
© 2023 Kerui Zhu



DESCRIPTIVE KNOWLEDGE GRAPH FOR EXPLAINING ENTITY
RELATIONSHIPS

BY

KERUI ZHU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Adviser:

Professor Kevin Chen-Chuan Chang



ABSTRACT

We propose DEER (Descriptive Knowledge Graph for Explaining Entity Relationships)

– an open and informative form of modeling entity relationships. In DEER, relationships

between entities are represented by free-text relation descriptions. For instance, the rela-

tionship between entities of machine learning and algorithm can be represented as “Machine

learning explores the study and construction of algorithms that can learn from and make

predictions on data.” To construct DEER, we propose a self-supervised learning method

to extract relation descriptions with the analysis of dependency patterns and generate re-

lation descriptions with a transformer-based relation description synthesizing model, where

no human labeling is required. Experiments demonstrate that our system can extract and

generate high-quality relation descriptions for explaining entity relationships. The results

suggest that we can build an open and informative knowledge graph without human anno-

tation.

We also present a novel system that automates the extraction or generation of informative

and descriptive sentences from biomedical corpus and builds a descriptive knowledge graph

to facilitate efficient search for relational knowledge. In contrast to previous search engines

or exploration systems that retrieve unconnected passages, our system organizes descriptive

sentences into a graph, enabling researchers to explore relationships between entities. Our

system also includes a relation synthesis model that generates concise descriptive sentences

from retrieved sentences, reducing the need for human reading effort. With our system,

researchers can quickly obtain a high-level overview of directly related entities to a query

entity (e.g., diseases treated by a chemical) or indirect connections between two entities (e.g.,

candidate drugs for treating a disease). This information can guide literature surveys and

facilitate the discovery of potential research topics. Our system also speeds up the literature

curation and drug repurposing process. We demonstrate the effectiveness of our system on

the CORD-19 dataset, but it can be deployed on any biomedical corpus without manual

adaptation.

ii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 3 DESCRIPTIVE KNOWLEDGE GRAPH FOR EXPLAINING EN-
TITY RELATIONSHIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Relation Description Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Relation Description Generation . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 4 DESCRIPTIVE KNOWLEDGE GRAPH FOR COVID LITERA-
TURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 5 CONCLUSION AND DISCUSSION . . . . . . . . . . . . . . . . . . . 31
5.1 DEER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 CovidDEER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



CHAPTER 1: INTRODUCTION

Relationships exist widely between entities. For example, a person may be related to

another person or an institution, and a scientific concept can be connected to another con-

cept. At the same time, relationships between entities can be subtle or complex, e.g., the

relationship between machine learning and algorithm.

To model relationships between entities, researchers usually construct knowledge graphs

(KGs) [1, 2], where nodes are entities, e.g., machine learning, and edges are relations, e.g.,

subclass of (Figure 1.1). However, KGs usually require a pre-specified set of relation types,

and the covered relation types are usually coarse-grained and simple. This indicates existing

KGs lack two desired features. The first is openness : for entities with a relationship

not covered by the type set, KGs cannot handle their relationship directly. Besides, in

many cases, the relationship between entities is complex or idiosyncratic that it cannot be

simply categorized to a relation type. For instance, for related entities machine learning and

algorithm, Wikidata [3] does not include a relation for them, and it is also not easy to come

up with a relation type to describe their relationship.

The second feature is about informativeness. With the relational facts in KGs, humans

may still have difficulty in understanding entity relationships. For instance, from fact “(data

mining, facet of, database)” in Wikidata, humans may guess data mining and database are

related fields, but they cannot understand how exactly they are related, e.g, why is it a

facet? and what is the facet?

Although techniques like knowledge graph reasoning [4, 5, 6] or open relation extraction

[7] can represent more complex relationships to some extent, they do not fundamentally

solve the limitations as discussed in [8]. For instance, neither a multi-hop reasoning path in

KGs nor a triple extracted by open relation extraction, e.g., (data mining methods, to be

Artificial 
Intelligence

Computer 
Science

Deep 
Learning

Machine 
LearningAlgorithm ?

subclass of

Regularization

Pattern 
Recognition

follows

Data 
Mining

facet of

Arthur 
Samuel

developer

subclass of

subclass of

?

Figure 1.1: Relations in Wikidata (Knowledge Graph), where ? means the relation is not
present in the graph.

1



Artificial 
Intelligence

Computer 
Science

Deep 
Learning

Machine 
LearningAlgorithm As of 2020, deep learning has

become the dominant approach for
much ongoing work in the field of
machine learning.

Machine learning explores the study
and construction of algorithms that
can learn from and make predictions
on data.

Machine learning is a subfield of
soft computing within computer
science that evolved from the study
of pattern recognition and
computational learning theory in
artificial intelligence.

As a scientific endeavor, machine
learning grew out of the quest for
artificial intelligence.

Regularization

Regularization, in the context of machine
learning, refers to the process of
modifying a learning algorithm so as to
prevent overfitting.

Pattern 
Recognition

Data 
Mining

Data mining uses many machine learning
methods, but with different goals…

Arthur 
Samuel

The term “machine learning” was coined 
in 1959 by Arthur Samuel, an American 
IBMer and pioneer … artificial intelligence.

Machine learning is sometimes conflated
with data mining, although that focuses
more on exploratory data analysis.

Pattern recognition is a very active
field of research intimately bound
to machine learning.

In 1959, Arthur Samuel defined machine 
learning as a "field of study that …".

Figure 1.2: Relations in DEER. Here we show machine learning and several of its related
entities, with corresponding relation descriptions produced by our model (only extraction)
in the edges.

integrate within, the framework of traditional database systems), is easy to interpret.

Based on the above analysis, we propose a new form of modeling relationships between

entities: DEER (Descriptive Knowledge Graph for Explaining Entity Relationships). We

define DEER as a graph, where nodes are entities and edges are descriptive statements

of entity relationships (refer to Figure 1.2 for an example). DEER is open since it does

not require a pre-specified set of relation types. In principle, all entity relationships, either

explicit or implicit, can be represented by DEER, as long as they can be connected in a

sentence – which is not possible for KGs. It is informative since the relationships between

entities are represented by informative free-text relation descriptions, instead of simple short

phrases like “facet of”.

DEER has great potential to help users understand entity relationships more easily and

intuitively by providing relation descriptions for any two related entities and facilitating

downstream tasks on entities and entity relationships such as entity profiling [9, 10, 11],

relation extraction [12], and knowledge graph completion [13]. For example, in Figure 1.2,

we can understand the semantic meaning of the terms by connecting them with familiar

ones. In e-commerce, the system (e.g., Amazon online shopping website) may recommend

tripods to a photography novice who is browsing cameras. An explanation in DEER, e.g.,

“tripods are used for both motion and still photography to prevent camera movement and

provide stability”, could not only help users make a better purchase decision but also justify

the recommendation. In KG construction and completion, the relation descriptions can serve

2



as knowledge to improve performance or as explanations to justify the relations in KGs.

The key to building DEER is to acquire high-quality relation descriptions. However,

writing or collecting relation descriptions manually requires enormous human efforts and

expertise (in our human evaluation in Section 3.3.1, it takes ∼3 minutes to evaluate whether

a sentence is a good relation description). Considering this, we propose a novel two-step

approach to construct DEER with Wikipedia, where no manual annotation is required.

Specifically, we first extract relation descriptions from corpus in a self-supervised man-

ner, where a scoring function is introduced to measure the explicitness, i.e., how explicit

is the relationship represented by the sentence, and significance, i.e., how significant is the

relationship represented, with the analysis of dependency patterns. Second, based on the

extracted graph, a transformer-based relation description synthesizing model is introduced

to generate relation descriptions for interesting entity pairs whose relation descriptions are

not extracted in the first step. This allows DEER to handle a large number of entity pairs,

including those that do not co-occur in the corpus.

Both quantitative and qualitative experiments demonstrate the effectiveness of our pro-

posed methods. We also conduct case study and error analysis and suggest several promising

directions for future work – DEER not only serves as a valuable application in itself to help

understand entity relationships, but also has the potential to serve as a knowledge source to

facilitate various tasks on entities and entity relationships.

3



CHAPTER 2: BACKGROUND

There are several previous attempts on acquiring entity relation descriptions. For instance,

[14] study a learning-to-rank problem of ranking relation descriptions by training a Random

Forest classifier with manually annotated data. Subsequently, [15] build a pairwise ranking

model based on convolutional neural networks by leveraging query-title pairs derived from

clickthrough data of a Web search engine, and [16] attempt to generate descriptions for

relationship instances in KGs by filling created sentence templates with appropriate entities.

However, all these methods are not “open”. First, they rely and demand heavily on features

of entities and relations. Second, these models only deal with entities with several pre-

specified relation types, e.g., 9 in [14] and 10 in [16], and only explicit relation types, e.g.,

isMemberOfMusicGroup, are covered. Notably, [17] propose to extract relation statements,

i.e., natural language expressions that begin with one entity and end with the other entity,

from a corpus to describe entity relationships. However, the “acceptability” used in their

work cannot ensure a good relation description. Moreover, these works do not systematically

analyze and define what constitutes a good relational description.

The work most relevant to ours is Open Relation Modeling [8], which aims to generate

relation descriptions for entity pairs. To achieve this, the authors propose to fine-tune BART

[18] to reproduce definitions of entities. Compared to their problem, i.e., text generation, the

focus of this paper is on graph construction. Besides, their relation descriptions are limited

to definitional sentences, which assumes that one entity appears in the other’s definition;

however, the assumption is not true for many related entities. In addition, their methodology

does not incorporate sufficient knowledge about entities and relations for generations.

There are also some other works that can be related. For example, [19, 20] study Com-

monGen, which aims to generate coherent sentences containing the given common concepts.

[21, 22] study the data-to-text generation [23], which aims to convert facts in KGs into nat-

ural language. [24] proposes to construct an entity context graph with contexts as random

paragraphs containing the target entities to help entity embedding. None of them meets the

requirements for high-quality relation descriptions.

4



CHAPTER 3: DESCRIPTIVE KNOWLEDGE GRAPH FOR EXPLAINING
ENTITY RELATIONSHIPS

DEER is a graph representing entity relationships with sentence descriptions. Formally,

we define DEER as a directed graph G = {E ,R}, where E is the set of entities andR is the set

of relation description facts. A relation description fact is a triple (x, s, y), where x, y ∈ E are
the subject and object of s, respectively. s is a sentence describing the relationship between

x and y (Figure 1.2).

To build DEER, the first step is to collect entities and identify related entity pairs, which

can be simply achieved by utilizing existing resources, e.g., Wikipedia, and entity relevance

analysis, e.g., cosine similarity of entity embeddings in Wikipedia2vec [25]. And then, we

need to acquire high-quality relation descriptions for entity pairs. Taking entity pair (ma-

chine learning, algorithm) as an example, a relation description of them can be s1 in Table

3.1. From the perspective of human understanding, we identify three requirements for a

good relation description:

• Explicitness: The relationship of the target entities is described explicitly. E.g., in

s1, “machine learning explores the study and construction of algorithms” describes

the relationship explicitly; while in s2, the relationship between machine learning and

algorithm is expressed implicitly so that the relationship is difficult to reason.

• Significance: The relationship of the target entities is the point of the sentence. In

s1, all the tokens in the sentence are associated with the relationship between machine

learning and algorithm; while in s3, although the description is explicit, “which ...

far” mainly characterizes algorithm, but not the target entity relationship.

• Correctness: The relationship between target entities is described correctly.

There are other requirements to ensure a good relation description, e.g., the sentence is

coherent, grammatical, of reasonable length. Compared to the above ones, these require-

ments are general requirements for any sentence, but not specific to our problem; therefore,

we put less emphasis on them.

To acquire relation descriptions that satisfy the above requirements, we propose a novel

two-step approach: first extracting relation descriptions from a corpus with the analysis of

dependency patterns (Section 3.1), and then generating relation descriptions for interesting

entity pairs whose relation descriptions are not extracted in the previous step (Section 3.2).

5



# Sentence

s1 Machine learning explores the study and construction of algorithms that can learn
from and make predictions on data.

s2 Machine learning is employed in a range of computing tasks where designing and
programming explicit, rule-based algorithms is infeasible.

s3 Machine learning includes algorithms that are adaptive or have adaptive variants,
which usually means that the algorithm parameters are automatically adjusted ac-
cording to statistics about the optimisation thus far.

Table 3.1: Example sentences containing both machine learning and algorithm.

3.1 RELATION DESCRIPTION EXTRACTION

In this section, we introduce our approach for extracting entity relation descriptions from

Wikipedia according to the requirements discussed in Section 3.

3.1.1 Preprocessing and Filtering

The goal of preprocessing and filtering is to collect entities and map entity pairs to can-

didate relation descriptions. To ensure correctness, we use Wikipedia as the source corpus,

which is a high-quality corpus covering a wide range of domains.

We introduce our preprocessing to the raw Wikipedia dump1. For each article, we extract

the plain text by WikiExtractor2. We split the Wikipedia articles into sentences with the

NLTK library3 and map entity pairs to candidate relation descriptions with the following

steps:

Entity collection. We collect Wikipedia page titles (surface form) as our entities. To

acquire knowledge and utilize the pre-trained entity embeddings in Wikipedia2Vec [25] in

the later steps, we only keep entities that can be recognized by Wikipedia2Vec.

Local mention-entity mapping. Wikipedia2Vec uses hyperlinks to collect a global mention-

entity dictionary to map the entity mention to the referent entities, like mapping “apple”

to “Apple Inc” or “Apple (food)”. In this work, we follow a similar approach to build the

mapping. To maintain high accuracy and low ambiguity, we craft the entity mention from

the entity by removing the content wrapped by parenthesis and the content after the first

comma. For example, a mention-entity pair could be (“Champaign”, “Champaign, Illinois”)

1https://dumps.wikimedia.org (enwiki/20210320)
2https://github.com/attardi/wikiextractor
3https://www.nltk.org

6



3/8/22, 9:28 PM displaCy

file:///Users/jeffhj/Library/Containers/com.tencent.xinWeChat/Data/Library/Application Support/com.tencent.xinWeChat/2.0b4.0.9/8420275d39f4266056a626fa84a550b0/Message/MessageTemp/3eaa55d7805132480ba3bd25e28cbf6c/File/s1.htm 1/1

Machine 

NOUN

learning 

NOUN

explores 

VERB

the 

DET

study 

NOUN

and 

CCONJ

construction 

NOUN

of 

ADP

algorithms 

NOUN

that 

DET

can 

AUX

learn 

VERB

from 

ADP

and 

CCONJ

make 

VERB

predictions 

NOUN

on 

ADP

data. 

NOUN

compound nsubj det
dobj

cc
conj

prep

pobj
nsubj

aux

relcl

prep
cc

conj

dobj prep pobj

Figure 3.1: Dependency tree of s1.

or (“Python”, “Python (programming language)”). Unlike Wikipedia2Vec, we create a local

dictionary for each Wikipedia page. When processing a page, we dynamically update the

dictionary with mention-entity pairs collected from the hyperlinks and extract the entity

occurrence with the updating dictionary in one pass. This can reduce the ambiguity when

two entities with the same entity mention co-occur on one page and also avoid collecting

trivial entity occurrences on the page.

Hyperlink mapping correction. Using hyperlinks to collect entities will lead to errors

under some conditions: 1) The original link is redirected to a new page, where the title does

not match with the entity in the link; 2) The entity in the link is lower-cased and thus,

does not match with any title. Under the first condition, we just skip this entity because

we require that the entity mention must appear in the sentence to prove its occurrence.

Under the second situation, if there is only one page title matching with the entity under

the case-insensitive setting, we correct the entity to this page title. Otherwise, if there is

more than one match, we use the entity embeddings in Wikipedia2Vec to measure the cosine

similarity between each matched title and the title of the current page and correct the entity

with the most relevant one.

3.1.2 Scoring

In this section, we design a scoring function to measure the quality of relation descriptions.

Since we use Wikipedia as the source corpus, the correctness of the extracted sentences can

be largely guaranteed; thus, we focus on measuring explicitness and significance of candidate

relation descriptions.

Shortest dependency path as relation Inspired by [26], we use the shortest dependency

path to represent the relation pattern between the target entities in a sentence. For instance,

Figure 3.1 shows the dependency tree of s1 processed by spaCy4. The shortest path between

machine learning and algorithm is: “learning
←−−−
nsubj explores

−−→
dobj study

−−→
prep of

−−→
pobj algo-

rithms”. Following their notation, we call such a path a corePath. To represent the relation

pattern, we collect dependencies in the path and append “i ” to the dependencies with an

4https://spacy.io

7



inversed direction. E.g., the relation pattern for the above path is [i nsubj, dobj, prep, pobj].

We remove dependencies that do not affect human understanding. Specifically, we drop the

conj and appos dependencies and replace two consecutive prep with one.

Besides corePath, we also collect the shortest paths between the corePath and the tokens

outside the corePath to represent the relationships between entity relationships and tokens.

For instance, in Figure 3.1, construction is a token outside the corePath between machine

learning and algorithm. The shortest path between it and the corePath is: “study
−−→
conj

construction”. We call this kind of path as subPath. Similar to corePath, we generate the

relation pattern from subPath and drop the conj, appos and compound dependencies.

Explicitness Given two entities and a candidate relation description s, we measure the

explicitness by calculating the normalized logarithmic frequency of the relation pattern of

the corePath:

ExpScore(s) =
log(fp + 1)

log(fmax + 1)
, (3.1)

where fmax is the frequency of the most frequent corePath relation pattern and fp is the

frequency of the relation pattern in the present corePath. The intuition here is that humans

tend to use explicit structure to explain relations. Thus, we assume that a relation description

is more explicit if its relation pattern is more frequent. Intuitively, if a relation pattern is

unpopular, it is likely that this pattern is either too complicated or contains some rarely

used dependencies. Both of these cases may increase the difficulty in reasoning.

Similar to [26], we only consider patterns that start with nsubj or nsubjpass, indicating that

one of the target entities is the subject of the sentence. This restriction helps increase the

explicitness of the selected relation description sentences because if one entity is the subject,

the sentence is likely to contain a “argument-predicate-argument” structure connecting the

target entities.

Significance We measure the significance as the proportion of information that is relevant

to the entity relationship in a sentence. To measure the relevance of each token in the

sentence to the entity relationship, we divide tokens into three categories: 1) core token

if the token is in the corePath; 2) modifying token if the token is in a subPath that is

connected to the corePath through a modifying dependency; and 3) irrelevant token for the

rest tokens. The intuition here is that a sub-dependency tree connected to the corePath

with a modifying dependency is supposed to modify the relationship. We predefined a set

of modifying dependencies in Table 3.2

We calculate a score for each token in the sentence based on its category and dependency

8



Dependency label Description

acl clausal modifier of noun (adjectival clause)
advcl adverbial clause modifier
advmod adverbial modifier
amod adjectival modifier
det determiner
mark marker
meta meta modifier
neg negation modifier
nn noun compound modifier
nmod modifier of nominal
npmod noun phrase as adverbial modifier
nummod numeric modifier
poss possession modifier
prep prepositional modifier
quantmod modifier of quantifier
relcl relative clause modifier
appos appositional modifier
aux auxiliary
auxpass auxiliary (passive)
compound compound
cop copula
ccomp clausal complement
xcomp open clausal complement
expl expletive
punct punctuation
nsubj nominal subject
csubj clausal subject
csubjpass clausal subject (passive)
dobj direct object
iobj indirect object
obj object
pobj object of preposition

Table 3.2: Manually collected modifying dependencies in spaCy.

analysis. Then, the significance score is the average of all the token’s scores. Formally, for

a candidate relation description s, the significance score is

SigScore(s) =

∑
t∈s w(t)

|s|
, (3.2)

9



where

w(t) =


1 if t ∈ ct
log(f ′

pt
+1)

log(f ′
max+1)

if t ∈ mt

0 otherwise

, (3.3)

where ct is the set of core tokens and mt is the set of modifying tokens. f ′
pt is the frequency

of the subPath relation pattern from the corePath to the present token t and f ′
max is the fre-

quency of the most frequent subPath relation pattern. The intuition is: with higher relation

pattern frequency, the modifying token is more explicitly related to the entity relationship,

and thus, should have a higher score. This also comes with another useful characteristic:

the score will decrease token by token as we move along the subPath because the frequency

of a subPath relation pattern cannot be greater than the frequency of its parent. With this

characteristic, we can penalize the long modifying subPath as it will distract the focus from

the entity relationship and is less explicitly related to the relationship.

Relation descriptive score To calculate the explicitness and significance, we need to

build a database of relation patterns for both corePath and subPath. We construct both

databases with the candidate relation descriptions and corresponding entity pairs collected

from Section 3.1.1 with spaCy. We also require the two target entities in the sentence

are related to a certain threshold. Intuitively, if two entities are more related, the sentences

containing them are more likely to be relation descriptions; therefore, the extracted corePath

relation patterns are more likely to indicate entity relationships. We measure the relevance of

two entities by calculating the cosine similarity of the entity embeddings in Wikipedia2Vec.

We filter out entity pairs (and the associated sentences) with a relevance score < 0.5. This

leads to a collection of 7,186,996 corePaths and 83,265,285 subPaths.

With the databases of relation patterns, we can calculate the explicitness and significance

scores for a candidate relation description. The final score, named Relation Descriptive

Score (RDScore), is computed as the harmonic mean:

RDScore(s) = 2 · ExpScore(s) · SigScore(s)
ExpScore(s) + SigScore(s)

. (3.4)

For each entity pair, we calculate RDScore for all the candidate relation descriptions and

select the candidate with the highest score as the final relation description. To build an initial

DEER, we keep edges with an entity relevance score ≥ 0.55 and with a relation description

5Since there is no boundary that delineates whether two entities are related, we consider the relevance
threshold as a hyperparameter.

10



entity1: 𝑥 entity2: 𝑦 path: 𝑥; 𝑒!!; 𝑦 sentence1: 𝑠!! sentence2: 𝑠!"

entity1: 𝑥 entity2: 𝑦 path: 𝑥; 𝑒"!; 𝑦 sentence1: 𝑠"! sentence2: 𝑠""

entity1: 𝑥 entity2: 𝑦 path: 𝑥; 𝑒#!; 𝑒#"; 𝑦 sentence1: 𝑠#! sentence2: 𝑠#" sentence3: 𝑠##

encode (local synthesize)

concatenate decode (global synthesize)
𝑠′

𝑒!!

𝑒"!

𝑒#"𝑒#!

𝑥 𝑦?

𝑠!! 𝑠!"

𝑠"! 𝑠""
𝑠#!

𝑠#"

𝑠##

retrieve

𝑠"#

Figure 3.2: The framework of RelationSyn. Given entity pair (x, y) whose relation descrip-
tion is not present in the initial DEER, we first retrieve several reasoning paths from the
graph. And then, we encode (local synthesize) each reasoning path into a latent vector
and concatenate all the latent vectors. Finally, we decode (global synthesize) the vector to
produce relation description s′ for (x, y).

whose RDScore ≥ 0.756. We refer to this graph as Wiki-DEER0.

3.2 RELATION DESCRIPTION GENERATION

In the previous section, we extract relation descriptions for entity pairs with the analysis

of dependency patterns and build an initial DEER with Wikipedia automatically. However,

for some related entity pairs, there may not exist a sentence that contains both entities;

and although such a sentence exists, it may not be extracted by the system. To solve this

problem, in this section, we introduce Relation Description Generation – generating relation

descriptions for interesting entity pairs.

We form relation description generation as a conditional text generation task: given two

entities, generating a sentence describing the relationship between them with the initial

DEER. Formally, we apply the knowledge-enhanced sequence-to-sequence formulation [27]:

given an entity pair (x, y) and an initial DEER G0, the probability of the output relation

description s is computed auto-regressively:

P (s|x, y,G0) =
m∏
i=1

P (si|s0:i−1, x, y,G0), (3.5)

where m is the length of s, si is the ith token of s, and s0 is a special start token.

To incorporate G0 for generation, we propose Relation Description Synthesizing

(RelationSyn). RelationSyn consists of two processes: first retrieving relevant relation

6This threshold is also a hyperparameter to balance the density of the graph and the quality of relation
descriptions.

11



descriptions (reasoning paths) from the graph and then synthesizing them into a final relation

description (Figure 3.2).

3.2.1 Retrieval

To generate a relation description, the model needs knowledge about the target entities

and their relationship. To provide knowledge, we retrieve reasoning paths of the target

entities from the graph.

In DEER, we define a reasoning path q as a path connecting the target entities, which

is called k-hop if it is connected by k edges. For instance, in Figure 3.2, there are two

2-hop reasoning paths between x and y: (x, s11, e11, s12, y) and (x, s21, e21, s22, y), and two

3-hop reasoning paths: (x, s21, e21, s23, e32, s33, y) and (x, s31, e31, s32, e32, s33, y) in the graph7.

To measure the quality of reasoning paths, we define PathScore as the harmonic mean of

RDScore of relation descriptions in the path:

PathScore(q) =
|Sq|∑

s∈Sq

1
RDScore(s)

, (3.6)

where Sq is the set of relation descriptions in q, and |Sq| = k.

Reasoning paths are helpful for relation description generation. For instance, from rea-

soning path (deep learning, s′1, machine learning, s′2, artificial intelligence) (refer to Figure

1.2 for s′1 and s′2), we can infer the relationship between deep learning and AI : deep learning

is the dominant approach for ML, while ML grew out of the quest for AI ; therefore, deep

learning is an important technology for the development of artificial intelligence.

However, not all reasoning paths are equally useful. Longer reasoning paths are usually

more difficult to reason, while paths with higher PathScore usually contain more explicit

and significant relation descriptions. Therefore, when retrieving reasoning paths for an

entity pair, we first sort the paths by their length (shorter first) and then by their PathScore

(higher first).

3.2.2 Synthesizing

According to Section 3.2.1, we may retrieve multiple reasoning paths for an entity pair

whose relation description is missed in the initial DEER. In this section, we focus on synthe-

sizing relation descriptions in the retrieved reasoning paths into a final relation description

of the target entities based on T5 [28] and Fusion-in-Decoder [29].

7In order to collect more reasoning paths as knowledge for generation, we ignore the directions of edges.

12



We first convert each reasoning path to a sequence using the following encoding scheme:

e.g., (x, s31, e31, s32, e32, s33, y) → “entity1: x entity2: y path: x; e31; e32; y sentence1: s31

sentence2: s32 sentence3: s33”. And then, we encode the sequence with the encoder of T5.

In this way, the relation descriptions in each reasoning path are synthesized into a latent

vector, named “local synthesizing”.

After local synthesizing, we concatenate the latent vectors of all the retrieved reasoning

paths to form a global latent vector. The decoder of T5 performs attention over the global

latent vector and produces the final relation description. We name this process as “global

synthesizing”.

Combining retrieval and synthesizing, given two entities, we first retrieve m reasoning

paths connecting the target entities according to their length and PathScore, and then

synthesize them to produce the target relation description. We refer to this model as

RelationSyn-m.

3.3 EVALUATION

In this section, we verify the proposed methods for building DEER by conducting exper-

iments on relation description extraction and generation.

3.3.1 Relation Description Extraction

We first present the statistics of the initial DEER built with Wikipedia in Table 3.3. To

evaluate the quality of relation descriptions in the graph, we randomly sample 100 entity

pairs from the graph8 and ask three human annotators (graduate students doing research

on computational linguistics) to assign a graded value (1-5) for each relation description

according to Table 3.7.

Since previous works on relation description extraction are supervised and only limited to

several explicit relation types, e.g., 9 in [14], it is impractical and meaningless to compare

with them. For instance, the relationship of (Arthur Samuel, Machine Learning) is not avail-

able or even not considered by the previous methods. Therefore, we verify the effectiveness

of our model by comparing different variants of the model:

• Random: A sentence containing the target entities is randomly selected as the relation

description.

8More specifically, for better comparison with generation later, we sample 100 entity pairs from the test
set in Table 3.5.

13



# nodes # edges average sentence length

1,378,471 2,890,718 19.9

Table 3.3: The statistics of Wiki-DEER0.

Rating (1-5)

Random 2.75
ExpScore 3.77
SigScore 3.84
RDScore 4.18

Table 3.4: Qualitative results of extraction.

• ExpScore: The sentence with the highest explicitness is selected according to Eq.

(3.1).

• SigScore: The sentence with the highest significance is selected according to Eq.

(3.2).

• RDScore: The sentence with the highest RDScore is selected according to Eq. (3.4).

Table 3.4 shows the human evaluation results for relation description extraction, with an

average pairwise Cohen’s κ of 0.66 (good agreement). From the results, we observe that

both our explicitness and significance measurements are important to ensure a good relation

description. In addition, RDScore achieves an average rating of 4.18, which means that most

of the selected sentences are high-quality relation descriptions, further indicating that the

quality of Wiki-DEER0 is high.

3.3.2 Relation Description Generation

Data construction We build a dataset for relation description generation as follows: for

an entity pair with a relation description in Wiki-DEER0, we hide the relation description

and consider it as the target for generation. The goal is to recover/generate the target

relation description with the rest of the graph9. For instance, in Figure 3.2, we hide the edge

(relation description s) between x and y and use the remaining reasoning paths to recover s.

9To increase the difficulty of the task, we assume these two entities do not co-occur in the corpus, i.e.,
we do not utilize any sentence containing both the target entities for generation.

14



train valid test

size 847,792 17,662 17,663

Table 3.5: The statistics of data for generation.

BLEU ROUGE METEOR BERTScore

RealtionBART-Vanilla [8] 19.61 41.52 20.48 82.99
RealtionBART-MP + PS [8] 21.64 42.62 21.40 83.29
RelationSyn-0 20.83 41.46 20.66 82.84
RelationSyn-1 22.43 42.74 21.65 83.41
RelationSyn-3 23.26 43.33 22.12 83.63
RelationSyn-5 23.88 43.56 22.40 83.70

Table 3.6: Quantitative results of relation description generation.

We train and test on entity pairs with ≥ 5 reasoning paths connecting them. The statistics

of the data are reported in Table 3.5.

Models The task of relation description generation is relevant to Open Relation Modeling

[8] – a recent work aimed at generating sentences capturing general relations between entities

conditioned on entity pairs. To the best of our knowledge, no other existing work can

generate relation descriptions for any two related entities (since open relation modeling has

only just been introduced). Therefore, we mainly compare the models proposed in [8] with

several variants of our model:

• RelationBART (Vanilla): The vanilla model proposed in [8] for generating entity

relation descriptions, where BART [18] is fine-tuned on a training data whose inputs

are entity pairs and outputs are corresponding relation descriptions.

• RelationBART-MP + PS: The best model proposed in [8], which incorporates

Wikidata by selecting the most interpretable and informative reasoning path in the

KG automatically for helping generate relation descriptions.

• RelationSyn-0: A reduced variant of our model, where the encoding scheme of the

input is only “entity1: x entity2: y”, i.e., no reasoning path and relation description

is fed to the encoder.

15



Rating Criterion

5 The relation description is explicit, significant, and correct, with which users
can understand the relationship correctly and easily.

4 The relation description is a bit less explicit (reasoning is a bit indirect or de-
scription is a bit unclear), less significant (containing a little irrelevant content),
and less correct (containing minor errors that do not affect the understanding).

3 The relation description is fairly explicit, significant, and correct, while users
can still understand the relationship.

2 The relation description is not explicit (reasoning is difficult or description is
unclear), significant (containing much irrelevant content), or correct (contain-
ing major errors that affect the understanding), while users can still infer the
relationship to some extent.

1 The relation description is completely wrong or does not show any relationship
between the two entities.

Table 3.7: Annotation guidelines excerpt.

• RelationSyn-m: The proposed relation description synthesizing model (Section 3.2),

where m is the maximum number of retrieved reasoning paths for an entity pair.

Metrics We perform both quantitative and qualitative evaluation. Following [8], we ap-

ply several automatic metrics, including BLEU [30], ROUGE-L [31], METEOR [32], and

BERTScore [33]. Among them, BLEU, ROUGE, and METEOR focus on measuring surface

similarities between the generated relation descriptions and the target relation descriptions,

and BERTScore is based on the similarities of contextual token embeddings. We also ask

three human annotators to evaluate the output relation descriptions with the same rating

scale in Table 3.7.

Implementation details We train and evaluate all the baselines and variants on the same

train/valid/test split. For RelationBART (Vanilla) and RelationBART-MP + PS, we apply

the official implementation10 and adopt the default hyperparameters. The training converges

in 50 epochs. For our models, we modify the implementation of Fusion-in-Decoder11 and

initialize the model with the T5-base configuration. All the baseline models for RelationSyn

are trained under the same batch size of 8 with a learning rate of 0.0001 and evaluated on

the validation set every 5000 steps. The training is considered converged and terminated

with no better performance on the validation set in 20 evaluations. The training of all

10https://github.com/jeffhj/open-relation-modeling
11https://github.com/facebookresearch/FiD

16



Rating (1-5)

Random 2.75
RDScore (Oracle) 4.18
RealtionBART-MP + PS 3.12
RelationSyn-0 3.08
RelationSyn-1 3.34
RelationSyn-5 3.47

Table 3.8: Qualitative results of generation.

models converges in 20 epochs. The training time is about one week on a single NVIDIA

A40 GPU. For evaluation, the signature of BERTScore is: roberta-large-mnli L19 no-idf

version=0.3.11(hug trans=4.15.0).

Quantitative evaluation Table 3.6 reports the results of relation description generation

with the automatic metrics. We observe that our best model RelationSyn-5 outperforms

the state-of-the-art model for open relation modeling significantly. We also observe that

RelationSyn-1 performs better than RelationSyn-0, which means that reasoning paths in

DEER are helpful for relation description generation. In addition, as the number of reasoning

paths, i.e., m, increases, the performance of RelationSyn-m improves. This demonstrates

that the proposed model can synthesize multiple relation descriptions in different reasoning

paths into a final relation description.

Qualitative evaluation We also conduct qualitative experiments to measure the quality

of generated relation descriptions. For a better comparison with extraction, we sample the

same 100 entity pairs from the test set as in Section 3.3.1. From the results in Table 3.8,

we observe that the quality of generated relation descriptions is higher than that of random

sentences containing the target entities. The best model, RelationSyn-5, achieves a rating

of 3.47, which means the model can generate reasonable relation descriptions. However,

the performance is still much worse than Oracle, i.e., relation descriptions extracted by

our best extraction model (RDScore). This indicates that generating high-quality relation

descriptions is still a challenging task.

3.3.3 Case Study and Error Analysis

In Table 3.9, we show some sample outputs in the test set of relation description generation

17



of three extraction models: ExpScore, SigScore, RDScore, and three generation models:

RelationSyn-0, RelationSyn-1, RelationSyn-5.

For extraction, we observe that if we only consider the explicitness of the sentence, the

selected sentence may contain a lot of stuff that is irrelevant to the entity relationship, e.g.,

(Mucus, Stomach). And if we only consider the significance, the relationship between entities

may be described implicitly; thus the relationship is difficult to reason out, e.g., (Surfers

Paradise, Queensland) and (Knowledge, Epistemology). And the combination of them, i.e.,

RDScore, yields better relation descriptions.

For generation, we notice that RelationSyn-0 suffers severely from hallucinations, i.e.,

generating irrelevant or contradicted facts. E.g., the relation descriptions generated for

(Dayan Khan, Oirats) is incorrect. By incorporating relation descriptions in the reasoning

paths as knowledge, hallucination is alleviated to some extent, leading to better performance

of RelationSyn-1 and RelationSyn-5.

From the human evaluation results, we also find that the correctness of relation descrip-

tions extracted by RDScore is largely guaranteed. However, sometimes, the extracted sen-

tences are still a bit implicit or not significant. In contrast to this, the relation descriptions

generated by RelationSyn are usually explicit and significant (the average RDScore of the

relation descriptions generated by RelationSyn-5 is 0.886, compared to 0.853 of Oracle), but

contain major or minor errors. We think this is because most of the relation descriptions

extracted by RDScore are explicit and significant, and the generation model can mimic the

dominant style of relation descriptions in the training set. However, it is still challenging to

generate fully correct relation descriptions by synthesizing existing relation descriptions.

We also attempted to find the eight entity pairs in Table 3.9 in Wikidata. Among them,

only (Surfers Paradise, Queensland) is present in Wikidata. This further confirms that

DEER can model a wider range of entity relationships.

18



ExpScore SigScore RDScore RelationSyn-0 RelationSyn-1 RelationSyn-5

(Mucus,
Stomach)

As the first two
chemicals may
damage the stom-
ach wall, mucus
is secreted by the
stomach, provid-
ing a slimy layer
that acts as a
shield against the
damaging effects
of the chemicals.

The mucus pro-
duced by these
cells is extremely
important, as
it prevents the
stomach from
digesting itself.

The mucus pro-
duced by these
cells is extremely
important, as
it prevents the
stomach from
digesting itself.

Mucus is a fluid
that is produced
by the stomach.

Mucus is the
main barrier to
mucus from the
stomach.

Mucus is a thick,
protective fluid
that is secreted
by the stomach.

(Surfers
Paradise,
Queensland)

Surfers Paradise
is a coastal town
and suburb in
the City of Gold
Coast, Queens-
land, Australia.

In 2009 as part
of the Q150 cel-
ebrations, Surfers
Paradise was an-
nounced as one
of the Q150 Icons
of Queensland for
its role as a ”loca-
tion”.

Surfers Paradise
is a coastal town
and suburb in
the City of Gold
Coast, Queens-
land, Australia.

Surfers Par-
adise is a coastal
suburb in the
City of Brisbane,
Queensland, Aus-
tralia.

Surfers Paradise
is a coastal town
and locality in the
Shire of Mareeba,
Queensland, Aus-
tralia.

Surfers Paradise
is a coastal sub-
urb in the City of
Redland, Queens-
land, Australia.

(Knowledge,
Epistemol-
ogy)

In epistemol-
ogy, descriptive
knowledge is
knowledge that
can be expressed
in a declarative
sentence or an
indicative propo-
sition.

These questions,
but particularly
the problem of
how experience
and knowledge
interrelate, have
broad theoretical
and practical
implications for
such academic
disciplines as
epistemology,
linguistics, and
psychology.

Knowledge is the
primary subject
of the field of
epistemology,
which studies
what we know,
how we come
to know it, and
what it means to
know something.

In epistemology,
knowledge is a de-
scription of the
possible meaning
of knowledge.

In philosophy,
aristocratic
knowledge is a
form of knowl-
edge that can be
gained through
experience,
through the use
of a method of
epistemology.

In the philoso-
phy of epistemol-
ogy, knowledge is
often referred to
as ”a priori” or
”synthetic”.

(Atlantic
Coast Line
Railroad,
Seaboard Air
Line Rail-
road)

The Atlantic
Coast Line Rail-
road later merged
with the Seaboard
Air Line Rail-
road to form the
Seaboard Coast
Line Railroad.

In 1967, the At-
lantic Coast Line
Railroad merged
with the Seaboard
Air Line Rail-
road, forming the
Seaboard Coast
Line Railroad.

In 1967, the At-
lantic Coast Line
Railroad merged
with the Seaboard
Air Line Rail-
road, forming the
Seaboard Coast
Line Railroad.

The Atlantic
Coast Line Rail-
road was merged
into the Seaboard
Air Line Railroad
in 1887.

The Atlantic
Coast Line Rail-
road merged with
the Seaboard Air
Line Railroad in
1986 to form CSX
Transportation.

The Atlantic
Coast Line Rail-
road merged with
the Seaboard
Air Line Rail-
road on July 1,
1967, to form the
Seaboard Coast
Line Railroad.

(Twilight,
Sunset)

Twilight is the
period of night af-
ter sunset or be-
fore sunrise when
the Sun still il-
luminates the sky
when it is below
the horizon.

Near the summer
solstice, there are
less than 8 hours
between sunset
and sunrise, with
twilight lasting
past 10 pm.

Twilight is the
period of night af-
ter sunset or be-
fore sunrise when
the Sun still il-
luminates the sky
when it is below
the horizon.

Twilight is the
period of daylight
between sunrise
and sunset when
the Sun is below
the horizon.

Twilight is the
period of dark-
ness when the
Sun is below the
horizon.

Twilight is the
period of dark-
ness from sunset
to sunrise when
the Sun is below
the horizon.

(Rock shelter,
Cliff)

Rock shelters
form because
a rock stratum
such as sandstone
that is resistant
to erosion and
weathering has
formed a cliff or
bluff, ..., and thus
undercuts the
cliff.

A rock shelter is
a shallow cave-
like opening at
the base of a bluff
or cliff.

A rock shelter is
a shallow cave-
like opening at
the base of a bluff
or cliff.

A rock shelter is a
structure built on
the top of a cliff.

A rock shelter
is a cliff or
clifftop that is
surrounded by a
rock.

A rock shelter is
a small, relatively
flat, cave or cave-
like structure on a
cliff.

Table 3.9: Sample of relation descriptions produced by ExpScore, SigScore, RDScore, and
RelationSyn-m.

19



CHAPTER 4: DESCRIPTIVE KNOWLEDGE GRAPH FOR COVID
LITERATURE

4.1 INTRODUCTION

Efficiently extracting knowledge from the vast and ever-growing corpus of literature is

crucial for researchers to remain up-to-date with the latest discoveries and trends in their

field. The COVID-19 pandemic has highlighted this need, with thousands of related studies

being published in a short period when a new disease emerges. However, surveying the

latest findings requires significant effort, and researchers may struggle to see the big picture,

leading to duplicated work and delaying the development of treatments[34]. To address this

challenge, many tools for information retrieval in scientific literature have been proposed in

recent years.

Previous works have focused on document retrieval question answering[35], key phrase

queries, and relation extraction. Document retrieval question-answering systems retrieve

original documents or passages as independent answers to user queries. Key phrase queries

[36]retrieve sentences containing one or more specified key phrases, with modifiers provided

by the user. Relation extraction[37, 38, 39] extracts possible relationships between entities

from corpus sentences to collect relational knowledge. However, these systems do not serve

as comprehensive knowledge discovery tools for researchers. With document retrieval QA

systems, researchers must still read retrieved documents to find relevant information, which

is time-consuming[40]. Key phrase queries limit searching flexibility, relying on the user’s

choice of query words and hindering the retrieval of unknown knowledge. Relation extraction

systems require supervised training or hand-crafted rules to build models that can only detect

relations from a predefined set, leading to limited coverage and reliance on training datasets

or rules. Additionally, none of these systems display retrieved documents or sentences in a

connected manner, forcing users to organize and conclude information on their own, which

can be both exhausting and incomplete. This sets a barrier for researchers to discover related

knowledge across different literature.

In this paper, we present a novel system called CovidDEER, which overcomes the limita-

tions of the three types of systems mentioned earlier by leveraging a COVID-related corpus.

Our system enables users with little prior knowledge to interactively retrieve up-to-date, com-

prehensive, and easily understandable relation description sentences, and explore relational

knowledge between entities in one-hop or multi-hop connections. Additionally, we introduce

an innovative approach to generate succinct relation descriptions for entity pairs from the

retrieved relation descriptions to aid users in acquiring information. We demonstrate that

20



Figure 4.1: Descriptive knowledge graph construction pipeline.

CovidDEER can benefit literature surveys, literature curation[41], and drug repurposing

task. Furthermore, our system is automatically built without any supervised training or

hand-crafted rules, making it seamlessly adaptable to any biomedical corpus with ease, and

it can serve as a frontrunner for collecting knowledge in any future emergency.

In essence, our system builds and manages a descriptive knowledge graph (DKG)[42] in

which nodes represent biomedical entities, and edges represent relation description sentences

collected from the corpus. Users can explore knowledge or retrieve sentences by querying this

graph using entities, modifiers, or entity types. To maximize the potential of this resource,

our system provides three useful tools:

• A neighbor query module that can retrieve entities of specific types (such as Disease or

Chemical) within one or two-hop neighbors of the query entity.

• An article parser that enables users to build a DKG over a biomedical article and identify

the related entities and relation descriptions in the article.

• A relation synthesis model that can automatically generate relation descriptions for entity

pairs connected through a one or two-hop path using the retrieved relation descriptions.

This model can aggregate and summarize the information for the user, providing a brief

overview of the entity pair before the user begins reading the retrieved sentences.

We will provide further details about the implementation of our system in the subsequent

sections.

4.2 GRAPH CONSTRUCTION

To enhance users’ understanding of the retrieved information related to their queries, our

system goes beyond traditional text search engines that only return independent passages.

Instead, our system extracts descriptive sentences and constructs a descriptive knowledge

graph (DKG), as introduced in DEER[42]. Unlike traditional text search engines, which

leave users to extract and organize knowledge from each text piece on their own, our system

21



organizes entities and sentences in the DKG. In this graph, nodes represent entities, and edges

represent sentences that describe the relationship between the two nodes, called relation

descriptions, pointing from the subject to the object in the sentences. With this graph, our

system enables users to retrieve sentences with efficient graph queries and view the result

from a connected perspective, allowing them to gain a more holistic understanding of the

information related to their queries.

In this section, we will introduce some adjustments to the original DEER work for building

this DKG in the biomedical domain.

4.2.1 Corpus

Our system is built on a DKG constructed from the COVID-19 Open Research Dataset

(CORD-19) [43]. CORD-19 is a corpus comprising scientific papers related to COVID-19

and other coronaviruses, but it has not been updated since 2022. For the demonstration

purposes, we used the August 8th, 2020 version of CORD-19 to simulate a collection of papers

in the context of a new disease outbreak and some clinical experimental results have been

published. Through this simulation, we demonstrate how our system can retrieve valuable

information for disease research and lead to meaningful findings in drug repurposing.

4.2.2 Pipeline

To construct the DKG, our system employs a pipeline that processes the corpus as follows.

A visualization of the pipeline is shown in Figure 4.1.

Entity extraction and linking . Initially, we extract biomedical entities from each

sentence in the articles and link them to biomedical ontologies using the NCBI Pubtator

API and the SciSpacy library[44]. Specifically, we link the extracted entities to Cellosaurus,

OMIM, MeSH, Gene, Taxonomy, and UMLS metathesaurus.

Parsing . Next, we parse the sentences and gather the parameters for the scoring func-

tion. We use the relation description score (RDS) introduced in DEER to rank the relation

descriptions. The RDS’s parameters are the dependency path frequencies, and we parse

all the sentences in CORD-19 using the SciSpacy library. We then collect the dependency

paths between the extracted entities to ensure that the scoring function is customized to

the biomedical domain. These parameters can be fixed and reused for new papers in the

biomedical domain.

22



Figure 4.2: The web interface of CovidDEER.

Relation description extraction . For each sentence that contains a pair of entities, we

apply the scoring function to evaluate the sentence’s syntax in describing the relation between

the entities. A higher score indicates that the sentence has a more explicit expression, and

the relation information comprises a more significant portion of the sentence’s meaning. We

collect all the sentences that score higher than a certain threshold and use them to form the

edges in the DKG.

4.3 SYSTEM DESCRIPTION

In this section, we will introduce the three main modules of our system that enable users

to effectively query the DKG for relevant sentences and extract the maximum value from

this resource.

4.3.1 Graph Query

The Graph Query module provides easy access to the DKG and performs several kinds of

queries. Like most search engines, our system allows boolean queries, which allow users to

retrieve sentences where the queried entities co-occur. In terms of querying the DKG, this

is similarly achieved by retrieving the sentences on the edges between the queried entities.

However, our system’s approach is more effective since it retrieves relation descriptions,

23



Type Frequent Modifiers

Nouns treatment (34), patient (19), therapy (12), chloroquine (7), efficacy (6), drug
(5), risk, (4), use, (4), hydroxychloroquine (4), option (3), effect (3), diagnosis
(3), vaccine (3), trial (3), case (3), candidate (3), choice (3), level (3), increase
(3), agent (3), disease (3), activation (3)

Verbs use (19), show (14), treat (10), test (7), approve (7), reduce (7), inhibit (7),
induce (7), play (6), increase (6), investigate (5), propose (5), prevent (5),
cause (4), consider (4), block (4), appear (4), prove (3), become (3), associate
(3), provide (3), protect (3), lead (3), find (3)

Adjs potential (8), antiviral (7), therapeutic (7), effective (7), beneficial (5), clinical
(5), apparent (5), severe (4), good (3)

Table 4.1: Frequent Modifiers between Chemicals and COVID-19.

which not only contain the queried entities but also provide clear relational information

between them, which is cleaner and more useful for the user’s understanding.

Moreover, users can query entity types that co-occur with an entity to obtain a compre-

hensive overview. Our system allows querying of several specific types of neighbors of an

entity. For instance, users can retrieve all the Chemicals connected to COVID-19 to gain

insights into Chemical-Disease interactions related to COVID-19.

The retrieval result is displayed as a graph, as shown in Figure 4.2, allowing users to

easily locate sentences containing entities of interest. To assist users in navigating the

retrieved sentences, we have augmented the graph query module with two additional features:

modifier filtering and multi-hop neighbor query.

Modifier filtering We define the words and phrases that convey the relation between

two entities as modifiers of the relation, and our system provides a feature that allows users

to filter the retrieved relation descriptions based on these modifiers. When querying the

co-occurrence of a popular entity, retrieval systems may return an overwhelming number of

independent sentences, which can distract users from extracting the general relations between

the entities. Instead of asking the user to form a more specific query by adding co-occurred

words, our system collects a set of frequent modifiers from the retrieved sentences. These

modifiers are the noun phrases, verbs, or adjectives on the dependency path between the two

entities and provide insights into the relational information in the sentences. For example,

Table 4.1 presents the most common modifiers collected from the query of searching the

Chemical neighbors of COVID-19. Users can read the list of modifiers first and then check

out the sentences that might interest them. With our system, users do not require significant

24



background knowledge to form a more specific query, and they can explore knowledge with

the utmost flexibility. Our system also labels the edges with the modifiers collected from

the sentences on each edge to provide users with a general idea of the relational information

between the entities before they start reading the sentences.

Multi-hop query Since our system manages the sentences in a graph structure, users can

perform multi-hop queries to find connections between entities across different documents.

By specifying the entity or entity type at each hop, users can create queries tailored to

their purposes. For example, a user may begin with COVID-19, with Symptom as the first-

hop entity type and Chemical as the second-hop entity type to explore candidate drugs for

COVID-19 treatment. Compared to traditional knowledge graphs, our system can provide

the most up-to-date information as soon as new articles are published, which is valuable

for researchers keeping track of disease trends. In contrast to text-based search engines,

our system retrieves sentences on the multi-hop path in a single query, while traditional

search engines require multiple queries. This makes our system more efficient for retrieving

knowledge and facilitates multi-hop reasoning for users.

4.3.2 Relation Synthesis Model

Multi-hop reasoning is a common method to explore new knowledge from knowledge

graphs. However, this is challenging in a DKG because each edge is a set of relation descrip-

tions instead of a single relation label. Users need to read and comprehend the knowledge on

each edge before they can perform inference, which can be time-consuming and laborious.

To help users gain a quick understanding of the relationship between two entities, we em-

ploy a relation synthesis model based on DEER’s work. The model automatically generates

concise relation descriptions from the sentences retrieved on the paths. Besides training

the model on two-hop and three-hop paths, we also trained it on one-hop paths, allowing

it to learn to summarize relation descriptions for individual entity pairs. By reading the

generated relation description first, users can obtain a general understanding of the relation

before delving into the details in the retrieved sentences.

As the CORD-19 dataset we use for demonstration is not large enough to train a relation

synthesis model, we collected a training, validation, and test dataset from a subset of articles

randomly selected from PubMed. The resulting dataset is comparable in size to the one used

in DEER, and we trained the model for 20 epochs. In Section 4.4, we discuss our manual

evaluation of the quality of generation.

25



4.3.3 Article Parser

Our system offers a module called the ”Article Parser” in addition to the search engine.

The Article Parser takes any user-provided passage or article and runs the pipeline described

in Figure 4.1 to generate a local DKG for the user’s purpose. However, since the extracted

local DKG may contain various extracted entities, users can select specific entities or entity

types. Moreover, we compute the normalized pointwise mutual information (NPMI) score

for connected entity pairs in the local DKG using corpus records. We then highlight highly

correlated pairs to indicate possibly informative edges. The graph generated by the Article

Parser visually represents the entity connections in the article. It helps users locate inter-

esting relation descriptions or conclusions. In the following section, we present a case study

demonstrating how the Article Parser can be used for literature curation.

4.4 EVALUATION

In this work, we assess the performance of CovidDEER in two distinct parts: the ability

of the extracted descriptive knowledge graph and the effectiveness of the relation synthesis

model. To evaluate the extracted DKG, we conducted case studies and developed two work-

flows to showcase how CovidDEER can assist with biomedical tasks in practical scenarios. In

addition, we assessed the reliability of the relation synthesis model by manually examining

the generated text’s faithfulness in relation to the input relation descriptions.

4.4.1 Case Study 1: Drug Repurposing

Drug repurposing involves identifying new uses for drugs that were originally developed to

treat other diseases. CovidDEER can aid researchers in identifying candidate drugs through

the following steps:

• Begin with the target disease as the starting node.

• Search the first-hop neighborhood for diseases and symptoms related to the target disease.

• Search the second-hop neighborhood for drugs used to treat those related diseases and

symptoms.

Suppose a researcher wants to discover the candidate drugs for COVID-19. By searching

the Diseases and Symptoms neighbors of COVID-19, the system retrieved several frequent

verb modifiers as shown in Figure 4.3. We select several modifiers that might indicate a

correlation between the Diseases and COVID-19. Then, we pick 10 out of these “related”

Disease entities as the first-hop neighbors and search for the Chemicals or Drugs in the

26



Figure 4.3: Verb Modifiers between COVID-19 and Disease or Symptom.

Figure 4.4: Modifiers between COVID-19 related and Disease and Chemicals.

Candidate drugs
nitric oxide, lamb preparation, beta-Lactams, Leukotriene B4, sphingosine 1-
phosphate, amoxicillin, Macrolide Antibiotics, Macrolides, beta-Lactams, rifampin,
Hydroxymethylglutaryl-CoA Reductase Inhibitors, methylprednisolone, trivalent in-
fluenza vaccine, Fibrates, lipid modifying drugs, plain, Corticosteroid ophthalmologic
and otologic preparations, metformin, inhibitors, Corticosteroid otologicals, Biliru-
bin, Fibrates, nitazoxanide, atorvastatin, Artemisinins, antagonists

Table 4.2: Collected candidate drugs for COVID-19 treatment.

second-hop neighbors. The retrieved two-hop graph can be seen in Figure 4.2. Similarly, we

select several modifiers that might indicate a “treatment” relation as shown in Figure 4.4

and candidate drugs collected are shown in Table 4.2.

To identify potential candidate drugs for COVID-19, a researcher using CovidDEER would

begin by searching for diseases and symptoms related to COVID-19. Figure 4.3 displays

several frequent verb modifiers retrieved by the system, from which the researcher could

select several modifiers that may indicate a correlation between Diseases and COVID-19.

27



(COVID-19, Pneumonia) (Pneumonia, Vaccines)

Extracted
relation
descriptions

Coronavirus disease 2019
(COVID-19) is a novel type of highly
contagious pneumonia caused by
the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2).

Despite the availability of safe and
effective antibiotics and vaccines for
treatment and prevention, pneumo-
nia is a leading cause of death world-
wide and the leading infectious dis-
ease killer.

Conversely, SARS-CoV, MERS-
CoV, and COVID-19 may initially
present asymptomatically, but can
progress to pneumonia, shortness
of breath, renal insufficiency and, in
some cases, death.

Despite advances in managerial
practices, vaccines, and clinical
therapies, pneumonia remains a
widespread problem and methods to
enhance host resistance to pathogen
colonization and pneumonia are
needed.

1-hop relation
summary

COVID-19 is a highly contagious
pneumonia caused by the severe
acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2).

Despite the availability of safe and
effective antibiotics and vaccines for
treatment and prevention, pneumo-
nia remains a major cause of death
worldwide.

2-hop rela-
tion synthesis
(COVID-19, Vac-
cines)

COVID-19 is a major cause of death worldwide, despite the avail-
ability of safe and effective antibiotics and vaccines for treatment
and prevention of pneumonia.

Table 4.3: Example of relation description extracted or generated by the relation synthesis
model.

Using these “related” Disease entities as first-hop neighbors, the researcher would search

for Chemicals or Drugs in the second-hop neighbors, resulting in the retrieval of a two-hop

graph, as depicted in Figure 4.2.

To identify potential treatments for COVID-19, the researcher would identify modifiers

that suggest a “treatment” relation, as shown in Figure 4.4. The candidate drugs collected

from this search are presented in Table 4.2.

4.4.2 Case Study 2: Literature Curation

Literature curation involves collecting knowledge facts from articles and adding them to

a knowledge graph. Curators are typically assigned an entity and a list of articles, and they

need to read each article in its entirety to find related facts to the entity[41, 45]. This process

28



Figure 4.5: Example of specific entity type extraction with modifiers.

can be time-consuming. With CovidDEER, curators can save time by using the article parser

to extract relation descriptions from articles, allowing them to focus on sentences that are

likely to contain relevant facts.

To use the article parser, curators can provide a list of entities and entity types of interest

and submit the article to build a local DKG. The resulting graph shows the connection

between the entity of interest and other entities, and the extracted modifiers suggest possible

relations between the entities. Curators can then read the sentences on the edges to curate

the knowledge. Figure 4.5 shows the extraction of entities and modifiers from a passage

where the entity of interest is Clavulanic Acid and the entity types are Antibiotic, Gene,

Organic Chemical, and Cell or Molecular Dysfunction. The resulting graph is shown in

Figure 4.6, with each edge labeled using the extracted modifiers.

4.4.3 Relation Synthesis Model Evaluation

The DEER work has demonstrated the capability of the relation synthesis model to gen-

erate easily understandable relation descriptions. However, in the biomedical domain, it

is crucial for the model to generate truthful sentences and not mislead the reader with er-

roneous information. Table 4.3 provides an example of the model’s generation, where the

extracted relation descriptions for (COVID-19, Pneumonia) and (Pneumonia, Vaccines)

are the inputs to the model. The 1-hop relation summary is the summarized relation de-

scription over the sentences of one pair of entities, and the 2-hop relation synthesis is the

synthesized relation description for (COVID-19, Vaccines) through aggregating the 2-hop

path (COVID-19, Pneumonia, Vaccines).

29



Figure 4.6: The local graph built from the passage in Figure 4.5

To evaluate the model’s faithfulness, we randomly selected 20 samples from the test dataset

and provided an evaluator with the input relation descriptions, the expected relation descrip-

tion output, and the generation of the model for each sample. The evaluator was instructed

to find supporting evidence from the input for the generation and give a score from 1 to 5

for each generation to indicate its faithfulness to the input. The final average score for the

20 samples is 4.10, indicating that the generation is generally supported by the input. How-

ever, there is still a gap before we can fully trust it and we suggest users read the retrieved

sentences to acquire reliable knowledge and only use the generated relation description as a

reference. We observed that the model tends to copy or make minor modifications to the

input relation description if the input already contains the target entity pair. During train-

ing, some input relation descriptions were already in a good form, and the model could get

a high score by finding these input sentences and copying them to the output. This feature

helps the human evaluator find supporting evidence and enhances the model’s faithfulness.

30



CHAPTER 5: CONCLUSION AND DISCUSSION

5.1 DEER

In this work, we propose DEER – an open and informative form of modeling relationships

between entities. To avoid tremendous human efforts, we design a novel self-supervised

learning approach to extract relation descriptions from Wikipedia. To provide relation de-

scriptions for related entity pairs whose relation descriptions are not extracted in the previous

step, we study relation description generation by synthesizing relation descriptions in the

retrieved reasoning paths. We believe that DEER can not only serve as a direct application

to help understand entity relationships but also be utilized as a knowledge source to facilitate

related tasks such as relation extraction [12] and knowledge graph completion [13].

Limitations We focus on designing methods to construct DEER and evaluating DEER on

serving as a system for entity relationship understanding, which has direct applications in,

e.g., encyclopedias and concept maps. Due to limited space, we do not fully investigate its

use as a knowledge source to facilitate other tasks, e.g., relation extraction and knowledge

graph completion, which we leave as future work for the whole research community.

5.2 COVIDDEER

In the CovidDEER work, we developed a retrieval system in the biomedical domain that

operates on a COVID-related corpus, facilitating efficient retrieval of relational knowledge

and enabling tasks such as drug repurposing and literature curation. We demonstrate the

advantages of managing a raw text corpus in a descriptive knowledge graph, including

streamlined management, support for multi-hop reasoning across sentences from various

articles, and comprehensive visualization of entity connections in the domain. Additionally,

we equipped users with a modifier filtering module and a relation synthesis model that offer

an overview of the relations on the edge before reading, and an article parser tool to aid in

user tasks. In future work, we aim to enhance the accuracy and reliability of the relation

descriptions generated for user reference.

31



REFERENCES

[1] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on knowledge
graphs: Representation, acquisition, and applications,” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[2] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. d. Melo, C. Gutierrez, S. Kirrane,
J. E. L. Gayo, R. Navigli, S. Neumaier et al., “Knowledge graphs,” Synthesis Lectures
on Data, Semantics, and Knowledge, vol. 12, no. 2, pp. 1–257, 2021.

[3] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,” Com-
munications of the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[4] N. Lao, T. Mitchell, and W. Cohen, “Random walk inference and learning in a large
scale knowledge base,” in Proceedings of the 2011 conference on empirical methods in
natural language processing, 2011, pp. 529–539.

[5] W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforcement learning method
for knowledge graph reasoning,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 2017, pp. 564–573.

[6] W. Chen, W. Xiong, X. Yan, and W. Y. Wang, “Variational knowledge graph rea-
soning,” in Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), 2018, pp. 1823–1832.

[7] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open information extraction
from the web,” Communications of the ACM, vol. 51, no. 12, pp. 68–74, 2008.

[8] J. Huang, K. Chang, J. Xiong, and W.-M. Hwu, “Open relation modeling: Learning
to define relations between entities,” in Findings of the Association for Computational
Linguistics: ACL 2022, 2022, pp. 297–308.

[9] T. Noraset, C. Liang, L. Birnbaum, and D. Downey, “Definition modeling: Learning to
define word embeddings in natural language,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 31, no. 1, 2017.

[10] L. Cheng, D. Wu, L. Bing, Y. Zhang, Z. Jie, W. Lu, and L. Si, “Ent-desc: Entity descrip-
tion generation by exploring knowledge graph,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 1187–1197.

[11] J. Huang, H. Shao, K. C.-C. Chang, J. Xiong, and W.-m. Hwu, “Understanding jar-
gon: Combining extraction and generation for definition modeling,” in Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP),
2022.

32



[12] N. Bach and S. Badaskar, “A review of relation extraction,” Literature review for Lan-
guage and Statistics II, vol. 2, pp. 1–15, 2007.

[13] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embed-
dings for knowledge graph completion,” in Twenty-ninth AAAI conference on artificial
intelligence, 2015.

[14] N. Voskarides, E. Meij, M. Tsagkias, M. De Rijke, and W. Weerkamp, “Learning to
explain entity relationships in knowledge graphs,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015, pp.
564–574.

[15] J. Huang, W. Zhang, S. Zhao, S. Ding, and H. Wang, “Learning to explain entity
relationships by pairwise ranking with convolutional neural networks,” in Proceedings
of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 4018–
4025.

[16] N. Voskarides, E. Meij, and M. d. Rijke, “Generating descriptions of entity relation-
ships,” in European Conference on Information Retrieval. Springer, 2017, pp. 317–330.

[17] A. Handler and B. O’Connor, “Relational summarization for corpus analysis,” in Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
2018, pp. 1760–1769.

[18] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,
and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020, pp. 7871–7880.

[19] B. Y. Lin, W. Zhou, M. Shen, P. Zhou, C. Bhagavatula, Y. Choi, and X. Ren, “Com-
mongen: A constrained text generation challenge for generative commonsense reason-
ing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: Findings, 2020, pp. 1823–1840.

[20] Y. Liu, Y. Wan, L. He, H. Peng, and S. Y. Philip, “Kg-bart: Knowledge graph-
augmented bart for generative commonsense reasoning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 7, 2021, pp. 6418–6425.

[21] P. Dognin, I. Melnyk, I. Padhi, C. dos Santos, and P. Das, “Dualtkb: A dual learning
bridge between text and knowledge base,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 8605–8616.

[22] O. Agarwal, H. Ge, S. Shakeri, and R. Al-Rfou, “Knowledge graph based synthetic cor-
pus generation for knowledge-enhanced language model pre-training,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 2021, pp. 3554–3565.

33



[23] K. Kukich, “Design of a knowledge-based report generator,” in 21st Annual Meeting of
the Association for Computational Linguistics, 1983, pp. 145–150.

[24] K. Gunaratna, Y. Wang, and H. Jin, “Entity context graph: Learning entity
representations fromsemi-structured textual sources on the web,” arXiv preprint
arXiv:2103.15950, 2021.

[25] I. Yamada, A. Asai, J. Sakuma, H. Shindo, H. Takeda, Y. Takefuji, and Y. Matsumoto,
“Wikipedia2vec: An efficient toolkit for learning and visualizing the embeddings of
words and entities from wikipedia,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, 2020, pp. 23–30.

[26] F. Wu and D. S. Weld, “Open information extraction using wikipedia,” in Proceedings
of the 48th annual meeting of the association for computational linguistics, 2010, pp.
118–127.

[27] W. Yu, C. Zhu, Z. Li, Z. Hu, Q. Wang, H. Ji, and M. Jiang, “A survey of knowledge-
enhanced text generation,” arXiv preprint arXiv:2010.04389, 2020.

[28] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” Journal of Machine Learning Research, vol. 21, pp. 1–67, 2020.

[29] G. Izacard and E. Grave, “Leveraging passage retrieval with generative models for open
domain question answering,” in EACL 2021-16th Conference of the European Chap-
ter of the Association for Computational Linguistics. Association for Computational
Linguistics, 2021, pp. 874–880.

[30] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic
evaluation of machine translation,” in Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 2002, pp. 311–318.

[31] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text summa-
rization branches out, 2004, pp. 74–81.

[32] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with im-
proved correlation with human judgments,” in Proceedings of the acl workshop on intrin-
sic and extrinsic evaluation measures for machine translation and/or summarization,
2005, pp. 65–72.

[33] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating
text generation with bert,” in International Conference on Learning Representations,
2019.

34



[34] Q. Wang, M. Li, X. Wang, N. Parulian, G. Han, J. Ma, J. Tu, Y. Lin, R. H.
Zhang, W. Liu, A. Chauhan, Y. Guan, B. Li, R. Li, X. Song, Y. Fung, H. Ji,
J. Han, S.-F. Chang, J. Pustejovsky, J. Rah, D. Liem, A. ELsayed, M. Palmer,
C. Voss, C. Schneider, and B. Onyshkevych, “COVID-19 Literature Knowledge Graph
Construction and Drug Repurposing Report Generation,” pp. 66–77, 7 2020. [Online].
Available: https://arxiv.org/abs/2007.00576v6

[35] E. Voorhees, T. Alam, S. Bedrick, D. Demner-Fushman, W. R. Hersh, K. Lo,
K. Roberts, I. Soboroff, and L. L. Wang, “TREC-COVID: Constructing a
Pandemic Information Retrieval Test Collection.” [Online]. Available: https:
//www.ncbi.nlm.nih.gov/pmc/

[36] H. Taub-Tabib, M. Shlain, S. Sadde, D. Lahav, M. Eyal, Y. Cohen, and Y. Goldberg,
“Interactive Extractive Search over Biomedical Corpora,” BioNLP, pp. 28–37, 6 2020.
[Online]. Available: https://arxiv.org/abs/2006.04148v1

[37] A. Köksal, H. Dönmez, E. Ozkirimli, A. Arzucan¨, and A. A. Arzucan¨ozgür, “Vapur:
A Search Engine to Find Related Protein-Compound Pairs in COVID-19 Literature,”
EMNLP NLP-COVID, 9 2020. [Online]. Available: https://arxiv.org/abs/2009.02526v3

[38] H. Kilicoglu, G. Rosemblat, M. Fiszman, and D. Shin, “Broad-coverage biomedical
relation extraction with SemRep,” BMC Bioinformatics, vol. 21, no. 1, pp. 1–28,
5 2020. [Online]. Available: https://bmcbioinformatics.biomedcentral.com/articles/10.
1186/s12859-020-3517-7http://creativecommons.org/publicdomain/zero/1.0/

[39] C. Deng, J. Zou, J. Deng, and M. Bai, “Extraction of gene-disease association from
literature using BioBERT,” ACM International Conference Proceeding Series, vol.
PartF168982, 1 2021. [Online]. Available: https://doi.org/10.1145/3448734.3450772

[40] X. Wang, Y. Guan, W. Liu, A. Chauhan, E. Jiang, Q. Li, D. Liem,
D. Sigdel, J. H. Caufield, P. Ping, and J. Han, “EVIDENCEMINER: Textual
Evidence Discovery for Life Sciences,” pp. 56–62, 7 2020. [Online]. Available:
https://aclanthology.org/2020.acl-demos.8

[41] T. C. Wiegers, A. P. Davis, K. B. Cohen, L. Hirschman, and C. J. Mattingly, “Text
mining and manual curation of chemical-gene-disease networks for the Comparative
Toxicogenomics Database (CTD),” BMC Bioinformatics, vol. 10, no. 1, p. 326, 10
2009. [Online]. Available: https://bmcbioinformatics.biomedcentral.com/articles/10.
1186/1471-2105-10-326

[42] J. Huang, K. Zhu, K. C.-C. Chang, J. Xiong, and W.-m. Hwu, “DEER: Descriptive
Knowledge Graph for Explaining Entity Relationships,” 5 2022. [Online]. Available:
https://arxiv.org/abs/2205.10479v2

35



[43] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, K. Funk, R. Kinney,
Z. Liu, W. Merrill, P. Mooney, D. Murdick, D. Rishi, J. Sheehan, Z. Shen, B. Stilson,
A. D. Wade, K. Wang, C. Wilhelm, B. Xie, D. Raymond, D. S. Weld, O. Etzioni,
and S. Kohlmeier, “CORD-19: The Covid-19 Open Research Dataset,” ArXiv, 4
2020. [Online]. Available: /pmc/articles/PMC7251955//pmc/articles/PMC7251955/
?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251955/

[44] M. Neumann, D. King, I. Beltagy, and W. Ammar, “ScispaCy: Fast and robust models
for biomedical natural language processing,” in BioNLP 2019 - SIGBioMed Workshop
on Biomedical Natural Language Processing, Proceedings of the 18th BioNLP Workshop
and Shared Task. Association for Computational Linguistics (ACL), 2 2019, pp. 319–
327.

[45] A. P. Davis, C. J. Grondin, R. J. Johnson, D. Sciaky, J. Wiegers, T. C. Wiegers,
and C. J. Mattingly, “Comparative Toxicogenomics Database (CTD): update 2021,”
Nucleic Acids Research, vol. 49, no. D1, pp. D1138–D1143, 1 2021. [Online]. Available:
https://academic.oup.com/nar/article/49/D1/D1138/5929242

36


