure
(AoD) of the Line-of-Sight (LoS) path from the gNB to the IoT node. Finally, with the AoD measure-
ments of three gNBs, an mm-ISLA node can localize itself using the standard triangulation localization
algorithm.

4.11.2 LoS AoD Estimation with PDSCH-DMRS Waveform

Figure 4.12 illustrates mm-ISLA’s system pipeline. mm-ISLA adopts the same super-resolution CIR re-
construction method as mm-ISLA by formulating an inverse optimization problem. Towards solving the
coordination-free challenge, mm-ISLA however, takes a completely different approach than ISLA. The
TDoA-based localization algorithm of ISLA is abandoned, because it requires two tightly synchronized
RF front-ends, RF chains, and ADCs. The additional RF circuitry and ADC doubles the cost and power-
consumption of the IoT nodes, which is even more infeasible in the mmWave frequencies than in the
sub-6GHz bands. Restricted to a single antenna front-end, mm-ISLA enabled IoT nodes still manage
to localize themselves without any coordination with the gNBs. To do so, mm-ISLA leverages another
unique opportunity in 5G networks – the spatial diversity of the MIMO antenna arrays at the 5G gNBs.
mm-ISLA tries to measure the ToF differences across antennas in the gNB MIMO antenna array, from
which mm-ISLA can infer the AoD of the LoS path from the gNB to the IoT node. With AoD estimates
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of three or more gNBs along with the gNB locations and antenna array orientations, mm-ISLA enabled
IoT nodes will be able to apply the standard triangulation algorithm to localize themselves. However, to
do so, mm-ISLA has to first be able to estimate the CIR from each gNB MIMO antenna separately.

The question becomes how can mm-ISLA isolate concurrent transmissions from TX MIMO antennas
at the 5G gNB and estimate them corresponding CIR separately? Note that signals from different TX
antennas have to be transmitted at the same time; otherwise, the transmitting time offset will corrupt
the AoD estimation. To overcome this challenge, mm-ISLA leverages another unique opportunities in
the 5G-NR standards, that is the resource allocation pattern in the 5G-NR PDSCH-DMRS waveforms.
PDSCH-DMRS is a specific type of 5G-NR waveform used for decoding the PDSCH data, so it’s a
preamble-like waveform one can leverage to estimate the channel. When MIMO is enabled at the gNB,
to decode the channels from the MIMO antennas, different antenna ports are allocated with a different
set of interleaved subcarriers in the resource block [219], as shown in Fig. 4.12(a). Therefore, we can
identify the DMRS subcarriers corresponding to each TX antenna and estimate their channels separately.
Since the interleaved subcarrier allocation pattern ensures that the DMRS waveform from all TX antennas
covers the entire bandwidth of the resource block, we can still achieve wideband CFR estimations for all
TX antennas. Therefore, we can estimate the super-resolution CIRs corresponding to each TX antenna
with a small modification to the inversion optimization problem to incorporate the subcarrier allocation
in the PDSCH-DMRS waveform. Finally, we compare the ToF differences across the TX antennas to
estimate the AoD of the LoS path.

4.12 Limitations and Discussion

• Power Footprint: To enable ambient localization, ISLA leverages a second antenna and RF chain,
which increases the power footprint of the IoT device. However, we would like to note that the power
overhead of an additional RF chain is going to be lower than that of a GPS module, which is the
likely alternative for localization. This is because the additional RF chain on the IoT device is going to
operate in the narrowband with very low sampling rates, whereas GPS incurs high operational power
since it needs to receive and correlate long sequences to get the signal power above the noise floor for
GPS lock acquisition. Hence, while ISLA’s design does lead to an increased power footprint, it is still
a better alternative compared to GPS.

• Loss of SNR: Since the MEMS spike-train filter is a passive device, the signal suffers from insertion
loss when passed through the filter, thus resulting in loss of SNR. This is further exacerbated by the fact
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that in practice, the out-of-band rejection of the spike train filter is finite, which results in further loss
of SNR. It is possible to reduce the impact of this SNR loss at the circuit level by improving impedance
matching and the isolation between input and output ports. We can also compensate for the SNR loss
by averaging the channel measurements across multiple OFDM symbols.

• Line-of-sight: Similar to many localization systems, ISLA assumes the availability of line-of-sight
(LoS) paths to the base stations which might not hold under occlusion. This, however, can be addressed
by potentially selecting a subset of base stations with LoS paths using similar techniques demonstrated
in [192]. With the dense deployment of 5G base stations, we expect a significant subset of base stations
to have LoS path to the node.

• Fast Mobility: The current design of ISLA is not suitable for highly dynamic applications with fast
mobility such as tracking cars. This is because the localization algorithm must receive wideband 5G
packets from 4 or more base stations before it can self-localize.

• Multiple Providers: ISLA can benefit from capturing signals from multiple different providers since
the IoT node does not need to associate with the base stations. However, different providers operate
in different frequency bands which would require different spike-train filters. This could potentially be
addressed by having multiple filters and switching between them similar to our design in sec. 4.9.
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Chapter 5

CONCLUSION

In this dissertation, I presented end-to-end systems and techniques that allow mmWave networks to scale
and enable higher user density and data rates in communication systems, as well as higher sensing reso-
lution and the ability to scale to ubiquitously deployed heterogenous devices in sensing and localization
systems. A common theme in this dissertation is developing new algorithms and techniques that expand
and enhance the capabilities of mmWave networks, by leveraging intelligence and learning techniques
across the entire computing and network stack. Our work aims to pave the way for next-generation
mmWave wireless networks by developing hardware-software systems that pushes the boundaries of
technology and applications in terms of scale and function. Specifically, we designed and built the fol-
lowing systems as part of this dissertation:

• Many-to-Many Beam Alignment for Dense Spatial Reuse in mmWave WLANs : We introduced
BounceNet, the first many-to-many millimeter wave beam alignment system that can efficiently align
the beams of many APs and clients in a manner that allows them to simultaneously communicate with-
out interfering. We demonstrate the opportunity of routing physical signals along different paths that
bounce off the environment to improve the spatial reuse of the network. We harness this opportunity
to design new algorithms that maximize network throughput while maintaining a lower bound of fair-
ness for each client. We evaluated BounceNet using three experimental testbeds and demonstrated that
it can enable dense spatial reuse and scale the total network throughput with the number of APs and
clients.

• Scaling mmWave Wireless Network-on-Chip using Deep Reinforcement Learning: We present
NeuMAC, the first MAC protocol that can learn and adapt to the highly dynamic traffic patterns at very
fine granularity in a mmWave wireless NoC processor. We design a lightweight deep reinforcement
learning framework that introduces little overhead to the multi-core processor and can operate within
the tight timing, power and area constraints of chip multicore processors. The protocol also accounts
for non-trivial dependencies between packet delivery and computation speedups by optimizing for end-
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to-end execution time. We extensively evaluate our design and demonstrate significant improvement in
network performance and reduction in the overall execution time on the multicore processor.

• Enabling High Resolution Self-Localization for Massive IoT Deployments using Ambient 5G Sig-
nals: We present ISLA, the first system that allows IoT nodes to localize themselves at scale by only
using ambient 5G signals without any coordination with the base stations. We demonstrate the ability
to reduce the sampling rate by 16× while retaining the benefits of high bandwidth 5G signals by lever-
aging recent advances in MEMS RF filters. We implement and evaluate ISLA to demonstrate accurate
localization in 3 outdoor settings.

5.1 Future Directions

There are multiple research directions that I want to explore going ahead:

• Wireless for Autonomous Driving and V2X connectivity: Unlike cameras and LiDARs which fail
in low visibility conditions, radar signals can penetrate through fog, snow and dust, and are, therefore,
more favorable for such scenarios. Additionally, past work also demonstrates that radar sensors can
be used for much more than simple unidirectional ranging, and can in fact be used to generate high
resolution and perceptual radar images of cars even through fog and rain. As a result of these advances,
we are witnessing a rapid proliferation of radar sensors in modern cars for sensing and autonomous
driving functionalities.

However, with this rapid deployment where every car on the street is soon going to be equipped with
a radar sensor, we will face severe interference between the radar sensors on different cars since radar
is an active sensor (unlike cameras) that transmits FMCW signals into the environment and processes
the reflected signals for perception. Hence, a very important future direction of research is designing
and building interference avoidance and mitigation schemes for ubiquitous radar sensors that will allow
wireless perception for self driving cars to truly scale.

Additionally, in order to achieve the vision of fully autonomous traffic networks, I want to conduct
research of building and designing reliable and high throughput V2I and V2V networking infrastruc-
ture at scale. There is a need for a new networking paradigm where cars can share information with
each other and with traffic infrastructure to cover blind spots and receive advance notification for safety
critical information. My research will explore the design trade-offs and networking protocols in such
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V2X networks that can provide the required reliability and latency guarantees for the self-driving ap-
plication.

• Scaling IoT Deployments by Expanding into mmWave regime: IoT deployments are becoming an
increasingly critical component of the workflow in a number of diverse industries such as manufactur-
ing, agriculture, retail and transportation. However, today’s IoT devices operate in narrow and highly
crowded portions of the spectrum, offering extremely low communication data rates (Sigfox offers up
to 600 bits per second and LoRaWAN offers up to 27 kilo bits per second). As the deployment scale
of these devices runs into the billions, we will face a huge strain on network performance and reliabil-
ity. I want to explore the possibility of low power millimeter-wave (mmWave) based IoT radios, since
the huge bandwidth at mmWave frequencies would allow us to accommodate billions of IoT devices.
However, the current state of mmWave technology prohibits us from realizing this goal since mmWave
devices are expensive and power hungry. I want to work on minimizing the hardware complexity
by eliminating the high-power and expensive radio front-end and RF circuitry, in lieu of cheaper and
power efficient components like non-uniformly spaced phased arrays, low resolution ADCs (Analog-
to-Digital Converters), and 2-bit phase shifters. I believe that the performance loss resulting from these
non-ideal hardware components can be compensated for by leveraging intelligent algorithmic solutions
at the upper layers of the network stack.

• AI for Next-G Wireless Networks: Next-G wireless networks (5G, 6G and beyond) are positioned
to enable unprecedented communication and sensing capabilities for a diverse set of devices, ranging
from resource constrained IoT devices to power and throughput hungry smartphones and virtual reality
headsets. To achieve this goal, 5G and future cellular networks will leverage many new hardware and
software capabilities such as massive antenna arrays, multiple frequency bands and flexible bandwidth
and channel allocation. While such a diverse feature set brings flexibility to service a wide variety
of communication scenarios, it also significantly increases the complexity of the radio access network
(RAN), offering a combinatorially large number of choices for the various control knobs of the wireless
links (modulation order, coding rate, OFDM parameters, etc.). Manually configuring these networks
for each of the different use cases is going to be challenging and sub-optimal. Towards this end, I want
to explore the possibility of leveraging AI for Self-Organizing Wireless Networks that can learn from
experience and automatically configure itself to achieve the optimal user experience for the specific
task at hand.

Given that cellular systems are becoming increasingly complex, I believe this is a natural step in the
evolution of Next-G wireless networks. A data-driven approach that learns directly from experience
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without requiring hand-tuned protocols will allow next-G cellular networks to scale seamlessly to the
extremely diverse set of end user devices and application domains envisioned in networks of the future.
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Appendix A

BOUNCENET – PROOF OF LEMMA 2.6.1

Suppose we are given a graph G(V,E) where |V | = N and d(u) denotes the degree of u. Consider the
following process which iteratively assigns weights (in the range {0 . . .M}) to the vertices. The initial
assignment is F0 such that F0(v) =M for all v ∈ V . We compute Ft as follows:

• Compute a Weighted Max Independent Set Wt+1 in the weighted graph induced by G and Ft.
• If u ∈ Wt+1, then Ft+1(u) = Ft(u)− (d(u) + 1) if Ft(u) > 2(d(u) + 1) and Ft+1(u) = 0 otherwise.
• If u /∈ Wt+1, then Ft+1(u) = Ft(u).

Lemma A.1 If t = O(M log(NM)), then Ft(u) = 0 ∀u ∈ V

Proof Consider the potential function Tt =
∑

u Ft(u).

Claim A.1 Tt+1 ≤ Tt(1− 1/M).

Proof Consider the set of vertices St containing u’s such that Ft(u) > 0. Since the maximum value of
Ft(u) is M , it follows that

|St| ≥ Tt/M (A.1)

Consider now the setWt+1, and w.l.o.g. assume thatWt+1 ⊂ St. Observe thatWt+1 must be a maximal

independent set, i.e., we cannot add any u ∈ St − Wt+1 to Wt+1 without violating the independence
property. Since the total number of nodes with an edge to a node inWt+1 (including self-loops) is at most∑

w∈Wt+1
d(w) + 1, it follows that ∑

w∈Wt+1

d(w) + 1 ≥ |St| (A.2)

However, the left-hand side in the above expression is upper bounded by the amount by which we
reduce the potential, i.e., by the difference Tt − Tt+1 (the reduction in potential could be higher, because
we round all weights smaller than d+ 1 to 0). From Equations A.1 and A.2 we have

Tt − Tt+1 ≥
∑

w∈Wt+1

d(w) + 1 ≥ |St| ≥ Tt/M
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and the lemma follows.

Since Tt has integral values, it follows that after O(M log(T0)) steps we have Tt = 0, and therefore
Ft(u) = 0 for all u.
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Appendix B

BOUNCENET – DATA RATE GAINS FOR 5 APS

In Fig. B.1, we present results for the case when there are 5 APs in the network. This allows us to evaluate
BounceNet’s performance in scenarios where the number of clients is greater than the number of APs. In
such scenarios where the clients outnumber the APs, two or more clients could be assigned to the same
AP, following the algorithm presented in Section 2.6.1. Since clients that share an AP can essentially be
considered as interfering links, the corresponding nodes in the conflict graph will have edges between
them. We can then apply BounceNet’s signal routing algorithm (Section 2.6.2 and 2.6.3) to this modified
conflict graph.

Fig. B.1(a) shows the total network data rate, and Fig. B.1(b) shows the average network data rate
per client, as a function of the number of clients in the network. BounceNet is able to deliver a total
of 21.33 Gbps, 20.81 Gbps and 15.78 Gbps data rates for 10 clients in the 3◦ beam, 12◦ beam and the
phased array testbeds respectively. The baseline performs almost as well as BounceNet for the 3◦ beam
since the interference in this case is very limited, and, as a result, the baseline is able to exploit spatial
reuse. However, as the amount of interference increases, the performance of the baseline deteriorates,
with BounceNet achieving 2.2× and 3.2× gain in network throughput over the baseline for the case of 10
clients in the 12◦ beam, and the phased array testbeds respectively. Since the baseline does not account
for interfering links, it leads to frequent packet collisions, and as a result, inefficient use of the channel.

Compared to 802.11ad, BounceNet achieves 3.26×, 3.35×, and 2.78× gain in network throughput
for the case of 10 clients in the 3◦ beam, 12◦ beam, and the phased array testbed respectively. One
should note that for 802.11ad, the gains with 5 APs are smaller as compared to the gains observed in
Section 2.9.C, where there were 10 APs in the network. This is because BounceNet’s strength over
802.11ad comes primarily from its ability to exploit spatial reuse efficiently, and with only 5 APs in the
network, the potential for spatial reuse is reduced, and therefore the gains that BounceNet can provide
over the standard will be smaller. Hence, to achieve significant gains in throughput, BounceNet advocates
for dense AP deployments with narrow directional antenna beams in mmWave networks.

Finally, the following points are worth noting.
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Figure B.1: Data rates in BounceNet, 802.11ad and baseline for the case of 5 APs in network (a) Total
Network Data Rates (b) Average Client Data Rates.

• With the 3◦ beam in the 60 GHz testbed, we see that the total network data rate for BounceNet saturates
after 5 clients as can be seen in Fig. B.1(a)(iii), achieving 21.33 Gbps and 21.29 Gbps for 10 clients and
5 clients respectively. This is expected, since at any given time at most 5 clients can be communicating
simultaneously in the network. Such saturation can also be observed in the other two testbeds.

• It may seem counter-intuitive that the total network data rate for BounceNet in the 12◦ and the phased
array testbeds continues to grow even when there are more than 5 clients in the network. This hap-
pens because as the number of clients increases in the network, the total number of propagation paths
(direct and reflected) between APs and clients increases as well. Therefore, now it is more likely that
BounceNet can find a set of five propagation paths that can coexist in the network, and consequently,
BounceNet can schedule more clients in every time slot. However, one should note that the rate of
growth of the network data rate reduces as the number of clients increases beyond five, and corre-
spondingly, the average per-client data rates start to drop more sharply beyond five clients as can be
seen in Fig. B.1(b).
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Appendix C

NEUMAC – ENERGY AND LATENCY OVERHEAD
CHARACTERIZATION

It is widely acknowledged that deep learning inference has high latency and energy overheads. However,
since NeuMAC needs to optimize the performance of a multicore CPU, it needs to operate at very small
time scales. As a result, it is imperative that NeuMAC’s inference step be efficient in time and energy. In
this appendix, we characterize the overheads of running inference on NeuMAC’s Deep RL agent.

Towards this end, we design an illustrative hardware macro for NeuMAC’s neural accelerator (shown
in Fig. C.1). The trained quantized weights of NeuMAC’s network are stored in the 32 KB on-chip
SRAM. The primary compute elements in the macro are the (i) 128 element 8-bit multiplier, that can
perform 128 parallel multiplications of 8-bit numbers, (ii) followed by a 7-layer carry save adder tree,
which can add up to 128 8-bit numbers. Thus, the multiplier block and adder tree block together can
implement either one 128 dimensional dot product, or two 64 dimensional dot products in a one iteration.
The ReLU non-linear activation is implemented using comparators, which finally writes the result into
an output buffer. It is important to note that this hardware macro is significantly simpler than a full scale
neural network accelerator, such as [147].

Next, we elaborate on the pipeline for computing one inference step on NeuMAC’s RL agent. Note that
computing the value of one element in the first hidden layer of NeuMAC’s neural network requires one
64 dimensional dot product1. Therefore, computing the values of all elements in the first hidden layer
requires a total of 128 counts of 64 dimensional dot products. Similarly, computing the values at the
second hidden layer requires 128 counts of 128 dimensional dot products, and computing the final layer
requires 64 counts of 128 dimensional dot products. Hence, to compute one inference step in NeuMAC’s
deep network, we need to perform a total of 192 counts of 128-element dot products, and 128 counts
of 64-element dot products. Further, since we can implement two 64-element dot products in parallel,
one inference step requires an equivalent of 256 counts of 128 dimensional dot products to compute the
output. Using this above macro design along with conservative and widely accepted hardware estimates,
we next show that the design of NeuMAC’s neural network architecture adds only marginal overheads,

1Although NeuMAC’s input has 65 elements, for simplicity sake we perform calculations with 64 element input.
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allowing it to operate under the resource constrained setting of a wireless NoC.

Latency Overhead: Here we estimate the latency of computing one inference step on NeuMAC’s RL
agent. The memory array is organized as 16 blocks of 64 by 256 memory elements, making a total of
32 KB storage. For 45nm technology, read access time from such memory sizes can be conservatively
estimated to be around 2 ns [220]. Similarly, a 32-dimensional dot product can be computed within 2 ns
[221]. Hence, we pipeline the data flow in three stages, first after the memory read, second after adding
the outputs of 32 multipliers, and third at the output of the comparator bank. Hence, each stage has a
maximum latency of 2 ns. As a result of such pipelining, one 128 element dot product is computed every
2 ns, that is, every 2 clock cycles2. As noted previously, one inference step requires 256 counts of 128
dimensional dot products. Hence, the total latency for one inference step is 256× 2 = 512 ns (512 clock
cycles). This inference latency of 512 cycles results in a small overhead of less than 6% per time step in
our RL formulation. One point to note is that, the final deep network output is quantized to 8 bits. Hence,
the sigmoid filter after the last layer can be implemented via a 256 element look-up table at a negligible
latency overhead.

Energy Overhead: Next, we estimate energy consumption of the hardware macro. We use the energy
values from the widely-cited paper [222], which approximately characterizes energy consumption of
various compute elements and memory accesses. The dominant energy consumption steps are the reads
from the memory array and the computations on the MAC (Multiply-ACcumulate) unit. From [222], 8
bit multiplies consume 0.2 pJ, and 8-bit additions consume 0.03 pJ. One 128 dimensional dot product on
the MAC unit involves 128 multiplications and 127 additions. Thus the total energy comes to 29.41 pJ.
Memory reads of 64 bits from 2 KB memory blocks requires 5 pJ. Thus, the 128 bit memory reads for
each dot product requires 10 pJ. As a result, one 128 element dot product on the hardware accelerator
requires 39.41 pJ, and with 256 counts, the energy consumed for a single inference step is 10088.96 pJ.
Given that we require one inference every 10,000 ns, the neural accelerator consumes approximately only
1 mW of power on average. In comparison, a single transceiver on the multicore consumes 16 mW [81].
Lastly, note that the numbers in [222] are at 45 nm technology, so 1 mW is a conservative estimate.

Area Overhead: Lastly, the area overhead of the hardware macro is small. Since area is dominated by
memory, the 32 KB of SRAM and few registers in the hardware accelerator impose a small overhead
in comparison to the 512 KB of cache memory at each of the 64 cores. Thus we envision that such a
hardware macro can reside on the same die and share the same clock as the multicore processor.

Thus, even a simple accelerator like the one demonstrated in Fig. C.1 can enable NeuMAC’s agent to

2Our CPU clock is 1 GHz.
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Figure C.1: Illustrative Block Diagram of hardware macro employed for overhead characterization of
NeuMAC’s deep network

operate under the resource constrained setting of a wireless NoC. Note that we do not employ any other
advanced hardware optimization techniques and rely on reported hardware numbers that are widely ac-
cepted rather than the state-of-the-art today.
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Appendix D

ISLA – PROOF OF LEMMAS 4.5.1 & 4.5.2

Here we re-state the lemmas and provide proofs.

Lemma 4.1 For a sub-sampling factor P and N OFDM subcarriers, the complex valued scaling factors

for each subcarrier will be preserved upon aliasing if N = z × P , for some integer z, given the aliasing

results in no collisions.

Proof of lemma 4.1: Assume that x[n] is a discrete signal from 0 to N −1, and we are sub-sampling (or
decimating) it by a factor of P , meaning y[n] = X[n×P ] for some integer P . Then the Discrete Fourier
Transform of y[n], denoted by Ŷ [k] is

Ŷ [k] =

N/P−1∑
n=0

x[nP ]e−j2 2π
N/P

kn

=
1

P

N−1∑
n=0

x[n]
P−1∑
m=0

ej
2π
P

mne−j2 2π
N/P

kn
P

=
1

P

P−1∑
m=0

(N−1∑
n=0

x[n]e−j( 2π
N

n)(k
N/P
N/P

−N
P
m)).

Now if P divides N , in other words N = Pz for some integer z, the above simplifies to

Ŷ [k] =
1

P

P−1∑
m=0

(N−1∑
n=0

x[n]e−j( 2π
N

n)(k−zm)
)

=
1

P

P−1∑
m=0

X̂[k − zm],
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where X̂ is the DFT of x[n]. This proves that, as long as there is no collision, meaning that there is at
most one index m in the above equation for which X̂[k− zm] ̸= 0, then the complex values of X̂[k] will
be fully preserved upon sub-sampling. This proves the lemma.

We also point out that if P does not divide N , then the complex values are not preserved. Specifically,
if N/P is not a proper integer, Ŷ [k] will be in terms of X̂[kN/P

N/P
− N

P
m] where inside the argument,

kN/P
N/P
− N

P
m, is not necessarily an integer. As a result, the original information of X̂[k] is never repeated

in any of the Ŷ indices. In fact, Ŷ would closely relate to an interpolated version of X̂ with the Dirichlet
kernel.

Lemma 4.2 Consider an OFDM symbol withN frequency subcarriers, indexed as {f−N
2
, . . . , 0, . . . , fN

2
−1}

with inter-frequency spacing of ∆f , and a narrowband receiver that subsamples by P×. If P 2 di-

vides N , then the ideal filter parameters that meet all three requirements are: (1) f 0
M = f−N

2
, (2)(

N
P 2 − 1

)
×∆f < ∆S < N

P 2 ×∆f , and (3) ∆F = N
P
(1 + 1

P
)×∆f .

Proof of Lemma 4.2: First, we show that no two frequencies collide after aliasing. Let q = N
P

, and
assume that two frequencies fα and fβ collide. Let fα be k-th subcarrier (for 0 ≤ k < P ) covered at the
i-th passband (0 ≤ i < ∗∆S

∆f
), and let fβ have k′ and i′ as corresponding indices. To collide after aliasing,

fα − fβ = (k − k′)∆F + (i − i′)∆f must be an integer multiple of q∆f . However, |k − k′| ≤ P − 1

and |i− i′| < N
P 2 . Thus |fα−fβ |

∆f
< (P−1

P
+ 1

P
)q = q, meaning we must have fα − fβ = 0, proving the first

design requirement. Second, we note that P passbands that do not overlap (since ∆S < ∆F ), and each
passband covers exactly N

P 2 subcarriers. We therefore have a total of P × N
P 2 = q subcarriers that, as we

just showed, do not overlap after aliasing. Therefore, after aliasing, each of the q subcarriers is covered
exactly once, ensuring the second design requirement. Finally, we note that the smallest bin index is
covered by the filter is min fM = −N

2
, and the largest bin index is the last bin of the last passband, whose

index can be computed as follows:

max fM =
−N
2

+ (P − 1)×∆F + ∗∆S
∆f
− 1

=
−N
2

+ (P − 1)× N

P
(1 +

1

P
) + (

N

P 2
)− 1

= −N
2

+N − 1 =
N

2
− 1.

Thus, the entire bandwidth (including f−N
2

and fN
2
−1) is covered, ensuring the last design requirement.
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Appendix E

ISLA – MEMS SPIKE-TRAIN FILTER

Spike-Train Filter Implementation: Following Lemma 4.2, we can derive the desired frequency re-
sponse of the spike-train filter, and design MEMS resonators topology accordingly. For example, in our
experiment, we used a 100 MHz 5G-like OFDM waveform with N=2048 subcarriers and a subcarrier
spacing ∆f = 49 kHz, and we down-sample the filtered waveform by a factor of P=16. According to
Lemma 4.2, the desired filter should 16 spikes with a spike spacing of 6.64 MHz spanning the 100 MHz
bandwidth, and each spike should have a width around 400 kHz.

We can design a spike-train filter leveraging the periodic resonance frequencies of a type of MEMS
acoustic resonators that is commonly referred to as a LOBAR (Lateral Overtone Bulk Acoustic Res-
onator). As shown in Fig. E.1, the LOBAR resonator consists of 12 electrodes on the top of a thin
film made of the piezoelectric material LiNbO3. And we combine seven resonators in a ladder filter
topology [223] to build a filter circuit. As a result, the LOBAR resonator architecture determines the
spike frequencies, whereas the slight difference between different resonators determines the width of the
spikes. For simplicity, here we only focus on these two key parameters of the spike-train filter response,
since they are restricted by our channel recovery algorithm as described in Sec. 4.5. More details on the
MEMS spike-train filter design can be found in [224].

(1) The width of the film: the spacing between spikes ∆f is determined by the width of the thin film W

as ∆f = v/W , where v is the acoustic velocity in the piezoelectric material, which is ∼ 4 km/s in our
design. Therefore, to achieve the 6.6 MHz spike spacing, we design the film width W to be ∼ 660 µm.

(2) The film width difference between different shunt and series resonators: the spike width ∆F of
the spike-train filter equals to the resonant frequency difference between shunt and series resonators
in the ladder filter, which is determined by the difference ∆W between shunt and series resonators:
∆F = fc∆W

W
. We design with piezoelectric film width to be 660 µm for series resonators and 660.26 µm

for shunt resonators, which leads to ∆W = 0.26µm, so that the widths of the spikes are around 400 kHz.
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Appendix F

ISLA – UPDATED OBJECTIVE FUNCTION TO
ACCOUNT FOR RESIDUAL CFO

ISLA captures the narrowband channel and wideband channel from different subframes. Thus, there
is going to be an additional phase accumulation between the two measurements due to residual CFO.
To address this, we slightly modify Eq.4.6 where we split the objective function into two separate L-2
norm minimizations, with the first term containing only the wideband channel h′

M , and the second term
containing only the narrowband channel h′

NB. This objective function is given below:

{τ ∗l }Ll=1 = argmin
τ1,...,τL

(
∥h′

M − VMFNΨ(VMFNΨ)†h
′

M∥2

+ ∥h′

NB − VNBFNΨ(VNBFNΨ)†h
′

NB∥2
)

s.t. τl ≥ 0 ∀ l ∈ {1, 2, . . . , L}

(F.1)

The modified objective function is now invariant to phase offsets between the two channels, and ISLA
can solve this updated optimization using the same technique described in Sec. 4.6.
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