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ABSTRACT

In this thesis, we present new techniques for three-party secure computation in the parallel

random access machine (PRAM) model. Our protocol is perfectly secure and concretely

efficient. Considering a PRAM machine storing n w-bit words and having a large number

(p = O(n)) of processors, and assuming at most one passively corrupt party, our construction

exhibits the following properties:

• Minimal cryptographic assumptions: By carrying out all computations using se-

cret shares, our protocol achieves perfect security without any cryptographic assump-

tions.

• Low communication complexity: To serve p queries to our PRAM in parallel, our

construction requires only

O
(
log2(p) log(n)

)
+ log

(
n

p

)
O(w log(n) + log2(n))

bits of transmission per query, amortized over the total number of queries. In our

setting of p = O(n), this becomes

O(w + log3(n)),

matching the known lower bounds on Oblivious RAM if w = Ω(log2(n)). The low

constant factors in our construction also ensure that our protocol is concretely effi-

cient. Specifically, with n = 225, w = 625, p = 216, n queries to our PRAM requires a

transmission of 123130 bits per query.

• Low round complexity: By carefully leveraging the inherent parallelism available

in the PRAM model, we were able to reduce the round complexity of each query. To

serve p queries to our PRAM in parallel, our construction requires only

O(log2(p) log log(n)) + log

(
n

p

)
O(log(p) + (log log(n))2)

ronuds of communications. When setting p = O(n), this becomes

O(log2(n) log log(n)),
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which states that our rounds scales only logarithmically in n. The low constant

factors we have contribute to our protocol’s concrete efficiency, allowing it to serve

each set of parallel queries in 4352 rounds in the same setting as above.

Our protocol’s concrete efficiency, coupled with its ability to serve p queries in parallel,

makes it appealing for real-world applications such as allowing p end users to simultaneously

access a shared database and receive their results back in real time.
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CHAPTER 1: INTRODUCTION

Cloud computing has gained immense popularity in recent years, providing businesses and

individuals with access to powerful computing resources with unprecedented convenience. In

a typical cloud computing setting, a client with limited computational capabilities outsources

its data and tasks to a more powerful server. The client instructs the server to perform

computationally demanding tasks, which the server then executes using its resources before

delivering the results back to the client. However, since both the client’s data and instructions

can contain potentially sensitive information, security has emerged as a pressing issue in the

cloud computing world.

To illustrate this, consider a cloud map application where the servers maintain a database

of nearby places indexed by approximate location (such as a zip code), and an end user

searches this database using their approximate location. For instance, a tourist exploring a

new town might want to retrieve a list of nearby attractions from the database, but to use

the cloud map they will need to provide their current approximate location. Understandably,

the tourist, seeking to protect their privacy, would prefer not to disclose their whereabouts

while making this query. Consequently, it is necessary for the servers to process this query

in an oblivious manner, ensuring that neither the target database entry nor the user’s access

patterns are revealed. Preventing access pattern disclosure is crucial, as it would otherwise

allow the servers to accumulate temporal information on users’ recent whereabouts, thus

compromising their privacy.

1.1 OUR CONTRIBUTION

In this work, we address the security concern in the above scenario by presenting a pro-

tocol for 3PC semi-honest secure PRAM computation, assuming only one party is passively

corrupted. Our PRAM is both theoretically and practically efficient, exhibiting exceptional

scalability when a high degree of parallelism is available. When the number of processors

p = O(n), each query incurs only O(log(n)) amortized communication overhead, and each

set of p parallel queries can be served in only O(log2(n) log log(n)) rounds. Moreover, our

protocol achieves perfect security without any cryptographic assumption by working with

secret shares of data. Alternatively, if we only aim for computational security, we can rely

on computationally secure one-way functions to further optimize our permutation protocol,

significantly improving the constants.

As a result, our protocol is well-suited for the aforementioned cloud map application, as
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it allows efficient and simultaneous servicing of a large number of end users while protecting

each user’s privacy by operating solely on shares of their current physical location.

1.2 ORGANIZATION OF CONTENTS

In Chapter 2, we provide the background for this work and point out related works in the

literature. Following this, we offer a high-level technical overview of our protocol’s various

components in Chapter 3, while reserving a detailed description of each component for

Chapter 4, where we also discuss how to securely and efficiently handle parallel queries. In

Chapter 5, we formally prove that our protocol is semi-honest secure in the honest-majority

setting. To showcase the practical efficiency of our protocol, we both give an asymptotic

calculation in Chapter 6 and present our empirical results in Chapter 7. Finally, we briefly

summarize this work and suggest potential directions for future research in Chapter 8.
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CHAPTER 2: BACKGROUND

In this chapter, we will briefly list the relevant definitions for our work and then proceed

to review some existing works in the literature that are closely related to our own.

2.1 DEFINITIONS

Throughout this work, the model of computation that we use will be that of a PRAM

machine commonly found in the literature [1]. Roughly speaking, a PRAM machine is a

machine augmented with p processors, all of which can access a shared storage structure

using special read/write instructions. The following definition is adapted from [1]:

Definition 2.1 (PRAM machine). A p-processor PRAM with a memory size of n consists

of processors numbered from 0 to p− 1, which operate synchronously and in parallel. These

processors can access a shared memory of size n with an address space of [0, n − 1]. Each

processor is equipped with an instruction set that contains two special instructions: Read

and Write.

Read takes a physical address i ∈ [0, n−1] as input. After completion of Read, the memory

element at location i is returned to the processor that issued the instruction. Similarly, Write

also takes a physical address i ∈ [0, n − 1] as input, along with an w-bit string x, where w

is the word size of the shared memory. Upon completion of Write, the old memory element

at location i is returned to the processor that issued the instruction, and x takes its place

in the shared memory.

If more than one processor issues a Write instruction to the same location, the old memory

element is returned to all processors involved. However, only the processor with the smallest

ID can succeed in replacing the element at that location with its x.

The security definition our PRAM protocol achieves is the standard simulation-based semi-

honest security definition found in [2]. In the semi-honest setting, each party participating

in the protocol will follow the protocol specification, although they will try to learn the other

parties’ private inputs from its transcript, which is defined as the union of its internal states

and messages it receives. Informally, we say that a MPC protocol is semi-honest secure if

no parties can learn other parties’ private inputs, except what’s already implied by their

outputs. The definition in [2] captures notion by requiring that each party’s view, which

consists of its input, its random coin tosses, and the messages it receives, be reproducible in

polynomial time from the party’s input and output only. The following definition is adapted

from [2]:
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Definition 2.2 (3PC semi-honest secure protocol with honest majority). Let f : {0, 1}∗ ×
{0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗×{0, 1}∗ be a functionality, let the parties be denoted by

P0, P1, P2, and let fi(x, y, z) denote the i
th element of f(x, y, z). Let Π be a 3PC protocol for

computing f . The view of P0 during an execution of Π on (x, y, z), denoted VIEWΠ
0 (x, y, z),

is (x, r0,m1, . . .), where r0 is P0’s private coin tosses and mi is the i
th message it has received.

The views for the other two parties are analogously defined. The output of the ith party after

an execution of Π on (x, y, z), denoted OUTPUTΠ
i (x, y, z), is implicit in the party’s own view

of the execution, and OUTPUTΠ(x, y, z) = (OUTPUTΠ
0 (x, y, z), . . . ,OUTPUT

Π
2 (x, y, z)).

We say that Π is a semi-honest secure protocol for f with honest majority if there exists

probabilistic polynomial-time simulators, denoted S0, S1, S2, such that

{(S0(x, f0(x, y, z)), f(x, y, z))}x,y,z
c≡ {(VIEWΠ

0 (x, y, z),OUTPUT
Π(x, y, z)}x,y,z (2.1)

{(S1(y, f1(x, y, z)), f(x, y, z))}x,y,z
c≡ {(VIEWΠ

1 (x, y, z),OUTPUT
Π(x, y, z)}x,y,z (2.2)

{(S2(z, f2(x, y, z)), f(x, y, z))}x,y,z
c≡ {(VIEWΠ

2 (x, y, z),OUTPUT
Π(x, y, z)}x,y,z (2.3)

where
c≡ denotes computational indistinguishability. The above definition is for computa-

tional security, if we want perfect security, then we require that the ensembles in (2.1)-(2.3)

be identically distributed.

In our setting, we will call the three parties S0,S1,D, where S0 and S1 are the two servers

that shares the RAM contents andD is a dealer who only exists to help S0 and S1 in executing

the queries. As it turns out, the physical access patterns are almost always included in the

views of the two servers, and therefore, our PRAM satisfies the traditional ORAM definition

of obliviousness almost “for free”. Informally, this definition requires that the physical access

patterns resulting from any two sequences of accesses are indistinguishable, as long as they

access the same number of elements. Since we are working with a PRAM, we will slightly

modify the sequences of accesses in the original definition to accommodate parallel accesses,

but the rest is directly adopted from [3].

Definition 2.3 (Obliviousness). Let Qt = (q0, . . . , qp−1) be a vector of p parallel queries

issued at time t, and let Q = (Q0,Q1, . . . ,Qm−1) be a sequence of parallel queries from time

0 to m− 1. We define the access patterns of Q to be the sequence of physical accesses made

to the storage, and denote it by A(Q). An ORAM construction is said to be secure if for any

two such sequence of parallel queries Q,Q′ of the same length, their access patterns A(Q)

and A(Q′) are computationally indistinguishable by anyone but the client who issued them.

If we want perfect security, we require that A(Q) and A(Q′) be identically distributed.
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With the necessary definitions now in place, we are ready to state our main theorem.

Theorem 2.1 (Main). Our PRAM is secure in the sense of Definition 2.2, with the inputs

from S0 and S1 being shares of the memory contents and a sequence of parallel queries as in

Definition 2.3 and the input from D being λ (i.e., it has no inputs). Let Rt be the parallel

query results corresponding to the parallel queries Qt, and let R = (R0,R1, . . . ,Rp−1) be

the sequence of parallel query results corresponding to R. The outputs of S0 and S1 is a

share of R and the output of D is again λ.

2.2 RELATED WORK

In this section, we summarize the similarities and differences between our work and existing

works. The line of research that aligns most closely with our work focuses on Oblivious

RAMs (ORAMs) or Oblivious Parallel RAMs (OPRAMs). However, as we will see, there

are crucial distinctions between our work and these constructions in each case. In fact, our

PRAM protocol is provably more powerful than both. Specifically, we will demonstrate that

our PRAM protocol satisfies the classical ORAM or OPRAM security definition of access

pattern hiding [3], while having additional properties that makes it desirable for secure RAM

computation. Remarkably, this proof almost immediately follows from the simulation-based

security proof that we will give.

Oblivious RAMs (ORAMs). A closely related and extensively studied line of research

is Oblivious RAMs (ORAMs), initially investigated by Goldreich and Ostrovsky in [4, 5].

The main object of study in ORAMs is a compiler that can transforms a RAM program into

an ORAM program, where all the memory accesses (which logical address is read/written

at what time) are hidden. An ORAM compiler thus acts as an interface between a client

and its memory (or possibly a remote server). A significant amount of effort has been

devoted to understanding the theoretical limitations of ORAMs [5, 6, 7] and constructing

practically efficient ORAMs [8, 9]. With reasonable parameter settings, the seminal Path-

ORAM construction in [8] achieves the theoretical lower bounds established in [5], while

maintaining practical efficiency.

Our PRAM protocol surpasses traditional ORAMs in three fundamental ways. While each

of these shortcomings of ORAMs has been addressed separately, to the best of our knowledge,

no work has yet tackled all three problems at the same time. These shortcomings are as

follows:

• Our PRAM can handle p queries concurrently, whereas a traditional ORAM must
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process them sequentially. The line of research focusing on enhancing this aspect of

ORAMs is known as oblivious parallel RAMs (OPRAMs).

• In a client-server setting, our PRAM protocol leverages the computational power of

servers to perform the majority of the computation. Meanwhile, the less powerful

client simply shares its query and awaits the query result. The line of research aiming

to reduce client computation by utilizing server capabilities is sometimes referred to

as oblivious storage.

• The basic non-parallel version of our RAM can be easily embedded into a 3PC semi-

honest secure MPC protocol using the RAM model (RAM-MPC protocol), tolerating

up to 1 passively corrupt party. Any RAM-MPC protocol can treat our secure RAM as

a black-box that accepts shares of logical addresses and returns shares of elements. The

line of research seeking to develop MPC-friendly ORAMs is called secure-computation

ORAM (SCORAM) or MPC-ORAM.

Oblivious Parallel RAMs (OPRAMs). The first and most obvious distinction between

our PRAM and a traditional ORAM is our ability to handle parallel queries to servers,

whereas traditional ORAMs can only manage sequential queries. Some works [1, 10, 11, 12,

13] have extended the ideas behind ORAMs to the PRAM setting, constructing OPRAM

protocols that enable parallel memory access similar to our protocol. Much like our own

work, [11] even developed a perfectly secure OPRAM. However, unlike our concretely efficient

PRAM, their construction remains largely theoretical due to the use of expensive primitives

such as expander graphs.

Oblivious storage. The second difference between our protocol and a traditional ORAM

is the amount of clients’ computation. In traditional ORAMs, the servers are assumed to

be memory devices supporting only reads and writes, whereas in applications such as cloud

computing the servers are also powerful machines. Consequently, traditional ORAM clients

must access a logarithmic number of physical addresses and periodically shuffle memory

elements to hide access patterns, and for this they need to invest some computational re-

sources. A lot of works [3, 14, 15, 16, 17, 18, 19] tried to leverage the resourceful servers to

accelerate an ORAM access. These constructions are sometimes called oblivious storages.

However, these constructions differ from our PRAM because they either rely on expensive

cryptographic primitives such as fully homomorphic encryption or still require clients to

expend some effort to execute a query.
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Secure-computation RAM (SCORAM) or MPC-ORAM. Lastly, integrating a tra-

ditional ORAM into an MPC protocol requires expressing the client’s and server’s computa-

tions as circuits and utilizing secure circuit evaluation techniques like Yao’s garbled circuit

[20] or the GMW protocol [21]. In contrast, our PRAM protocol can be easily incorpo-

rated into any MPC-RAM computation, as it provides a secure RAM interface that allows

RAM programs to retrieve memory elements using secret shares of logical addresses. Pro-

grams already utilizing secret-share-based techniques for security can seamlessly integrate

our PRAM into their computations by treating our PRAM as a black box. This line of

research [22, 23, 24, 25, 26, 27, 28], known as secure-computation ORAM (SCORAM) or

MPCORAM, mostly aligns with our PRAM, except that we can handle parallel queries.

3PC secure computation. Not surprisingly, there have already been works [29, 30] on

achieving semi-honest secure computation with an honest-majority, and even works [31]

on achieving full security. The 3PC setting is often considered because many expensive

cryptographic assumptions can be waived when a third party is involved. This third party

can distribute correlated randomness to the other two, greatly assisting them in comput-

ing basic primitives such as 1-out-of-2 oblivious transfers. Both previous [29] and recent

[30] works have developed concretely efficient 3PC semi-honest secure protocols with an

honest-majority, with [30] even achieving O(1) rounds of communication. However, none of

these constructions consider the PRAM model, making them less powerful than our PRAM

protocol when a high degree of parallelism is available.
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CHAPTER 3: PROTOCOL OVERVIEW

In this section, we give a comprehensive overview of our 3PC PRAM protocol. To set the

stage, we first describe a RAM protocol (i.e., without parallelism). The key property of this

RAM protocol is (1) its high efficiency and (2) its natural compatibility with parallelism.

We then demonstrate how to upgrade the base protocol with parallelism.

At a high level, our PRAM protocol will assign different roles to the different parties.

Two parties will be assigned the roles of servers, and the third will be assigned the dealer.

By carefully leveraging the dealer, we ensure that basic RAM operation can be cheaply

implemented. In short, the two servers will store the actual RAM elements and perform most

of the actual work; the dealer will prepare large amounts of metadata useful for searching

for memory elements, while also aiding the servers in otherwise expensive tasks such as

permuting an array.

The challenge in designing a secure PRAM is to make the following two cases look indis-

tinguishable to the parties:

1. When all the queries are issued to distinct logical addresses of the RAM. In this case,

we say the queries are non-conflicting.

2. When there are at least two queries that are issued to the same logical address in the

RAM. In this case, we say the queries are conflicting.

The former case is easier to handle as we can assign each query to its own processor and

ask the processors to execute their own queries in parallel. To deal with the conflicting

queries, our idea is to resolve their conflicts and then fall back to the non-conflicting case.

We start with replacing duplicate queries by dummy queries, so that each logical address is

requested by at most one query. We then proceed in the same way we handle collision-free

queries, followed by additional postprocessing of the query results to make sure that the

each processor receives the content of the logical address it requested for.

Our setting. We have 3 parties that together securely implement the RAM functionality.

We have two servers we denote by S0 and S1, and a dealer we denote by D. The servers

hold secret shares of the array, which the dealer does not have access to. The job of the

dealer is to assist the two servers in computing functionalities that would otherwise require

expensive cryptographic operations. For example, as we will see in section 4.1, permuting an

array of elements can be done efficiently with communication complexity O(wn), where w

is the size of elements stored in the array. We will also assume that S0 and S1 are powerful
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machines both have p processors numbered from p1 to pp, where each processor is capable

of executing its own instructions independently of the other processors, including the ability

to simultaneously initiate communication to the other server.

Terminology. Throughout this work, we will use the following terminology to describe

the “physical” and “logical” layers of our protocol:

• Storage refers to the physical memory that underlies our RAM, and we simply view

it as a 0-indexed randomly access large contiguous array.

• Physical address or position refers to the index into the storage, i.e. the index into

the underlying physical array.

• RAM refers to the logical memory infrastructure that our protocol builds on top of the

storage, an user of our protocol simply views the RAM as an 0-indexed random access

array capable of supporting read/write accesses. The additional operations required

to protect the access patterns are completely transparent to the user. We additionally

reserve this term for version of our protocol that isn’t yet capable of serving parallel

queries.

• PRAM refers to the parallel version of the basic RAM. An user of our protocol simply

views the PRAM as an 0-indexed random access array capable of supporting p many

read/write accesses at the same time.

• Logical address refers to the index into the RAM, i.e. the index the user uses to

access the RAM. Note that the logical address needs not equal the physical address,

and in fact they almost always differ for security concerns.

• An access or a query into our RAM (or PRAM) is a request to read or write an

element the user stored in the RAM (or PRAM). The users issue an access or query

by secret sharing the logical address it wants to access between S0 and S1. Since

the servers both have p independent processors, our PRAM can fulfill up to p many

accesses or queries at the same time.

Storage structure. We design our RAM so that each instance of the RAM can handle

m accesses, where m is a parameter the user can customize. We only require that m = 2in

for some constant i ≥ 0, with n, also a power of 2, being the number of elements stored

in our RAM. Considering only powers of 2 is a simplifying assumption, and it is easy to

generalize our RAM to any setting of parameters. To support m accesses, we require the
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underlying storage to be an array of size 2m. We organize this storage hierarchically into

log(m) = log(n) + i many levels, where the jth level holds 2j+1 elements. Physically, these

layers can be laid out sequentially, with the ith level occupying indices [2i − 1, 2i+1 − 1). On

each level, half of the elements are real elements that the user stored in the RAM, whereas

the other half of the elements are what we call dummy elements. Dummy elements exist

to help hide access patterns, in particular, they will help to hide on which level the accessed

element resides in the storage, as we will see later. Each dummy is an all-zero string. When

both servers access an element, it is important that the element be moved around in the

storage, for otherwise the servers would learn access patterns [5]. Indeed, if elements do not

move around in the storage, then accesses to the same physical address at time t and t′ tell

the server that the user wanted to access the same logical address at these time. To this

end, we additionally allow the servers each to have a 2-element memory called the stash.

When an element is accessed, they write the element back to the stash instead of wherever

it was, alongside a dummy element.

Eviction policy. We observe that the stash becomes immediately full when an element is

accessed. Thus, we must clear the stash and write it into the storage to make room for the

next access. When we clear the stash, we always write the content of the stash to the top

level, i.e., level 0, of our storage. This then also requires level 0, also only capable of holding

2 elements, to be cleared on every other access. We clear level 0 by writing its content onto

level 1, which then requires level 1 to be empty on every fourth access by writing its content

onto level 2. We call this process of clearing one level of storage and writing it to the next

level eviction.

Notice how this process corresponds exactly to incrementing binary numbers: we treat

the ith level as the ith bit of a binary number, with the 0th bit being the least significant bit.

When we write an element to the storage, we always write it to level 0, and this corresponds

to always adding 1 to the least significant bit, i.e., incrementing this binary number by 1.

Under this interpretation, 0 indicates that the level still has vacancies, 1 indicates that the

level is full, and a carry indicates an eviction has happened on the level that generated that

carry. Thus, on the tth access, the binary expansion of t conveniently indicates the occupancy

of all levels of the storage before any eviction. To implement the evictions for this access,

we increment t and note down the bit positions that generated carries, then gather all the

corresponding levels and write their contents onto the first non-carry-generating level. More

explicitly, on the tth access, we look at the binary expansion of t and locate the lowest level

that corresponds to a 0, gathering all contents from levels above, then writing them onto

this level.
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Example 3.1. Consider the 39th access, which in binary is (100111)2. Since the 0
th level of

our storage corresponds to the least significant bit, the lowest level that corresponds to a 0

is the 3rd level, and thus we gather all the elements from levels 0, 1, 2, and place them onto

the 3rd level.

Permuting the storage levels. With stash write-back and the eviction process in place,

we can ensure that an element keeps moving around in the storage, and accesses to the

same physical address at different times do not necessarily mean that the user wanted the

same element. However, at this point the servers can still infer access patterns if we are not

careful about how we place elements on each level of the storage. Indeed, if we näıvely place

the elements sequentially onto the levels, then just by looking at the position of an accessed

element and calculating its offset from the beginning position of the storage, the servers will

be able to tell exactly how long this element has been in the storage and exactly when was

the last time this element was accessed. To avoid this problem, after each eviction, we ask

all three parties to together randomly permute the level of storage just populated. As we

will see, The permutation used in this step will be randomly and uniformly sampled by D
and kept hidden from S0 and S1, and different random permutations will be used for each

eviction. After the permutation, the positioning of elements onto the storage levels is no

longer sequential, with the additional benefit that the servers now no longer knows which

elements are dummies and which elements are real. With D’s help, permuting the ith level

can be done with communication cost O(w2i), and since the larger levels are permuted less

frequently, the overall communication costs resulting from these permutations amortizes well

over the number of accesses.

The timetable T. One of the new insights and most crucial components of our RAM is

the timetable, which enables the servers to look up the physical address corresponding to a

logical address without communicating with D. With a permutation following each eviction,

when S0 and S1 want to access an element, they have no idea where this element resides

physically. While D also does not know which element resides where, our key insight is that

D does know how elements move through levels of storage. Thus, D can help the servers

search for the target physical address.

One obvious but insecure way is for S0 and S1 to send to D the time when this requested

element was last accessed, and then ask D to calculate how this element would move through

the storage and tell them where this element current resides. If we put aside security for a

moment, then we can easily see that D has the knowledge to calculate where this element

current resides, again because it knows at what time this element is evicted to which level
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and where this element resides after permuting that level.

Unfortunately, sending D the time when an element was last accessed completely reveals

access patterns to D, and thus we must find other ways to ask for its help. The crucial

observation is that how an element moves through the storage is completely independent of

the identity of that element. Indeed, it depends only on the time when that element was

lastly accessed. Thus, D can build a data structure that records how the tth accessed element

would move through the storage, for each t ∈ [0,m]. It then carefully secret shares this data

structure and sends the shares to S0 and S1, who can now refer to this data structure for the

physical address of an element. We call this data structure the timetable, and denote it by

T. T is computed at the initialization stage of our RAM by D, who then secret shares it

between S0 and S1. T can be thought of as a table that implements the following mapping:

T : Jt′K 7→ J((t1, p1), . . . , (tl, pl))K, (3.1)

where t′ is the last time an element was accessed, and (ti, pi) means that from time ti

(inclusive) to ti+1 (exclusive), this element lived at physical address pi. Here we used the

notation JaK to denote a XOR secret share of a. We quite literally implement the timetable

as a look-up table, where each row is a key-value pair of the above form. The timetable is

stored “locally” in secret shared form by S0 and S1, in some random access memory structure

that’s not part of of our RAM. Protecting access patterns into these working memories is

not a major concern, as we will see these access patterns are easily simulatable. We point

out that the rows of the timetable must be permuted as well, for otherwise when S0 and S1
access a row t′, they now learn that the currently requested element was lastly accessed at

time t′. This permutation, π, is again uniformly and independently sampled by D and again

kept hidden from S0 and S1.

The position map P. Since each row of T records how an element would move through

the storage after the last time it was accessed, if S0 and S1 wants to retrieve the row

associated with the currently accessed element, they must know when was its last access

time. In other words, we need yet another data structure that maps secret shares of an

logical address to secret shares of its last access time Jt′K. In fact, since the timetable rows

are permuted according to π, they need to know π(t′) for indexing the permuted timetable.

We call this data structure the position map, and denote it by P. P can be thought of as

a table that implements the following mapping:

P : JαK 7→ Jπ(t′)K, (3.2)
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where α is a logical address, t′ is the last time α was accessed, and π(·) is the permutation

on the rows of the timetable. We notice that the access patterns into P also must be

protected or otherwise it exposes α, and also notice that P takes secret shares of an logical

address and maps it to some secret shared output. This data structure is thus required to

achieve exactly the same functionality as our RAM, and has exactly the same semantics as

our RAM. Therefore, perhaps not surprisingly, we will implement P recursively as another

instance of our secure RAM, where we explicitly force each recursively instantiated RAM to

have half the size of the last, so that the recursion will terminate in log(n) steps.

Tying it all together. We are now finally ready to explain how to execute a logical access

in the basic non-parallel RAM. To access a secret shared logical index JαK at time t, S0 and
S1 first query the position map P with the exact same JαK, from which they get out Jπ(t′)K,
with t′ being the last access time of α. They then reveal this π(t′) to themselves and locally

use this to read out their share of the associated row from the timetable. They obliviously

scan through this row, looking for the entry J(ti, pi)K so that ti is the largest time ≤ the

current time. pi is thus the physical address of α. However, it is not yet safe to for them to

reveal pi as it tells them whether α was recently accessed. Indeed, if α was recently accessed,

pi would be in the top levels of the storage, but otherwise it would be in the lower levels.

The dummies we stored on each level can help us avoid this problem. The servers will ask

D to send over a secret shared list of dummy physical addresses, sampled one per level and

without replacement.

They then obliviously use pi to replace the dummy address on the same level. After the

replacement, they would finally reveal to each other this list of addresses, and the dummy

addresses help to hide which level pi was on. Notice that this means that the servers see

exactly one address per level, regardless of which level the target memory element is actually

on. Furthermore, each revealed address is uniformly random (without replacement) within

its level, a fact that is ensured by permutations on RAM levels.

The servers proceed to read the storage using this list of addresses, what they get back are

secret shares of a list of dummies, except for one being the real element at logical address α.

Since the dummies are all-zero strings, S0 and S1 can locally XOR together all the shares

in their list. at the end of which they each hold shares of the element at logical address

α. (Note, this revealing of one element per level is similar to the Garbled RAM technique

of [32].)

Now that the servers have accessed element α, they must prepare for the next time α is

accessed. To do so, they ask D to send over Jπ(t)K where t is the current time, and overwrites

P[α] with this new value. This way, when α is accessed again in the future, the position
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map stores the current time, which is indeed the last access time of α. Finally, S0 and S1
checks the binary representation of t and determine the levels that should be evicted. They

gather the elements from these levels, place them onto the next level, and permutes the next

level with the help of D. This concludes this access of the RAM.

Initialization. Before our RAM starts to work, we want to make sure that we have stored

all the elements the user passed to our RAM and that we have properly initialized all

components of our RAM. This includes the storage, the timetable, but more importantly,

the position map.

Recall that in the position map, P[α] is the last access time of logical index α, but at the

beginning of our protocol, α was never accessed before. Therefore, we must manually access

each element at the beginning of the protocol, so that we have something to store in the

position map. We do this by requiring that, after the user has passed us all the elements to

store and before we allow the user to use our RAM, S0 and S1 spend n time steps writing

these n elements to our storage. S0 and S1 will write all these elements to level log(n) of

the storage, which is just enough to hold these elements along with n dummies. All parties

then permute this level together.

D would add n more rows to the timetable, each associated with a time step t ∈ [1, n].

These rows, as usual, record how an element will move through the storage after it’s been

written at time t, though this time D keeps in mind that these elements started at level

log(n) instead of level 0. S0 and S1 then ask for π(t) from D and pass these to the top-level

position map P in the same way that the user passed our RAM the elements they want to

store. The recursive position maps are then initialized in the same way. From S0 and S1’s
perspective, the access pattern of the initialization step is simulatable by just sequentially

writing random elements to the first n positions on level log(n) of our storage.

From D’s perspective, it receives inquiries about π(t) for t ∈ [1, n], and this is trivially

simulatable. We point out that although D knows the physical address corresponding to

each logical address immediately after the initialization, this information soon becomes stale

since D does not know which element will be accessed when.

Refreshing. To ensure the storage size remains bounded, we limit each instance of RAM

to only support m queries. However, we anticipate the need of an user to issue more than

m queries into our RAM. We use k to denote the number of queries the user issue, and

explain how to handle the case where k > m. In this case, a single instance of our RAM

is not sufficient for these queries, as it simply does not have enough storage for eviction.

Therefore, we must instantiate another fresh RAM and copy the contents of this RAM
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over, the new RAM can support another m queries. We call this process refreshing, and

by constantly refreshing our RAM, we will be able to serve all k queries the user issued.

Refreshing consists of two stages, where stage one is reading the elements out of the current

RAM and stage two is copying these elements to a new RAM.

The second stage can be easily implemented by handing the elements we read from stage

one to a newly instantiated RAM, in much the same way the user handed these elements

to the first instance of our RAM, and the newly instantiated RAM proceeds as described in

the initialization section above.

To implement the first stage, S0 and S1 will access logical addresses [1, n] sequentially.

They access these logical addresses by following the same process as a normal access, al-

though there is no need to enforce the eviction policy anymore as nothing is written back

to the storage. Also, since m is a power of 2, at the end of m queries, all elements will

be stored at the lowest level of our storage, and as such there is no need to hide the level

information of a physical address. That is, during this stage, the servers will not ask from

lists of dummy addresses from D, saving us some communications.

Notations. The notations we adopt throughout this work is listed in Table 3.1.

S0,S1 the servers

D the dealer

n the capacity of our RAM, i.e. number of elements stored

m the maximum number of accesses that an instance of our RAM supports

k the number of accesses that our RAM needs to serve

w the word size of our RAM

p the number of processors each server has

threshold the threshold for terminating position map recursion, usually = p

JxK XOR secret share of x

(x0, x1) = JxK x is secret shared into x0 and x1 with Si holding xi

Π a general permutation

π the permutation on the rows of the timetable

[n] the set of integers {1, . . . , n}
[i, j] the set of integers {i, . . . , j}
[i, j) the set of integers {i, . . . , j − 1}
T the timetable

Table 3.1: List of notations
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l number of entries in a row of the timetable

Pi for i ≥ 0 the ith level position map, where the top level one is also denoted P

A[x] the xth entry of an indexable structure A (table, array, RAM, tuple, etc.)

Ax an alternative way of writing the above

Q a vector of queries (q0, . . . , qp)

Q a sequence of parallel queries

R a vector of query results (r0, . . . , rp)

λ the empty string, indicating a party has no input or output

Ffunc a functionality named func

Πfunc a secure protocol for computing Ffunc

χq the one-hot encoding of q ∈ Q
χQ the characteristic string associated with Q

Table 3.1: Continued from previous page

When we append a subscript i to a parameter of our RAM, we mean that it’s the same

parameter for the ith level position map. For example, ni is the capacity of the ith level

position map.
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CHAPTER 4: FORMAL APPROACH

In this chapter, we explain in detail the various building blocks of our protocol. Starting

from the permutation functionality that underlies much of our security guarantees in section

4.1, we gradually build towards a secure PRAM that is capable of handling parallel queries

in 4.4.

To improve the organization of our content, we will treat non-conflicting and conflicting

queries as distinct cases. However, we want to emphasize that in practice, these cases are not

truly separate. Ensuring that the views in these two cases are indistinguishable is critical

for security reasons. If we were to handle Q differently depending on whether it has a

conflict, the resulting views would be easily distinguishable. Therefore, we want to draw the

reader’s attention to the fact that, when handling parallel queries, Q always goes through

the same workflow as described in section 4.4.4, regardless of collision. In the case that Q is

non-flicting, the additional steps we perform on it has no effect.

4.1 PERMUTATION OF AN ARRAY

Permutation is a fundamental building block of our protocol that underlies much of our

security guarantees. Indeed, we permute the storage levels to hide which elements are real

and which are dummies, we permute the timetable rows so that the servers don’t learn the

last access time of a particular element, and as we will see later, when handling parallel

queries, we follow the shuffling-before-sort paradigm in [33] and permute the query vector Q
before sorting it so that the ensuing sorting does not reveal ordinal relations among queries

in the original Q.
In this section, we will look at 2 variants of the same permutation protocol. The first

variant is less efficient but perfectly secure, whereas the second one is more efficient but

only computationally secure. Concretely, to permute an array of n w-bit elements, the first

variant has communication complexity 6wn + 2n log(n) and rounds complexity 8, whereas

the second variant has communication complexity 3wn and rounds complexity 3, but relies

on computationally secure one-way functions.

4.1.1 The perfectly secure but less efficient permutation protocol

As we already pointed out, permutation is a frequently computed functionality in our

protocol, and thus it is crucial for efficiency that we employ an efficient and secure 3PC
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Functionality 4.1: Fperm

Parameters: Parties S0,S1,D. S0 and S1 share a n w-bit element array
(A0, A1) = JAK. D does not have any input.
Procedure: 1. Reconstructs A from A0, A1.
2. Samples a random permutation Π uniformly and randomly from the set of
permutations on [n].
3. Secret shares (Π(A)0,Π(A)1) = JAK and sends them to S0,S1, respectively. Sends
Π to D.
4. S0,S1 outputs Π(A)0,Π(A)1, respectively, and D outputs Π.

Figure 4.1: The ideal functionality Fperm.

permutation protocol. We adopt the resharing-based permutation protocol from [34] and

[35] and slightly tailor it to our setting. Formally, we want to compute the ideal functionality

Fperm listed in Figure 4.1.

The protocol Πperm that we use to compute Fperm is listed in Algorithm 4.1. In this

permutation protocol, we will utilize the reshare functionality Freshare which operates on

secret shares and “rerandomizes” them. Specifically, Two parties P0 and P1 holding secret

shares (x0, x1) = JxK participate in Freshare with their own share, and Freshare delivers new

shares (x′
0, x

′
1) = JxK to P0 and P1. Usually, x

′
0 and x′

1 is required to look uniformly random

to P0 and P1. However, for our application, it suffices to use a resharing scheme where

P0 and P1 just agree on a random string and both XOR it to their existing shares, and

this is indeed the reshare we use in Πperm. In the perfectly secure setting, we make the

arbitrary choice that the first party always sends this random string to the second party,

except the resharing in line 1 where this is reversed (so that line 2 is simulatable for D).
To avoid complicated notation, we denote both the original shares and the new shares by

(x0, x1) = [x], but it should be understood that after an execution of Freshare, the shares of

the parties necessarily change. Furthermore, whenever D and Si together sample a random

permutation in Πperm (such as on line 4), it suffices for D to just select a random permutation

locally and send it to Si.
Intuitively, this protocol is secure because D never receives anything related to S1’s input

A1 and as such it does not learn A1, nor does it learn A0 because the first resharing on line

1 effectively hides it. The second resharing on line 3 prevents S0 from learning anything

about A1, and the third resharing on line 6 prevents S1 from learning anything about Π0,

from which it can obtain Π = Π0 ◦ Π1.
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Algorithm 4.1: Πperm(A0, A1, λ)

Input: A0, A1, λ from S0,S1,D, respectively
Output: Π(A)0,Π(A)1,Π for S0,S1,D, respectively

1. S0 and S1 reshare JAK
2. S0 sends A0 to D
3. S1 and D reshare JAK
4. D and S1 together samples Π1

5. S1 sends Π1(A1) to S0
6. S0 and D reshare JΠ1(A1)K
7. D and S0 together samples Π0

8. D sends Π0(Π1(A0)) to S1
9. Let Π = Π1 ◦ Π0

10. S0,S1 outputs JΠ(A)K
11. D outputs Π

4.1.2 The computationally secure but more efficient permutation protocol

The current implementation of Πperm does not achieve optimal communication and rounds

complexity. The pseudocode in Algorithm 4.1 requires eight rounds of communications

between the parties, including 3 rounds for the resharings on lines 1, 3, and 6, and 2 rounds for

sampling the permutations on lines 4 and 7. These communications along contribute 3wn+

2n log(n) to the overall communication complexity and 5 to the overall rounds complexity.

However, if we assume the existence of one-way functions and aim for computational security

only, we can optimize Πperm and eliminate these communications. This reduces the overall

communication complexity to exactly 3wn and the rounds complexity to exactly 3.

The key insights behind saving these communications is that the goals they want to achieve

can be easily achieved if the communicating parties can agree on a common random string.

Indeed, if this is the case, resharing can be achieved by asking both parties to XOR their

common random string to their shares, and sampling a permutation can be achieved by

interpreting their common random string as a permutation. To this end, we require that at

the beginning of the protocol, D agrees with S0 on a stateful pseudorandom generator

(SPRG) [36] G0 and a seed s0, and agrees with S1 on a different SPRG G1 and a seed s1.

Both SPRGs should be capable of handling 5m invocations. Whenever D and Si need to

agree on a common random string, they can locally query the SPRGs they previously agreed

on, which return the same result to both parties. We can select the SPRGs G0 and G1 so

that their outputs are max(wn, n log(n)) bits, and discard the redundant bits in the output

for use in the shorter scenario. These modifications to Πperm do not obstruct D’s ability to

construct the timetable, as D can perform lookahead into the SPRGs during construction.
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Later, when the protocol starts running, D will act consistently with the lookahead values

it already obtained. Although the security of the modified Πperm is less obvious, formal

simulation proofs for both the original and modified Πperm will appear in Chapter 5.

4.2 THE TIMETABLE

The timetable T is a data structure that maps a time step t to the list of positions that

the element accessed at time t would move to. It’s stored directly in secret shared form on

both servers’ working memory, which is independent of our RAM. To prevent the servers

from learning when the current element was last accessed, the rows of the timetable are

permuted such that the servers cannot determine which timestep each row corresponds to.

In this section, we will examine the workflow involved in using the timetable. When

accessing the relevant row for their current target element α, S0 and S1 must extract the

current physical address of α through a two-step process. Firstly, they need to scan through

the row to find the entry that records the current physical address. Secondly, to hide on

which level this physical address is, they need to request a list of dummy addresses from D
and replace the dummy address at the same level as α with its physical address.

We will start with a review of timetable’s format and size, and then move on to the

two-step process in section 4.2.2.

4.2.1 Format and size of the timetable

According to our storage structure and eviction policy, when an element is accessed at

time t and written back to the stash, it gradually moves towards the lower levels of storage.

In principle, an element can move through all levels of the storage and reach the lowest level,

even though with at most m allowed accesses to one instance of our RAM, some elements

written later may never reach certain levels. To make these two cases look indistinguishable

in the timetable, we require that all rows contain the same number of entries as the levels

in the storage, which is log(m) = log(n) + i. For the rows where the element can’t reach a

certain level, D appends random entries to the end to fill them up.

Each entry of a row is of the form (ti, pi), indicating that at time ti, the element moved

to position pi in the RAM. If an element is accessed again, it is written back to the stash

and starts from level 0 of the storage, rendering the rest of the row inaccurate. Therefore,

the tth row of the timetable describes how the element accessed at time t will move through

the storage up to the point it is accessed again.
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The timetable needs to have m + n rows since one instance of RAM supports up to

m accesses and we need the additional n rows for initialization. Each entry (ti, pi) takes

log(m) + log(2m) = 2 log(m) + 1 bits to represent, and each row contains log(m) entries.

Therefore, the entire timetable takes (m + n)(2 log(m) + 1) log(m) = O(n log2(n)) bits to

represent. This incurs a communication cost of O(n log2(n)) when the dealer initially sends

the timetable to the servers. However, when amortized over k = O(n) many accesses, this

cost becomes O(log2(n)).

4.2.2 Extracting current physical address from a row

When S0 and S1 want to determine the physical address of the element α they are currently

accessing, they first consult the position map to find π(t′), where t′ is the last access time

of α. π(t′) serves as an index into the timetable, and each server retrieves shares of the

corresponding row locally. They then read this row and locate the correct entry, which is

the entry with the largest ti ≤ the current time t. Throughout this step, it is critical that the

servers do not reveal the time step or physical address of any other entry, as such information

could lead to partial discovery of access patterns, compromising security.

Example 4.1. Suppose the current time step is 39, and the relevant timetable row is

J(0, 4), (2, 5), (4, 9), (8, 13), (16, 27), (32, 51), (64, 99)K, then the entry with the largest ti still

≤ 39 is (32, 51), which indicates that currently the element is at physical address 51. There-

fore, after the first step, the servers output J51K.

In the next step, the servers request thatD provide a list of physical addresses for dummies.

These dummy addresses are uniformly and randomly sampled without replacement, with one

address selected from each level. S0 and S1 then scan through this list of addresses, replacing

the dummy address on the same level as α with α’s physical address. It is important to

note that this sampling without replacement is crucial for security. If the same position

is accessed across two closely-timed queries, S0 and S1 could infer that a dummy is being

accessed rather than a real element. This is because real elements are written back to the

stash and start from level 0, while dummies remain in place until the next eviction. This in

turn reveals partial information about on which level the accessed element resided, and thus

compromising security.

Example 4.2. Suppose the list of physical addresses D shared is J(1, 4, 13, 25, 57, 106)K and
the physical address for α is 51, then 57 is the dummy on the same level as α. Therefore,

after the second step, the servers output J(1, 4, 13, 25, 51, 106)K.
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Functionality 4.2: Fbinsearch

Parameters: Parties S0,S1,D. S0 and S1 share an ordered l element array
(A0, A1) = JAK and a search key (k0, k1) = JkK. D does not have any input.
Procedure: 1. Reconstructs A from A0, A1 and k from k0, k1.
2. Runs binary search on A with search key k. Let the resulting element be
a = maxi∈[0,l−1]{ai ≤ k}.
3. Secret shares (a0, a1) = JaK and sends them to S0,S1, respectively.
4. S0,S1 outputs a0, a1, respectively, and D outputs λ.

Figure 4.2: The ideal functionality Fbinsearch.

We notice that both steps are essentially searching through a list of ordered elements

with a search key, where in the first step the search key is the current time step and in the

second step the search key is α’s physical address. As such, we will use an efficient binary

search protocol to compute both steps. Formally, we want to compute the ideal functionality

Fbinsearch listed in Figure 4.2.

The specific protocol we use to compute Fbinsearch is adapted from the rotation-based binary

search (RotBS) protocol in [37]. For convenience, we will make the simplifying assumption

that we are searching through an array A whose length l is a power of 2, however, we can

easily generalize this to any array by padding it with random elements with large keys.

For arrays of such length, there is an unique perfect binary search tree, where the root is

A[⌊l/2⌋ + 1], the left child of the root is A[⌊l/4⌋ + 1], and the right child of the root is

A[⌊3l/4⌋+1], and so on. Performing binary search on A is then equivalent to traversing this

binary tree from the root to the last level. The problem with a näıve binary search is that it

will completely expose the search path through this tree, and RotBS addresses this problem

by randomly permuting each level of the tree. This way, whenever the servers access a node,

they no longer know which node it originally was, and thus the search path is hidden to

them.

Taking this idea one step further, we observe that for applications where we search through

A only once, such as the two applications we consider, we can randomly swap the left and

right child of a node to achieve the same effect as permuting the entire level. In both schemes,

the search path exposed to the servers is randomly and uniformly distributed among all

possible paths. Our slight modification significantly improves the efficiency of the binary

search protocol, since a conditional swap of two children is much cheaper to implement than

adding a rotation offset and taking a modulus, as is required in [37]. In fact, since S0 and

S1 only search through A once and as such only expose one search path, we can even use
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the same swap decision for all nodes on the same level. These swap bits are sampled by D
randomly and sent to the servers, in addition, D will also order A as a flat binary search

tree to facilitate the search procedure.

Our protocol for computing the binary search, Πbinsearch, is listed in Algorithm 4.2. All the

computations in Πbinsearch are implemented as circuits, except for revealing d on line 6 and

accessing ad on line 7. In this pseudocode, compare(JxK, JyK) realizes the binary operator <,

which returns 1 if x < y and 0 otherwise.

Algorithm 4.2: Πbinsearch((A0, B0, k0), (A1, B1, k1), λ)

Input: S0 and S1 hold secret shares of (A0, A1) = Ja0, . . . , al−1K, already ordered as
a binary search tree. They also holds secret shares of the swap bits
(B0, B1) = Jb0, . . . , blog(l)−1K and the search key (k0, k1) = JkK. D has no
input.

Output: JaiK where i = maxj∈[0,l−1]{aj ≤ k}.
1. JpK = Ja0K // the element to return

2. JdK = 0 // the current index in A
3. JcK = compare(JkK, Ja0K) // the current comparison result

4. for i = 1, . . . , log(l)− 1 do
5. JdK = (J2d+ 1 + cK) · bi ⊕ (J2d+ cK) · (¬bi) // calculating next index

6. S0 and S1 reveal d
7. JaK = JadK // the current element

8. JcK = compare(JkK, JaK)
9. JpK = JcK · (JaK⊕ JpK)⊕ JpK // replace JpK by JaK if a < k

10. return [p]

Remark 4.1. As a side note on implementation, we remark that the calculation of the next

index to visit on line 5 can be hard-coded into the circuit. Indeed, it is a function determined

by two bits c and bi, and its “truth table” is given in Table 4.1. By hard-coding this table

as a constant size and constant depth circuit, we avoid the expensive additions otherwise

required, and this is a major efficiency improvement over the basic RotBS in [37].

bi c next index
0 0 2d+ 2
0 1 2d+ 1
1 0 2d+ 1
1 1 2d+ 2

Table 4.1: The “truth table” for calculating next index in Πbinsearch.
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With our optimization, the majority of computation required is the log(l) sequential com-

parisons. We will soon show how to implement comparison on w-bit strings with O(w)

communication complexity and O(log(w)) rounds complexity. But taking them as granted

for now, we conclude that computing the binary search on an array of l w-bit elements incurs

O(w log(l)) communication cost and requires O(log(w) log(l)) rounds. In both of our appli-

cations, l = O(log(n)) = w, and so computing the binary search incurs O(log(n) log log(n))

communication cost and requires O((log log(n))2) rounds.

4.3 THE POSITION MAPS

As a reminder, when reading the timetable to determine the current position of an element,

the servers must have access to information about when the element was last accessed.

However, storing this information in plain text would reveal access patterns, so the servers

must instead store secret shares of this information in a data structure. We require this data

structure to be randomly accessible when provided with secret shares of a logical address.

Our RAM is ideal for this purpose: its contents are secret shared between the servers and it

supports random access when provided with secret shares of a logical address. As a result,

we can recursively implement the position map as another instance of our RAM.

4.3.1 The recursive case

To ensure that the recursion process stops, we need to reduce the number of elements in

each position map as we go down the recursion. We accomplish this by “packing” two entries

of a position map into one entry when creating the next level position map. Let P = P0

be the top-level position map that serves the RAM directly. The number of elements in

this position map is the same as that of our RAM, which is n. However, as we create the

next position map P1 to serve P0, we want to ensure that it only stores n/2 elements.

To achieve this, for any two consecutive logical addresses (α2i, α2i+1), where i ∈ [0, ⌊n/2⌋],
we store the last access times of each of them as a single entry in P1. In other words,

P1[i] = (t′2i, t
′
2i+1), where t

′
2i is the last time α2i was accessed, and t′2i+1 is the last time α2i+1

was accessed. This policy applies to every Pi as long as i ≥ 1. We also require that m

is halved each time we recurse, so that the relation n = 2im is maintained. It may seem

that packing two entries into one entry in the position map would exponentially increase the

word size w of the recursive position maps. However, this is not the case. In reality, the

size of the entries in the position maps only depend on the maximum number of accesses

m that an instance of the RAM can support. As we halve m from Pi to Pi+1, we have
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wi+1 = 2 log2(mi+1) = 2(log2(mi)− 1) = 2 log2(mi)− 2 = wi−1− 2. Thus, the words become

two bits shorter from Pi to Pi+1.

It is important to keep in mind that accessing the main RAM requires accessing all of

the position maps Pi as well. Therefore, while n is halved and w is reduced by 2 at each

recursion, the lower level position maps still need to handle the same number of accesses

as the main RAM. As m is also halved, the number of position map instances increases

exponentially with each level of recursion. This means that at some point, the workload

required to refresh these position maps can become overwhelming, severely impacting the

efficiency of our RAM. To avoid this issue, we need to set a threshold value threshold, such

that once the number of elements stored in a position map drops below this threshold, we

terminate the recursion and use a different technique to manually serve the queries.

4.3.2 The base case

As previously observed, lower-level position map work is dominated by refreshing. When

the size of the position map drops below a certain threshold that can be fine-tuned, we switch

to explicit query handling. At this point, the base case position map no longer has the same

storage structure as the recursive ones, nor does it have the same components. We explicitly

eliminate the hierarchical storage structure, the eviction policy, the timetable, and obviously

the position map.

Instead, to hide access patterns, we read every element stored in this position map when a

query reaches it, and linearly scan through the results for the queried element. This ensures

that the access pattern is easily simulated and security is guaranteed. This simple scheme

works for non-parallel RAM since there is only one query and one linear scan through the

contents suffices. However, when we upgrade our RAM to PRAM, the base case position

map must now serve p queries, and performance will be severely impacted if we näıvely

scan through the contents of the base case position map p times. As the result, a different

approach is necessary, and we will elaborate on it in the following section.

4.4 UPGRADING RAM TO PRAM

We have successfully developed a basic RAM that allows index-oblivious querying by the

user. Compared to traditional ORAMs that require the query index to be given in clear

text to the compiler, our RAM is already more powerful. Indeed, a traditional ORAM can

be obtained from our RAM by asking S0 and S1 to exchange shares of the queried logical

address to reconstruct it in clear text. Where our PRAM truly stands out is its ability
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to handle queries in parallel. In the current setting, we imagine there are p users of our

PRAM, and they each issue a query into our PRAM. We collect the queries into a query

vector Q = [(q0, . . . , qp−1)] where the ith user issued the ith query and each qi is a logical

address ∈ [0, n − p). Q could contain duplicate queries, that is, for i ̸= j ∈ [0, p − 1], we

might have qi = qj. We say that in this case, we have a conflict. Our challenge is to

ensure that the physical access patterns and parties’ views look indistinguishable regardless

of conflicts. To handle queries in parallel, we need to leverage the parallelism we have and

make modifications to some of our components. Fortunately, we will only need to change the

storage structure, the base case position map, and find a new way to interpret the timetable.

4.4.1 New storage structure

The first and most straightforward modification to our existing RAM is to increase the

size of storage levels to accommodate the simultaneous access of p elements. We allow each

processor to have its own stash of size 2, which means we need to store 2p elements in

the 0th level of our storage when we clear the stashes. This change requires a proportional

increase in the size of all levels in our storage by a factor of p. However, this does not

increase the total size of our storage, as we now need fewer levels. The eviction policy also

changes, as the parties must now permute levels of increased size. Nonetheless, our binary

number increment interpretation of the eviction policy still applies, since we can now treat

p elements as a single unit and always write a unit of elements at each epoch. We generalize

the notion of a time step to an epoch, calling the servicing of p parallel queries as one epoch.

When p = 1, an epoch reduces to a time step. The epoch counter conveniently indicates the

occupancy of our storage levels, with the ith bit of this counter corresponding to the ith level

of our storage and the least significant bit representing the 0th level.

4.4.2 New semantics of the timetable

The timetable used to store how elements accessed at a particular time step would move

around in the storage. However, with the generalization of a time step to an epoch, the

semantics of the timetable must change. To this end, we arbitrarily stipulate that during

the ith epoch, the element requested by qj is accessed at ”time step” ip + j, for j ∈ [1, p].

This does not mean that we are executing the queries sequentially; rather, it means that

when D generates the timetable, it has a consistent way to assign different rows for the

elements accessed in the same epoch. Additionally, when S0 and S1 later ask for π(α) from

D, which is essentially the ”last access time” of an element, the notion of ”last access time”
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is now well-defined. The rest of the timetable remains the same. D still adds n rows to it

during initialization, knows how to generate the contents of each row since it samples all

the permutations to be used in evictions a priori, and can still order the rows in a way that

facilitates binary search.

4.4.3 Handling non-conflicting queries

When Q consists of p distinct queries, our RAM with modified storage structure already

suffices. Indeed, since the p queries are all distinct, S0 and S1 can assign the ith query to the

ith processor. Each of these processors will fetch distinct rows of the timetable, D will sends

distinct lists of dummy addresses, sampled without replacement on each level so that no two

queries will access the same elements on the same level. This sampling without replacement

is again crucial for security for the following reason: the queries themselves are distinct,

so this implies that the physical addresses corresponding to these queries are also distinct.

Therefore, if S0 and S1 observed a position accessed across different processors, they can

infer that this position stores a dummy instead of a real element, and now they have gained

partial information about which level of storage the elements are on.

Following the physical accesses, S0 and S1 will ask for π(t) from the D, interpreting t

for each element in the way we previously mentioned, and store these entries into the top-

level position map. Even though the entries passed to the position map are still distinct

at this level, but as a result of the way we enforced recursion termination by manually

packing two entries into one in the recursive position maps, there will be higher chance

of collision as we move from Pi to Pi+1. In fact, when we move from Pi to Pj+1 with

Qi becoming Qi+1, the pairwise distance of logical addresses queried in Qi+1 is 1/2 of its

counterpart in Qi. For example, suppose Q = Q0 = [(2, 6, 5, 3, 7, 0, 1, 4)], then in P1 we have

Q1 = [(1, 3, 2, 1, 3, 0, 0, 2)], in P2 we have Q2 = [(0, 1, 1, 0, 1, 0, 0, 1)], and finally in Q3 all the

queries are to the same logical address 0. In general, when we move from Qi to Qi+j, we

see that |Qi+j[x] − Qi+j[y]| = 2−j|Qi[x] − Qi[y]|, and as such the collision chance increases

exponentially as we move down the recursion.

4.4.4 Handling conflicting queries

In this case, Q contains at least one pair of queries to the same logical address, either

as a result of two users wanting to access the same elements, or as a result of moving

down the recursion. We want to ensure that the access patterns and parties’ views looks

indistinguishable from the non-conflicting case. Our idea is to resolve the conflicts in Q,

27



Functionality 4.3: Fdedupe

Parameters: Parties S0,S1,D. S0 and S1 share a query vector (Q0, Q1) = JQK. D
does not have any input.
Procedure: 1. Reconstructs Q from Q0, Q1.
2. Initialize a p-bit string b = 0p.
3. Scan through Q, for each pair of indices such that qi = qi+1, set bi+1 = 1 and
qi+1 = n− p+ i+ 1.
4. Secret shares Q and b with S0 and S1, (Q0,Q1) = JQK, (b0, b1) = JbK.
5. S0,S1 output (Q0, b0), (Q1, b1), respectively, and D outputs λ.

Figure 4.3: The ideal functionality Fdedupe.

query for the elements as in the non-conflicting case, and finally post-process the results so

that each processor gets back the element it wanted.

The conflict resolution begins with sorting Q, so that future processing on Q is more

efficient. Our sorting method follows the general shuffling-before-sorting paradigm pro-

posed in [33]. The basic idea behind this paradigm starts with the observation that normal

comparison sorting algorithms is not secure because they reveal the ordinal information of

compared elements. However, if we randomly permute the elements prior to sorting, the or-

dinal information revealed during the comparisons no longer correlates to where the elements

truly are.

Therefore, we first ask all three parties to permute Q together, and then let S0 and S1 run
a revealing Batcher sorting network [38], in which the choices for swapping pairs of elements

are made public. This way, both servers can later undo the sorting locally by running the

Batcher network backward and reversing these choices. We emphasize that this shuffling-

before-sorting step is only performed in the top-level RAM, as the queries induced in the

recursive position maps will always be sorted moving forward.

After sorting Q, S0 and S1 will deduplicate it to obtain a new query vector Q′ where

the duplicate queries are replaced by fake ones, and then serve these queries as in the non-

conflicting case. If qi+1 was a duplicate of qi, then S0 and S1 will replace qi+1 by logical

address n− p+ i+ 1, which is the special purpose logical address we reserved for processor

pi+1. We call this replaced query a fake query and the target element a fake element.

Because we sorted Q in the previous step, deduplication can be realized with high degree

of parallelism. Formally, we want to compute the ideal functionality Fdedupe listed in Figure

4.3.

When the query results are returned, S0 and S1 need to rearrange them so the ith processor
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Functionality 4.4: Fcopy

Parameters: Parties S0,S1,D. S0 and S1 share a query result vector (R0,R1) = JRK
and the duplication indicator string (b0, b1) = JbK from Figure 4.3. D does not have
any input.
Procedure: 1. Reconstructs R from R0,R1 and b from b0, b1.
2. Scan through R and b simultaneously from left to right. If bi+1 = 1, set Ri+1 = Ri.
3. Secret shares R with S0 and S1, (R0,R1) = JRK.
4. S0,S1 output R0,R1, respectively, and D outputs λ.

Figure 4.4: The ideal functionality Fcopy.

correctly gets back the element RAM[qi]. We tackle this rearrangement problem in two steps,

or one step if we are in one of the recursive position maps.

Firstly, S0 and S1 need to overwrite the fake elements with the real ones. Since the fake

queries were duplicates in the first place, this process is essentially copying the real elements

to the corresponding fake ones, and we call this process copying. To aid copying, we let

Fdedupe outputs shares of a bit-string b which we call the duplication indicator string. bi

indicates whether the ith query was fake (i.e., duplicate) or real. Formally, we want to

compute the ideal functionality Fcopy listed in Figure 4.4.

The second step is only necessary if we are in the top-level RAM, for otherwise we have

finished processing R and can simply return it up the recursion. If we are in the top-level

RAM, however, S0 and S1 must reverse the sorting and permutation applied earlier. They

accomplish this by first locally running the Batcher network backwards, using the choices

bits they memorized before. At the end of this sorting reversal, the only remaining step is

to reverse the permutation. Fortunately, D can assist S0 and S1 in this task as it remembers

the permutation used earlier. Now, each processor has acquired the element it wanted, and

so it returns the element to the user.

We proceed to describe our circuit implementation of Fdedupe. Because Q is already sorted,

it suffices to compare each consecutive queries (qi, qi+1) in parallel. If they are equal, we will

replace qi+1 by n − p + i + 1 and set bi+1 = 1, otherwise, we leave qi+1 unchanged and set

bi+1. Note that bi+1 = eq(qi, qi+1) and qi+1 = MUX(bi+1, qi+1, n − p + i + 1). Here, eq(x, y)

is the string equality comparison in Definition 4.1 and MUX(c, x0, x1) is the 2-to-1 string

multiplexer in Definition 4.2.

Definition 4.1 (eq(x, y)). The string equality comparator, denoted eq(x, y), returns 1 if

x = y and 0 otherwise.
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Definition 4.2 (MUX(c, x0, x1)). The 2-to-1 string multiplexer, denoted MUX(c, x0, x1),

takes in three inputs: control bit c, candidate string x0 and candidate string x1, and returns

xc.

Since all the pairs of consecutive queries are examined in parallel, the depth of this circuit

will be the sum of the depths of an eq andMUX, which is O(log(p)) for p-bit strings. Equality

between bits can be concisely implemented as a XNOR gate, which is the negation of XOR

and can be expressed as eq(b0, b1) = ¬(b0 ⊕ b1). Thus, the n-bit string equality comparator

eq(x, y) can be written as

eq(x0 . . . xp−1, y0 . . . yp−1) =

p−1∧
i=0

eq(xi, yi), (4.1)

where the
∧

denotes an AND gate of fan-in p. However, remember that we are only allowed

AND gates of fan-in 2, consequently, we need p − 1 fan-in 2 AND gates to implement a

fan-in p AND gate. To minimize the depth, we leverage on the associativity of AND, which

enables us to evaluate (4.1) in any order we wish. We select to evaluate it hierarchically like

a binary tree on p-elements, where we combine two fan-in 2i AND gates to form a fan-in

2i+1 AND gate, for i ∈ [⌈log(p)⌉ − 1]. The pseudocode describing this construction is given

in Algorithm 4.3.

Algorithm 4.3: eq(x, y)

Input: a pair of p-bit strings x = x0 . . . xp−1, y = y0 . . . yp−1

Output: 1 if x = y and 0 otherwise
1. if |x| = |y| = 1 then
2. return ¬(x⊕ y)

3. return eq(x1 . . . x⌊p/2⌋, y1 . . . y⌊p/2⌋) ∧ eq(x⌊p/2⌋+1 . . . xp, y⌊p/2⌋+1 . . . yp)

With the eq(x, y) gates at our disposal, we can produce the duplication indicator string b

by running eq(x, y) on all pairs of consecutive queries (qi, qi+1) in parallel. In other words,

we have

b = 0 || eq(q0, q1) || · · · || eq(qp−2, qp−1). (4.2)

Each bi+1 is then fed as control bits to MUX gates, also laid out in parallel for each qi+1.

To implement string MUX gates, we start with bit MUX gates. A bit MUX with inputs

c, b0, b1 can be expressed as MUX(c, b0, b1) = (c ·b0)⊕ (¬c ·b1), requiring only 2 parallel fan-in

2 AND gates to implement. To extend bit MUXs to string MUXs on p bits, we simply assign
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a bit MUX to each bit in parallel and use the same c to control all of them. That is,

MUX(c, x0 . . . xp−1, y0 . . . yp−1) = MUX(c, x0, y0) ∥ · · · ∥ MUX(c, xp−1, yp−1). (4.3)

To summarize, we give the pseudocode for the Fdedupe circuit in Algorithm 4.4. Although

the circuit as-is operates on clear text input, when we invoke the GMW protocol [21] on it,

the participating parties will be holding secret shares of the input, as is formally required in

Fdedupe (Figure 4.3).

Algorithm 4.4: Fdedupe(Q)
Input: A query vector Q = (q1, . . . , qp)
Output: (Q, b) as in Figure 4.3

1. for i = 0, . . . , p− 2 in parallel do
2. bi+1 = eq(qi, qi+1)
3. qi+1 = MUX(bi+1, qi+1, n− p+ i+ 1)

4. return ((q0, q1, . . . , qp−1), 0b1 . . . bp−1)

To securely and efficiently implement the copying functionality Fcopy, we employ the scan

network in [39]. The scan operation generalizes prefix sum by allowing any associative binary

operator to be used. In a prefix sum, we are given an array A = (a0, . . . , ap−1) and we would

like to obtain a new array PrefixSum(A) = (
∑i

j=0 aj)
p−1
i=0 . In other words, the ith entry of

PrefixSum(A) is the sum of all the ai’s from 0 to i.

While prefix sum only uses addition, any associative binary operators is allowed in scan.

We denote the scan operation using binary operator ◦ by scan◦, e.g., prefix sum is now

denoted scan+. [39] describes an efficient network which enables us to compute scan with a

circuit using exactly 2n− 2 gates and 2d(log(n)− 2) depth, where the gates implement the

binary operator and d is the depth of such gate. We will use the following operator in our

scan:

Definition 4.3 (▷). Let ▷ be the binary operator on two n-bit strings that satisfies

x▷ y =

x, if y is NIL

y, otherwise
(4.4)

Intuitively, when we scan A with ▷, we will overwrite ai+1 by ai if ai+1 is NIL, otherwise,

it would leave ai+1 as-is. In our application, we will treat the fake elements as NIL. We claim

that ▷ is associative.
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Lemma 4.1. ∀a, b. [(a▷ b)▷ c = a▷ (b▷ c)].

Proof. Consider Table 4.2 which lists all the possible cases. Since (a ▷ b) ▷ c agrees with

a▷ (b▷ c) in all possible cases, we conclude that ▷ is indeed an associative binary operator.

QED.

a b c (a▷ b)▷ c a▷ (b▷ c)
NIL NIL NIL NIL NIL
NIL NIL c c c
NIL b NIL b b
NIL b c c c
a NIL NIL a a
a NIL c c c
a b NIL b b
a b c c c

Table 4.2: “Truth table” for the ▷ operator

We will now argue that, when using ▷ to scan an array A = (a0, . . . , ap−1) with possible

NIL elements except the first, the resulting array is one where the non-NIL elements stay

the same and the NIL elements are replaced by the closest non-NIL element preceding them.

Example 4.3. Suppose A = (a0,NIL, a1,NIL,NIL, a2, a3,NIL), then scan▷(A) = (a0, a0, a1,

a1, a1, a2, a3, a3).

Lemma 4.2. Let A = (a0, . . . , ap−1) be an array such that a0 is non-NIL. Then scan▷(A)

is an array where, for any i, scan▷(A)[i] = aj, where j = maxm≤i{am is non-NIL}. In other

words, j ≤ i is the largest index such that aj is non-NIL.

Proof. Another way of reading definition 4.3 is that x ▷ y = y if y is non-NIL, regardless

what x is. Consider scan▷(A)[i] which holds the value (a1▷ · · ·▷aj ▷ · · ·▷ai), with aj being

the closest non-NIL element up to and including ai. Such aj always exist since we assumed

a0 is non-NIL. Because ▷ is an associative binary operator, we may evaluate this expression

in any order we wish, and we choose to evaluate it as (a1 ▷ · · · ▷ aj−1) ▷ (aj ▷ · · · ▷ ai).

If ai is non-NIL, then the latter sequence is just ai itself, and it is not hard to see that it

evaluates to aj. By our previous observation, regardless of the value of (a1 ▷ · · ·▷ aj−1), it

can’t overwrite (aj ▷ · · ·▷ai). Thus, we conclude that when the scan completes, ai stays the

same if it’s non-NIL, or gets overwritten by the closest non-NIL element to its left. Since i

was arbitrary, the proof is complete. QED.
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scan▷(·) is ideal for our purpose. In the current setting, we have a vector of query results

R, where some elements are fake due to duplication. When using scan▷(·) onR, we will treat
the fake elements as NIL elements. Thus, by Lemma 4.2 and realizing that q0 is always a real

query, we conclude that when scan▷ completes, each fake element will be overwritten by the

closest real one preceding it. Since the query vector Q was sorted before deduplication, both

the fake query and the closest real one preceding it were requesting for the same element,

we can therefore deduce that this overwrite has the same effect as Fcopy.

We finally remark on the implementation of ▷. As an optimization, we note that the

duplication indicator string b already tells us exactly which queries are fake. Therefore, we

can bypass some expensive comparison logic when implementing ▷ and let it directly read

b, in which case the single-bit ai ▷bi+1
ai+1 gate is just a single-bit MUX(bi+1, ai, ai+1) in

disguise. Indeed,

ai ▷bi+1
ai+1 =

ai, bi+1 = 0

ai+1, otherwise
(4.5)

and we extend these single-bit ▷ to handle p-bit strings by stacking p of them in parallel.

Therefore, we conclude that for an array A having p w-bit elements, scan▷(A) can be im-

plemented securely and efficiently with a circuit of O(wp) size and O(log(p)) depth. Setting

A = R, we conclude that Fcopy can be implemented securely with a circuit of O(wp) size

and O(log(p)) depth.

Following the sorting and permutation reversal only necessary in the top-level RAM, we

finish our handling of conflicting queries. We want to emphasize once more that every

Q follows this workflow regardless whether it has conflicts, so that the parties’ views are

indistinguishable in both cases.

4.4.5 New base case position map

To avoid the otherwise overwhelming amount of work for refreshing, we’ll explicitly deal

with p queries when the number of elements stored in a position map drops below threshold.

We stress once again that, when the queries reach the base case, they are still in sorted order

thanks to the sorting in our top-level RAM. Based on empirical results, we discover that

setting threshold = p gives the best performance. This is intuitively justified since, in this

setting, we have the same amount of parallelism as the number of elements in our RAM, so

that each processor can be assigned to handle a RAM element.

To hide access patterns, we’ll access all positions of the RAM. However, unlike in the non-

parallel base case where we scan through the contents of the RAM p times to retrieve the
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queried elements, we’ll leverage the parallelism we have and use novel techniques to handle

these p queries in parallel. For simplicity, we’ll refer to the base case position map as the

RAM in the rest of this section.

To help us explain how we explicitly handle the base case, let’s first define the characteris-

tic string associated with a query vector Q = (q0, . . . , qp−1). We denote the characteristic

string associated with Q as χQ, which is defined as the n-bit string where the ith bit is

set to 1 if and only if i ∈ Q. In other words, the ith bit of χ(Q) indicates whether the logical
address i is a query in Q.

Definition 4.4 (One-hot encoding). The one-hot encoding of q ∈ Q, denoted χ(q), is the

n-bit all-zero string except for the qth bit, with the most significant bit being the 0th bit.

For example, if p = n = 10 and q = 7, then χ(q) = 0000000100.

Definition 4.5 (Characteristic string). The characteristic string of Q = (q0, . . . , qp−1),

denoted χ(Q), is defined as χ(Q) =
∨

i∈[0,p−1] χ(qi), where
∨

denotes bitwise OR. For exam-

ple, if p = n = 10 and Q = (1, 1, 3, 3, 3, 4, 5, 5, 7, 8), then χ(Q) = 0101110110.

χ(Q) plays an important role in our base case. If we can efficiently obtain χ(Q) from Q,
then we can read out each element of the RAM only once, and use χ(Q) as a bit mask to

filter out unwanted elements, leaving them as 0s. Specifically, from χ(Q), we can obtain the

query result vector by computing the following element-wise product between χ(Q) and our

RAM elements, where we use ⊗ to denote this element-wise product.

R = χ(Q)⊗ RAM = (χ(Q)[0] · RAM[0], . . . , χ(Q)[n− 1] · RAM[n− 1]). (4.6)

Example 4.4. In our running example, we have Q = (1, 1, 3, 3, 3, 4, 5, 5, 7, 8) and χ(Q) =
0101110110. Writing our RAM elements as RAM = J(x0, . . . , xn−1)K, we can compute R =

χ(Q)⊗RAM = (0, x1, 0, x3, x4, x5, 0, x7, x8, 0), notice how R contains precisely the elements

we want.

As a consequence of its importance, we devote the rest of this section to explain our

protocol for computing the ideal charateristic string generation functionality Fχ listed in

Figure 4.5.

To start, we note that the duplication indicator string b from Fdedupe, or rather its com-

plement b, provides a good starting point for computing χ(Q). Specifically, b[i] = 1 if and

only if qi was the first query to its target logical address, which we refer to as a real query.

It is not hard to see that b has the same number of 1s as χ(Q), and that the number of 1s

in both b and χ(Q) correspond to the number of real queries. Moreover, if we obtained b,
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Functionality 4.5: Fχ

Parameters: Parties S0,S1,D. S0 and S1 share a query vector (Q0, Q1) = JQK. D
does not have any input.
Procedure: 1. Reconstructs Q from Q0, Q1.
2. Initialize a n-bit string χ(Q) = 0n.
3. Scan through Q, for each q ∈ Q, set χ(Q)[q] = 1.
4. Secret shares χ(Q) with S0 and S1, (χ(Q)0, χ(Q)1) = Jχ(Q)K.
5. S0,S1 output χ(Q)0, χ(Q)1, respectively, and D outputs λ.

Figure 4.5: The ideal functionality Fχ.

then to obtain χ(Q) it suffices to simultaneously move all the 1s from position i to position

qi, for all i ∈ [0, p− 1] such that b[i] = 1.

Example 4.5. In our running example, we have Q = (1, 1, 3, 3, 3, 4, 5, 5, 7, 8) and χ(Q) =
0101110110. After deduplication, we obtain b(Q) = 1010011011, the bit movements required

to obtain χ(Q) from b is listed in Figure 4.6.

b:

χ(Q):

1 0 1 0 0 1 1 0 1 1

0 1 0 1 1 1 0 1 1 0

Figure 4.6: Bit movements required to obtain χ(Q) from b.

As demonstrated by our example above, some of the bits need to move forward (to the

right) and the rest move backward (to the left). We will decompose b into a set of bits that

need to move forward and a set of bits that need to move backward, and handle these two

sets simultaneously. Since the deduplication step ensures each logical address is queried only

once, we can XOR the resultant strings from these two separate cases together to obtain

χ(Q).
To move bits from their current positions to their destinations, we calculate the distance

between them. For each bit i ∈ [0, p− 1] such that b[i] = 1, we define its move distance d(i)

as qi − i. If a bit needs to move forward or stay in place, its move distance is non-negative

(d(i) ≥ 0). If a bit needs to move backward, its move distance is negative (d(i) < 0).

Example 4.6. In our running example, we have Q = (1, 1, 3, 3, 3, 4, 5, 5, 7, 8) and b(Q) =

1010011011. Then d(Q) = (1, 0, 1, 0, 0,−1,−1, 0,−1,−1), which indicates that, for example,

the 9th bit of b(Q) needs to move backward 1 position.
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Functionality 4.6: Fforward

Parameters: Parties S0,S1,D. S0 and S1 share a l-element array (A0, A1) = JAK, a
distance vector (d0, d1) = JdK, and n. D does not have any input.
Procedure: 1. Reconstructs A = (A[0], . . . , A[l − 1]) from A0, A1 and
d = (d[0], . . . , d[l − 1]) from d0, d1.
2. Initialize a n-element array Aforward = (0, . . . , 0).
3. Scan through b and d. In parallel, for each i, set Aforward[i+ d[i]] = A[i].
4. Secret shares Aforward with S0 and S1, ((Aforward)0, (Aforward)1) = JAforwardK.
5. S0,S1 outputs (Aforward)0, (Aforward)1, respectively, and D outputs λ.

Figure 4.7: The ideal functionality Fforward.

Functionality 4.7: Fbackward

Parameters: Parties S0,S1,D. S0 and S1 share a l-element array (A0, A1) = JAK, a
distance vector (d0, d1) = JdK, and n. D does not have any input.
Procedure: 1. Reconstructs A = (A[0], . . . , A[l − 1]) from A0, A1 and
d = (d[0], . . . , d[l − 1]) from d0, d1.
2. Initialize a n-element array Abackward = (0, . . . , 0).
3. Scan through b and d. In parallel, for each i, set Abackward[i+ d[i]] = A[i].
4. Secret shares Abackward with S0 and S1, ((Abackward)0, (Abackward)1) = JAbackwardK.
5. S0,S1 outputs (Abackward)0, (Abackward)1, respectively, and D outputs λ.

Figure 4.8: The ideal functionality Fbackward.

We can deduce the direction of movement from d(i) if we use an appropriate numbering

system like two’s complement. In two’s complement, a leading 0 indicates positivity (i.e.,

forward movement), while a leading 1 indicates negativity (i.e., backward movement). We

can efficiently subtract two n-bit numbers using a circuit of size O(n2) and depth O(log n),

such as the well-known carry lookahead adder (CLA).

We now introduce ideal functionalities move forward, denoted Fforward, and move backward,

denoted Fbackward. They are listed in Figure 4.7 and Figure 4.8, respectively. In both ideal

functionalities, the inputs are a l-element array A, a distance vector d with |d| = |A| and
d[i] being the distance that A[i] needs to move by, and an integer n ≥ l. The direction of

movement is dictated by the functionality used, with Fforward always moving A[i] to A[i+d[i]]

and Fbackward always moving A[i] to A[i− d[i]].

Technically, we need to ensure that i+ d[i] ≤ n− 1 in Fforward and i− d[i] ≥ 0 in Fbackward.

However, it is not hard to see that this will be the case in our applications because logical
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addresses are in the range [0, n − 1]. Another technical detail that we point out is that in

Fbackward, the distances we use are non-negative, this simplifies our protocol with no loss of

generality. Indeed, positive distances are easily obtained from their negative counterpart by

taking the absolute value, which is cheap enough to compute in two’s complement. Finally,

we remark that Fforward and Fbackward are mutual inverse of each other when using the same

distance vector d (this is in fact the major reason we opted for positive distances in Fbackward),

that is,

Fforward(Fbackward(JbK, JdK, n), JdK, n) = JbK = Fbackward(Fforward(JbK, JdK, n), JdK, n). (4.7)

To implement Fforward and Fforward, we will use circuits with a hierarchical structure. Our

key insight is that we can use the binary expansion of the distance d[i] = qi− i to determine

the sequence of hops needed to move from position i to qi using only hops of lengths that

are powers of 2.

Example 4.7. Suppose for a particular bit i, we have d(i) = 11 = (1011)2, then we can

interpret this binary string as saying that to move a distance of 11, we need to take a hop

of length 8, no hop of length 4, a hop of length 2, and finally a hop of length 1.

With this in mind, it is perhaps not surprising that we use a circuit of ⌈log(n)⌉ levels
(henceforth called a forwarding network) to compute Fforward, where the ith level consists of

hops of length 2⌈log(n)⌉−i−1, for i ∈ [0, . . . , ⌈log(n)⌉ − 1]. Specifically, in the ith level of the

forwarding network, we process pairs of indices (j, j + 2i) in parallel for all j ∈ [0, l − 2i),

and use the ith bit of d[j] to determine whether to take the hop from j to j + 2i. We

set A[j + 2⌈log(n)⌉−i−1] = A[j] if and only if the ith bit of d[j] is 1, and leave it unchanged

otherwise. We can implement this operation using a MUX with the ith bit of d[j] as the

control bit and A[j + 2⌈log(n)⌉−i−1], A[j] as the candidate values. In fact, in order to still

maintain access to d[j] after each hop, we will forward d[j] along with A[j]. Moreover, this

also allows us to run the forwarding network backward later, when all the query results have

been obtained.

Example 4.8. For an array of 8 elements, the structure of the forwarding network is shown

in Figure 4.9. Note how the hop length decreases by half as we move down the levels.

The circuit to implement Fbackward (henceforth called a backwarding network) is almost

the same one, except for the ith level we use hops of length 2i, and that each hop overwrite

a smaller index with a larger index.
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0 1 2 3 4 5 6 7

level 0

level 1

level 2

Figure 4.9: The forwarding network for an 8-element array.

Example 4.9. For an array of 8 elements, the structure of the backwarding network is

shown in Figure 4.10. Note how the hop length increases by factor of 2 as we move down

the levels.

0 1 2 3 4 5 6 7

level 0

level 1

level 2

Figure 4.10: The backwarding network for an 8-element array.

While it may appear that our selection of hop lengths in the forwarding and backwarding

networks is arbitrary, these choices are in fact deliberately made. Specifically, we aim to

avoid write-conflicts, which occur when two distinct elements on the same level attempt to

overwrite the same index.

Finally, we can describe our explicit approach to handling queries in the base case. When

presented with a vector Q of sorted queries, our goal is to compute its characteristic string

χ(Q). We break down this process into three steps:

1. To begin, we first deduplicate Q to obtain a duplication indicator string b. We then

compute the complement of b, denoted by b. b is valuable in determining χ(Q) be-

cause we realized that χ(Q) can be obtained from b by correctly rearranging the 1s.

Specifically, for each index i where b[i] = 1, we need to move the 1 to position qi to

form χ(Q). To accomplish this, we calculate the distance d(i) = qi − i for each 1 in
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b. Depending on the sign of d(i), some bits will move forward (with a non-negative

distance), while others will move backward (with a negative distance).

2. Next, we decompose b into two sets, each containing the bits that move in the same

direction. For the set of bits that move forward, we apply the forwarding network

with their distances unchanged. For the set of bits that move backward, we use the

backwarding network with the absolute value of their distances. In both networks, we

propagate both the bits and their distances to ensure that intermediate levels remember

the forwarding decisions and that later on we can return results to the processor that

requested them. Note that the forwarding and backwarding networks are run in parallel

on each of the sets.

3. Lastly, since the deduplication step ensured that each logical address is queried for at

most once, we take a bitwise XOR between the strings resulting from each set in step

2. The produces the characteristic string χ(Q) associated Q.

After obtaining χ(Q), we can proceed to filter out the undesired elements by applying

equation (4.6). To ensure that each element is correctly routed to the corresponding query,

we rely on an earlier observation made in (4.7), which states that Fforward and Fbackward are

mutual inverses. Thus, we can effectively undo each network by running its inverse, provided

that we keep track of which bits belong to which set prior to XORing them together in step

3 (which can actually be skipped altogether). Following the scan▷ network discussed in the

previous section, we finish our explicit handling of the base case queries.
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CHAPTER 5: SECURITY ANALYSIS

In this chapter, we will formally prove Theorem 2.1, which states that our PRAM protocol

is secure in the sense of simulation-based security. The approach that we will take to prove

this theorem is by invoking the powerful composition theorem for semi-honest models as

in [2]. In this framework, we can first prove that all of the sub-functionalities we use are

semi-honest secure, and then treat those sub-functionalities as idealized oracles when proving

security for the entire protocol. We choose this modular approach to make the proof piece-

wise and thus a lot easier to explain.

5.1 AUTOMATICALLY SECURE PARTS OF OUR PRAM

We note that many sub-functionalities we utilize are implemented as circuits, and thus

they are automatically secure when we employ the GMW protocol [21] for secure circuit

evaluation. Additionally, in the GMW protocol, secret shares of input values, making these

implementations compatible with our ideal functionalities which all require secret shares as

inputs. We will list all sub-functionalities that are either inherently secure or can be easily

secured in this manner, and we will omit security proofs as they are mainly just applying

the GMW protocol.

It is worth mentioning that most of the circuits are executed between only two parties. As

a result, the 2PC GMW protocol is not sufficient. This issue can be addressed by recognizing

that the 2PC GMW protocol provides simulators for the participating parties, fulfilling the

same simulator requirements as in Definition 2.2. Here, we heavily relied on the fact that

we have an honest-majority among three parties, and as such it is not necessary to build

simulators for corrupted parties of size 2. This fact allows us to combine these GMW-

provided simulators with a trivial simulator for the non-participating party to satisfy the

requirements of Definition 2.2.

• Sorting: For each Q, we use the sorting only once in the top-level RAM. However,

since we are using the Batcher sorting network to realize this sorting, which in turn

consists of simple compare-and-swap gates, we see immediately that the entire Batcher

sorting network is a circuit. Technically, the Batcher sorting network that we use is

also revealing, meaning for each compare-and-swap gate S0 and S1 will reveal the result
of the comparison. However, this is easily simultable thanks to the permutation we

used before this sorting. Indeed, it suffices to sample a random bit for each revealed

comparison-and-swap gate.
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• Fdedupe: For each Q, deduplication is performed at every level of recursion, starting

with the top-level RAM. We completely implemented deduplication as a circuit, as a

result, it is automatically secure.

• Fcopy: For each Q, copying is performed at every level of recursion, starting with the

top-level RAM. We employ the scan network [39] with binary operator ▷ to imple-

ment copying, which in turn is just a disguised string MUX when provided with the

duplication indicator string from Fdedupe. As a result, our implementation of Fcopy is

automatically secure.

• Addition and subtraction: For each Q, carry lookahead adders are used in the

base case position map for calculating the distance vectors. These adders are well-

known basic circuit constructions. As a result, our implementation of addition and

subtraction is automatically secure.

• Fforward and Fbackward: For each Q, move forward and move backward are only per-

formed in the base case position map. We employ the forwarding (Figure 4.9) and

backwarding (Figure 4.10) networks to implement them. The gates in these networks

are all string MUXs, and thus making the networks themselves just circuits, when

provided with the distance vector. As a result, our implementations of Fforward and

Fbackward are automatically secure.

• Index calculation in Πbinsearch: In our rotation-based (or rather swap-based) binary

search protocol Πbinsearch, we implement the logic of next index calculation as a circuit.

In fact, this circuits hard-codes the next index to visit, based on a comparison bit and

a swap bit. As a result, the index calculation part of Πbinsearch is automatically secure.

These are all the sub-functionalities that are automatically secure by GMW. We also use

other quite basic and well-known circuits to implement, for example, comparison, equality

comparison, MUX, and so on. Next, we list the sub-functionalities that requires our explicit

attention.

• Fperm: We implemented our permutation sub-functionality Fperm with a custom re-

sharing based shuffling protocol Πperm, first proposed in [35]. This protocol is not

implemented as circuit. Instead, it achieves security by having all three parties di-

rectly communicate with each other, but only sending messages that looks uniformly

random to the participating parties. We will give simulators for each party shortly in

section 5.2.
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• Fbinsearch: We implemented our binary search sub-functionality Fbinsearch with a custom

rotation-based (or rather swap-based) binary search protocol Πbinsearch, first proposed

in [37]. Part of this protocol is implemented as circuit as we already pointed out.

However, the protocol as a whole still require a formal simulation-based proof. Note

that Πbinsearch only involves two active parties S0 and S1, and D is just idle in this

protocol.

5.2 Πperm IS SECURE

In this section, we will prove that the Πperm protocol we use to compute Fperm is secure.

For easier reference, we have reproduced Πperm in Algorithm 5.1.

Algorithm 5.1: Πperm(A0, A1, λ)

Input: A0, A1, λ from S0,S1,D, respectively
Output: Π(A)0,Π(A)1,Π for S0,S1,D, respectively

1. S0 and S1 reshare JAK
2. S0 sends A0 to D
3. S1 and D reshare JAK
4. D and S1 together samples Π1

5. S1 sends Π1(A1) to S0
6. S0 and D reshare JΠ1(A1)K
7. D and S0 together samples Π0

8. D sends Π0(Π1(A0)) to S1
9. Let Π = Π1 ◦ Π0

10. S0,S1 outputs JΠ(A)K
11. D outputs Π

Recall we arbitrarily stipulated that whenever P0 and P1 reshare something, P0 is the

party that always sends the random string that it sampled, except the resharing in line 1

where this is reversed (so that line 2 is simulatable for D). The randomness part of S0’s view
only consists of its random choice when resharing JΠ1(A1)K with D in line 6. The message

part of its view consists of a random string from S1 in line 1, the Π1(A1) from S1 in line 5,

and finally the random permutation Π0 from D in line 9.

Although seemingly true, we can’t actually simulate all 4 things by uniform randomness,

and the reason is that S0’s random choice in line 6, the messages it receives in line 5 and 7,

and S0’s output are actually related in the real execution. Indeed, using the notations as in

the protocol and denote S0’s random choice in line 6 by s, we must maintain

Π0(Π1(A1)⊕ s) = Fperm,0(A0, A1, λ). (5.1)
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Since the output is already “fixed” and provided to the simulator, we must make sure to

simulate other parts in accordance with this output. Pseudocode for S0’s simulator is given

in Algorithm 5.2, where n is the number of elements in A and w is the bit length of each

element.

Algorithm 5.2: SimS0(A0,Fperm,S0(A0, A1, λ))

Input: A0,Fperm,S0(A0, A1, λ), which are S0’s input and output in the ideal
functionality, respectively

Output: A simulated view identically distributed to the actual execution view
VIEW

Πperm

S0
(A0, A1, λ)

1. Sample uniformly random r
$← {0, 1}wn // random string in line 1

2. Sample uniformly random Π1(A1)
$← {0, 1}wn // Π1(A1) received in line 5

3. Sample uniformly random Π0
$← {0, 1}n log(n) // Π0 received in line 7

4. Let s = Π−1
0 (Fperm,S0(A0, A1, λ))⊕ Π1(A1) // random choice in line 6

5. Output (A0, s, r,Π1(A1),Π0)

For S1, the randomness part of its view consists of its random choice when resharing JAK
with S0 in line 1 and its random choice when resharing JAK with D in line 3. The message

part of its view consists of Π it receives from D in line 4, and also Π0(Π1(A0)) it receives

from D in line 8, which also happens to be its output. Therefore, the simulator for S1
is significantly simpler, using uniform randomness to simulate everything except the last

message. This simulator is listed in Algorithm 5.3.

Algorithm 5.3: SimS1(A1,Fperm,S1(A0, A1, λ)

Input: A1,Fperm,S1(A0, A1, λ), which are S1’s input and output in the ideal
functionality, respectively

Output: A simulated view identically distributed to the actual execution view
VIEW

Πperm

S1
(A0, A1, λ)

1. Sample uniformly random r
$← {0, 1}wn // random choice in line 1

2. Sample uniformly random s
$← {0, 1}wn // random choice in line 3

3. Sample uniformly random Π1
$← {0, 1}n log(n) // Π1 received in line 4

4. Output (A1, (r, s),Π1,Fperm,S1(A0, A1, λ))

Finally, for D, the randomness part of its view consists of the two random permutations

it sends S0 and S1, namely, Π1 in line 4 and Π0 in line 7. The message part of its view

consists of A0 from S0 in line 2, a random string from S1 on line 3, a random string from S0
in line 6. Among these 5 things, we must make sure that the two random permutations it
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samples must be consistent with its output, but otherwise everything else can be simulated

by uniform randomness. The simulator for D is described in Algorithm 5.4

Algorithm 5.4: SimD(A1,Fperm,D(A0, A1, λ)

Input: λ,Π, where Π is D’s output in the ideal functionality
Output: A simulated view identically distributed to the actual execution view

VIEW
Πperm

D (A0, A1, λ)

1. Sample uniformly random A0
$← {0, 1}wn // A0 received in line 2

2. Sample uniformly random r
$← {0, 1}wn // random string in line 3

3. Sample uniformly random Π1
$← {0, 1}n log(n) // random choice in line 4

4. Sample uniformly random s
$← {0, 1}wn // random string in line 6

5. Let Π0 = Fperm,D(A0, A1, λ)⊕ Π1 // random choice in line 7

6. Output (λ, (Π1,Π0), A0, r, s)

Since all three parties are simulatable and the simulated views are identically distributed

to the real execution views, we conclude that Πperm is secure in the sense of Definition 2.2.

5.3 Πbinsearch IS SECURE

In this section, we formally prove that Πperm is secure, which implements Fperm (Figure

4.2). Recall that Fperm plays a central role in S0 and S1’s utilization of the timetable, firstly

used when they want to fetch secret shares of the physical address of their queried elements,

and secondly used to replace the dummy on the same level with this element when D sends

over a list of dummy addresses, one from each level. As a result, it is crucial that Πperm is

both secure and efficient, and we have already discussed the efficiency of Πperm. For easier

reference, Πperm is reproduced in Algorithm 5.5.

In this protocol, almost all the computations are carried out by circuits, namely, the

comparisons in line 3 and line 8, the next index calculation in line 5 (as we mentioned previ-

ously), and the current element replacement in line 9. These steps are again automatically

secure by GMW, and as such can be treated as idealized functionalities when building our

simulators, all thanks to the powerful composition theorem in [2]. The only left to deal with

is the revealings of next index to visit in line 6, and as we will see, these are easy to simulate

by an uniform random path in the tree because of the random swaps we perform at each

node of the binary search tree.

Also note that both servers’ views are highly similar in this protocol, and without loss of

generality, we will only give a simulator for S0, which is described in Algorithm 5.6. This
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Algorithm 5.5: Πbinsearch((A0, B0, k0), (A1, B1, k1), λ)

Input: S0 and S1 hold secret shares of (A0, A1) = Ja0, . . . , al−1K, already ordered as
a binary search tree. They also holds secret shares of the swap bits
(B0, B1) = Jb0, . . . , blog(l)−1K and the search key (k0, k1) = JkK. D has no
input.

Output: JaiK where i = maxj∈[0,l−1]{aj ≤ k}.
1. JpK = Ja0K // the element to return

2. JdK = 0 // the current index in A
3. JcK = compare(JkK, Ja0K) // the current comparison result

4. for i = 1, . . . , log(l)− 1 do
5. JdK = (J2d+ 1 + cK) · bi ⊕ (J2d+ cK) · (¬bi) // calculating next index

6. S0 and S1 reveal d
7. JaK = JadK // the current element

8. JcK = compare(JkK, JaK)
9. JpK = JcK · (JaK⊕ JpK)⊕ JpK // replace JpK by JaK if a < k

10. return [p]

simulator will be our first exhibition of the oracle-aided protocol technique, granted to us by

the powerful composition theorem. To avoided complicated notation, whenever we write a

step using the same notation as in Algorithm 5.5, we mean that we are invoking the oracle

for that step. Whenever a variable already has a subscript, i.e. bi, we write bi,S0 to mean

S0’s share of this variable.

In this simulator, the crucial observation is that the revealed path in the actual execution

view is uniformly random among all the possible paths. Therefore, to make the simulated

view identically distributed to the actual one, it suffices for our simulator to choose an

uniformly random path and reveal this path. The rest of the simulation are rather pesky

details required to simulate an oracle-aided protocol. In particular, for every step where we

used an idealized oracle, we are required to put the output of that oracle also into our view.

For completeness, we will prove that the revealed path in an actual execution of Πbinsearch is

uniformly distributed among all possible paths, which is our final missing piece to formally

argue that the above simulator produces an identically distributed view.

Lemma 5.1. In an actual execution of Πbinsearch, the revealed path, denoted P = (P0, . . . ,

Plog(l)−1), is uniformly distributed among all possible paths.

Proof. Consider an arbitrary path P = (P0, . . . , Plog(l)−1), and let x0, . . . , xlog(l)−1 be random

variables denoting nodes on a path. We want to show that

Pr[x0 = P0, . . . , xlog(l)−1 = Plog(l)−1] = 2−(log(l)−1). (5.2)
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Algorithm 5.6: SimS0((A0, B0, k0), a0)

Input: (A0, B0, k0),Fbinsearch,0((A0, B0, k0), (A1, B1, k1), λ), which are S0’s input and
output in the ideal functionality, respectively.

Output: A simulated view identically distributed to the actual execution view
VIEWΠbinsearch

S0
((A0, B0, k0), (A1, B1, k1), λ).

1. Let VIEW be a list initially only containing (A0, B0, k0)
2. Let P = (P0, P1, . . . , Plog(l)−1) be an uniformly randomly chosen path in plain text,

where Pi is the ith level node on this path
3. p0 = a0 // not in the view

4. Samples uniform random d0
$← {0, 1} // not in the view

5. c0 = compare(k0, a0) // invoking the compare oracle

6. Append c0 to VIEW
7. for i = 1, . . . , log(l)− 1 do
8. d0 = NextIndexOracle(d0, c0, bi,S0) // invoking the next index oracle

9. Append d0 to VIEW
10. Append Pi to VIEW // the revealing in line 6

11. a0 = ad,S0 // not in the view

12. c0 = compare(k0, a0) // invoking the compare oracle

13. Append c0 to VIEW
14. p0 = ReplaceCurrElem(c0, a0, p0) // invoking the replace current element

oracle

/* Making sure the simulated view is consistent with actual view by

replacing last p0 with the actual output */

15. Go through VIEW, replace the last p0 with Fbinsearch,0((A0, B0, k0), (A1, B1, k1), λ)
16. Output VIEW

By the definition of conditional probability, we may write the probability on the LHS as

Pr[x0 = P0, . . . , xlog(l)−1 = Plog(l)−1] =

log(l)−1∏
i=0

Pr[xi = Pi | x0 = P0, . . . , xi−1 = Pi−1]. (5.3)

Observe that each term in the product can be simplified to Pr[xi = Pi | xi−1 = Pi−1] since

the next nodes on a path is only dependent on its parent node, i.e. the random variable xi’s

form a Markov chain. Now, we realize that, for all i ≥ 1,

Pr[xi = Pi | xi−1 = Pi−1] = Pr[xi = Sibling(Pi) ∧ bi = 1 | xi−1 = Pi−1]+

Pr[xi = Pi ∧ bi = 0 | xi−1 = Pi−1], (5.4)

because both events on the RHS are mutually disjoint. These events also both occur with

probability 1/4. Thus, for all i ≥ 1, we have Pr[xi = Pi | xi−1 = Pi−1] = 1/2. Keeping in
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mind that Pr[x0 = P0] = 1 as there is only one root, we conclude that

Pr[x0 = P0, . . . , xlog(l)−1 = Plog(l)−1] =

log(l)−1∏
i=0

Pr[xi = Pi | x0 = P0, . . . , xi−1 = Pi−1] (5.5)

=

log(l)−1∏
i=1

1

2
(5.6)

= 2−(log(l)−1). (5.7)

Since P was arbitrary, the proof is complete. QED.

We are finally able to claim that the simulated view for S0 produced by Algorithm 5.6 is

identically distributed to the real execution view, and the simulator for S1 is almost the same

if not verbatim identical. Technically, we should also simulate D, however, the simulation is

trivial if we realize that D has no part in this protocol. Indeed, a simulator for D will just

be the trivial one which has no inputs and outputs nothing. This shows

5.4 THE REST OF THE PRAM PROTOCOL IS SECURE

With most parts of our protocol proven secure, we believe that the perfect security of our

protocol is already obvious. However, for completeness, we shall briefly comment on the

parts of our protocol that still need some attention.

Initialization and refreshing. We haven’t yet talked about the very step and another

periodically performed step in our protocol, namely, initialization and refreshing. Note that

these two steps are intimately related, as refreshing is essentially reading out all the elements

followed by initializing the next instance of PRAM. During initialization, the servers write

their shares of the elements sequentially to level 2log(n)+1, which is just enough to hold these

elements and accompanying dummies. Since the addresses they are writing into is public

knowledge, these access patterns are simulatable. Then all three parties will engage in

permuting the 2log(n)+1 level, followed by the server sharing the timetable between S0 and

S1. We have already discussed permutations, to simulate the timetable, we create tables of

the appropriate size and fill each row with uniformly random entries. Finally, the servers

will ask for Jπ(0)K, . . . , Jπ(n)K, which they will use to initialize their position maps. Since

these Jπ(i)K’s are again secret shares, we can simulate them by uniform random strings of

the appropriate length.
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During refreshing, the servers will first read out the elements sequentially, which involves

fetching the relevant rows of the timetable, and locating in each row the relevant entry

documenting each element’s current position. To fetch the rows from the timetable, they

will consult their position maps for the Jπ(t′)K’s, and each locally read out the rows. The rest

of timetable reading is handled by invoking the binary search protocol Πbinsearch. However,

we emphasize that since m = 2in, whenever a refreshing happens, it’s public knowledge

that the elements all resides on the largest level of storage. Therefore, there is no need

for D to additionally send list of dummy addresses for each physical address, because the

access patterns are now simulatable by just reading random positions from the largest level

of storage.

Timetable operations. Timetable operations are largely based on Πbinsearch, except for

fetching the relevant rows. So far, we have treated the timetable as if it’s stored in a separate

memory structure. However,to argue obliviousness we also need to simulate access patterns

into this memory structure. Fortunately, this is not too hard. Remember that each row of

the timetable is relevant for only 1 query, since once an element is accessed, it is written back

to the stash and starts from the top-level of our storage all over again. Being a static data

structure, the timetable has no way to keep track of this change. Therefore, on subsequent

access of the same element, a different row of the timetable will be fetched.

Furthermore, recall that the rows of the timetable are permuted to prevent the servers

from learning the last access time of an element. Therefore, to simulate the sequence of

accesses into the timetable, we can sample uniform random locations without replacement.

This includes the refreshing step where we access n rows of the timetable simultaneously,

when only n rows of the timetable are left unsampled. At that time, we access all the

unsampled rows simultaneously.

Position maps. Perhaps the least obvious component of all to simulate is our position

maps, due to their recursively constructed nature. Our idea to simulate the position maps

is, perhaps not surprisingly, using recursion. Specifically, we first build the simulator for the

entire PRAM except the recursive position maps, and then recursively use the simulator to

generate views for the recursive position maps. Notice that in the base case everything is

implemented by circuits, including deduplication and the forwarding/backwarding networks.

Therefore, the base case simulator is granted by the GMW protocol. Due to its intricacy, it

is worth discussing some of the details of this recursive simulator.

• To use the simulator, we must provide it with inputs that are consistent with the rest

of the view. Recall that the simulator takes in the input and ideal output. The input
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to each recursive position maps is of the form (A,Q), where A is the content of the

memory andQ is the sequence of parallel accesses. The content A are already simulated

by uniform randomness in the rest of the simulation, for example, when we reveal the

π(t′)’s during timetable row fetching. The induced sequence of parallel accesses can

be obtained from the sorted Q by dividing each logical address by 2 and then take the

flooring, which is the same as a logical right shift. This can be implemented by a simple

circuit and thus is automatically secure, so we are allowed to use an idealized oracle

to produce the Q’s, and use the messages we receive from this oracle as Q. Finally,

we need the recursive simulator with the ideal output, however, this output is actually

the old π(t′)’s for the queried elements, and are therefore is already part of the view.

Thus, both the input and ideal output to the recursive simulator is either part of the

rest of the view or can be obtained from idealized oracles, we just need to pass them

to the recursive simulator in a consistent manner.

• Secondly, this recursive simulator suffers from one problem, namely, the contents of

the generated views are not in the correct order. Indeed, in an actual execution, the

views for the recursive position maps will be obtained as soon as each map is queried,

but the views produced by this recursive simulator would aggregate these views at

one place. However, we can fix this issue by running yet another program to correct

the order. This program takes in the views generated by the recursive simulator, and

rearrange the views so that they are ordered according to an actual execution of the

protocol. Our overall simulator would then consist of two parts, the first being the

recursive simulator whose output is not yet correct, and the second part being the

program that correct its output.

5.5 THE ENTIRE PROTOCOL IS SECURE

We have either formally or informally argued why each component of our protocol is

secure, and we have discussed simulating the entire protocol using a recursive simulator and

then a program to correct its output. Thus, we finally conclude that our entire protocol is

secure, proving Theorem 2.1.

Proof of Theorem 2.1. For each party, use a recursive simulator to produce a view whose

content are not yet ordered correctly, and then run a program to rearrange the content of

the view so that it is consistent with an actual execution of the protocol. When building

the recursive simulator, we follow the oracle-aided framework and can thus replace each

sub-functionality by an idealized oracle implementing that functionality. Since all three

49



parties’ views are identically distributed to the their real execution view, we conclude that

the protocol is perfectly secure. QED.

As a consequence of 2.1, notice that we can almost claim our PRAM protocol satisfies

Definition 2.3 because almost all of the physical access patterns are included in the views

of the parties. However, there are two places where the physical access patterns are not

in the views, namely, during the initialization step (including the initialization caused by a

refreshing) and in the base case position map. This is readily amendable as we realize that

in these cases, the physical access patterns are prescribed by our protocol. Indeed, when

initializing, the servers write to the first n positions of level 2log(n)+1 in sequence, and in the

base case the entire RAM is accessed. As a result, we have the following Corollary:

Corollary 5.1. Our PRAM protocol satisfies the obliviousness requirement of Definition

2.3. In other words, our PRAM is more powerful than a traditional ORAM (or a traditional

OPRAM thereof).
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CHAPTER 6: EFFICIENCY ANALYSIS

In this chapter, we will summarize the communication complexity and rounds complexity

of the different operations in our protocol in Table 6.1, and justify the asymptotics we claimed

in the abstract. In Table 6.1, we use the same notation as in Table 3.1. In particular, n is

the number of elements stored, m is the number of maximum accesses each instance of our

PRAM supports, k is the total number of accesses made by the user, p is the number of

processors, and as always, we set threshold = p.

This table mostly only summarizes the costs of these operations in the top-level RAM, since

we will use the costs at this level to upper bound all the costs at the intermediate recursive

position maps. We note that in the non-base-case recursive position maps, the word size is

O(log(n)) instead, and since m would decrease by half at each level of recursion, the log(m)’s

effectively decrease by 1. Therefore, our asymptotics are slightly more pessimistic than the

reality.

Component Communication complexity Rounds complexity

Top-level RAM

Initialization O(m log2(m) + n log(m) + nw) O(1)
Permutation (Q) O(p log(m)) O(1)
Batcher sorting O(p log2(p) log(m)) O(log2(p) log log(m))
Deduplication O(p log(m)) O(1)

Copy O(pw) O(log(p))
Binary search O(log(m) log log(m)) O((log log(m))2)

Refreshing O(n log(m) log log(m)) + Initialization O((log log(m))2)
Permutation (ith level) O(2iw) O(1)

Base case position map

Distance calculation O(p log2(p)) O(log log(p))
Forwarding O(p log2(p)) O(log(p))

Backwarding O(p log2(p)) O(log(p))

Table 6.1: Summary of complexities for different operations

We show another table, Table 6.2, which lists the number of times each of the above

operations are performed for a total of k accesses.

Using these tables, it is straightforward to calculate the total costs incurred on the top-

level RAM and the base case for k total accesses. Indeed, we mostly just multiply the rows in

Table 6.1 by the corresponding rows in Table 6.2. Since the table is too wide, We separately

show the communication complexity in Table 6.3 and the rounds complexity in Table 6.4.
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Component Number of times performed

Top-level RAM

Initialization 1
Permutation (Q) k/p
Batcher sorting k/p
Deduplication k/p

Copy k/p
Binary search 2k

Refreshing k/m− 1
Permutation (ith level) 2log(m)−i(k/m)

Base case position map

Distance calculation k/p
Forwarding 2k/p

Backwarding 2k/p

Table 6.2: Summary of number of times each operation is performed for k accesses

Notice that for the rounds complexity table, the rounds contributed by permutations are

not directly multiplying the times each level is permuted by the cost of each permutation.

This is because during an actual execution, only a single permutation is performed at each

epoch, although the number of items permuted could be large. Thus, the rounds contributed

by eviction permutations are really just O(k/p).

Now, to get the final asymptotics, we note that there are only log(n/p) many levels of

intermediate recursion, and the cost of each is upper-bounded by the cost of the top-level

RAM. Thus, we can multiply the costs in Table 6.3 and Table 6.4 by log(n/p) for an upper

bound, except the base case position map costs and the permutation and Batcher sorting,

since the latter 2 are only performed in the top-level RAM.

Summing up, collecting terms, and keeping in mind that m = O(n) (in fact, ≥ n) so that

terms like O(kn/m) = O(k), it is not hard to see that the total communication complexity

of k total accesses is

O(k log2(p) log(n)) + log

(
n

p

)
O(kw log(n) + k log2(n)), (6.1)

when amortized over k, the total number of accesses, this becomes

O(log2(p) log(n)) + log

(
n

p

)
O(w log(n) + log2(n)), (6.2)
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Component Communication complexity

Top-level RAM

Initialization O(m log2(m) + n log(m) + nw)
Permutation (Q) O(k log(m))
Batcher sorting O(k log2(p) log(m))
Deduplication O(k log(m))

Copy O(kw)
Binary search O(k log(m) log log(m))

Refreshing O((kn/m) log(m) log log(m)) + (k/m) Initialization
Permutation (ith level) O(kw)

Permutation (levels total) O(k log(m)w)

Base case position map

Distance calculation O(k log2(p))
Forwarding O(k log2(p))

Backwarding O(k log2(p))

Table 6.3: Summary of total communication complexity of each operation for k accesses

as stated in the abstract.

Component Rounds complexity

Top-level RAM

Initialization O(1)

Permutation (Q) O(k/p)

Batcher sorting O((k/p) log2(p) log log(m))

Deduplication O(k/p)

Copy O((k/p) log(p))

Binary search O((k/p)(log log(m))2)

Refreshing O((k/m)(log log(m))2)

Permutation (levels total) O((k/p))

Base case position map

Distance calculation O((k/p) log log(p))

Forwarding O((k/p) log(p))

Backwarding O((k/p) log(p))

Table 6.4: Summary of total rounds complexity of each operation for k accesses
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Similarly, the rounds complexity sums up to

O

((
k

p

)
log2(p) log log(n)

)
+ log

(
n

p

)
O

((
k

p

)
(log(p) + (log log(n))2)

)
, (6.3)

and when amortized over k/p, the total number of sets of parallel queries executed, this

becomes

O(log2(p) log log(n)) + log

(
n

p

)
O(log(p) + (log log(n))2), (6.4)

as stated in the abstract. In other words, each set of p parallel queries finish in the number

of rounds stated in (6.4).
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CHAPTER 7: EXPERIMENTS

In this chapter, we describe our experiment setups and then report our empirical findings,

demonstrating the concrete efficiency of our PRAM protocol.

7.1 EXPERIMENT SETUPS

To evaluate the concrete efficiency of our protocol, we wrote a C++ program that simulates

an execution of our protocol. To avoid confusing this simulation program with the simulator

in the security proofs, henceforth we will call this program the emulator. The emulator

closely follows the protocol in every step, except that it replaces actual communications by

counting their costs instead.

Example 7.1. For example, the equality function in Figure 7.1 emulate the cost of an

equality gate. Every time in the protocol when the parties need to compute an equality

gate, such as in the deduplication step, we invoke this function to count its cost. In our

emulator, cost is a struct that has two fields, a n bits field and a n rounds field, counting

the number of bits and number of rounds required to securely compute some functionality,

respectively.

The cost we use for the basic operations such as computing AND gates and XOR gates

are hard-coded, with their values determined from the most efficient protocols that we are

aware of in the 3PC semi-honest honest-majority setting. The overall emulator program has

the following parameters:

• n : the number of elements stored in our PRAM.

• w : the bit length of each element stored in our PRAM. Empirically, we always set this

to log2(n) since our asymptotic calculations suggest so.

#de f i n e c l og (n) c e i l ( l og2 (n ) )

co s t e qua l i t y ( i n t n) {
r e turn co s t {

. n b i t s = (n − 1) ∗ AND. n b i t s ,

. n rounds = c log (n) ∗ AND. n rounds
} ;

}

Figure 7.1: Our code for emulating an eq gate.
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• k : the total number of queries to our PRAM.

• m : the number of accesses an instance of our PRAM supports, i.e. every m accesses

we must refresh our PRAM.

• p : the number of processors in our PRAM machine.

• threshold : the threshold value for entering the base case position map. Empirically,

we always set this to p, for the reason we gave in Section 4.3.

We use the emulator to test the concrete performance of our PRAM protocol, and we

adjust the parameters to see how well our PRAM scales with n and p.

7.2 EMPIRICAL RESULTS

Empirically, we find that our protocol is concretely efficient, and matches the asymptotic

calculations with low constants. In the first set of experiments, we explore how our PRAM

scales with n, and in the second set of experiments we explore how it scales with p.

7.2.1 Our PRAM’s scalability with n

In this experiment, we fix the number of processors p = 64, which is a reasonable amount

of processors to expect on a modern day cloud server such as the AWS [40], and then we

gradually increase n exponentially, up to n = 25. The other parameters are also fixed, with

m = k = n, w = log2(n), and threshold = p = 64. Plots of our experimental findings are

shown in Figure 7.2, Figure 7.3, and Figure 7.4, with the accompanying data in Table 7.1.

In all plots, the x-axis is drawn on log-scale.

The experimental data presented here aligns well with our asymptotic calculations. No-

tably, the communication overhead, defined as the number of bits transmitted per bit fetched,

exhibits growth on the order of O(log(n)), although some lower-order terms, such as O(log

log(n)), contribute to a less curved graph compared to a typical logarithmic graph. Addi-

tionally, the rounds of communication are effectively O(log(n)), which is precisely what the

asymptotic calculations suggest in our case where p = O(1). This consistency between the

experimental results and theoretical predictions shows that our PRAM protocol is concretely

efficient with low constants.
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Figure 7.2: Number of elements stored vs. number of bits transmitted

7.2.2 Our PRAM’s scalability with p

In the next sets of experiments, we keep n fixed at 225, and explore how the performance

of our PRAM scales with p. We again set m = k = n, w = log2(n), and threshold = p.

Remember that we always assume we have the same number of queries as the number of

processors, hence while we have more parallelism available, we are also handling more and

more queries at the same time, and it is not directly whether the increase in p will help us.

Plots of our experimental findings are shown in Figure 7.5, Figure 7.6, and Figure 7.7, with

the accompanying data in Table 7.2. In all plots, the x-axis is drawn on log-scale.

In this scenario, with both n and w fixed, the communication overhead plot may not be

strictly necessary, as it merely down-scales the y-axis of Figure 7.5 by 625. However, we

still include it to demonstrate that the communication overhead per bit is indeed small.

Interestingly, the communication overhead decreases as p increases. This can be attributed

to the less frequent refreshing steps as the number of processors, and consequently the

threshold, grows. Empirically, this highlights the importance of explicitly query handling the

base case, as the work involved in refreshing is quite substantial in the lower level position

maps.

The rounds of communication increase as p grows, but this is simply due to the larger Q
that needs to be processed each time. Even so, we observe that the rounds of communication
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Figure 7.3: Number of elements stored vs. communication overhead

grow on a log-scale empirically, which is better than the log2(n) asymptotics suggested by

our calculations.

7.2.3 Experiment conclusion

Through our experiments, we find that the asymptotics suggested by calculations match

with the empirical figures. In fact, the rounds complexity is even better in practice than in

theory, only growing on a log-scale instead of log2 scale. Therefore, our PRAM is ideal in

situations where the number of processors is on the same scale with the number of elements,

since the rounds complexity grows very slowly even the number of queries we can handle

grow exponentially. In other words, we pay a linear cost for an exponential gain.
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Figure 7.4: Number of elements stored vs. rounds of communications per set of p parallel
queries
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Figure 7.5: Number of elements stored vs. number of bits transmitted
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Figure 7.6: Number of elements stored vs. communication overhead
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Figure 7.7: Number of elements stored vs. rounds of communications per set of p parallel
queries
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log(n) bits rounds

7 5503 364
8 7497 440
9 10845 610
10 15147 741
11 20407 874
12 26589 1006
13 33698 1137
14 41761 1266
15 50817 1395
16 60909 1524
17 72601 1738
18 85455 1911
19 99653 2083
20 115186 2255
21 127982 2427
22 147293 2599
23 164971 2771
24 180552 2943
25 201380 3116

Table 7.1: Experiment with changing
number of elements stored

log(p) bits rounds

5 205537 3035
6 201380 3115
7 197006 3204
8 192542 3305
9 187635 3368
10 182657 3438
11 177601 3515
12 172453 3600
13 167194 3692
14 161804 3792
15 156263 3902
16 150557 4023
17 143912 4097
18 137068 4176
19 130088 4262
20 123130 4352
21 116554 4449
22 112174 4555
23 110655 4682
24 115831 4863

Table 7.2: Experiment with changing
number of processors
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CHAPTER 8: CONCLUSIONS

In this work, we introduced innovative techniques for achieving 3PC secure PRAM com-

putation and constructed a perfectly secure one, as shown in Theorem 2.1. We began by

developing a RAM that enables users to make queries without revealing the target logical

address or the physical access pattern. Our RAM is most notable for its natural compatibil-

ity with parallelism. We then demonstrated how to generalize this RAM to a PRAM capable

of handling a large number of queries in parallel. Empirically, we observed that both the

communication overheads and round complexity grow logarithmically when p = O(n).

The security and efficiency of our PRAM make it suitable for applications where the

available degree of parallelism is high, such as the cloud map application discussed in the

introduction chapter. We formally proved that our PRAM is perfectly secure in the 3PC

semi-honest honest-majority setting, and we argued that our PRAM is more powerful than

a traditional OPRAM as a result. One area where our PRAM outperforms traditional

OPRAM is its natural compatibility with MPC-RAM protocols. For instance, the client

of our PRAM can be an MPC protocol operating on secret shares, like a circuit running

the GMW protocol. In this case, the MPC protocol can directly incorporate our PRAM by

treating it as an idealized protocol, thereby transforming the MPC protocol from the circuit

computation model to the RAM computation model, which is arguably easier to work with.

In conclusion, our PRAM represents a significant step towards achieving practical and

secure PRAM computation. We hope that future research in this area will build on our

findings and further develop this work.
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