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ABSTRACT 

In the past few years, many cities in the Unites States have adopted mobility-on-demand 

(MOD) and ride to transit (R2T) services to address the mobility needs of their disadvantaged, 

typically carless populations. When integrated with public transit, these services can help to 

increase accessibility and alleviate the last-mile problem by reducing travel times to important 

destinations like employment centers, however, their ability to do so has not been properly 

evaluated in the transportation planning literature using experimental methods. This study 

attempts to shed light on the efficacy of an R2T in promoting low-wage job accessibility by 

combining Census tract-level accessibility scores with data from a state-of-the-art randomized 

control trial (RCT) that provides subsidized R2T Uber trips in the Chicago Metropolitan Area. 

By analyzing the interaction between the subsidy treatment and participants’ accessibility, I 

attempt to answer the following questions: First, how large is the disparity between transit- and 

auto-based low-wage job accessibility in the Chicago Metropolitan Area? Then, to what extent 

can transit-linked Uber trips alleviate any accessibility gaps? And lastly, how do the accessibility 

gains one achieves through FLM connectivity play a role in determining their take up of a 

subsidized R2T program? My results serve to help planners in determining where and for whom 

R2T program usage is highest and whether job accessibility is a useful metric for predicting 

program uptake. 
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 CHAPTER 1: INTRODUCTION 

It is well known that low-income households in American cities are less likely to own a 

personal vehicle and are thus more reliant on public transit services for their commutes. The 

consensus in the transportation planning literature however is that job accessibility by transit is 

many magnitudes lower than accessibility by car, even in the parts of metropolitan areas with the 

densest transit service (Boarnet et al., 2017; Grengs, 2010; Kawabata & Shen, 2007; Kim & Lee, 

2019). Moreover, while these low-income households are predominantly located in transit-dense 

urban areas, there is no guarantee that the fixed route nature of transit services will 

geographically coincide with their residents ’ commuting origins or destinations (Brown et al., 

2021; Jiao & Wang, 2021). This aspect of public transit has led to considerable research into the 

effect of the first- last-mile (FLM) on ridership (Boarnet et al., 2017; Chen et al., 2021; Ha et al., 

2023). The first- last-mile is the 1/2 to 1-mile radius outside of the core transit service area in 

which people commonly decide that traveling to transit stations is either too time consuming, 

unsafe, or cumbersome, and choose instead to opt for personal vehicle travel (U.S. Census 

Bureau & Dowell, 2020). Because not all households have reliable access to a personal vehicle, 

many have highlighted  the need for reduced cost mobility options to improve FLM connectivity, 

especially among low-income groups (Boarnet et al., 2017; Franklin, 2018). 

Following their explosion in popularity over the past decade, transportation modes such 

as bike sharing, ridesharing, and micro transit services have been suggested by researchers, 

planners, and the private sector as a way to reduce FLM travel times (Brown et al., 2021; 

Greenawalt, 2021; Shaheen & Chan, 2016; Witek et al., 2020). Boarnet et al. (2017) finds that 

the gap in low-wage job accessibility between rail transit and car can decrease significantly if a 

car is used as a complement to transit, making up the FLM distance. Few studies have tried to 
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estimate the degree of complementarity that exists between micro transit and public transit, and 

what little evidence they do find points to very small positive effects, though typically for those 

with higher incomes who are already adequately serviced by transit (Barajas & Brown, 2021; 

Brown et al., 2021; Ma et al., 2015; Martin & Xu, 2022; Sabouri et al., 2020). Despite this, many 

cities have partnered with mobility-on-demand MOD service providers like Uber, Lyft, and Via 

to adopt micro transit services, which provide their residents with reduced-cost shared rides, and 

ride-to-transit (R2T) services, a similar type of ride hailing that restricts trip purpose to first- last-

mile transit connectivity (Greenawalt, 2021). To my knowledge, Brown et al. (2021) is the only 

study that has attempted to empirically evaluate the success of such a program in bridging the 

FLM gap. They analyze data from Los Angeles’ MOD pilot program, but are limited by a lack of 

experimental design, an inability to link trip data to user demographic information, and 

difficulties with surveying frequent riders. Beyond studying the coincidence of MOD trip origins 

and destinations with low-income Census tracts, the authors do not reach any definitive 

conclusions regarding the equity and welfare impacts of the pilot. 

This study attempts to address the identification problems mentioned previously by 

combining Census tract-level measures of low-wage job accessibility with data from a state-of-

the-art randomized control trial (RCT) that examines the effects of a program which provides 

subsidized R2T connectivity in the Chicago Metropolitan Area. The experiment, developed by 

Christensen, Lehe, & Osman from the University of Illinois Urbana-Champaign, provides treated 

individuals with a 50% fare price subsidy for their transit-linked Uber trips. In the first part of 

my paper, I calculate zone-level accessibility scores that account for transit station access and 

egress time. In doing so, I establish that the use of a car to traverse the first- and/or last-mile of a 

transit commute can greatly increase the transit-based low-wage job accessibility experienced by 
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the Chicago area’s low-income populations. The Chicago context is a useful comparison to 

Boarnet et al.’s (2017) San Diego results because it sheds light on the extent to which FLM 

connectivity increases accessibility in a larger, more transit-oriented, yet economically 

segregated, metro area. The second part of my analysis evaluates these zone-level accessibility 

scores in determining how they influence the treatment effects of the R2T program. I use travel 

survey data collected at the mid and endline of the RCT to develop a set of treatment effect 

models that estimate an average treatment effect (ATE) on trips taken in the previous day using a 

personal vehicle, car, and various types of transit. Each model includes a term that interacts the 

treatment variable with a measure of the increase in the accessibility achieved by linking transit 

with ride hail trips. Given available data, I find that transit-based accessibility to low-wage jobs 

does not significantly increase treatment effects, though the direction of the coefficients indicates 

the potential for positive effects on trips taken using transit and increased Uber utilization.  These 

results are very relevant to planners and government officials that are considering R2T programs 

as a way to meet equity and sustainability goals in their city. This accessibility framework can 

also help to identify areas and populations for which a program would  have the strongest effects 

for the purposes of targeted implementation and welfare analysis. 

The rest of this paper will proceed as follows: Chapter 2 reviews the literature on job 

accessibility, the first- last-mile problem, and the relationship between ride hailing and transit, 

while also highlighting experimental and quasi-experimental transportation planning studies; 

Chapter 3 describes the study area and the demographic composition of Chicagoland; Chapters 4 

and 5 provide the respective methodologies for and results of the accessibility and regression 

analyses; and in Chapter 6, I interpret these results and discuss their policy implications. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Spatial Mismatch and Accessibility 

Understanding the disparity in job accessibility faced by low-income groups first requires 

a discussion of the spatial mismatch hypothesis. Spatial mismatch was first proposed in 1968 by 

economist John F. Kain, who posited that disproportionate levels of unemployment among poor 

urban black populations could be explained by the various residential segregation mechanisms 

that had increased their geographical distance from job centers (Kain, 1968). More recent tests of 

the spatial mismatch hypothesis have studied the shift of employment centers into the suburbs in 

American metros, away from urban areas where low-income groups tend to concentrate (U.S. 

Census & Dowell, 2020). This body of literature is driven by skeptics in the transportation 

planning field, who question how much physical distance plays a role in determining 

employment outcomes. Taylor & Ong (1995) were the first to argue that employment outcomes 

among low-income populations could be traced back to a “modal-mismatch”, or a lack of 

personal vehicle ownership as opposed to physical distance. This finding implies that travel time 

is the primary barrier to opportunity rather than distance. Successive studies have generally 

supported this finding, characterizing it as a problem of accessibility (Blumenberg, 2002; 

Grengs, 2010; Kawabata, 2003; Kawabata & Shen, 2007). Many job accessibility studies have 

investigated the correlation between zone-level transit-based accessibility scores and 

socioeconomic problems relevant to this research (Kawabata, 2003; Kim & Lee, 2019; Owen & 

Levinson, 2015). Kawabata (2003) finds transit-based accessibility to be positively associated 

with the probability that a carless worker in Boston, Los Angeles, and San Francisco is 

employed. Using binary logistic models and a utility-based definition of accessibility, Kim & 

Lee (2019) find that increases in Census tract-level ratios of transit- to auto-based accessibility 
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are significantly associated with higher transit commuting shares in the Chicago Metropolitan 

Statistical Area (MSA). 

If spatial mismatch is at its core, an accessibility problem as the literature would suggest, 

then approaches that reduce low-income residents’ travel times to large employment destinations 

could help alleviate the problem. In light of this, some have argued for policies that aid carless 

people in gaining access to automobiles (Blumenberg, 2002; Grengs, 2010)., Putting more cars 

on the road, however, runs contrary to common goals set by cities to reduce congestion and 

reduce emissions from their transportation sectors. Transit agencies may also pursue headway 

reductions – reducing the time between vehicles at a given stop – to cut down on the amount of 

time a traveler would spend waiting for their vehicle to arrive. In an era of shrinking transit 

agency budgets and rising infrastructure costs, running more buses and trains is rarely an option, 

even on high ridership routes (Regional Transit Authority, 2022). Another avenue for improving 

accessibility lies in decreasing overall travel times through interventions that address the FLM 

(Boarnet et al., 2017; Huang & Boarnet, 2022; Lu et al., 2021).  

2.2. First- Last-mile Solutions 

While first- last-mile transit access is often cited as an obstacle to increasing transit 

ridership in Chicago and other U.S. cities (Chandra et al., 2013; Regional Transit Authority, 

2022), it is not always accounted for in current models of accessibility to jobs and services 

(Boarnet et al., 2017). Even though the FLM distance is intrinsic to a commuter’s specific trip 

origin and destination and thus hard to generalize for zonal-accessibility analysis, Krygsman et 

al. (2004) finds that it can account for a large share of transit travel times, warranting its 

inclusion in travel behavior models. Boarnet et al. (2017) find that the first- last-mile plays a 

large role in the provision of adequate transit-based job accessibility for very-low-income 
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residents of San Diego, and that its omission from travel time modeling can severely 

overestimate job access. Conversely, they find that this modal disparity can be reduced by 58.2% 

if a car is used to complete the transit access and egress portion of a commute. In such a 

scenario, these transit-linked car trips would act as an economic complement to transit, 

contributing to a multimodal trip rather than directly substituting for it. Policies that reduce FLM 

travel times (Boarnet et al., 2017; Krygsman et al., 2004) and associated costs (Franklin, 2018, 

Bryan et al., 2014, Phillips, 2014) can thus improve accessibility by transit by reducing modal-

mismatch. 

2.3 Ridesharing Literature 

In light of decreasing transit ridership in U.S. cities, and the increasing prevalence of ride 

sharing, much of the ridesharing/transit literature intuitively focuses on the potential for the 

former substitute for the latter (Hall et al., 2018; Malalgoda & Lim, 2019; Mallett, 2018; 

Puentes, 2017). Some find that ridesharing services are increasingly used for trips that otherwise 

would have been completed using more sustainable modes (Gehrke, 2020; Gehrke et al., 2019; 

Sabouri et al., 2020). Using a multi-level modeling approach, Gehrke (2020) finds that growth in 

Census tract level Uber activity in the morning peak period in Boston, San Francisco and 

Washington D.C. is most concentrated in employment-dense and transit-dense areas, indicating 

that Uber may compete with transit services. Work from Sabouri et al. (2020) produces similar 

findings with trip-level data from 24 U.S. cities, showing that Uber demand tends to cluster 

around areas with high transit-stop density. Interestingly, the authors also observe negative 

correlations with both auto- and transit-based job accessibility which they attribute to the fact 

that alternative modes may maintain a competitive advantage over ridesharing services in certain 

areas, while Uber is used as a “last resort” option.  
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Ridesharing services can theoretically complement public transit systems in two ways; 

via FLM connectivity on a trip-by-trip basis, and in a more city-wide sense by filling in the gaps 

created by the fixed-route nature of transit services (Hall et al., 2018). While addressing the 

needs of mobility deprived populations, ride sharing services have been found to do a poor job of 

addressing so called “transit deserts” or urban areas where transit access is low (Barajas & 

Brown, 2021; Jiao & Wang, 2021). Using hotspot analysis, Barajas & Brown (2021) report that 

clusters of ride-sharing trip origins and destinations in the city of Chicago tend to not be spatially 

correlated with any measure of transit service deficiency, but instead with higher median 

household incomes. When controlling for income and other socioeconomic characteristics as 

well as urban form variables, they find a negative effect on overall transit station density, but a 

positive effect on rail station proximity, indicating that rail transit could be a better candidate for 

FLM connectivity. Meredith-Karam et al. (2021) provide one of the few studies that directly 

examine ridesharing as a potential FLM solution. They classify Uber trips made in Chicago into 

three relationship bins: complement, substitute, or independent of transit, using factors such as 

proximity to light rail transit, transit schedule data, and nearby points of interest as criteria. Their 

model reveals that only 2% of the Uber trips taken in the city in 2019 act as complements to 

transit. Hall et al. (2018) take a more disaggregated approach, sacrificing the ability to 

distinguish between a trip-level and system-wide effect in favor of estimating a causal impact. 

Using a difference in differences model to determine the effect of Uber arrival and market 

penetration on transit ridership in U.S. cities, they reveal a significant complementary effect, 

with the arrival of Uber increasing the ridership of the average transit agency by 5% over the 

course of two years. Their results are highly heterogenous with the strongest effects seen in 
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agencies in large cities, smaller transit agencies, and rail agencies, providing causal support for 

the claim made by Barajas & Brown (2021).  

Taken together, the FLM literature tends to corroborate Boarnet et al.’s (2017) claim that 

policy incentives for micro mobility may be necessary for encouraging multi-modal transit trips, 

especially among lower-income populations. It should be underscored that the FLM studies 

reviewed above have used either observational, stated preference, or in the best case, quasi-

experimental methods. While Meredith-Karam et al. (2021) provide one of the best frameworks 

for estimating the impact of ride sharing on public transit, their classification of trip-purpose is 

still just an estimation. A hypothetical trip that satisfies the “complement” criteria, may just be 

mimicking a trip with a first- last-mile purpose and, is a substitute for transit. This study 

addresses this limitation by making first- last-mile trip purpose intrinsic to its design. 

2.4 Pricing of Urban Transportation and Experimental Methods 

While there are some notable exceptions, randomized control trials (RCTs) are rarely 

used to study travel behavior and even less frequently to study ride hailing (Christensen & 

Osman, 2021; Merlin et al., 2022; Rosenfield et al., 2020). In most planning studies, assignment 

to treatment is a product of self-selection – participants choose where they live and what modes 

they use to travel (Bagley & Mokhtarian, 2002; Cao et al., 2009; Merlin et al., 2022). This self-

selection can lead to fundamental unobservable differences between treatment and control 

groups that impede the identification of program impacts. Randomization deals with these 

differences by balancing the averages of observable characteristics between treatment and 

control given a sufficiently large sample size. In doing so, unobservable factors, like an 

individual’s propensity to take public transit for example, become balanced as well. In terms of 

experimental design, intervention cost is often another prohibitive factor to studying the impacts 
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of new transportation systems on welfare (Asher & Novosad, 2020). Building new transportation 

infrastructure is an expensive undertaking while close  coordination with local government 

agencies regarding project timelines is typically required for baseline data collection on 

demographics and travel behavior. Thirdly, transportation RCT designs are limited in their 

ability to prevent spillover effects. Put simply, you cannot easily prevent a control group from 

using new infrastructure or certain transportation modes without providing significant incentives.  

Mobility pricing approaches to studying travel behavior are well suited to a randomized 

design and have the potential to circumvent all three of these issues. Mobility pricing refers to 

policies and programs that either increase or decrease individuals’ transportation costs. The 

ubiquity of smartphones and advances in GPS technology in recent years have made it easier 

than ever for researchers to employ such methods (Christensen & Osman, 2021). Charging 

different prices to different individuals can be done easily using a digital platform, reducing the 

chance for spillover effects, while the collection of GPS-accurate travel data can deal with recall 

bias (Christensen & Osman, 2021; Dixit et al., 2017; Merlin et al., 2022). Christensen, Osman, 

and Lehe’s Uber Chicago study utilizes these technological improvements by collecting 

participants’ trip data through Google Timeline and constraining subsidy application to treated 

individuals’ Uber trips made within a 200-meter buffer of transit stops.  

Recent studies have employed randomization to study the impacts of transportation 

pricing on welfare outcomes, through rarely in a developed country context (Christensen & 

Osman, 2021; Franklin, 2018; Phillips, 2014). Phillips (2014) attempts to answer a similar 

question to the one I pose, applying a randomized pricing approach to the question of whether 

transportation subsidies can improve the job search intensity of unemployed and carless 

jobseekers in Washington D.C. He finds that the subsidy treatment increases seekers’ search 
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intensity by 19% on average, with this effect more than doubling to 40% for those living the 

furthest from employment centers. His results indicate that reducing transportation cost has 

welfare effects that increase with distance, an important implication for economically 

disenfranchised populations living outside the FLM boundary that I will attempt to characterize 

in this paper. 
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CHAPTER 3: STUDY AREA 

3.1 Demographics 

 The Chicago-Naperville-Elgin MSA encompasses eight counties in northeastern Illinois, 

four counties in northwest Indiana, and Kenosha County in Wisconsin. Because my primary 

interest is in identifying improvements in transit-based accessibility, this analysis will be limited 

to the regions’ counties that receive transit service: Cook County, home to the city of Chicago, 

and its five “collar” counties - DuPage, Kane, Kendall, McHenry, Lake, and Will. Residents of 

these counties were also the primary targets for Uber Chicago recruitment. Chicagoland counties 

are the six most populous counties in the state; the region was home to 8,483,267 people in 2019, 

according to American Community Survey 5-year estimates. It also supports 4,240,993 jobs 

according to data from the Census’ Longitudinal Employer-Household Dynamics program and 

had a median household income of $69,827.50 in 2019 as well. For demographic, travel time, 

and accessibility calculations, I use Census tracts (with 2010 boundaries) as my unit of analysis 

along with demographic data from the 2019 American Community Survey 5-year estimates. The 

study area contains 1,985 Census tracts, but I drop 4 tracts with either 0 population or 0 jobs to 

avoid underestimating summary statistics and accessibility calculations (n=1,981). 

The first part of this paper seeks to measure the increase in transit-based accessibility that can be 

achieved by a R2T program, and whether benefits are felt equally by low-income populations. 

To isolate the region’s population that may be low-wage job and transit reliant,  I use the 

Department of Housing and Urban Development's (HUD) definition of very-low-income 

households – areas with a median household income less than or equal to half of the MSA's 

median, $35,885 in 2019. 229 of the 1,981 Census tracts in the study area meet the established 

very-low-income threshold. A demographic comparison of these very-low-income tracts with the 
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entire region can be seen in Table 1. Figure 1 displays the location of these very-low-income 

tracts along with tract-level low-wage job densities. 

As evidenced by the clustering of very-low-income tracts on the City’s West and South 

sides, Chicago is consistently ranked as one of the top five cities in terms of segregation on the 

grounds of both race and income (Acs et al., 2017).  For a breakdown of the past and present 

mechanisms that enabled this segregation, see (Barajas & Brown, 2021). While poverty is 

predominantly concentrated in urban areas, pockets of low-income earners are found in parts of 

Lake, Will, and south suburban Cook County as well. The average annual median household 

income of these tracts is almost 3 times lower than that of the region at $26,433.30, while their 

poverty and unemployment rates are 23.4% and 11% higher respectively. The average share of 

zero-vehicle households is 38.9% in very-low-income tracts, illustrating a large gap in car-

ownership and a potential for transit dependency. 

Table 1: Demographic and Employment Characteristics of Study Area Census Tracts 

  

All tracts Very low 

N Average Std. dev N Average Std. dev 
Population 
density (acres) 1981 16.0 19.5 229 20.1 14.0 

Median 
household 
income 

1976  $ 76,509.30   $ 38,366.53  229  $ 26,433.32   $   6,039.46  

Poverty rate 1977 13.4 11.6 229 36.5 10.6 
Unemployment 
rate 1978 7.2 6.5 229 18.2 8.7 

Pct. households 
with no vehicle 1977 14.1 14.6 229 38.9 13.7 

Pct. of car 
commuters 1978 74.0 18.9 229 60.6 15.3 

Pct. of transit 
commuters 1981 15.6 14.3 229 29.8 13.5 

Total jobs 1981 2.5 14.2 229 1.2 2.2 

Job density 1981 6.3 35.7 229 2.7 4.8 
Low wage jobs 1981 847 3367 229 228 502 
Low wage job 
density 1981 2.5 14.2 229 1.2 2.2 

 



13 
 

Figure 1: Tract-level low-wage job density 

 

3.2 Transit Services 

The Chicago MSA has four main transit services. The Chicago Transit Authority (CTA) 

operates an elevated light rail train, the “L,” as well as a bus service in the City of Chicago and 

parts of its inner ring suburbs. The larger metropolitan area is served by Metra, a heavy rail 

commuter train and the Pace bus, both of which operate throughout the Chicago suburbs, 

providing crucial connections to downtown job centers. These public transit services are well-

used within the region: 15.6% of commuters used transit in 2019, though this share increases to 

roughly 21% when only considering Cook County, and to 29.8% when using the subset of by  

very-low-income tracts whose residents are on average, much more transit reliant. When 
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compared to other MSAs, Chicagoland is very transit oriented: In 2019, the L and Metra were 

the 3rd and 4th largest rail transit systems by ridership in the country (Dickens & APTA, 2019). 

Figure 2: Transit Services in Chicagoland 

 

These public transit services are well-used within the region: 15.6% of commuters used transit in 

2019, though this share increases to roughly 21% when only considering Cook County, and to 

29.8% when using the subset of by  very-low-income tracts whose residents are on average, 

much more transit reliant. When compared to other MSAs, Chicagoland is very transit oriented: 

In 2019, the L and Metra were the 3rd and 4th largest rail transit systems by ridership in the 

country (Dickens & APTA, 2019). 

Transit investment in the City of Chicago has historically favored white collar and upper 

middle-class Chicagoans, while infrastructure that serves low-income neighborhoods on the west 

and south sides has languished. This became very apparent in the early 2000s when the city 
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made massive investments with the express purpose of attracting and retaining creative-class 

workers by improving rail service in the city’s central business district ,The Loop, increasing 

connectivity to Metra, the city’s two airports, and affluent northside neighborhoods. The CTA’s  

red line extension project, which was intended to increase transit service to Chicago’s far 

southside, only recently received adequate funding after having been held up by political and 

budgetary concerns for more than five decades. A map of the extension’s proposed path can be 

seen in Figure A.1 of Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

CHAPTER 4: ACCESSIBILITY MODELING ANALYSIS 

4.1 Defining Access to Low Wage Jobs 

The first part of this research seeks to compare the Chicago MSA’s very-low-income 

population to the larger region to determine whether this population has comparatively reduced 

job access, and whether potential gaps in access can be lessened with FLM interventions. To 

investigate this, I calculate two measures of low-wage job accessibility using the demographic, 

employment, and travel time data that will be discussed in more detail in the following sections. 

The first measure is a computation of cumulative opportunity, or absolute job access, that 

measures the total number of jobs that can be reached in a vector of destination Census tracts “j” 

from a given origin tract “i” in under 30 minutes.  

 

 
(1) 

 
This 30-minute threshold was chosen because it is near the region’s average commute time of 32 

minutes and facilitates comparison between the accessibility provided by various travel modes. 

Given increases in computing power and data availability, the accessibility literature has 

proposed a number of improvements to the cumulative opportunity measure (Kim & Lee, 2019; 

Lee & Miller, 2019; Owen & Levinson, 2015; Shen, 1998, 2001), though it remains popular 

among planners for its ease of interpretation (Merlin & Hu, 2017). Perhaps one of the most 

popular modifications comes from Shen (1998, 2001) who argues that job accessibility cannot be 

accurately measured without considering the demand generated by other potential job seekers. 

He takes a relative approach to accessibility through calculating a ratio between cumulative 

opportunity and labor market demand. Shen weights the cumulative opportunity index of each 

origin tract’s 30-minute commuting shed by the amount of potential low-wage job seekers 
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traveling by auto and by transit that also live within that commuting shed. To illustrate the 

usefulness of this measure, consider a very-low-income tract on the west side of Chicago. The 

tract has a high transit-based absolute accessibility score but is surrounded by tracts with many 

low-wage job seekers. Relative transit-based accessibility is calculated as seen in Equation 2: 

 

 
(2) 

 
Where  is the total number of low wage jobs reachable in destination j;  k1 is a vector of 

tracts for which the travel time between k1 and j is  30 minutes by either transit or car; k2 is a 

vector of tracts for which the travel time between k2 and j is  30 minutes by car but  30 

minutes by transit; ,  are the percentage of transit commuters in each set of tracts; and 

,  are the number of potential job seekers in tracts k1 and k2.  

4.2 Low-wage Job and Job Seeker Definitions 

The U.S. Census’ Longitudinal Employer-Household Dynamics (LEHD) program 

provides job counts by sector at the Census block level. I opt to focus on low-wage jobs for this 

analysis because they provide a representation of the opportunities that are commensurate with 

very-low-income job seekers’ experience levels. To estimate what share of these jobs are 

considered low-wage, I apply Boarnet et al.’s (2017) method of estimating low wage jobs in each 

North American Industrial Classification (NAIC) employment sector using National Industry-

Specific Occupational Employment and Wage Estimates (OEWS) from the U.S. Bureau of Labor 

Statistics. Using the mean and standard deviation of each sector’s wage distribution, I calculate 

the probability that a given job falls below the national median hourly wage, $19.33/hour in 

2019. I then multiply each sector’s probability by its total number of jobs. To get total tract-level 

employment, I aggregate the block level data to the tract level using ArcGIS. 
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The resulting low wage job concentrations can be seen in Figure 2, with darker areas 

indicating higher density. As expected, the highest low-wage job densities are concentrated in 

downtown Chicago, which has an average of 4.6 low-wage jobs per acre. It should be noted that 

77% of total low-wage jobs are found outside of the city, which indicates a need for reliable 

urban to suburban commuting modes, given the clustering of very-low-income tracts in Chicago. 

These tracts, outlined in gray, are on average less than half as low-wage job dense as the region. 

 
 

(3) 

 
To quantify demand from potential jobseekers,  and , I take the percentage of low-

income households in each tract, defined by the U.S. HUD as those that make 80% or less than 

their MSA’s median household income, and multiply that percentage by the size of the tract’s 

working-age labor force. In the relative measure, these totals are weighted by the share of transit 

and auto commuters in each tract. Using the low-income threshold instead of very-low-income 

accounts for a potentially wider range of job seekers that may compete for low-wage jobs. 

4.3 Travel Time Data 

4.3.1 Auto Times 

Auto travel times were calculated at the Census tract level using a highway network 

shapefile exported from the Chicago Metropolitan Agency for Planning’s (CMAP) Travel 

Demand Mode (Chicago Metropolitan Agency for Planning, 2018) . The dataset is composed of 

nodes and roadway links that contain an impedance value that represents the time it would take a 

driver to traverse that link during peak roadway congestion (7:00-9:00 AM). Link impedance is 

calculated based on several factors such as time of day, speed limit, number of road lanes, 

parking availability, and allowable vehicle types (Chicago Metropolitan Agency for Planning, 
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2018). After constructing a network dataset in ArcGIS, I calculate an origin-destination (OD) 

cost matrix that contains travel times for the shortest network path between pairs of Census tract 

centroids (n*(n-1) = 3,922,380 pairs). Peak congestion travel times are used because they 

provide a more accurate representation of what a commuter would experience when trying to get 

to work, as well as a more conservative travel time estimate for accessibility calculations. 

Because the CMAP dataset of roadway links does not include all local roads and does not neatly 

align with tract centroids, I use the time it would take for a car traveling 20 mph, which is 

common on the region’s residential roads, to travel the straight-line distance from each tract 

centroid to the nearest node in the road network. Because tract to tract travel times are 

approximations of the impedance faced by a given household in the origin tract, I do not view it 

as necessary to compute network times using more granular road data. 

4.3.2 Transit Times 

The transit travel time matrix was constructed using Emme skim files from CMAP that 

contain estimated wait, transfer, and in-vehicle times for origin-destination pairs of transit 

stations stored as traffic analysis zones (TAZs). CMAP computes zone to zone travel times in the 

peak period using GTFS schedule data from a representative weekday (Chicago Metropolitan 

Agency for Planning, 2018). Peak period travel times are estimated as a weighted average of the 

travel time of all trips departing within the 7:00 AM-9:00 AM window. These trips can be made 

using one or more of the L, Metra, or bus, though routes using rail transit are weighted more 

highly. To make these transit travel times compatible with Census tract level job counts; each 

TAZ is first assigned to the Census block group with which it has the most geographic overlap 

using Python’s GeoPandas package. Block groups are used for this assignment procedure 

because they are closer in size to TAZs than tracts, thus proving a better spatial representation of 
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travel time pairs. Of these block group to block group pairs, the pair with the shortest travel time 

is chosen to represent the travel time between each corresponding Census tract pair. Thus, as in 

Boarnet et al. (2017), the methods used provide a lower bound estimate of transit travel time, but 

are likely reflective of the times that transit-commuters, who tend to live closer to transit stations, 

experience (Guerra et al., 2012). Transit station access and egress times were estimated similarly 

to the impedance on the connector links in the auto travel scenario. I use the straight-line 

distance between each Census block centroid and its nearest transit stop multiplied by the 

average speeds of various modes (3 mph for walking, 8 mph for biking, and 20 mph for driving). 

Transit travel times are computed for six different scenarios to model the changes in job 

accessibility that result from the use of different access/egress modes or changes to transit 

service. ”Walk/walk”, bike/bike, “auto/walk”, and “auto/auto”  refer to transit station 

access/egress modes, while “25Hdwy” and “50Hdwy” represent percent reductions to transit line 

headway times, another policy intervention commonly used to reduce travel time and promote 

job access. Later, I compare each of these scenarios and their effectiveness in achieving parity 

with auto-based job accessibility. 

4.4 Results 

4.4.1 Spatial Distribution of Accessibility 

From left to right, Figure 4 displays the number of low-wage jobs accessible in 30 

minutes or less by car, transit with walking access and egress, and transit with auto access and 

egress. Scores are mapped in seven quantiles, with higher levels of accessibility shown in darker 

shades. As predicted, there is a very large disparity in access between the two modes. This is 

illustrated by the fact that the Census tract with the highest transit-based score in the 

“walk/walk” scenario, with 352,458 low-wage jobs, would only fall into the third quantile of 
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auto-based accessibility. The highest levels of auto-based accessibility can be seen in Chicago’s 

northwest neighborhoods, as well as its inner ring suburbs. The cluster of very-low-income tracts 

on Chicago’s west side also tend to fall within these top quantiles of auto access, while southside 

tracts have scores that are closer to the middle of the range in quantiles three and four. Very-low-

income Census tracts in the suburbs are very disadvantaged when compared to their urban 

counterparts, falling within the lowest two quantiles. Transit-based accessibility is much more 

concentrated in the region’s urban areas, though switching from “walk/walk” to “auto/auto” 

access/egress drastically increases the size of suburban clusters, typically in conjunction with the 

location of Metra stations and greater low-wage job densities (refer to Figures 1 and 2). 

The highest concentrations are found downtown, where rail transit and low-wage jobs are 

densest, and slightly further from near-downtown neighborhoods on the north and west sides of 

the city. Like auto accessibility, transit-based access is lower for very-low-income tracts on 

Chicago’s south side than those on its west side, with some parts of the southside falling into the 

lowest of the two quantiles and below the regional average. Very-low-income tracts in the 

suburbs tend to have higher transit accessibility than those in the south and west sides, but 

nowhere near as much as the aforementioned urban tracts. 
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Figure 3: Absolute low-wage job accessibility by car and by transit (“walk/walk”, “auto/auto”) 

 

 

4.4.2 Relative Accessibility 

The use of the relative measure drastically changes the spatial distribution of auto-based 

job accessibility as shown in Figure 4. The highest auto scores are now found outside of the city, 

in suburban parts of DuPage, Lake, and Cook County. Very-low-income tracts are much worse 

off than they were before, rarely falling into the upper quantiles of relative access. This 

difference in absolute and relative score distribution indicates that the jobs accessible from very-

low-income neighborhoods in urban areas are subject to more labor market demand than their 

suburban counterparts. Absolute and relative transit access scores are similarly distributed across 

space, with high access found in downtown Chicago and its north and west sides. Islands of 

accessibility are still found in DuPage County suburbs like Wheaton, Naperville, and Oak Brook. 

Very-low-income tracts are once again split along geographical lines, with tracts on the south 

side seeing much lower access to low-wage-job opportunities than those on the west side. The 
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disparity between transit and auto is even higher than that of absolute access, with the highest 

quantile of transit-based access only overlapping with the lowest quantile of auto-based access.  

Figure 4: Relative accessibility scores by car and transit (walk/walk, auto/auto) 

 

To test the similarity of the absolute and relative access measures, I calculate simple 

correlation coefficients between the two variables. I find the relative and absolute measures of 

both the “walk/walk” and “auto/auto” transit scenarios to be highly correlated, with coefficients 

of 0.98 and 0.97 respectively. In contrast, absolute and relative auto access exhibit a very low 

correlation of -0.03.   

4.4.3 Comparison of Transit Access and Egress Scenarios in Very-Low-Income Tracts 

Figures 1 and 4 provide a useful visual analysis of the distribution of low wage jobs and job 

accessibility in relation to the locations of very-low-income Census tracts: In virtually all tracts, 

a car is superior to transit for either measure of low-wage job access, especially for low-income 

populations. I now quantify this modal disparity specifically for very-low-income tracts in 
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Tables 2 and 3, which compare auto-based accessibility with each of the six transit scenarios. I 

also estimate a scenario without access-egress times to illustrate their importance to accurate 

measurement.  

Table 2: Absolute Job Accessibility Provided by Various Travel Time Scenarios 

  
Car no 

access/egress walk/walk bike/bike auto/walk auto/auto 
25% 

headway 
reduction 

50% 
headway 
reduction 

Total  jobs reachable 
Mean 536526.1 57934.1 30091.4 46730.4 44065.1 53247.6 55343.1 89056.8 
Median 561836.0 10663.0 3368.0 7149.0 6155.0 8538.0 8658.0 20168.0 
Std. 
Dev 153054.1 86151.7 62798.0 76381.1 74594.4 82089.5 85684.2 105411.6 
Ratio of car and transit access 
Mean – 9.3 17.8 11.5 12.2 10.1 9.7 6.0 
Median – 52.7 166.8 78.6 91.3 65.8 64.9 27.9 
Std. 
Dev – 1.8 2.4 2.0 2.1 1.9 1.8 1.5 
Percent change of ratio between auto and transit access 
Mean – – – 35.6% 31.7% 43.5% 45.6% 66.2% 
Median – – – 52.9% 45.3% 60.6% 61.1% 83.3% 
Std. 
Dev – – – 17.8% 15.8% 23.5% 26.7% 40.4% 

 

By calculating ratios between auto access and the access provided by the various transit 

scenarios, I determine to what degree each transit stop access/egress mode can close the gap 

between transit and auto travel. The third set of results in the table show the percent change in 

the auto to transit ratio when shifting from “walk/walk” to the other scenarios. On average, job 

seekers in very-low-income areas can reach a far greater number of jobs when commuting by 

car; 17.8 times as many as the “walk/walk” scenario, 12.2 times more than “auto/walk”, and 10.1 

times more than “auto/auto”. Using a bike for transit stop access and egress is more effective 

than using a car for access and can lower the auto/transit ratio by 35.59%, though using a car to 

cover the FLM distance can lower the ratio by an average of 45.4%. A 25% headway reduction 

is slightly more effective at reducing travel time, even when access and egress time is not 
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accounted for, while a 50% headway reduction would narrow the gap in transit and job 

accessibility by almost three times making it by far the most effective method.  

Table 3:  Relative Job Accessibility Provided by Various Travel Time Scenarios 

  
Car no 

access/egress walk/walk bike/bike auto/walk auto/auto 
25% 

headway 
reduction 

50% 
headway 
reduction 

Total  jobs reachable 
Mean 0.67 0.06 0.03 0.05 0.04 0.05 0.06 0.09 
Median 0.64 0.01 0.00 0.01 0.01 0.01 0.01 0.03 
Std. Dev 0.13 0.08 0.06 0.07 0.07 0.08 0.08 0.10 
Ratio of car and transit access 
Mean – 11.4 22.9 14.4 15.3 12.5 12.1 7.2 
Median – 46.9 146.7 65.7 86.1 55.5 52.2 24.8 
Std. Dev – 1.6 2.3 1.9 1.9 1.7 1.6 1.3 
Percent change of ratio between auto and transit access 
Mean – – – 37.2% 33.0% 45.4% 47.2% 68.5% 
Median – – – 55.2% 41.3% 62.2% 64.4% 83.1% 
Std. Dev – – – 19.6% 17.3% 26.8% 28.9% 45.2% 
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CHAPTER 5: REGRESSION ANALYSIS 

The accessibility scores I presented in Chapter 4 made several necessary assumptions 

about travel times, jobs, and job seekers, and as such, may not exactly replicate real-world job 

accessibility at the individual level. Moreover, travel time and cumulative opportunity are not the 

only variables that factor into the utility of using a given travel mode (Kim & Lee, 2019). Even 

so, the computation of simple zone-level accessibility scores is a useful and common practice in 

the field of urban planning. Accessibility scores can help planners answer questions such as how 

frequently trains should run at a given station, whether the construction of a new employment 

center can improve accessibility and for whom (Spielman, 2022), and whether the installation of 

new bike-sharing stations can improve FLM connectivity to transit routes serving higher 

education facilities (Lord, 2017). In Chapter 5, I attempt to use accessibility scores to predict 

heterogeneity in the average treatment effects of subsidized R2T ride hailing using data from 

Christensen, Osman, and Lehe’s on-going Uber Chicago study. 

5.1 Uber Chicago Data 

Recruitment for the Uber Chicago study was carried out by Uber, which sent emails to a 

random selection of its regular users in the Chicago metropolitan region asking them to 

participate in a mobility study conducted by the University of Illinois. Participants were then 

randomized into two groups, one of which was provided with a treatment of 50% off their 

transit-linked Uber trips for 2-months. Transit-linked trips are defined as those with a pick-up or 

drop-off location within 200 meters of a Chicagoland transit station, which is the buffer distance 

the Uber app uses in determining subsidy allocation. The experiment collected data through three 

mechanisms. Surveys were sent out to every participant via mobile at the baseline, midline, and 

endline of the study period to collect demographic information, their home and work locations, 
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employment status, as well as an itinerary of their trips taken in the previous day. Uber also 

provided administrative data on participants including number of trips taken, the pickup and drop 

off location of their trips, and fare prices. Participants submitted Google Timeline data at the 

midline and endline, which described their trips at the segment level - origin and destination, 

longitude and latitude, beginning and end time, mode, and distance. Due to difficulties in 

identifying instances of bus vs. personal vehicle used in the Google Timeline data, I focus my 

Table 4: Uber Chicago Balance Table 

Variables Control Treatment Diff 
Male 0.46 0.46 0.00 

 (0.50) (0.50) (0.05) 
Female 0.54 0.54 0.00 

 (0.50) (0.50) (0.05) 
Age 33.19 32.40 -0.80 

 (9.53) (9.50) (1.04) 
Married 0.27 0.24 -0.03 

 (0.44) (0.43) (0.05) 
    
Currently Working 0.84 0.83 -0.01 

 (0.37) (0.38) (0.04) 
Car Owner 0.50 0.42 -0.08 

 (0.50) (0.49) (0.06) 
Household Size 2.16 1.93 -0.23 

 (1.36) (1.28) (0.15) 
Children in Household (under 16) 0.21 0.23 0.02 

 (0.56) (0.65) (0.07) 
College Education 0.81 0.73 -0.08 

 (0.39) (0.44) (0.06) 
High School 0.17 0.22 0.06 

 (0.37) (0.42) (0.04) 
Mobility Constraints 0.01 0.01 -0.01 

 (0.11) (0.08) (0.01) 
Trips Taken Yesterday (Uber Excluded) 1.38 0.91 -0.45 
  (6.34) (1.86) (0.20) 
Observations 162 169 331 
F statistic 1.05   
P-value (0.41)     
Notes: Table reports baseline characteristics for participants assigned to 
control and treatment conditions. Third column reports mean and standard 
error of differences between the groups. Table also reports the F-statistic and 
p-value of a test of joint significance in all baseline characteristics. 
*** p<0.01, ** p<0.05, * p<0.1 
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regression analysis on the survey results. The spatial distribution of participants’ home locations 

can be seen in Figure 5. 

Randomized control trials are an incredibly attractive form of impact evaluation because 

they allow researchers to deal with the selection and heterogenous treatment effect biases that 

impact the average treatment effect (ATE). If characteristics among the treatment and control 

groups are adequately balanced, then both biases should equal 0, producing a reliable estimate of 

the counterfactual. The Uber Chicago sample was successfully randomized into treatment and 

control groups with similar average characteristics, the results of which can be seen in Table 4. 

While sample randomization is relatively straightforward, there are a few small but 

necessary assumptions that need to hold true for selection and omitted variable bias to be equal 

to 0. Randomization assumes stable unit treatment values (SUTVA) which means there is no 

potential for treatment spillover into the control group, and that outcomes for one individual are 

independent of all others. In a hypothetical scenario, an individual in treatment is already 

acquainted with someone in the control group and uses their subsidy to transport both to a transit 

station at a reduced cost. Because Uber randomized recruitment emails, the chance of this 

occurring is incredibly small, validated by the fact that no survey participants share home or 

work locations. An unbiased RCT also assumes full program compliance, though there are two 

possible sources of noncompliant behavior in my design. In the first, participants have the 

potential to “game” the program, by using Uber for a single mode trip to a destination that 

happens to be within the 200-meter station buffer. The second form of noncompliance involves a 

treated individual ordering a subsidized Uber for a friend or acquaintance, and not actually using 

it themselves. Having Google Timeline data collected via GPS and administrative data from 
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Uber has the benefit of allowing me to identify both instances of noncompliance: Trips where a 

subsidized Uber segment is not followed up by a trip made using bus, Metra, or L can be 

considered an example of the first, while the timeline data can be cross-referenced with the Uber 

admin data to identify occurrences of the second, where a charge on a participant’s account is not 

followed up by an Uber trip segment. Only ten instances of these behaviors were found in the 

data, indicating that it is not a major concern from an internal validity standpoint.  

Figure 5: Uber Chicago Study Home Locations 

 

5.2 Differenced Transit-Based Accessibility 

When contemplating the impact of a real-world R2T program, the largest benefits would 

theoretically be accrued by those who do not own a personal vehicle and experience most gains 

in accessibility to high value destinations within the city. To capture these gains, I create a 

variable that is the difference in the “auto/auto” and “walk/walk” scenarios of transit-based 

accessibility using a 45-minute commuting threshold. (A 30-minute accessibility threshold was 
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used previously primarily to facilitate comparisons between modes and because it is a close 

approximation of the region’s average commute time of 32 minutes (U.S. Census Bureau, 2019). 

As previously established, very-low-income households are much less likely to have access to a 

personal vehicle. Thus, it is reasonable to assume that a commuter without a vehicle is not 

comparing auto and transit travel times when determining trip mode choice and is basing their 

perception of travel time on something closer to the region’s average transit commute time of 

50.1 minutes (U.S. Census Bureau, 2019). The increases, shown in Figure 6, model an upper 

Figure 6: Modeled Accessibility Increases 

 

bound of R2T program effects by assuming a traveler uses it to traverse both the access and 

egress leg of their transit trip. The tracts that are not shown on the map did not have their transit-

based low-wage job accessibility increased by switching their accessibility scenario to 



31 
 

“auto/auto”. A computation of the results using only R2T for station access can be seen in 

Appendix A. 

Figure 6 reveals that accessibility increases tend to be spatially correlated with the 

locations of transit stations, though tracts with the highest scores form “rings” around the tracts 

that intersect routes and stations directly. This image offers a striking depiction of how R2T 

alleviates the first- last-mile problem, providing the most benefit to tracts just outside the buffer 

of walkability where first-mile times disqualify participants from reaching jobs in certain 

destination tracts. Almost all very-low-income Census tracts see an increase in low-wage job 

accessibility, though west side tracts tend to see greater gains on average.  

5.3 Fixed Effects Regression Model 

To examine the differences in mode-share outcomes that can be attributed to the low-

wage job accessibility of individuals’ home locations, I propose a set of seven fixed effects 

models that interact the tract-level accessibility increase of participants’ home locations with a 

treatment dummy variable. Due to large differences in units and the differing magnitudes of 

auto- and transit-based accessibility scores, this variable was standardized to have a mean of 0 

and a unit standard deviation after assignment to participant home locations. Coefficients on 

interaction terms then measure the change in trips taken using a given mode that can be 

attributed to a one standard deviation increase in accessibility. Due to the extremely high 

correlation between absolute and relative transit-based accessibility scores, and the simplicity of 

the absolute measure, I do not estimate a regression that uses the relative scores for the 

interaction term.  

The dependent variables of the seven models can be defined as the change in total trips, 

trips taken by bus, walking or biking, car (non-Uber), Uber, L, and Metra from baseline travel 
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behavior. Multimodal trips contribute to the treatment effect on all modes used in the trip. It is 

important to note that the Uber trip dependent variable sums all a respondents’ Uber trips taken 

in the previous day, with or without the subsidy. Thus, the ATE in this regression cannot be 

interpreted as a direct measure of treatment utilization. This highlights an important aspect of 

interpretation: the coefficients presented in Tables 5 and 6 should be interpreted as the effect of 

providing the subsidy on trips taken using a given mode. 

The nature of the experimental design warrants the inclusion of cohort and month fixed 

effects in each of the seven models. These effects account for time invariant factors that may 

have resulted in differences in characteristics between cohorts. Since the data collection process 

spans two months, and the surveying process for each cohort began at different times, an 

opportunity for time-varying differences between cohorts is created. Month fixed effects are 

intended to account for differences in weather, school and work schedules, and the occurrence of 

holidays. 

 Individual rail transit stations intrinsically provide differing levels of service based on 

factors like headways times between trains, whether they enable transfers to multiple service 

lines, and the destinations they allow a commuter to reach. Thus, I assume treatment effects will 

vary as different stations can affect travel outcomes heterogeneously. Rail transit station fixed 

effects are added to the model to account for this, with a given station dummy taking a value of 1 

if it is the closest to a participant’s home location. The base treatment effect model that I use to 

study mode-shift is shown in Equation 4: 

  (4) 
 

Where  is the outcome of interest; T is the treatment dummy variable;   is a vector of control 

variables;  is a vector of month fixed effects;  is a vector of cohort fixed effects intended to 



33 
 

control for time invariant factors; and  represents Metra and L station fixed effects. Since the 

survey data includes both midline and endline observations, standard errors are clustered around 

participants’ login IDs. Before estimating the coefficients, I hypothesize that the decreased FLM 

transportation costs provided by the treatment will increase participants’ overall Metra, L, and 

Uber usage, reduce  number of trip segments made using a personal vehicle and on foot , and 

having a negligible effect on bus usage. Busses are generally regarded as inferior to rail services 

due to traffic impeding their reliability and because they stop more frequently. The benefit of 

these frequent stops is that a given stop is more likely to coincide with a traveler’s trip origin or 

destination, which creates the potential for bus transit to be superior to rail from a FLM 

perspective. R2T connectivity largely invalidates this advantage by providing more seamless 

travel to transit stations, and because of this, I suspect that rail stations will be the primary target 

for transit-linked trips. 

The specification for the model that includes the differenced accessibility score is as 

follows in Equation 5: 

  (5) 
 
Where  are the standardized tract-level job accessibility scores achieved by transit for 

a participant’s home location with walking and auto access/egress respectively, and  is a vector 

of controls containing the variables from Equation 4’s  term in addition to , and . I 

hypothesize that participants living in Census tracts that experience larger modeled increases in 

accessibility due to R2T connectivity should see higher treatment utilization and a greater ATE 

on trips taken using Uber, L, and Metra. In terms of identification, using the difference of the 

two transit-based accessibility scores as opposed to one or the other, is intended to capture transit 
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trips taken using the R2T service for those whom the FLM is a barrier rather than unlinked trips 

made by travelers within easy walking distance of transit. 

Before moving on to the results, it should be noted that the Uber Chicago study is still in 

its early stages. While response rates to the midline and endline surveys were high, the sample 

size of trip days is still relatively small compared to similar studies like Christensen & Osman 

(2021), where observations consisted of each participant’s Uber trips taken in a given week of a 

12-week study (n = 16,440). Recognizing this, the researchers have plans to expand their study, 

and recently received funding to study travel behavior in two more cities to increase their sample 

size and analyze heterogeneity across metros and transit systems. As such, the treatment effects 

shown should be treated as preliminary and are best interpreted as indicators that the program, at 

its full scale, could drive mode-shift.  

5.4 Regression Results 

Because treatment effects are hypothesized to affect a variety of travel behaviors, tables in 

this section are formatted to show the ATE on each of the seven outcomes of interests; trips 

made on foot, trips made using the bus, a personal vehicle, Uber, the subway (L), Metra, and 

total trips made. Recall that participants’ trip totals were collected on a representative weekday at 

the midline and the endline of the survey. I interpret these observations as a proxy for average 

weekday travel behavior in the presence of treatment rather than the effect on trips taken on a 

specific day. The first row of values displays point estimates for each outcome, while the 

standard errors associated with those estimates are shown below each estimate in parentheses. As 

stated earlier, a randomized control trial design assumes that the averages of all observed and 

unobserved characteristics are equal across treatment and control. Thus, I omit coefficient 
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estimates for controls from the tables shown because they do not influence the size of the 

treatment effect and serve only to increase its precision. 

An estimation of the parameters outlined in Equation 3 can be seen in Table 5. The 

treatment effect in each of the 7 regressions goes in the expected direction, and more clarity is 

provided when each of the dependent variables are interpreted in the context of their control 

means. Statistically significant effects can be found in the regressions predicting daily car and 

subway trips at the 0.05 and 0.1 level respectively: On average, the 50% off subsidy program 

reduces daily car trips taken by 0.22 and increases subway trips taken by 0.12 from baseline 

levels. Recall that the Uber outcome variable is a measure of all Uber trips taken, not just those 

with the subsidy. Summing the Uber and L effects with their respective control means yields a 

roughly equivalent number of daily trips, 0.35 and 0.36 respectively. These figures suggest that 

R2T linked transit trips potentially substituted for treated individuals’ unsubsidized Uber trips. 

The coefficient on Metra, while positive, is not statistically significant. This, and the low control 

mean of 0.06 further validate what I suspected after mapping participants’ home locations, that a 

lack of Metra trips taken in the sample would lead to a lack of power for estimating a statistically 

significant effect. 

 

Table 5: Base Regression Model Results 

 Dependent variable: 

  Bus Walking Car Uber L Metra Total 

Treatment -0.05 0.06 -0.23* -0.08 0.15** 0.04 -0.12 

  (0.07) (0.12) (0.12) (0.09) (0.07) (0.03) (0.25) 

Control Mean 0.27 0.77 0.91 0.43 0.21 0.06 2.65 

Observations 884 884 884 884 884 884 884 

Adjusted R2 0.18 0.03 0.20 -0.00 0.01 0.33 0.13 

Note:     *p<0.1; **p<0.05; ***p<0.01 
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Table 6 displays coefficient estimates for the models specified in Equation 5 that predict 

a heterogeneous response to treatment based on accessibility increases. Due to a relatively low 

Table 6: Accessibility Term Interaction Model Results 

 Dependent variable: 

  Bus Walking Car Uber L Metra Total 

Treatment -0.05 0.06 -0.23* -0.08 0.15** 0.04 -0.12 

 (0.07) (0.12) (0.12) (0.09) (0.07) (0.03) (0.25) 
Treatment* 
acs_inc_45 0.07 0.13 -0.12 0.21* 0.02 -0.01 0.30 

  (0.06) (0.14) (0.12) (0.11) (0.06) (0.02) (0.29) 

Control Mean 0.27 0.77 0.91 0.43 0.21 0.06 2.65 

Observations 884 884 884 884 884 884 884 

Adjusted R2 0.18 0.03 0.20 -0.00 0.01 0.33 0.13 

Note:     *p<0.1; **p<0.05; ***p<0.01 
 

number of observations, the size and significance of the coefficients should not be taken too 

literally. That said, I am beginning to see significant positive effects on transit and Uber usage in 

areas where accessibility increases are larger. The overall effect on average daily Uber trips 

taken becomes positive when a 1standard deviation increase in accessibility gains is added to the 

base treatment effect. While I am currently unable to determine if this average increase in Uber 

usage can be attributed to subsidized trips, no other external factors could have driven this 

increase, leading me to believe that they were taken to serve a FLM purpose. The interaction 

terms in the Metra, L, and bus models are not significant, though their signs indicate that there is 

a potential for accessibility to positively affect the treatment response to transit and reduce the 

number of car trips taken. 

 The low-wage job accessibility increase variable measures the increase in jobs accessible 

when a car is used to complete both the station access and egress portion of a transit trip. 

However, the coefficients and control means shown in Tables 5 and 6 indicate that on average, 

treated individuals are probably not using the subsidy frequently. Table A.2 in Appendix A 
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estimates a regression with an interaction term that is calculated as the difference between the 

“auto/walk” and “walk/walk” which has the dual purpose of providing a more conservative 

estimate of treatment utilization and isolating the effect of first mile R2T connectivity. Using this 

variable leads to slightly lower magnitudes on all the treatment effects, indicating that two-way 

R2T is potentially a better predictor of utilization. 
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CHAPTER 6: DISCUSSION AND POLICY IMPLICATIONS 

The first part of this research focuses on determining whether the gap between transit- 

and auto-based low-wage job accessibility can be alleviated through services that provide FLM 

connectivity. I establish that very-low-income populations are much more reliant on transit for 

their commutes than the region on average, are less than half as likely on average to own a 

vehicle and live in census tracts with low employment densities. While physical distance to 

transit is not necessarily a barrier for very-low-income Census tracts, their transit-based job 

accessibility is far lower than households with automobiles, which puts households without cars 

at a significant disadvantage. Comparing the average accessibility scores between access/egress 

scenarios, I find that using a car to access (“auto/walk”) and/or egress (“auto/auto”) can help to 

close the low-income cumulative job access gap between transit and car by 31.7% and 43.5% 

respectively, indicating that a program like Uber Chicago could be very effective in increasing 

low-income households’ access to low wage jobs.  

Relative accessibility results highlight how the usefulness of very-low-income 

individuals’  high transit-based accessibility is potentially reduced when accounting for job 

market competitors with access to cars. After analyzing these scores, I find a high correlation 

between the relative and absolute transit measures, and almost no correlation for the two auto 

measures. This implies that the average relative auto/transit disparity is slightly larger than that 

of the absolute measure, though faster access/egress modes are shown to reduce the gap by a few 

percentage points more. Though the literature lacks consensus on which measure of accessibility 

is superior, the relative measure indicates that a cumulative opportunity score potentially 

understates both the auto/transit access disparity as well as the ability of faster access/egress 

modes to alleviate it.  
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A simple regression analysis of the data collected through the Uber Chicago program 

shows that subsidizing the cost of ride hailing for first- and last-mile travel can lead to significant 

mode-shift outcomes. The treatment increased the average L usage by 0.15 trips per day and 

reduced the number of driving trips by 0.23. After combining the accessibility scores calculated 

in the first part of my analysis with the Uber Chicago data, I determined that modeled transit-

based low-wage job accessibility is not a statistically significant determinant in the uptake of a 

program that subsidizes the cost of FLM ride hailing. Despite this lack of significance, my 

results show that individuals who experience larger gains in accessibility from R2T connectivity 

are more likely to use Uber and may also use more L and bus. 

6.1 Limitations: 

While this work seeks to measure the potential for R2T services to provide low-income 

populations with better access to employment opportunities, there are several aspects of the Uber 

Chicago RCT study that prevent me completely addressing this question. Because the program 

represents a temporary (2-month) reduction in transportation costs, the results cannot be used to 

draw any conclusions about long-term employment outcomes. Moreover, the study lacks data on 

trip purpose, and there is currently no way to determine whether R2T trips are actually being 

used to facilitate transit-based commuting trips. Increasing the study duration would obviously 

provide more insight into changes in long-term employment trends though program cost could 

quickly become an issue. Currently, researchers’ best option is to use these short-term changes in 

travel behavior to predict longer-term responses. 

  A second concern comes from the fact that data collection for Uber Chicago did not 

explicitly target low-income populations. As seen in Figure 3, home locations of the sample tend 

to be concentrated in downtown Chicago and more affluent neighborhoods on the city’s north 
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side, with only 25 participants living in the very-low-income Census tracts identified in the 

demographic analysis. This raises a large question of external validity as low-income earners are 

the most likely to be seeking low wage jobs. To ensure that the lack of significance on the 

interaction term coefficients is not due to a mischaracterization of the population of interest, I 

estimated regressions that interact treatment with the increase in accessibility to all jobs provided 

by R2T and find little change in the coefficients. Very-low-income travelers may also have a 

different willingness to pay (WTP) than the Uber Chicago sample, leading to heterogenous 

mode-choice responses. Even a trip with a 50% reduction in fare price may still be too expensive 

for a traveler to justify, let alone make on a regular basis as a part of their commute. The MOD 

pilot program studied by Brown et al. (2021) offered rides for $1.75 at its outset, before 

eliminating fares altogether at the beginning of the fourth month of its roughly year-long 

duration. Combining the rigor and last-mile requirement of the Uber Chicago experimental 

design with the provision of a more equity-driven mobility service could be the next logical step 

for researchers in evaluating the effectiveness of R2T. 

Considering these factors, I recommend that readers interpret the low-wage job 

accessibility regression variable as a proxy for how easily an individual can travel around the 

region rather than as a predictor of employment outcomes. To this end, low-wage job 

accessibility serves as a suitable indicator of access to other attractive destinations like food and 

retail businesses, grocery stores, and entertainment destinations. To measure the robustness of 

this claim, further research could calculate composite accessibility scores that factor in the 

presence of these other destinations.  
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6.2 Policy Implications 

R2T programs enacted through public-private partnerships often have limited budgets, 

and it is difficult for government officials to justify the continuation of costly programs without 

knowledge of their causal impacts. My results provide politicians and urban and regional 

planners with a picture of how ride-to-transit services can increase low-wage job accessibility for 

disadvantaged groups in Chicago, and an understanding of the role accessibility can potentially 

play into mode-shift responses to a fully implemented program. Modeled accessibility scenarios 

reveal that R2T connectivity provides accessibility enhancements that are comparable to 

headway reductions and is most likely a cheaper intervention. While reducing the cost of first-

last-mile ride hailing has been found to significantly increase the average number of weekday L 

trips taken by Uber Chicago study participants, the influence of absolute low-wage job 

accessibility is less clear, despite what accessibility scores may indicate. In evaluating R2T and 

MOD program design, planners should seek to implement experimental evaluation methods as 

well as continue to study the impact of accessibility measures. Going forward, I recommend that 

planners develop more comprehensive measures of accessibility incorporating things like 

network travel times for access and egress measurement, the quality of the built environment 

near stations, considerations of traveler preferences, and measurements of transit service quality 

to determine significant effects. 
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APPENDIX A: SUPPLEMENTAL TABLES AND FIGURES 
 

  Figure A.1 CTA Planned Red Line Extension 

 
 
 

Table A.2 Interaction Term Model Results (“auto/walk” – “walk/walk”) 

                

 Dependent variable: 

  Bus Walking Car Uber L Metra Total 

Treatment -0.05 0.05 -0.24* -0.06 0.15** 0.04 -0.11 

 (0.07) (0.12) (0.12) (0.09) (0.07) (0.03) (0.24) 
Treatment*ww_to_aw_inc_45 0.07 0.14 -0.08 0.17 0.00 0.00 0.30 

  (0.06) (0.14) (0.12) (0.11) (0.06) (0.01) (0.29) 

Control Mean 0.27 0.77 0.91 0.43 0.21 0.06 2.65 
Observations 884 884 884 884 884 884 884 

Adjusted R2 0.19 0.04 0.20 0.00 0.01 0.33 0.13 

 


