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ABSTRACT

Knowledge distillation has been applied to various models in different domains. However,

knowledge distillation on panoptic segmentation has not been studied so far. In this work, we

focus on the knowledge distillation on transformer-based model. More specifically, we per-

form thorough analysis on the Mask2Former model, which is one of the state-of-the-art mod-

els. We found that both backbone and segmentation head are bottleneck of the model per-

formance. To build an efficient transformer-based panoptic segmentation model, one of the

best practice is to direct initialize the student model with part of the teacher’s parameters.

We first worked on layer parameter initialization and parameter group consistent parameter

selection for initialization. We then explored different distillation matching schemes between

layers and of teacher and student. Finally, we researched different distillation loss, including

adaptive matching-based prediction loss, masked generative distillation-based image feature

loss, standard attention distillation loss, and deformable attention distillation loss. With all

distillation approaches mentioned above, we trained Mask2Former-S(hallow), Mask2Former-

T(hin), and Mask2Former-ST. Our ResNet-50 based models outperformed previous strong

baselines, including Panoptic Segformer, MaX-DeepLab, MaskFormer, DETR, Panoptic-

DeepLab and Panoptic-FPN with far fewer parameters and GFlops on MS COCO dataset.

Additionally, our ResNet-18 based model ourperformed ResNet-50 based Panoptic-DeepLab

and Panoptic-FPN with only 29.3% of the parameters.
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CHAPTER 1: INTRODUCTION

(a) Image (b) Semantic

(c) Instance (d) Panoptic

Figure 1.1: An example of different types of image segmentation from [1].

Image segmentation researches mainly focus on grouping pixels into different categories.

These categories and memberships lead to different tasks. Two major categories that have

been studied by the communities are stuff and things. Stuffs refers to regions of similar

texture, such as sky, glass, water, and road. Things refer to countable objects like peoples,

vehicles, and animals. The task working on grouping pixels by stuff types is usually known

as semantic segmentation, while studying things is typically formulated as object detection

and instance segmentation. Although these two tasks seem similar, the datasets, metrics and

research details of them vary substantially. As a result, a novel task named panoptic segmen-

tation that reconcile between instance segmentation and semantic segmentation is proposed

recently. Panoptic segmentation unifies things and stuff segmentation and defines a uniform

evaluation metrics. Figure 1.1 shows examples of different type of image segmentation.

Numbers of researches are done on panoptic segmentations. [1] first proposed and for-

mulated the panoptic segmentation tasks. A lot of previous works, such as UPSNet [2],

DetectorRS [3], and EfficientPS [4] have tried to build panoptic segmentation model based

on Feature Pyramid Network [5] and Mask R-CNN [6] style models. These models have

achieved competitive performance.
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1.1 TRANSFORMER-BASED PANOPTIC SEGMENTATION

Recently, the growing interest in exploiting the potential of Transformer architecture in

computer vision has been fueled by the success of large-scale pretrained language models such

as GPT-3 [7]. An increasing number of researchers started trying to exploit the potential

of Transformer architecture. DEtection TRansformer(DETR) [8] first proposed an end-to-

end Transformer-based dense vision prediction framework, which has served as a foundation

for subsequent research in this area. Researchers have since developed Transformer-based

image segmentation models that have achieved state-of-the-art performance compared with

specialized architectures based on the DETR-like architecture.

Specifically, MaX-DeepLab [9] is the first transformer-based end-to-end panoptic segmen-

tation model. MaskFormer [10] decoupled mask prediction and class prediction, and uni-

fied different segmentation task in one framework. Mask2Former [11] further improved the

MaskFormer via cross attention between image feature and query. Panoptic Segformer [12]

first leveraged deformable attention to efficiently leverage multi-scale image features. Mask-

DINO [13] extended the DINO [14] via adding a mask prediction branch. These architectures

have demonstrated remarkable success in advancing the state-of-the-art (SOTA) performance

in panoptic segmentation, as evidenced by the results presented in recent research publica-

tions in the field.

1.2 KNOWLEDGE DISTILLATION FOR TRANSFORMER-BASED PANOPTIC
SEGMENTATION

However, recent works for universal image segmentation are not fast enough. Mask2Former

only has a 9.7 frame rate with ResNet-50 backbone, and MaskedDINO has a 14.8 frame rate

on MS COCO 2017 dataset with one NVIDIA A100 GPU. There is still a gap between

research work and practical applications in terms of inference speed. Previous works, such

as EfficientPS, have tried to build efficient panoptic segmentation models via sophisticated

backbone and head design. In this work, we tried to leverage knowledge distillation to build

efficient transformer-based panoptic segmentation model.

Knowledge distillation is proposed by [15]. Recent progress on knowledge distillation for

dense prediction is mainly focused on object detection [16, 17, 18, 19, 20, 21] and semantic

segmentation [22, 23, 24, 25]. There are also works that focus on general feature and logits

distillation for all image recognition task, such as [26, 27, 28, 29, 30, 31]. These works mainly

focus on convolution based image recognition models. With the rise of Vision Transform-

ers and Pretrained Transformer-based Language Model, researchers also built faster, more
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Figure 1.2: The performance of our models (red) compared with existing baselines (blue)
with different parameters. The figure shows that our models have achieved great performance
that is comparable with current baselines with far less parameters.

lightweight, and more eco-friendly transformer-based models via knowledge distillation.

In prior literature, the study of transformer knowledge distillation has been primarily

focused on language model distillation [32, 33, 34, 35] and vision transformers [36, 37, 38,

39, 40]. Moreover, several investigations have delved into knowledge distillation for dense

prediction tasks. Chang et al. [41] introduced an effective yet straightforward method distill

teacher’s knowledge from different components of teacher model. KD-DETR [42] presented

an innovative sampling strategy to separate detection from knowledge distillation, achiev-

ing notable improvements in detection tasks. D3ETR [43] proposed a decoder distillation

technique to transfer knowledge between the teacher and student through decoder attention

maps and predictions. Nonetheless, no existing research has addressed efficient panoptic

segmentation.

In this work, we first made analysis on recent state-of-the-art transformer-based panoptic

segmentation model Mask2Former, and found that both backbone and segmentation head are

bottleneck of the efficiency. The backbone only accounts for 53% of parameters and 32% of

computation. To reduce the computation but maintain the performance, we need to use both

a smaller backbone and a smaller segmentation head. As a result, we proposed an effective

approach to build smaller and more efficient segmentation model from teacher model. The

approach first directly take a part of teacher’s parameters to initialize the student model

using layer selection or parameter-group consistent parameter selection, and then distill

the teacher to build a smaller model via matching based prediction distillation, attention
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distillation, deformable attention distillation, and image feature distillation. To minimize

the performance loss, we carefully explored on parameter reduction in terms of depth and

width of the segmentation head as well as the backbone, and proposed a corresponding

knowledge distillation scheme. The scheme includes:

1. Student weight initialization using selected teacher’s layers.

2. Student weight initialization using sparsity consistent structural pruned teacher.

3. Layer-wise matching strategy for distillation.

4. Adaptive prediction matching for distillation.

5. Self and cross attention distillation based on the matching result.

6. Deformable attention distillation for image feature encoder.

Furthermore, we also found that applyinng this approach in an iterative way can yield

smaller but more efficient panoptic segmentation model compared with directly distilling

from teacher. We tested our approach based on Mask2Former to build Mask2Former-

T(hin),Mask2Former-S(hallow) andMask2Former-ST with ResNet-50 [44] and ResNet-

18 [44] backbone using MS COCO [45] dataset.

The experiment result shows that our efficient Mask2Former-S and Mask2Former-T out-

performs various previous baselines such as Panoptic-DeepLab, MaX-DeepLab, DETR, Panop-

tic Segformer and MaskFormer with less parameters and less computation on MS COCO

dataset using ResNet-50 backbone. Our further experiment showed that using our proposed

multi-stage distillation, a MaskFormer-ST model with ResNet-18 backbone can outperform

previous ResNet-50 based model with only 13.7 million parameters and only 68 Gflops com-

putation given an input of size 1024× 1024. Figure 1.2 shows the comparison of our models

and existing baselines in terms of number of parameters and performance.
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CHAPTER 2: PRELIMINARY

2.1 MODEL ARCHITECTURE ANALYSIS

Before starting knowledge distillation, we need to analyze the model architecture, model

components and how each part contributes to the computation of those Transformer-based

image segmentation models. Figure 2.1 illustrate the general architecture of Transformer-

based panoptic segmentation models. The mask prediction can be decomposed into following

steps:

1. The backbone encodes the input image I ∈ RC×H×W to obtain multi-scale features.

Common image feature backbones such as ResNet [44], ViT [46], and Swin Trans-

former [47] are frequently used for this purpose. Here, C is the number of input

channel, and H,W is the height and width of input image. Usually C = 3.

2. The multi-scale features F ∈ RChidden×(H/32×W/32+H/16×W/16+H/8×W/8+H/4×W/4) are then

fed into an image feature encoder to refine the multi-scale feature obtained from the

backbone. For Mask2Former, a transformer with Deformable Attention [48] is used.

3. The multi-scale features are then up-sampled by a mask generator, resulting in a pixel

embedding Epixel ∈ RE×H×W . Each generated mask has a correspondence with a

specific thing, stuff in the image or “nothing” (∅). Here, E represents the embedding

dimension of one mask.

4. To decode the mask and decide the class of each mask, a transformer decoder with

trainable query embeddings is used. The transformer decoder accepts both queries

Q ∈ RN×E and multi-scale features, and finally outputs mask embedding Emask ∈
RN×E . Where N is the pre-defined number of quries.

5. A dot product between Emask and Epixel is performed to generate binary masks M ∈
RN×H×W for queries. To decide which class each mask belong to, a classifier is then ap-

plied to the mask embedding to get the classification score of each mask S ∈ RN×(K+1),

where K is the number of classes of things and stuffs, and the extra output dimension

correspond to “nothing”.
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Figure 2.1: General architecture of Mask2Former panoptic segmentation models.
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2.2 COMPUTATION AND PARAMETER BREAKDOWN

Besides the model architecture, we also need a insight of parameters and computation

breakdown of the Mask2Former model we research on so that we can design the correspond-

ing distillation scheme.

Module Name #P(Million) %P #F(Gflops) %F
Backbone 23.45 53.3% 71.29 32.1%
Image Encoder 5.31 12.1% 82.82 37.3%
Mask Generator 0.71 1.6% 39.36 17.7%
Embedding Decoder + Classifier 14.49 32.9% 28.60 12.9%
Total 43.99 100% 222.07 100%

Table 2.1: Computation and parameter breakdown of Mask2Former with input size 1024×
1024 and ResNet-50 backbone. The result is based on 100 image average on MS COCO
dataset. Here, #P means the number of parameters, #F means the floating point operations
per second(flops), %P means the percentage of parameters, %F means the percentage of flops.

Table 2.1 presents a comprehensive breakdown of the computational complexity and num-

ber of parameters of the Mask2Former model. This breakdown highlights that, in addition

to the backbone, several other components also contribute significantly to the overall param-

eters and computation. While prior distillation techniques have mainly focused on building

a model with a smaller backbone, the breakdown emphasizes the importance of distilling

from a large head to a smaller one as well.

2.3 COMPLEXITY ANALYSIS

To determine the contributing factors of computation in the Mask2Former model,

we performed a complexity analysis of its major components.Since the backbone network’s

complexity and design have already been extensively studied and optimized, and we can

easily adopt a more efficient backbone network for our model. Thus, we focused on evaluating

the complexity of the remaining parts of the model. By conducting this analysis, we were

able to identify areas for potential optimization and efficiency gains. Table 2.2 illustrates

the meaning of notations used in this section.

2.3.1 Transformer with Deformable Attention

The transformer with deformable attention is used in encoder for refining the multi-scale

feature of size
(

HW
r1

+ HW
r2

+ HW
r3

)
× d = cHW × d, since r1, r2, r3 can be considered as

7



Notation Meaning of Notation
Le Number of layers in image feature refinement encoder
Ld Number of layers in embedding decoder
d Embedding size of encoder and decoder
he Intermediate dimension of feed forward network in image refinement encoder
Ns Number of sampled neighbors in deformable attention
hd Intermediate dimension of feed forward network in mask embedding decoder
me Number of heads used for image refinement encoder
md Number of heads used for image mask embedding decoder
H Height of input image
W Width of input image
ri Resolution factor, ri = 2i+2

Nq Number of queries
k Upsample convolution kernel size
C Number of classes of things and stuff
c Constant

Table 2.2: Notation used for complexity analysis

constants. Here HW
r1

, HW
r2

, and HW
r3

corresponds to multi-scale feature outputs of the back-

bone. For each block of transformer with deformable attention, it calculates the offset for

location sampling and then calculates attention scores using linear projection for each head.

This yields the complexity: O(cHWdme × 2Ns)︸ ︷︷ ︸
offset

+O(cHWdmeNs)︸ ︷︷ ︸
attn score

∼ O(HWdmeNs). With

the sampled features and attention scores, the complexity of deformable attention can be

written as O(cHWmed
2)︸ ︷︷ ︸

sample transform

+O(cHWdmeNs)︸ ︷︷ ︸
aggregation

+ O(cHWd2)︸ ︷︷ ︸
output transform

. Since meNs << HWd, we can

considerme and Ns as constants. So the deformable attention has the complexity O(HWd2).

The following feed forward network has the complexity O(HWdhe +WHhed), and usually

he = cd. So the overall complexity of the transformer block is O(HWd2), and the entire

encoder of complexity O(LeHWd2).

2.3.2 Transformer with Multi-Head Self Attention and Cross Attention

Similar to transformer with deformable attention, the standard transformer has attention

module as well as feed forward network. The self-attention part has complexity O(Nqd
2 +

N2
q d), the cross-attention between query and image feature has complexityO(Nqd

2+NqHWd),

and the feed forward network has complexity O(2Nqdhd). Usually hd = cd, this result in the

overall complexity O(2Nqd
2 + N2

q d + NqHWd) of transformer decoder block. And overall

complexity O(Ld(2Nqd
2 +N2

q d+NqHWd)) of entire transformer decoder since decoder has
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Ld layers.

2.3.3 Upsampling Layer

The upsampling is a bilinear interpolation following an output convolution. The upsam-

pling has the complexityO(HW/ri), and the convolution has the complexityO(k2HWd2/ri).

While k and ri are small constants, the overall complexity of upsampling is O(HWd2).

2.3.4 Classifier

The classifier compose of two parts, the mask classification and dot product between

query embedding and mask embedding. The former can be a linear transformation from

embedding space to label distribution. It can be consider as the dot product between two

matrix of size (Nd, d) and (d, C). It has the complexity O(NqdC). The latter can be consider

as the dot product between query vectors and mask embedding. The mask embedding is

of shape (WH, d) and the query vectors are of size (Nq, d). So it has complexity O(WHdNq).

As a result, the overall complexity of the panoptic segmentation head is:

O
(
LeHWd2 + Ld(2Nqd

2 +N2
q d+NqHWd) +HWd2 +NqdC +HWdNq

)
(2.1)

In the formula 2.1, W,H,C, and Nq are variables that control negligible number of train-

able parameters. So the only parameter we can reduce are the encoder layer Le, decoder

layer Ld, and the embedding size d. To efficiently reduce Le, Ld and d, we explored different

parameter initialization and distillation approaches in the methodology part.
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CHAPTER 3: METHODOLOGY

3.1 OVERVIEW

In this part, we will discuss how to efficiently initialize the student model with teacher’s

parameter, and how to effectively distill the teacher models with smaller Le, Ld, and d.

Figure 3.1: Overview of two approaches of reducing parameters and computation. The
model in the middle is the teacher model. The left part illustrate the model with smaller
embedding size whose layers are initialized by selecting part of parameter in corresponding
teacher’s layer with mask. The model on the right with less layers are initialized by first
several layers of the teacher. After initialization, two students further distill the teacher to
improve the performance.

Figure 3.1 illustrate two approaches we will discuss to reduce the complexity of the model.

We can directly take several layers from the teacher and initialize the “shallow” student

(right) with taken parameters. We can also define a binary mask and select part of the

teacher’s parameter consistently along layers to initialize the “thin” student model (left).

In the following parts, we first discuss how to select layers and parameters to initialize

smaller and more efficient model, then describe the distillation using output prediction,

image feature, deformable attention, self attention and cross attention module. Finally we

will also introduce how to apply our proposed distillation in multi-stage distillation.

10



3.2 LAYER SELECTION FOR STUDENT INITIALIZATION

The prevalent approach in knowledge distillation for transformer models involves initial-

izing the student model with the teacher’s parameters. Nevertheless, determining a good

teacher’s layer selection strategy remains an open question, particularly when the encoder

or decoder in the teacher and student models have differing layer counts. Generally, there

are three primary layer-matching strategies: First: initialize the student model with first

several layers of teacher’s model, Last: initialize the student model with last several layers

of teacher’s model, and Dilated: initialize the i-th student the 2i-th layer of the teacher.

Figure 3.2: Three types of layer weight initialization

In the experiment, we performed ablation study on different initialization approaches and

figure out the best strategy among three for both encoder and decoder.

3.3 GROUP-CONSISTENT PARAMETER SELECTION FOR STUDENT
INITIALIZATION

To reduce embedding size d, a new panoptic segmentation model with embedding size

d′ < d but with the same architecture of teacher model is defined. Instead of randomly

initialize the new model and then distill from the teacher, there is chance that we can select

some parameter consistently from teacher and initialize the student.

Inspired by DepGraph [49], we perform a similar dependent parameter group analysis.

Unfortunately, the tools and algorithms provided in DepGraph can hardly apply to the

Mask2Former panoptic segmentation scenario and other complicated networks because of

vague definition of dependency. As a result, we proposed a more flexible and clearer algo-

rithm based on splitting computation graphs. Given the computational graph G = (V,E), V

contains computation operators and tensors, and E decides computation dependency. And

the input, which can be a set of tensors T = {T1, T2, · · · , Tn}, can be obtained from data

such as image and tabular data, or obtained from trainable embedding. Normally, com-
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putation graph nodes did not discriminate trainable parameters from other tensors. So we

further define Variable and Parameter.

Definition 3.1 (Parameter). A Parameter is a tensor that is trainable in a program.

Definition 3.2 (Variable). A Variable is a tensor in a program that is not a Parameter.

To analyze the dependency of parameters in the computation graph, we followed the idea

of “tracking the index of the feature”. An extra input: the index of feature is required.

Formally, I = {i1, i2, · · · , in} , where ij is the index of feature of j-th input tensor Tj.

Here “index of feature” indicate the dimension of input represents a “unit” of feature. For

instance, the feature dimension of image input of shape (C,H,W ) is 0, the dimension of

channel. And for text input (L,H) the feature dimension is 1, which is the dimension of

embedding of token.

Definition 3.3 (Feature Reduction). Operations in computation graphs that reduce the

feature dimension into a scalar is called Feature Reduction.

Some examples of feature reduction can be calculating the norm of feature, or dot product

of two feature vectors. The output of Feature Reduction should no longer have a index of

feature.

Definition 3.4 (Transform Parameter). The Parameters that are used to perform linear

transformation of input Variable are Transform Parameters.

Here we need to emphasize that not only the weights of linear layers are considered as

transform parameters, but also other weights such as weights in convolution, transposed

convolution and bilinear layers are also transform parameters because operations can be

converted into one or series of GEneralized Matrix Multiplications (GEMM).

Definition 3.5 (Transform Operator). The Transform Operators are computational opera-

tors that perform linear transformation or operations can be converted into linear transfor-

mation on the feature dimension of the input.

Definition 3.6 (Transform Operator Split). Transform operators in the computational

graph can be split into two identical nodes. One copy connects with all edges going into

the node, and another connects with all edges going out of the node. If there is a Trans-

form Parameter involved in the computation, it should be split into Transform Parameter-in

and Transform Parameter-out. The former should be connected to first duplication and the

latter should be connected to second duplication.
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Algorithm 3.1: Split Computation Graph

Input: Graph G = (V,E), Index of Feature in input I = {i0, i1, · · · , in}
Initialization: an empty set L, an empty set S for all transform operators, a

dictionary indexOfFeature

foreach n ∈ Input Nodes do

if n is a input then
indexOfFeature[n]← I[n]

end

else if n is a Parameter then
indexOfFeature[n]← ∅

end

while There are unvisited nodes in G do

foreach Node v ∈ V do

if v is not in L and all predecessors of v are in L then

foreach Edge (u, v) ∈ E do

curIndexOfFeatures← the values from indexOfFeature[u];

end

if v perform Feature Reduction given the curIndexOfFeatures then

indexOfFeature[v]← ∅;
else if v perform index manipulation on tensor then

indexOfFeature[v]← perform manipulation on

curIndexOfFeatures according to v;

else

indexOfFeature[v]←
⋃
curIndexOfFeatures;

if v is a Transform Operator then

Add v to S;

end

end

Add v to L;

end

end

end

foreach n ∈ S do
Split G by Definition 3.6

end

Result: G = {G1, G2, · · · , Gn}, the split connected components of input G.

indexOfFeature the dict of Index of Feature of all nodes.

13



(a) MLP example of graph split

(b) Convolution network example of graph split

Figure 3.3: Examples of Transform Parameter splitting, different background color represent
different groups. All inputs have batch size N . orange nodes are Transform Operators,
red nodes are Transform Parameters, purple nodes are Feature Reduction nodes, green
nodes are input, outputs and variables, skyblue nodes are other parameters, and black
nodes are involved in tensor index manipulation. The number or ∅ attached to edges are
indexOfFeature of the node output. The number on the edges indicate the dimension of
feature.
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With Transform Operator Splitting, we are able to split the computational graph into

multiple connected components using Algorithm 3.1 using the idea of “tracking the transfor-

mation on index of feature”. The algorithm is based on topological sorting and of complexity

O(|V |). Figure 3.3 illustrate three simple examples: multi-layer perception, convolution net-

work with residual connection and self-attention with layer norm.

(c) Self-attention with norm example of graph split

Figure 3.3: Cont’d

After splitting the computation graph, the parameter groups can be gained by finding all

parameters in one connected component. We can state that the parameter selection strategy

of all Parameters involved in the same connected component can be decided by one binary

mask. This is because in this sub-graph no transformation on feature is performed, and all

manipulation of feature tensors is in the same linear space.
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Algorithm 3.2: Parameter Group-Consistent Parameter Selection

Input: Split Graph G = {G0, G1, · · · , Gm}, Teacher Parameters

W = {W0,W1, · · · ,Wd}, Student Parameter Shape S = {S0, S1, · · · , Sd}
Gs ← Sort G by number of parameters in each Gi;

foreach Gi ∈ Gs do
Tt ← length of specified dimension of parameters involved in Gi;

// Here "specified" means "in" or "out" mentioned in graph split

Ts ← length of specified dimension of parameters involved in Gi in student based

on S;
L← empty list;

for i← 0 to Tt do

score← 0;

foreach Parameter p ∈ Gi do

Wp ← weight of teacher parameter correspond p in W ;

score← score+ ∥Wp[· · · , i, · · · ]∥2F ;

/* Here ∥Wp[· · · , i, · · · ]∥F means select the corresponding

dimension of weight such as row, column, or channels */

end

score←
√
score Add score to L;

end

indexToKeep← topKIndex(L, Ts);

foreach Parameter p ∈ Gi do

Wp ← weight of teacher parameter correspond p in W ;

W ′
p ← select the parameter to keep with indexToKeep;

replace Wp with W ′
p in W ;

end

end

Result: Selected parameters W for student initialization

As a result, in our Mask2Former scenario, we only need to find a selection strategy for

each sub-group or parameter group. And the only Transform Operators involved are linear

layers and convolutional layers. For a linear layer, pruning on Win means removing rows of

the weight matrix, and pruning on Wout means removing columns of the weight matrix. For

a convolutional layer, pruning on Win means removing specified channels from all kernels

and pruning on Wout means remove entire specified kernels.

To generate the pruning strategy, we use the simple l2-norm of weights to measure
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the importance of feature according to DepGraph. In contrast, DepGraph proposed us-

ing sparse training with a regularization term to find the pruning strategy, which is more

time-consuming and more computation-intensive. Since we have known the target architec-

ture and most of the parameters are grouped into two groups: image encoder group and

mask decoder group, we proposed a heuristic algorithm that generates the parameter group

consistent parameter selection strategy efficiently. Algorithm 3.2 illustrate the process the

parameter group consistent parameter selection.

3.4 KNOWLEDGE DISTILLATION FOR PANOPTIC SEGMENTATION

Upon determining the initial parameters, it is essential to refine the teacher model through

distillation to enhance performance. Existing distillation methodologies predominantly fall

under two categories: prediction distillation and feature distillation. Our proposed distil-

lation technique incorporates both approaches. Specifically, for prediction distillation, we

employ an adaptive matching strategy, while for feature distillation, we utilize image feature

distillation, deformable attention distillation, and a combination of self and cross-attention

distillation.

3.4.1 Image Feature Distillation

Most previous research has focused on image feature distillation, and this is also a crucial

part in panoptic segmentation. In this work, we adopt Masked Generative Distillation [50].

We randomly mask several feature pixels and then use a simple convolution layer to recover

the masked feature. Formally, given the student feature S and teacher feature T , the image

feature distillation loss can be

Lfeature =
L∑
l=1

C∑
c=1

H∑
h=1

W∑
w=1

SmoothL1
(
T l
c,h,w,G

(
falign(S

l
c,h,w) ·M l

c,h,w

))
(3.1)

Where C,H,W,L represent channel, height, width and layer. falign is used for matching the

the dimension of the student and teacher, which a simple convolution layer. M is a binary

random mask. G is the generator, which is a two-layer convolution network with ReLU

activation.

3.4.2 Adaptive Matching for Prediction Distillation

The output of Mask2Former model is a set of binary masks and corresponding classes of
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the thing or stuff, and can be represented as {ŷi = (ci,mi)}N−1
i=0 , where mi is the mask,

ci is the predicted class, and N is the number of queries. A major problem on prediction

distillation of panopatic distillation is that the output of model is unordered, so a matching

between ground truth yi and prediction ŷi is needed. Because of the same reason, an adaptive

matching is required between teacher and student predictions. To perform the matching,

we first calculate the cost of matching given two predictions of teacher yt = (ct,mt) and

student ys = (cs,ms).

Cs−t(y
s,yt) = αcBCE(m

s,mt) + βcKL-Div(cs, ct) (3.2)

Where αc and βc are hyper-parameters to balance the mask prediction and class prediction.

We minimize the overall cost to obtain the the matching result σ

σ = argmin
σ

N−1∑
i=0

C(ys
i,y

t
σ(i)) (3.3)

Based on the matching result we can decide the matching loss between the student and

teacher.

Lmatch =
N−1∑
i=0

C(ys
i,y

t
σ(i)) (3.4)

3.4.3 Deformable Attention Distillation

The image encoder is mainly a transformer encoder with deformable attention. The de-

formable attention can be represented as

DeformAttn(x) =
M−1∑
m=0

Wm

[
K−1∑
k=0

Amqk ·W′
mx(pq +∆pmqk)

]
(3.5)

Where ∆p = Wpx, A = WAx(pq +∆pmqk) (3.6)

Here ∆p is the sampling offset relative to the self position, and A is the attention weight.

And these two variables decide the behavior of deformable attention. As a result, to distill

deformable attention modules, we use loss

Ldeformable = MSE(∆ps,∆pt) + MSE(As,At) (3.7)

to let the student mimic the teacher’s deformable attention behavior.
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3.4.4 Self-Attention and Cross-Attention Distillation

Attention score distillation is a simple but effective approach to transformer distillation.

The mask embedding decoder of the model we worked on leverages the self-attention be-

tween queries and cross-attention between queries and image features. However, there is

inconsistency between the teacher’s attention map and student’s attention map because of

unordered outputs or different query sizes. So we need to employ the prediction matching

result. Formally:

Lattention =αa

N−1∑
i=0

M−1∑
j=0

(
As

self[i, j]−At
self[σ(i), σ(j)]

)2
+ (3.8)

βa

N−1∑
i=0

M−1∑
j=0

(
As

cross[i, j]−At
cross[σ(i), j]

)2
(3.9)

Here αa and βa are hyper-parameters that balance the two types of attention loss.

3.4.5 Layer Matching for Distillation

In the context of layerwise distillation, two scenarios arise. The first scenario is when

the student and teacher have the same architecture and number of layers, allowing for a

straightforward layer-to-layer correspondence. In contrast, the second scenario poses a chal-

lenge when the student and teacher differ in depth. To address this, we explored three

approaches: First, Last, and Dilated, which are analogous to layer initialization techniques,

as depicted in Figure 3.2. Also, it requires a different set of hyper-parameters. Our experi-

ments shed light on the effectiveness of these methods in the context of distillation.

3.4.6 Distillation Loss

We combine all the losses mentioned above for distillation and the original training objec-

tive Ltrain = aLdice + bLBCE + cLcls of Mask2Former.

Lfull =

Ld−1∑
i=0

(aLdice + bLBCE + cLcls + dLmatch + eLattention) +
Le−1∑
j=0

(fLdeformable + gLfeature)

(3.10)

Here Le and Ld are number of encoder and decoder layers of the student.
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3.4.7 Multi-Stage Distillation

Figure 3.4: Multi-stage distillation. Given the teacher and student, three stage of distillation
is performed. First stage is to distill backbone and segmentation head in a separate way.
Second stage is to adapt the distilled student head to distilled student backbone. Final step
is to further reduce the student layer.

Typically, knowledge distillation aims at aligning the feature and prediction of the teacher

and student based on the numerical difference but ignores the functional difference of different

components of panoptic segmentation model. As a result, we proposed a multi-stage dis-

tillation to make the different components functionally consistent as Figure 3.4 illustrated.

The first stage disassembles the student and teacher, and trains the student’s head with

teacher’s backbone and the student’s backbone with teacher’s head. With this approach,

we can make the backbone and segmentation head more functionally consistent with the

teacher, and yield a better performance.
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CHAPTER 4: EXPERIMENTS

4.1 DATASET

In this study, we utilized the MS COCO [45] dataset, a widely recognized benchmark

for various computer vision tasks, including object detection, instance segmentation, image

captioning, and panoptic segmentation. Specifically, for the panoptic segmentation task, the

dataset comprises 163,957 labeled images, with annotations for 80 thing classes and 53 stuff

classes.

4.2 IMPLEMENTATION DETAILS

All experiments are conducted with 4 NVIDIA A40 or 4 NVIDIA A100 using MMDetec-

tion [51] framework. The general hyper-parameters used for training are in the table.

Name Value
schedule 1x 3x
decay epochs 8/11 28/34
epochs 12 36
backbone learning rate 1e-4
head learning rate 1e-5
decay gamma 0.1
weight decay 0.05
optimizer Adam
Adam eps 1e-8
Adam beta (0.9, 0.999)

Table 4.1: Training Hyperparameters

Furthermore, we have different schemes of distillation for layer-consistent and layer-inconsistent

distillation. Here layer-consistent means the teacher and student have exactly the same num-

ber of layers while layer-inconsistent has different numbers.

Name a b c d e f g αc βc αa βa

Layer-consistent 2.0 5.0 5.0 1.0 1.0 1.0 2e-6 10.0 2.0 0.125 1.0
Layer-inconsistent 2.0 5.0 5.0 1.0 0.0 0.0 4e-6 4.0 0.8 0.0 0.0

Table 4.2: Hyper-parameters used for distillation for different distillation scenarios. Here
some values are zero, which means we did not use this loss in the corresponding scenario.
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4.3 METRICS

We assessed the performance of our model using the widely used PQ (Panoptic Quality)

metrics. PQ is a composite score that can be obtained by multiplying the scores of two

metrics: SQ segmentation quality and RQ recognition quality. In addition, we evaluated

the efficiency of our model by measuring its FLOPS and number of parameters.

4.4 BASELINES

We compare our models with previous baselines. These baselines include previous CNN-

based and Transformer-based models.

Panoptic FPN [1] is a modifed version of Mask-RCNN with a novel Feature Pyrimaid

Network architecture for both instance segmentation and semantic segmentation.

UPSNet [2] is a unified panoptic segmentation network, and has three heads: a semantic

segmentation head, an instance segmentation head, and a parameter-free panoptic head,

which solve the subtasks simultaneously.

MaX-DeepLab [9] is an end-to-end model for panoptic segmentation that simplifies the

previous pipeline by directly predicting class-labeled masks with a mask transformer and

training with a panoptic quality inspired loss via bipartite matching.

DETR [8] is previously used in object detection, and can also be used to perform panoptic

segmentation. So we also employ DETR as a baseline.

Panoptic Segformer [12] is a transformer-based segmentation model which contains

three innovative components: an efficient deeply-supervised mask decoder, a query decou-

pling strategy, and an improved post-processing method.

MaskFormer [10] is a simple mask classification model which predicts a set of binary

masks, each associated with a single global class label prediction.

Mask DINO [13] extends DINO (DETR with Improved Denoising Anchor Boxes) by

adding a mask prediction branch which supports all image segmentation tasks (instance,

panoptic, and semantic).
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To demonstrate the effectiveness of our approach, we compare three variants of our pro-

posed model using ResNet-50 and ResNet-18 backbone with previous baseline. Mask2Former-

S is based on the teacher model Mask2Former but with Le = 3 and Ld = 3. Mask2Former-

T has the same number of layers with Mask2Former but with embedding size d = 128.

Mask2Former-ST has Le = 3, Ld = 3 and d = 128, which minimizes the number of pa-

rameters and computation. We also applied our multi-stage distillation to build our smallest

model, Mask2Former-ST with ResNet-18 backbone.

4.5 MAIN RESULTS

Model Backbone Input Res Epochs #Query PQ PQth PQst Params (M) Flops (G)
Panoptic FPN R50 800 × 1333 12 Dense 40.9 48.3 29.7 46.1 -
Panoptic FPN R50 800 × 1333 36 Dense 42.5 50.3 30.7 46.1 -

UPSNet R50 800 × 1333 36 Dense 42.5 48.5 33.4 - -
Panoptic-DeepLab Xception-71 1025 × 1025 216 Dense 41.2 44.9 35.7 46.7 274
MaX-DeepLab-S MaX-S 1025 × 1025 216 128 48.4 53.0 41.5 61.9 324
MaX-DeepLab-L MaX-L 1025 × 1025 216 128 51.1 57.0 42.2 451 3692

DETR R50 1024 × 1024 325 300 43.4 48.2 36.3 42.9 248
Panoptic Segformer R50 800 × 1333 24 300 49.6 54.4 42.4 51.0 214

MaskFormer R50 1024 × 1024 300 100 46.5 51.0 39.8 45.0 181
Mask2Former R50 1024 × 1024 50 100 51.9 57.7 43.0 44.0 226
MaskDINO R50 1024 × 1024 50 100 52.3 58.3 43.2 52.0 280

Mask2Former-S R50 1024 × 1024 12 100 49.5 55.0 41.1 32.3 169
Mask2Former-S R50 1024 × 1024 36 100 50.4 56.0 41.9 32.3 169
Mask2Former-T R50 1024 × 1024 12 100 49.3 54.8 41.2 29.8 136
Mask2Former-T R50 1024 × 1024 36 100 50.8 56.5 42.1 29.8 136
Mask2Former-ST R50 1024 × 1024 12 100 47.2 52.3 39.5 26.4 111
Mask2Former-ST R50 1024 × 1024 36 100 48.7 54.2 40.5 26.4 111
Mask2Former-ST R18 1024 × 1024 12 100 41.5 45.5 35.5 13.7 68

Table 4.3: Main Result, the bold result indicates the best result of our model under specific
layer, hidden dimension and backbone configuration. The underlined results indicate the
state-of-the-art result.

From the result, we can see our proposed ”shallower” model, Mask2Former-S, and ”thin-

ner” model, Mask2Former-T, maintain competitive performance compared to previous base-

lines while requiring fewer parameters and less computation. Furthermore, our Mask2Former-

ST model with a ResNet-18 backbone, outperforms previous state-of-the-art models such as

Panoptic FPN and Panoptic-DeepLab with a smaller number of parameters and flops.

4.6 ABLATION STUDY ON INITIALIZATION

The method that initializes the student model parameters will influence the result.
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In this part, we will discuss how layer initialization and our parameter group-consistent

parameter selection improve the performance.

4.6.1 Layer Initialization

Name PQ PQth PQst

Mask2Former-S First 49.1 54.5 40.9
Mask2Former-S Last 48.6 54.0 40.5
Mask2Former-S Dilated 48.6 54.1 40.4

Table 4.4: Result of different layer initialization scheme.

To decide the best initialization strategies, we performed extensive experiment on three

different initialization strategy. From the result of Table 4.4, we found that using the first

several layers to initialize the student model can reach the best performance, and we keep

this initialization strategy for remaining experiments.

4.6.2 Model Initialization Parameter Selection

(a) Train Classification Loss (b) Train Mask BCE Loss (c) Train Mask Dice Loss

Figure 4.1: The train loss of different parameter initialization strategy.

To demonstrate the effectiveness our proposed method of group-consistent parameter selec-

tion, we compared the performance of model by randomly initializing the model (Mask2Former-

T-Random), only inheriting the teacher’s backbone (Mask2Former-T-Backbone), initializ-

ing the model via pruning model using SVD of the teacher’s parameter, and our approach

(Mask2Former-T-Ours). Figure 4.1 shows the decreasing of three training losses, and the

result shows the proposed method converges faster than all other baselines during training.
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(a) PQ result (b) PQst result (c) PQth result

Figure 4.2: The validation result of different parameter initialization strategy.

Figure 4.2 show the validation PQ, PQth and PQst results of 1x training on MS COCO

dataset at different training steps.

From the results, we can see just initializing the backbone can significantly improve the

performance. Using the typical approach SVD also improves the performance. But our

group-consistent parameter selection approach inherits the teacher model’s performance best

among all these approaches. Table 4.5 shows the final results of different parameter selec-

tion strategies, and the proposed approach out-performed the backbone initialization only

approach by 1.93 PQ, and the SVD approach by 1.08 PQ.

Name PQ PQth PQst

Mask2Former-T Random 42.96 48.12 35.17
Mask2Former-T Backbone 47.42 53.14 38.79
Mask2Former-T SVD 48.27 53.78 39.96
Mask2Former-T Ours 49.35 54.77 41.16

Table 4.5: Experimental results of different parameter initialization approaches.

4.7 ABLATION STUDY ON KNOWLEDGE DISTILLATION

To evaluate the effectiveness of different distillation losses, layer matching strategies and

multi-stage distillation, we performed ablation study on different distillation losses using

Mask2Former-T and layer matching strategies using Mask2Former-S.
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4.7.1 Knowledge Distillation Loss

I.Prediction II.Deformable III.Image Feature IV.Attention PQ PQst PQth

45.80 51.23 37.59
✓ 46.55 51.63 38.88
✓ ✓ 46.99 52.59 38.55
✓ ✓ ✓ 47.25 52.74 38.95
✓ ✓ ✓ ✓ 47.42 53.14 38.79

Table 4.6: Results of using different combination of distillation losses

From Table 4.6, we can conclude each loss involved in the distillation benefits the final

performance. The adaptive matching-based loss improves the performance by 0.75 PQ,

deformable attention loss improves by another 0.44 PQ, image feature loss improves by

additional 0.26 and attention loss brings 0.17 PQ gain finally.

4.7.2 Layer Matching Strategy

To figure out how to match the teacher and student’s layers properly so that we can

maximize the distillation performance. We performed experiment on different matching

strategy. Based on previous initialization result, we initialize our Mask2Former-S model

with “first” strategy from the teacher.

Name PQ PQth PQst

Mask2Former-S First 49.35 54.77 41.16
Mask2Former-S Last 49.53 55.00 41.27
Mask2Former-S Dilated 49.03 54.22 41.19

Table 4.7: Result of different layer matching scheme

We perform distillation using only prediction distillation and experiment on three dis-

tillation matching strategies. The result shows that the “Last” strategy is the best for

distillation, which is because the last several layers provides most refined feature so that the

student can learn from it.

4.7.3 Multiple-Stage Distillation

To demonstrate the effectiveness of multiple stage distillation works better than direct

distillation, we performed ablation study. We compared the result with a longer 3x training
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schedule Mask2Former-R18-3x. Another baseline to compare is to apply our distillation

approach for 3x schedule training, Mask2Former-R18-distill-3x. The result we showed in the

main table is a multi-stage distillation, which follows the path illustrate in Figure 3.4.

Model PQ PQst PQth

Mask2Former-R18-3x 40.17 44.53 33.58
Mask2Former-R18-distill-3x 41.06 44.73 35.52
Mask2Former-R18-multi-distill-3x 41.48 45.47 35.46

Table 4.8: Ablation study result on multi-stage distillation.

The experimental results show that our multi-stage distillation based on the idea of func-

tionality consistency out-performs the baseline by 1.29 PQ. In the meantime, our proposed

multi-stage distillation also outperforms distillation using a longer training schedule by 0.42

PQ, which demonstrates the effectiveness of our multi-stage approach.
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CHAPTER 5: RELATED WORKS

5.1 KNOWLEDGE DISTILLATION FOR TRANSFORMER-BASED DETECTION

Although there is no previous work in Transformer-based panoptic segmentation, some of

the previous works focusing on transformer-based detector are related to this work.

5.1.1 DETRDistill

DETRDistill [41] first performs a sparse matching paradigm with progressive stage-by-

stage instance distillation. And then it uses an attention-agnostic feature distillation mod-

ule to overcome the ineffectiveness of conventional feature imitation. Finally the author

introduced teacher-assisted assignment distillation. This work has similar matching based

prediction distillation and attention distillation with us, but they did not mention the distil-

lation of head and did not research on how to directly initialize from the teacher’s parameter.

5.1.2 D3ETR

D3ETR [43] focused on distillation using transformer decoder. The author proposed Mix-

Matching, which is a combination of adaptive matching and fixed matching. The author

applied this MixMatching on DETR and conditional DETR and achieved competitive per-

formance. However, in this work, the authors only focus on using a smaller backbone and

performing distillation on the decoder.

5.1.3 KD-DETR

KD-DETR [42] decoupled detection and distillation tasks by introducing a set of special-

ized object queries to construct distillation points, and then further proposed a general-to-

specific distillation point sampling strategy. The experiments on DAB-DETR, Deformable-

DETR, and DINO demonstrate the effectiveness of the approach. However, they also did

not explore on how to reduce the decode itself.

5.2 STRUCTURAL SPARSITY CONSISTENT PRUNING

DepGraph [49] proposed consistent structural sparsity constrained model pruning based

on the parameter dependency, which is a similar approach with our proposed approach when
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selecting the parameter for student initialization. However, DepGraph fails to generalize to

more complicated models that include novel components such as deformable attention, and

it also requires a sparse training to get the pruning strategy. The approach we proposed is

based on computation graph and can generalize to more models, and we used an heuristic

algorithm to select parameter instead of sparse training, which is simpler than sparse training

but effective.
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CHAPTER 6: CONCLUSIONS

6.1 CONCLUSIONS

In this work, we propose a series of approaches to distill a transformer-based panoptic

segmentation model, Mask2Former. The approaches include layer initialization, group con-

sistent parameter selection for initialization. We further explore the knowledge distillation

on different components of the model and produce models whose performance out-performs

multiple strong previous baselines with far fewer parameters. Our study also indicates the

potential of transformer-based panoptic segmentation, and it is possible to design models

with smaller heads and backbones while maintaining competitive performance.

6.2 LIMITATION AND FUTURE WORKS

In this work, the experiment is only limited to Mask2Former, but our approaches can

be extended to other strong transformer-based panoptic segmentation model such as Mask

DINO [13] and kMaX-DeepLab [52]. Future work can generalize our approach to those afore-

mentioned models. In the meantime, our distillation approach requires more training time

than training the model itself because it requires the inference of the teacher model. Further-

more, our approach can not generalize to other architectures such as diffusion based panoptic

segmentation. Recent diffusion-based panoptic segmentation models such as Pix2Seq-D [53]

also reached competitive performance, and it remains an open question how to build efficient

diffusion-based panoptic segmentation models.
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