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Abstract

An autonomous system has components to perceive the environment, control the hard-
ware, and communicate with other agents. Ideally, the formal analysis of the closed-loop
system would have access to explicit models of all components. However, explicit models of
perception and dynamics are often unavailable or intractable for formal verification. Instead,
executable models for these components are available for simulation and testing in practice.
In this thesis, we will present our compositional verification framework for certifying and as-
suring safety for systems with combinations of distributed communication, learning-enabled
perception, and black-box dynamics. Our insight is to construct abstractions of these com-
ponents for the end-to-end system-level safety analysis; then we empirically validate each
component against its abstraction by sampling executable models.

For distributed robotic applications, we focus on constructing the abstraction for hetero-
geneous motion dynamics. Our notion of port assumptions for dynamics decomposes the
safety assurance into two steps: (a) the formal safety proof of the distributed system using
port assumptions, and (b) the validation of port assumptions using data-driven reachability
analyses. We learned that this compositional reasoning generalizes to both synchronous and
asynchronous communications between heterogeneous vehicles. We are able to derive the
collision avoidance guarantee in a distributed delivery application using our Koord frame-
work for shared variable communication between ground vehicles and quadrotors. We apply
the same idea on asynchronous message passing-based Unmanned Air-traffic Management
protocols (UTM) and verify safe separations between quadrotors and fixed-wing airplanes.

We also study autonomous systems with visual perception enabled by deep neural networks
(DNNs). Our main insight is to search for ground truth-based approximate abstractions for
perception. Our notion of approximate abstractions bypasses the challenges in the formal
specification of perception and high dimensional image domains, and the precision of the
approximate abstraction can be estimated empirically. We study both single agent and multi-
agent systems including three practical vision-based autonomous systems: (a) a lane tracking
system for an autonomous vehicle, (b) a corn row following system for an agricultural robot,
and (c) a vision-based multi-agent swarm formation. We are able to provide end-to-end
assurance for all systems and examine the precision using simulations.

In summary, our compositional verification framework outlines a pragmatic path to pro-
vide safety assurance of autonomous systems. We formalize (approximate) abstractions for
compositional verification and develop approaches to search for abstractions. This allows us
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to formally verify as many components in the system as possible. For other components that
are intractable for formal verification, we search for abstractions of these components and
rigorously validate the abstractions via testing and data-driven verification. We are able to
gain safety assurance using abstractions in all our case studies and validate the abstractions
with high-fidelity Gazebo and AirSim simulations.
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Chapter 1: Introduction

Autonomous systems are being increasingly deployed in safety-critical applications, such
as manufacturing [1], agriculture [2, 3], delivery [4], and transportation [5, 6]. For example,
there are more than two million drones registered for recreational and commercial uses in
the United States since 2021 [7]. System-level (also called end-to-end) safety assurance is
important for such autonomous systems to achieve acceptable levels of human and property
safety, meet safety laws and regulations, and gain public trust. Not surprisingly, there is
now a growing momentum for regulating learning-enabled autonomous systems from gov-
ernment [8] and corporate bodies [9]. Regulatory agencies from many industries including
aerospace [10], automotive [11], robotic surgery, and manufacturing, are creating processes
and guidelines. NASA and FAA are actively developing traffic management systems for the
safe operations of the unmanned aircraft [12].

Current approaches to ensure system-level safety mainly rely on large-scale simulations and
field tests. However, the required amount of simulations and tests can be prohibitively large
because unsafe behaviors of autonomous systems are rare events by nature. For example,
to validate if the autonomous vehicles can achieve the same performance as human drivers,
i.e., a fatality rate of 1.09 deaths per 100 million miles, it is estimated that driving for
approximately 8.8 billion miles is required [13].

Formal verification addresses the rarity of unsafe behaviors and provides a rigorous way
of obtaining strong assurance. Formal techniques aim to mathematically check that all be-
haviors of a system, described using a formal model, satisfy the requirements given as formal
system-level specifications. This requires the existence of formal descriptions for both the
specification and the model of the implementation. Such descriptions are usually given in
a unified mathematical framework with a formal semantics that associates a mathemati-
cal interpretation with each description, and the framework would support checking if the
interpretation of the model conforms to the specification. Formal verification has been suc-
cessfully applied for the correctness of hardware design [14] as well as software design [15].

In particular, we advocate the use of compositional verification using abstractions of com-
ponents. In essence, if we can find abstractions to capture all behaviors of components,
and we show that the system with the components replaced by their abstractions satisfies
the system-level specifications, then the original system satisfies the system-level specifica-
tions. Frameworks such as assume-guarantee reasoning [16, 17, 18], hybrid input/output
automata [19, 20, 21], model checking combined with reachability analysis [22, 23], and
contract-based design [24] propose different abstractions and compositional reasoning ap-
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proaches to verify autonomous systems. There are however unique challenges in applying
compositional verification on autonomous systems.

1.1 CHALLENGES IN COMPOSITIONAL VERIFICATION OF AUTONOMOUS
SYSTEMS

Certifying autonomous systems with compositional verification relies on analyzing all sys-
tem components and their interactions. Ideally, the compositional verification would have
access to models of all system components, and the formal analysis tools would support
all models. In reality, some components in autonomous systems are still beyond the ca-
pability of state-of-the-art formal approaches. For example, the formal methods commu-
nity has identified key challenges and limitations on formally verifying safety with learning-
enabled components [25, 26]. Several recent research papers are starting to tackle this prob-
lem [27, 28, 29, 30]. See Section 1.4 for a more detailed discussion of related approaches. In
this thesis, we studied several autonomous systems including distributed coordination (Chap-
ter 4), unmanned aircraft traffic management (Chapter 5), smart manufacturing (Chapter 6),
autonomous vehicle with vision (Chapter 7), and vision-based formation systems (Chap-
ter 8). Our experiences suggest that we can design a good decomposition to apply formal
verification on as many components as possible and obtain statistical guarantees for compo-
nents currently intractable for formal analyses.

More precisely, we consider that an autonomous system consists of several components
given by the system architecture. Figure 1.1 shows an example autonomous vehicle, and
Figure 1.2 shows its system architecture with four components. A decomposition is to
decompose the system into modules, and each module can group one or multiple components.
We propose that a good decomposition should ease the following tasks for compositional
verification:

(1) For components amenable to formal analyses, the decomposition defines modules that
are easier to extract mathematical models for existing formal approaches.

(2) If a module must include components intractable for formal analyses, the decompo-
sition helps derive abstractions of the module from system-level specifications. The
abstractions should define ground-truth input/output behaviors for modules (or test
oracles [31]) so that statistical assurance can be obtained through testing or data-driven
verification.

These criteria are inspired by the recent progress in data-driven verification to provide sta-
tistical safety guarantees for black-box vehicle dynamics. The DryVR framework [23] pro-
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Figure 1.1: Vision-based lane detection component on an autonomous vehicle.

poses the setup of the white-box discrete transition graph combined with the black-box
continuous dynamics for hybrid system verification. Following the same insight, our Koord
framework [32, 33] shows that the verification of distributed robotics can be decomposed into
platform-independent coordination and platform-dependent motion dynamics. This decom-
position allows the application of different analyses more suitable for individual components.

In addition, one should carefully consider the following components when designing the
decomposition:

(1) dynamics of the hardware platform, such as the motion dynamics of drones and ground
vehicles, and

(2) perception using high dimensional sensing, such as computer vision and deep neural
networks (DNNs) with cameras or LiDAR scanning.

Here we elaborate on the challenges due to dynamics and perception components and how
a good decomposition can address them.

• Environmental Uncertainties. It is known that extracting complete formal models
of certain components is difficult due to unaccounted environmental uncertainties.
Consider an autonomous vehicle in Figure 1.1 as an example. It is difficult to account
for all external factors, such as the surface friction of the road, the slope, the lighting
conditions, the temperatures, etc., that can affect the motion dynamics and perception
components of the vehicle. Especially, DNN-based perception functions are known to
be susceptible to adversarial external perturbations [34]. Interestingly, if we group
perception with dynamics as a module and consider the evolution of the dynamics, the
DNN-based perception could benefit from the smoothness of natural signals, and be
more robust to occasional misclassifications [35].
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Figure 1.2: System architecture of an autonomous vehicle with camera and DNN-based
perception.

• High Dimensional Interfaces. The decomposition can significantly affect the scalabil-
ity problem in formal verification. For example, if we directly decompose the system
into four modules for four components in Figure 1.2. the interface between the cam-
era component and the NN perception component will worsen the scalability problem
for its high dimensional image space: the very deep convolution neural network (VG-
GNet) [36] and the deep residual networks (ResNet) [37] commonly used for visual
perception have an input space of RGB images with 224 × 224 pixels, which, if mod-
eled naively, could encode 256224×224×3 ≈ 10362000 possible inputs. Alternatively, if
we choose a different decomposition which groups the camera component and the NN
perception component as a module, the number of dimensions of the interface is sig-
nificantly smaller.

• Hard-to-Formalize Tasks. The decomposition can help formalize the correctness of a
module. The combination of environmental uncertainties and high dimensional space
leads to the difficulty in defining the desired behavior of a component. For instance,
Figure 1.2 shows a NN perception component for lane detection in autonomous vehicles.
To define the correctness for this component requires a mathematical formulation over
the set of images. The lane lines in each image may look very different under variations
of lighting conditions, textures of the roads, colors of the lane markers, etc. In general,
formally specifying such perceptual tasks is difficult due to ambiguity [38]. On the
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other hand, the specification for a position estimation task is obvious. The correctness
on estimating the position of the lane is well-defined given the ground-truth position
of the car. Hence, if we group the camera sensor and the NN perception as a module
for position estimation, the specification for this module is unambiguous.

1.2 IMPORTANCE OF ABSTRACTIONS FOR REASONING ABOUT SAFETY

Our insight to provide safety assurance via compositional verification is based on one
crucial observation: both dynamics and perception are used to capture the behavior of
the environment under which the autonomous system is operating. Modeling autonomous
systems as reactive systems [16, 39], or equivalently open systems [40], presents a promising
way of addressing the above-mentioned challenges. Figure 1.3 summarizes the compositional
reasoning steps as a proof tree enabled by modeling autonomous systems as reactive systems.
From the reactive systems’ perspective, one considers the overall system as the composition
of a reactive module (denoted as RM ) interacting with a real environment (denoted as REnv)
and check if the system (denoted as RM∥REnv) satisfies desired safety properties (denoted as
JSafeK). The real environment REnv is used to represent components discussed in Section 1.1
that are intractable for formal reasoning, and a model of the environment (denoted as Env),
i.e., the assumptions on the behavior of the real environment, is used to simplify the real
environment REnv. If the model Env is an exact abstraction (or over-approximation) of the
real environment REnv (denoted as REnv ⪯ Env), and if the abstract system (denoted as
RM∥Env) obtained by substituting the real environment REnv with the abstraction Env is
verified (denoted as RM∥Env |= JSafeK), then we can infer the safety of the original system.

RM |=k JInvK Env |=∆T JInvK |= JInv ⇒ SafeK
RM∥Env |= JSafeK REnv ⪯ Env

RM∥REnv |= JSafeK

Figure 1.3: Proof tree for the compositional verification of the system composed of the
reactive module RM and the real environment REnv. The proof is to find a model of
environment Env that is an abstraction of REnv and show both RM and Env preserves a
given invariant JInvK, and the invariant JInvK ensures the safety JSafeK.

Nevertheless, the verification of the abstract system (RM∥Env |= JSafeK) as a whole is
likely intractable, and hence we apply compositional reasoning to decompose the verification
of the abstract system into verifying the reactive module and the model of environment
separately. Here we assume an inductive invariant (denoted as JInvK) is available that can
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ensure the system-level safety (denoted as |= JInv ⇒ SafeK). This allows us to apply existing
induction-based verification techniques on the reactive module (denoted as RM |=k JInvK).

Therefore, the main proof obligations to complete the compositional reasoning are to
ensure that (1) the model of environment is an abstraction of the real environment (denoted
as REnv ⪯ Env), and (2) the model of environment preserves the invariant (denoted as
Env |=∆T JInvK). However, it is often intractable to rigorously prove that Env is an exact
abstraction of the real environment REnv. For example, if REnv includes the perception
model implemented with deep learned neural networks, showing that Env over-approximates
REnv still suffers from the state explosion and external uncertainty problems. We instead
explore a compromise: an approximate model Env is constructed which still preserves the
invariant (Env |=∆T JInvK), but the abstraction relationship between Env and REnv can
have an error, and this error can be estimated arbitrarily precisely with high probability
using data-driven verification or simulations. That is, we check REnv ⪯ Env empirically
and provide probability estimates. We call this approximate model Env a safe abstraction
of the real environment REnv.

This thesis therefore focuses on systematically searching for safe abstractions. The de-
signed approaches cover a wide variety of autonomous systems including single-agent and
multi-agent systems in combinations with vision-based perception, heterogeneous dynamics,
synchronous and asynchronous communications.

1.3 CONTRIBUTIONS OF THE THESIS

In this thesis, we propose a general formalism, CPReact, for modeling and verifying a
general class of autonomous systems. We separate the reactive module RM from the envi-
ronment Env following the “good decomposition” criteria outlined in Section 1.1 and provide
a compositional approach to formally verify the end-to-end system. The nondeterminism in
our CPReact framework allows us to model different types of distributed systems under
different communication channels as the reactive module, and we show that the verification
of the reactive module can be achieved using existing approaches, such as model checking
or concurrent program verification, from software verification and distributed computing
literature.

We show that the safety verification of the environment can be reduced to finding a model
of the environment Env representing the assumptions on the real environment REnv. To
reiterate, we search for a model of the environment satisfying two criteria:

• Safe. The invariant preserving the system safety is preserved under the assumptions
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made by the model (Env |=∆T JInvK).

• Abstraction. The model of the environment over-approximates the real environment,
i.e., the model simulates all possible behaviors of the real environment (REnv ⪯ Env).

We further elaborate on our approaches for finding safe abstractions of the dynamics and
the perception.

Abstraction of Dynamics in Distributed Robotics Our CPReact model generalizes
the Koord language framework in [32] to deal with different distributed systems under
different communication models. The CPReact model can model not only synchronous
communication via shared variables in Koord but also asynchronous communication via
message passing, and this allows us to support completely different application domains.

In Chapter 4, we describe the separation of coordination logic from low level motion dy-
namics in the CPReact model. It decomposes the verification of the whole system into
two independent proof tasks: (1) the verification of discrete transitions defined by Koord
programs with shared variables, and (2) the verification of continuous state transitions de-
fined by the dynamics. The verification of discrete transitions can be rigorously proven
with existing program analysis tools. The notion of controller port assumptions abstracts
the heterogeneous platform-specific dynamics and reduce the verification of continuous state
transitions to reachability analysis. That is, we have designed controller port assumptions
to over-approximate the set of all transient states reached in a continuous transition in or-
der to prove the system safety, and controller port assumptions can be validated against a
particular motion dynamics model. It further enables us to apply data-driven reachability
analysis via DryVR to discharge the proof without explicit models.

In Chapter 5, we follow the same decomposition and apply compositional verification on
Unmanned Aircraft Traffic Management systems (UTM), SkyTrakx [41]. Different from
the Koord programs, UTM protocols rely on asynchronous message passing communica-
tion. Nevertheless, we are able to specify abstractions of dynamics represented as operation
volumes (OV), and we use DryVR to check if dynamics models follow OVs.

In Chapter 6, we further showcase how to model smart manufacturing systems which
are distributed systems with agents doing nonidentical tasks. We provide the compositional
modeling and simulation/testing for smart manufacturing systems, and depict a path forward
to formally verify distributed systems with nonidentical agents and dynamics.

Approximate Abstraction of Vision-based Perception In Chapter 7, we propose a
practical method for reasoning about the safety of systems with vision-based perception
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base on our paper [30]. Our method is based on systematically constructing the Approx-
imate Abstract Perception (AAP) for the model of environment from system-level safety
requirements, data, and program analysis of the reactive modules that are downstream from
perception. These approximations have some desirable properties like being low-dimensional
and tractable for existing verification tools. Further, the closed-loop system, with the ap-
proximation substituting the actual perception model, is verifiably safe.

Establishing a formal relationship between the actual perception and the AAPs remains
well beyond available verification techniques. However, we do provide a useful empirical
measure of their closeness called precision. Overall, our method can trade off the size of
the approximation against precision. We apply the method to two significant case studies
(1) a vision-based lane tracking controller for an autonomous vehicle and (2) a controller for
an agricultural robot. We show how the generated approximations for each system can be
composed with the downstream modules and be verified using program analysis tools like
CBMC. Detailed evaluations of the impacts of size, and the environmental parameters (e.g.,
lighting, road surface, plant type) on the precision of the generated approximations suggest
that the approach can be useful for realistic autonomous systems.

In Chapter 8, we further study the vision-based drone formation system to showcase how
to analyze a distributed autonomous system with vision-based perception. To our knowledge,
we provide the first approach to provide safety assurance for realistic vision-based distributed
control systems with abstractions.

High-Fidelity Simulations In addition to the theoretical contributions, we developed
and integrated high-fidelity simulation models for data-driven analysis and validation in
every case study. The simulation models include a variety of motion dynamics for quadro-
tors [42], racecars [43], fixed-wing airplanes [44], smart manufacturing systems [45], elec-
tric golf carts [46], as well as photo-realistic camera images from AirSim [47] for vision-
based perception. Our simulation code is open-source and available online at https://
cyphyhouse.github.io/ for Gazebo simulations and https://publish.illinois.edu/
aproximated-abstract-perception/ for AirSim simulations.

1.4 RELATED WORKS

In this section, we review the literature on formal verification of autonomous and cyber-
physical systems. This is a vast and growing area, we do not include the vast literature on
the testing and statistical methods for autonomous systems, and we refer the readers to a
comprehensive review [48] published in 2023. We focus our discussions on works that provide
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formal modeling and verification techniques for systems with distributed communications,
learning-enabled components, and vision-based perception.

For modeling autonomous systems, there are many domain specific languages for designing
robotic applications. A detailed survey in [49] identified 137 publications on domain-specific
modeling languages that target core robotics concerns, but only few provide the formal
verification and validation capabilities as discussed in [33]. We will discuss these formal
modeling and verification frameworks in Section 1.4.1.

For the verification of systems with learning-enabled components, we start with the closely
related works that deal with vision-based perception in Section 1.4.2. We then discuss the
works on verifying neural feedback systems using NN controllers in Section 1.4.3.

Additionally, we summarize the rapid advancements on the verification tools for NNs as
an isolated component in Section 1.4.4, and we discuss how we may integrate these tools
into our approach for the system-level verification.

1.4.1 Formal Verification Tools for Distributed Robotics

There are several frameworks that support formal reasoning for distributed robotics. Over-
all, instead of a monolithic formal model and single verification approach, the community
has recognized that there is a need to support a variety of formal techniques to address
different components, such as communication, coordination, planning, and motion control.

The UCLID5 framework [50, 51] is designed to support models involving combinations
of hardware and software. Their multi-modal language supports various models including
transition systems, sequential programs, and concurrent systems along with diverse specifi-
cations such as invariant, temporal logic, hyper-properties, and simulation relations. This
enables one to tackle verification problems for systems with heterogeneous components and
varied specifications. UCLID5 emphasizes on the use of syntax-guided and inductive syn-
thesis (SyGuS) [52] to automate steps in modeling and verification and applies satisfiability
modulo theories (SMT) solvers and SMT-based verification methods. Both our CPReact
model and UCLID5 are solving the same sub-problems of finding inductive invariant and
synthesizing abstractions of components. In comparison, we utilize reachability analysis
and constrained optimization that are more suitable for models with continuous time and
state spaces. It will be interesting to combine our approach with SMT-based syntheses from
UCLID5 to deal with hybrid systems.

DRONA [53] is a framework for multi-robot motion planning built on P language [54] for
partially distributed system, and it has been deployed on drones. Our Koord language,
CPReact model, and the underlying CyPhyHouse tool-chain [55] aims to be more gen-

9



eral, and multiple applications have been deployed on cars and drones in both simulations
and hardware. The explicit model checker (using Zing) of DRONA relies on manual proofs
of their safe-plan-generator and path-executor, which are analogous to manually finding safe
abstractions. DRONA’s model checker explores reachable states up to a given depth (num-
ber of transitions from an initial state). The induction proof enabled by our CPReact
modeling framework achieves unbounded verification.

VeriPhy [56] is a modeling framework based on differential dynamic logic [57] and its
theorem proving engine KeYmaera X [58]. It relies heavily on differential dynamic logic,
and this poses difficulties on integrating different formal techniques such as reachability
analysis for dynamics.

1.4.2 Verification on Vision-Based Control Systems

Several works start to apply formal verification on vision-based control systems including
VerifAI [27, 59] by Ghosh et al., [28] by Katz et al., NNLander-VeriF [29], and [60] by
Păsăreanu et al. These works and our approach all generate a simpler model (abstraction or
not) of the vision-based perception component using ground-truth information either from
simulators or labeled datasets.

VerifAI [27] and related publications [61, 62] provide a comprehensive framework to falsify
a closed-loop system with ML-based perception. Their techniques focus on the falsification
of the system specification including fuzz testing, simulation, neural network redesign, coun-
terexample guided data augmentation, syntheses of hyperparameters and model parameters.
Our work on AAPs (Chapter 7) provides a safe approximation and complements the falsifica-
tion approaches of VerifAI. Further, the Counter Example Guided Inductive Synthesis-based
approach in [59] uses VerifAI to find counterexamples of the closed-loop system, and it syn-
thesizes a controller as well as learns a surrogate model for the simulator and perception
components at the same time. On the other hand, our approach by design reuses existing
Lyapunov stability and barrier certificate proof techniques for inferring perception models,
and decouple the design of the controller from the perception models.

[28], [29], and our work on AAPs are similar in spirit to the white paper [18] by Păsăreanu
et al. In [18], a compositional approach is proposed based on inferring abstractions/contracts
for learning-enabled components. The compositional approach enables separate component
verification with specialized tools, e.g., one can use software model checking for a discrete-
time controller, hybrid model checking for the plant component in an autonomous system,
and DNN analysis for the perception module. [28] in particular trains generative adversarial
networks to produce a simpler network. This simpler network transforms states and envi-
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ronment parameters to estimates similar to our AAP. NNLander-VeriF in [29] approximates
the perception by encoding the camera sensors and computer vision components as a NN
using geometric models for 3D-vision [63]. It then verifies NN for perception along with NN
controllers for an autonomous landing system using NN verification tools (see Section 1.4.4).
In comparison, our work provides an intelligible set-valued function to approximate the
perception.

Most recently, [60] proposed a probabilistic abstraction for formal probabilistic analyses.
Similar to our AAPs, their approach replaces the camera and the network with a compact
probabilistic abstraction built from the confusion matrices computed for the DNN on a
representative image data set. The abstraction is then integrated to a probabilistic system
model, such as Discrete Time Markov Chains, and obtain system level probabilistic safety
guarantees. Our approach differs in that our construction of abstractions is in a safety guided
way. We derive abstractions with respect to not only the image data set but also the system
level safety property; thus we provide the more traditional worst case safety guarantee for
our approximated system in contrast to their probabilistic guarantees.

1.4.3 Verification of Closed-Loop Neural Feedback Systems

In the past three years (2020-2023), there is a focus on the analysis of neural feedback
systems with neural network controllers including verification [64, 65, 66, 67], reachability
analysis [68, 69, 70, 71, 72], statistical model checking [73], and synthesis [74]. [66, 67] specif-
ically focus on developing and verifying a neural network replacement for ACAS-Xu collision
avoidance decision tables. Such controller NNs are typically much smaller than the DNNs
used for perception. Therefore, in order to apply these techniques, we can derive AAPs for
the DNN-based perception pipeline and encode AAPs as smaller NNs or equivalent models,
and we may reuse the techniques for neural feedback systems to verify the approximated
closed-loop system.

1.4.4 Neural Network Robustness Verification

Motivated by safety criticality of autonomous systems, the problem of verifying neural
networks has received keen attention. Recently, there are plenty of works on verifying an
isolated neural network such as ReLuplex [75], NNV [64], Verisig [70], and the line of works
in the ETH Robustness Analyzer for Neural Networks (ERAN) including AI2 [76], Deep-
Poly [77], and the PRIMA framework [78]. Lately, the α, β-CROWN project [79, 80] ad-
vanced the NN verification research significantly. α, β-CROWN was able to solve more than
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a dozen benchmarks proposed by industry and prevailed in the neural network verification
competitions. We refer readers to the summary reports of the verification of neural network
competitions in 2021 and 2022 [81, 82] for a complete list. It is however challenging to use
these NN verification tools to analyze the DNN-based perception component with respect to
the system-level safety. Existing NN verification tools for image processing DNNs currently
only verifies local robustness against perturbations on a single camera image [81, 82]. These
tools check if a DNN is robust against adversarial perturbations on selected image inputs.
The NN verification results therefore only hold for a small neighborhood around the given
inputs, and this is insufficient to ensure the robustness over the entire image domain required
by the end-to-end safety of the autonomous system. Formal analysis over the entire image
domain, coined as global robustness, is still beyond the capabilities of existing NN verification
techniques.

Our work on finding AAPs decomposes the system-level safety to abstractions for modules.
We can further check local robustness using NN verification tools to verify if the perception
component satisfies AAPs for selected images. To further complete the verification of the
system, more research on verifying the global robustness of DNN-based perception is needed.

1.5 ORGANIZATION OF THE THESIS

This thesis is organized as follows:

(1) In Chapter 2, we present our CPReact modeling and verification framework based
on reactive systems and induction proofs.

(2) In Chapter 3, we formally define the abstractions for environments and the synthesis
problem of safe abstractions.

(3) In Chapter 4, we present our CPReact model for analyzing distributed Koord
applications with synchronous communication, and we present our approach to search
for safe abstractions of the dynamic models using data-driven reachability analysis.

(4) In Chapter 5, we present our SkyTrakx tool for the same CPReact model-based
safety analysis on Unmanned Aircraft Traffic Management protocols with asynchronous
message passing communications and communication delays.

(5) In Chapter 6, we study the compositional modeling and testing for smart manufactur-
ing system with non-identical agents and dynamic models.
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(6) In Chapter 7, we present our approach to search for safe abstractions of vision-based
perception using constrained optimization solvers.

(7) In Chapter 8, we analyze distributed drone formations with vision-based positioning
components which combines a distributed system with vision-based perception.

(8) Lastly, we conclude and discuss ongoing research and future directions in Chapter 9.
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Chapter 2: Models and Proof Techniques for Autonomous Systems

In this thesis, we design a formal modeling framework for autonomous systems, named
CPReact, based on the reactive system models in [16, 83]. We consider an autonomous
system as the interaction between a physical environment and a reactive module. The reactive
module maintains an internal state and interacts with the environment via percept variables
as input and feedback variables as output. This separates the reactive module representing
the known components, such as software controllers, from the environment representing the
incomplete or unknown components, such as black-box vehicle dynamics, complex vision,
or a partially observable environment in general. Our approach then divides the safety
verification of the autonomous system into (1) checking that the reactive module preserves
the safety and (2) searching for a safe abstraction, a model representing assumptions on the
incomplete physical environment.

In this chapter, we will first provide basic definitions for expressing the states via vari-
ables and expressions in Section 2.1. We then formalize a CPReact system model as the
composition of a physical environment and a reactive module in Section 2.2. In Section 2.3,
we provide the induction-based safety analysis for CPReact.

2.1 VARIABLES, VALUATIONS, EXPRESSIONS, AND PREDICATES

We follow the notations in the two textbooks [83, 84] and use a set of variables over
arbitrary data types and the valuations of these variables to model the state-space of au-
tonomous systems. For commonly used types, we denote by B, N, R, and R≥0 the sets of
Boolean values, natural numbers, real values and nonnegative reals, respectively. An enu-
merated type contains a finite number of symbolic constants; an example of such a type is
the set {ON, OFF} with two values.

For a set of variables X, a valuation over X is a function q such that for each variable
x ∈ X, q(x) is a value belonging to the respective domain of the variable x. When X is finite
with a cardinality of k ∈ N, we also denote a valuation q = {x1 → v1, x2 → v2, . . . , xk → vk}
to explicitly enumerate the value vi of each variable xi ∈ X. We let QX denote the set
of all possible valuations of X (over the respective types). Also, for any set of variables
X, we let X ′ denote a fresh set of primed variables corresponding to variables in X, i.e.,
X ′ def= {x′ | x ∈ X}, and the type for x′ is the same as the type for x. For simplification
purposes, we consider that the valuations over X ′ are interchangeable with the valuations
over X, and the set of all valuations QX′ is the same as QX .
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An expression e is constructed using variables in X, constants, and primitive operations
over types corresponding to these variables. We assume all expressions are well-typed by
construction. Given a valuation q, we denote the evaluation of the expression e over q as
eval(e, q). A predicate Pred over the set of variables X is a Boolean expression; hence, the
evaluation of a predicate eval(Pred, q) is either true or false. In addition, we use the notion,
JPredKX , to denote the subset of QX where Pred evaluates to true, in other words, we can
define JPredKX as shown in Formula (2.1):

JPredKX
def= {q ∈ QX | eval(Pred, q)} (2.1)

In addition, we use several shorthand notations for the valuations of disjoint sets of vari-
ables. Given multiple pairwise disjoint sets of variables, X1, X2, . . . , we use QX1,X2,... as the
shorthand of all possible valuations for the product set, QX1 × QX2 × . . . , and we denote
a valuation as (q1, q2, . . . ) ∈ QX1,X2,... with q1 ∈ QX1 , q2 ∈ QX2 , and so on. Similarly, we
use JPredKX1,X2,... as the subset of QX1,X2,... where Pred evaluates to true, and we use JPredK
without denoting the sets of variables when there is no ambiguity. We further use the notion
Pred[X ′

i/Xi] to denote the predicate constructed by replacing the variables xi ∈ Xi in Pred
with the primed version of variables x′

i ∈ X ′
i.

Example 2.1. Let us consider how to model the states of an autonomous vehicle with its
position and the current time. We can define a set of two variables X ={pos, clk} in which
pos represents the position and clk represents the clock. For simplicity, we assume that pos
is of the type R to represent a 1D position, and clk is of the type R≥0 to represent the time.
A state of the vehicle is then a valuation, e.g., q1 = {pos→ 1.1, clk→ 0.6} ∈ QX , denoting
that pos maps to 1.1 meter and clk maps to 0.6 seconds. Let us then consider an example
predicate in Formula (2.2) over the set of variables X:

Pred def= (pos ≥ 0 ∧ clk ≥ 0.5) (2.2)

We can easily see, if we evaluate the predicate over the valuation q1, we know eval(Pred, v1)
is true because (1.1 ≥ 0 ∧ 0.6 ≥ 0.5) evaluates to true when variables are substituted with
their values. Similarly, we can consider a different valuation, q2 ={pos→ −1.1, clk→ 0.1}
and show that eval(Pred, q2) evaluates to false. Then by definition, JPredKX denotes a set
of all valuations where pos is non-negative and clk is at least 0.5.

Formula (2.3) shows how to construct Pred[X ′/X] by replacing pos with pos′ and clk
with clk′.

Pred[X ′/X] def= (pos′ ≥ 0 ∧ clk′ ≥ 0.5) (2.3)
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Figure 2.1: A simplified autonomous vehicle architecture with components separated into
the reactive module RM and the environment Env.

2.2 SYSTEMS INTERACTING WITH ENVIRONMENTS

We formalize an autonomous system as the interaction between two modules — the re-
active module RM modeling the software programs interacting with the environment Env.
The reactive module and environment communicate with each other in discrete time steps in
rounds. In each round, the percepts are fed to the reactive module, which in turn computes
both an update to its state and feedback to the environment. Here we use the system ar-
chitecture of an autonomous vehicle as an example (Figure 2.1). RM is the control software
of the car; Env includes the car’s hardware platform, the road, as well as the surrounding
environment that influences the behavior of the car. Note that vehicle dynamics are part of
the environment, and the feedback from the program is used to effect only certain variables,
such as an update to the target position for driving the vehicle. The state of the environment
such as the position of the vehicle or the visible area of the road then changes according to
the feedback. This completes the round, and new percepts are fed to the reactive module to
start the next round.

More precisely, we now specify RM and Env using a set of variables over arbitrary domains,
with state-space being the valuations of these variables, a set of initial states, and a transition
relation describing (potentially nondeterministic) changes to these variables. We start with
the interfacing variables between RM and Env. Let us fix a set of percept variables P that
captures some attributes of reality in the environment. In an autonomous driving setting,
for example, this set of percepts would be variables that give the position of the car in
some fixed coordinate system, e.g., the ego vehicle’s coordinates, the lay of the road, the
motion of pedestrians and vehicles nearby, etc. Let us also fix a set of feedback FB variables
that captures the feedback the RM gives to effect changes to the environment. Again,
in the autonomous vehicle example, this feedback can be variables for control of brakes,
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acceleration, and steering angle of the vehicle.
We start with the modeling of an environment. Let us fix an environment Env with a set

of latent variables L and the percept variables P . Let us assume an initial state predicate
InitEnv, which defines a set of initial valuations JInitEnvKL,P for latent and percept variables,
as well as a transition relation JTEnvKL,P,FB,L′,P ′ . Let QL,P denote the set of states of the en-
vironment and we will denote particular states as a pair (l, p). A transition ((l, p), fb, (l′, p′))
denotes that the environment, when in state (l, p) and reading feedback fb, can transition to
(l′, p′), and give the program the percept p′.

We then model the reactive module RM . Let the reactive module RM have a state-space
defined by a set of variables S. Let QS denote the set of states of the reactive module, the
initial state predicate JInitRMKS ⊆ QS defines possible initial states. The transition relation
is a relation JTRMKS,P,S′,FB′ . A transition of the form (s, p, s′, fb′) means that the system,
when in state s, reading a percept value p, can transition to state s′, and give the feedback
fb′ to the environment.

Now we model the autonomous system as the composition of RM and Env synchronized
in rounds. In each round, RM first transitions to next state, and then Env transitions to
next state to complete a round. Formally, the global behavior of the system is defined over
configurations, i.e., the system state of the composition. The set of possible configurations is
Turn×QP,FB,L,S, where we introduce an enumerated type Turn = {prog, env} for modeling
whether it is the turn of the environment or the reactive module to move. The transition is
defined as follows:

• There is a transition from (prog, p, fb, l, s) to
(
env, p, fb′, l, s′

)
if (s, p, s′, fb′) ∈ JTRMK

• There is a transition from (env, p, fb, l, s) to (prog, p′, fb, l′, s) if ((l, p), fb, (l′, p′)) ∈
JTEnvK

The initial set of configurations are composed of the initial states of Env and RM , and the
system starts from the prog turn so that RM produces the first feedback fb0 based on the
initial percept p0. Formally, the initial set of configurations can be defined as a predicate
InitSys in Formula (2.4):

JInitSysK
def= {(prog, p0, fb0, l0, s0) | (l0, p0) ∈ JInitEnvK ∧ s0 ∈ JInitRMK} (2.4)

Finally, the execution of the system is a sequence of configurations alternating between
the prog turn and the env turn following the above definition. That is, given an initial
configuration (prog, p0, fb0, l0, s0) ∈ JInitSysK, an execution α is a sequence of configurations
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show in Formula (2.5):

α
def= (prog, p0, fb0, l0, s0) RM−−→ (env, p0, fb1, l0, s1) Env−−→

(prog, p1, fb1, l1, s1) RM−−→ (env, p1, fb2, l1, s2) Env−−→

(prog, p2, fb2, l2, s2) · · ·

(2.5)

This alternating program and environment transition model is a standard one for distributed
systems where computation speed is much faster than the speed of communication [19]. Such
models are also standard for hybrid automata, where computation is faster than physical
movements [20].

Example 2.2. In this example, we consider a simplistic autonomous system driving a vehicle
back and forth between a home base and a work location. We let ph ∈ R denote the position
of the home base and pw ∈ R denote the position of the work location. Here we first give an
example environment Env based on Example 2.1 with the two variables, pos representing
the position and clk to get the current time. We let the environment only provides the
vehicle position for perception, that is, P = {pos}, and there is a clock variable modeling
the current time, i.e., L = {clk}. We consider the feedback to drive the vehicle is specified
as a target position tgt, so the set of feedback variables FB = {tgt}. We can specify the
initial predicate as Formula (2.6):

InitEnv
def= (pos=ph) (2.6)

and it defines the set of initial valuations as Formula (2.7):

JInitEnvKL,P
def= {({clk→ t}, {pos→ ph}) | t ∈ R≥0} (2.7)

which specifies that the vehicle starts at the home base with no initial velocity, and the clock
may be at any time.

The transition relation JTEnvKL,P,FB,L′,P ′ is then used to model how the position and clock
evolves given the target position. For illustration purposes, we consider a simplistic example
model as follows. (1) The reading of the clock is strictly increasing, (2) the vehicle stops
when reach the target, and (3) the vehicle moving towards the target may pass beyond the
target position up to a maximum percentage overshoot ρ, the ratio of the overshoot distance
divided by the distance to the target position. We can formalize this simple model as the
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m→ GO_HOME m→ GO_WORK

init: m=GO_HOME

pre pos ̸=ph:
eff tgt :=ph

pre pos =ph:
eff tgt :=pw

pre pos ̸=pw:
eff tgt :=pw

pre pos =pw:
eff tgt :=ph

Figure 2.2: State machine of the reactive module RM in Example 2.2 based on the notations
in the textbook [84]. Nodes represent discrete modes of the system. A node representing the
initial mode is annotated with the initial condition (init: ...). Edges represent transitions
between two modes. Each edge is annotated with a precondition (pre ...:) specifying the
enabling condition of the transition, and an effect (eff ...) setting new values to variables.

predicate in Formula (2.8):

TEnv
def=


clk < clk′ ∧
(tgt = pos ⇒ pos′ = pos) ∧
(tgt ̸= pos ⇒ 0 ≤ pos′ − pos

tgt − pos ≤ (1 + ρ))

 (2.8)

which states that (1) the value of clk is increasing, (2) if the vehicle is already at the
target position tgt, the position stays the same (pos′=pos), and (3) the ratio between the
actual position change (pos′−pos) and the desired position change (tgt−pos) is between 0
to (1 + ρ), the maximum change due to overshooting.

We now describe the reactive module RM driving the vehicle back and forth between
the home base and the work location. Figure 2.2 illustrates the logic of RM as a state
machine. At a high level, RM is alternating between two modes, going to the home
base (GO_HOME) and going to the work location (GO_WORK). In the GO_HOME mode, RM
checks if the vehicle has reached the position of the home base or not. If it has not reached
yet (pre pos̸=ph), it repeatedly sets the target position to be the home base (eff tgt :=ph).
Otherwise (pre pos=ph), it transits to GO_HOME mode, and it sets the target position to be
the work location (eff tgt :=pw). The transitions from the GO_WORK mode are similar, ex-
cept the home base and work location are swapped. Formally, we first identify the set of
variables. RM can perceive the current position of the vehicle pos and set a target posi-
tion tgt as the feedback. In addition, it uses a state variable m with an enumerate type
{GO_HOME, GO_WORK} to denote whether the vehicle is going to the home base or the work
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location. Therefore, the sets of variables are state variables, S = {m}, percept variables, P =
{pos}, and feedback variables, FB = {tgt}.

As shown in Figure 2.2, the initial set of states of RM is defined by the predicate InitRM

in Formula (2.9):
InitRM

def= (m = GO_HOME) (2.9)

which specifies the set of initial valuations JInitRMKS as the singleton set {{m → GO_HOME}}
with the only valuation {m → GO_HOME}.

We then need to translate the reactive module RM to a predicate TRM to encode the
transition relation JTRMKS,P,S′,FB′ . We skip the detail of this translation here, and we will
discuss the translation for reactive modules implemented in our Koord language [32] in
Chapter 4. Following the precondition (pre) and effect (eff) of the edges in Figure 2.2,
TRM can be expressed as the predicate in Formula (2.10):

TRM
def=

∧


(m=GO_HOME ∧ pos̸=ph) ⇒ (m′=GO_HOME ∧ tgt′=ph)
(m=GO_HOME ∧ pos=ph) ⇒ (m′=GO_WORK ∧ tgt′=pw)
(m=GO_WORK ∧ pos̸=pw) ⇒ (m′=GO_WORK ∧ tgt′=pw)
(m=GO_WORK ∧ pos=pw) ⇒ (m′=GO_HOME ∧ tgt′=ph)

 (2.10)

Finally, we give an example execution of the composition of RM and Env. We choose
(prog, {pos → ph}, {tgt → ph}, {clk → 0}, {m → GO_HOME}) as the initial configuration
which satisfies {m → GO_HOME} ∈ JInitRMKS and ({clk → 0}, {pos → ph}) ∈ JInitEnvKL,P
at the same time. We also use the following values, the home location ph = 0, the work
location pw = 100, and the percentage overshoot ρ = 0.05. An execution starting from this
initial configuration is given as Formula (2.11) below:

(prog, {pos → 0}, {tgt → 0}, {clk → 0}, {m → GO_HOME})
RM−−→ (env, {pos → 0}, {tgt → 100}, {clk → 0}, {m → GO_WORK})
Env−−→ (prog, {pos → 105}, {tgt → 100}, {clk → 0.1}, {m → GO_WORK})
RM−−→ (env, {pos → 105}, {tgt → 100}, {clk → 0.1}, {m → GO_WORK})
Env−−→ (prog, {pos → 100}, {tgt → 100}, {clk → 1}, {m → GO_WORK})
RM−−→ (env, {pos → 100}, {tgt → 0}, {clk → 1}, {m → GO_HOME})
Env−−→ (prog, {pos → 0}, {tgt → 0}, {clk → 10}, {m → GO_HOME})
RM−−→ (env, {pos → 0}, {tgt → 100}, {clk → 10}, {m → GO_WORK})
Env−−→ . . .

(2.11)

Notice that the feedback variable tgt and the state variable m are updated with new values
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only after each program turn transition of RM , and the latent and percept variables, clk and
pos, are updated only after each environment turn transition of Env. We further observe
that the execution can be very unrealistic. For example, if we look at the changes on the
clock variable clk, the duration for traveling to a target position can be arbitrarily short or
long. This is because our simplistic environment model only requires that the value of the
clock to strictly increase.

Example 2.2 shows how to model an autonomous driving system with CPReact, i.e.,
the interaction between a reactive module and a simple environment. In Section 2.3, we will
discuss how to analyze the safety of the CPReact model based on induction and apply the
analysis on the system in Example 2.2. In addition, we see that the execution of this example
system can be unrealistic because of the simple environment model, so in Chapter 3, we will
discuss how to incorporate and analyze with more realistic environment models.

2.3 SYSTEM-LEVEL SAFETY ASSURANCE VIA INDUCTIVE INVARIANCE

The problem of assuring safety of the system can be stated as follows: given an autonomous
system Sys on a state space QSys, we would like to check that all reachable configurations
from initial configurations of the system preserve a safety specification Safe. For example,
a common kind of safety requirement for autonomous vehicles is the geofencing property
which requires the vehicle to always stay within regions of interest, i.e., geofences.

More precisely, let us denote the set of reachable configurations as Reach.1 For every
configuration (turn, p, fb, l, s) ∈ Reach, the system is said to satisfy a safety predicate Safe if
(p, s) ∈ JSafeKP,S holds. Note that the predicate Safe is defined over only percept variables
P of Env and state variables S of RM . This is to constrain over only variables observable
from RM and avoid using latent variables of the autonomous systems. In general, we may
also choose to include sets of latent and feedback variables for defining the safety predicate.

Example 2.3. In this example, we specify a safety requirement for the autonomous system
in Example 2.2 in Section 2.2. For simplicity, we consider a geofence defining a region of 1D
positions [plo, phi ] with a lower bound position plo ∈ R and an upper bound position phi ∈ R.
We assume the geofence should cover the home and work locations, ph and pw. Especially,
the geofence should not be violated even when the vehicle overshoots. Formally, given the
percentage overshoot 0 ≤ ρ < 1, we require ph, pw ∈ [plo+ρ·phi

1+ρ , ρ·plo+phi
1+ρ ]. The safety predicate

1The set of reachable configuration Reach can be very complex and may not be expressible as a predicate
over configurations.

21



Safe of this geofence is expressed as Formula (2.12):

Safe def= (plo ≤ pos ≤phi) (2.12)

which defines the set of valuations over the percept variables P = {pos} and state variables
S = {m} as Formula (2.13):

JSafeKP,S def=

({pos → p}, {m → mode})
plo ≤ p ≤ phi

∧ mode ∈ {GO_HOME, GO_WORK}

 (2.13)

The safety property effectively requires the vehicle to stay within the geofence no matter
when it is going home or going to work.

It is in general hard to check whether a given predicate Safe is preserved in all reachable
configurations. We will describe the two main proof techniques used across the thesis,
namely induction and abstraction refinement, and we derive specialized proof tactics for
our CPReact model described in Section 2.2. We will focus on the induction proofs using
inductive invariant in this section, and talk about abstraction and refinement based on
simulation relations in Chapter 3.

The typical approach to prove the safety specification is to find a stronger notion of
inductive invariant that is easier to verify. An inductive invariant for proving safety is a
predicate Inv that satisfies the following properties:

• It includes all the initial configurations, JInitSysK ⊆ JInvK.

• All configurations in the invariant preserve the safety specification, i.e., for every con-
figuration (turn, p, fb, l, s) ∈ JInvK, the percept value and the state of RM , (p, s) ∈
JSafeKP,S holds.

• For every configuration (turn, p, fb, l, s) satisfying Inv, i.e., (turn, p, fb, l, s) ∈ JInvK,
for every next configuration (turn′, p′, fb′, l′, s′) that (turn, p, fb, l, s) can transition to,
(turn′, p′, fb′, l′, s′) ∈ JInvK also holds.

It is easy to see (by induction on the length of executions) that Reach is always a subset
of the invariant JInvK, and the system is proven safe since all configurations in JInvK are
safe. We summarize the above and provide a theorem with the set of configurations, and an
equivalent formulation using predicates and expressions.

Theorem 2.1. Given a reactive module RM with the environment model Env, a predicate
InitSys specifying the initial set of configurations, and a safety predicate Safe over percept
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and state variables of RM, an inductive invariant Inv proves the safety Safe if for any
turn ∈ {prog, env}, p, p′ ∈ QP , fb, fb′ ∈ QFB, l, l

′ ∈ QL and s, s′ ∈ QS, we can prove the
validity of all the following proof obligations (POs):

(turn, p, fb, l, s) ∈ JInitSysK =⇒ (turn, p, fb, l, s) ∈ JInvK (Init)

(turn, p, fb, l, s) ∈ JInvK =⇒ (p, s) ∈ JSafeKP,S (Safe)

(prog, p, fb, l, s) ∈ JInvK ∧ (s, p, s′, fb′) ∈ JTRM K =⇒ (env, p, fb′, l, s′) ∈ JInv ∧AuxK (IndProg)

(env, p, fb, l, s) ∈ JInv ∧AuxK ∧ ((p, l), fb, (p′, l′)) ∈ JTEnvK =⇒ (prog, p′, fb, l′, s) ∈ JInvK
(IndEnv)

where Aux can be any predicate over configurations.

Proof. PO (Init) and PO (Safe) are directly translated from proving initial configurations
and safety. We further break down the property of the inductive invariant according to the
transition relations of RM and Env.

• For every configuration (prog, p, fb, l, s) ∈ JInvK and for every program transition
(s, p, s′, fb′) ∈ JTRMK, every next configuration (env, p, fb′, l, s′) ∈ JInv ∧ AuxK holds.

• For every configuration (env, p, fb, l, s) ∈ JInv ∧AuxK and for every environment tran-
sition ((p, l), fb, (p′, l′)) ∈ JTEnvK, every next configuration (prog, p′, fb, l′, s) ∈ JInvK
holds.

The first ensures that JInv ∧AuxK holds at the end of the program turn, i.e., the beginning
of the environment turn. Because JInv ∧ AuxK is equivalent to JInvK ∩ JAuxK by expanding
the definition, JInvK ∩ JAuxK is a subset of JInvK; thus the invariant JInvK holds. The
second ensures that, starting from any configuration in JInv ∧ AuxK, JInvK holds after the
environment turn. Therefore, proving (IndProg) and (IndEnv) is sufficient to show that Inv
is an inductive invariant. QED.

Remark 2.1. Observe that the auxiliary predicate Aux helps strengthen the invariant Inv
after the program turn transitions. This allows us to encode additional constraints based on
our understanding of the reactive module RM . We will explain and show the usefulness of
the auxiliary predicate Aux later in Example 2.4.

Corollary 2.2. The proof obligations in Theorem 2.1 are valid if and only if all predicates
below are unsatisfiable, that is, there is no valuation so that the predicates evaluate to true:

InitSys ∧ ¬Inv (InitUnsat)
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Inv ∧ ¬Safe (SafeUnsat)

Inv ∧ TRM ∧ ¬(Inv ∧ Aux)[S ′/S,FB ′/FB] (IndProgUnsat)

Inv ∧ Aux ∧ TEnv ∧ ¬Inv[L′/L, P ′/P ] (IndEnvUnsat)

Proof. This is a direct result by reducing the validity of each proof obligation to the satisfi-
ability of the negation of the proof obligation. QED.

Theorem 2.1 divides the induction proof into four proof obligations, and Corollary 2.2
provides a method to discharge these four proof obligations with satisfiability solvers, such
as Satisfiability Modulo Theories (SMT) solvers [85, 86]. Theorem 2.1 has two important
features: (1) separated proof obligations for the program turn PO (IndProgUnsat) and the
environment turn PO (IndEnvUnsat), and (2) an auxiliary predicate Aux to strengthen
the invariant after the program turn. The first feature is possible because the reactive
module RM and the environment Env update disjoint sets of variables. In the program
turn transition, the values of percept and latent variables for Env remain unchanged, and
hence only state variables S and feedback variables FB are replaced. Similarly, in the
environment turn transition, the values of state and feedback variables for RM remain
unchanged, and only latent variables L and percept variables P are replaced. As a result, the
satisfiability query to discharge PO (IndProgUnsat) is independent of the query to discharge
PO (IndEnvUnsat). The second feature is from the observation that RM guides the entire
system towards safer configurations in general. Hence, after the program transition, we may
require that the system configuration is a subset of safer configurations more restricted than
the invariant, and this in turn can help prove that the invariant holds in the environment
turn. We will show in Example 2.4 how PO (IndProgUnsat) and PO (IndEnvUnsat) are
checked separately, and how the auxiliary predicate helps prove the proof obligations.

Example 2.4. In this example, we verify the autonomous system in Example 2.2 against
the geofence property defined in Example 2.3. We consider the invariant candidate Inv that
is the same as the geofence property in Formula (2.12), and we specify it as Formula (2.14):

Inv def= (plo ≤ pos ≤phi) (2.14)

which requires the position of the vehicle stays within the geofence. We then check the four
proof obligations for in Theorem 2.1. Here, we apply Corollary 2.2 and manually check the
unsatisfiability.
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We first instantiate the proof obligation PO (InitUnsat) as Formula (2.15):

(vel=0 ∧ pos=ph ∧ m=GO_HOME) ∧ ¬ (plo ≤ pos ≤phi) (2.15)

Because ph ∈ [plo+ρ·phi
1+ρ , ρ·plo+phi

1+ρ ], the predicate pos=ph contradicts with ¬(plo ≤ pos ≤phi).
As a result, there is no valuation for pos, and we derive that the predicate is unsatisfiable.

The proof obligation PO (SafeUnsat) is unsatisfiable because Inv is the same as the
geofence Safe; thus Safe ∧ ¬Inv is trivially unsatisfiable. To prove the remaining two proof
obligations, PO (IndProgUnsat) and PO (IndEnvUnsat), we use the following auxiliary
predicate in Formula (2.16):

Aux def= (tgt=ph ∨ tgt=pw) (2.16)

which indicates the assigned target position is either the home or work location.
With the auxiliary predicate Aux , the proof obligation for the program turn transition,

PO (IndProgUnsat), is the following predicate in Formula (2.17):

plo ≤ pos ≤phi · · · Inv
∧ (m=GO_HOME ∧ pos ̸=ph) ⇒ (m′=GO_HOME ∧ tgt′=ph)
∧ (m=GO_HOME ∧ pos=ph) ⇒ (m′=GO_WORK ∧ tgt′=pw) · · ·TRM

∧ (m=GO_WORK ∧ pos ̸=pw) ⇒ (m′=GO_WORK ∧ tgt′=pw)
∧ (m=GO_WORK ∧ pos=pw) ⇒ (m′=GO_HOME ∧ tgt′=ph)
∧ ¬ (plo ≤ pos ≤phi ∧ (tgt′=ph ∨ tgt′=pw)) · · · ¬(Inv ∧Aux)[S′/S,FB′/FB]

(2.17)

We can prove Formula 2.17 is unsatisfiable by examining every clause inside the predicate
(Inv ∧ Aux)[S ′/S,FB ′/FB]. The invariant plo ≤ pos ≤phi is trivially preserved because the
pos variable is not updated during the program turn transition. The auxiliary predicate
(tgt′=ph ∨ tgt′=pw) also holds because the updated value of tgt′ is either ph or pw in
every possible transition in TRM . Therefore, the over all predicate is unsatisfiable with the
negation of (Inv ∧ Aux)[S ′/S,FB ′/FB]. Interested readers can also encode the predicate as
an SMT formula and query an SMT solver to check the unsatisfiability.2

Lastly, we have to inspect the proof obligation for the environment transition. The proof
2For SMT solving, additional axioms are required to select ph and pw from [ plo+ρ·phi

1+ρ , ρ·plo+phi
1+ρ ].
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obligation PO (IndEnvUnsat) is instantiated as Formula (2.18):

plo ≤ pos ≤phi · · · Inv
∧ (tgt=ph ∨ tgt=pw) · · ·Aux
∧ clk < clk′

∧ tgt = pos ⇒ pos′ = pos · · ·TEnv

∧ tgt ̸= pos ⇒ 0 ≤ pos′ − pos
tgt − pos ≤ (1 + ρ)

∧ ¬(plo ≤ pos′ ≤phi) · · · ¬Inv[L′/L, P ′/P ]

(2.18)

We argue the unsatisfiability by considering the worst value of the new position pos′. The
worst case scenario happens when the vehicle has to travel the furthest distance with the
maximum overshoot. Formally, from the invariant Inv, the value of the old position pos is
within [plo, phi ]. From the auxiliary predicate Aux , the value of the target position tgt is
either ph or pw, and both ph and pw are within [plo+ρ·phi

1+ρ , ρ·plo+phi
1+ρ ]. We therefore choose the

worst value of the old position pos to be plo, and the value of tgt to be ρ·plo+phi
1+ρ .

The value of the new position pos′ is constrained by the maximum percentage overshoot
and derived as Formula (2.19):

0 ≤ pos′ − pos
tgt − pos

≤ (1 + ρ) · · ·Evaluate with {pos→ plo, tgt→ ρ · plo + phi

1 + ρ
}

⇐⇒ 0 ≤ pos′ −plo
ρ·plo+phi

1+ρ − plo
≤ (1 + ρ) · · ·Divide by 1 + ρ

⇐⇒ 0 ≤ pos′ −plo

phi − plo
≤ 1

⇐⇒ plo ≤ pos′ ≤ phi (2.19)

We can see Formula (2.19) contradicts with ¬Inv[L′/L, P ′/P ] in Formula (2.18). Hence, we
have shown the unsatisfiability.

Notice that the target position tgt is constrained in the auxiliary predicate Aux and not
in the invariant Inv. As a result, if the auxiliary predicate Aux is not used, the proof now
has to show Inv holds even when the specified target position tgt is out of the geofence. We
know it is impossible to still ensure the invariant under these unreasonable target positions,
and hence it shows the importance of encoding the constraints guaranteed by the program
turn transition as the auxiliary predicate Aux .

We have demonstrated in Example 2.4 how to systematically apply our induction proof
by solving the four proof obligations in Theorem 2.1. In particular, we use Corollary 2.2
to automatically discharge proof obligations with the help of existing satisfiability solvers.
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Overall, we have shown how to use an inductive invariant to verify the safety of a CPReact
model composed of a reactive module RM and an environment model Env.

2.4 SUMMARY

In this chapter, we presented an overview of the CPReact framework to model an au-
tonomous system as the interaction between a physical environment and a reactive module
and analyze the safety of the system via induction proofs. We highlighted how our approach
decomposes the safety verification of the system into independent proof obligations for the
reactive module and the physical environment, and we outlined the formal reasoning that
allow us to apply satisfiability solving for the induction proof on the program turn and the
environment turn transitions.

We walked through the modeling and analyses of an illustrative autonomous vehicle sys-
tem, provided safety assurance with respect to a simple environment model. We have also
identified a major concern that the environment model such as the one in Example 2.2 is
unrealistic. The safety proof for the simplistic environment may not provide any guarantee
over a realistic environment. To address this concern, we study how to connect a simpler
environment model with a more realistic environment model and in turn extend the safety
guarantee to the more realistic environment in Chapter 3.
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Chapter 3: Safe Abstractions of Real Environments

In CPReact, we assume that a model of the environment Env is available and expressible
as a predicate TEnv to encode the transition relation JTEnvKL,P,FB,L′,P ′ over the latent variables
L, the percept variables P , the feedback variables FB, and the primed versions of latent and
percept variables L′ and P ′. However, recall our autonomous example in Section 2.2, we use
the model of the environment Env to enclose the components such as the car’s hardware
platform, perception algorithms, the road, and other external factors that may influence
the behavior of the car, and we have discussed in Section 1.1 why extracting a tractable
formal model Env directly from the real environment can be extremely challenging. Thus,
the classical approach of proving the safety of systems that interact with the environment
proceeds in two steps:

(1) Prove the simpler abstract model of the environment, Env, simulates all possible be-
haviors of the real world environment REnv.

(2) Prove the safety of the system with respect to this model of the environment Env.

The completion of this proof shows that the system interacting with any environment REnv
that can be simulated by Env will be safe. In Chapter 2, we have discussed how to prove
the safety with respect to an environment model Env. The model Env however may not
simulate the real world environment REnv. Another direction is to observe the behaviors of
the real world environment REnv and construct an abstract model Env, but this model Env
may not guarantee the safety of the system. It is therefore crucial to find a safe abstraction,
i.e., an abstract model of the real world environment REnv that proves the system-level
safety at the same time.

In this chapter, we hence focus on finding a safe abstraction of the real-world physical
environment. In Section 3.1, we formally define the condition when a model of environment
is an abstraction of a physical environment, and show the safety in the model of environment
implies the safety in the physical environment. In Section 3.2, we define the synthesis
problem for safe abstractions of the physical environment, and outline an approach to find
safe abstractions using reachability analyses.

3.1 SYSTEM SAFETY USING ABSTRACTIONS OF ENVIRONMENTS

Now we formally outline the technique for proving systems safe against the real envi-
ronment REnv. The real environment REnv has precisely the same structure as the en-
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vironment model Env described in Section 2.2. It has a set of latent variables LR of
the real environment, an initial set of states ΘREnv ⊆ QLR,P , and a transition relation
TREnv ⊆ QLR,P,FB,LR′,P ′ . Typically, the set of latent variables and transitions of the model
are much simpler than real world environments, and can be seen as assumptions made of
the real world. In the automated vehicle context, for example, vehicle dynamics may model
nondeterministic skidding of a vehicle up to some degree (without modeling the wetness of
the road precisely), making formal reasoning much easier. To explicitly show this distinc-
tion between Env and REnv, we use JInitEnvK and JTEnvK for Env which are expressible as
predicates InitEnv and TEnv, and we use ΘREnv and TREnv for REnv which are not necessarily
expressible as predicates.

Consider an environment model Env with variables L and P interacting with a system, and
assume that the system interacting with this model Env (over variables L and P ) satisfies
a safety condition JSafeKP,S, established using an invariant JInvK. Now under conditions
that relate the model of the environment Env and the real environment REnv, namely a
simulation relation, we can argue that the system working with the real environment REnv
will continue to be safe. If we can find such a simulation relation, we say Env simulates
REnv, Env is an abstraction of REnv, and REnv is a refinement of Env. We formally define
the simulation relation in Definition 3.1.

Definition 3.1. A relation ∼ between the states of the environment QLR,P and the states of
the environment model QL,P is a simulation relation if the following three conditions hold.
(below, lr , lr ′ ∈ QLR, l, l′ ∈ QL, and p, p′ ∈ QP ).

• If p = p′, then (lr , p) ∼ (l, p′).

• For every initial state of the real environment, there is an initial state of the model of
the environment that it is related to, i.e., for every lr , p, if (lr , p) ∈ ΘREnv holds, there
is some l such that (l, p) ∈ JInitEnvK holds and (lr , p) ∼ (l, p).

• Let (lr , p) ∼ (l, p), let fb be feedback, and let (lr , p, fb, lr ′, p′) ∈ TREnv hold. Then there
is some l′ such that (l, p, fb, l′, p′) ∈ JTEnvK holds and (lr ′, p′) ∼ (l′, p′).

The first condition says that states of the real environment and the environment model
must share the same perception valuations. The second demands that every initial state of
the environment is related to some initial state of the environment model. And the third
demands that from any pair of states that are similar, the environment model should be able
to simulate every move of the environment, and reach similar states.
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Theorem 3.1. Let a reactive module RM with the environment model Env satisfy an in-
variant Inv, which in turn proves a property Safe. Let REnv be a real environment that Env
simulates REnv. Then the environment REnv working with the system RM is guaranteed to
preserve the property Safe.

Proof. Let ∼ be a simulation relation between Env and REnv. We can show by induction
that on n that for every reachable configuration (turn, p, fb, lr , s) reached with REnv in n

steps, there is a reachable configuration (turn, p, fb, l, s) such that (lr , p) ∼ (l, p). The base
case is easy, and the induction step involving a system move as the last move are trivial.
For the induction step involving an environment move as the last move, the fact that the
simulation relation guarantees a move of the environment model that simulates the real
environment ensures the property. QED.

Theorem 3.1 motivates finding an environment model Env and then proving Env simulates
the real environment REnv. However, searching for a simulation relation between arbitrary
Env and REnv is difficult in general; we therefore look for a sufficient condition on the
structure of Env and REnv so that a simple simulation relation is guaranteed. We restrict
that latent variables of Env must also be used by the real environment REnv, i.e. LR = L∪R.
where R is the set of latent variables only for REnv, and the valuations of REnv is denoted
as lr = (l, r) ∈ QL,R. Under this restricted setting, we provide a sufficient condition as proof
obligations in Proposition 3.2.

Proposition 3.2. Let Env be an environment model with latent variables L, percept variables
P , initial states JInitEnvKL,P and transition relation JTEnvKL,P,FB,L′P ′. Let REnv be a real
environment with latent variables LR = L∪R and L∩R = ∅, the same percept variables P ,
initial states ΘREnv, and the transition relation TREnv. If for any l, l′ ∈ QL, r, r′ ∈ QR, p, p′ ∈
QP , and fb ∈ QFB, the following two proof obligations are valid:

(l, r, p) ∈ ΘREnv =⇒ (l, p) ∈ JInitEnvK (SimInit)

(l, r, p, fb, l′, r′, p′) ∈ TREnv =⇒ (l, p, fb, l′, p′) ∈ JTEnvK (SimTrans)

then the model of the environment Env simulates the environment REnv.

Proof. We define a relation ∼ such that every state (l, r, p) is related to the state (l, p), i.e,
(l, r, p) ∼ (l, p). It is straightforward to prove ∼ is a simulation relation for REnv and Env
because (1) by construction, whenever (l, r, p) ∼ (l, p′), p = p′, (2) the first proof obligation
ensures that all initial states are simulated, and (3) the second proof obligation ensures
that, for any feedback fb and every REnv transition from (l, r, p) to (l′, r′, p′), there is an
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Env transition from (l, p) to the new state (l′, p′) which simulates (l′, r′, p′) by construction.
QED.

Corollary 3.3. Given two models of environments Env1 and Env2 sharing the same set of
latent variables L, let Env1∧Env2 denote the model of environment with the initial predicate
InitEnv1 ∧ InitEnv2 and the transition relation predicate TEnv1 ∧TEnv2, the model Env1 ∧Env2

is an abstraction of TREnv if and only if both Env1 and Env2 are abstractions of TREnv.

Proof. Following Proposition 3.2, the proof obligations for Env1 and Env2 combined are
equivalent to the proof obligations for Env1 ∧ Env2. QED.

For demonstration, we consider a slightly more realistic environment model as the real
environment REnv, and compare it with the simple model Env from Example 2.2. We will
show that Env simulates REnv using Proposition 3.2, and therefore by Theorem 3.1, the
safety of the system is guaranteed even if we replace Env with REnv.

Example 3.1. In this example, REnv shares the same set of percept variables P = {pos}
for the vehicle position, and the same set of latent variables L = {clk} for the current
time. In addition, REnv has a latent variable R = {vel} representing the velocity of the
vehicle that is not a latent variable of the model Env. We can specify an initial predicate as
Formula (3.1):

InitREnv
def= (pos =ph ∧ vel=0) (3.1)

and it defines the set in Formula (3.2):

ΘREnv
def= JInitREnvKL,R,P

def= {({clk→ t}, {vel→ 0}, {pos→ ph}) | t ∈ R≥0} (3.2)

which requires the vehicle to start at the home location ph with no initial velocity. We then
define the transition relation of REnv following simplified laws of motion below.

(1) The clock increases by at most a period ∆T ∈ R≥0 for sampling each new position,

(2) The velocity is proportional to the distance to the target with a gain κ ∈ R≥0 bounded
by κ ≤ 1+ρ

∆T to limit the maximum overshoot where ρ is the percentage overshoot.

(3) the change of the vehicle position is the velocity multiplying the elapsed time.

Formally, the transition relation TREnv
def= JTREnvK can be specified with a predicate in

Formula (3.3):

TREnv
def=


0 < clk′ − clk ≤∆T ∧
vel′ = κ∗(tgt − pos) ∧
pos′ = pos + vel′∗(clk′ − clk)

 (3.3)
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We now check the two proof obligations, PO (SimInit) and PO (SimTrans), to prove Env
simulates REnv. Because ΘREnv and TREnv can be specified with predicates InitREnv and
TREnv, we alternatively prove the following two predicates are both unsatisfiable:

InitREnv ∧ ¬InitEnv (SimInitUnsat)

TREnv ∧ ¬TEnv (SimTransUnsat)

Recall from Example 2.2, we instantiate PO (SimInitUnsat), namely InitREnv ∧¬InitEnv, as
(pos =ph ∧ vel=0) ∧¬(pos=ph) and this is trivially unsatisfiable.

We instantiate PO (SimTransUnsat) as Formula (3.4):

0 < clk′ − clk ≤ ∆T
∧ vel′ = κ∗(tgt − pos) · · ·TREnv

∧ pos′ = pos + vel′∗(clk′ − clk)

∧ ¬


clk < clk′ ∧
(tgt = pos ⇒ pos′ = pos) ∧
(tgt ̸= pos ⇒ 0 ≤ pos′ − pos

tgt − pos ≤ (1 + ρ))

 · · · ¬TEnv

(3.4)

We prove each clause of TEnv separately and complete the proof using Corollary 3.3. We
find that clk < clk′ is implied by 0 < clk′ − clk ≤ ∆T , and tgt = pos ⇒ pos′ = pos is
valid because the velocity vel′ is 0 when tgt = pos.

Finally, starting from pos′ = pos + vel′∗(clk′ − clk) in TREnv, we derive Formula (3.5)
when tgt ̸= pos:

pos′ = pos + vel′∗(clk′ − clk)
⇐⇒ pos′ − pos = κ∗(tgt − pos)∗(clk′ − clk) ∵ tgt ̸= pos
=⇒ pos′ − pos

tgt − pos = κ∗ (clk′ − clk′) ∵ 0 < clk′ − clk ≤ ∆T
=⇒ 0 ≤ pos′ − pos

tgt − pos ≤ κ ∗∆T ∵ 0 ≤ κ ≤ 1+ρ
∆T by design

=⇒ 0 ≤ pos′ − pos
tgt − pos ≤ (1 + ρ)

(3.5)

We conclude that the last clause of TEnv is also implied by TREnv. Hence, ¬TEnv contradicts
with TREnv, and PO (SimTransUnsat) is unsatisfiable.

Example 3.1 shows that the simple environment model Env is the abstraction of a more
realistic environment model REnv using Proposition 3.2, and following Theorem 3.1, we
guarantee the safety of the CPReact system using the real environment REnv. This means
a simplistic environment model Env exhibiting unrealistic executions can still be used in the
induction proof as long as it is able to simulate the realistic environment REnv. We will
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discuss in Section 3.2 how this allows us to incorporate techniques that are suitable for
analyzing and abstracting the realistic environment REnv.

3.2 SYNTHESIZING SAFE ABSTRACTIONS FOR SAFETY

We now reiterate through the theoretical results presented in previous sections and intro-
duce the synthesis problem for safe abstractions of environments in the CPReact frame-
work. Recall from Section 2.3, we assume the reactive module RM and the model of physi-
cal environment Env are given as initial and transition relations predicates for analyzing a
CPReact system model, and by Theorem 2.1, showing the safety of the CPReact sys-
tem requires the model Env to preserve the inductive invariant Inv, i.e., to show the proof
obligation PO (IndEnv) holds. Then, to carry over the safety guarantee to a real physical
environment REnv, the model Env must be an abstraction of REnv by Theorem 3.1 in Sec-
tion 3.1. In short, the safety verification under the CPReact framework is to search for
a model of the environment Env that is a safe abstraction of the real environment REnv.
More precisely, the model Env satisfies the following:

• Safe: Env preserves the inductive invariant Inv.3

• Abstraction: Env is an abstraction of the real physical environment REnv.

Solving this synthesis problem is in general as difficult as verifying the autonomous system.
This thesis focuses on synthesizing safe abstractions for a practical class of environments—
continuous-time dynamical systems—which is studied extensively by the control theory
community. In the rest of this section, we first provide the definition of continuous-time
dynamical systems. We then define the guard-reachset assumptions and show that they are
abstractions of continuous-time dynamical systems by construction. Lastly, we demonstrate
on the autonomous vehicle example using the reachability analysis tool, DryVR [23].

3.2.1 Continuous-Time Dynamical Systems

Given a state space X ⊆ Rn, an input space U ⊆ Rm, and an output space Z ⊆ Rk, a
dynamical system is defined by a function f : X × U → X that is locally Lipschitz in the
first argument and a function h : X → Z that calculates the perception output based on
the current state. We call f a dynamic function and h an output function. The state and
the input of the system will evolve continuously and discretely in time, respectively. Let

3For simplicity, we assume the inductive invariant Inv is given in the synthesis problem.
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∆T ∈ R≥0 denote a time bound to define a finite time interval [0,∆T ], we assume the input
will not change during the time interval.

We define ξ : X×U×R≥0 → X to be the function that generates trajectories of the system.
For any x0 ∈ X and u ∈ U , ξ(x0, u, ·) is the trajectory that starts from the initial state x0

and follows the input u. The trajectory should satisfy two conditions: (1) ξ(x0, u, 0) = x0,
and (2) For all t ∈ R≥0,

d

dt
ξ(x0, u, t) = f (ξ(x0, u, t), u) (3.6)

We say that ξ(x0, u, t) the state of the system at time t when it starts from x0 with input u,
and h(ξ(x0, u, t)) provides the perceived output of the system at time t. Given an initial state
x0 ∈ X and a constant input u ∈ U , the trajectory ξ(x0, u, ·) exists and is the unique solution
of the ordinary differential equation (ODE) in Equation (3.6) since f is locally Lipschitz [87].
Further, the dynamical system is invariant under time translation by construction, so given
any trajectory starting at any time t ∈ R≥0 in a time interval [t, t + ∆T ] ⊆ R≥0 with
x0 = ξ(x , u, t) evolving to x1 = ξ(x , u, t + ∆T ), there is a trajectory in the time interval
[0,∆T ] with the same initial value x0 = ξ(x0, u, 0) and x1 = ξ(x0, u,∆T ). In this thesis, we
therefore work with bounded-time solutions of ODEs of a finite time interval [0,∆T ] with a
constant input u. We now define the transition relation of the environment REnv based on
a given dynamical system.

Definition 3.2. Given a dynamical system of Equation (3.6) over the state space X , the
input space U , and the output space Z with the solution ξ and the output function h, we
define an environment REnv with two latent variables x, clk ∈ L, a percept variable z ∈ P ,
and a feedback variable u ∈ FB. x is of type X , clk is of type R≥0, u is of type U , and z is
of type Z. The dynamical system-based transition relation TREnv ⊆ QL,P,FB,L′,P ′ is defined
as Formula (3.7):

TREnv
def=

(l, p, fb, l′, p′)

∣∣∣∣∣∣∣∣∣
0 ≤ l′(clk)− l(clk) ≤ ∆T ∧

p(z) = h(l(x)) ∧ p′(z) = h(l′(x)) ∧

l′(x) = ξ(l(x), fb(u), l′(clk)− l(clk))

 (3.7)

where l, l′ ∈ QL, p, p′ ∈ QP and fb ∈ QFB.

In simple terms, the transition relation TREnv relates two states l(x) and l′(x) as well as
the measured output p(z) and p′(z) of the dynamical system at any two time points l(clk)
and l′(clk) when their time difference is within ∆T . As a result, we can assume the input
is a constant fb(u), and because the dynamical system is invariant under time translation,
the new state is l′(x) = ξ(l(x), fb(u), l′(clk)− l(clk)).
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Observing Definition 3.2, TREnv might not be expressible as a predicate because (1) dy-
namical systems do not have a closed-form solution ξ in general, and (2) the output function
h can be too complex to be specified as an expression. This poses a challenge to prove the
proof obligations in Proposition 3.2 for checking if a model Env is an abstraction of REnv.
We therefore need to integrate a different technique, reachability analyses, for REnv based
on a dynamical system.

3.2.2 Guard-Reachset Assumptions of Dynamical Systems

Over three decades of research on verification of complex dynamical and hybrid sys-
tems [83, 84, 88] has led to the creation of powerful techniques to compute reachable states,
namely reachability analyses, for linear [89, 90], nonlinear [91, 92, 93], and black-box sys-
tems [23]. Depending on the type and availability of the dynamical systems, these tools
can be used for validating if a model of environment Env is indeed an abstraction of a real
environment REnv. Here, we introduce the formal definition of reachsets as the output from
querying a reachability analysis tool.4 We then provide the definition of guard-reachset as-
sumption constructed from reachsets and use the assumption to derive abstract environment
models. At the end of the section, we briefly mention how the traces from the CyPhyHouse
simulator [55] together with the reachability analysis tool, DryVR [23], could be used to
search for the abstract environment model for various environments or find violations to the
system invariant.

Definition 3.3. The reachset, i.e., the set of reachable states, of a continuous-time dynamical
system of Equation (3.6) in the time interval [0,∆T ] and starting from an initial set X0 ⊆ X
with a set of inputs U0 ⊆ U is defined as Formula (3.8):

Reachset(X0,U0, [0,∆T ]) def= {ξ(x0, u, t) | x0 ∈ X0 ∧ u ∈ U0 ∧ t ∈ [0,∆T ]} (3.8)

Computing reachsets exactly is undecidable in general [94]. Reachability analysis algo-
rithms therefore compute bounded-time over-approximations of the reachsets instead. These
algorithms commonly depend on particular set representations, such as support functions
and polyhedra [90], ellipsoids [95], zonotopes [96], star-shaped sets [89], etc., for efficient
approximations of reachable sets, and these set representations can be easily specified as
predicates. We use reachability analysis tools with their set representations to help con-
struct a pair of predicates, called a guard-reachset assumption, in Definition 3.4 below, and

4We do not include the algorithms for computing reachsets in this thesis. We encourage interested readers
to read the textbook [84] and references therein for a better understanding of reachability analysis algorithms.

35



then we construct an abstraction of the real environment REnv using this guard-reachset
assumption.

Definition 3.4. A guard-reachset assumption is defined by a pair of predicates ⟨G,RS⟩ s.t.

• The guard predicate G is over only variables in L, P , and FB.

• The reachset predicate RS is over only variables in L′ and P ′.

• Given a dynamical system of Equation (3.6) with the initial set X0 ⊆ X , the set of
inputs U0 ∈ U , the reachset computation function Reachset, and the output function
h, for l, l′ ∈ QL, p, p′ ∈ QP , and fb ∈ QFB, the guard-reachset assumption satisfies the
following two proof obligations:

(l, p, fb) ∈ JGKL,P,FB =⇒ (l(x) ∈ X0 ∧ p(z) = h(l(x)) ∧ fb(u) ∈ U0) (Guard)

(l′(x) ∈ Reachset(X0,U0, [0,∆T ]) ∧ p′(z) = h(l′(x))) =⇒ (l′, p′) ∈ JRSKL′,P ′

(Reachset)

In simple terms, the guard predicate G defines a set of valuations where each valuation
maps to an initial state in X0 of the dynamical system, and the reachset predicate RS defines
a set of valuations which over-approximates the reachset of the dynamical system under any
feedback input fb(u) ∈ U0.

Proposition 3.4. Given a dynamical system of Equation (3.6), let TREnv be the dynami-
cal system-based transition relation, and let ⟨G,RS⟩ be a guard-reachset assumption of the
same dynamical system. The transition relation JG ⇒ RSKL,P,FB,L′,P ′ constructed from the
predicate (G⇒ RS) is an abstraction of TREnv.

Proof. We show that the proof obligation PO (SimTrans) in Proposition 3.2 holds. By
expanding Definition 3.2, 3.3, and 3.4, we derive that every valuation l satisfying the guard
JGKL,P,FB is mapping x to an initial state l(x) ∈ X0. Then, every new state l′(x) on the time-
bounded trajectory, l′(x) = ξ(l(x), fb(u), l′(clk) − l(clk)), is inside Reachset(X0, u, [0,∆T ])
and thus in the over-approximation JRSKL′,P ′ . Now if the old valuation l is violating the
guard, the new valuation l′(x) can simulate any state value by definition. As a result,
JG⇒ RSKL,P,FB,L′P ′ can simulate every transition of TREnv. QED.

Remark 3.5. We can query reachability analyses more than once to obtain multiple guard-
reachset assumptions ⟨G1,RS1⟩, ⟨G2,RS2⟩, . . . , ⟨Gn,RSn⟩. The predicate J

n∧
i=1

(Gi ⇒ RS i)K
is also an abstraction of TREnv by Corollary 3.3.
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Figure 3.1: Reachsets for the F1/10th racecar model (Left) and the Hector Quadrotor
model (Right) by DryVR. In both plots, the initial set is the black rectangle in the lower
left corner, the large orange rectangle is the invariant region specifying the geofence be-
tween (-4, -4) and (4, 0). and the reachset is the union of all blue-green rectangles. The
reachset is computed from traces starting at an initial position inside the black rectangle
and traveling to the target position at (3, -1). As a side note, the blue-green color around
the initial and target positions is darker because more blue-green rectangles are overlapping,
and this is due to the slower speed when the vehicle is starting to move or stops moving.

Proposition 3.4 essentially states that abstractions can be generated from the reachability
analysis tool. To further ensure the generated abstractions are safe, we demonstrate with
a simple generate-then-verify approach. In this example, we first generate a guard-reachset
assumption from the reachability analysis tool DryVR [23] and derive JG ⇒ RSK as the
abstraction. Then, we check if the proof obligation PO (IndEnv) in Theorem 2.1 holds for
the derived abstraction and prove the safety of the autonomous system.

DryVR has been used to analyze automotive and aerospace control systems [97]. DryVR
uses numerical simulations to learn the sensitivity of the trajectories of the vehicle to changes
in initial conditions, with a certain confidence level. Then it uses this sensitivity and addi-
tional simulations to either prove the unsafe states are unreachable (in our case, no violation
of the geofence in Example 2.3) or find a counter-example. Under certain robustness assump-
tions, this process is also guaranteed to terminate. We used our CyPhyHouse simulator
to generate traces of a dynamical system, for instance, a vehicle or a quadcopter moving
from a set of initial conditions to a target position. From these traces, DryVR computes
the reachsets. In Example 3.2 below, we will illustrate how to use DryVR to generate
abstractions with respect to realistic vehicle motions in our CyPhyHouse simulator and
visualize the abstractions with respect to the invariant.
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Example 3.2. Recall from Example 2.4, it is proven that, after the program transition, the
target position is always either the home or work location, and this is specified as the auxiliary
predicate Aux def= (tgt=ph ∨ tgt=pw). We would like to show the invariant representing the
geofence Inv def= (plo ≤ pos ≤phi) is preserved after the environment transition. Additionally,
to account for overshoot, we require the home or work location is sufficiently far away from
the boundary of the geofence, that is, ph, pw ∈ [plo+ρ·phi

1+ρ , ρ·plo+phi
1+ρ ] where ρ is the maximum

percentage overshoot 0 ≤ ρ < 1.
Here we use the CyPhyHouse simulator to generate traces of two types of vehicles, a

car using the MIT F1/10th race car model [43] and a drone using the Hector Quadrotor
model [42], from which DryVR computes the reachsets. Figure 3.1 shows the outputs from
DryVR performed on the car (Left) and on the drone (Right). In both plots, the large
orange rectangle represents the invariant region specifying the geofence between (-4, -4) and
(4, 0). We let the maximum percentage overshoot be ρ = 1

3 , and select an initial position
in the black rectangle around (-3, -3) and set the target position at (3, -1). We collect
simulation traces of each vehicle then compute the reachsets with DryVR. The reachsets
are shown as the union of all blue-green rectangles.

We observe that for the same set of the initial positions and the same target, the drone
has a larger reachset than the car. The drone may temporarily go out of the geofence due
to severe overshoot, so we did not find a safe abstraction of the drone dynamics. On the
other hand, the reachability analysis shows the car stays within the invariant, and hence the
constructed guard-reachset assumption is a safe abstraction.

We note that the guards in the complete guard-reachset assumption should cover all
reasonable initial positions within the geofence Inv as well as all possible target positions
constrained within Aux , otherwise the proof obligation PO (IndEnv) will never hold because
a configuration outside the guards can transit to any configuration. To reduce the amount of
simulation traces covering all pairs of initial and target positions, we can exploit the fact that
the motion of quadrotor is symmetric under translations, planar reflections, and rotations.
Therefore, using Theorem 10 from [98] and as shown in [99], the computed reachsets can be
translated and rotated to cover all choices of initial and target positions.

3.3 SUMMARY

In this chapter, we formally defined abstractions of the environment based on the simula-
tion relation between the model Env and the real environment REnv, and we formalize the
more important safe abstractions which preserve the invariant in environment turn transi-
tions and subsequently prove the system-level safety. In addition, we outlined the synthesis

38



problem of safe abstractions. We showed that existing reachability analysis tools can search
for safe abstractions of the environment, and we demonstrated how to use DryVR to find
safe abstractions for our autonomous vehicle example in the realistic Gazebo simulator. In
the rest of the thesis, we instantiate the CPReact framework to analyze two categories of
autonomous systems, distributed robotics systems and systems using vision-based percep-
tion.
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Chapter 4: Abstraction and Verification with Koord Semantics

In this chapter, we demonstrate that the compositional reasoning on the reactive module
and the environment can be integrated into existing software analyses for distributed robotics
systems. We extend the inductive invariant-based proof in Chapter 2 and instantiate the
proof obligations in Theorem 2.1 for multi-agent systems with synchronous communication.
We show that the instantiated proof obligations can be discharged with existing program
verification tools that check inductive invariants for distributed systems.

Specifically, we apply our CPReact framework for reformulating the Koord language
and program verification methods presented in our conference paper [32].5 The Koord lan-
guage is the modeling and programming language for implementing distributed robotic appli-
cations (DRAs) in the CyPhyHouse project [55]. The Koord compiler allows generating
code that can be and has been directly deployed on aerial and ground vehicle platforms in
Intelligent Robotics Lab6 and simulated with the CyPhyHouse simulator. The executable
formal semantics for Koord in the K framework [100] further enables the formal verifi-
cation and validation on any DRA implemented in Koord. The formal analysis methods
presented in [32, 33] verify invariant properties via computing the reachable configurations
through program and environment transitions.

We claim that any program implemented with the Koord language is an instance of a
CPReact model; we therefore are able to apply the proof techniques discussed in Chapter 2
for unbounded verification. In addition, we illustrate how to reuse the existing formal anal-
ysis methods for Koord to discharge the proof obligations for CPReact. In Section 4.1,
we first connect the Koord executable semantics in [32, 33] with the CPReact system
model. In Section 4.2, we set up the induction proof for Koord applications for unbounded
verification based on Theorem 2.1. In other words, we derive the three proof obligations
from Theorem 2.1 for a Koord program including (1) PO (Init) for initial configurations,
(2) PO (IndProg) for platform-independent program transitions, and (3) PO (IndEnv) for
platform-dependent environment transitions. In Section 4.3, we reuse the symbolic execution
for Koord and discharge the proof obligations for program transitions using Satisfiability
Modulo Theory (SMT) solvers according to Corollary 2.2. Lastly, we show in Section 4.4 that
the notion of controller port assumptions proposed in [32] is an instance of guard-reachset as-
sumptions in Definition 3.4, and we apply reachability analyses to check the proof obligations
for environment transitions according to Proposition 3.4.

5This a joint work with Dr. Ritwika Ghosh and Prof. Sasa Misailovic published in the International
Conference on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA) in 2020.

6Website: https://robotics.illinois.edu/lab/
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4.1 CONNECTING KOORD SEMANTICS WITH CPREACT EXECUTIONS

In this section, we show that any Koord program is an instance of a CPReact model
by deriving the conversion from system configurations and execution rounds of a Koord
program to the configurations and transition relations of a CPReact model.

4.1.1 Koord System Configurations to CPReact Configurations

Our first task is to match the configuration of a Koord application from Chapter 3
in [33] to the configuration of a CPReact model defined in Section 2.2. We achieve this
by listing all variables in the configuration of a Koord application, and we then match
them to the latent and percept variables of Env as well as the state and feedback variables
of RM in a CPReact model. At a high level, a Koord application is running on a
distributed system of multiple robots, so a configuration of a Koord application, namely a
system configuration, consists of a collection of robot configuration as well as shared variables
for communications between robots, and each robot configuration is used to specify the
semantics of each participating robot. Each participating robot would have its own set of
module ports and local variables, along with a local copy of shared variables.

Formally, given a system of N robots with identifiers from ID = {0, . . . , N−1}, the system
configuration in Koord semantics is a tuple c = ({Li}i∈ID, gm, τ, turn) where

(1) {Li}i∈ID or {Li} in short is an indexed set of robot configurations–one for each partic-
ipating robot. Li refers to the configuration of the i-th robot in the system.

(2) gm ∈ QGVar is the global memory, mapping shared variables GVar to values.

(3) τ ∈ R≥0 is the global time.

(4) turn ∈ {prog, env} determines whether program or environment transitions are being
processed.

For each robot, let MVar be the set of local variables and copies of shared variables, let Sens
be the set of sensor ports, and let Acts be the set of actuator ports.7 A robot configuration
is a tuple L = (lm, sp, ap, turn) where

(1) lm ∈ QMVar is its local memory for both local variables and copies of shared variables.

(2) sp ∈ QSens is the mapping of sensor ports to values.
7In [32, 33], sensor and actuator ports are aggregated as controller ports.
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(3) ap ∈ QActs is the mapping of actuator ports to values.

(4) turn ∈ {prog, env} is a bookkeeping variable indicating whether this robot should be
executing a program or environment transition.

For readability, we use the dot (“.”) notation to access components of system and robot
configurations. For example, Li.lm means accessing the local context lm in the robot config-
uration Li of the i-th robot. We further use the notation {Li.lm}i∈ID or in short {Li.lm} to
denote the indexed set of the local memories lm of all robots {L0.lm,L1.lm, . . . ,LN−1.lm}.

Table 4.1: Conversion of sets of variables from Koord to CPReact.

CPReact Koord
Turn turn = turn
Percept Variables P = {τ} ∪ ⋃

i∈ID
Li.Sens

Feedback Variables FB = ⋃
i∈ID

Li.Acts
State Variables of RM S = GVar ∪ ⋃

i∈ID
(Li.MVar ∪ {Li.turn})

Latent Variables of Env L = ∅

Table 4.1 summarizes the conversion of different sets of variables from a Koord applica-
tion to a CPReact model. It is straightforward to match the turn variable because it is
in both Koord and CPReact. We consider that the global time τ is observed from the
environment and hence a percept variable. The sensor ports of all participating robots are
percept variables, and the actuator ports of all robots are feedback variables. The state vari-
ables of RM include all variables in the global memory and all local memories. In addition,
the turn variable for each robot is considered as a state variable. Finally, it is assumed in
Koord semantics that all environment states are observable through sensor ports; thus the
latent variables of Env is an empty set.

1 using M: // Motion module
2 sensors: Point pos
3 actuators: Point tgt
4
5 allread: Point x[N ]
6 init:
7 x[pid] = M.pos

8 Avg:
9 pre: ¬ (pid = N − 1 ∨ pid = 0)

10 eff:
11 M.tgt := (x[pid+1] + x[pid−1]) / 2
12 x[pid] := M.pos
13 Skip:
14 pre: pid = N − 1 ∨ pid = 0

Figure 4.1: Koord program LineForm for a set of robots to form a line.

Example 4.1. We use the distributed line formation case study from Chapter 6 in [33] as
an example. Figure 4.1 shows the Koord program, LineForm, for distributed line formation.
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In LineForm, every robot calculates the next target position by averaging the positions of
its predecessor and successor except for robot 0 and robot N − 1, and it shares its current
position through the shared variable x. and this averaging and sharing rule is specified in
the Avg event. On the other hand, robot 0 and robot N − 1 stay at the same position in the
Skip event.

We now dive into the detail of specifying the system and robot configurations. The set of
global variables has one variable GVar = {x}. For each robot i, the domain of local memory
has one variable Li.MVar = {Li.x} because it contains a copy of the global variable. The
sensor ports contain one variable Li.Sens = {Li.M.pos}, and the actuator ports contains
one variable Li.Acts = {Li.M.tgt}. According to the conversion in Table 4.1, we derive
Equation 4.1:

P = {τ} ∪ {Li.M.pos}i∈ID

FB = {Li.M.tgt}i∈ID

S = {x} ∪ {Li.x}i∈ID ∪ {Li.turn}i∈ID

L = ∅

(4.1)

Below we give a concrete example configuration of the CPReact model. Let the number
of robots N = 3; then the set of identifiers is ID = {0, 1, 2}. pid is a reserved word in
Koord for referring to each robot’s own identifier. We assume the Point type represents
2D positions. An initial configuration (prog, p0, fb0, l0, s0) satisfying the initial predicate
x[pid] = M.pos is given as Equation 4.2:

p0 = {L0.M.pos→ (0,0),L1.M.pos→ (0,1),L2.M.pos→ (2,2),τ→ 0}
fb0 = {L0.M.tgt→ (0,0),L1.M.tgt→ (1,1),L2.M.tgt→ (2,2)}
l0 = ∅
s0 = {x→ [(0,0), (0,1), (2,2)],

L0.turn→ prog,L0.x→ [(0,0), (0,1), (2,2)],
L1.turn→ prog,L1.x→ [(0,0), (0,1), (2,2)],
L2.turn→ prog,L2.x→ [(0,0), (0,1), (2,2)]}

(4.2)

4.1.2 Koord Transition Rules to CPReact Transition Relations

Given a Koord application of N robots, we define the following transition relations
according to the semantic rules in [33], and build the transition relations JTRMK and JTEnvK.
According to the Koord semantics rules and the conversion of variables in Table 4.1, we
can model the program turn with the transition relation JTRMK over the state, percept, and

43



feedback variables, namely S, P and FB. Similarly, we can capture the environment turn
with the transition relation JTEnvK over the latent, percept, and feedback variables, namely
L, P and FB. We first built the transition relation JTRMK for the program turn as follows:

(1) JTi,evK represents the transition relation of the robot i executing an event ev ∈ Events
where the event ev consists of the precondition Cond and effect statements Body.
Formally, JTi,evK is defined as Formula 4.3:

JTi,evK
def= {((gm,Li.lm),Li.sp, (gm′,L′

i.lm),L′
i.ap) |

JCondKGVar ,Li
∧ ⟨gm,Li,Body⟩ →stmt ⟨gm′,L′

i, ·⟩}
(4.3)

Note that the robot i reads the global and local memory as well as sensor ports, namely
gm, Li.lm and Li.sp, it then transits to the new global and local memory and provides
new actuator port values L′

i.ap.

(2) JTi,RMK represents the transition relation of robot i executing any event in Events.
Formally, JTi,RMK is defined as Formula 4.4:

JTi,RMK def=
⋃

ev∈Events
JTi,evK (4.4)

(3) JTp⃗K represents the transition relation of a system program turn when robots execute
their events in the order p⃗, where p⃗ is a permutation of ID given as (i1, i2, . . . , iN).
Formally, JTp⃗K is given as Formula 4.5:

JTp⃗K
def= {((gm0, {Li.lm}), {Li.sp}, (gmN , {L′

i.lm}), {L′
i.ap}) |

((gm0,Li1 .lm),Li1 .sp, (gm1,L
′
i1 .lm),L′

i1 .ap) ∈ JTi1,RMK∧

((gm1,Li2 .lm),Li2 .sp, (gm2,L
′
i2 .lm),L′

i2 .ap) ∈ JTi2,RMK∧
...

((gmN−1,LiN .lm),LiN .sp, (gmN ,L
′
iN
.lm),L′

iN
.ap) ∈ JTiN ,RMK}

(4.5)

(4) JTRMK is the union of JTp⃗K over all permutations of orders p⃗. Formally, JTp⃗K is given
as Formula 4.6:

JTRMK def=
⋃

p⃗∈perms(ID)
JTp⃗K (4.6)

where perms(ID) refers to the set of permutations of ID.

Notice that, consistent with Table 4.1, the transition relation JTRMK transits from the old
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state variables S to new state variables S ′ which consists of the global variable GVar and
local variables of all agents Li.MVar .

Next, we define the transition relation JTEnvK of environment transitions for Koord.
Environment transitions in [33] capture the evolution of the actuator ports over a time
interval [0,∆T ]—all other parts of the robot configuration remain unchanged. We first
define the environment transition relation JTi,EnvK for each robot i, and then construct the
transition relation JTEnvK for the entire distributed robotic system. The Koord semantics
defines the environment transitions of each robot i by specifying a (possibly black-box)
function for a dynamical system.8 The type of this function ξi is defined by sensor and
actuator ports, namely, ξi : QSens × QActs × R≥0 7→ QSens′ . Given old sensor values Li.sp,
actuator values Li.ap and a duration ∆T , ξi should return the new values for all sensor
ports L′

i.sp for simulating the dynamics of each robot i for the duration ∆T . Given such a
function ξi for each robot i and two time points τ, τ ′ ∈ R≥0 with τ ≤ τ ′ ≤ τ + ∆T , we define
the transition relation JTi,EnvK to represent the evolution of each robot i over a [τ, τ ′] time
interval. JTi,EnvK is constructed by simply updating the sensor ports sp of robot i with ξi.
Formally, JTi,EnvK is defined as Formula 4.7:

JTi,EnvK
def= {((τ,Li.sp),Li.ap, (τ ′,L′

i.sp)) | L′
i.sp = ξi(Li.sp,Li.ap, τ ′ − τ)} (4.7)

We construct the transition relation JTID,EnvK of the system such that all robots evolve
according to the global time. Formally, JTID,EnvK is defined as Formula 4.8:

JTID,EnvK
def=

{
((τ, {Li.sp}), {Li.ap}, (τ ′, {L′

i.sp}))
∣∣∣∣∣ ∧
i∈ID

((τ,Li.sp),Li.ap, (τ ′,L′
i.sp)) ∈ JTi,EnvK

}
(4.8)

Notice that JTID,EnvK represents relations between transient configurations of any two time
points τ and τ ′. Now to conform to the Koord semantics in [33], we carefully define the exact
transition relation JTEnvK between the end of each round without transient configurations
by restricting τ ′ = τ + ∆T . Formally, JTEnvK is given as Formula 4.9:

JTEnvK
def= {((τ, {Li.sp}), {Li.ap}, (τ + ∆T, {L′

i.sp})) ∈ JTID,EnvK} (4.9)

Recall in Table 4.1, the set of latent variables L is an empty set. the set of percept variables
P includes the global clock τ and the sensor ports Li.Sens, and the set of feedback variables
FB includes the actuator ports Li.Acts. Therefore, we have established that JTEnvK takes

8For different robots, this function could be defined in closed form, as solutions of differential equations,
or in terms of a numerical simulator.
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feedback variables FB as input and updates the percept variables P .

Example 4.2. Following the LineForm example in Figure 4.1, we construct the transition
relations as predicates for program turns in this example. We skip the construction for the
environment turn because it is almost the same procedure. For program turn transitions,
we first construct Ti,Avg represents the transition relation of the robot i executing the Avg
event. We can derive the transition relation of the event Avg in Figure 4.1 as the following
Boolean expression in Formula 4.10:

Ti,Avg
def=¬(i = N − 1 ∨ i = 0) · · ·Precondition at Line 9

∧ L′
i.M.tgt = (x[i− 1] + x[i+ 1])/2 · · ·Assignment at Line 11

∧ x′[i] = Li.M.pos · · ·Assignment at Line 12

∧ unchanged_vars

(4.10)

where unchanged_vars are additional constraints denoting that all other fields of Li and L′
i

stay the same, and similarly other array elements of x and x′ stay the same. For example,
Li.Motion.pos = L′

i.Motion.pos and ∧
j ̸=i x[j] = x′[j]. Similarly, We can derive the transition

relation of the event Skip as Formula 4.11:

Ti,Skip
def= (i = N − 1 ∨ i = 0) · · ·Precondition at Line 13

∧ L′
i.M.tgt = Li.M.tgt · · ·Actuators unchanged

∧ x′ = x · · · Shared variables unchanged

(4.11)

Then, we get Formula 4.12:
Ti,RM = Ti,Avg ∨ Ti,Skip (4.12)

Now we have to consider all possible permutations of robots executing events. In the case
when there are N = 3 robots, we first consider the transition relation for a particular
execution order (i1, i2, i3). For k ∈ {0, 1, . . . , N}, we denote GVark a copy of the set of
global variables GVar but each variable name is modified with the suffix k. The transition
relation for the execution order (i1, i2, i3) is then expressed as the predicate in Formula 4.13:

T(i1,i2,i3)
def= Ti1,RM [GVar0/GVar ,GVar1/GVar ′]

∧ Ti2,RM [GVar1/GVar ,GVar2/GVar ′]

∧ Ti3,RM [GVar2/GVar ,GVar3/GVar ′]

(4.13)

The transition relation for all possible permutations for N = 3 robots is given as For-
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mula 4.14:
TRM

def= T(0,1,2) ∨ T(0,2,1) ∨ T(1,0,2) ∨ T(1,2,0) ∨ T(2,0,1) ∨ T(2,1,0) (4.14)

To summarize, we have shown that a Koord application is an instance of the reactive
module interacting with the environment. We show the conversion by grouping the variables
from Koord system configurations to latent, percept, state, and feedback variables as well as
constructing the transition relations JTRMK and JTEnvK. From Example 4.2, we also observe
that the growth of the size of the predicate TRM is factorial with respect to the number of
robots N . In general, for a Koord program with n events running on N robots, the size of
TRM is proportional to N !×N × n.

4.2 DECOMPOSING INVARIANCE VERIFICATION

In this section, we show how to apply the inductive proof in Theorem 2.1 for showing the
safety of Koord applications. An invariant of a Koord program is a predicate that holds
in all reachable configurations. Invariant requirements can express safety, for instance, that
no two robots are ever too close (Collision avoidance), or that robots always stay within
a designated area (Geofencing). Following the discussion in Section 2.3, we now apply
Theorem 2.1 to decompose the verification into checking the invariant for the program turn
and the environment turn separately. We first assume that the safety is exactly the same as
the invariant because there is no latent variables. Theorem 2.1 is instantiated for Koord
as below.

Proposition 4.1. Given a predicate for the initial configurations of the system InitSys,
a predicate Inv is an inductive invariant of the system if, for any system configuration
({Li}i∈ID, gm, τ, turn), the following three proof obligations (POs) are met:

({Li}, gm, τ, turn) ∈ JInitSysK =⇒ ({Li}, gm, τ, turn) ∈ JInvK (Init)

({Li}, gm, τ, prog) ∈ JInvK ∧ ((gm, {Li.lm}), {Li.sp}, (gm′, {L′
i.lm}), {L′

i.ap}) ∈ JTRMK

=⇒ ({L′
i}, gm′, τ, env) ∈ JInvK (IndProg)

({Li}, gm, τ, env) ∈ JInvK ∧ ((τ, {Li.sp}), {Li.ap}, (τ + ∆T, {L′
i.sp})) ∈ JTEnvK

=⇒ ({L′
i}, gm, τ + ∆T, prog) ∈ JInvK (IndEnv)

That is, Inv holds in the initial configuration(s) by PO (Init), and Inv is preserved in
both platform-independent discrete program transitions by PO (IndProg) and the platform-
dependent environment transitions by PO (IndEnv). Proving PO (Init) is usually trivial.
Therefore, we focus on PO (IndProg) and (IndEnv).
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A major bottleneck in proving PO (IndProg) is the required enumeration of all permuta-
tions p⃗ ∈ perms(ID) for all robots with reads/writes to global memory. Recall from Exam-
ple 4.2 that the size of the predicate TRM is proportional to N ! ∗N ∗n with N robots and n
events. We therefore seek for an sufficient condition to avoid enumerating all permutations
described below.

Lemma 4.2. If the invariant Inv is preserved by the transition relation of every event JTi,evK,
then Inv is preserved by the transition relation of system program turn JTRMK. Formally, if
for any robot i ∈ ID and any event ev ∈ Events, the following proof obligation is met: ({Li}, gm, τ, prog) ∈ JInvK∧

((gm,Li.lm),Li.sp, (gm′,L′
i.lm),L′

i.ap) ∈ JTi,evK

 =⇒ ({L′
i}, gm′, τ, env) ∈ JInvK

(IndEvent)
then PO (IndProg) holds.

Proof. The proof follows from expanding the definition of JTRMK and inducting on each event
sequence. As Inv is preserved in the transition relation JTi,evK of every event by every robot,
the order of robot events do not violate Inv. QED.

With Lemma 4.2, we can prove PO (IndEvent) instead of PO (IndProg), and it is no longer
required to enumerate all permutations of the order of robots. This reduces the size of
predicates to N ∗ n in the proof obligations and helps address the scalability issue greatly.

Now we discuss our approach to discharge PO (IndEnv). We expand PO (IndEnv) as for
any robot i ∈ ID and for any time point t ∈ [0,∆T ]

 ({Li}, gm, τ, env) ∈ JInvK∧∧
i∈ID

L′
i.sp = ξi(Li.sp,Li.ap, t)

 =⇒ ({L′
i}, gm, τ + ∆T, prog) ∈ JInvK (IndTraj)

PO (IndTraj) requires reasoning about the dynamic behavior of ξi during environment tran-
sitions, and it is a challenging research problem by itself. We revisit controller assumptions
defined in [33, Definition 5.4] to abstract away the continuous dynamic behavior.

Definition 4.1. Given the ξi function and a pair of predicates Gi and RS i, where JGiK ⊆
QSens × QActs and JRSiK ⊆ QSens′ , the pair ⟨Gi,RS i⟩ is a controller port assumption if for
any robot configurations Li and L′

i, and for any time point t ∈ [0,∆T ],

(Li.sp,Li.ap) ∈ JGiK ∧L′
i.sp = ξi(Li.sp,Li.ap, t) =⇒ L′

i.sp ∈ JRSiK (PortAsm)

A controller assumption ⟨Gi,RS i⟩ is similar to preconditions and postconditions for ξi with
an additional guarantee that RS i must hold during the whole time horizon [0,∆T ].
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Lemma 4.3. Given controllers assumptions ⟨Gi,RS i⟩ of the function ξi for all robots i ∈ ID,
if ⟨Gi, RSi⟩ preserves the invariant Inv, that is,

 ({Li}, gm, τ, env) ∈ JInvK∧∧
i∈ID

(Li.sp,Li.ap) ∈ JGiK ⇒ L′
i.sp ∈ JRS iK

 =⇒ ({L′
i}, gm, τ + ∆T, prog) ∈ JInvK

(IndPort)
then PO (IndTraj) holds.

Proof. Lemma 4.3 holds because a controller assumption in Definition 4.1 is an instance of
the guard-reachset assumption in Definition 3.4. Hence, following Proposition 3.4, controller
assumptions over-approximate all transient behaviors of the (possibly black-box) function ξi
at any time point t ∈ [0,∆T ]. QED.

In addition, PO (PortAsm) can be validated by applying reachability analyses using the in-
put and output of ξi as a black-box function as discussed in Section 3.2. We will demonstrate
in Section 4.4 to validate PO (PortAsm) with our Koord simulator and other specialized
tools for continuous dynamics.

4.3 PROVING INDUCTIVE INVARIANT WITH SMT SOLVERS

The Koord language benefits from the K semantics framework and comes with a symbolic
execution engine (See Chapter 5 in [33]). We therefore can reuse this symbolic execution en-
gine to construct the transition relation for program transitions as constraints. The symbolic
execution engine generates such constraints for every robot i ∈ ID by the K-Z3 interface,
and then checks their validity using the SMT solver Z3 [86], that is, it returns ‘valid’ if
the negation of a generated constraint is unsatisfiable. Otherwise, it returns ‘invalid’ along
with a satisfiable model as the counterexample. We reuse this capability to discharge the
two proof obligations, PO (IndEvent) and PO (IndPort), shown in Lemma 4.2. Since the
technical details are nicely summarized by Ghosh in [33], we encourage the readers to read
[33] for the complete implementation.

We would like to verify that LineForm preserves a geofence. The geofence invariant is given
as the following predicate in Formula 4.15:

Inv def=
∧
i∈ID


pmin ≤ Li.M.pos ≤ pmax ∧
pmin ≤ Li.M.tgt ≤ pmax ∧
pmin ≤ x[i] ≤ pmax

 (4.15)
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This invariant asserts that the position and target of each robot i are always within the
rectangle defined by pmin and pmax, and that each agent updates its shared variable value to
one within pmin and pmax as well. For simplicity, we assume the operator ‘≤’ is extended to
3D points where p1 ≤ p2 means p1[k] ≤ p2[k] for every dimension k.

Discharge Proof Obligations for Events We first demonstrate how to discharge the
proof obligation PO (IndEvent) for events. Recall from Example 4.2, we have the transition
relation of the event Avg as the predicate Ti,Avg in Formula 4.10. To check PO (IndEvent),
we can construct the following expression φAvg in Formula 4.16 for the satisfiability query:

φAvg
def= Inv ∧ Ti,Avg ∧ ¬Inv[GVar ′/GVar ,L′

i.MVar/Li.MVar ,L′
i.Acts/Li.Acts]

def=
∧
i∈ID


pmin ≤ Li.M.pos ≤ pmax ∧
pmin ≤ Li.M.tgt ≤ pmax ∧
pmin ≤ x[i] ≤ pmax

 ∧

¬(i = N − 1 ∨ i = 0)

∧ L′
i.M.tgt = (x[i− 1] + x[i+ 1])/2

∧ x′[i] = Li.M.pos



∧ ¬
∧
i∈ID


pmin ≤ Li.M.pos ≤ pmax ∧
pmin ≤ L′

i.M.tgt ≤ pmax ∧
pmin ≤ x′[i] ≤ pmax


(4.16)

Notice that only state variables S = GVar ∪Li.MVar and feedback variables FB = Li.Acts
are replaced. Z3 is able to answer that φAvg is unsatisfiable, and thus the proof obligation is
proven valid. If we manually inspect the expressions, we can easily see the unsatisfiability by
checking the new values of L′

i.M.tgt and x′[i]. First, L′
i.M.tgt will stay within the geofence,

i.e., within pmin and pmax, because the old values of x[i − 1] and x[i + 1] is within the
geofence. Second, x′[i] will stay within the geofence because the old value of Li.M.pos is
within the geofence as constrained in Inv. Hence, the negation leads to unsatisfiability, and
the invariant is preserved by the event Avg.

Discharge Proof Obligations for Controller Ports Now we describe how to discharge
the proof obligation PO (IndPort) for controller ports. We consider the following controller
assumption ⟨Gi,RS i⟩ for the over-approximation of the dynamics ξi:

Gi
def= pmin ≤ Li.M.pos ≤ pmax ∧ pmin ≤ Li.M.tgt ≤ pmax

RS i
def= pmin ≤ L′

i.M.pos ≤ pmax
(4.17)

This port assumption basically states that, if both the old position Li.M.pos and the target
position Li.M.tgt stay within the geofence, then the new position L′

i.M.pos should also stay
within the geofence.
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The SMT formula φEnv for proving PO (IndPort) is then constructed as:

φEnv
def= Inv ∧

∧
i∈ID

(Gi ⇒ RS i) ∧ ¬Inv[L′
i.Sens/Li.Sens] (4.18)

Z3 is also able to answer that φEnv is unsatisfiable, and thus the proof obligation is proven
valid. When we manually inspect the expressions, it is straightforward to see that the
invariant Inv is preserved. Because Inv implies Gi, we can ensure that RS i is valid by the
implication. Further, the actuator values, global and local memories are unchanged during
the environment transition, we only need to show that the updated sensor value L′

i.M.pos
does not violate the invariant, and this is a direct result from RS i. Hence, it is proven that
the invariant is preserved by the environment transition.

4.4 VALIDATING PORT ASSUMPTIONS: REACHABILITY ANALYSIS

To validate port assumptions, we instantiate the proof obligation PO (PortAsm) for Port
Assumption (4.17). The proof obligation is derived as for any time point t ∈ [0,∆T ],


pmin ≤ Li.M.pos ≤ pmax ∧
pmin ≤ Li.M.tgt ≤ pmax ∧

L′
i.M.pos = ξi(Li.M.pos,Li.M.tgt, t)

 =⇒ pmin ≤ L′
i.M.pos ≤ pmax (4.19)

It states that if the starting position and the target of the robot are within the geofence,
then it remains within the geofence for the next ∆T interval.

To discharge the above proof obligation, one has to use the dynamics ξi of the specific
robot and the specifics of the waypoint-tracking controller driving the vehicles. For the
verification of LineForm, we use the reachability analysis approach, and in the remainder of
this section, we give an overview of this analysis.

In this LineForm example, we also use the DryVR [23] reachability analysis tool as we
mentioned in Section 3.2. Here we provide DryVR with traces from the Koord simulator
of the Hector Quadrotor model [42]. Figure 4.2 shows the outputs of the reachability analysis
performed on the quadrotor model. First, the large green rectangle in each plot represents
the geofence defined by pmin and pmax. Second, we generate simulated traces in the following
way. In each plot, the small blue rectangle in the lower left corner representing the region
to sample a starting point, and the blue rectangle in the top right corner representing the
region to select a target point. We then run the simulation for a ∆T duration to obtain a
simulation trace for each selected pairs of starting and target points. Note that the starting
and target points match the port variables Li.M.pos and Li.M.tgt, and the positions in
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Figure 4.2: Reachset computations for Hector Quadrotors to validate port assumptions for
LineForm. Left: The quadrotor overshoots, and the reachset is not contained within the port
assumptions. Right: The quadrotor precisely tracks the target point, and the reachset is
contained within the port assumptions.

a simulation trace matches the possible intermediate values of the new position L′
i.M.pos

during the time horizon [0,∆T ]. Third, the sequence of light green rectangles represents the
generated reachsets by DryVR. These rectangles over-approximate all generated simulation
traces and therefore over-approximate all possible values of the new position. We then check
if these values stay within the geofence, which is equivalent to check if PO (4.19) is violated.

Figure 4.2 (Left) shows that the reachset of the quadcopter using a simple PID controller
overshoots its target, and violates PO (4.19). Figure 4.2 (Right) shows that, for a quadrotor
with the same controller after tuning control gains to achieve a lower settling time, the
controller can track the target position more precisely with less overshoot; the controller
assumption is therefore satisfied.

4.5 SUMMARY

We showed how Koord programs can be reformulated in our CPReact model as the
interaction between reactive modules RM and the environment Env, so we can verify the
safety of a Koord application by checking the three top level proof obligations in Theo-
rem 2.1: (1) PO (Init) for initial configurations, (2) PO (IndProg) for program transitions,
and (3) PO (IndEnv) for environment transitions. Further, we provided sufficient condi-
tions to address scalability and black-box component issues. We showed in Lemma 4.2
how PO (IndEvent) strengthens PO (IndProg), and we introduced controller assumptions

52



and apply Lemma 4.3 to decompose PO (IndEnv) into PO (IndPort) and PO (PortAsm).
In short, our formulation further simplifies and decomposes the verification for inductive
invariants into four proof obligations,

(1) PO (Init) for checking initial configurations,

(2) PO (IndEvent) for checking each event in program transitions to avoid enumerating
all permutations in program transitions,

(3) PO (IndPort) for checking controller port assumptions that abstract black-box dynam-
ics away, and

(4) PO (PortAsm) for validating port assumptions.

We further demonstrated the decomposed verification approach on a formation control ap-
plication, LineForm. We showed how to reuse the symbolic execution engine for Koord
from [33] to automatically generate proof obligations for the proposed inductive invariant.
We then showed how to use controller assumptions to aid in verifying the inductive invari-
ant. Finally, we showed that controller port assumptions are guard-reachset assumptions in
Section 3.2, so we validated them through DryVR.

Overall, we show how Koord, a synchronous shared memory-based language model, is an
instance of our CPReact framework. In the next chapter, we apply our CPReact mod-
eling framework on Unmanned Aircraft Traffic Management systems which are distributed
robotic systems with asynchronous communication.
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Chapter 5: Abstractions for Unmanned Aircraft Traffic Management

In this chapter, we look into the safety analysis for the Unmanned Aircraft Traffic Man-
agement system, a multi-agent system with message passing communication. This is based
on our conference paper [41].9 The key concept for safe and efficient traffic management for
Unmanned Aircraft Systems (UAS) is the notion of operation volumes (OVs). An OV is a
4-dimensional block of airspace and time, which can express the intent of an aircraft, and
can be used for planning, de-confliction, and traffic management. While there are several
high-level simulators for UAS Traffic Management (UTM), we are lacking a framework for
creating, manipulating, and reasoning about OVs for heterogeneous air vehicles. In this
chapter, we address this and present SkyTrakx—a software toolkit for simulation and
verification of UTM scenarios based on OVs. Following the core idea of our CPReact
model in Chapter 2, we divide a UTM system into an air traffic coordination protocol as
the reactive module and the rest, such as individual air vehicle dynamics and maps of the
airspace, as the environment. Subsequently, we analyze the reactive module and the envi-
ronment separately with the help of an abstraction of the environment. First, we illustrate
a use case of SkyTrakx by presenting a specific air traffic coordination protocol. This pro-
tocol communicates OVs between participating aircraft and an airspace manager for traffic
routing. We show how existing formal verification tools, Dafny and Dione, can assist in
automatically checking key invariant properties of the protocol. Especially, we show that
the notion of OV abstracts away the complex air vehicle dynamics, and we use it to prove
the safe separation provided by the protocol. Second, we show how to compute OVs for
heterogeneous air vehicles like quadrotors and fixed-wing aircraft using another verification
technique, namely reachability analysis. Finally, we show how to use SkyTrakx to simulate
complex scenarios involving heterogeneous vehicles, for testing and performance evaluation
in terms of workload and response delay analysis. Our experiments delineate the trade-off
between performance and workload across different strategies for generating OVs.

5.1 OVERVIEW OF UNMANNED AIRCRAFT TRAFFIC MANAGEMENT

Unmanned Aircraft Traffic Management (UTM) is an ecosystem of technologies that aim
to enable unmanned, autonomous and human-operated, air vehicles to be used for trans-
portation, delivery, and surveillance. By 2024, 1.48 million recreational and 828 thousand

9This is a joint work with Dr. Hussein Sibai, Hebron Taylor, and Yifeng Ni and presented in the 25th

IEEE International Conference on Intelligent Transportation Systems (ITSC) in 2021.
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commercial unmanned aircraft are expected to be flying in the US national airspace [101].
Unlike the commercial airspace, this emerging area will have to accommodate heterogeneous
and innovative vehicles relying on real-time distributed coordination, federated enforcement
of regulations, and lightweight training for safety. NASA, FAA, and a number of corpora-
tions are vigorously developing various UTM concepts, use cases, information architectures,
and protocols towards the envisioned future where a large number of autonomous air vehicles
can safely operate beyond visual line-of-sight.

FAA’s UTM ConOps [12] defines the basic principles for safe coordination in UTM and
the roles and responsibilities for the different parties involved such as the vehicle operator,
manufacturer, the airspace service provider, and the FAA. The building-block concept in
UTM is the notion of operation volumes (OVs) which are used to share intent information
that, in turn, enables interactive planning and strategic de-confliction for multiple UAS [12].
Roughly, OVs are 4D blocks of airspace with time intervals. They are used to specify the
space that UAS is allowed to occupy over an interval of time (see Figures 5.1 and 5.2). While
there have been small-scale field tests for UTM protocols using OVs [102], there remains a
strong need for a general-purpose framework for simulating and verifying UTM protocols
based on OVs. Such a framework will need to

(1) manipulate and communicate OVs for traffic management protocols,

(2) reason about dynamic OVs for establishing safety of the protocols,

(3) compute OVs for heterogeneous air vehicles performing different maneuvers, and

(4) evaluate UTM protocols in different simulation environments.

In this section, we address this need and present SkyTrakx—an open source toolkit for
simulation and verification of UTM scenarios. The toolkit offers a framework that

(1) provides automata theory-based APIs for designing UTM protocols that formalize the
communication of OVs,

(2) integrates existing tools, Dafny and Dione, to assist in verifying the safety and
liveness of the protocols,

(3) uses the reachability analysis tool DryVR to compute OVs for heterogeneous air
vehicles, and

(4) expands the ROS and Gazebo-based CyPhyHouse framework [55] to simulate and
evaluate configurable UTM scenarios.
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Benefit from our CyPhyHouse framework [55], protocols can be ported from simulations
to hardware implementations. The detailed contributions of SkyTrakx are as follows:

Provably Safe De-confliction Using OVs For the first time, we show how the intention
expressed as OVs can ensure provably safe distributed de-confliction in Sections 5.3 and 5.4.
Following our CPReact model in Chapter 2, a UTM system is composed of an air traffic
coordination protocol as the reactive module and the individual air vehicle dynamics with
maps of the airspace as the environment. We can analyze the reactive module and the
environment separately using OVs to abstract away the environment. As an example, we
develop an automata-based de-confliction protocol using SkyTrakx APIs. This protocol
specifies how the participating agents, the air vehicles, should interact with the Airspace
Manager (AM ). We then formally verify the safety and liveness of this protocol with OVs.
In general, verification of distributed algorithms is challenging, but our safety analysis shows
that the use of OVs helps decompose the global de-confliction of the UAS into local invariant
on the Airspace Manager AM and local real-time requirements on each agent. We further
show that Dione [103], a proof assistant for Input/Output Automata (IOA) built with the
Dafny program analyzer [104], can prove the local invariant on the AM automatically.10

We prove that the safety of the protocol is achieved when individual agents follow their
declared OVs. The liveness analysis further shows that every agent can eventually find a
non-conflicting OV, under a stricter set of assumptions.

Reachability Analysis for OV Conformance The guarantees of our protocol rely on
proving the OVs can abstract away individual air vehicle dynamics, in other words, showing
that the agents do not violate their declared OVs. We stick to the same approach presented
in Section 3.2 and apply reachability analysis. In Section 5.5, we again show how to use
the data-driven reachability analysis tool, DryVR [23], to create OVs for heterogeneous air
vehicles with low violation probability. We apply such analysis on a quadrotor model, Hector
Quadrotor [42], and a fixed-wing aircraft model, ROSplane [44], and incorporate them in
SkyTrakx. We show both air vehicles in Figure 5.1 and visualize their OVs for a landing
scenario in Figure 5.2.

Performance Evaluation In Section 5.6, we first discuss the implementation of Sky-
Trakx. Then, we perform a detailed empirical analysis of our protocol in a number of
representative scenarios using SkyTrakx. We compare two strategies for the generation

10Dafny is based on the Z3 solver, so in essence we still prove the invariant with SMT solvers according
to Corollary 2.2.
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Figure 5.1: Hector Quadrotor [42] (Left) and ROSplane [44] (Right) models in Gazebo simulator.

of OVs with different aggressiveness, namely Conservative and Aggressive. Our exper-
iments quantify the performance and workload on the AM , and we measure these metrics
with respect to the number of participating agents and different strategies for generating
OVs. Our results suggest that the workload on the AM scales linearly with the number of
agents, and Aggressive provides 1.5-3X speedup but leads to 2-5X increased workload on
the airspace manager AM .

5.2 RELATED WORKS

Collision Avoidance Protocols Prior to the development of the UTM ecosystem, traffic
management protocols for manned aircraft include the family of Traffic Alert and Collision
Avoidance Systems (TCAS) [105, 106, 107, 108, 109, 110].

UTM and TCAS are complementary—the former is for long range strategic safety against
loss of separation with other aircraft and static obstacles, weather events, and anomalous
behaviors, while the latter is for shorter-range tactical safety. Accordingly, the protocol we
discuss (in Section 5.4) coordinates over longer range and not only for potential collision
avoidance. SkyTrakx could be augmented with existing collision avoidance protocols in
the future. For instance, if an aircraft violates its operation volume in our protocol, then a
TCAS-like protocol can be used to avoid collision.

Formal Approaches to UTM and Collision Avoidance The formal methods’ research
community has engaged with the problem of air-traffic management in a number of different
ways. There have been several works on formal analysis of TCAS [111, 112, 113, 114], ACAS
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(a) ROSplane reserved OVs for loitering and de-
scending.

(b) ROSplane loiters and waits for Quadrotors.

(c) Quadrotors passed the runway before ROS-
plane descends.

(d) ROSplane descends.

Figure 5.2: Visualization of a landing scenario with heterogeneous air vehicles in an airport. The
OVs for Hector Quadrotors are annotated with orange and OVs for the ROSplane are shown in
green. Reserved OVs are outlined with dots, and OVs in use are represented with solid tubes.

X [75, 115, 116], and other protocols [117, 118, 119, 120, 121, 122].11 These verification
efforts rely on various simplifying assumptions such as precise state estimates, straight-line
trajectories, constant velocity of the intruder and ownership. Algorithms to synthesize safe-
by-construction plans for multiple drones flying in a shared airspace have been developed
in [53, 55, 123, 124]. These approaches rely on predicting and communicating future behavior
of participating aircraft under different sources of uncertainty [53, 119, 123].

11https://ti.arc.nasa.gov/news/acasx-verification-software/
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For example, [119] uses reachability analysis to check for collisions under sensing and
synchronization errors. The work in [123] uses Signal Temporal Logic (STL) to synthesize
trajectories that are far from predicted trajectories shared by other drones. It accounts for
discretization errors of continuous trajectories while restricting them to be simple (straight
lines, or with free end velocities but zero acceleration). In [53], the authors propose a
framework for the synthesis of safe drone trajectories given those of the other drones while
accounting for synchronization errors.

In [125], the authors present an approach for decentralized policy synthesis for route plan-
ning of individual vehicles modeled as Markov decision processes. Our approach decouples
the low-level dynamically feasible planning from the distributed coordination, and solves the
latter problem using a centralized coordinator (Airspace Manager) via distributed mutual
exclusion over regions of the airspace (Section 5.4). In [126], the authors present a framework
for decentralized controller synthesis for different managers of neighboring airspaces. They
use finite game and assume-guarantee approaches to generate decision-making mechanisms
that satisfy linear temporal logic specifications. An application of their approach is to design
policies for airspace managers that enforce a maximum number of vehicles in the airspace or
maximum loitering time. Their framework assumes the operating regions for actions such
as takeoff or loitering are predefined. Our framework is complementary to this work as we
show how a vehicle can generate an OV based on its vehicle dynamics from infinite choices
of regions and time.

In [119], the authors present a protocol for online decentralized safety checking for a
swarm of drones accomplishing individual goals while avoiding static and cross-agent col-
lision. Different drones share their bounded time reachsets, projected to the time and 3D
space, periodically. Each drone checks the intersection of its projected reachset with other
drones’ projected reachsets while accounting for time delays. A projected reachset is an
example of an OV, and their method is an example of an OV abstraction-based protocol.
Their total verification time per period scales linearly with the number of agents. They
achieve real-time performance by using the face-lifting method to compute reachsets and
representing reachsets as a single hyper-rectangle.

5.3 A FORMAL MODEL OF OPERATION VOLUMES

In this section, we formalize the notion of OVs described in [12] which is the fundamental
building block for UTM protocols. This formalization is also implemented in SkyTrakx
for creating, manipulating, and reasoning about OVs. We refer to a UAS participating in
the UTM system as an agent, or equivalently, an air vehicle. Every agent in the system
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has a unique identifier. The set of all possible identifiers is ID. We assume that each agent
has access to a common global clock which takes non-negative real numbers. The airspace
is modeled as a compact subset W ⊆ R3. Large airspaces may have to be divided into
several smaller airspaces, and one has to deal with hand-off across airspaces. In this chapter,
we do not handle this problem of air vehicles entering and leaving W . Other works have
synthesized safe protocols for this problem (e.g., [126]). The airspace is different from the
state space of individual air vehicles which may have many other state components like
velocity, acceleration, pitch and yaw angles, etc. Informally, an OV is a schedule for an air
vehicle for occupying airspace.

Definition 5.1. An operating volume (OV) is a sequence of pairs C = (R1, τ1), (R2, τ2),
. . . , (Rk, τk) where each Ri ⊆ W is a compact subset of the airspace, and τi’s is a monoton-
ically increasing sequence of time points.

The total time duration τk− τ1 of the OV C is denoted by C.dur , and the length k of C is
denoted by C.len. Further, we denote the last time point τk by C.τlast , the last region Rk by
C.Rlast , and the union of all regions, ⋃k

i=1Ri, by C.Rall . We denote the set of all possible
contracts as OV. An air vehicle meets an OV at real-time t if

(1) t ∈ [τi, τi+1) for any i < k implies that the air vehicle is located within Ri, and

(2) t ≥ τk implies that the agent is located within Rk ever after τk.

Formally,

Definition 5.2. Any OV C represents a compact subset JCK of space-time:

JCK def=
k−1⋃
i=1
{(r, t) | r ∈ Ri ∧ τi ≤ t < τi+1} ∪ {(r, t) | r ∈ Rk ∧ τk ≤ t} (5.1)

Further, given the current position pos and clock reading clk of an air vehicle, we say that
the air vehicle meets the contract C if and only if (pos, clk) ∈ JCK.

5.3.1 OVs are Closed under Set Operations

We now show that OVs are closed under all set operations by first defining basic operations
to align time points of any two OVs. Then we show that OVs are closed under intersection,
union, and set difference.
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Definition 5.3. Two OVs are time-aligned if they use the same sequence of time points.
Given two time-aligned OVs, Ca = (Ra

1, τ1), . . . , (Ra
k, τk) and Cb = (Rb

1, τ1), . . . , (Rb
k, τk),

and a set operation ⊕ ∈ {∩,∪, \}, we define

Ca ⊕ Cb def= (Ra
1 ⊕Rb

1, τ1), . . . , (Ra
k ⊕Rb

k, τk). (5.2)

We now generalize the definition to OVs that are not time-aligned.

Definition 5.4. Given any OV C = (R1, τ1), . . . , (Rk, τk), prepend(C, τpp) where τpp < τ1,
split(C, τsp) where τi < τsp < τi+1, and append(C, τap) where τk < τap are defined as,

prepend(C, τpp) def= (∅, τpp), (R1, τ1), . . . , (Rk, τk)

split(C, τsp) def= (R1, τ1), . . . , (Ri, τi), (Ri, τsp), (Ri+1, τi+1), . . . , (Rk, τk)

append(C, τap) def= (R1, τ1), . . . , (Rk, τk), (Rk, τap)

(5.3)

Finally, we define insert(C, T ) function over any T ,

insert(C, T ) def=



prepend(C, T ) if T < τ1

split(C, T ), if τi < T < τi+1

append(C, T ), if τk < T

C, otherwise.

(5.4)

Lemma 5.1. By definition, the OV produced by prepend, split, append, and insert functions
represents the same set of space-time by C. That is, given any OV C and time point T ,

Jinsert(C, T )K = JCK (5.5)

With the help of insert, we can always align two OVs. We can then implement intersection,
union, and difference on OVs on top of the same operators for airspace.

Proposition 5.2. Given any OV Ca and Cb, any set operation ⊕ ∈ {∩,∪, \}, we have the
following equivalences:

JCa ⊕ CbK = JCaK⊕ JCbK. (5.6)

The proof is to expand the definition of J·K and skipped here. Given Proposition 5.2, OVs
are closed under all set operations; hence we drop the J·K notation.

Several concepts are defined naturally as set operations on OVs. We abuse the notation
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sometimes and use C as the set represented by the contract C, i.e. the set

C
def=

k−1⋃
i=1
{(r, t) | r ∈ Ri ∧ τi ≤ t < τi+1}

∪ {(r, t) | r ∈ Rk ∧ τk ≤ t}.
(5.7)

For example, checking if Ca refines Cb is to simply check if Ca uses less space-time than Cb

does, i.e., Ca ⊆ Cb, or equivalently Ca \ Cb = ∅.
We will use the defined operations in our protocol in Section 5.4 to update OVs of individ-

ual agents and check intersections. We will show how to create such OVs using reachability
analysis in Section 5.5.

5.4 A SIMPLE COORDINATION PROTOCOL USING OVS

We present an example protocol for safe traffic management using OVs and its correctness
argument. We further implement the protocol with SkyTrakx. The protocol involves a
set of agents communicating OVs with an airspace manager or controller (AM). The overall
system is the composition of the airspace manager (AM ) and all agents (agenti):

Sys def= AM||{agenti}i∈ID. (5.8)

In Section 5.4.1 and 5.4.2, we describe the protocol by showing the interaction between
participating agents and the AM through request, reply, and release messages. We then
analyze the safety of the protocol under instant message delivery in Section 5.4.3, and its
liveness in Section 5.4.5.

1 automaton AirspaceManager
2
3 variables:
4 contr_arr: [ID → OV]
5 reply_set: Set⟨ID⟩
6
7 output replyi(contr: OV = contr_arr[i])
8 pre: i ∈ reply_set
9 eff: reply_set := reply_set \ {i}

11 input requesti(contr: OV)
12 eff:
13 reply_set := reply_set ∪ {i}

14 if
j∈ID∧
j ̸=i

(contr ∩ contr_arr[j] = ∅):

15 contr_arr[i] := contr_arr[i]∪contr
16
17 input releasei(contr: OV)
18 eff: contr_arr[i] := contr_arr[i] \ contr

Figure 5.3: Airspace Manager automaton.

62



5.4.1 Airspace Manager

We design the AM as an Input/Output Automaton (IOA) [19] defined in Figure 5.3. The
AM keeps track of all contracts and checks for conflicts before approving new contracts. It
uses a mapping contr_arr in which contr_arr[i] records the contract held by the agent i,
and a set reply_set to store the IDs of the agents whose requests are being processed and
pending reply.

Whenever the AM receives a requesti(contr) from agent i (Line 11), i is first added
to reply_set. Then, contr is checked against all contracts of other agents by checking
disjointness (Line 14). Only if the check succeeds, contr is included in contr_arr[i] via set
union (Line 15).

When i is in reply_set, the replyi(contr) action is triggered to reply to agent i with the
recorded contr=contr_arr[i] (Line 7). Note that the AM replies with the recorded contract
contr_arr[i] at Line 7 irrespective of whether the requested contract contr in Line 11 was
included in contr_arr[i] or not. Finally, if the AM receives a releasei(contr), then it
removes contr from contr_arr[i] via set difference (Line 18).

5.4.2 Agent’s Protocol

The agent’s coordination protocol sits in between a planner/navigator that proposes OVs
and a controller which drives the air vehicle to its target. We will discuss approaches
to estimate OVs for waypoint-based path planners and waypoint-following controllers in
Section 5.5. Figure 5.4 shows the simplified state diagram of the agent protocol. At a high
level, agent i’s protocol starts in the idle state and initiates when a plan action with a given
contr is triggered by the agent’s planner. Then, the protocol requests this contract from
the AM , and waits for the reply. If the requested contract is a subset of the one replied by
the AM , the agent protocol enters the moving state. At this point, the agent’s controller
starts moving the air vehicle and ideally making it follow the contract strictly. Once the
air vehicle reaches the last region of OV successfully, the protocol releases the unnecessary
portion of the contract and goes back to idle state. In the case that the requested contract
is not a subset of the one replied by the AM , the protocol directly releases and retries. If the
agent violates the contract while moving, it notifies the AM that the contract is violated.
We provide the formally specified automaton and detail explanations of the agent’s protocol
in Figure 5.5.

The detailed automaton is shown in Figure 5.5. The agent protocol has a status variable
to keep track of the discrete states in Figure 5.4. In addition, it uses three contract-typed
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IDLE start

REQUESTING

WAITING

MOVINGRELEASING

plan(contr)

requesti(contr)

replyi(contr)

next_regioni
succeed

violatei

releasei(contr)

replyi(contr)

Figure 5.4: Simplified state diagram for Agent.

1 automaton Agenti

2 variables: // Discrete variables
3 status: {IDLE,REQUESTING,WAITING,
4 MOVING,RELEASING} := IDLE
5 curr_contr: OV
6 plan_contr: OV
7 free_contr: OV
8
9 input plani(contr: OV)

10 eff:
11 if status = IDLE:
12 plan_contr := contr
13 status := REQUESTING
14
15 output requesti(contr: OV = plan_contr)
16 pre: status = REQUESTING
17 eff: status := WAITING
18
19 input replyi(contr: OV)
20 eff:
21 if status = WAITING:
22 if curr_contr ̸⊆ contr:
23 warning("Contract too small")
24 curr_contr := contr
25 if plan_contr ⊆ contr:
26 curr_contr := contr
27 status := MOVING
28 else:
29 free_contr := contr\curr_contr
30 status := RELEASING

32 variables: // Continuous variables
33 clk: R≥0
34 pos: R3 // Position sensor
35
36
37 output next_regioni():
38 pre: status = MOVING ∧ len(plan_contr)≥2
39 ∧ clk ≥ plan_contr.T2
40 eff: plan_contr.pop_front()
41
42 internal succeed():
43 pre: status = MOVING ∧ len(plan_contr)=1
44 ∧ (pos, clk) ∈ plan_contr
45 eff:
46 free_contr := curr_contr\plan_contr
47 status := RELEASING
48
49 output violatei():
50 pre: status=MOVING ∧ (pos,clk) /∈ curr_contr
51 eff:
52 error("Current contract is violated")
53
54 output releasei(contr: OV = free_contr)
55 pre: status = RELEASING
56 eff:
57 curr_contr := curr_contr \ free_contr
58 status := IDLE

Figure 5.5: Agent automaton

variables for the following purposes:

(1) curr_contr is a local copy of the current contract maintained for i by the AM ,

(2) plan_contr is a contract that i wants to propose to the AM to be able to visit the
planned waypoints, and

(3) free_contr tracks the releasable portion of the current contract curr_contr.
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In addition, the agent i can read its current position from the variable pos and the current
global time from the variable clk. To provide a simple abstraction of arbitrary controllers
for the agent, we create the variable traj_ctrl that stores a list of waypoints that the
agent would follow when it is in the MOVING status. traj_ctrl has two abstract interfaces:
set_waypoints to store the plan waypoints and calculate the necessary control signal (using
PID, for example) and start to start moving the agent to follow waypoints.

Each agent i is initialized in IDLE status. When it receives a plan action with a given
contr (Line 9), the agent stores contr as plan_contr (Line 12) and enters the REQUESTING
status (Line 13). A number of strategies may be followed to create contracts from waypoints
lists, for example using reachability analysis for a given waypoint-tracking controller for
the aircraft, or creating fixed-sized 3D rectangles centered at the segments connecting the
waypoints. We will discuss this further in Section 8.5. Agent i then makes a request
requesti(contr) with contr=plan_contr to denote the planned contract is sent as output,
and enters WAITING status to wait for a reply from the AM (Line 15).

When agent i receives a replyi(contr) from the AM , the contract contr represents the
contract of agent i recorded by the AM (Line 19). It is the union of all contracts agent i
have acquired and not yet released. Agent i first checks whether the contract curr_contr is
a subset of contr or not. If not, it means the local copy is less restrictive, so the AM may
grant contracts to other agents conflicting with agent i. This may lead to a safety violation,
and hence agent i raises a warning (Line 19). Otherwise, the agent checks if the contract
contr approved by the AM contains plan_contr, i.e. plan_contr ⊆ contr (Line 25). If
yes, then it updates its curr_contr to be equal to the new approved contr. The agent
then calls traj_ctrl.start to start following the waypoints, and transitions to the MOVING
status. If no, i.e. there is a part of plan_contr that is not approved contr and not approved
by the AM , then agent i does not change curr_contr. It only checks the part of the contract
saved by the AM that is no longer a part of curr_contr of the agent. It then stores this
portion of the contract in free_contr (Line 29), and directly goes to the RELEASING status
to release and re-plan (Line 30).

When the agent is in the MOVING status, the next_region action will be triggered when-
ever the global time passes the time bound of a region in the contract (Line 37). That action
will remove that pair of region and time point from plan_contr (Line 40). Once there is
only a single pair left in the planned contract plan_contr and the contract is not violated,
the succeed action is triggered to indicate the plan is executed successfully (Line 42). Agent
i then calculates the releasable contract free_contr to be its contract curr_contr exclud-
ing the last pair of plan_contr (Line 46). Finally, it enters RELEASING status. It sends
releasei(contr) to notify the AM the contract that agent i can release, and goes back to
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IDLE status (Line 58).
If at any point in time the current contract is violated, the violate action would be

triggered (Line 49). Remember that the contract is violated if the current pair of position
and time of the agent is outside the space-time specified by the contract. This can happen
in case the agent moves outside a region in a time interval of the contract, or the agent could
not reach a region before its specified time point in the contract. It then declares a violation
to the AM . For simplicity, we skip the protocol after entering STOPPING status. In practice,
recovery actions or emergency landing can be implemented.

5.4.3 Protocol Correctness: Safety under Instantaneous Delivery

We now discuss the safety property ensured by our protocol. Here, agenti.curr_contr de-
notes the contract that the ith agent is following. Assuming that none of the agents triggered
their violate action, then an agent always follows its local contract curr_contr. In that
case, collision avoidance is defined naturally as the disjointness between the curr_contrs of
all agents. Our goal therefore is to show that the following proposition is an invariant of the
system:

Proposition 5.3 (Safety). If none of the agents triggered their violate action, the current
contracts followed by all agents are pairwise disjoint, i.e., we show the Safe predicate below
is valid:

Safe def=
∧
i∈ID

∧
j ̸=i,j∈ID

agenti.curr_contr ∩ agentj.curr_contr = ∅. (5.9)

Our proof strategy is to show that first the global record of contracts maintained by the
AM are pairwise disjoint by Lemma 5.4. Then, we ensure the local copy by each agent is
as restrictive as the global record and hence preserves disjointness by Lemma 5.5. With
Lemma 5.4 and Lemma 5.5, Proposition 5.3 is derived following basic set theory. We start
from Lemma 5.4 for the AM .

Lemma 5.4. If none of the agents triggered their violate action, all contracts recorded by
the AM are pairwise disjoint, i.e., we show the Inv predicate below is valid:

Inv def=
∧
i∈ID

∧
j ̸=i,j∈ID

AM.contr_arr[i] ∩ AM.contr_arr[j] = ∅. (5.10)

Proof. This is a direct result from examining all actions of the AM automaton. The requesti
action ensures that a contr is only included into contr_arr[i] if it is disjoint from all other
contracts contr_arr[j]. The replyi action does not modify contr_arr at all, and releasei
action only shrinks the contracts. QED.

66



agenti
curr_contr=C0

AM
contr_arr[i]=C0

τ rel
snd

τ rep
rcv

τ rep
snd

τ rel
rcv

releasei(C1) replyi(C0)

curr_contr=C0\C1

curr_contr=C0 contr_arr[i]=C0\C1

Figure 5.6: Sequence diagram for an impossible unsafe OV release.

Lemma 5.5. If none of the agents triggered their violate action, the curr_contr of agent
i is always as restrictive as contr_arr[i], i.e., the following auxiliary predicate Aux is valid:

Aux def=
∧
i∈ID

agenti.curr_contr ⊆ AM.contr_arr[i]. (5.11)

Proof. This is proven by examining all actions of the agent automaton regardless of the
order of execution. Due to the space limit, we only consider when actions are delivered
instantaneously. The curr_contr is only modified in reply and release actions. In reply
action, curr_contr is to copy contr sent by the AM and thus Lemma 5.5 holds. In release
action, curr_contr removes contr first; then release is delivered to the AM to remove
contr. As a result, Lemma 5.5 still holds. QED.

5.4.4 Protocol Correctness: Safety under Bounded Delay

Now we consider the case where actions are delivered with bounded delay under the
reliable communication assumption. Our proof is to show the impossibility of unsafe action
sequences under the reliable communication. Because the current contract of each agent
is only updated after receiving replyi from the AM and shrunk when sending releasei,
the potential counterexample shown in Figure 5.6 can only happen if replyi is delivered to
agent i to update its local copy while releasei is delivered to the AM to shrink the global
copy concurrently, i.e., τ rel

snd < τ rep
rcv and τ rep

snd < τ rel
rcv . Recall from Figure 5.4 that our protocol

ensures requesti, replyi, and releasei happen in such order by design. We can prove this
order of actions by induction on the formally defined automaton but skip the proof here
for simplicity. Therefore, we know that there must be a requesti sent after releasei, and
replyi is the response to this request. Now we provide a simplified reliable communication
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assumption for this proof.

Assumption 5.1. The reliable communication guarantees the messages sent by the same
agent are delivered in order. In particular, if agenti sends a releasei first and requesti
second, we denote τ rel

snd as the time releasei is sent and τ rel
rcv as the time received, similarly

τ req
snd and τ req

rcv for requesti. Formally,

τ rel
snd ≤ τ req

snd ⇒ τ rel
rcv ≤ τ req

rcv (5.12)

Also by definition, T ∗
snd ≤ T ∗

rcv because sending must happen before receiving. The order
between actions can be formally specified as τ rel

snd ≤ τ req
snd ≤ τ req

rcv ≤ τ rep
snd because the request

must have been delivered to the AM for it to trigger the replyi. We can then derive τ rel
snd ≤

τ req
snd ≤ τ req

rcv ≤ τ rep
snd < τ rel

rcv . This contradicts to our assumption of reliable communication
because messages from agenti are delivered out of order. To be more precise, releasei is
sent before (τ rel

snd ≤ τ req
snd) but delivered later (τ req

rcv < τ rel
rcv ) than requesti. This contradicts

to τ rel
snd ≤ τ req

snd ⇒ τ rel
rcv ≤ τ req

rcv . Hence, we prove by contradiction.

5.4.5 Protocol Correctness: Liveness

For liveness property, we would like to see every agent eventually reaches its target. In
our protocol, this is formulated as every agent eventually reaches the last region of its OV
that it proposed in plan action and triggers its succeed action. The overall proof is to show
that an agent can always find an OV which the AM approves.

Since a newly proposed OV may be rejected, we denote it as plan_contr to distinguish
from curr_contr which an agent always follows. It is worth noting that liveness depends on
the OV for each agent. A simple scenario where liveness cannot be achieved is when the final
destinations of two agents are too close; thus the last region where one agent stays at the end
could block the other agent forever. Therefore, we first require the following assumption:

Assumption 5.2 (Disjointness of different agents’ regions). For any agent i ∈ ID, all regions
that it plans to traverse are disjoint from the last regions of all other agents. Formally,

∧
j ̸=i

plan_contri.Rall ∩ AM.contr_arr[j].Rlast = ∅. (5.13)

Assumption 5.2 can be achieved by querying the AM when planning since Lemma 5.5
ensures the AM ’s record of OVs includes the agents’ OVs.

68



Definition 5.5. Given an OV C = (R1, τ1), . . . , (Rk, τk) and a time duration δ, we define
reschedule(C, δ) as:

reschedule(C, δ) def= (R1, τ1 + δ), (R2, τ2 + δ), . . . , (Rk, τk + δ) (5.14)

Now we start our argument for liveness. By our protocol design, if agent i never violates
its OV, it must reach the last region successfully. Therefore, we only have to prove that
agent i’s request to the AM must be accepted eventually. With Assumption 5.2, we prove
the claim that an agent i can always reschedule a plan so that the AM approves its OV.

Proposition 5.6 (Liveness). If plan_contri satisfies Assumption 5.2, then there is a time
duration δ0 such that the AM approves reschedule(plan_contri, δ) for all δ ≥ δ0. Formally,

∧
j ̸=i,j∈ID

reschedule(plan_contri, δ) ∩ AM.contr_arr[j] = ∅. (5.15)

Proof. Following Assumption 5.2, we first derive the disjointness of regions of airspace. For
any j ̸= i and any δ,

reschedule(plan_contri, δ).Rall ∩ AM.contr_arr[j].Rlast = ∅, (5.16)

because reschedule does not modify the regions. Further, we derive that the following two
OVs are disjoint for any δj ≥ AM.contr_arr[j].τlast :

reschedule(plan_contri, δj) ∩ AM.contr_arr[j] = ∅. (5.17)

The proof is to expand the definition and is skipped here. Intuitively, this is because
every agent j is expected to reach and stay in AM.contr_arr[j].Rlast ever after δj ≥
AM.contr_arr[j].τlast . Therefore, the rescheduled OV for agent i does not overlap with
OVs of any other agent j.

Finally, let δ0
def= max

j ̸=i
AM.contr_arr[j].τlast and it directly leads to the proof of Propo-

sition 5.6. QED.

In addition to the manual proof presented, we have also explored using Dione [103] with
Dafny proof assistant [104] to generate induction proofs for invariants of IOA. We chose
this tool due to its support for IOA and automated SMT solving for set operations on OVs.
We discovered that these tools can automatically prove the local invariant Lemma 5.4 for the
AM . However, they lack support for continuous time to model agents and communication
delay; hence we cannot use Dione to prove other lemmas and propositions directly.
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5.5 REACHABILITY ANALYSIS AND OPERATION VOLUMES

In Section 5.4, we show that the protocol ensures safety and liveness. However, the proof
assumes that the air vehicle does not violate its OV. In this section, we discuss how to use
existing reachability analyses to over-approximate regions of space-time that an air vehicle
may visit. This over-approximation can be used to

(1) generate OVs that are unlikely to be violated, or

(2) monitor air vehicles at runtime to predict and avoid possible violations.

Formally, given a dynamical system with state space X , a set of initial states X0 ⊆ X ,
and a time horizon [τ0, τ1), reachability analysis tools can compute reachset, a set of states
X1 reachable within [τ0, τ1). We further require a function π̂ : 2X 7→ 2W to transform state
space to air-space. Then, one can build an OV Creach = (−∞, π̂(X0)), (τ0, π̂(X1)), (τ1,W).
This means that when air vehicle stays within π̂(X0) before τ0, it will then stay within π̂(X1)
between τ0 and τ1, and it can be anywhere after τ1. We then can merge Creach for different
time horizons to propose OVs.

In this chapter, we use DryVR [23] to compute reachtubes from simulation traces as
we discussed in Chapter 2. DryVR uses collected traces to learn the sensitivity of the
trajectories of the air vehicle, and generates reachtubes for a new simulation trace with
probabilistic guarantees. We use DryVR to generate OVs for a quadrotor model, Hector
Quadrotor [42], and a fixed-wing model, ROSplane [44], using the Gazebo simulator.

Hector Quadrotor The state variables for Hector Quadrotor already include x, y, and
z for its position. They also include other variables for orientation and velocity. Hence, π̂
for this model is to simply apply projections to the x, y, and z axes. We compute Creach
for a scenario where the air vehicle follows the waypoint (0, 0, 2.5). Figure 5.7 shows the
projection of Creach as hyper-rectangles to the xy-plane (Left) and to the z-axis against
time (Right). We can generate OVs using a Conservative strategy that covers Creach for
the entire time horizon with a bounding rectangle, or an Aggressive strategy to use the
gray rectangles as an OV with short time intervals. In general, we can generate a spectrum
of OVs from Creach between Conservative and Aggressive strategies, and all OVs in
this spectrum can guarantee, using reachability analysis, a low probability of violations. We
further explore the performance trade-off between the two strategies in Section 8.5.

ROSplane Similarly, the state variables for ROSplane include x, y, and z representing
its position but in North-East-Down (NED) coordinates. Hence, π̂ for this model is to
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Figure 5.7: Simulation traces in Black and boundary of the reachtube computed by DryVR
in Gray for Hector Quadrotor going to the waypoint at (0, 0, 2.5). The reachtube is projected
to xy-plane (Left) and z-axis over time (Right).
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Figure 5.8: Reachtube by DryVR in 3D (Left) for ROSplane to loiter and then descend.
The traces and reachtube for loiter (Top Row) and descent (Bottom Row) are projected to
xy-plane (1st column) and z-axis over time (2nd column).

apply projections to x, y, and z axes and transform to the coordinates used by the Airspace
Manager. We simulate some of its traces and then divide them into segments to analyze
several path primitives denoted as modes for ROSplane [44]. In Figure 5.8, we show the
reachtubes for two modes, namely loiter and descend. Unsurprisingly, the plane may not
maintain the desired altitude (z-axis) precisely while loitering, and thus it is important to
reserve enough range of altitude in OVs for ROSplane.

In summary, we are able to derive useful, i.e., not overly conservative, OVs using DryVR,
even with noisy simulations, as shown in Figure 5.8. The main engineering difficulty we

71



faced using DryVR is to divide traces into proper segments that are from the same mode
for ROSplane. This requires domain knowledge on each air vehicle model, for which we refer
the readers to [42] and [44].

5.6 SKYTRAKX IMPLEMENTATION AND EVALUATION

Our experiments are conducted using SkyTrakx. SkyTrakx and all simulation scripts
are available at our GitHub repository.12 We present experiments with the Hector Quadrotor
model [42] with its default waypoint-following controller. We first describe SkyTrakx, then
the scenarios, then the experimental results followed by a brief discussion.

5.6.1 SkyTrakx: System Details

SkyTrakx consists of four major components:

(1) Dione verification discussed in Section 5.4,

(2) reachability analysis and reachtubes from DryVR described in Section 5.5,

(3) an executable reference UTM protocol implemented in Python of Section 5.4, and

(4) UTM protocol simulation and visualization with CyPhyHouse [55].

Here we focus on the executable UTM protocol and its simulation.
To faithfully follow the semantics of our example UTM protocol, we first provide a data

structure to represent and easily manipulate rectangular OVs. We provide APIs for design-
ing executable (timed) input/output automata that can interact with simulated vehicles in
CyPhyHouse, and implement an execution engine to simulate the input/output automata
alongside CyPhyHouse. To reuse reachtube from DryVR, we also design APIs to load
pre-computed reachtubes for estimating OVs. Finally, we also provide several scripts to set
up desired scenarios and environments in CyPhyHouse, and implement a plugin to better
visualize OVs in the Gazebo simulation backend of CyPhyHouse.

5.6.2 Evaluation Scenarios

Following the protocol defined in Section 5.4, a scenario for evaluation is specified by

(1) the set of agents ID which we consider N = |ID|
12https://github.com/cyphyhouse/CyPhyHouseExperiments
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Figure 5.9: Maps: Corridor (Left), Loop (Mid), and CitySim (Right)

(2) the world map and the sequence of waypoints for each agent denoted as the map, and

(3) the strategy that the agents use to generate OVs from their waypoints.

For example, the Left figure in Figure 5.9 shows a scenario with N = 6 drones in the
Corridor map. It uses the Aggressive strategy to generate OVs, which are visualized in
the red and blue frames.

We evaluate our protocol in the following maps shown in Figure 5.9:

(1) Corridor simulates two sets of drones on the opposite sides of a tight air corridor
trying to pass through. This may happen in a garage-like space where a fleet of air
vehicles enter or leave.

(2) Loop simulates each drone following the vertices of the same closed polygonal chain.
This models common segments in the routes of air vehicles such as pickup packages or
return to bases’ routes.

(3) CitySim is a more realistic scenario which simulates drones flying in a city block.

(4) Random(k) are scenarios where each drone follows a sequence of k random waypoints
inside a 25m× 25m arena. This is to validate our protocol via random testing.

In addition, a designated landing spot for each drone is specified as the last waypoint in all
maps to ensure the liveness property. This avoids the situation where a landed drone blocks
other air vehicles.

Conservative and AggressiveOVs We implemented two strategies, namely Conserva-
tive and Aggressive, to generate OVs from given waypoints and positions. Both strategies
are deterministic and use only hyper-rectangles for specifying regions in OVs. As discussed
in Section 5.5, Conservative reserves large rectangles covering consecutive waypoints with
longer durations between time points. Thus, it acquires unnecessarily large volumes and may
obstruct other agents. In contrast, Aggressive heuristically selects smaller rectangles and
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Figure 5.10: Regions for waypoints generated by Aggressive (Solid rectangles) and Con-
servative (Dashed rectangles) strategies.
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Figure 5.11: Response time per agent (Left), #emptiness queries per second (Mid), and
#rectangles checked by the AM per second (Right) for each map using Conservative
strategy. Max is in Solid marks and lines and Avg. is in Hollow marks and dotted lines

shorter durations. Therefore, Aggressive is less likely to block other agents but increases
the workload of the AM because the OVs (numbers of rectangles) are more complex.

5.6.3 Experimental Results

Setup Our simulation experiments were conducted on a machine with 4 CPUs at 3.40GHz,
8 GB memory, and an Nvidia GeForce GTX 1060 3 GB video card. The software platform
is Ubuntu 16.04 LTS with ROS Kinetic and Gazebo 9. For the time usage, we report the
simulation time from Gazebo (time elapsed in the simulated world) instead of the wall clock
time. This is to reduce the time variations due to irrelevant workload on our machine.
To address the nondeterminism arising from concurrency in simulating multiple agents, we
simulate each scenario three times, and report the average value of each metric.

Response Time and Workload Figure 5.11 shows the response time for each drone
starting from sending the first request to finish traversing all waypoints using the Con-
servative strategy in the Corridor, Loop, and Random(k) maps. As expected, the
maximum response time per agent grows linearly against the number of participating agents
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Table 5.1: Comparison of simulation time between Conservative and Aggressive. N is
the number of agents, Time(s) is the total time according to the simulated clock in seconds,
#Rect/s is the number of rectangles per second in the disjointness query of OVs by the AM .

Conservative Aggressive Increased
Map N Time(s) #Rect/s Time(s) #Rect/s Speedup #Rect/s

2 27.52 0.00 21.30 0.00 1.29X N/A
4 39.78 2.99 27.24 6.16 1.46X 2.71X

Corridor 6 51.63 7.02 34.14 14.10 1.51X 2.06X
8 64.18 10.68 37.91 22.13 1.69X 2.01X

10 95.47 12.97 41.94 35.14 2.28X 2.07X
2 91.05 1.91 37.63 6.85 2.42X 3.59X
4 184.88 5.77 70.89 23.33 2.61X 4.04X

Loop 6 280.51 10.26 103.28 40.52 2.72X 3.95X
8 379.53 14.28 134.62 63.71 2.82X 4.46X

10 485.58 18.26 169.25 90.94 2.87X 4.98X
CitySim 2 77.42 1.77 49.92 4.48 1.55X 2.53X

because, in the worst case, all agents are accessing the shared narrow air-corridor, and the
last agent has to wait until all other agents finish. The average response time shows that it is
possible to finish faster if agents can execute concurrently in disjoint airspaces. For example,
the average time for 10 agents is smaller than the time for 8 agents in Random(6).

In Figure 5.11, we consider the number of emptiness/disjointness queries (denoted as
#Qe) and of hyper-rectangles to check (denoted as #Rect) per second for the AM . #Rect
provides a finer estimation of computation resources needed by the AM than #Qe. The
growth of #Qe as expected is roughly quadratic against N in the worst scenario due to
checking pairwise disjointness. However, the growth of #Rect is not as fast and is seemingly
linear to N in the worst scenario. Therefore, it is very likely that the workload increases
only linearly instead of quadratically when we use hyper-rectangles for OVs.

Conservative vs. Aggressive We compare the time between the Conservative and
Aggressive strategies in the Corridor, Loop, and CitySim maps. Due to the heavier
demand for computational resources required, we only simulated two drones in CitySim.
Table 5.1 shows that the Aggressive strategy can reduce the overall response time and
provides a 1.3-2.8X speedup with larger number of participating agents. This experiment
shows that our framework is suitable for comparing and quantifying the trade-offs between
performance, safety, and workload under different strategies for generating OVs.

5.7 DISCUSSIONS AND FUTURE DIRECTIONS

There is a strong need for a toolkit for formal safety analysis and larger scale empirical
evaluations of different UTM protocols. We present SkyTrakx, a toolkit with an executable
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formal model of UTM operations and study its safety, scalability, and performance.
Our toolkit SkyTrakx offers an open and flexible reference implementation of a UTM

coordination protocol using ROS and Gazebo. Our formal analyses in SkyTrakx illustrate
how formal reasoning can be applied to the family of UTM protocols. We discovered the
capability but also the lack of features of Dione [103] and Dafny [104] for providing au-
tomated proofs, and to our knowledge, there is no other proof assistant for IOA that also
supports the modeling of OVs. We further studied the connection between OVs and reach-
ability analysis, and we showcased how to use DryVR to over-approximate the reachable
regions of airspace using simulation traces. The simulator also makes it possible to study
different strategies for reserving OVs.

Some simplifying assumptions made can be removed with careful engineering, while others
require brand-new ideas. Handling timing and positioning inaccuracies and heterogeneous
vehicles fall in the former category. We have partly addressed this category using existing
reachability analyses in Section 5.5. In the latter category, a major concern is when there
are unavoidable violations of OVs due to, for example, hardware failures. Possible solutions
include integration with existing predictive failure detection or failure mitigation strategies
and collision avoidance protocols, incorporation of human operators, or generation of notifi-
cations to other participating agents for collision avoidance. Finally, an important extension
is the design of a coordination protocol for multiple airspace managers having the same
guarantees.
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Chapter 6: Abstractions for Smart Manufacturing Systems

In this chapter, we consider distributed systems with nonidentical agents commonly seen
in smart manufacturing systems. It is based on our conference paper published in the IEEE
18th International Conference on Automation Science and Engineering (CASE 2022) [127].
A smart manufacturing system is a complex cyber-physical system consisting of a collec-
tion of component machines and a floorplan layout defining the spatial relationship between
components. Each component may be of different physical behavior with different control
software. Simulation and testing on smart manufacturing systems require a software infras-
tructure that can orchestrate the execution of heterogeneous, cyber-physical components be-
sides modeling physical machines in respect to floorplan layouts. Automated simulation as
a result is challenging and error-prone. Recent strides in formal modeling of cyber-physical
systems and programming languages offer some new techniques for addressing this chal-
lenge. In this chapter, we present a compositional automata-based modeling formalism and
programming abstractions to design coordination logic between heterogeneous robots in dif-
ferent layouts. Our formalism allows us to automatically simulate and compare performance
metrics for different floorplan layouts. We implement our proof-of-concept prototype with
the challenging simulation environment for 2021 Agile Robotics for Industrial Automation
Competition [45]. Our experiment results demonstrate how our simulation can be used to
evaluate and compare performance under different layouts and applicable for reconfiguration
and virtual commissioning.

6.1 INTRODUCTION

Modeling and simulation are essential for rapid testing and debugging of smart manu-
facturing systems. For example, in virtual commissioning, many machine configurations,
layouts, and variations of associated control programs have to be evaluated, before the ac-
tual system is commissioned. The state of the art and the outstanding challenges surveyed
in [128, 129, 130] suggest that the high level of expertise and effort required for creating
such simulation models make virtual commissioning prohibitively expensive, especially for
small and medium-sized enterprises. The challenges arise from two distinct sources. First,
developing digital models of physical machines and mechanisms is challenging and requires
domain expertise. And second, even with available component models, the software infras-
tructure that can orchestrate the execution of heterogeneous, cyber-physical components in
a manageable simulation is challenging and error-prone. Recent advances in formal mod-
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eling of cyber-physical systems [20, 83, 84] and programming languages, offer some new
techniques for addressing this second challenge. These techniques not only provide a sound
mathematical basis for developing complex models, but they also offer software for creat-
ing executable simulation programs [32, 55]. In this chapter, we propose an approach that
builds-up on these recent advances to show how the burden of developing simulation models
can be reduced with abstractions and compositional modeling.

Broadly, a simulation model for a manufacturing system consists of a collection of compo-
nent machines (we call them generically as robots in this chapter) and a layout that defines
the spatial relationship between the robots. Robots may be of different types, they may
have different control software, and they interact physically (e.g., through transfer of phys-
ical materials) and logically (e.g., through transfer of data as needed by a coordination
software layer on top of control software). A simulation framework for a manufacturing
system therefore requires a good abstraction for

(1) modeling physical interactions such as reading sensor and writing actuator ports on
the robot,

(2) programming coordination software layer such as accessing shared variables between
control software

(3) composing all robots, control software, and coordination software layer while consid-
ering the layout.

In recent years, thanks to the effort from government and the open source community,
the Agile Robotics for Industrial Automation Competition (ARIAC) [45], hosted by the
National Institute of Standards and Technology (NIST), provides freely available simulated
industrial robots such as the robot arms from Universal Robots and rail-guided vehicles
in Figure 6.1. These high-fidelity simulation frameworks enable exploring different combi-
nations of available robot models to improve smart manufacturing systems. For example,
using fewer robots can help reduce cost and lower redundancy in general. With more robots,
there will be higher cost, but the performance is not guaranteed to improve and depends
on good coordination of control software. Testing and evaluating the simulation can thus
help to answer if a new layout with more robots can achieve higher throughput or only cre-
ates redundancy. However, running the simulation and evaluating the performance remains
error-prone because the current simulation frameworks have not addressed the complexity
of coordination between the control software and the composition of heterogeneous robots
under different layouts.
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Figure 6.1: GEAR simulation environment for the ARIAC 2021 competition.

In this chapter, we demonstrate the feasibility of automated simulation of different layouts
of robot placements to evaluate performance, throughput, and cost-effectiveness. Given a
valid layout, we showcase how to automatically generate and execute the parameterized
controller to obtain analytic from simulations. Our framework therefore allows users to
explore the improvement and trade-offs in the design of smart manufacturing systems.

In summary, the contributions in this chapter are as follows:

(1) We present a compositional automata-based modeling formalism to program coordi-
nation logic between heterogeneous robots in different layouts.

(2) We propose an analysis and simulation framework for our modeling formalism to au-
tomatically measure and compare performance metrics for different layouts.

(3) We implement and demonstrate our proof-of-concept prototype with the high-fidelity
simulation environment in ARIAC 2021.

Looking ahead, we believe that the type of compositional modeling illustrated in this
chapter can not only lower the barrier to creating simulation models for smart manufacturing
systems, but it can also help with developing and tuning controller programs, performance
evaluation [131], and anomaly detection.

Related works Research on software defined control (SDC) framework [132, 133, 134]
has proposed approaches on the management and monitoring for smart manufacturing sys-
tems and provides a global view of the system for decision-making. All the works benefit
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from integrating fixed simulation models or digital twins for predictive decision-making and
anomaly detection. Our simulation approach with parameterized layouts can further extend
the existing simulation for more advanced application such as virtual commissioning and
reconfiguration.

A number of ideas from the extensive body of research on modeling for cyber-physical
systems inform our modeling formalism (see [16, 20, 83, 84] and the citations therein). A
previous mathematical formalism (without realistic simulations) for smart manufacturing
appeared in [135]. The formalism presented in this chapter integrates the notion of shared
memory and controller ports from our Koord [32] programming language.

6.2 AN EXAMPLE: AGILE ROBOTICS FOR INDUSTRIAL AUTOMATION

We illustrate our motivating example following the Agile Robotics for Industrial Automa-
tion Competition (ARIAC) [45] hosted by the National Institute of Standards and Technol-
ogy (NIST). In particular, we study ARIAC 2021: a smart manufacturing scenario revolving
around the theme of the COVID-19 pandemic along with the Gazebo Environment for Agile
Robotics (GEAR).

GEAR for ARIAC 2021 In ARIAC 2021, the goal is to design the software for a smart
manufacturing system that will assemble on-demand, ventilator briefcases consisting of four
items: a battery, a sensor, a regulator, and a pump. The competing control software is
required to transport the correct items from the conveyor belt to one of the assembly sta-
tions (as1 to as4) and assemble the briefcase as shown in Figure 6.1. GEAR consists of
four types of robot platforms: a conveyor belt, a kitting robot, Automated Guided Vehicles
(AGVs), and a gantry robot. The conveyor belt serves as an entry point for new items and
moves items from left to right. The kitting robot consists of a UR10 robot arm, a vacuum
gripper to grab items, and a linear rail to move parallel to the conveyor. The AGVs carry
items along a defined path with fixed destinations and deliver items to assembly stations.
Lastly, the gantry robot consists of another UR10 robot arm that is attached to a rotatable
torso, which can move along a two-dimensional plane on two linear rails.

Simulations for Layout Optimization A crucial application of the simulation envi-
ronment is to evaluate over different layouts of robots to compare various metrics such as
throughput, safety, robustness, etc. This allows finding the optimized layout. However,
automated simulation for different layouts has to address two concerns:
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Figure 6.2: Feasible vs infeasible layouts constrained by the operating range of the robot
arms. The robot arm is able to reach the AGV in a feasible layout (Left). The robot arm is
too far from the AGV in an infeasible layout (Right).

(1) the controllers for robots will require adjustments under different layouts, and

(2) the physical parameters, such as the operating range of the robot arms, limit the
relative placements of the AGVs.

To address the first concern, our approach of parameterized automata with shared vari-
ables generalizes the controllers to work under different layouts. More specifically, we are
able to support all four main robot types given in ARIAC 2021 the conveyor belt, AGVs,
the kitting robot, and the gantry robot. An automaton is constructed for each of the ex-
isting robots so that it can accordingly carry out its own tasks, and the composition of all
automata is used to simulate the end to end goal of delivering items between the robots and
assembling the ventilator.

To solve the second concern, we consider the information provided in the layout. For the
different layouts shown in Figure 6.2, the problematic layout on the right does not consider
the operating range of the robot arm, and hence the robot arm cannot transfer items to the
AGV. We consider this as an infeasible layout with a connectivity issue. Our approach takes
in different layouts as inputs and generates a connectivity graph to ensure the connectivity of
robots, such as the one shown in Figure 6.3. If there exists a connected path from the source
to the destination in our connectivity graph, items can be transferred from the conveyor belt
to the assembly stations. In other words, we can detect the connectivity issues by checking if
a path exists from the source to the destination, which then can be used to exclude infeasible
layouts, since the robots will not be able to work together to transfer the items. We will
formally define the connectivity graph and check connectivity using standard graph search
algorithms in Section 6.3.1.
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Figure 6.3: The connectivity graph generated for the default world in Figure 6.1.

6.3 A COMPONENT-BASED MODEL OF SMART MANUFACTURING SYSTEMS

In this section, we will discuss our component-based modeling framework for smart man-
ufacturing systems. We will show how each instance of a robotic platform is modeled as a
special type of parameterized automata. Each type of automata has different sets of shared
variables for communication with other automata and ports to interact with the physical
environment. We then discuss the definition of the complete system as a composition of
various automata instances defined by a layout. This compositional definition enables us to
automatically check the compatibility of a layout and generate executable simulation code.

Robot Components The overall system is built by instantiating a number of robots
from a library of possible robot types. Let the set of robot types be {R1, R2, . . . , RN}. For
example, R1 = AGV and R2 = Conveyor. A system consists of robot platform instances
{r1, ..., rk} of different robot types. If a robot platform instance ri is of the robot type Rj,
we denote it as type(ri) = Rj. The robot instance agv1 in Figure 6.1 is of the type AGV. We
can write it as type(agv1) = AGV.

Each type of the robots can be customized or instantiated by fixing a number of robot
parameters, such as location, orientation, and certain controller parameters. For each robot
type Ri, we write the corresponding parameter space as PRi

. For example, agv1 and agv2 in
Figure 6.1 are both instances of AGV with different station positions inside the warehouse.
Assuming there are three required parameters, the position of the start station, the interval
between the stations, and the number of items to transfer in each trip, the parameter space
for AGV is PAGV = R2 × R × N. The particular parameter values of agv1 is denoted as
param(agv1) = ((−2.3, 4.6), 0.73, 4) ∈ PAGV to represent that the start station is placed at
(-2.3, 4.6), the interval between stations is 0.73 meters. Or equivalently, it defines the station
positions at (-2.3, 4.6), (-3.03, 4.6), and (-3.76, 4.6), and agv1 transfers 4 items for each trip.
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System Composition Our formalization is inspired by the transition system model for
software defined controllers in [135] and the shared memory model for distributed robotics
system in [32]. We model the entire system as the composition of all robot instances:

Sys def= A(r1) ∥ A(r2) ∥ ... ∥ A(rk) (6.1)

where each robot instance is a discrete automaton A(r) = (X,Q,Θ,Σr, δ) where

(1) X = XL∪̇XG∪̇XP is a finite set of state variable names. XL, XG, and XP denotes
the sets of local variables, shared variables, and controller port names respectively. We
assume the function type(x) to return the set of possible values for x. A state q is
a mapping from x ∈ X to a value q(x) ∈ type(x) and val(X) denotes the set of all
possible states of X.

(2) Q ⊆ val(X) is the set of states.

(3) Θ ⊆ Q is the set of initial states.

(4) Σr is the set of all actions. The actions are parametrized by the robot parameters
param(r).

(5) δ ⊆ Q× Σr ×Q is the transition relation.

Figure 6.4 demonstrates how the local variable (variable s to represent the current status),
shared variables (all_loaded and all_dropped), controller ports (pos), and robot parameters
are used to define the (partial) automaton for agv1. The system starts from LOADING
status and waits for the product items being loaded on the tray. It waits for the shared
variable all_loaded to become true before entering MOVING status. This shared variable
may be controlled by other robot instances, such as the kitting arm robot, to allow loading
and delivering multiple items at a time. Notice that the “goto” action is parametrized by
the position of the station at (-3.03,4.6). We can generalize the action to support the other
station at (-3.76, 4.6). Once entering the MOVING status, it may take multiple cycles to
reach to the particular station. In this case, the value of controller port pos is decided and
changed according to the physical environment instead; therefore, it monitors the controller
port variable pos until its position reaches the station at (-3.03,4.6) and transits to the
DROPPING status. Similarly, all_dropped shared variable is used to decide whether all
items have been dropped to the assembly station so that it can enter RETURNING status
to go back to the starting station and reset to LOADING status.
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s=LOADING
pos=(-2.3,4.6)

start

s=MOVING
s=DROPPING
pos=(-3.03,4.6)

s=RETURNING

if all_loaded?
goto((-3.03,4.6))

if pos=(-3.03,4.6)?

if all_dropped?if pos=(-2.3,4.6)?

Figure 6.4: Partial automaton for the robot instance agv1 working between stations at (-
2.3,4.6) and (-3.03,4.6).

6.3.1 Connectivity Check for Feasible Layouts

"robots": [
{ "name": "kitting",

"type": "kitting",
"pose": [-1.3, 0, 1.127],
"rail_dim": "y",
"rail_range": [-4.8, 4.8]},

{ "name": "conveyor_belt",
"type": "conveyor",
"pose": [-0.573, 0, 0],
"orient": "y",
"orient_range": [-5,5]}

]

Figure 6.5: A programmable layout in JSON format (Left) and the corresponding Gazebo
simulation environment (Right).

For simplicity, we consider the robot instances as places in the two-dimensional space R2.
We begin by computing the operating ranges of all the robots specified in a layout. Figure 6.5
demonstrates how the position, orientation, and range parameters in the environment are
specified in JSON format, and the annotated operating ranges in the Gazebo simulation
environment. The type of robot determines the operating range of motion. For instance,
the kitting robot’s range of motion is a cylinder with its axis along the x or y-direction. An
AGV’s operating range can be represented by a set of 2D vertical lines, since other robots
will be dropping items and grabbing them off of the AGV. Since computing the geometric
space of the operating range is standard, we skip the detail of the computation and use
range(ri) to denote the operating range derived from a given layout.

Formally, a connectivity graph is a directed graph G = ⟨V,E, s, T ⟩ where V is the set of all
robot instances {r1, r2, ..., rk}, an edge (ri, rj) ∈ E represents that an item can be directly
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transferred from ri to rj, s ∈ V is the source node, and T ⊂ V is the set of destination
nodes. The process of generating a connectivity graph is as follows. Starting from a graph
with all robot instances {r1, r2, ..., rk}, but without any edges, we mark the robot instance
where the items enter the system as the source node s and the robot instances where the
final product item leaves the system as the destination nodes t ∈ T . For the connectivity
graph in Figure 6.3 as an example, the conveyor belt robot is the source node s = conveyor,
and the assembly stations are the destination nodes T = {as1, as2, as3, as4}. We add an edge
from node ri to node rj if and only if

(1) the operating ranges of robot instances intersect, i.e., range(ri) ∩ range(rj) ̸= ∅ and

(2) robot ri would transfer an item over to robot rj according to the robot types type(ri)
and type(rj).

Finally, we can check if every node is reachable starting from the source node s, and every
node can reach any destination node t ∈ T . A standard algorithm is to use depth-first
search (DFS) starting from the source node s. If there is no path from the source node s to
a node ri, then there is no path for an item to be delivered to ri, hence the robot instance ri
is not usable. Similarly, if there is no path from ri to any destination node t, the item will
never be used in the final product. We can therefore detect and reject these invalid layouts
by constructing the connectivity graph.

6.4 IMPLEMENTATION

In this section, we present our method of implementation for building our system. The
three major components of this include (1) the input layout in the form of a JSON file
and the generation of a Gazebo world as an SDF file, (2) controller automata, and (3) a
connectivity check. All of our implementation is in an open source repository at [136].

Programmable Layouts to Gazebo Environments We parse the input JSON file
and retrieve all dynamic models (robots) and static models (assembly stations, bins, other
obstacles). We then write this information in world files that are applied to SDF files when
the Gazebo world is launched. The resulting world should show the layout specified in the
JSON file as a Gazebo simulation.

Building Robot Controllers As discussed in Section 6.3, each robot follows an au-
tomaton depending on the robot type with tunable robot parameters. To implement the
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automaton, the basis of all robotic movement in our simulation is done through ROS, specif-
ically through messages passed over ROS topics and ROS service calls. For simpler robots,
such as the conveyor belt and the AGVs, a simple command to control the speed is enough.
For more complex robot arms such as the kitting and gantry robot, we use the MoveIt
framework for sending ROS messages to control the arm joints. On top of MoveIt, we use
an analytical-based inverse kinematics approach for motion planning to generate a sequence
of desired arm joint values and brings the vacuum gripper to a desired position.

The MoveIt framework provide a well established motion planning tool that allowed us
to abstract over the lower level details of sending ROS messages. This helped us build an
analytical approach-based inverse kinematics solver for the two robot arms without going into
an extreme level of detail. There are also plenty of alternatives including a sampling-based
motion planner, such as a Probabilistic Roadmap (PRM) or a Rapidly-Exploring Random
Tree (RRT).

Connectivity Check We use a short Python function to implement our connectivity
check. In short, we create a node for each robot specified in the JSON file and then create a
directed edge between nodes where robots can transfer items to one another. We implement
a standard depth-first search algorithm and run it on the starting node to determine whether
connectivity from start to finish is satisfied or not.

6.5 EXPERIMENT RESULTS

We use the competition interface provided by the ARIAC for running our experiment.
Items will be spawned on the conveyor belt and shipped to briefcases located at assembly
stations. We run the simulations on three different layouts, namely the default competi-
tion layout in Figure 6.1 (Default), a more spaced layout (Spaced), and a layout with less
AGVs (LessAGV):

• Default layout has one conveyor belt, one kitting robot, four AGVs, and one gantry
robot. The default space between the conveyor belt and the kitting robot is 0.73 meter.
The starting poses of the four AGVs (in order from 1 to 4) are (-2.3, 4.6), (-2.3, 1.3),
(-2.3, -1.3), and (-2.3, -4.6).

• Spaced layout sees increased space between the conveyor belt and kitting robot to 0.93,
as well as increased space between the four AGVs. The starting poses of the AGVs are
now (-2.5, 4.2), (-2.5, 0.9), (-2.5, -0.9), (-2.5, -4.2). It uses the same number of robots
as the Default layout.
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• LessAGV world has the same layout with the same spacing as Default world, with the
removals of two robots: agv2 and agv4.

We also consider varying the robot parameters for the robot automata. The tunable robot
parameter in our experiments is the capacity of an AGV, the maximum number of items
loaded for each trip from the conveyor belt to assembly stations, denoted as Cap.

Recall from Section 6.2 that an order is to assemble a ventilator briefcase composed of
four different kinds of items. For each combination of a layout and a parameter value, we
conduct a simulation of filling 8 orders and record the total time usage of a simulation run.
We then divide the total time by 8 to calculate the average amount of time for finishing one
order as shown in Table 6.1.

All of our experiments are conducted on a Ubuntu workstation (version 18.04.6 LTS)
with CPU model Intel Xeon Silver 4110, GPU model NVIDIA Corporation GP104GL, ROS
Melodic (Version 1.14.12), and Gazebo 9.16.0.

Table 6.1: Average time to finish one order in seconds under different combinations of
simulation of shipping 8 orders.

Cap = 2 Cap = 4 Cap = 8
Default 196.650 173.037 133.327
Spaced 198.654 197.384 156.379

LessAGV TIMEOUT 180.993 222.375

Table 6.1 shows that the time usage is generally worse with increased space, but only
marginally for certain values of Cap. We see significant improvements with loading more
items on less AGVs for the default world and the spaced world, suggesting that operations
with the gantry robot are the bottleneck and that optimizations regarding the gantry move-
ment and its parameter tuning should be the focus in future runs. In LessAGV layout with
less AGVs, we see significantly higher times to ship items but a different parameter value
that produces optimal throughput. The results here show the possible improvements by
adjusting just one robot parameter.

In addition, we track the trajectories of items in transitions for runtime monitoring. Fig-
ure 6.6 shows the position trajectories of two battery items starting from the right end of
the convey belt, i.e., lower right of the plot. Both batteries move to the left by the con-
veyor belt. The curves denote the two items are transferred to agv3 at (-2.3, -1.3) by the
kitting_robot, put down slightly separated, and carried to the assembly station as3 in the
same trip. Finally, the plot shows the gantry_robot picked up and transfer battery_1 to
the assembly table. This showcases that the prototype is able to do fine-grained runtime
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Figure 6.6: 2D position trajectories of two battery items in Default layout. XY-axes are
rotated 270◦ to match Figure 6.1. The trajectories start from the lower right corner. Both
batteries are moved to the left by the conveyor belt. put on agv3 separately by the kit-
ting_robot, and carried to the assembly station as3 in one trip. Finally, battery_1 is trans-
ferred to the assembly table by the gantry_robot.

tracking of individual components. In short, our experiment shows that our framework can
provide system-level metrics such as throughput, as well as component-level details such as
the trajectories of items, and we can repeat the simulation and analysis for different layouts
and parameters to identify critical components and subsequently optimize the entire smart
manufacturing system.

6.6 DISCUSSIONS AND FUTURE DIRECTIONS

We presented our approach to a compositional modeling and simulation of smart man-
ufacturing systems. Given an input JSON file representing the layout of a manufacturing
floorplan, and the parameterized controllers for the robot types, our system can generate a
detailed simulator for the entire plant. The solution uses the notion of controller ports and
shared variables for physical and logical interaction among robot components. We showed
how the generated simulator can be used for measuring and comparing throughput of the
ventilator assembly orders in ARIAC 2021 with four distinct robot types. Our current im-
plementation relies on the Gazebo simulator and the ARIAC 2021 scenario; however, the
concepts can be implemented on other simulators and scenarios.

Beyond the preliminary experimental results we have discussed, the work suggests several
directions for future research. First, the parameterized controller programs used for simu-
lation can be compiled to executable code and deployed on the actual hardware. This can
significantly reduce the development and testing cost. A variant of this idea for the Koord
language has been demonstrated in the context of mobile robotic applications [55]. Gener-
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ating programmable logic controller (PLC) code directly from communicating state machine
models would be an interesting direction to explore. Second, the compositional models, with
the well-defined interfaces (ports and shared variables) should be amenable to automatic gen-
eration of runtime monitors [137, 138] for software defined control [132, 133, 134]. Finally,
rapid generation of simulators and their evaluations open-up the possibility of optimizing
designs and auto-tuning parameters for manufacturing systems.
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Chapter 7: Approximate Abstraction for Vision-Based Perception

In this chapter, we study the safety of autonomous systems with vision-based perception
components. This is based on our conference paper [30] in the International Conference
on Embedded Software (EMSOFT) in 2022.13 We aim to provide safety guarantees on the
complex vision-based perception components integrated in safety-critical control systems.
Unfortunately, fully formal verification of these complex components is likely to remain
challenging in the foreseeable future. Take the lane tracking control system (LTC) for
autonomous vehicles in Figure 7.1 as an example, the perception component at least includes
a camera sensor, cam, to take images and a vision or DNN algorithm, nn, to identify roads
and lanes in the images. This perception component reveals two key challenges on formally
verifying the autonomous system with vision:

• No Specification: It is difficult if not impossible to mathematically specify the set of
camera images containing a lane, and

• Scalability: Existing NN verification tools for image processing DNNs currently only
verifies local robustness against perturbations on a single camera image [81, 82]. Global
robustness for the entire image domain is still beyond the capabilities of existing NN
verification techniques.

Figure 7.1: Vision-based lane tracking control system (LTC) on an autonomous vehicle.

We therefore develop our approach following a pragmatic path: We approximate the
camera and DNN components together as the perception component nn ◦ cam, and we
systematically search for an Approximate Abstract Perception (AAP), a safe approximate
model M of nn ◦cam which still enjoys verifiability, but the abstraction relationship between
M and nn ◦ cam can have an error, and we can quantify and estimate this error arbitrarily
precisely with high probability via sampling input and output of the component nn ◦ cam.

13This is a joint work with Yangge Li, Dawei Sun, Keyur Joshi, and Prof. Sasa Misailovic.
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This approach helps us bypass the two challenges of the lack of specification and the
scalability issue. Firstly, the combined component nn ◦ cam is to perform a state estimation
task, for instance, the perception task in the LTC system is to estimate the relative position
of the vehicle to the lane. We can naturally specify the state estimation output with respect
to the ground truth position, and avoid specifying the semantics of a lane over image pixels,
Secondly, the input and output domains have much fewer dimensions compared with the
high dimensional image domain.

Another benefit of our approach is that by choosing an appropriate structure of M , we can
make it intelligible. That is, M not only proves safety but helps explicate why the overall
system is safe and where it deviates from the actual perception nn ◦cam. The importance of
such explanations have been argued in [139, 140]. We propose a general framework to allow a
customized construction of M . Users can design the proper description and visualization of
M , and therefore they can understand and investigate the error ofM with respect to nn◦cam.
These three axes—safety, intelligibility, and precision—define a space for exploring different
safety assurance methodologies for autonomous systems. Our main claim is that this is one
of the first14 approaches to provide safety assurance for realistic vision-based control systems
with abstractions, approximate or otherwise.

In Section 7.1, we first give an overview of the technical contributions presented in this
chapter. We in particular connect the idea of AAPs with the abstractions of the environments
formalized in Chapter 2, and we provide an outline of the remain sections in this chapter.

7.1 OVERVIEW

We first discuss our CPReact system model for autonomous systems with vision-based
perception components and our design choices to search for an abstraction of for the per-
ception component. We consider the actual perception component nn ◦ cam as a part of the
real environment REnv, and nn ◦ cam is to provide the values of the percept variables P to
the reactive module RM . Following our verification approach in Section 3.2, we aim to syn-
thesize a safe abstraction of the real environment including nn ◦ cam. To solve this synthesis
problem, we draw inspirations from robust control literature and use a nominal model, an
assumed model with the ideal behavior. The reactive component RM such as the software
controller would be designed with respect to the nominal model, and RM interacting with
the nominal model should ensure the safety requirement JSafeK through preserving some de-
sired invariant property JInvK. The nominal model however is not necessarily an abstraction

14The only other closely related works are [28, 29, 59].
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of the real environment REnv because it may not simulate REnv. Our main insight is to find
an abstraction built on top of the nominal model combined with uncertainties, additional
parameters capturing differences between the real environment and the nominal model.

In the context of vision-based perception, we assume there exists a perfect perception
function h as the nominal model that computes the ground-truth percept values. Suppose
the ground truth percept value is h(x) at a given state x . The actual vision pipeline nn ◦cam
estimates h(x) using images, which depends on the state x and also environmental parameters
env such as lighting, weather conditions. These environmental parameters env can add bias
and variance in the estimation. As a result, the real environment REnv should have the
variable x and additionally environmental parameters env as the latent variables, and we
search for an abstraction Env that has the latent state variable x , and an AAP M used in
Env should account for the variations in the estimation caused by env.

We use a piecewise affine template to search for an AAP as a set-valued function M ,
where the center (mean or bias) of the set is a piecewise affine function Ai × h(x) + bi of
the ground truth h(x). We can infer the linear model using regression on the estimate from
running the vision pipeline nn ◦ cam on images and their ground truth labels. While the
center (mean) of the set M(x) is defined by training data, the size and shape of the set
(variance) is inferred from the invariant property. Assume that the control system with
perfect perception is safe with respect to a given invariant set JInvK to ensure the safety
JSafeK. Using program analysis tools like CBMC [141] and IKOS [142] on the code for the
controller, we infer the set of unsafe perception outputs for any x . Then, the set-valued
output from M(x) is determined to be the largest set, centered at Ai× h(x) + bi, that keeps
the system safe. The computation of this largest set is an optimization problem.

The constructed AAP M is a piecewise affine set-valued function of the actual variable
that the perception system nn◦cam is trying to estimate. By construction, M is verified safe
relative to the given invariant JInvK and therefore the safety JSafeK. We also double-check
this using CBMC by plugging-in M into the downstream modules of the control system.
We apply the method to two realistic end-to-end autonomous systems using Gazebo for
rendering images and detailed vehicle control models: a vision-based lane tracking controller
for an electric vehicle and a vision-based corn row scouting robot.

We empirically evaluate the precision of the constructed AAPs, i.e., the error between M
and nn ◦cam, across large variations in the environment such as roads with varying numbers
of lanes, lighting conditions, different types of crops and fields. On the positive side, for parts
of state space, with probability at least 0.9, we observe the precision of M approximating
nn ◦ cam is over 90%. This type of analysis tells us that the end-to-end system is safe for
these parts of state space, because the verifiable-by-construction M is likely to be an exact
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abstraction of nn ◦ cam in these parts. Somewhat counter-intuitively, we observe that error
between M and nn ◦ cam can be high in some very safe states (e.g., vehicle at the center of
the lane and aligned with the lane). While these states happen to be the ones where safety
assurance is less important in practice we discuss why this makes sense and how it can be
addressed with better verification techniques or multi-resolution approximations.

In summary, our contributions are: (1) A formalization of verifiable approximate models
for vision-based perception used in autonomous systems. (2) An approach to compute piece-
wise affine set-valued approximations. (3) A demonstration of how to compose constructed
approximations with the downstream modules for the end-to-end verification using existing
techniques. (4) Careful empirical evaluations on the precision of the verified approximations
for two significant case studies. Safety, intelligibility, and precision appear to be a useful
dimension for thinking about AAPs. The constructed approximate abstractions are use-
ful for verification, identifying where perception fails, which can in turn help design better
perception, and help define system-level operational design domains (ODDs) [143].

7.2 SYSTEM DESCRIPTION

The problem of assuring safety of an autonomous system can be stated as follows: given an
autonomous system Sys, we would like to check that it satisfies a safety requirement JSafeK.
For example, for a lane tracking control system (LTC) for a vehicle in Figure 7.2, the safety
requirement is that the vehicle always remains within the lanes. This textbook statement
of the problem is complicated by two factors in an actual autonomous system. Firstly,
Sys uses vision for perception–converting pixels to percepts such as deviation from lane-
center, and such perception systems are not amenable to formal specification and verification.
Secondly, the output of the perception pipeline depends on environmental factors E such as
lighting, texture, and pavement moisture. These dependencies are neither well-understood
nor controllable.

We model the complete control system as a discrete time transition system15 Sys with
four components transforming different types of data (Figure 7.2). The dynamics defines
the evolution of the system state x as a function of the previous state and the output from
the control. We model the dynamics as a function f : X ×U → X . In our example, the state
x of the vehicle includes its position, orientation, velocity, etc., and the dynamics function
defines how the state changes with a given control action u ∈ U . In this chapter, we consider

15We use the discrete time transition system instead of the CPReact model to significantly simplify the
notations. We will discuss equivalent CPReact models in Section 7.3.
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def control(heading, dist):
# Calculate controller output
delta = heading + arctan(K*dist, VEL)
if delta >= DELTA_MAX:

delta = DELTA_MAX
elif delta <= -DELTA_MAX:
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return delta
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Figure 7.2: Closed-loop model of LTC Sys with camera and DNN-based perception.

discrete time models, and write the state at time t+ 1 as

xt+1 = f (xt, ut), (7.1)

where xt and ut are the state and the control actions at time t. This state transition function
could be generalized to a relation to accommodate uncertainty, without significantly affecting
our framework or the results.

Then the control module takes a percept z as an input and produces a control action
u = g(z) as the output. In LTC, the control action u can be a vector of throttle, steering,
and brake signals. The implementation of the controller control may involve a number of
modules including navigation, planning, and optimization. Abstractly, control is a function
g : Z → U mapping the space of precepts to the space of control actions. During the design
of the controller module, the developers often use a nominal perception function h : X → Z
to produce a ground-truth percept vector z = h(x) for simple verification and sanity checks.

On the other hand, the actual vision-based perception pipeline takes an image (or a high-
dimensional vector) img as an input and produces a low-dimensional percept estimate vector
ẑ = nn(img) as the output. In a lane tracking control system (LTC), ẑ is the position of the
camera relative to the lanes seen in the image. That is, we model the perception pipeline as
a function nn : P → Z mapping the space of images P to the space of percepts Z.

The final component closing the loop is the sensor which defines the image img as a
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function of the current state x and a set of non-time varying, environmental parameters
env. For LTC, these parameters include, for example, lighting conditions, nature of the
road surface, types of markings defining lanes, etc. We model the sensor as a function
cam : X ×E → P , where E is the space of environmental parameter values. In a real system,
we may not know all the environmental parameters, they may not be time-invariant, and
their precise functional influence on the image will also be unknown. Therefore, it does not
make sense to prove anything mathematically about cam. For the purpose of generating
AAPs of nn ◦ cam, we reasonably assume that we can sample inputs of cam according to
some distribution over E and X . Based on the samples, an empirical precision of the AAP
can be computed. In Proposition 7.4, we also give a lower bound for the actual precision
of the AAP using the empirical precision. In our experiments, we generate synthetic data
using a simulator, and the same could also be done with the actual vehicle platform at a
higher cost.

7.3 SYSTEM-LEVEL SAFETY ASSURANCE

The behaviors of the overall system are modeled as sequences of states called executions.
Given an initial state x0 ∈ X and an environmental parameter value env ∈ E , an execution
of the overall system α(x0, env) is a sequence of states x0, x1, x2, . . . such that for each index
t in the sequence:

xt+1 = f (xt, g(nn(cam(xt, env)))). (7.2)

We would like to have methods that can assure that, given a range of environmental
parameter values E , a safe set JSafeK ⊆ X , and a set of initial conditions Θ ⊆ X , none of
the resulting executions of the system from Θ can leave JSafeK under any choice of E . Such
a method will be a useful tool in checking safety of autonomous systems. Secondly, it can
help search for E for which the system can (and cannot) be assured to be safe, and therefore,
can be used as a scientific basis for specifying the operating design domain (ODD) [11] for
the control system (and direct expensive field tests, respectively). Since, the functions cam
and nn are partially unknown with unknown dependence on env and x , it is unreasonable
to look for the above type of methods. Instead, in this chapter, we develop a method for the
following weaker problem:

Problem Given a safe set JSafeK ⊆ X and a range for the parameters E , find an approxi-
mation M : X → Z of the perception nn ◦ cam : X × E → Z, such that it is:
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(a) Safe, i.e., M used in the closed-loop system substituting nn ◦ cam makes the resulting
system provably safe with respect to JSafeK.

(b) Intelligible, i.e., human designers can design and understand the behavior of M .

(c) Precise, that is, M and nn ◦ cam are close.

M may and indeed will depend on the safe set JSafeK. For the substitution in (a) to make
sense, we make M a set valued function to accommodate variations in nn◦cam from different
environments. Since the actual perception system nn ◦ cam and its dependence on the
environment E is incompletely understood, assertions about the precision (c) have to be
statistical. We will see later that indeed fine-grained measurement of closeness is possible.

Connections to Synthesis Problem of Safe Abstractions Here we draw connections
from the problem of finding a safe approximation M to the synthesis problem of safe abstrac-
tions formalized in Section 3.2. We now provide an equivalent model of the system Sys in our
CPReact framework, and we shall see that, compared with the discrete transition system
model, the CPReact model is more general but complicates the notations significantly. For
the CPReact model of the system Sys, we choose the controller g as the reactive module
RM . The dynamics f , camera sensor cam, and NN perception nn belong to the environment
REnv. We then define the set of percept variables, P = {z}, the set of feedback variable,
FB = {u}, the set of latent state variables of REnv, LR = L ∪ R = {x} ∪ {env}, and no
state variables of RM , S = ∅. We then can define the transition relation JTRMKS,P,S′,FB of
the reactive module with the simple predicate below:

TRM
def= (u = g(z)) (7.3)

where we know the controller g can be implemented as an expression in a program. In
contrast, it can be extremely difficult to express the transition relation of the real environ-
ment TREnv as a predicate due to the complex sensing cam and vision-based perception nn.
Formally, TREnv ⊆ QL,R,P,FB,L′,R′,P ′ is defined as:

TREnv
def=

(l, r, p, fb, l′, r′, p′)

∣∣∣∣∣∣∣∣∣∣
p(z) = nn ◦ cam(l(x), r(env))∧

l′(x) = f (l(x), fb(u)) ∧ r′(env) = r(env)

p′(z) = nn ◦ cam(l′(x), r′(env))

 (7.4)

where l, l′ ∈ QL, r, r′ ∈ QR, p, p′ ∈ QP and fb ∈ QFB. In simple terms, the old percept
value p(z) is calculated by applying sensing cam and perception nn on the old state l(x) and
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environmental parameter r(env). The old state l(x) evolves to the new state l′(x) according
to the dynamic f and the control actions fb(u) while the new environmental parameter value
r′(env) is the same as the old value r(env) because it is time-invariant. Finally, the new
percept value is derived from the new state l′(x) and environmental parameter r′(env).

Recall that the set of latent state variables of the real environment REnv contains both
the state variable and environmental parameters, i.e., LR = L∪R = {x}∪ {env}. If we can
find a safe approximation M of the perception nn ◦ cam, we equivalent can build a model
of environment Env for REnv with the latent variables L = {x}, and the transition relation
TEnv can be specified with the predicate:

TEnv
def= (z ∈M(x) ∧ x′ = f (x, u) ∧ z′ ∈M(x′)) (7.5)

where the approximation M and the dynamics f are given as expressions. Equivalently, this
defines the transition relation:

JTEnvKL,P,FB,L′,P ′
def=

(l, p, fb, l′, p′)

∣∣∣∣∣∣∣∣∣∣
p(z) ∈M(l(x))∧

l′(x) = f (l(x), fb(u))

p′(z) ∈M(l′(x))

 (7.6)

where l, l′ ∈ QL, p, p′ ∈ QP and fb ∈ QFB. Observe that the environmental parameter
env does not appear, and the transition relation JTEnvK is noticeably simpler than TREnv for
analysis. Further, if we can show M is an abstraction of nn ◦ cam, which we will introduce
later in Section 7.5, it follows from Proposition 3.2 that Env is an abstraction of REnv.

In short, finding safe approximations M for discrete transition systems helps synthesize
safe abstractions of real environments in CPReact models, so we will continue using the
discrete transition system model for simpler notations in the rest of the chapter.

7.4 AN EXAMPLE: VISION-BASED LANE TRACKING

We now provide the details of the lane tracking control system in Figures 7.1 and 7.2.

Dynamics and Control The vehicle state x ∈ X consists of the 2D position (x, y) of the
center of the front axle in a global coordinate system, and the heading angle θ with respect
to the x-axis. The input u ∈ U is the steering angle δ. The discrete time model shown in
Figure 7.3 is the well-known kinematic bicycle function [144] f (x , u) with the center of the
front axle as the body frame.
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xt+1 = xt + vf · cos(θt + δ) ·∆T
yt+1 = yt + vf · sin(θt + δ) ·∆T

θt+1 = θt + vf ·
sin(δ)
lWB

·∆T

Figure 7.3: State (x, y, θ) and perception variables (d, ψ) for lane keeping. vf , lWB, and ∆T
are constant values where vf is the forward velocity, lWB is the wheelbase, and ∆T is the
time discretization parameter.

The input to f comes from the decision and control program. Here we use the standard
Stanley controller [145] used for lateral control of vehicles. This controller uses the percept
z ∈ Z, which consists of the heading difference ψ and cross track distance d from the center
of the lane to the ego-vehicle. In Figure 7.3, the heading θ coincides with the negation of the
heading difference −ψ, but this happens only in the special case where the lane is aligned
with the x-axis. The controller function g(z) is defined as:

δ = g(d, ψ) =


ψ + arctan

(
κ·d
vf

)
, if

∣∣∣ψ + arctan
(
κ·d
vf

)∣∣∣ < δmax

δmax, if ψ + arctan
(
κ·d
vf

)
≥ δmax

−δmax, if ψ + arctan
(
κ·d
vf

)
≤ −δmax

(7.7)

where δmax is the steering angle limit and κ is a controller gain parameter.

Perception The complicated perception pipeline estimates heading difference ψ̂ and cross
track distance d̂ using several computer vision functions. First, the sensor function cam
uses cameras to capture an image, and processes the image through cropping, undistortion,
resizing, etc., to prepare the image img for the DNN. The particular DNN used here is
LaneNet [146] which uses 512× 256 RGB images to detect lane pixels. Internally, LaneNet
contains two subnets for both the identification and instance segmentation of lane marking
pixels. Then at post-process stage after LaneNet, curve fitting is applied on identified pixels
to represent each detected lane as a polynomial function. Further, the perspective warping
is applied to map the lanes to bird’s eye view, which gives the percept ẑ = (d̂, ψ̂) as shown
in Figure 7.2.

System Safety Requirement A common specification for lane keeping control is to avoid
going out of the lane boundaries. We assume that the vehicle is driving on a straight road
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with lane width W . For the purpose of simplifying exposition, we assume that the center
line is aligned with the x-axis of the global coordinate system. Thus, the invariant set for
safety can be specified as JSafeK = {(x, y, θ) | |y| ≤ 0.5W} .

7.5 SAFE APPROXIMATE ABSTRACT PERCEPTION

In this section, we will discuss our method for constructing the approximation M for the
perception system nn ◦ cam. Section 7.5.1 sets the stage. It shows that plugging in any
set-valued approximation M of nn ◦ cam naturally defines an approximation Ŝys(M) of the
original system Sys. Section 7.5.2 presents the main algorithm for constructing a particular
type of M . It learns, from perception data, the center (mean) of the output set M(x).
Section 7.5.3 defines the next step in the construction of M . This step analyzes the control
program and the vehicle dynamic f ◦ g to optimize the shape and the size of the output set
around the mean, to assure the safety of Ŝys(M) with respect to the invariant set JInvK.
Section 7.5.4 establishes the safety of the constructed M , not only at the theoretical model
level, but it also shows how to plug M in to the rest of the Sys code and verified using
program analysis tools, namely CBMC [141] in our work. Finally, Section 7.5.5 discusses
our methods for empirically evaluating the precision of M .

7.5.1 Approximate Abstract Perception in Closed-Loop

We will construct a set-valued perception function M that approximates the complex
perception system nn ◦ cam. For the safety requirement JSafeK, our constructed function
M : X → 2Z should be such that when it is “substituted” in the closed-loop system of
Equation (7.2), the resulting system is safe with respect to an invariant set JInvK and, in
turn, the safe set JSafeK. Formally, substituting nn ◦ cam(x , env) with M(x), the result is
the non-deterministic system Ŝys(M) given by:

xt+1 ∈ {f (xt, g(z)) | ∃z ∈M(xt)}. (7.8)

That is, when the actual system state is xt (and the environmental parameters env), then
the output from the abstract perception function M can be anything in the set M(xt). This
set-valued approach is a standard way for modeling noisy sensors. Notice that we require
M to be independent of environments.
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Definition 7.1. A function M : X → 2Z is an abstraction of nn ◦ cam if:

∀env ∈ E ,∀x ∈ X .nn ◦ cam(x , env) ∈M(x). (7.9)

This definition requires M(x) covers all possible percepts from nn ◦ cam(x , env) for all
states and environments, and that is why it is an abstraction.16 If a function M is an
abstraction of nn ◦ cam, then it follows that Ŝys(M) is an abstraction of Sys, that is, the
set of executions of Ŝys(M) contains the executions of Sys. Therefore, any state invariant
JInvK ⊆ X for Ŝys(M) carries over as an invariant of Sys.

Theorem 7.1. If M is an abstraction of nn ◦ cam, then Ŝys(M) is an abstraction of Sys.

Proof. Fixing an arbitrary initial state x0 and an environment env, Theorem 7.1 follows
immediately from Definition 7.1 by deriving:

f (x , g(nn ◦ cam(x , env))) ∈ {f (x , g(z)) | ∃z ∈M(x)}. (7.10)

Subsequently, Ŝys(M) can simulate every transition of Sys. QED.

Definition 7.1 is too general to be useful for constructing safe, intelligible, and precise
abstractions. At one extreme, it allows the definition M(x) def= {nn◦cam(x , env) | ∃env ∈ E}
which is a symbolic abstraction but does not help with intelligibility nor with safety. At the
other end, we can make M(x) def= Z, which trivially covers all possible percept values but
not useful for safety.

Our approach is to utilize available information about safety of the control system without
perception. Informally, consider a version of the closed-loop control system that uses the
ground truth values of ψ, d instead of relying on the vision pipeline to estimate these values.
In order to prove safety of this ideal system with respect to JSafeK, we can search for a
standard invariant assertion JInvK through various techniques [84, 88, 147, 148, 149]. We
will construct M for Sys that can utilize the knowledge of such invariant JInvK.

Definition 7.2. Given a set JInvK ⊆ X and a function M : X × E → 2Z , M is preserving
JInvK if

∀x ∈ JInvK,∀z ∈M(x), f (x , g(z)) ∈ JInvK. (7.11)

Finding an invariant preserving function satisfying Definition 7.2 will guide us towards
creating more practical approximations of the perception system.

16We will see later that the M that we will construct cannot be guaranteed to satisfy this requirement,
but this idea motivates it.
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7.5.2 Learning Piecewise Approximations from Data

For an invariant preserving abstract perception function M : X → 2Z to be intelligible,
for any x ∈ X , the output M(x) should somehow be related to the ground truth value
z ∈ Z that the perception system is supposed to estimate. For example, for a given state
x = (x, y, θ) of the vehicle in the lane keeping system, the ground truth z = (d, ψ)—
consisting of the relative position to lane center (d) and the angle with the lane orientation
(ψ)—is uniquely determined by the geometry of the vehicle, the camera, and the lanes.
The perception system cam ◦ nn is designed to capture this functional relationship between
x and z (and it is affected by the environment env). For the sake of this discussion, let
h(x) = z be the idealized function that gives the ground truth percept z for any state x .
A well-trained and well-designed perception system nn ◦ cam should minimize the error17

||h(x) − nn ◦ cam(x , env)|| over relevant states and environmental conditions. As M is an
AAP of nn ◦ cam, therefore, M should also minimize error with respect to h(x) in order to
achieve high precision.

In this chapter, we consider a piecewise affine structure of M . This is an expressive class
of functions with conceptual and representational simplicity, and hence human-readable and
comprehensible. First, given a partition {Xi}i=1...N of the target invariant domain, i.e.,
JInvK = ⋃N

i=1Xi, we define M as:

M(x) =


R1(h(x)), iff x ∈ X1

...

RN(h(x)), iff x ∈ XN

(7.12)

where we search for Ri : Z → 2Z that returns a neighborhood around h(x).
In what follows, we will show how Ri’s can be derived as a linear function of h(x) that

is both safe with respect to the target invariant JInvK and minimizes error with respect to
training data available from the perception system. ComputeAAP gives our algorithm for
computing this approximation for each partition Xi.

To find a candidate Ri : Z 7→ 2Z for a given subset Xi ⊆ X , we consider that, when given
z as input, Ri returns a parameterized ball defined as below:

Ri(z) = {z ′ | ∥z ′ − (Ai × z + bi)∥ ≤ ri} (7.13)

where the parameters Ai and bi define an affine transformation from z to the ball’s center,
17The precise choice of the error function is a design parameter, and we will discuss this in later sections.
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Algorithm 7.1: Construction of the AAP M for partition Xi. The output set is
resented by a center defined by a transformation matrix Ai and a vector bi, and a
ball around the center defined by ri.

Input: Subspace Xi; Invariant JInvK; Dynamics f ; Control g; Ideal Estimation h
Data: Training set of ground truth vs percepts {(z1, ẑ1), . . . , (zn, ẑn)}
Output: Linear Transform Matrix Ai; Translation Vector bi; Safe Radius ri

1 Function ComputeAAP
2 Ai, bi ← LinearRegression({(z1, ẑ1), . . . , (zn, ẑn)});
3 ri ← MinDist(Ai,bi,Xi,JInvK,f ,g,h);
4 return Ai, bi, ri;

and ri defines the radius. Here we are using a ball defined by the ℓ2 norm on Z. Our
approach generalizes to other norms and linear coordinate transformations.

We start with the input to ComputeAAP in Algorithm 7.1. Besides the subset Xi ⊆ X , the
invariant JInvK, aforementioned modules f , g, and h, ComputeAAP also requires a training set
of pairs (z , ẑ) where z = h(x) is the ground truth, and ẑ = nn ◦ cam(x , env) is the percepts
obtained with the perception pipeline. These pairs can be obtained from existing labeled
data for testing the vision pipeline or training CNNs. A labeled data point for nn is already
an image img = cam(x , env) sampled from X and E and its ground truth z = h(x) as the
label. In practice, the state x = (x, y, θ) can be obtained from other accurate sensors such
as GPS to label the images. We use the state x ∈ Xi and obtain the ground truth z = h(x).
We then simply collect the perceived ẑ = nn(img) by applying the vision pipeline on the
image img.

ComputeAAP first uses the training set of pairs of (z , ẑ) to learn Ai and bi using multivariate
linear regression. The next section describes how it infers a safe radius ri around the center
Ai × h(x) + bi by solving a constrained optimization problem.

7.5.3 Constructing Safe Approximations of Perception

At Line 2 of ComputeAAP in Algorithm 7.1, multivariate linear regression minimizes the
distance from the center line Ai× h(x) + bi to the training data in Xi and computes Ai and
bi. Next, we would like to infer a safe radius ri around the center line Ai× h(x) + bi. There
is a tension between safety and precision in the choice of ri. On one hand, we want a larger
radius ri to cover more samples, making M a more conservative approximation of nn ◦ cam.
On the other hand, the neighborhood should not include any unsafe perception value that
can cause a violation of JInvK.
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Algorithm 7.2: Minimum distance to unsafe perception values.
Input: Linear Transform Matrix Ai; Translation Vector bi; Subspace Xi; Invariant

JInvK; Dynamics f ; Control g; Perfect Estimation h
Output: Safe radius ri ∈ R≥0

1 Function MinDist
2 solver.addVar(x , z , x ′)
3 solver.addConstraints(x ∈ Xi, x ′ = f (x , g(z)), x ′ /∈ JInvK)
4 solver.setObjective(∥z − (Ai × h(x) + bi)∥)
5 status, r̂, b = solver.minimize()
6 if status is OPTIMAL or SUBOPTIMAL then
7 ri ← r̂ − b
8 else
9 ri ← +∞ // status is INFEASIBLE

10 return ri

Formally, the set of unsafe percepts for a given state x is a function unsafe : X → 2Z

unsafe(x) def= {z | f (x , g(z)) /∈ JInvK} (7.14)

and should be disjoint with the safe neighborhood. Figure 7.4 illustrates such a safe neigh-
borhood for one particular state x . Note that Ri has to extend to all states x ∈ Xi, and
hence we need to find a safe radius ri for any x ∈ Xi. At the same time we would also like
ri as large as possible to cover more perceived values. Further, Figure 7.5 shows we have to
infer for all Xi in the partition.

Our solution is to find an ri just below the minimum distance r∗ from the center Ai ×
h(x) + bi to the set of unsafe percepts. This is formalized as the constrained optimization
problem below:

r∗ = min
x∈Xi,z∈Z,x′∈X

∥z − (Ai × h(x) + bi)∥ s.t. x ′ = f (x , g(z)), x ′ /∈ JInvK (7.15)

Observe that x ∈ Xi is a set of simple bounds on each state variable by designing the
partition. x ′ /∈ JInvK is simply the invariant predicate over state variables. However, the
third constraint x ′ = f (x , g(z)) encodes the controller g and dynamics f in optimization con-
straints. Encoding the dynamic model f as optimization constraints is a common technique
in Model Predictive Control. Encoding the controller g can be achieved with a program
analysis tool to convert each if-branch of control laws into equality constraints between z
and controller output u = g(z). An example template for Gurobi solver [150] is shown as
MinDist in Algorithm 7.2.
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We argue ComputeAAP computes a function Ri that returns a safe neighborhood for any
ground truth percept h(x).

Lemma 7.2. For each x ∈ Xi, Ri(h(x)) computed by ComputeAAP is disjoint with the unsafe
percepts, unsafe(x). That is,

∀x ∈ Xi.(Ri(h(x)) ∩ {z | f (x , g(z)) /∈ JInvK} = ∅) (7.16)

Proof. Our proof is to analyze the possible outcome status from the optimization solver,
and propagate each outcome through our functions. At Line 5, the solver may return the
following statuses: (1) When status=OPTIMAL or SUBOPTIMAL, the solver returns an
estimated minimum distance r̂ and a bound b such that the true minimum r∗ is within
the bound, i.e., r̂ ≥ r∗ and r̂ − r∗ < b. Modern solvers all provide the bound to address
numerical error or suboptimal solutions. Consequently, ri = r̂ − b at Line 7 ensures ri < r∗;
thus the ball defined by ri is disjoint with the unsafe set. (2) When status=INFEASIBLE,
the constraints are unsatisfiable, and the unsafe set {z | f (x , g(z)) /∈ JInvK} for every x ∈ Xi
is proven to be ∅. We let ri = +∞ and thus Ri(x) is equivalent to the whole percept space
Z for all x ∈ Xi . QED.

7.5.4 Verifying with AAPs: Theory and Code

In this subsection, we summarize the claim that M computed by ComputeAAP indeed
assures the safety of the approximated system Ŝys(M) and show how it can be used for
code-level verification. At a mathematical-level, the safety of M follows essentially from
the construction in ComputeAAP. Using Proposition 7.2, we can show that M preserves the
invariant JInvK.

Lemma 7.3. If every function Ri : Z → 2Z returns the safe neighborhood of Xi for all i,
then the AAP M preserves the invariant JInvK.

Proof. Let us fix x ∈ Xi and the corresponding ground truth percept h(x), and Ri(h(x))
represents all percepts allowed by Ri. Using the Ri computed by ComputeAAP, we have
shown in Proposition 7.2 that Ri(h(x)) does not intersect with any percept that can cause
the next state f (x , g(z)) to leave JInvK. We then rewrite it as, for each x ∈ Xi, any percept
z ∈ Ri(h(x)) preserves JInvK, i.e,

∀x ∈ Xi.∀z ∈ Ri(h(x)).f (x , g(z)) ∈ JInvK. (7.17)
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Figure 7.4: Example safe neighbor func-
tion Ri inferred from linear regression and
constrained optimization.
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Figure 7.5: Ground truth (blue dot), perceived values
(orange points), and inferred safe neighborhood (pur-
ple circle). Notice the biases in different subspace: the
mean of the perceived values do not align with the
ground truth.

Z M (X x ){
__CPROVER_requires(∨N

i=1 x ∈ Xi ) ;
Z z = nondet_z ( ) ;
__CPROVER_ensures(∧N

i=1 x ∈ Xi → z ∈ Ri(h(x)) ) ;
return z ;

}

Figure 7.6: C code template for implementing the M function with CMBC’s APIs.

Therefore, the invariant JInvK is preserved for each subset Xi, The proof of Proposition 7.3
is then to expand Definition 7.2 with the body of M and extend the guarantee from Equa-
tion (7.17) to all x ∈ JInvK simply because {Xi}i=1...N covers JInvK. QED.

More importantly, the constructed AAP M can be plugged into the models of the system
Sys, with different levels of detail, and verified using any number of powerful formal veri-
fication tools that have been developed over the past decades. For example, the abstract
perception system could be plugged into the controller g and dynamics f functions repre-
sented by complex, explicit models, code, and differential equations, and we can verify the
resulting system rigorously.

To illustrate this point, we showcase how to use M with C code implementations of g and
f and verify the resulting system with CBMC [141] to gain a high-level of assurance for the
control system. Recall our piecewise affine AAP defined in Section 7.5.2, it can be directly
translated into program contracts, that is, preconditions and postconditions, supported by
numerous existing program analysis tools [141, 142, 151, 152, 153]. In Figure 7.6, we imple-
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ment M shown as C code in the following template with CBMC’s APIs. We then are able to
verify the whole system integrating the controller and the dynamics shown in the example
code in Appendix A with CBMC.

7.5.5 Measuring the Precision of AAP

How close is the computed AAP M to the actual perception system cam ◦ nn? As we
discussed earlier, it is difficult if not impossible to rigorously answer this question because the
perception system (and therefore the learning stage of M) depends on the env in complex
and unknown ways. There are many options for measuring closeness that can factor in
information about the environmental parameters.

We propose a simple and fine-grained empirical measure of precision. We fix a range of
environmental parameter values E . For each partition Xi, we collect a testing set of pairs of
(z , ẑ) by sampling across Xi × E using some distribution D, where ẑ = nn ◦ cam(x , env) is
the actual perception output and z = h(x) is the ground truth. We denote a pair (z , ẑ) that
satisfies ẑ ∈ Ri(z) as a positive pair. Then, the fraction of positive pairs gives us the empirical
probability with respect toD that the actual perception system (with CNN) outputs percepts
covered by Ri. Formally, the empirical probability is defined as p̂i = 1

N

∑N
j=1 I (ẑj ∈ Ri(zj)) ,

where (z1, ẑ1), (z2, ẑ2), · · · , (zN , ẑN) are i.i.d. samples from the distribution D, and I is the
indicator function. In contrast, the actual probability, which is more important, is defined
as pi = ED [I (ẑ ∈ Ri(z))] . Going forward we call pi and p̂i the precision and the empirical
precision of M over the partition Xi.

The following theorem immediately follows from Hoeffding’s inequality, which bound the
difference between the actual and the empirical probabilities.

Theorem 7.4. For any β ∈ (0, 1), with probability at least 1− β, we have that

pi ≥ p̂i −
√
− ln β

2N . (7.18)

It may be tempting to interpret this probability as a probability of system-level safety,
but without additional information how D is related to the actual distributions over Xi and
E , we cannot make such conclusions.

In the following sections, we use a uniform distribution D over simulated states and
environments. Each heatmap shown in Figures 7.7 illustrates the empirical precision p̂i of
different Xi of M . A darker green Xi means that a higher fraction of outputs from the
perception matches the provably safe AAP M . We ensure that at least N = 300 images are
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collected for each Xi. By Proposition 7.4, with probability at least 0.9 (i.e., β = 0.1), we
have that pi ≥ p̂i − 0.062.

7.6 CASE STUDY 1: VISION-BASED LANE TRACKING WITH LANENET

We study the Polaris GEM e2 electric vehicle and its high-fidelity Gazebo simulation [46]
(Motivating example of Section 7.4). The perception module uses LaneNet [146] for lane
detection.18 We discuss the construction of the approximation M in Section 7.6.1, the in-
terpretation of the precision heatmaps in Section 7.6.2, finally, in Section 7.6.3 we study the
behavior of the closed-loop system where LaneNet (nn ◦ cam) is replaced by the approxima-
tion (M). We aim to study the impact of partitions {Xi} and the environment parameter
distributions D.

7.6.1 Implementation Details in Construction of AAPs

We recall the safe set is JSafeK = {(x, y, θ) | |y| ≤ 2.0}, and the initial set of states is Θ ={
(x, y, θ) | x = 0 ∧ |y| ≤ 1.2 ∧ |θ| ≤ π

12

}
. We now briefly discuss that, in implementation,

we need not specify an invariant candidate JInvK explicitly by specifying an alternative
constraint with a tracking error function.

A standard proof in control theory is to define a tracking error function (Lyapunov func-
tion) over the ground-truth percept values, and then prove that the error is non-increasing
along the evolution of states for the entire state space (global Lyapunov stability) or for a
neighbor around the equilibrium (local Lyapunov stability). This guarantees not only that
the system eventually stabilizes to the equilibrium representing zero tracking error, but also
that any sublevel set of the error function is an invariant set [154, Theorem 2]. Therefore,
we can encode the constraint that the error is non-increasing along the evolution of states
instead of specifying an invariant candidate.

Formally, given the equilibrium 0z ∈ Z, an error function V : Z 7→ R≥0 is a positive
definite function, i.e., V (0z) = 0 and V (z) > 0 when x ̸= 0z . In this section, we use the vector
norm, i.e., V (d, ψ) = ∥(d, ψ)∥. Choices of different tracking error functions are discussed in
Appendix A. The ground-truth percept value of a state (x, y, θ) is (d, ψ) = h(x, y, θ), and the
tracking error is V (d, ψ). Similarly, we denote the next state ass (x′, y′, θ′), the next ground-
truth percept is obtained by (d′, ψ′) = h(x′, y′, θ′), and the tracking error is V (d′, ψ′). Recall
that Lemma 7.2 reasons with the set of states leaving the invariant, i.e., (x′, y′, θ′) /∈ JInvK.

18We use https://github.com/MaybeShewill-CV/lanenet-lane-detection, one of the most popular
open source implementation of LaneNet on GitHub.
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We similarly define the constraint of violating non-increasing error as:

V (h(x′, y′, θ′)) > V (h(x, y, θ)) (7.19)

which is used to replace (x′, y′, θ′) /∈ JInvK. Detailed descriptions and values of parameters
in f and g and the definition of h are in Appendix A.

To infer the AAP M , we consider the partitions {Xi}i≤N with y within ±0.3W = ±1.2
meters to ensure safety and heading angle θ within ±15◦, i.e.,

N⋃
i=1
Xi =

{
(x, y, θ) | |y| ≤ 1.2 ∧ |θ| ≤ π

12

}
(7.20)

Further, we consider three different partitions19 N ∈ {8× 5, 8× 10, 8× 20}; larger numbers
partition more finely and produce refinements of the coarser AAPs.

To prepare the training data for learning Ai and bi to construct Ri, we use the Gazebo
model in [46] and generate camera images img labeled with their ground truth percepts z .
Each image is sampled from an uniform distribution D over Xi × E , where E is defined by:

(1) three types of roads with two, four, and six lanes,

(2) two lighting conditions, day and dawn.

The ground truth percept z = h(x) is calculated using information from the simulator.
For each partition, given Ai and bi learned from multivariate linear regression using the

data. MinDist, implemented in Gurobi [150], solves the following nonlinear optimization
problem to find ri: Since each Xi covers an interval of 0.3 meter for y and 3◦ for θ. we discuss
the optimization problem for a particular subset Xi that covers y from 0.9 to 1.2 meters and
θ from 12◦ to 15◦ as an example, i.e, Xi =

{
(x, y, θ) | y ∈ [0.9, 1.2] ∧ θ ∈

[
π
15 ,

π
12

]}
.

min
(x,y,θ)∈Xi,(d,ψ)∈Z,(x′,y′,θ′)∈X

∥(d, ψ)− (Ai × h(x, y, θ) + bi)∥

subject to x′ = x+ vf cos(θ + g(d, ψ))∆T,

y′ = y + vf sin(θ + g(d, ψ))∆T,

θ′ = θ + vf
sin(g(d, ψ))

lWB
∆T,

V (h(x′, y′, θ′)) > V (h(x, y, θ))

(7.21)

19Here we do not partition along x because lanes are aligned with the x-axis, and partitioning x-axis does
not produce interesting results.
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All the computed AAPs were composed with the code for the controller g and the dynamics
f and successfully verified for the corresponding invariant with CBMC. In addition to being
an extra check, this CBMC verification closes the gap between the mathematical functions
used in constructing the verified AAP, and the corresponding C functions in code (E.g.,
arctan

(
κ·d
vf

)
has to be implemented with atan2 in C library to avoid division by zero).

7.6.2 Interpretation of the Precision of AAPs

Figure 7.7 shows the precision maps for three AAPs resulting from three increasingly
finer partitions and two sets of testing environments. A darker green partition implies a
higher empirical precision p̂i (and therefore, a higher lower-bound of actual precision pi by
Proposition 7.4). That is, the safe AAP approximates the perception system with higher
probability in those Xi. First, we discuss the broad trends and then delve into the details.

At Equilibrium, AAP Breaks but It Does Not Matter All six heatmaps demonstrate
a common trend where there is a lump of white (low score) cells around the origin. There are
areas where either (1) the safe radius ri of Ri is too small for M to include the outputs from
nn ◦ cam, or (2) the center of Ri is unsafe. This phenomenon can be understood as follows:
First, the center (equilibrium) of the plot corresponds to near zero error in deviation d and
heading ψ. Consider when a vehicle’s state has nearly 0 tracking error; the percept must
also approach the ground truth h(x) so that the next state can maintain the 0 error. Recall
that our AAP consists of the mean Ai × h(x) + bi and the safe radius ri. If Ai × h(x) + bi
already deviates from ground truth, it can lead to control actions to always increase tracking
error in the next state. In this case, we cannot infer a safe region around the bias, and M

returns an empty set. The precision is 0 by definition. In the other case, the mean is close to
the ground truth. The safe region to maintain non-increasing error is still small, and hence
ri is almost 0. The precision will be very low because it is unlikely the percept from the
vision pipeline to be extremely close to the ground truth. Alternatively, we can view the
overall system Ŝys(M) as a fixed-resolution quantized control system. It is well-known that
such a system cannot achieve perfect asymptotic stability [155]. The feedback does not have
enough resolution to drive the state to the equilibrium, and the error function V cannot be
non-increasing around the origin. We note that not proving safety around the origin is less
of a problem because the vehicle is safe—centered and aligned with the lane.

Finer Partitions Improve Precision We observe that finer partitions generate more
precise approximations. With the finest partition, several cells achieve over 90 percent.
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Figure 7.7: Precision heatmaps of AAPs inferred for LaneNet with Stanley controller. The
partitions with N = 8× 5, 8× 10, and 8× 20. The environment parameter space with three
road types (Three from left) and only two-lane road (Three from right).

This could be made higher with finer partitions. The reasons are twofold. (1) With a finer
partition, linear regression can better fit a smaller interval of the original perception function.
(2) The safe radius ri is minimized for all x ∈ Xi. If a subset Xj ⊂ Xi excludes the worst
state, the radius rj for Xj can be larger than ri.

Fewer Environmental Variations Improve Precision We generated two testing sets
under different distributions over the environment space including (1) the same uniform
distribution for the training set, and (2) an uniform distribution over the subspace with
only the two-lane road. Observe the heatmaps in Figure 7.7, the colors become darker for
the same cell locations. The variance in the perceived values by the vision pipeline reduces
because of the fewer environmental variations. The same radius can cover more samples in
the testing set.

7.6.3 Closed-Loop System with Approximate Perception Model

We test the performance of the worst AAP (with N = 8 × 5 partitions) by simulating it
in the closed-loop lane-keeping system in Gazebo (blue in Figure 7.8). At each time step,
the AAP generates a set of possible percept values, and we randomly pick a point from this
set and feed that into the controller g to close the loop. For comparison, we also run the
original system with LaneNet (orange) and with perfect ground-truth (green) perception,
starting from the exact same initial condition.

We run 50 simulation starting randomly from 0.6 ≤ d ≤ 0.9 and |ψ| ≤ π
60 each with time

horizon 3s. For all these runs, we plot the mean and standard deviation of the perceived
tracking error (left) and the actual tracking error (right) in Figure 7.8. First, we observe
that, as expected, the distribution of tracking error using AAP and LaneNet are both biased
compared to the ground truth. Second, the perceived tracking error from AAP is close to
the tracking error of the actual system, and the real tracking error between the two (right)
is even closer. These experiments provide empirical evidence that the closed-loop system
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Figure 7.8: V (d, ψ) (Left) computed using perception output, and V (d, ψ) (Right) computed
using ground truth.

with the AAP Ŝys(M) closely approximates the actual system Sys on average.

7.6.4 Construction of AAPs Using Barrier Certificate Based Invariant

Θ =
{
(x, y, θ) | x = 0 ∧ |y| ≤ 1.2 ∧ |θ| ≤ π

12

}
is the initial set of states, and we recall the

safe set is JSafeK = {(x, y, θ) | |y| ≤ 2.0}. Given that the tracking error function V (d, ψ) =
∥(d, ψ)∥ is a Lyapunov function, we can alternatively consider the sublevel set of V , Xρ =
{x | V (h(x)) ≤ ρ}, such that Θ ⊆ Xρ and Xρ ⊆ JSafeK. The sublevel set Xρ is guaranteed
to be an invariant JInvK by definition. This is equivalent to finding the barrier function
B(d, ψ) = V (d, ψ)− ρ.

Given that h is linear for the LTC system and V is convex, it suffices to choose any ρ

satisfying:
sup
x∈Θ

V (h(x)) ≤ ρ < inf
x /∈JSafeK

V (h(x)) (7.22)

to ensure Θ ⊆ Xρ and Xρ ⊆ JSafeK. However, note that this is a sufficient condition, and ρ

may not exist for any given tracking error function. In this case study, we can derive that√
1.22 + ( π12)2 ≤ ρ < 2.0, and we choose ρ = 1.27.
For simplicity, we do not partition the invariant Xρ and solve the optimization problem:

min
(x,y,θ)∈X ,(d,ψ)∈Z,(x′,y′,θ′)∈X

∥(d, ψ)− (A× h(x, y, θ) + b)∥

subject to x′ = x+ vf cos(θ + g(d, ψ))∆T,

y′ = y + vf sin(θ + g(d, ψ))∆T,

θ′ = θ + vf
sin(g(d, ψ))

L
∆T,

V (h(x, y, θ)) ≤ ρ, V (h(x′, y′, θ′)) > ρ

(7.23)
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Figure 7.9: Precision heatmaps of AAPs inferred for LaneNet with respect to barrier func-
tion. The partitions with N = 8× 5, 8× 10, and 8× 20. The environment parameter space
with only two-lane road.

The heatmaps in Figure 7.9 shows the same region of white cells on the top right and
bottom left corners compared with Figure 7.7. These white cells indicate the system cannot
satisfy the non-increasing error property, and they are also close to the boundary of the
sublevel set Xρ. Hence, the states represented by these cells can leave the sublevel set and
violate the invariant. On the other hand, this more relaxed invariant avoids the problem
of requiring the perfect asymptotic stability around equilibrium. In return, it is required to
first prove the given V is a Lyapunov function, and second find the right sublevel set Xρ
that separates the initial set from the unsafe set.

7.7 CASE STUDY 2: CORN ROW FOLLOWING AGBOT

Our second case study is the visual navigation system of the under-canopy agricultural
robot (AgBot), CropFollow, developed in [156]. The system is responsible for the lateral
control when the vehicle traverses the space between two rows of crops. Similar to our first
case study, the system captures the image in front of the vehicle with a camera (Figure 7.10),
applies a ResNet-18 CNN on the camera image to perceive the relative positions of the corn
rows to the vehicle, and uses a modified Stanley controller to reduce the lateral deviation.

In CropFollow [156], the vehicle dynamics is approximated with a kinematic differential
model of a skid-steering mobile robot. The state x consists of the 2D position x and y and
the heading θ. The input u is the desired angular velocity ω. The modified Stanley controller
takes a percept z ∈ Z composed of the heading difference ψ and cross track distance d to
an imaginary center line of two corn rows, and outputs the angular velocity ω to steer the
robot.

For the farm robots, we wish to avoid two undesirable outcomes:

(1) if |y| > 0.5W = 0.38 meters, the vehicle will hit the corn, or

(2) if |θ| > 30◦, the neural network output becomes highly inaccurate and recovery may
be impossible.
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Figure 7.10: Real and simulated camera images for corn row following for agricultural robots.

The safe set is then defined as JSafeK = {(x, y, θ) | |y| ≤ 0.38 ∧ |θ| ≤ π
6}. We use the

error function V (d, ψ) = |ψ + arctan(κ·d
vf

)| from [145] to specify the invariant JInvK. The
definition of the dynamics and controller, the partitions of states, environments, constants
for the dynamics, and the computed precision heatmaps are provided in Appendix B.

We observe almost identical broad trends including the white cells around equilibrium,
the white spots in the upper right and lower left corners close to the violation of invariant,
and higher precision score with finer partitions. This case study reaffirms the validity of our
interpretation over the precision heatmap in Section 7.6. It also showcases that our analysis
can be applied on different vision-based control systems.

7.8 DISCUSSION AND FUTURE DIRECTIONS

Safety assurance of autonomous systems that use machine learning models for perception
is an important challenge. We presented an approach for creating approximate abstractions
for perception (AAP) that are safe by construction. The approach learns piecewise affine
set-valued AAPs of the perception system from data. Viewing AAPs along the triple axes
of safety, intelligibility, and precision may give a productive perspective for tackling the
problems of safety assurance of autonomous systems.

Within the space of intelligible AAPs, we have explored one corner with piecewise affine
models. Our piecewise affine AAPs use uniform rectangular partitions, and the size of the
partitions have significant impact on improving precision. The results suggest that non-
uniform or adaptive partitioning (e.g., finer partitions nearer to the equilibrium) would yield
more precise approximations. Exploration of other structures such as decision trees, poly-
nomial models, and space partitions, would be fruitful from the point of achieving precision
without making the partition size too big. Another direction is to derive templates preserving
the structural properties of the control programs or the physical environment. For example,
we may require the behavior of the vehicle to be symmetric that the reaction to facing the
right lane boundary (both heading and distance are positive) is symmetric to the reaction to
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facing the left lane boundary (both heading and distance are negative). If the controller and
dynamics are invariant under translation and reflection, the learned approximation should
also preserve the symmetry, and this may be enforced by the template.

As expected, the safety requirement and its verification method (e.g., invariants and Lya-
punov functions) significantly impact the precision of the constructed approximation model.
The precision maps shed light on parts of the state space and environment where the ac-
tual vision-based perception system is most fragile and is likely to violate requirements.
Such quantitative insights can inform design decisions for the perception system, the control
system, and the definition of the system-level operating design domains (ODDs).

Finally, we chose to use discrete time models and used CBMC for verifying the closed-loop
system with the AAP. We have shown that searching for AAPs for a discrete time model
is in fact synthesizing approximate safe abstractions for an equivalent CPReact model,
and extending the approach to find AAPs for continuous time and hybrid models can be
achieved in the CPReact modeling framework. However, it will require solutions of ODEs
of continuous systems in place of dynamic functions f of discrete systems for the encoding
of the constrained optimization query, and solving the optimization query and verifying the
closed-loop system with the AAP will require nontrivial extensions of existing optimization
and verification tools.
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Chapter 8: Approximate Abstraction for Vision-Based Drone Formation

Vision-based formation control systems recently have attracted attentions from both the
research community and the industry for its applicability in GPS-denied environments. As
discussed in Chapter 7, the safety assurance for such systems is challenging due to the lack
of formal specifications for computer vision systems. The compound effect from interactions
between robots further complicates the impact of imprecise vision-based perception. In
this chapter, we propose a technique for safety assurance of vision-based formation control.
Inspired by our approach in Chapter 7, our technique combines (1) the construction of a
piecewise approximation of the worst-case error of perception and (2) a classical Lyapunov-
based safety analysis of the consensus control algorithm. The analysis provides the ultimate
bound on the relative distance between drones. This ultimate bound can then be used to
guarantee safe separation of all drones. We implement an instance of the vision-based forma-
tion system on top of the photo-realistic AirSim simulator [47]. We construct the piecewise
approximation for varying perception error under different environments and weather con-
ditions, and we are able to validate safe separation provided by our analysis across different
weather conditions with AirSim simulation. The result in this chapter is summarized in our
preprint paper available on arXiv [157].20 Our implementation of vision-based formation
control and the code for simulation and analyses are all publicly available21.

8.1 OVERVIEW

The literature on distributed consensus, flocking, and formation control is vast (see, for
example [158, 159, 160, 161]). Flocking and swarm formation using computer vision [162,
163, 164] can leverage the advances in deep learning. They do not require localization
systems, and thus, are attractive for GPS-denied environments. However, safety assurance
of vision-based control systems poses challenges: (1) Formal specifications for computer
visions systems are difficult, (2) deep learning-based perception functions can be fragile, and
(3) safety analysis requires one to understand the impact of imprecise vision-based state
(position) estimation on distributed control. These challenges have been recognized by the
autonomy industry [165].

In this chapter, we present a technique for safety assurance of a vision-based swarm for-
mation control system. The computer vision pipeline here uses feature detection, feature

20This is a joint work with Yangge Li and Yubin Koh.
21https://gitlab.engr.illinois.edu/aap/airsim-vision-formation

115

https://gitlab.engr.illinois.edu/aap/airsim-vision-formation


Figure 8.1: Vision-based drone formation using downward facing camera images in AirSim.

matching across a pair of images, and geometric models for 3D-vision to estimate the pair-
wise relative poses of the participating drones. The estimated relative poses are then used
by a consensus-based formation control algorithm to achieve target formations. To our
knowledge, this is the first investigation of end-to-end safety assurance of such systems. Our
technique combines (1) Lyapunov analysis of the formation control algorithm with (2) an
approximate abstraction for the vision-based perception component. The concept of the
approximate abstraction was introduced in Chapter 7 on vision-based lane keeping control.
The key idea was to approximate the worst case behavior of the complex perception system
with a low-dimensional, and empirically precise, function of the ground truth lane-deviation
values. Formation control for drones uses a completely different type of perception with pairs
of images, feature matching, and camera geometry. Not surprisingly, a completely different
method is needed for constructing the approximate abstraction. The two key challenges are:

(1) The perception error impacts the behavior of agents in a distributed system.

(2) The upper bound on the perception error for a pair of agents depends on their ground
truth relative position.

In general, perception errors can get worse as the system approaches the equilibrium (desired
formation), and thus, make stabilization difficult. Asymptotic stability may be unachievable,
and we have to settle for the more practical notion of ultimate boundedness [166]. Our anal-
ysis gives an empirical method for testing out the environmental conditions (e.g., lighting,
fog) under which a target formation can be safely achieved, despite perception errors. Thus,
this study shows that on top of the safety assurance, the methodology with approximate
abstractions may be useful for creating safe operating guidelines for vision-based swarms.

In summary, our contributions are as follows:
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(1) An approach to construct a piecewise approximate abstraction to bound the perception
error of the vision component.

(2) A Lyapunov-based analysis to derive the ultimate bound for the end-to-end drone
formation system using the approximate abstraction.

(3) Detailed empirical evaluations with the photo-realistic AirSim simulator [47].

Connections to CPReact System Models We have presented in Chapter 2 how to
model dynamical systems in our CPReact model, and we have shown that it can complicate
the notations. We have discussed in Chapter 7 that finding approximate abstractions for
perception components can help synthesize safe abstractions of the real environment. In this
chapter, we again use dynamical system models instead of our CPReact model to simplify
the notations, and we will only discuss finding abstractions for approximate perception
components instead of the abstraction of the environment.

Related Works There is a line of work on the analysis of closed-loop systems with vision-
based perception. Our approach in Chapter 7 provides the insight of approximate abstrac-
tions but focuses on the lane tracking system. VerifAI [27] uses techniques like fuzz testing
and simulation to falsify the system specifications. Katz et al. [28] trains generative adver-
sarial networks (GANs) to produce a network to simplify the image-based NN. NNLander-
VeriF [29] verifies NN perception along with NN controllers for an autonomous landing
system. In contrast, our approach is the first to provide safety analyses for a formation con-
trol system with vision-based perception, and we apply the notion of ultimate boundedness
for safe separation and formation.

Organization In Section 8.2, we introduce the formation control system with the vision-
based perception. We briefly review a well-studied controller. In Section 8.3, we describe the
approximate abstraction for perception error bounds via sampling from vision-based pose
estimation. In Section 8.4, we show safe separation under perception error using our main
theory of ultimate boundedness. We then validate with AirSim simulation in Section 8.5
and discuss in Section 8.6.

8.2 VISION-BASED FORMATION CONTROL

We will study a distributed formation control system with N identical aerial vehicles or
agents as shown in Figure 8.1. The target formation is specified in terms of relative positions
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between agents. Each agent i has a downward facing camera, and it uses images from its
own camera and its neighbor j’s camera to periodically estimate the relative position of j
with respect to i. Based on these estimated relative positions to all its neighbors, the agent
i then updates it own position by setting a velocity to achieve the target formation.

Before describing the vision and control modules in more detail, we introduce some nota-
tions used throughout the paper. First, the neighborhood relation between agents is defined
by an N ×N symmetric adjacency matrix W ∈ RN×N , i.e., j is a neighbor of i if and only
if ωij = 1, otherwise ωij = 0. All diagonal entries of W are ωii = 0.

Second, we only consider planar formations for simplicity though the agents are in 3-
dimensional space. We use the technique to represent a vector in R2 with a complex number
in C. The position of the agent i in the world frame is represented by a complex number
qi ∈ C and its input velocity by another number ui ∈ C. The state of the overall system is
q = [q1 q2 · · · qN ]T . A desired formation is specified as the set of target equilibrium states
defined by a desired state q∗:

Eq∗
def= {q |

N−1∧
i=1

N∧
j=i+1

qj − qi = q∗
j − q∗

i }. (8.1)

That is, Eq∗ is the set of all states that form q∗ up to position translations. We also specify
a safe set demanding that the distance between any two agents are never too close, namely

JSafeK def= {q |
N−1∧
i=1

N∧
j=i+1

∥qj − qi∥ > 0} (8.2)

We now discuss the components of each agent i (Figure 8.2).

8.2.1 Vision-Based Relative Pose Estimation

Agent i’s downward-facing camera cam periodically generates an image of the ground
imgi, which depends on its state qi and other environmental factors like background scenery,
lighting, fog, etc. The neighboring agent j generates another image imgj of the ground and
shares this with the agent i over the communication channel. We assume the whole system
runs in synchronous mode, i.e., all the drones will capture the image at the same time and
there’s no communication delay between drones while sharing the images. The vision-based
pose estimation algorithm cv takes a pair of images, imgi and imgj, as an input and produces
the estimated relative position q̂ij of agent j with respect to agent i following these steps:

(1) First, cv detects features from each image. Any of the various feature detection
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Figure 8.2: Architecture of an agent in the vision-based formation control systems.

Figure 8.3: Feature matching on a pair of images collected in AirSim.

algorithms like SIFT [167], SURF [168], and ORB [169] can be used for this step. (2)
Then, cv collects the detected features from the pair of images, and a feature matching
algorithm (such as FLANN [170]) is used to match pairs of features in each image as shown
in Figure 8.3. (3) For each feature point, we can set up a relationship between the pixel
coordinate and the world coordinate of the feature point


u

v

1

 = K[R | t]


x

y

z

1

 (8.3)
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where [u, v, 1]T is the pixel coordinate, [x, y, z, 1] is the feature’s world coordinate, K is the
camera intrinsic matrix and [R | t] is the extrinsic camera parameters. With a set of at least
eight matched features, we can come up with eight pairs of equations between the pose of two
cameras and by solving these equations, the relative rotation and the normalized translation
vector can be calculated using the inverse geometry of image formation in cameras. Examples
of this step appear in [171, 172, 173]. Further, the altitude and drone orientation can be
used to estimate the distance to ground and recover the length of the translation vector.

The accuracy of the perception pipeline can be influenced by many factors. The change of
environments such as background, lighting, and weather influence the quality of the image
and the image features, which in turn influence the accuracy of relative pose estimation.

8.2.2 Formation Control

The relative pose estimates computed by agent i’s perception modules are used to compute
its velocity control inputs ui, which in turn affects its position qi. We consider the simple
single-integrator dynamics relating qi and ui:

q̇i = ui (8.4)

The velocity control input is calculated using the well-known averaging rule [174]:

ui =
N∑
j=1

ωij(q̂ij − q∗
ij). (8.5)

where we denote qij = qj − qi and q∗
ij = q∗

j − q∗
i . In [174], it is proven that this controller

stabilizes the system to a desired formation if there is no perception error, i.e., q̂ij = qij.
Finally, we study the ultimate boundedness [166] of the system. For the formation control,

the ultimate bound is a constant b bounding the relative distance when the system is stabi-
lized. Formally, a state q within the ultimate bound b is that, for each pair of i, j ∈ {1 . . . N}

∥q∗
ij − qij∥ ≤ b. (8.6)

8.3 PIECEWISE APPROXIMATE ABSTRACTION

In this section, we first develop a model of the perception error which will be used later in
our safety analysis. For vision-based perception, uniform worst case bounds on the percep-
tion error q̂ij − qij can be overly conservative for system-level analysis. We have shown in
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Figure 8.4: Perception error distances ∥q̂ij−qij∥ (Blue dots) and empirical piecewise constant
upper bound (Red line) with respect to true relative distances ∥qij∥. We fix drone i as the
origin and uniformly sample 10,000 positions of drone j within a circle of 20 meters in the
LandscapeMountains environment from AirSim.

Chapter 7 that state-dependent error models can strike a balance between the conservatism
of the safety analysis and the precision of characterizing vision-based perception systems.

Following the above pattern, we investigate the relationship between the ground truth and
the perceived relative poses. We randomly sample pairs of camera images from two drones
under different relative positions in AirSim. For each sample, we obtain a pair of true relative
position qij from AirSim and perceived relative position q̂ij via vision-based pose estimation
pipeline (of Section 8.2.1). Figure 8.4 plots the norm of perception error ∥q̂ij − qij∥ with
respect to the true relative distance ∥qij∥. We observe that the norm of the worst-case
perception error indeed increases with respect to the true relative distance. Secondly, the
error bound grows sharply when the relative distance crosses a certain threshold, e.g., about
14 meters in Figure 8.4. This is not too surprising: As the two drones become farther apart,
the intersection of the two camera views is smaller, and there are fewer matched features
than eight pairs, which leads to the failure of relative pose estimation.

For the analysis later in Section 8.4, our goal is to find an abstraction of the vision compo-
nent with its worst perception error, and we empirically approximate the worst perception
error from collected samples. Hence, we define the approximate abstraction as the piecewise
constant function bounding the perception errors22 as illustrated by the red line in Figure 8.4.
Formally, given a sequence of 0 < d1 < d2 < · · · < dn, we find a non-decreasing sequence
γ1 ≤ γ2 ≤ · · · ≤ γn, such that γk serves as the empirical upper bound on the error for all

22Other possible error models could also be investigated. For example, we can consider the piecewise affine
model in Chapter 7.
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Figure 8.5: Matched feature points found by the feature detection and matching algorithm
under three AirSim environments and four fog levels.

intervals (dk−1, dk]. We then construct the monotonic piecewise constant function γmax,

γmax(qij) =



γ1, if 0 ≤ ∥qij∥ ≤ d1
...

γn, if dn−1 < ∥qij∥ ≤ dn

∞, if dn < ∥qij∥

(8.7)

The approximate abstraction will depend on environmental factors. To systematically
study the impact of environmental variations on the approximate abstraction, we exper-
imented with different environments and weather conditions in the photorealistic AirSim
simulator. Figure 8.5 shows how the feature matching step degrades across three environ-
ments (namely LandscapeMountains, AirSimNH, and ZhangJiajie) and four fog levels. Note
that at the fog level 0.050, only one pair of matching features is detected for LandscapeMoun-
tains for the same relative position.

Figure 8.6 shows the approximate abstractions for four fog levels under LandscapeMoun-
tains. The perception error bound increases much faster (against the relative distance) in a
foggier weather. To better visualize this trend, we normalize the perception error, ∥q̂ij−qij∥,
to the relative perception error, ∥q̂ij−qij∥

∥qij∥ , and plot the 25%, 50%, and 75% percentiles of rel-
ative perception error for finer fog levels in Figure 8.7. We observe in Figure 8.7 that the
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Figure 8.6: Perception error distances ∥q̂ij − qij∥ and empirical piecewise constant upper
bound with respect to true relative distances ∥qij∥ under varying fog levels.

Figure 8.7: 25%, 50%, and 75% percentiles on relative perception error ∥q̂ij−qij∥
∥qij∥ with respect

to different fog levels under LandscapeMountains.

50% value (median) mostly remains the same except until fog level is 0.05, but the value of
75% percentile increases more significantly. This is consistent with the observation on the
approximate abstraction.

8.4 ULTIMATE BOUND ON RELATIVE POSITIONS

The controller in Equation (8.5) assumes the true relative positions qij are used. However,
we already show in Section 8.3 that the estimated relative positions from vision algorithms
are imprecise and affected by the ground truth and environmental variations. In this section,
we first assume that the maximum perception error from vision algorithms are bounded.
We show that the true relative distance between agents is ultimately bounded around the
desired formations, and the ultimate distance bound is limited by a constant multiplied to
the perception error bound. We then discuss the analysis using the approximate abstraction
obtained in Section 8.3.

First, we introduce the graph induced Laplacian matrix, the error dynamics without per-
ception error, and the Lyapunov function for reference in the subsequent proofs. The graph
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induced Laplacian matrix L is defined using the adjacency matrix W as:

lij =


∑

k∈{1...N}
ωik i = j

−ωij i ̸= j

(8.8)

L is symmetric and positive semi-definite for a simple undirected graph. There exists an
eigendecomposition L = QΛQT , where Λ is a diagonal matrix diag(λ1, λ2, . . . , λN) with
eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN and Q is orthogonal. The smallest eigenvalue λ1 of L

is always 0 with the eigenvector 1⃗ = [1, 1, . . . , 1]T , and the second smallest eigenvalue λ2 of
L is called the algebraic connectivity of the interaction graph [175]. Further, if the graph is
connected, then rank(L) = N − 1 and λ2 > 0.

Given the error state defined as eq = q∗ − q, the error dynamics without perception error
is derived as:

ėq = −Leq (8.9)

We use the quadratic function V below to prove the Lyapunov stability of the system
without perception error and the ultimate boundedness of the system with perception error:

V (eq) = 1
2

∑
i∈{1...N}

∑
j∈{1...N}

ωij∥qij − q∗
ij∥2 = 1

2eTq Leq (8.10)

Theorem 8.1. If the communication graph is connected, i.e., λ2 > 0, and there is no
perception error, i.e., q̂ij = qij, then the system in Equation (8.9) achieves state synchro-
nization, i.e., the error state eq converges to vectors in span{1⃗} with the exponential rate λ2.
Subsequently, the state of the formation system q converges to desired formations in Eq∗.

Proof. The Lyapunov stability for the controller in [174] is a well-established result. Here
we provide an alternative proof from [176] to set the stage for the next theorem on the
ultimate boundedness. Let the eigendecomposition of the Laplacian matrix be L = QΛQT

where Q is an orthogonal matrix and Λ is the diagonal matrix from the eigenvalues Λ =
diag(0, λ2, . . . , λN). Let η = Qeq. We can rewrite the system in Equation (8.9) as:

η̇ = QT (−LQη) = −Λη (8.11)

We then let Λ̃ 1
2 = diag(

√
λ2, . . . ,

√
λN) and let x = Λ̃ 1

2 [η2 . . . ηN ]T = [
√
λ2η2 . . .

√
λNηN ]T .

The subsystem for i ∈ {2 . . . N} is derived as:

ẋ = −x (8.12)
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Theorem 2.5 in [176, Section 2.4.1] shows that the original system of Equation (8.9) converges
to an equilibrium if and only if the system of Equation (8.12) is asymptotically stable.
An intuitive explanation of the above necessary and sufficient condition is as follows: the
orthogonal matrix Q is a rotation or reflection matrix for coordinate transformation, and
moving along the axis of η1 is equivalent to moving eq along the direction of 1⃗ in the system
of Equation (8.9). Hence, it has no effect on either converging to or diverging from desired
formations in Eq∗ .

We use the quadratic Lyapunov function Ṽ (x) = 1
2x

Tx, and the derivative of Ṽ is:

˙̃V (x) = −xTx = −∥x∥2 (8.13)

It guarantees that the system of Equation (8.12) is exponentially stable with the convergence
rate 1. Further, recall that η = Qeq and Λ = diag(0, λ2, . . . , λN),

Ṽ (x) = 1
2x

Tx = 1
2η

TΛη = 1
2eTqQTΛQeq = 1

2eTq Leq = V (eq) (8.14)

Because x = Λ̃ 1
2 [η2 . . . ηN ]T , we can derive

V (eq) = −∥Λ 1
2Qeq∥2 ≤ −∥Λ 1

2∥2∥Qeq∥2 ≤ −λ2∥eq∥2 (8.15)

Therefore, the original system of Equation (8.9) converges to desired formations in Eq∗ with
the convergence rate λ2. QED.

Now we analyze the system with perception error q̂ij ̸= qij following the analysis steps
for ultimate boundedness [166]. We define the perception error γij ∈ C as γij = q̂ij − qij.
Further, the perception errors for all pairs of agents is denoted as a N×N matrix Γ ∈ CN×N .
We now rewrite the controller in Equation (8.5):

ui =
∑

j∈{1...N}
ωij(q̂ij − q∗

ij) =
∑

j∈{1...N}
ωij(qij + γij − q∗

ij) (8.16)

Given error state eq = q∗ − q, the error dynamics from Equation (8.9) is modified as:

ėq = −(Leq + (W ⊙ Γ)1⃗) (8.17)

In short, (W ⊙ Γ)1⃗ represents the perception error induced disturbance. The element-wise
multiplication (W ⊙ Γ) states that each pairwise error γij is amplified by the weighted edge
ωij. The product of (W ⊙ Γ) and 1⃗ then aggregates the disturbance for agent i from all
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neighbors j. We now show that this system is ultimately bounded.

Lemma 8.2. If the communication graph is connected, i.e., λ2 > 0, and all perception errors
are bounded ∥γij∥ ≤ γmax, then the system in Equation 8.17 is exponentially input-to-state
stable with the convergence rate λ2, and the error state is ultimately bounded by the sublevel
set {eq | V (eq) ≤ ρ} where

ρ = N

2λ2
· (N − 1)2 · γ2

max (8.18)

Proof. From Theorem 8.1, we have already shown the system without noise is exponentially
stable with the convergence rate λ2. Therefore, we focus on deriving the ultimate bound for
the Lyapunov function value. Similar to the proof for Theorem 8.1, we can derive

ẋ = −x+ (Λ̃ 1
2 )−1PQT (W ⊙ Γ)1⃗ (8.19)

where P is the (N − 1)×N matrix, [0 IN−1], for removing the first row.
First, because P is removing the first row and Q is orthogonal, we know ∥PQT (W⊙Γ)1⃗∥ ≤
∥QT (W ⊙ Γ)1⃗∥ = ∥(W ⊙ Γ)1⃗∥. We thus derive the bound on ∥(W ⊙ Γ)1⃗∥. By definition,

(W ⊙ Γ)1⃗ =


0 ω12γ12 · · · ω1Nγ1N

ω21γ21 0 · · · ω2Nγ2N
... ... . . . ...

ωN1γN1 ωN2γN2 · · · 0

 1⃗ =


∑
j ̸=1

ω1jγ1j

...∑
j ̸=N

ωNjγNj

 (8.20)

Because ∥γij∥ ≤ γmax and ωij ∈ {0, 1}, the norm value is bounded by:

∥(W ⊙ Γ)1⃗∥ =
√∑

i

(
∑
j ̸=i

ωijγij)2 ≤
√
N((N − 1)γmax)2 =

√
2λ2ρ (8.21)

Further, by the Input-to-State Stability for linear systems [177], we know when t→∞,

∥x(t)∥ ≤ e−t∥x(0)∥+ ∥(Λ̃ 1
2 )−1∥∥PQT (W ⊙ Γ)1⃗∥

≤
√
λ−1

2 ·
√

2λ2ρ =
√

2ρ when t→∞
(8.22)

Therefore, the value of the Lyapunov function V is ultimately bounded by

V (eq(t)) = Ṽ (x(t)) = 1
2∥x(t)∥2 ≤ ρ (8.23)

QED.
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Theorem 8.3. If the communication graph is a complete graph, the true relative position qij
of each pair of drones is ultimately bounded around the desired relative position q∗

ij. Formally,
for all i, j,

∥qij − q∗
ij∥ ≤ b. (8.24)

where b =
√

ρ
N−1 = γmax

√
N(N−1)

2 is the ultimate bound.

Proof. Recall the Lyapunov function at Equation (8.10). When the system enters the ulti-
mate bound {eq | V (eq) ≤ ρ},

V (eq) = 1
2

∑
i∈{1...N}

∑
j∈{1...N}

ωij∥qij − q∗
ij∥2 ≤ ρ (8.25)

We can see the sum of square for all ∥qij − q∗
ij∥ is bounded. Without loss of generality, we

assume ∥qij − q∗
ij∥ = 0 for i ̸= 1 and j ̸= 1 to find the upper bound on ∥q1j − q∗

1j∥. This
implies all drones except drone 1 are in the desired formation up to translation, that is,
(q2 − q∗

2) = · · · = (qN − q∗
N) = ∆q. We can find for j ̸= 1

q1j − q∗
1j = (qj − q1)− (q∗

j − q∗
1) = (qj − q∗

j )− (q1 − q∗
1)

= ∆q − (q1 − q∗
1)

(8.26)

For a complete graph, we can simplify V (eq) as

V (eq) = 1
2(

∑
j ̸=1
∥q1j − q∗

1j∥2 +
∑
i ̸=1
∥qi1 − q∗

i1∥2)

=
∑
j ̸=1
∥q1j − q∗

1j∥2 =
∑
j ̸=1
∥∆q − (q1 − q∗

1)∥2

= (N − 1)∥∆q − (q1 − q∗
1)∥2 ≤ ρ

(8.27)

Hence, ∥q1j − q∗
1j∥ = ∥∆q − (q1 − q∗

1)∥ ≤
√

ρ
N−1 = b QED.

We can use the ultimate bound from Theorem 8.3 to provide the safety guarantees.

Proposition 8.4. Given the interaction graphs is a complete graph, all perception errors
are bounded ∥γij∥ ≤ γmax, when the system has stabilized to the ultimate bound, the relative
distance is both upper and lower bounded. Formally, for all i, j ∈ {1 . . . N} and i ̸= j

∥γij∥ ≤ γmax =⇒ ∥q∗
ij∥ − b ≤ ∥qij∥ ≤ ∥q∗

ij∥+ b. (8.28)
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Further, if ∥q∗
ij∥ > b, the system stays in the safe set Safe.

∥q∗
ij∥ > b =⇒ ∥qij∥ > 0 (8.29)

Proof. The proof is to apply the triangle inequalities, e.g., for the lower bound, ∥q∗
ij∥−∥qij∥ ≤

∥q∗
ij − qij∥ ≤ b. Dually, we can derive the upper bound. QED.

Finally, the above analysis of the ultimate boundedness assumes a bound γmax on maxi-
mum perception error for the worst case analysis. As a result, this perception error bound
and the derived ultimate bound on distance can be overly conservative if we use the global
maximum value regardless of the ground truth. To calculate a more practical bound, our
main insight is to use a tighter perception error bound around the desired formation where
the ultimate boundedness from Theorem 8.3 holds locally. This ensures that not only the
system stays within the neighborhood around the desired formation but also, because it
stays in the neighborhood, the perception error is not becoming worse and hence bounded
locally at the same time.

Given the desired relative position q∗
ij and the approximate abstraction γmax(qij) in Equa-

tion (8.7), we linearly search for a pair of dk and γk from γmax such that:

∥q∗
ij∥+ γk

√
N(N − 1)

2λ2
≤ dk (8.30)

If a pair is found, γk is the local perception error bound, and γk
√

N(N−1)
2 is the local ultimate

bound on ∥q∗
ij − qij∥.

Note that we may fail to find any pair of dk and γk from γmax and fall back to the maximum
perception error. A common case is when the desired distance ∥q∗

ij∥ is specified in the range
where the perception performs poorly. For instance, we can choose ∥q∗

ij∥ over 14 meters, and
it is expected there is no good local bound according to Figure 8.4.

8.5 EXPERIMENTS

In our experiments, we aim to validate two claims:

(1) Safe separation and formation are ensured by Theorem 8.3 and Proposition 8.4.

(2) The analysis of ultimate bounds is robust against varying approximate abstractions
from different environments.
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Experiment Setup We present the results from two experiment settings with three and
four drones. For three drones, the drones will be placed initially in a line with 6 meters
interval between drones and form an equilateral triangle with edge length 5 meters. For four
drones, the drones are placed initially in a line with 4 meters interval and form a square
with edge length 5 meters. Then, we simulate each formation for 10 runs in the environment
AirSimNH under different environmental parameters by varying the fog level in the scenario.
The approximate abstractions are obtained by random sample pairs of images in each of the
environment.

We conduct our experiments on a workstation with Intel Core i7-10700K @ 3.80GHz, 32
GB main memory, and Nvidia GTX1080Ti GPU installed with Ubuntu 20.04 LTS, Python
3.8, and OpenCV 4.6.0. We use the Python API for the v1.8.1-Linux version of the AirSim
simulator [47].

8.5.1 Safety Assured Formation

Figure 8.8: Absolute position (Left) from one simulation run and relative distance between
pairs of drones for 10 simulation runs (Right) for four drones in environment AirSimNH with
no fog. For the plot on the left, each color represents the absolute position of a drone.
For the plot on the right, each row shows true relative distance ∥qij∥ (Blue region), desired
distance ∥q∗

ij∥ (Green dashed lines), and derived ultimate bounds for safety and closeness
using approximate abstractions (Red lines).

We validate our claim that each pair of drones will maintain a relative distance ∥qij∥
around the distance ∥q∗

ij∥ specified for the formation. Figure 8.8 shows results for four drones
formation. The trajectories of drones are on the left, and true relative distances evolving
with time for all six pairs of drones are on the right. The trajectories show the drone still
attempting to form the desired shapes under perception error. On the right, we see that the
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true relative distance can get really close to the ultimate bound in several simulation runs.
Nevertheless, the system never leaves the ultimate bound, and this is consistent with our
analysis that entering the ultimate bound ensures formations and safe separation.

8.5.2 Robustness of Ultimate Bound Analysis

Figure 8.9: Relative distance between three pairs of drones for 10 simulation runs under
three different levels of fog (level 0 Blue, level 0.01 Green, and level 0.02 Red). The upper
and lower bound on distances is not violated with the change of environmental parameters.

In this section, we look at how robust is our analysis across environmental variations.
We vary the weather condition by adding different amounts of fog. We experiment with
three different fog levels, 0, 0.01, and 0.02, and derive the approximate abstraction from
sampled data under each weather condition. We obtain the ultimate bound and repeat
the same simulation. The simulated result is shown in Figure 8.9. We observe that even
with the fog introduced, the true relative distance between each pair of drones will still
not exceed the ultimate bound derived for the corresponding environment. We also observe
that in a foggier environment, where the performance of the vision component worsens,
the formation becomes less stable. In the meantime, the ultimate bound becomes more
conservative, preventing the relative distance from violating the bound. Note that when the
bound becomes larger than the desired relative distance between drones, the lower bound on
distances can go below 0. In this case, the premise of Proposition 8.4 is no longer satisfied,
and the drones may actually collide.
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8.6 DISCUSSIONS AND FUTURE DIRECTIONS

We presented an analysis for the safety of a vision-based formation control system. To
tackle the vagaries of the perception component, our approach uses an approximate abstrac-
tion. This piecewise constant approximation captures the worst perception error in relative
position estimates from the vision component, which is then used to prove that the drones
are safely separated and stay close to the desired formation. The analysis uses lower and up-
per bounds on the distance between agents, and both bounds are derived from the ultimate
bound that reuses the Lyapunov-style stability proof. We also systematically studied the
impact of environmental variations on the approximate abstraction. Our evaluation with
AirSim simulator validates the guarantee on safe separation while achieving formations. We
show that the analysis is robust across different environmental variations.

Our study assumed that all drones run synchronously and exchange image feature de-
scriptors instantly. This is obviously an idealization. Our analysis will work without this
assumption by bounding the change in relative positions. Under a fixed communication
delay, the change in positions can be bounded and modeled as part of the perception error.

The study suggests several future directions. First, our current analysis does not work
under arbitrary switching communication graphs. One direction is to view our approximate
abstraction, the piecewise constant function, as the quantization of the perception output,
and pairs of agents are randomly selected to exchange perception output in each synchronous
round. Existing analysis on quantized consensus algorithms can then provide probabilistic
guarantees on the convergence rate [178]. Another direction is to explore the latest result
on ultimate boundedness for state dependent disturbances [179].
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Chapter 9: Conclusions and Future Directions

In this thesis, we presented several algorithms for the verification and simulation of au-
tonomous systems via searching and constructing abstractions for the environment. we stud-
ied several autonomous systems including distributed coordination (Chapter 4), unmanned
aircraft traffic management (Chapter 5), smart manufacturing (Chapter 6), autonomous ve-
hicle with vision (Chapter 7), and vision-based formation systems (Chapter 8). We showed
how a good decomposition help formally verify an autonomous system modeled as a reac-
tive module and a model of the environment, and we further demonstrated how to derive
statistical guarantees for the model of the environment with respect to the real environment.

For a distributed robotic system using shared variables, we use our formal analysis of
our CPReact model and Koord semantics. We identified and decomposed platform-
independent coordination logic from platform-dependent assumptions as abstractions. Our
formal analyses facilitated inductive invariant checking on the coordination logic and data-
driven reachability analysis for the state-space exploration with black-box dynamics. We
extended the decomposed analysis and verify the message passing-based protocols for UAS
Traffic Management (UTM), and we applied the same decomposed analysis to prove the
safety and liveness of UTM protocols. We further investigated distributed systems with
agents doing nonidentical tasks and studied smart manufacturing systems as an example.
We showed that our CPReact model can capture the smart manufacturing systems, and
provided a design and testing method via a parameterized simulation model. Although we
did not produce safety verification results for the smart manufacturing systems, we believe
it illustrated the path forward to a fully formal verification of smart manufacturing systems
and more general distributed robotic systems.

For vision-based perception, our approach creates approximate abstractions for percep-
tion (AAP) that are safe by construction. We demonstrated this in the lane tracking control
system with the lane detection DNN, LaneNet [146], and the agricultural robot system with
CropFollow [156]. Both DNNs contain more than 18 internal layers and over 3 million neu-
rons. To our knowledge, this is the first approach capable of handling these practical-sized
DNNs for computer vision tasks. To investigate the safety under both complex perception
and distributed robotics, we studied the vision-based drone formation system. We followed
the same idea to search for AAP that captures the worst perception error in position es-
timates from vision, which is then used to ensure the safe separation and closeness to the
desired formation between drones.

In summary, this thesis is a first step towards formalizing and systematically searching ab-
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stractions for vision-based perception, black-box dynamics, and distributed communications
in autonomous systems.

9.1 FUTURE RESEARCH DIRECTIONS

The results of this thesis suggest various promising and practical directions for the safety
assurance of autonomous systems and general robotic systems.

Component-Level Verification and Monitoring Using Safe Abstractions One
practical application of the safe abstractions is to use it for component-level verification
and monitoring. For the perception component as an example, we can view the derived
safe AAP as a contract or a component-level specification. This allows the developers to
verify or monitor the perception component against the AAPs in isolation, and this does
not involve other components such as software controller and vehicle dynamics. If the com-
ponent always satisfies the AAP as the contract, it is guaranteed by the definition of AAPs
that the system-level safety specification is preserved. Otherwise, the developers can investi-
gate the perception component alone without running the testing or simulation of the entire
autonomous system.

For offline analyses such as NN verification and testing, one direction is to reduce the safe
abstraction to several local robustness checks for existing NN verification tools. the challenge
is still the high dimensional image space. Another direction is to falsify the perception
component via property guided fuzz testing. This requires generating images of target
scenarios where the perception does not satisfy the contract. Existing image generators for
specific application domains, such as Scenic [62] for autonomous vehicles and AirSim [47] for
quadrotors, are readily available, but a guided search of images violating a contract remains
an interesting research question.

For runtime monitoring, a major technical limitation is the lack of ground-truth infor-
mation in runtime because our notion of AAPs is based on the ground-truth output of the
perception task. To address this limitation, we may assume that multiple components are
performing the same perception task, e.g., both GPS and visual positioning can provide posi-
tioning service. Runtime monitoring then can be achieved by considering the percept values
obtained independently of other components as a noisy ground-truth value. The research
question is then to account for noises in runtime monitoring.

Abstraction Synthesis as Specification Mining Problems Following the same view
in the previous paragraph, if we consider the safe abstractions as the component-level speci-
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fications, we can formulate the abstraction synthesis problem as a specification mining prob-
lem. At the time of writing, we have an ongoing collaboration with Prof. Parthasarathy
and his PhD student Angello Astorga. We aim to use syntax guided synthesis techniques
(SyGuS) [52] to infer safe AAPs that can cover all safe sampled percept values while avoid-
ing overfitting to those samples. We are currently developing a teacher-learner based exact
learning architecture to solve the SyGuS query based on a previous work for specification
mining by Astorga et al. [180]. Our preliminary result shows this architecture can infer more
flexible and customized abstractions such as non-convex shapes represented as decision trees
or if-then-else expressions.

Simultaneous Invariant and Abstraction Synthesis Across the entire thesis, we have
assumed the invariant is available for the abstraction synthesis problem. In Chapter 7,
we however observed that the chosen inductive invariant and Lyapunov functions signifi-
cantly impact the constructed approximation abstractions, and synthesizing the abstraction
with respect to a stringent invariant actually can lead to an abstraction with low precision.
It is therefore desirable to formalize the synthesis problem combining both the inductive
invariant and safe abstraction, and design an efficient synthesis algorithm to search both
simultaneously. A related approach is the generalized property-directed reachability anal-
ysis for hybrid systems [181], which incrementally infers multiple inductive invariant with
respect to the safety property.

Abstractions Against Different System Specifications Finally, we focused on safety
specification through the whole thesis and only briefly discussed liveness (progression) speci-
fications in Chapter 5. However, the correctness of autonomous system also relies on liveness
or eventuality properties, which indicate progress and self-stabilization, reach-avoid speci-
fications, which can be seen as the conjunction of safety and liveness properties, and more
generally variants of temporal logic such as Signal Temporal Logic [182]. Inductive invariant
is no longer sufficient to ensure such properties. An interesting direction is then to answer
whether the correctness proof can still be divided as independent proofs for the reactive
module and the model of environment, and how to define and synthesize property-preserving
abstractions.
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Appendix A: Stanley Controller for GEM Cart

Table A.1: Description and values of constants for Polaris GEM e2 Electric Cart case study

Symbol Value Description
W 4.0 Width of the lane (m)
vf 2.8 Constant forward velocity (m/s)
lWB 1.75 Wheelbase (m)
∆T 0.1 Time discretization (s)
δmax 0.61 Steering angle limit (rad)
κ 0.45 Stanley controller gain

Non-increasing Cross Track Distance Following the proof in [145], when in the nom-
inal region |ψ + arctan(κ·d

vf
)| < δmax, we derive the system as the ODE in Equation A.1

below:
ḋ = −vf · sin(arctan(κ · d

vf
))

= − κ · d√
1 + (κ·d

vf
)2

(A.1)

Note that |d| converges to zero because − κ·d√
1+( κ·d

vf
)2

is always the opposite sign of d. We can

find the Lyapunov function for nominal region V2(d, ψ) = |d|. This is however not entirely
true in discrete dynamics because the value |d| can cross zero and become larger in a discrete
transition.

Non-increasing Vector Norm Value Following the proof in [145], when in the nominal
region |ψ + arctan(κ·d

vf
)| < δmax, we derive the system as the ODE in Equation A.2 below:

ḋ = − κ · d√
1 + (κ·d

vf
)2

ψ̇ = −
vf · sin(ψ + arctan(κ·d

vf
))

lWB

(A.2)

The sign of ψ̇ is opposite of (ψ + arctan(κ·d
vf

)), so ψ approaches arctan(κ·d
vf

). Further,
arctan(κ·d

vf
) converges to zero because d converges to zero as proven above. Therefore, the

origin is the only equilibrium, and the 2D vector norm is non-increasing.
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Table A.2: Definitions of tracking error functions.

Tracking error function Description
V1(d, ψ) = |ψ + arctan(κ·d

vf
)| Combined heading and distance error in [145]

V2(d, ψ) = |d| Distance error only
V3(d, ψ) = ∥(d, ψ)∥ Vector norm as error

A.1 C CODE ENCODING FOR CBMC

The controllers in Section 7.6 are represented by a mathematical function g. This function
is used in the algorithms for computing the safe approximate abstractions. However, the
actual implementation of g is in code and the two may have subtle discrepancies. To bridge
this gap we verify the controller code composed with the computed approximate perception
model M and the dynamics using CBMC. Figure A.1 provides the example C code for the
controller and the vehicle dynamics of the LTC system in Section 7.6.

U g (Z z ) { // Stan l ey c o n t r o l l e r example code
U δ = z.ψ + atan2 (κ∗z.d , vf ) ;
i f (δ >= δmax )

δ = δmax ;
else i f (δ <= −δmax )

δ = −δmax ;
return δ ;

}
X f (X x , U δ ) { // Bicyc l e model example code
X new_x ;
new_x.x = x.x + vf ∗ cos (x.θ+δ )∗∆T ;
new_x.y = x.y + vf ∗ s i n (x.θ+δ )∗∆T ;
new_x.θ = x.θ + vf ∗ s i n (δ )/ lWB ∗∆T ;
return new_x ;

}

Figure A.1: Example C code for the vehicle dynamics and Stanley controller of the LTC
system.

A.2 VARIATIONS WITH DIFFERENT SYSTEM INVARIANCE

We consider other invariants which uses different tracking error functions listed in Ta-
ble A.2. V1 is the original function in [145] to combine the heading and lane deviation as
a single tracking error. V2 considers only lane deviation error (d), and V3 uses the vector
norm as error. Both can be used to prove the same safe set JSafeK. Three heatmaps for each
tracking error function are shown in Figure A.2 for the same three partitions and with the
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Figure A.2: Precision heatmaps for LaneNet with Stanley controller with only two-lane road for
three error tracking functions V1 (Top) vs V2 (Mid) vs V3 (Bottom).

testing set with two-lane road.

Low Precision Regions Shaped by Tracking Error Functions Along the diagonal
line (through the origin) we have states where the vehicle’s deviation from the lane center
d and the heading ψ are in opposing direction. By observing V1 from Table A.2, we know
ψ and d are of opposite signs at the equilibrium points V1(d, ψ). Hence, the band of white
cells goes from the second to the fourth quadrant. Therefore, the tracking error cannot be
non-increasing in these states in one step as required by Inv.

By comparing heatmaps in Figures A.2, we see a white band surrounding the line d = 0
for V2 and a white spot around the origin for V3. This validates our explanation that the
AAP breaks owing to the stringent requirement of non-increasing error.
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Appendix B: Modified Stanley Controller with Farm Robots

Table B.1: Description and values of constant Symbols for the agricultural robot case study.

Symbol Value Description
W 0.76 Width of the corn row (m)
vf 1.0 Constant forward velocity (m/s)
∆T 0.05 Time discretization (s)
ωmax 0.5 Angular velocity limit (rad/s)
κ 0.1 Stanley controller gain

We provide the vehicle dynamics and the controller for the AgBot case study in Section 7.7.
The dynamics f (x , u) from [156] is given as Equation (B.1) below:

xt+1 = xt + vf cos(θt)∆T

yt+1 = yt + vf sin(θt)∆T

θt+1 = θt + ω∆T

(B.1)

The controller g is given as Equation (B.2) below:

g(d, ψ) =



ψ+arctan
(

κ·d
vf

)
∆T , if

∣∣∣ψ + arctan
(
κ·d
vf

)∣∣∣ < ωmax ·∆T

ωmax, if ψ + arctan
(
κ·d
vf

)
≥ ωmax ·∆T

−ωmax, if ψ + arctan
(
κ·d
vf

)
≤ −ωmax ·∆T

(B.2)

To cover the invariant and stay with in the safe set JSafeK, we choose the whole space⋃N
i=1Xi covers ±0.3W = ±0.228 meters in y and ±30◦ in θ. The error function V1(d, ψ) =
|ψ + arctan(κ·d

vf
)| in A.2 is used for this system.

We consider three different partitions N ∈ {5× 5, 10× 10, 20× 20}. We follow the same
procedure to sample images and derive the safe neighbor function Ri for Xi. For this case
study, the environment parameter space E is defined by five different plant fields, including
three stages of corns (baby, small, and adult) and two stages of tobaccos (early and late).
We use the uniform distribution over the state space Xi and the five environments for both
the training testing set.

The precision heatmaps in Figure B.1 shows exactly the same trend as the top row in
Figure A.2 for V1 in the GEM cart case study.
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Figure B.1: Precision heatmap of AAPs inferred for CropFollow using N ∈ {5×5, 10×10, 20×20}.
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