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Abstract

One of the important aims of grain boundary modeling is to predict the evolution of a large collection of grains

under various thermo-mechanical loads to establish the relation between process parameters and the resulting

microstructure. In this thesis, we focus on a microstructure phenomenon called grain growth, of which a

defining characteristic is the motion of grain boundaries driven by surface tension to decrease the interfacial

energy. Pronounced at high temperature, grain growth is responsible for creating final microstructure, and

therefore influences macroscopic properties of polycrystalline material. While various scales of models have

been developed for grain growth, models that describe a single microstructure are often computationally

intensive, resulting in significantly limited size for tractable systems. However, since the dimensions of

microstructure space of possible grain configuration are enormously large, a solution to the process-structure

relationship problem is necessarily statistical. This motivates us to develop efficient models that describe the

microstructure evolution of an ensemble of polycrystals.

In this thesis, we approach grain growth at two scales. First, we focus on developing an efficient

mesocale model and associated computational algorithm for its implementation to efficiently track full-field

microstructure during grain growth. In particular, we improve the Kobayashi–Warren–Carter (KWC) model,

a memory efficient dual-phase field grain boundary model. While the grain boundary energy of original

KWC model is restricted to Read–Shockley-type, we generalize it to incorporate arbitrary misorientation-

dependent grain boundary energies. The generalized KWC model inherits the memory efficiency of the

original KWC model. Furthermore, we develop a new computational method that adapts the thresholding

method of Merriman–Bence–Osher scheme for the dual-phase field model. The algorithm implements the

curvature motion of grain boundaries represented by the generalized KWC model with a computational cost

of O(N logN), where N is the number of grid points. We use these tools to study the grain microstructure

evolution in a two-dimensional face-centered cubic copper polycrystal to characterize grain growth under

crystal symmetry-invariant grain boundary energies.

In the second part of the thesis, we investigate grain growth from a statistical level and develop an ultrafast

computational infrastructure in predicting microstructure. Restricting our attentions to two-dimensional

ii



isotropic grain growth, we conceive a new stochastic framework that evolves the joint distribution of two

coarse grain descriptors, areas and the number of sides (topology) of grains. Under the assumption of spatial

homogeneity, we track grain statistics of the entire system using the descriptors of a collection of representative

grains, or rep grains. The von Neumann–Mullins law, which states the rate of change of grain area as an

exclusive function of topology, is used to deterministically evolve the areas of rep grains. However, since grains

change their topology as they evolve by interacting with neighbors, we construct a topology transformation

model (TTM) that predicts the probability of topology transformation of a grain in terms of its current state

and the states of its neighbors. The construction of the TTM relies on a data-driven approach using a fully

connected deep neural network. Topology transformations recorded in phase field simulations are used as

training data. Combined with the von Neumann–Mullins law, the resulting neural network model is used in a

Monte Carlo simulation to evolve grain microstructures in a statistical sense. The stochastic framework is

validated against the asymptotic and transient grain statistics predicted by large-scale phase field simulations.
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Chapter 1

Thesis introduction

Many metals and ceramics are classified as polycrystalline materials, which are aggregates of single crystal

grains stacked together along grain boundaries. Each grain has a characteristic crystallographic orientation,

size, and shape. The orientation distribution is commonly referred to as texture. The statistics of such

grain characteristics constitute the grain microstructure of a polycrystal, which significantly influences its

bulk properties. An example of a microstructure-property relationship is the Hall–Petch effect [1, 2], which

predicts an increase of yield strength of a polycrystalline material as the average grain size decreases.

Macroscopic properties of polycrystalline materials can be remarkably enhanced by transforming their

microstructures [3–12]. For instance, Fig. 1.1 illustrates changes in microstructure and bulk properties

during annealing of a cold-worked material, a material plastically deformed at a temperature below its

recrystallization temperature. When a material is cold worked, a small portion of the mechanical energy is

stored in the form of internal elastic energy due to dislocations, which are line defects in the arrangement of

atoms. During heat treatment, the material undergoes restoration processes that lower the materials’ internal

energy. Restoration occurs in three stages: recovery, recrystallization, and grain growth. During recovery,

defects annihilate and dislocations agglomerate to form cell walls/subgrains, while the grain boundaries

remain unchanged. As the annealing temperature is further increased to approximately one-third the melting

temperature, recrystallization ensues, wherein new defect-free grains nucleate from existing subgrains and

grow to replace the microstructures entirely. As a result, strength and hardness decrease considerably. The

microstructure evolution past recrystallization is called grain growth, wherein the average grain size, and

therefore, ductility increases.

Grain boundary engineering is a material design paradigm, which aims to improve the properties of

polycrystalline materials by controlling the grain microstructure using thermo-mechanical processes [13]. The

design paradigm is guided by the process-microstructure–property (PSP) relationship, shown schematically in

Fig. 1.2. Mapping the PSP relationship remains one of the most fundamental problems in materials science.

The challenge stems from the enormity of the microstructure space (relative to the process and property

spaces), which includes all possible grain configurations [14], resulting in many-to-one mappings from the

microstructure space. As a result, a PSP relation is best described using a statistical description of the

microstructure in terms of distributions of certain coarse-grain descriptors, such as grain size, orientations,

etc. Therefore, to map a PSP relation, it is necessary to analyze a large collection of grains, which adequately

represents the chosen microstructure distributions.

Motivated by grain boundary engineering, the goal of this thesis is to develop computationally efficient
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Figure 1.1: Changes in bulk properties due to changes in microstructure during annealing of a cold-worked
metal. (image credit: https://www.thefabricator.com)
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Figure 1.2: A schematic of the process–structure–property relationship.
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(a) Initial condition (b) t = 0.0148 (c) Orientation Distribution at t = 0.0148

Figure 1.3: Grain growth simulation under anisotropic energies using the Gaussian kernel method [15]. The
grain boundaries between red and blue grains are twin Σ3 boundaries. The area fraction of the later stage (b),
is dominant by red and blue grains, implying development of a texture (c) from the uniform initial orientation
distribution (a).

models for grain microstructure evolution. Although we focus on grain growth, the tools developed here can

be used to study recovery and recrystallization stages as well.

A defining characteristic of various grain microstructure models is the motion of grain boundaries driven

by surface tension to decrease the interfacial energy. Locally, this effect causes grain boundaries to move

towards their centers of curvature as described by the Mullins’ model [16] of a grain boundary with isotropic

energy and mobility:

v = −mγκ, (1.1)

where v is the velocity of grain boundary and κ is the mean curvature of the grain boundary. Also, m

and γ are the grain boundary mobility and energy respectively. The assumption of isotropy in the Mullins

model is overly simplistic as the evolution of grain boundaries is treated analogous to that of soap bubbles.

Grain boundary evolution, however, is far more complex due to the anisotropy in grain boundary energy and

mobility. 1 Here, the anisotropy refers to the dependence on the five macroscopic degrees of freedom (dofs) of

a grain boundary — three dofs account for the misorientation between the adjoining grains, and two dofs

describe the inclination of the boundary.

The dominant role of anisotropy in grain boundary energy on the evolution is conveyed in Fig. 1.3, which

shows the emergence of texture from an initially texture-free microstructure. In particular, twin grains (red

and blue grains) dominate in the final microstructure due to the lower energy of twin boundaries. The goal of

the first part of this thesis is to develop a computationally efficient framework for simulating fully anisotropy

grain boundary evolution in large polycrystals.

The second part of the thesis aims to develop a reduced-order model for microstructure evolution. Unlike

the models in the first part, wherein grains are fully resolved, the reduced-order model describes the evolution

of distribution of grain descriptors. The motivation stems from our goal of mapping the structure-property

relation, which describes macroscopic properties in terms of averaged microstructural features, is enormously

large [14].

From the above perspective, this thesis studies grain growth at two scales. The first part of the thesis

1In addition to this, a coupling grain boundary motion to shear deformation [17, 18] further complicates the analysis of grain
boundary evolution. Such shear-coupled grain boundary migration is outside the scope of this thesis.
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focuses on developing an efficient mesoscale model and a new computational algorithm to efficiently track

full-field microstructure evolution during grain growth. Specifically, in Chapter 2 we develop a grain boundary

model using atomistically informed grain boundary energies as inputs. The model is a generalization of

the dual-phase field KWC model [19–21]. In Chapter 3, we develop an ultrafast algorithm to simulate our

grain boundary model. The results of Chapter 2 and Chapter 3 are published in Computational Materials

Science [22].

The second part of the thesis is introduced in Chapter 4, wherein we develop a lightweight stochastics

framework for grain statistics during grain growth. The purpose of our framework is to efficiently track the

time evolution of statistics of important grain descriptors in a large ensemble of grains. To this end, we

construct a coarse-grained framework which relies on a reduced order model for grain topology transformation.

The parameters of the grain topology model are inferred from a data-driven approach using the microstructure

evolution simulated by the grain boundary model developed in the earlier part. The results of Chapter 4 are

also published in the journal Computational Materials Science [23]. We summarize this thesis in Chapter 5.
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Chapter 2

A crystal symmetry-invariant KWC

grain boundary model

The goal of this chapter is to construct an efficient model for curvature motion of grain boundaries in

the presence of misorientation-dependent grain boundary energy. To start this chapter, we first begin by

reviewing backgrounds on grain boundary energy and models of grain boundary motion in the literature.

As implementations of different models often require different numerical techniques, we will also examine

available simulation techniques for each grain boundary evolution model as necessary.

2.1 Grain boundary energy

A grain boundary is characterized by five macroscopic degrees of freedom; three degrees represent a rotation

associated with the misorientation between the two grains, and the remaining two degrees correspond to

the inclination of the grain boundary. More precisely, the grain boundary character space is given by the

topological space T = SO(3)× SO(3)/SO(2), where SO(n) is the special orthogonal group in n dimensions.

Grain boundaries are equipped with a surface energy density, which is defined as a function on T . An

energy density that is constant is referred to as an isotropic, and anisotropic otherwise. Fig. 2.1 shows a

plot of grain boundary energy density as a function of misorientation angle for a [110] symmetric-tilt grain

boundary in face-centered cubic (fcc) copper, calculated from molecular dynamics simulations [24, 25]. Since

the symmetry of an fcc lattice ensures that the energy of a [110] symmetric-tilt grain boundary is symmetric

about the 180◦ misorientation angle, Fig. 2.1 shows a plot of energy vs misorientation angles up to 180◦. In

addition, as demonstrated in in Fig. 2.1, γ exhibits local minima at certain misorientations, marked as Σ3

and Σ11 due to an enhanced lattice matching between the two adjoining grains[26–28]. Recent efforts [26, 27,

29–32] by materials scientists in characterizing the grain boundary character space and parametrizing grain

boundary energy using data from atomistic simulations and experiments, bring us closer to developing an

atomistically-informed mesoscale model for grain boundaries.

In the presence of an anisotropic energy density the resulting grain boundary motion, according to the

motion by curvature (1.1), has been shown to have a considerable effect on grain statistics [33], leading to

changes in the macroscopic properties of materials. Therefore, in order to explore the structure–property

relationship under anisotropic grain boundary energy, we need to develop ultrafast algorithms to simulate

grain boundary evolution in polycrystals in the presence of atomistically-informed anisotropic grain boundary

5



Figure 2.1: A plot of grain boundary energy density as a function of misorientation angle of a [110] symmetric-
tilt grain boundary in fcc copper, computed using molecular dynamics [24, 25]. Misorientations corresponding
to low energy Σ boundaries are marked on the upper axis.

energies.

2.2 Models of grain boundary motion in the literature

Existing models for grain growth are often classified into three classes: probabilistic, sharp-interface, and

diffuse-interface models. An exemplary of a probabilistic model is the Monte-Carlo Potts model [34–38]. In this

approach, a polycrystal is described using points in a lattice, which are allocated to different crystallographic

orientation angles representing grains. A grain boundary is implicitly identified between adjacent lattice

points that belong to different grains. Then, the microstructure is stochastically evolved through random

jumps of boundaries in energetically favorable directions. The primary advantage of the Mote-Carlo Potts

model lies in the simplicity of its implementation. However, the heuristic rules to move grain boundaries do

not have a full thermodynamic basis.

In sharp-interface models [16, 39, 40], grain boundaries are modeled as moving interfaces that explicitly

follow the motion by curvature given in (1.1). Several computational techniques can be used to implement

(1.1), which rely on tracking the evolving grain boundaries either implicitly or explicitly. Front tracking

methods [41–44] discretize grain boundaries in two dimensions using line segments along with their connectivity

and move each point according to the local curvature. Unfortunately, such a description fails at critical events

including disappearance of shrinking grains and topology changes of grains triggered by converging triple

junctions [45]. Consequently, front tracking methods additionally require complicated rules to redefine the

connectivity of line segments during critical events.

The above limitations can be effectively addressed in the level set method [46, 47] which employs an

implicit representation of interfaces. In this method, each grain is described by a function on the domain that

is positive within, and negative outside the grain. Under this setting, the positions of interface surrounding

grains are implicitly identified by the zero-valued iso-surface. The implicit representation of surfaces enables

to track topology changes of grains without auxiliary rules. Unfortunately, however, the level set method does

not extend to handle surfaces with self-intersection and junctions, which often occur during the microstructure
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evolutions in polycrystals. More recently, a thresholding method originated from the Merriman–Bence–Osher

(MBO) scheme [48] and its generalization (referred to as the Gaussian kernel method [15]) has been shown to

simulate grain kinetics very efficiently in terms of computational costs. The level set and the thresholding

methods can be memory intensive as they use as many functions as the number of grains in order to

describe a polycrystal. For instance, a description of a 3D polycrystal consisting of 10, 000 grains on a size

of 256×256×256 grid would require ≈ 1 TB of memory. To address memory issue, an additional numerical

technique is developed to employ a level set function that co-represent spatially separated multiple grains [49,

50]. While sharp-interface models can easily extend to misorientation dependent grain boundary energy

densities and mobilities, incorporating inclination-dependence is not trivial. Recent works by Ref. [51–53]

aim to overcome such challenges.

Finally, in diffuse-interface models [54], a polycrystal is defined using functions called phase fields, which

are constant in the interior of the grains. The regions where the gradients of phase variables are non-zero are

identified as diffused grain boundaries. The motion of grain boundaries are indirectly tracked by the evolution

of different phases governed by the principle of maximum dissipation of a free energy functional, resulting

in a diffuse interface analog of (1.1). Numerical implementations of a diffuse interface model often rely on

classical numerical solvers for partial differential equations such as finite element and finite difference. In

general, diffuse-interface models are computationally more expensive than their sharp-interface counterparts,

because a numerical grid must be refined enough to resolve the extremely sharp width of interfaces.

The multi phase field (MPF) model [55–57], and the Kobayashi–Warren–Carter (KWC) model [19–21]

are two examples of diffuse-interface models for grain boundaries. The primary benefit of MPF approach is

in the simplicity of its construction to incorporate misorientation dependent grain boundary energies and

mobilities. Moreover, recent advances in MPF models [58–60] explore the full anisotropy of grain boundary

energy which consists of both misorientation and inclination dependence.1 Similar to the sharp-interface

counterparts (i.e., the level set and the MBO methods), a crude use of the MPF approach would require as

many phase field variables as the number grains in the system. However, since only a few order parameter

would be on non-zero at any point in domain, this would result in a considerable waste of computational

memory. To circumvent the memory issues, recent MPF implementations [61, 62] are equipped with a grain

remapping algorithm that allow a number of grains which do not share common boundaries to share the same

order parameters. When two distant grains grow close to each other, the remapping technique strategically

reassigns the order parameters.

On the other hands, the KWC model depicts an arbitrary polycrystal in two-dimension using only two

order parameters - one for structural order η ranging from 0 (disordered phase) to 1 (crystalline state),

and the other for crystal orientation field θ. The strength of the dual-phase approach is an efficient use of

computational memory compared to the multi phase field approach that uses as many order parameter as the

number of grains. Unfortunately, the elegance of the KWC model is compromised by the strong restriction it

imposes on the grain boundary energy. In particular, the energy functional of the KWC model limits the

dependence of grain boundary energy to so-called Read–Shockley-type [63], which is a logarithmic energy as

a function of misorientation angle. Such form of energy function is only valid for small angle misorientation

grain boundaries, and thus cannot respect the effect of the crystal symmetry demonstrated in Fig. 2.1. In

addition, the KWC model form has a singular diffusive nature leading to extremely stiff governing equations

that are computationally challenging to solve.

1Grain boundary energy as a function of inclination is typically non-convex. For grain boundary models that incorporate
inclination dependence to be well-posed, they must include curvature-dependent energy densities. This results in a higher-order
model which adds to the computationally intensive nature of the MPF model.
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Figure 2.2: A schematic of a bicrystal represented by the orientation parameter θ in the KWC model.

(a) (b)

Figure 2.3: Results on the one-dimensional steady state solution of the original KWC model describing a
flat grain boundary. a) A steady state analytical solution of the KWC model for a given misorientation. b)
Variation of the grain boundary energy as a function of misorientation in the KWC model.

In this chapter, recognizing the elegance of the phase field model of Kobayashi, Warren and Carter, we

will show that the KWC model can be generalized to incorporate arbitrary misorientation-dependent grain

boundary energies. The generalized KWC model will inherit the memory efficiency of the original KWC

model. In addition to this, we also develop an efficient computational algorithm to evolve grain microstructure

described by the new KWC model in the following Chapter 3.

2.3 The Kobayashi–Warren–Carter (KWC) model

In this section, we summarize the important features of the Kobayashi–Warren–Carter (KWC) model [19–21]

before formulating its alternate form. The KWC model is a dual-phase field model to study grain evolution

in two-dimensional polycrystalline materials.2 The two order parameters of the KWC model are η and θ.

The former parameter η ranges from 0, which signifies disorder, to 1 that describes crystalline order. On the

other hand, the phase field of θ represents the local orientation of grains.

2The KWC model can be also generalized for thee dimensions, wherein the order parameter θ is replaced by a rotation tensor.
We refer the reader to Ref. [64] for three-dimensional version of the KWC model.
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The KWC free energy functional W of a 2D polycrystal is given by

W[η, θ] =

∫

Ω

[
f(η)

ϵ
+
ϵ

2
|∇η|2 + g(η)|∇θ|+ ϵ

2
|∇θ|2

]
dV, (2.1)

where

f =
(1− η)2

2
(2.2)

is a single-well potential with minimum at η = 1, and

g = − ln(1− η) (2.3)

is an increasing function. The choice of the logarithmic function for g(η) (2.3) is supported by the work

of Alicandro et al. [65], which showed that the KWC functional converges to a surface energy function if

g(1) =∞, in the sense of Γ-convergence. 3 The dimensionless scaling parameter ϵ in (2.1) determines the

characteristic thickness of the diffused grain boundary region [66]. Note that the functional in (2.1) is defined

for all functions η and θ in the Hilbert space H1(Ω).4

Assuming a gradient descent (with respect to the L2-norm) of W, the two order parameters are evolved

by the following equation,

ϵbη η̇ = ϵ∆η − f ′(η)

ϵ
− g′(η)|∇θ|, (2.4a)

ϵbθ θ̇ = ∇ ·
[
ϵ∇θ + g(η)

∇θ
|∇θ|

]
, (2.4b)

where bη and bθ are the inverse mobilities corresponding to respective order parameters. 5 In Ref. [66], it is

shown that the evolution equations (2.4) converge to the kinetics of Mullins model (1.1) in its sharp-interface

limit ϵ→ 0, which implies the shrinking of the finite boundary thickness (width of diffused interface).

Below, we brief the role of each term appearing in the KWC functional (2.1) using the one-dimensional

steady state solution of (2.4) under Dirichlet boundary conditions

η(x = ±∞) = 1,

θ(x = −∞) = θ0 = 0,

θ(x = +∞) = θ1.

The setting corresponds to the case of a 1D flat bicrystal shown in Fig. 2.2, where the grain boundary

is located at the origin x/L = 0. The steady-state solution of each parameter demonstrated in Fig. 2.3a

describes that the orientation θ is constant in the interior of the grains and has a non-zero gradient in a finite

thickness around the grain boundary. The value of η < 1 in the neighborhood of the grain boundary x/L ≈ 0

indicates a loss of crystalline order due to the presence of the grain boundary.

The minimum energy state in the 1D bicrystal is obtained by the equilibrium of two opposing mechanisms;

while the single well potential f drives η(x) towards 1, the coupled term g(η)|∇θ| tends to decrease η in a

neighborhood of the grain boundary. Moreover, the coupled term has a tendency to localize the jump in θ,

3For more information, we refer the reader to Theorem 4.1 in Ref. [65]
4The Hilbert space H1(Ω) denotes the set of all functions on Ω whose first derivatives are square integrable.
5The KWC model was originally developed to simultaneously model grain rotation and grain boundary motion. The model

can be specialized to demonstrate only curvature grain boundary motion by enforcing zero mobility for θ in the grain interior.
This can be achieved by a constant bϕ, and a ϕ-dependent bθ [67].
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while |∇θ|2 works towards diffusing it. The consequence is the shape of a regularized step function for θ.

Note that in the absence of the |∇θ2| term, the steady state solution for θ is a pure step function, resulting

in a dual-phase model with a blend of sharp- and diffuse-interface characteristics, i.e. while θ is sharp, η is

diffused. However, |∇θ|2 in the KWC model has a dual role of not only regularizing θ but also rendering

non-zero mobility to the grain boundaries. In other words, in the absence of |∇θ|2 term grain boundaries

cease to move [66].

The bicrystal grain boundary energy γ as a function of misorientation angle JθK = |θ1−θ0| predicted by the

KWC model can be evaluated by integrating the form (2.1). The results for a range of misorientation angles

are plotted in Fig. 2.3b. As stated earlier, γ(JθK) obtained from the KWC model is of the Read–Shockley-type,

as opposed to the grain boundary energies obtained from molecular dynamic simulations shown in Fig. 2.1.

Despite the strength of the KWC model in describing polycrystals with only two order parameters, such rigid

energy form poses a critical restriction to the KWC model, compared to the versatility of the multiphase

field model for accommodating arbitrary grain boundary energy functions. Such limitation is one of the

main motivations for this chapter to seek a new formulation of the KWC model to incorporate arbitrary

misorientation-dependent grain boundary energies.

2.4 A crystal symmetry-invariant KWC model

In this section, now we seek a new KWC model that can incorporate arbitrary misorientation-dependent

grain boundary energies.

We begin with eliminating the |∇θ|2 term in the KWC functional, as the term poses the strongest

restriction on grain boundary energy. As previously illustrated in Section 2.3, in the absence of the |∇θ|2
term, the steady state solution for θ take a form of a step function with the discontinuity occurring at the

grain boundary. In one-dimension, since a discontinuous θ is not in H1(Ω), the minimizer of W, with |∇θ|2
absent, is not attained. This lead us to redefine the domain of the modified KWC functional such that θ

belongs to the space of piecewise constant functions instead of H1(Ω). Under this setting, we now simplify

the free energy functional as

W[η, θ] =

∫

Ω

[
(1− η)2

2ϵ
+
ϵ

2
|∇η|2

]
dV −

∫

S
ln (1− η̄)[[θ]] dS, (2.5)

where η̄ : S → R is the restriction of η to the θ-jump set S represents the union of all grain boundaries. Now,

let us re-examine the steady-state solution of the new energy functional (2.5) at a one-dimensional bicrystal.

The detailed analytic approach for the solution is provided in A, where the resulting grain boundary energy

as a function of JθK is now derived as

γ(JθK) =
JθK
2

(
1− 2 ln

[
JθK
2

])
. (2.6)

From (2.6), it is clear that the grain boundary energy is still of a Read–Shockley-type.

However, from the above observation, we suggest the following generalization of the KWC functional

WG[η, θ] =

∫

Ω

[
(1− η)2

2ϵ
+
ϵ

2
|∇η|2

]
dV +

∫

S
g(η̄)J ([[θ]]) dS, (2.7)

which is defined for all η ∈ H1(Ω), and piecewise constant functions θ. J which replaces JθK in (2.5) is an
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Figure 2.4: A plot (in green) of the core energy J (JθK) calculated to match γG (2.8) to γcov (B.9) (in red)
for [110] symmetric-tilt grain boundaries in fcc copper. Note that γG is identical to γcov by construction.

undetermined even function of JθK. Under this new formulation, the grain boundary energy function (2.6)

modifies as
γG([[θ]]) = (1− η)2 − ln (1− η)J ([[θ]])

=
J (JθK)

2

(
1− 2 ln

[J (JθK)
2

])
,

(2.8)

where η̄ is the value of the stead-state solution on the grain boundary, given implicitly in terms of J (JθK) as 6

2(1− η)2 = J ([[θ]]). (2.9)

Motivated from the related terminology in the dislocation theory, we name J (JθK) as the core energy.

Then, the flexibility of the grain boundary energy function in the new KWC model is enabled by the form

(2.8), with an appropriately designed core energy function J that faithfully represents the grain boundary

energy and symmetry of the bicrystal. In other words, the crystal symmetry of the new KWC model is

inherited from the core energy function. For demonstration, consider the energy γcov of a [110] symmetric

tilt grain boundary in face-centered cubic (fcc) copper, illustrated as red points in Fig. 2.4. Here, γcov is

computed using the lattice-matching method developed in Ref. [26, 27]. To define the grain boundary energy,

the method uses the measure of the agreements (the covariance) of two lattices adjoining the grain boundary. 7

Using a simple iterative method (e.g.,the Newton’s method) we can solve for for J in (2.8) such that the

grain boundary energy γG of the new KWC is identical to γcov. The green points in Fig. 2.4 shows a plot of

the solution J , that highlights the common positions of the local minimizers of J and γcov.

While the alternate KWC functional (2.7) enables us to incorporate arbitrary misorientation-dependent

grain boundary energies, the absence of |∇θ|2 term in the free energy (2.7) yields immobile grain boundaries

as suggested in Section 2.3 8. In the following chapter, we address this drawback by developing a thresholding

method to move grain boundaries using the piecewise-constant θ.

6The analog of (2.9) in the original KWC model is shown in (A.7), of which the derivation is also provided in Appendix A.
7For completeness of the thesis we provide the details on lattice-matching method in Appendix B along with the list of the

parameters to arrive at the data plotted in Fig. 2.4.
8The gradient descent of WG drives a pure rotational evolution of θ, while the position of the grain boundaries remains fixed.
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Chapter 3

A thresholding method for gain

boundary motion in the new KWC

model

The goal of this chapter is to introduce a new approach to evolve a polycrystal governed by the generalized

KWC model WG (2.7). The key idea of our algorithm is to alternate between evolving η and θ using two

separate numerical methods; each method is suitably designed for each sub-problem, the evolution equation

for each order parameter.

First, for a given piecewise-constant θ, the order parameter η can be solved in the following minimization

problem

η∗ = arg min
η∈H1(Ω)

∂η/∂n|∂Ω=0

WG[η, θ]. (3.1)

In numerical approaches for (3.1), we note that the Newton’s method is not viable. This is because g(η)→∞
as η → 1, leading to the non-smooth functional WG with respect to η. Therefore, we employ a primal-dual

method developed by Jacobs et al. [68]. The method has a O( 1eN logN) complexity, where e is the error in

the numerical solution to (3.1), and N is the grid size. See C for a more detailed description of the primal-dual

method.

Instead, the primary focus of the present chapter is to develop a thresholding rule that algorithmically

drives curvature motion of θ for a fixed η∗ acquired from (3.1). The alternate use of the primal-dual method

and the thresholding rule at every time step constitutes our new approach to evolving the grain boundaries

of WG.

3.1 The thresholding rule

A thresholding method is a computational algorithm consisting of a series of simple rules, executed every

time step to reinitialize the order parameter, which describes the curvature motion of interfaces.

The original idea of a thresholding method to evolve grain boundaries was first explored in the work of

Merriman, Bence and Osher (MBO) [48]. In their method, grains in a polycrystal are described using as

many characteristic functions, similar to the order parameters of multiphase field model. Each characteristic

12
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Figure 3.1: Level sets of the distance function l(x) in a neighborhood of x0. The grain boundary Γ is depicted
as a solid curve, and the dashed curves correspond to the level sets l(x)/ϵ = ±l̃.

function is piecewise-constant which takes the value of 1 in the interior of the corresponding grain and 0

otherwise, resulting in a sharp-interface representation of grain boundaries. Then, the curvature motions of

interfaces are algorithmically generated using a two-step rule, a convolution of the characteristic functions

with a Gaussian kernel followed by a trivial thresholding. The MBO method has recently been generalized to

a variational model, referred to as the Gaussian kernel method [15].

While the end goal of the KWC model is also to describe motion by curvature, our thresholding method

is significantly different from these earlier works [15, 48], as it uses only two order parameters to represent a

polycrystal. Consequently, it does not require additional techniques to address the memory intensive nature

of a crude implementation of the MBO/Gaussian kernel methods. More essentially, the KWC model is

adaptable to further generalizations which include the modeling of grain rotation. Therefore, the goal here is

to seek a thresholding algorithm to implement the KWC model.

We first recognize that θ is a piecewise-constant field with a finite range of orientations. Thus, a

thresholding rule should reassign θ(x), for each point x ∈ Ω, to one of the possible orientations. We will

design a thresholding rule from the observation that the asymmetry of η in the neighborhood of a grain

boundary characterizes its curvature. In the following, we explicitly identify this asymmetry before describing

our thresholding rule.

To begin with, recall that the steady-state solution for η for a flat interface (i.e., zero curvature), derived

in (A.8) and shown in Fig. 2.3a, is symmetric about the grain boundary. Now, we derive an approximate form

for η in the presence of a non-zero curvature, and relate the η-asymmetry to the grain boundary curvature.

Let Γ be a grain boundary with a non-zero curvature that separates two grains with orientations θL and θR

as shown in Fig. 3.1. Assuming that Γ has a small curvature such that ϵκ≪ 1, for a x0 ∈ Γ away from a

triple junction, the solution η∗ to (2.4a) is approximated using the signed distance function from Γ to x

η∗(x) ≈ u
(
l(x)

ϵ

)
, (3.2)
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in a small neighborhood of x0. In other words, we assume that η only depends on the radial coordinate.

Away from the grain boundary where |∇θ| = 0, the solution to the minimization problem in (3.1) satisfies

the equation

ϵ∆η∗ − (η∗ − 1)

ϵ
= 0. (3.3)

To simplify (3.3) we employ a local coordinate system x = (l̃, s) ,where l̃ = l(x)/ϵ is the scaled radial

coordinate, and s is the distance measured along Γ between x0 and the perpendicular projection of x on Γ.

In this coordinate system, the Laplacian is written as △η(x) = u′′/ϵ2 + κu′/ϵ, where κ(l̃) is the curvature

of the coordinate line {x ∈ Br(x0) : l(x) = l̃ϵ}. This allows us to reduce the equation (3.3) to an ordinary

differential equation

u′′(l̃) + ϵκu′(l̃)− u(l̃) + 1 = 0. (3.4)

Assuming κ(l̃) = κ(0), a general solution to (3.4) is obtained in the following closed-form:

u(l̃) = 1 + C1 exp

[
−l̃
(
ϵκ+

√
4 + ϵ2κ2

2

)]
+ C2 exp

[
−l̃
(
ϵκ−

√
4 + ϵ2κ2

2

)]
, (3.5)

where the constants C1 and C2 need to be determined using the boundary conditions u(±∞) = 1.1

Assuming both ϵ and ϵκ are small, the solution can be further approximated, resulting in 2

u(l̃) =




1 + (u(0)− 1)e−(1+0.5ϵκ)l̃ if l̃ > 0,

1 + (u(0)− 1)e(1−0.5ϵκ)l̃ otherwise.
(3.6)

The form (3.6) explicitly shows the asymmetry of u around l̃ = 0. For instance, in the presence of a

positive curvature, the rate at which u converges to 1 when l̃→ +∞ is faster than l̃→ −∞.

The asymmetry of u provides the ground of our thresholding scheme which reassigns the values of θ in the

neighborhood of the grain boundaries resulting in a motion by curvature. To develop such rule, we recognize

a unique l = l0, which is the solution of the following integral equation

∫ l0

−∞
(1− u(l/ϵ))2 dl =

∫ +∞

l0

(1− u(l/ϵ))2 dl. (3.7)

In Fig. 3.2, we provide a graphical interpretation of the above integral equation, which is to identify the

location of l0 such that the two separated areas underneath the (1− u)2-curve become the same (marked

with the yellow and green regions respectively). Clearly, the solution to (3.7) is not l0 = 0 because of the

asymmetry of u, induced from a non-zero curvature. A straightforward but tedious calculation shows that

l0 = −ϵ
2

4
κ+O(ϵ3). (3.8)

See D for details to arrive at (3.8) from (3.7). If we reinitialize the orientations of all x with l(x) < l0 to

θL, and to θR when l(x) > l0, such thresholding rule drives the curvature motion of the grain boundary by

dt = tϵ2/4, where t = 1 is a unit conversion factor. Alternating between the η-update using the primal-dual

method, and the θ-update using the thresholding rule, results in a grain boundary motion by curvature with

1The boundary conditions are interpreted in the limit ϵ → 0, which results in the boundary conditions l/ϵ = ±∞ for the
scaled radial coordinate .

2Here, we use the approximation
√
4 + ϵ2κ2 ≈ 2 +O(ϵ2κ2).

14



Figure 3.2: A plot of η∗(= u) in a small neighborhood of x0 (see Fig. 3.1) is shown in blue, while (1− η∗)2
is shown in red. The asymmetry of u around x0 due to curvature κ is characterized by the position x at
which the two areas shown in yellow and green regions are equal. The position x is given in terms of l0,
(x− x0) = l0/ϵ, which is the solution of (3.7).

mobility equal to the inverse of the grain boundary energy.3 Although this causes a strong restriction on the

grain boundary mobility, we postulate that this can be potentailly overcome by modifying the thresholding

rule (3.7), and this will be addressed in a future work. Clearly, the efficiency of the thresholding rule described

above rests on the effective computation of l0 in (3.7). In the next section, we introduce the fast marching

method to not only compute l0 in an O(N logN) algorithm, but also generalize the above strategy to an

arbitrary polycrystal.

3.2 Thresholding dynamics via the fast marching method

The fast marching method (FMM), first introduced by Tsitsiklis [71], is an algorithm to evolve a surface with a

spatially varying normal velocity. A general description of FMM is provided in Appendix E with a stand-alone

example. Here, we focus on how we utilize the fast marching method to implement the thresholding algorithm

described in Section 3.1.

We begin with a demonstration of our implementation of the thresholding scheme for a bicrystal consisting

of a circular grain, followed by its generalization to a polycrystal. First, recall that the boundary conditions

u(±∞) = 1 used to arrive at (3.6) and (3.7) apply only in the limit ϵ→ 0 as noted in footnote 1. In practice,

we truncate with a finite limit lb > 0, and modify (3.7) as

Find l0 such that

∫ l0

−lb
(1− u(l/ϵ))2 dl =

∫ lb

l0

(1− u(l/ϵ))2 dl. (3.9)

3In this case, the reduced mobility [69, 70], which is defined as the product of grain boundary energy and mobility, is equal to
1 for all grain boundaries.
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(a) Two interior regions of a bicrystal with a circular
grain boundary
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(b) The two initial surfaces ∂I1 and ∂I2 evolved using
the FMM.

Figure 3.3: Shrinking of a circular grain simulated using the thresholding method. a) Two interior regions
(red and blue) I1 and I2 are grown towards the grain boundary with a speed 1/(1 − η∗)2 using the fast
marching method. b) A closeup of a rectangular region around the grain boundary, depicted in (a), shows
the contour lines of the fast marching method, which describe the time it takes for ∂I1 or ∂I2 to arrive at
a grid point. Therefore, the original grain boundary, shown as a dashed black line in (b), moves to a new
position (solid green line) where the two grain interiors meet.

In Appendix D, we show that the error in l0 due to the introduction of lb exponentially decreases as ϵ→ 0.

In order to use FMM in computations of l0, we interpret the integrand (1−u(l/ϵ))2 in (3.9) as an inverse of

the normal velocity of a surface Sl := {x : l(x) = l} evolving towards the grain boundary. In this perspective,

the integrals in (3.9) are a measure of the time it takes for two initial surfaces S−lb and Slb on either side of

the grain boundary, to meet at l = l0. In other words, l0 is where the two evolving interface arrive at the

same time. Now, we will use the fast marching method to co-evolve the surfaces S−lb and Slb , and implement

the thresholding rule (described in Section 3.1) by reassigning the orientation of any point x in the region

{x ∈ Ω : |l(x)| < lb} to θL if it first encounters the evolving surface S−lb , and to θR otherwise.

In practice, however, we do not know the signed distance function l(x) to identify the surfaces S−lb and

Slb . Instead, we first identify the grain interiors Ip defined as

Ip = {x ∈ Ω : θ(x) = θp, η(x) > 1− ξ}, (3.10)

where ξ > 0 is some fixed small value. We will examine errors resulting from the introduction of ξ in the

following as well. Fig. 3.3a shows the grain interiors I1 and I2 in a bicrystal, and Fig. 3.3b is a closeup of a

rectangular region, marked in yellow, around the grain boundary. The original grain boundary is marked as a

black dashed line in Fig. 3.3b. By construction, the two surfaces ∂I1 and ∂I2 are equidistant, up to O(ϵ),
from the grain boundary, and serve as substitutes for S−lb and Slb . The grain interiors are grown in the

outward direction with a velocity (1− u(l/ϵ))−2 using the fast marching method, and the surface where they

meet is the new grain boundary, shown as a green dashed line in Fig. 3.3b.

Next, we generalize the above strategy to an arbitrary polycrystal consisting of N grains. Each grain
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Figure 3.4: Movement of a triple junction according to the thresholding algorithm. The triple junction
initially at (x, y) = (0.5, 0.5) (black filled circle) moves to a new position (yellow filled circle) where the three
grain interiors, evolved using the fast marching method, meet at the same time.

is described using a piecewise constant function θ(x) with values in {θ1, . . . , θN }. Once the corresponding

η∗-solution is obtained using the primal dual algorithm, we identify the N grain interiors using (3.10), and

define I as their union. Then, we grow the grain interiors in their outward unit normal directions until

every point (in the almost everywhere sense) in the domain is reassigned to one of values in {θ1, . . . , θN }.
We implement this by first collecting all the boundaries of the interior regions in ∂I = ∂I1 ∪ · · · ∪ ∂In, and
simultaneously evolving them in the outward normal direction with a speed of 1/(1− η∗(x))2 using the fast

marching method. Note that the fast marching method is used to evolve all grain interiors in union as

opposed to evolving them individually. As the grain interiors grow, a point x ∈ Ω− I is reinitialized to an

orientation θq if it encounters ∂Iq ⊂ ∂I. At the end of the fast marching method, all points in Ω− I have

been reinitialized resulting in an updated polycrystal, and this completes the one time step. Fig. 3.4 shows

the implementation of the thresholding rule in a tricrystal. In particular, Fig. 3.4 demonstrates the movement

of a triple junction according to our algorithm. The new position of the triple junction is where the three

growing grain interiors meet at the same time.

Two types of boundary condition are available in the our scheme. First, the Dirichlet boundary conditions

on θ can be imposed by including all x ∈ ∂Ω in the grain interiors. On the other hand, periodic boundary

conditions are achieved by periodically reinitializing θ for x ∈ ∂Ω during the fast marching step.

The primal-dual and the fast marching methods are carried out on a regular grid of resolution with a

discretized finite length, say δx. From (3.8), we know that the grid should be refined enough to resolve a

grain boundary movement of ϵ2κ in each time step, i.e.

δx≪ ϵ2κ, (3.11)

which is a common grid restriction of other thresholding methods [15, 48]. If this condition is not satisfied,
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Algorithm 1 Thresholding algorithm for the new KWC model

1: Input: a) A polycrystal with N grains with orientations θ1, . . . , θN
b) grain boundary core energies J (JθK); c) parameters: ϵ, ξ, total time T , and tolerance e.

2: Construct the core energy function J ([[θ]]) from grain boundary energy data
3: Initialize t = 0, and the orientation field θ(x, 0)
4: while (t ≤ T ) do
5: Compute the discrete jump fields JθK(x, t) and J̄ := J (JθK(x, t)) on Ω

6: Regularize the jump field: J ⋆ = G ∗ J̄ , where G(x) = (1/2πϵ2)e−
|x|2

2ϵ4

** Solve for η(x, t) using the primal-dual algorithm **
7: Initialize η and the dual field ψ: η0(x) = 0, ψ0(x) = 0, and n = 0
8: while ∥ηn+1 − ηn∥∞ ≤ e do
9: n = n+ 1

10: Calculate ηn using ψn−1 (C.6)
11: Calculate ψn using ηn (C.7)
12: end while
13: η(x, t) = ηn+1

** Threshold/update the orientation field **
14: Identify interiors of grains: Ip = {x ∈ Ωθ(x, t) = θp, J̄ (x) < ξ}, and set I = ∪np=1Ip
15: Evolve I with speed 1/(1− η(x, t))2 using the fast marching method

and update/threshold the orientations at each point x ∈ Ω− I
16: t = t+ 0.25ϵ2 (3.8)
17: end while
18: Output: Time evolution of the polycrystal

Grid Size
ξ 1024× 1024 2048× 2048

0.15 9.77 % 2.32 %
0.10 7.74 % 1.24 %
0.05 3.39 % 0.71 %
0.02 2.58 % 0.07 %

Table 3.1: The effect of parameter ξ on deviations from the expected motion by curvature. We note that for
a 2048× 2048 grid, ξ = 0.05 is small enough to achieve an error less than 1%.

grain boundaries would stagnate. Since grain boundary evolution results in an overall decrease in curvature,

(3.11) may cease to hold as the simulation progresses. Therefore, we adaptively increase ϵ when a grain

boundary stagnates, and as a consequence, we obtain a time adaptive algorithm since dt ∝ ϵ2. On the

contrary an extremely small ϵ will increase the computational cost of the thresholding method. Thus, the

parameter ϵ should be chosen wisely, which potentially requires a few numerical experiments.

Finally, we explore the effect of ξ, introduced in (3.10), on the extent to which (3.8) is satisfied. Recall

that ξ was introduced in (3.10), which is necessary for identifying intial grain interiors. In the case of a

circular grain (see Fig. 3.3a), the rate of change of radius can be analytically estimated from (3.8), which

results in

Ṙ(t) = − ϵ2

4R(t)
. (3.12)

To check if the above equation is satisfied, we ran the thresholding algorithm using the η-solution from the

primal-dual algorithm with ϵ = 0.01, and measured Ṙ(t). Relative % errors in shrinking-rate Ṙ at different

values of ξ are summarized in Tab. 3.1. It is confirmed that for a sufficiently small grid, ξ = 0.05 is small

enough to achieve an error less than 1%.
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Simulation
Analytic Solution

(a)

Simulation
Analytic Solution

(b)

Figure 3.5: A comparison of the numerical solution resulting from the thresholding algorithm, implemented
with ϵ = 0.1 on a 512× 512 grid, with the analytical solution. Plots of a) the steady-state solution η, and b)
grain boundary energy as a function of misorientation.

We summarize our approach in Algorithm 1. Here, the core energy data J (e.g., Fig. 2.4) is computed

separately using the procedure described in Section 2.4, and used as an input to our method. The algorithm

alternates between the primal-dual and the fast marching methods resulting in motion by curvature. We also

remark that the current approach can also be easily generalized for three-dimensional case as well.

Before we close this section, we comment on the computation of JθK (and also J ) on a discrete grid.

Because JθK, calculated at a grid point ij in either x- or y-directions using centered-difference, is shared

between two grid points, a factor of 1/2 appears in the following expression used to compute the total jump:

JθKij =
1

2

√
(θi+1,j − θi−1,j)2 + (θi,j−1 − θi,j+1)2. (3.13)

The above form conserves total JθK in a weak sense; it conserves the initial JθK, when integrated across the

grain boundary.

3.3 Numerical experiment

In this section, we present several results from numerical experiment that explore various features of grain

boundary evolution predicted by our model.

We begin with a simulation of a one-dimensional bicrystal Ω = [0, 1] with a grain boundary at x = 0.5,

and J (JθK) = JθK. The purpose of this simulation is to ensure that the results of the primal-dual algorithm for

η-solution are consistent with the analytical model described in Appendix A. A Neumann boundary condition

dη/dx = 0 is enforced at the two ends. In the absence of a curvature, we expect the grain boundary to remain

at x = 0.5, and η reach its steady state. The tolerance e of the primal dual algorithm (C.8) is set to 10−6.

Fig. 3.5a confirms the agreement between η obtained from the primal dual algorithm and the analytical form

given in (A.8). In addition, Fig. 3.5b shows that the grain boundary energies predicted by the primal-dual

algorithm for various misorientation angles are in agreement with the analytical result derived in (A.10).
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(a) Initial Condition (b) Gaussian Kernel Method (c) Current method

Figure 3.6: A comparison of the evolutions of a tricrystal under periodic boundary conditions obtained using
the Gaussian kernel method and the generalized KWC model with ϵ = 0.01, implemented using our method.
The dihedral angles predicted by the Gaussian kernel method and our method are (93◦, 133.5◦, 133.5◦) and
(106◦, 127◦, 127◦) respectively, while the theoretical values are (90.89◦, 134.56◦, 134.56◦). In Fig. 3.7, we
demonstrate that the error in the dihedral angles predicted by the generalized KWC model decreases as
ϵ→ 0.

3.3.1 Equilibrium of a triple junction

A triple junction is a line where three grains meet, and it is manifested as a point in two dimensions. The

equilibrium of a triple junction is guaranteed if it satisfies the force equilibrium locally around the triple

junction. The condition can be written in terms of the dihedral angles Θi of three grains, referred to as the

Herring relation [72]
γ12

sinΘ3
=

γ23

sinΘ1
=

γ31

sinΘ2
, (3.14)

where γij is the grain boundary energy density between the grain i and j.

Although the Herring relation is originally derived in the sharp-interface framework, not surprisingly, it

is also seen to hold for a triple junction governed by the original KWC model through (2.4) [21]. This is

because the KWC model converges to the Mullins model in the sharp-interface limit and the evolution in

(2.4) is derived from a variational structure, i.e., the gradient descent of the functional in (2.1). However,

our approach to evolve the generalized KWC model does not strictly arise from a variational formulation.

Therefore, it is necessary to examine the Herring relation using our thresholding algorithm. We will now

show that the Herring relation indeed holds provided the parameter ϵ is sufficiently small.

We examine the evolution of a triple junction in a tricrystal with orientations θ1 = 0, θ2 = π/6, and

θ3 = π/3 in Ω = [0, 1]× [0, 1]. Using the Read–Shockley core energy J = JθK, we note from Fig. 3.5b that

the energy density of the three grain boundaries are γ12 = 0.62, γ23 = 0.62, and γ13 = 0.87. From the

Herring relation in (3.14), it follows that the steady state dihedral angles are Θ1 = 134.56◦, Θ2 = 90.89◦, and

Θ3 = 134.56◦ respectively. In order to check the Herring relation, we consider a tricrystal under periodic

boundary conditions, with an initial orientation distribution given by

θ(x, t = 0) =





θ2 if x2 ≤ 0.25 or x2 > 0.75,

θ3 if 0.25 < x2 ≤ 0.75 and 0.25 ≤ x1 < 0.75,

θ1 if 0.25 < x2 ≤ 0.75 and x1 > 0.25 or x1 > 0.75.

(3.15)

Fig. 3.6a shows a plot of the initial configuration of the tricrystal. Under this setting, we have four triple

junctions at (x1, x2) = (0.25, 0.75), (0.75, 0.75), (0.75, 0.25), and (0.25, 0.25), of which initial dihedral angles
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(a) Initial Condition (b) ϵ=0.01

(c) ϵ=0.006 (d) ϵ=0.003

Figure 3.7: a) The orientation distribution in an initial tricrystal under periodic boundary conditions with a
triple junction at (x, y) = (0.25.0.75), and dihedral angles (Θ1,Θ2,Θ3) = (90◦, 180◦, 90◦). The polycrystal is
evolved using the thresholding algorithm with ϵ = 0.01, 0.006 and 0.003. b)-d) Closeups of an evolving triple
junction (red box) clearly show that the dihedral angles converge to (Θ1,Θ2,Θ3) = (134.56◦, 90.89◦, 134.56◦)
predicted by the Herring angle condition (3.14), as ϵ converges to zero.

are 90◦, 180◦, and 90◦.

We begin by comparing the evolution of a triple junction predicted by the KWC model implemented

using our thresholding scheme with that acquired from the Gaussian kernel method [15]. The grain boundary

energies (γ12, γ23, γ13) = (0.62, 0.62, 87), pre-computed using the KWC model, are used as inputs to the

Gaussian kernel method. The respective mobilities are set to the inverse of the grain boundary energies. The

parameter ϵ of the KWC model is initially taken as 0.01. Both schemes are simulated on a 1024× 1024 grid.

As shown in Fig. 3.6, the evolution dynamics of both schemes are qualitatively similar. In both methods,

the triple junctions adjust at a much faster time scale to satisfy the Herring angle condition compared to

the curvature-driven motion of grain boundaries [73]. The motion of triple junctions induces a curvature

to the initially flat grain boundaries, resulting in the shrinking of the embedded grains (blue and yellow),

while maintaining constant dihedral angles. The equilibrium dihedral angles predicted by the Gaussian kernel

method are (93◦, 133.5◦, 133.5◦), while the generalized KWC model with ϵ = 0.01 yields (106◦, 127◦, 127◦).

To further investigate the dependence of the triple junction angles on ϵ, we implement the thresholding

algorithm with ϵ = 0.01, 0.006 and 0.003 on a more refined 3000 × 3000 grid. As shown in Fig. 3.7b to
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(a) (b) (c)

Figure 3.8: An initial polycrystal, shown in (a), is evolved using the thresholding and the finite element
methods resulting in polycrystals shown in (b) and (c) respectively. The two methods are consistent in
predicting the growth (e.g., 1○, 2○) and shrinkage (e.g., 3○, 4○) in various grains. The differences in the
evolution is attributed to the mobility function introduced in (3.16) to prevent grain rotation.

(a) (b) (c)

Figure 3.9: An initial polycrystal, shown in (a), is evolved using the finite element method. (b) and (c) show
the resulting polycrystals with regularization parameters ρ0 = 2× 10−4 and ρ0 = 2× 10−3 respectively. When
ρ0 is not sufficiently small, grains with small misorientation (e.g., 1○, 2○) blend out and grain boundaries
easily become rounded. However, the decrease in ρ0 for simulating sharp interfaces, comes with significant
computational cost contrasts to the suggested scheme.

Fig. 3.7d, as ϵ decreases, the stabilized triple junction angles converge to those predicted by the Herring

relation. This test shows that the Herring relation is satisfied in the limit ϵ→ 0.

3.3.2 Comparison with the finite element implementation of the KWC model

Next, we compare the evolutions of a polycrystal resulting form our method and a finite element implementation

of the KWC model. The latter will be referred to as FE-KWC onwards. An initial polycrystal consisting

of N = 50 grains, as shown in Fig. 3.8a, is generated using a Voronoi tessellation of uniformly distributed

random points. The orientations of the grains are randomly selected from the interval [0, π/2]. To make a

closer comparison with the original KWC model, the core energy of the alternate KWC model is chosen to

be of the Read–Shockley-type, i.e.J = JθK. The thresholding algorithm is implemented on a 1024 × 1024

grid, with parameters ϵ = 0.01, e = 10−6, and ξ = 0.05. A snapshot of an evolving grain microstructure at

t = 5× 10−3, simulated using our thresholding scheme, is shown in Fig. 3.8b.

We note that FE-KWC, using continuous Lagrange finite elements, cannot be used for our new KWC

model because the solution for θ is discontinuous. Therefore, we proceed with a finite element implementation
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of the regularized KWC model given in (2.4). Second-order quadrilateral Lagrange finite elements are used to

interpolate the order parameters. Since the regularized KWC model also allows grain rotation, we prohibit

rotation using the following η-dependent mobility for θ

b−1
θ (η) = 10−5ϵ+

(
1− η3(10− 15η + 6η2)

)
(1− 10−5)ϵ, (3.16)

as suggested by Ref. [67]. On the other hand, (bη)
−1 = ϵ is chosen to be constant. To address the singularity

due to the |∇θ| term in (2.4b), we use the approximation

g(η)|∇θ| ≈ g(η)
√
ρ0 + |∇θ|2, (3.17)

where ρ0 = 2×10−3 is a constant. The manifestation of ρ0 on the solution will be discussed below. Fenics [74],

an open-source computing platform, is used to perform FE-KWC simulation. We take an implicit time

step with dt = 0.012. In order to compare the numerical efficiency, we ensure that the number of degrees

of freedom is the same in the thresholding and the finite element simulations. The grain microstructure at

t = 1.71, simulated using FE-KWC, is shown in Fig. 3.8c. Comparing Figs. 3.8b–3.8c, we note that both the

methods are consistent in predicting growth (see 1○, 2○) and shrinkage (see 3○, 4○) in various grains. It is

observed that grain boundaries become rounded in the finite element simulation, because of the diffusive

nature of orientation field. In addition, disparities are more clear for small misorientation grain boundaries,

e.g. 5○, which became considerably diffused. This is a manifestation of the regularization parameter ρ0,

which results in a non-zero gradient in θ even in the grain interiors. In Fig. 3.9, we compare two finite

element simulations with ρ0 = 2× 10−3 and 2× 10−4, which shows that for a smaller ρ0, the grain boundaries

maintain their characteristic width.4 Thus, to simulate sharp grain interfaces comparable to the our scheme,

a small enough ρ0 is required for FE-KWC. However, we note that the smaller ρ0 results in the more stiff

governing equations, which significantly influences the computation time as discussed below.

A study on computational time of the schemes clearly highlights the strength of the thresholding scheme.

Performance tasks are executed on a single 1.6 GHz core with 8 GB RAM, and we measured the wall-clock

time to complete one-full time step for the two methods. For our method, this includes solving for η using

the primal dual algorithm, and executing the fast marching based thresholding algorithm to update θ. In

Fig. 3.10, we plot the dependence of the wall-clock time, as a function of the number of degrees of freedom N .

The computational complexity of the current scheme is O(N logN), with a dominant contribution from Fast

Fourier Transform necessary for the primal dual algorithm to solve (C.7). On the other hand, the asymptotic

computational cost of FE-KWC is estimated to be in between O(N) and O(N2) as shown in Fig. 3.10. The

computational bottleneck of FE-KWC is in solving — using a GMRES iterative solver [75] — a linear system

of equations formed by an N ×N -sized sparse matrix. Although the asymptotic costs of the two schemes

are similar in terms of N , we note that the computational cost of FE-KWC also depends on the choice of

the regularization parameter ρ0, which increases the stiffness of the equations in the limit ρ→ 0. Therefore,

as demonstrated in Fig. 3.10, the current scheme can be orders of magnitude faster than FE-KWC. Both,

FE-KWC and the implementation of our method, can easily be parallelized using the current generation of

graphics cards, which have the power, programmability and precision to implement FFT and iterative matrix

solvers [76, 77] respectively.

4Recall that the characteristic width of a grain boundary in the regularized KWC model is a function of ϵ.
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Figure 3.10: A comparison of the complexity of the thresholding and the finite element methods. The
dashed lines represent reference slopes in the log-log scale plot. Slope 1 and 2 represent O(N) and O(logN)
respectively. While both methods have a complexity of at most O(N logN), the cost of the finite element
method depends on the choice of the regularization parameter ρ.

3.4 Grain growth in an fcc copper polycrystal

In this section, we examine grain growth in a two-dimensional fcc copper polycrystal with [110]-type grain

boundaries simulated using the generalized KWC model,5 with crystal symmetry-invariant grain boundary

energy. We compare the results with the predictions of the original KWC model.

A two-dimensional polycrystal consisting of N = 50 grains, with orientations in the range [0, 70.6◦] is

generated using a Voronoi tessellation of random points. Fig. 3.12 shows the initial orientation distribution

in the polycrystal. The grain boundary energy density is assumed to be independent of inclination. The

core energy J (JθK) constructed in Section 2.4 (see Fig. 2.4) is employed. In order to compare the generalized

KWC model to the original KWC model, we scale the function g of the original KWC model in (2.1) to

g = −0.93 ln(1− η) such that the mean of the grain boundary energies as functions of misorientation in the

range [0, 70.6◦] are identical for the two models. Fig. 3.11 shows a comparison of the grain boundary energy

densities of the two models.

Figs. 3.12b–3.12c compares the orientation distributions of the polycrystal at the end of 200 time steps

for the generalized and the original KWC models. Comparing the resulting polycrystals with the initial

polycrystal in Fig. 3.12a, we note that the generalized KWC model predicts a growth for red grains while the

original model results in their shrinkage. This is attributed to the difference in the grain boundary energies

of the two models, as shown in Fig. 3.13. For example, the grain boundary 1○, which has a misorientation of

≈ 70.6◦, has a relatively smaller energy in the generalized model due to crystal symmetry.

On the contrary, we note an opposite trend for light blue grains for which the generalized model predicts

shrinkage while the original model results in a growth. This is a result of relatively larger energy of grain

boundary 2○ in the generalized model compared to the original model. The above observations suggest that

the generalized model can result in the growth of certain grains with large misorientation, emphasizing the

importance of crystallography in grain growth.

5The [110] direction of each grain is is aligned with the z-axis (out of the plane).

24



Figure 3.11: Grain boundary energies used for the polycrystal simulation in Section 3.4. Using a core energy
J ([[θ]]) designed in Section 2.4, we obtain a crystal symmetry-invariant KWC model with energy that matches
the covariance model. In order to compare the original and the new KWC models, we scale the function
g of the original KWC model in (2.1) to g = −0.93 ln(1− η) such that the averages of the grain boundary
energies (with respect to misorientation) are identical in the two models. In other words, the areas under the
above plots are equal.

3.5 Summary of Part I

We now summarize the first half of the thesis. In Chapter 2, we generalized the two-dimensional KWC

model to incorporate misorientation-dependent grain boundary energies that respect bicrystallography. The

computational challenge of solving the singular diffusive equation of the KWC model was addressed by

developing an O(N logN) thresholding algorithm. Below, we list some potential research directions that

extend the current approach.

• The present framework will enable us to carry out a statistical study of large scale simulations of various

ensembles of polycrystals to characterize grain growth in terms of the grain boundary energy landscape

and crystal symmetry.

• While arbitrary grain boundary energies are incorporated into our model, its implementation is restricted

to grain boundary mobility equal to the inverse of the energy. An extension of our algorithm to include

mobilities independently can also be explored.

• The present algorithm does not allow grain rotation, which is another important phenomenon during

recrystallization of polycrystalline materials.6 To capture this, a step that models grain rotation should

be augmented with the current scheme.

• A recent work by Admal et al. [64] extended the two-dimensional KWC model to a three-dimensional

fully anisotropic (both misorientation and inclination dependent) model, wherein the dependence of

grain boundary energy on the misorientation angle was restrictive to a Read–Shockley-type. Due to the

6We note that grain rotation may sometimes play an important role during the transition from recovery to continuous
dynamic recrystallization. Dislocations agglomerate and form cell walls/subgrains at the end of the recovery stage. In a
phenomenon, commonly referred to as subgrain rotation recrystallization, few subgrains — aided by bulk dislocations – increase
their misorientation and transform to grains/nuclei which grow [78]. From this perspective, grain rotation plays an important
role during the nucleation of recrystallized grains.
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(a) (b) (c)

Figure 3.12: (a) A polycrystal with N = 50 grains, and an initial orientation distribution. (b) and (c) show
evolved polycrystals using the new and the original KWC models respectively. Grains 1 and 2 show opposite
growth/shrinkage trends in the two models due to the deviation of the grain boundary energy from the
Read–Shockley-type in the new formulation. The blue and red colors represent the maximum and minimum
orientation angles of 0◦ and 70.6◦ respectively.

(a) (b)

Figure 3.13: Initial distributions of grain boundary energies for the (a) generalized, and (b) the original KWC
models. The grain boundary energy in the original KWC model is of the Read–Shockley-type. On the other
hand, the grain boundary energy in the generalized KWC model reflects the crystal symmetry of copper.
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high computational cost of the finite element method, the implementation of the three-dimensional

model was restricted to simple bicrystals. It is envisaged that the efficiency of our thresholding algorithm

will enable us to explore large three-dimensional polycrystals with fully anisotropic grain boundary

energy.

• Finally, we recall from the introduction that surface tension is not the only dominant driving force on a

grain boundary due to grain boundary plasticity. Adapting our thresholding algorithm into existing

unified frameworks [79], wherein grain microstructure and deformation evolve contemporaneously, will

enable us to quantify the role of grain boundary plasticity, and study phenomena such as dynamic

recrystallization, superplasticity and severe plastic deformation [80–82].

In the following chapter, we embark on the first direction among listed above. In particular, our goal is to

construct a lightweight model for grain statistics. To construct and validate a reduced order model for grain

statistics, we will use simulation results of generalized KWC-model using the thresholding method.
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Chapter 4

A stochastic framework for grain

statistics

In this second part of the thesis, we will study grain growth from a statistical perspective. Specifically, the

main goal of this chapter is to develop a reduced order model, a computationally light model that describes

the evolution of grain statistics, as opposed to the evolution of a fully resolved microstructure. Here, the

reduced order model is a machine learning-based model, which will be trained using the data generated by a

higher model, such as the KWC model developed in the Section 2.

4.1 Toward a reduced order model for evolving grain statistics

While phase field models are capable of predicting the evolution of full-field micro structure, including all

geometric descriptors of grains (e.g. shape, size, topology, aspect ratio, and perimeter), they are computation-

ally expensive to resolve every grain boundary. However, to establish the process-microstructure–property

relationship, it is necessary to consider an ensemble of grain microstructures as opposed to a single microstruc-

ture. This is because the space of grain microstructures is enormously large compared to the finite size of

the space of process parameters and properties [14]. Moreover, macroscopic properties of a polycrystal are

properties of average microstructure features. Unfortunately, it is challenging to embark on a statistical

study of ensembles of polycrystals using phase field models because of their excessive computational costs.

Here, we are considering a system consisting of more than 10,000 grains, in which statistical studies of

grain characteristics are valid. This leads us to envision a sufficiently light-weight model such that it can be

repeatedly used during the iterative material design process in Fig. 1.2. If available, such a lightweight model

will have immediate impacts in the field of advanced manufacturing [83–87].

We recognize that among various descriptors for polycrystals the one most important descriptor is the

grain size distribution, which indicates a characteristic scale of inhomogeneity. For example, a number of

empirical models of plastic deformation, diffusion creep, electromigration, effective low-temperature diffusivity

take into account the grain size distribution [88–93]. Thus, we aim to develop a reduced order model capable

of predicting the size distribution of polycrystals with a marginal computational cost.

In this chapter, we will focus only on two-dimensional isotropic grain growth, where both the grain

boundary energy γ and mobility m are constant. We already know that during grain growth the average

grain area Aavg increases, while the number of grains decreases with time. This implies that some grains
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grow at the expense of others. Then, how do we know which grains grow and what their growth rates are?

The simplest models for predicting the grain size (or grain area in two dimensions) is the von Neumann–

Mullins law [16, 94], which states the rate of change of area A of a grain:1

dA

dt
=
π

3
mγ(S − 6). (4.1)

The implication of the von Neumann–Mullins rule is that the area change rate of a grain depends exclusively

on its topology S, and not on its shape. By topology, we are referring to the number of sides/faces of a

grain, which uniquely determines grain topology in two dimensions. The von Neumann–Mullins law (4.1) is

significant reduction and serves a powerful deterministic rule for predicting the next size states of individual

grains in a polycrystal without using sophisticated models of grain boundary motion. However, despite

the availability of von Neumann–Mullins law, grain growth in a polycrystal becomes far more complicated

phenomena, as grains also continue to change their topology, resulting in an abrupt change in growth rate.

In addition, as noted in Section 2.2, such critical events pose serious challenges to many of grain boundary

models. Thus, a model that completely describes a grain microstructure evolution should predict the discrete

topology transformations.

One of the most successful approaches for grain topology transformation is again the phase field model [54,

95, 96], which we have also developed our own kind in the earlier chapter. Recall that this class of models

evolve phase fields, representing the grains, using the principle of maximum dissipation of a free energy

functional. Fortunately, in phase field models, the topology transformations of grains are automatically

handled by the same principle without any augmented rule. However, again the downside of phase field

models is the high memory and computational costs associated with resolving every thin grain boundary.

Moreover, although topology transformations of grains are predicted in the phase field models, the explicit

rules governing the transformations, which are critical for developing reduced-order models, are not fully

established. 2

Knowing that the grain topologies are essential in predicting their sizes, our goal becomes more clear; in

this chapter, we will develop a new model for grain topology transformations, which will be combined with

the von Neumann–Mullins rule and used to predict a time-evolution of the joint distribution for grain size

and topology.

4.2 Conventional approaches for grain size statistics

Before we proceed to develop our framework for grain statistics, we review traditional approaches to grains

statistics. Interestingly, it has been observed that during nomal grain growth, a grain size distribution evolves

towards an asymptotic self-similar state, regardless of initial states [33, 39, 102, 103]. For example, Fig. 4.1

illustrates different asymptotic grain size distributions obtained from experiments, front-tracking simulation,

and the mean field theory [39, 97–101, 104], which are characterized by their own asymptotic self-similar

states. We note here that the mechanisms governing topology transformations that result in a self-similar

asymptotic grain statistics remain unknown. This observation, in addition to the technological relevance of a

lightweight model to design advanced manufacturing processes, is the main motivation for this work.

1Here, we note that the von Neumann–Mullins law only holds for isotropic grain growth.
2This is analogous to the observation that while molecular dynamics (MD) can predict the evolution of defects at the atomic

scale, it does not describe the mechanics governing the configurational forces between defects at the mesoscale. Defect mechanics
models serve this purpose, and play a critical role in analyzing the mechanical response of large systems, which are not accessible
by MD simulations.
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Figure 4.1: The blue, red and green curves show the asymptotic distributions of grain areas observed in
experiments on Cu and Al films [97–100], simulations using the front tracking method [101], and the mean field
prediction [39] respectively. The experimental data was obtained at different film thicknesses and annealing
temperatures. Regardless of these conditions, the grain size distributions attain self-similar states. While the
disagreement between experiments and front tracking may be attributable to anisotropic grain growth, the
disagreement between the latter two is a consequence of poor coarse-graining of the Hillert model.

Conventional theoretical studies on grain statistics are grounded in a continuum approach that aims to

track a grain size distribution F (R, t), where R = (A/π)1/2 is the equivalent circle radius for a given grain

area A, and F (R, t) denotes the fraction of grains having a size between R and R+ dR at time t. Assuming

the polycrystal is an infinite collection of grains, F is assumed to be smooth and satisfies the following

continuity equation [105]:
∂F (R, t)

∂t
+

∂

∂R

[
F (R, t)Ṙ

]
= 0. (4.2)

The growth rate Ṙ in (4.2) is assumed to be a function of grain size. For example, Hillert [39] took a

mean-field approach and assumed that the net growth rate of a grain in an ensemble could be expressed

through the mean difference between the curvature of the grain’s boundaries,

dR

dt
= m

(
1

Rc
− 1

R

)
, (4.3)

where 1/Rc is the time-dependent critical curvature of the grain ensemble. The expression (4.3) for Ṙ in

reduces the continuity equation (4.2) to a first-order partial differential equation, which is tractable using

analytic approaches. Then, the well-known Hillert grain size distribution [39] is obtained as the steady-state

solution of (4.2). However, as demonstrated in Fig. 4.1, the Hillert distribution markedly disagrees with

experiments and the computer simulations of two-dimensional isotropic grain growth. One of the primary

reasons is that Hillert [39] neglected the effect of grain topology on growth rate by assuming all-spherical

grains [106, 107]. Then, a question arises, “how do we include the influence of grain topology?”. The fact

that even a similar sized grains can have different topologies, alternatively motivated stochastic methods for

grain growth [105, 108], which combine with the continuum approach (4.2). This results in an additional

diffusion term D(∂2F/∂R2) in (4.2) arising from random fluctuations of Ṙ. However, the choice of diffusion

constant D remains phenomenological.
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In our view, a model for grain statistics should both incorporate the topologies of the grain and their

connectivity. This is because while the topological state of a grain determines its growth rate Ṙ, the rules for

grain topology transformations not only depend on the state of a grain but also its neighbors. For instance,

during grain growth some grains vanish at the expense of growing grain. If a grain shrinks out, then all of its

neighbors would lose one of their sides/faces at the same time. Subsequently, as grain growth continues, grains

will merge and start to interact with others that were initially located at far distances. However, tracking

the entire connectivity information in a large ensemble itself is also a non-trivial problem. To address this

issue in the following, we suggest a new stochastic framework to efficiently evolve statistics of coarse-grained

descriptors of a microstructure.

4.3 A stochastic framework for evolving grain statistics

4.3.1 Overview of the statistical framework

We first give a broad overview of our two-dimensional statistical framework to evolve a joint distribution

of coarse-grained descriptors of a grain microstructure. In a 2D polycrystal with isotropic grain boundary

energy, a grain microstructure is defined by the complex network of lines that represent the grain boundaries.

Under the assumption that the network is spatially homogeneous, we begin by determining a coarse-grained

description of a grain microstructure.

There are many geometric features of a grain — such as area, number of sides, lengths of its edges,

isoperimetric ratio, convex hull ratio, etc. — that serve as potential coarse-grained descriptors. We choose

the area A and the number of sides S (also termed “edges”) of a grain as its coarse-grained descriptors.

If a microstructure consisting of a large number (N∞) of grains is spatially homogeneous, then it can be

statistically represented by a smaller number N < N∞ of non-interacting grains, which we refer to as rep

grains. A depiction of coarse-graining using rep grains is shown in Fig. 4.2. Invoking spatial homogeneity once

again, we assume that the distribution of neighbors of each rep grain is identical to the distribution of the rep

grains. Under this setting, a polycrystal at time t = 0 is statistically represented by N identically distributed

rep grains with their areas Ai and number of sides Si (i = 1, . . . , N) sampled from a joint distribution F . We

refer to the pair (Ai, Si) as the state of the i-th grain.

The input to the framework is an initial joint distribution F (A,S, t = 0), and the output is the time

evolution of the joint distribution. This type of input data can be acquired from electron backscatter

diffraction (EBSD) maps [109, 110]. Starting with initial N rep grains, their initial states are sampled from

F (A,S, t = 0). At each time step, the areas of the rep grains can be updated based on their present topology

using the von Neumann’s law (4.1). Next, we also need to update the topologies of rep grains, as grain also

undergo topology changes during grain growth.

One of the central goals of this chapter is to develop a probabilistic reduced order model to predict the

topology changes of the rep grains using their coarse-grained descriptors (Ai, Si). We refer to this model as

the topology transformation model (TTM). The underlying hypothesis behind TTM is that the probability

that a rep grain undergoes a topology change can be described as a function of the states of the rep grain

and its neighbors. Recall that the neighbors of a rep grain can be sampled from the current distribution of

the rep grains. Therefore, TTM expresses the probability of topology change of a rep grain in terms of its

current state and the state of its neighbors that are sampled from F .

Using the von Neumann–Mullins law in conjunction with the TTM, we evolve the grain state distribution
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Figure 4.2: A schematic of the stochastic framework. A polycrystal is represented by a collection of coarse-
grain descriptors (Ai, Si) of N non-interacting representative (rep) grains drawn from an initial given joint
distribution F (A,S, t = 0). Sampling the grain states from a given initial joint distribution, we evolve the
states of rep-grains with the von Neumann–Mullins law and a topology transformation model (TTM). The
TTM yields the probability that the topology of a rep grain transforms in terms of its state and the states of
its neighbors. The entire framework is implemented under a MC simulation resulting in an evolution of the
joint distribution F (A,S, t).
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Figure 4.3: An example grain with five sides. Under isotropic grain boundary energy, all the internal angles
at vertexes are equal to 120◦.

F in a Monte Carlo (MC) simulation. Note that the MC simulation we conceive here is fundamentally different

from conventional MC simulations [34–38] for grain microstructure as the latter evolve grain boundaries but

not distributions. Fig. 4.2 summarizes the entire stochastic framework.

4.3.2 The von Neumann–Mullins law

The von Neumann–Mullins law (4.1) is the first tool that we will use in the MC simulation to evolve the area

descriptors for rep grains. Here, we provide more backgrounds on the von Neumann–Mullins law.

For isotropic grain growth in two dimensions, the von Neumann–Mullins law states that the rate of change

of area of a grain is a function of its number of sides S. The theorem can be derived using the Mullins model

of motion by curvature (1.1) and the Herring angle condition [72]. Below, we adapt a proof from Ref [16]. For

demonstration, consider a typical example of a grain in Fig. 4.3. Under isotropic surface tension the three
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dihedral angles of a triple junction are equal to 120◦. Then, the rate of change of the grain area A can be

dA

dt
=

∫
vdl,

where v is the grain boundary velocity normal to the surface and dl is an element of the perimeter of grain.

Substituting the Mullins’ model v = −mγκ (1.1) with κ = dΦ/dl, where Φ is the tangential angle at any

given point of grain boundary, yields
dA

dt
= −mγ

∫
dΦ. (4.4)

If the grain were surrounded by a smooth surface, then the integral (4.4) would equal 2π. However, for

each vertex, the discontinuous angular change ∆Φ = π/3 should be subtracted from the total value 2π.

Consequently, this yields the von Neumann–Mullins law (4.1).

On the other hand, rate of change of volume of a grain in higher dimensions is not entirely topological [111],

i.e. it depends on the shape of the grain. However,it is expected that a topology-dependent growth rate

would hold in 3D in a statistical sense. For example, the average volume change rate for grains with F faces

can be estimated as an exclusive function of F [112, 113].

Despite the availability of an analytical expression (4.1) for grain growth rate, an analysis of grain size

distribution becomes a challenging task, since the topologies of grains in a polycrystal continue to transform.

Since topology transformation of a grain is a complex phenomenon, it cannot be deterministically described in

terms of the coarse descriptors (Ai, Si), which are only observables in the outlined framework. This motivates

us to seek a probabilistic model for topology transformations.

4.3.3 Backgrounds on grain topology transformation model

The goal of TTM is to establish the rules governing grain topology transformations during grain growth

within a coarse-grained framework, wherein a polycrystal is described statistically by a joint distribution

for the area and topology of a collection representative grains. Due to the coarse-grained description of a

polycrystal, we may not have a complete set of parameters that deterministically predict grain topology

transformations. Therefore, we seek a probabilistic understanding of topology transformation.

Limiting our discussion to two dimensions, we first begin by reviewing the current understanding of grain

topology transformation to develop a TTM.

(a) T1: Neighbor switching (b) T2: Removing of a shrinking grain

Figure 4.4: Two scenarios of topology transformation during 2D grain growth. The schematic is adapted
from Ref. [45].
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The T1 and T2 topology transformation mechanisms

In two dimensions, the two dominant mechanisms for topology changes are referred to as the T1 and T2

processes [45]. First, T1 is a neighbor-switching process that involves four grains, resulting in a redistribution

of the number of sides of the four grains (see Fig. 4.4a). It is initiated by the shrinking of an edge shared by

two grains. As the shared edge shrinks, its two triple junction ends converge to one point, transforming to

a quadruple junction. Since higher-order (≥ 4) junctions are unstable [114], the quadruple junction splits

into two new triple junctions almost instantaneously. The consequence is changes in neighbor relations. In

particular, the pair of grains that shared the shrinking edge are no longer neighbors, while their neighbors

become neighbors to each other.

The T2 process involves the removal of a shrinking grain. According to the von Neumann–Mullins law (4.1),

shrinking grains are either 3,4, or 5-sided. Although it is sometimes conjectured that every shrinking grain

becomes three-sided eventually before vanishing, this has not been conclusively established [115]. Rather, the

disappearing of four and five-sided grains are often observed both in experiments [116] and simulations [117].

Therefore, we will not confine the T2 process to the removal of triangular grains, but also include the removal

of four and five-sided grains as well. When a triangular grain shrinks and disappears, all of its neighbors lose

an edge. There is no emergence of a new connection, because all the neighbors were also neighbors to each

other. When a quadrilateral or a pentagon-shaped grain shrinks and disappears, some of its neighbors lose

an edge, while others preserve their previous topology by building new neighborhood relations between them.

Although the possible scenarios of grain topology transformation described above are simple, such a

qualitative description is not sufficient to construct a quantitative model. This leads us to consider a

probabilistic model of grain topology transformation.

TTMs in literature

In fact, probabilistic descriptions of grain topology transformations have a long history that dates back to

the 1970s [118–124]. Some of the early studies include the works of Blanc and Mocellin [118] and Carnal

and Mocellin [119], who investigated the evolution of grain side distribution during isotropic grain growth.

Their model simply adopted an equi-probable rule of topology change for all grains regardless of their states.

The model included the fraction of triangular grains as a free parameter, which was chosen such that the

predicted side distribution matches a target distribution observed in experiments.

The co-evolution of grain area and side descriptors by Fradkov [121] and Fradkov et al. [122] is similar

to our framework introduced in Section 4.3.1 where both the von Neumann–Mullins law and a TTM are

used. The TTM in [121, 122] was inspired by the random collision models of gas dynamics. The connectivity

between grains was neglected and the T1 process was interpreted as an exchange of sides during grain

“collisions”. The model also includes a free parameter that describes the ratio of number of times a side is

gained to the number of times a side is lost. Similar to the previously described model, the free parameter is

chosen to ensure the predicted side distribution matches a target distribution. The predicted area distribution,

however, has an exponential form — F (R) ≈ exp(−R) — as opposed to the one shown in Fig. 4.1.

On the other hand, Flyvbjerg [120] proposed a model that has no free parameters to statistically evolves

side and area states of grains. The model assumes that all topology changes are mediated by the T2 process

and ignores the T1 process for simplification. The shrinking and vanishing of a grain, governed by the von

Neumann–Mullins law, triggers a topology change of a neighbor that is randomly chosen with a probability

proportional to the number side S. The rates at which grains gain or lose an edge by the T2 process is
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determined dynamically reflecting the grain statistics at current time. The resulting grain area distribution,

however, also has an exponential form.

A more realistic grain area and side distributions for isotropic growth was predicted by the model of

Beenakker [124], who also ignored the T1 process but instead tracked the actual connectivities between grains.

In the event of a grain vanishing, new connections are built between two neighbors randomly chosen with

equal probability. Since the algorithm involves the bookkeeping process of tracking the connectivities between

grains, its implementation is relatively tedious [124]. Moreover, it is not clear whether the ignoring the T1

process remains reasonable if the model is extended to anisotropic surface energies.

In the following sections, we will construct a TTM model that involves no free parameters. This is

accomplished by constructing the probability of a grain topology change as a function of states of the grain

and its neighbors. Evidently, the high dimensionality of the probability function enables the model to be

parameter-free in the sense that a target distribution is not required to fit the model.

4.3.4 A new model for grain topology transformations

Seeking a reduced-order model for grain topology transformation we postulate that the probability that a

grain undergoes a topology change after some fixed time ∆t 3 can be characterized as a function of its state

and the states of its first nearest neighbors. The effect of second-nearest neighbors and beyond is assumed to

be marginal, and therefore, ignored.

Consider an arbitrary rep grain with area Ai = A and number of sides Si = S. It is surrounded by S

neighbors. Let aα and sα (α = 1, . . . , S) denote the areas and sides of the S neighbors, respectively. Note

that we are using lowercase letters to denote the states of the neighbors and uppercase letters to denote those

of rep grains. Here, we assume that the neighbors are ordered by descending areas. Recall that within our

stochastic framework, the neighbor grains are sampled from the joint distribution of the rep grains. In this

section, we assume that a collection of S neighbors are drawn from the distribution F and given to us. Now,

the objective of this section is to construct probability functions FS (S = 3, 4 . . . ,), where each FS describes

the probability that the topology of a S-sided rep grain, expressed in terms of the state (A,S) and the states

{(aα, sα) : α = 1, . . . , S} of its neighbors, changes.
In principle, we could begin by seeking a probability FS as a function of (A,S) and (aα, sα). However, we

recognize that a more ideal combination of function arguments exists which is physically meaningful. Note

that under appropriate rescaling of spatial and temporal scales, the probability should be scale-invariant.

Therefore, we intend the arguments of FS to be intensive as opposed to extensive. Since areas are extensive,

it is reasonable to normalize them. Therefore, the normalized areas {aα/A : α = 1, . . . , S} form a subset of

the arguments of FS .
Next, we hypothesize that a topology change not only depends on the current normalized areas but also

current rate at which they are evolving. Since the rates are governed by the von Neumann–Mullins law (4.1),

we introduce the normalized rates

vα =

(
sα

π
3 − 2π

)
∆t

aα
, (α = 1, . . . , S) (4.5)

for each neighbor grain. Similarly, we define a normalized rate V for the rep grain as

V =

(
S π3 − 2π

)
∆t

A
. (4.6)

3Here, ∆t corresponds to the time step size in the stochastic framework.
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Introducing the von Neumann–Mullins law into the TTM makes it more physically informed. Furthermore,

since vα and V converge to −∞ as the corresponding grains shrink to a point, we anticipate the rates may

serve as indicators for grains that are about to vanish.

In addition to the normalized areas and area described above, an observation that the simultaneous

shrinking of two connected neighbors triggers the T1 process (Fig. 4.4a), suggests the connectivity between

neighbors is critical for describing topology transformations. Therefore, we include the connectivity between

neighboring grains in the set of arguments of FS . To convey connectivity of neighboring grains, we use an

S × S adjacency matrix C defined as follows. If two neighbor grains α and β are neighbors themselves, then

the αβ element of C is

Cαβ =
0.5(aα + aβ)

A
,

and Cαβ = 0, otherwise. Because neighbors are ordered based on decreasing areas, permutations of the rows

and columns of C are disallowed, thereby resulting in a unique C. Note that the number of independent

non-zero elements of C is only S(S − 1)/2, because C is a symmetric matrix and the diagonal elements are

always zero. Summarizing the above discussion, we express the probability that the topology of a rep grain

transforms as a function of S + 1 normalized areas and rates, and S(S − 1)/2 entries that describe neighbors

adjacency matrix.

As mentioned in the beginning of this section, we assume that during a ∆t time step, the topology of a

rep grain may (a) remain unchanged ∆S = 0, (b) gain or (c) lose an edge through a T1 process ∆S = ±1, or
(d) disappear through a T2 process ∆S ≤ −3. Here, we assumed that the number of edges of a grain does

not increase or decrease by more than one at a time during the T1 process, while the T2 process corresponds

to the case where a grain loses more than three edges simultaneously. Therefore, FS is expressed as

FS
(a1
A
,
a2
A
, ...,

aS
A
, V, v1, ....vS ,C

)
= (p1, p2, p3, p4), (4.7)

where

pi =





Pr(∆S = 0) if i = 1,

Pr(∆S = +1) if i = 2,

Pr(∆S = −1) if i = 3,

Pr(∆S ≤ −3) if i = 4.

.

In the above equation, Pr denotes the probability of an event. Note that the total number of inputs of FS is

0.5(S2 + 3S) + 1. In the next section, we employ fully-connected neural networks to determine FS (4.7) for

each S = 3, . . . , 9 using training data collected from the phase field method developed in Chapter 3.

4.4 A data-driven approach to TTM

In this section, we formulate an optimization problem to construct the set of probability functions {FS : S =

3, 4, . . . } that constitute the TTM using a deep neural network. Deep learning is a class of machine learning

algorithms that uses multiple layers of artificial neural networks to learn, or approximate, an unknown

function. Recent advances in deep learning algorithms allow us to explore new fields in computational

mechanics that could not be tractable without them [125–129]. In this work, we use supervised learning

techniques to learn a map that is known for a given set of inputs x = (a1/A, a2/A, ..., v, v1, ...., C11, C12, ...)

and observed outputs ∆S from a training data structure. In a machine learning context, such a task is
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<latexit sha1_base64="VJPuzOIPzycetnVNarx5KXb5Sxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE1GPRi8eK1hbaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmlldW19o7xZ2dre2d2r7h88miTTjDdZIhPdDqnhUijeRIGSt1PNaRxK3gpHN1O/9cS1EYl6wHHKg5gOlIgEo2ile9d1e9Wa53ozkGXiF6QGBRq96le3n7As5gqZpMZ0fC/FIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugpyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BD8xZeXyeOZ61+4/t15rX5dxFGGIziGU/DhEupwCw1oAoMBPMMrvDnSeXHenY95a8kpZg7hD5zPH03cjSg=</latexit>...

<latexit sha1_base64="uknBvKTvBvqH2WyCwAgCIB5EIi0=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyURUcFN0Y3uKtgHNKFMpjft0JkkzEyEEAr+ihsXirj1O9z5N07aLrT1wMDhnHuZc0+QcKa043xbpaXlldW18nplY3Nre8fe3WupOJUUmjTmsewERAFnETQ10xw6iQQiAg7tYHRT+O1HkIrF0YPOEvAFGUQsZJRoI/XsA08QPZQiv4uSVHtXnGQgxz276tScCfAicWekimZo9Owvrx/TVECkKSdKdV0n0X5OpGaUw7jipQoSQkdkAF1DIyJA+fkk/hgfG6WPw1iaF2k8UX9v5EQolYnATBZh1bxXiP953VSHl37OissgotOPwpRjHeOiC9xnEqjmmSGESmayYjokklBtGquYEtz5kxdJ67Tmntfc+7Nq/XpWRxkdoiN0glx0geroFjVQE1GUo2f0it6sJ+vFerc+pqMla7azj/7A+vwB+KCWJA==</latexit>

Input layer
<latexit sha1_base64="Ji0naYxMF1kvj5gk5Y0iLfDV7b4=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyURUcFN0Y07K9gHNKFMpjft0JkkzEyEEAr+ihsXirj1O9z5N07aLrT1wMDhnHuZc0+QcKa043xbpaXlldW18nplY3Nre8fe3WupOJUUmjTmsewERAFnETQ10xw6iQQiAg7tYHRT+O1HkIrF0YPOEvAFGUQsZJRoI/XsA08QPZQiv0uTVHtXnGQgxz276tScCfAicWekimZo9Owvrx/TVECkKSdKdV0n0X5OpGaUw7jipQoSQkdkAF1DIyJA+fkk/hgfG6WPw1iaF2k8UX9v5EQolYnATBZh1bxXiP953VSHl37OInMZRHT6UZhyrGNcdIH7TALVPDOEUMlMVkyHRBKqTWMVU4I7f/IiaZ3W3POae39WrV/P6iijQ3SETpCLLlAd3aIGaiKKcvSMXtGb9WS9WO/Wx3S0ZM129tEfWJ8/DPiWMQ==</latexit>

Ouput layer
<latexit sha1_base64="kp4dsi0rLh4sOP9/gj4XdEMqt04=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoiooKbopsuXFSwD2hCmUxu2qGTSZiZCCV24a+4caGIW3/DnX/jpM1CWw8MHM65l3vm+AmjUtn2t1FaWl5ZXSuvVzY2t7Z3zN29toxTQaBFYhaLro8lMMqhpahi0E0E4Mhn0PFHN7nfeQAhaczv1TgBL8IDTkNKsNJS3zxwI6yGIsoaNAiAu1e3eAxi0jerds2ewlokTkGqqECzb365QUzSCLgiDEvZc+xEeRkWihIGk4qbSkgwGeEB9DTlOALpZdP8E+tYK4EVxkI/rqyp+nsjw5GU48jXk3laOe/l4n9eL1XhpZdRnqQKOJkdClNmqdjKy7ACKoAoNtYEE0F1VosMscBE6coqugRn/suLpH1ac85rzt1ZtX5d1FFGh+gInSAHXaA6aqAmaiGCHtEzekVvxpPxYrwbH7PRklHs7KM/MD5/AE6Mlko=</latexit>

Hidden Layer
<latexit sha1_base64="C83oQZ7w3yL7oGHn+tjnTCnZ3H8=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIrsqMiLosunFZwdZCO5RMmrahyWRIMsI4FH/FjQtF3Pof7vwbM+0stPVA4HDOvdyTE8acaeN5305paXllda28XtnY3NrecXf3WlomitAmkVyqdog15SyiTcMMp+1YUSxCTu/D8XXu3z9QpZmM7kwa00DgYcQGjGBjpZ570BXYjJTIGkqGOGScmXTSc6tezZsCLRK/IFUo0Oi5X92+JImgkSEca93xvdgEGVaGEU4nlW6iaYzJGA9px9IIC6qDbJp+go6t0kcDqeyLDJqqvzcyLLRORWgn86x63svF/7xOYgaXQcaiODE0IrNDg4QjI1FeBeozRYnhqSWYKGazIjLCChNjC6vYEvz5Ly+S1mnNP6/5t2fV+lVRRxkO4QhOwIcLqMMNNKAJBB7hGV7hzXlyXpx352M2WnKKnX34A+fzB2ZCldc=</latexit>

Probability

<latexit sha1_base64="ngnArqY2BagDpREDj5Ru6+6tink=">AAACH3icbVDLSgMxFM34rPVVdekmWAquyoxIFbopunElFawKnVIy6Z02mMeQZMQ69E/c+CtuXCgi7vwb0zqCVg8EDufce3PviRLOjPX9D29mdm5+YbGwVFxeWV1bL21sXhiVagotqrjSVxExwJmElmWWw1WigYiIw2V0fTz2L29AG6bkuR0m0BGkL1nMKLFO6pZqoSB2oEV2qrQgnN1BL6yPwrBY+TbgNlESpGWEh3UcM25Bj7qlsl/1J8B/SZCTMsrR7Jbew56iqXCDKCfGtAM/sZ2MaMsoh1ExTA0khF6TPrQdlUSA6WST+0a44pQejpV2T1o8UX92ZEQYMxSRqxwvbaa9sfif105tfNjJmExSC5J+fRSnHFuFx2HhHtNALR86QqhmbldMB0QT6jIwRRdCMH3yX3KxVw1q1eBsv9w4yuMooG20g3ZRgA5QA52gJmohiu7RI3pGL96D9+S9em9fpTNe3rOFfsH7+ASwcqP+</latexit> N
or

m
al

iz
ed

<latexit sha1_base64="09D5HawD/OilDvNs06NeLcwVwO0=">AAACH3icbVDLSgMxFM34rPVVdekmWAquyoxIFbopunElFawKnVIy6Z02mMeQZMQ69E/c+CtuXCgi7vwb0zqCVg8EDufce3PviRLOjPX9D29mdm5+YbGwVFxeWV1bL21sXhiVagotqrjSVxExwJmElmWWw1WigYiIw2V0fTz2L29AG6bkuR0m0BGkL1nMKLFO6pZqlVAQO9AiO1VaEM7uoBfWR2FY/NbhNlESpGWEh3UcM25Bj7qlsl/1J8B/SZCTMsrR7Jbew56iqXCDKCfGtAM/sZ2MaMsoh1ExTA0khF6TPrQdlUSA6WST+0a44pQejpV2T1o8UX92ZEQYMxSRqxwvbaa9sfif105tfNjJmExSC5J+fRSnHFuFx2HhHtNALR86QqhmbldMB0QT6jIwRRdCMH3yX3KxVw1q1eBsv9w4yuMooG20g3ZRgA5QA52gJmohiu7RI3pGL96D9+S9em9fpTNe3rOFfsH7+ASqn6P+</latexit> ex
p
o
n
en

ti
a
l
fi
lt

er

<latexit sha1_base64="XPyA8YUMOB3W81oQEWwRGYs9xAI=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBHqpiQi6qZQ1IXLivYBTQiT6bQdOjMJMxOhhK7c+CtuXCji1m9w5984abPQ1gMXDufcy733hDGjSjvOt7WwuLS8slpYK65vbG5t2zu7TRUlEpMGjlgk2yFShFFBGppqRtqxJIiHjLTC4VXmtx6IVDQS93oUE5+jvqA9ipE2UmAfxIFb9TjSA8nTuhyXvWvCNIJ3sAqd48AuORVnAjhP3JyUQI56YH953QgnnAiNGVKq4zqx9lMkNcWMjIteokiM8BD1ScdQgThRfjp5YwyPjNKFvUiaEhpO1N8TKeJKjXhoOrOD1ayXif95nUT3LvyUijjRRODpol7CoI5glgnsUkmwZiNDEJbU3ArxAEmEtUmuaEJwZ1+eJ82TintWcW9PS7XLPI4C2AeHoAxccA5q4AbUQQNg8AiewSt4s56sF+vd+pi2Llj5zB74A+vzB888l2Y=</latexit>

p1 = Pr(�S = 0)
<latexit sha1_base64="VkuN9Sas66JRZl8MguUiWaqrtCI=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQEUpSRN0UirpwWdE+oAlhMp20Q2eSMDMRSujOjb/ixoUibv0Fd/6NkzYLrR64cDjnXu69x48ZlcqyvozCwuLS8kpxtbS2vrG5ZW7vtGWUCExaOGKR6PpIEkZD0lJUMdKNBUHcZ6Tjjy4zv3NPhKRReKfGMXE5GoQ0oBgpLXnmfuzV6g5Haih42hSTinNFmELwFtbhsX3kmWWrak0B/xI7J2WQo+mZn04/wgknocIMSdmzrVi5KRKKYkYmJSeRJEZ4hAakp2mIOJFuOv1jAg+10odBJHSFCk7VnxMp4lKOua87s4vlvJeJ/3m9RAXnbkrDOFEkxLNFQcKgimAWCuxTQbBiY00QFlTfCvEQCYSVjq6kQ7DnX/5L2rWqfVq1b07KjYs8jiLYAwegAmxwBhrgGjRBC2DwAJ7AC3g1Ho1n4814n7UWjHxmF/yC8fENQmaXnQ==</latexit>

p2 = Pr(�S = +1)

<latexit sha1_base64="9H1KiIxtgK38Gff3tH+MWr6tpq8=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQF5ZERd0UirpwWdE+oAlhMp20Q2eSMDMRSujOjb/ixoUibv0Fd/6NkzYLrR64cDjnXu69x48ZlcqyvozC3PzC4lJxubSyura+YW5utWSUCEyaOGKR6PhIEkZD0lRUMdKJBUHcZ6TtDy8zv31PhKRReKdGMXE56oc0oBgpLXnmbuwd1xyO1EDwtCHGFeeKMIXgLazBQ/vAM8tW1ZoA/iV2TsogR8MzP51ehBNOQoUZkrJrW7FyUyQUxYyMS04iSYzwEPVJV9MQcSLddPLHGO5rpQeDSOgKFZyoPydSxKUccV93ZhfLWS8T//O6iQrO3ZSGcaJIiKeLgoRBFcEsFNijgmDFRpogLKi+FeIBEggrHV1Jh2DPvvyXtI6q9mnVvjkp1y/yOIpgB+yBCrDBGaiDa9AATYDBA3gCL+DVeDSejTfjfdpaMPKZbfALxsc3RxGXoA==</latexit>

p3 = Pr(�S = �1)
<latexit sha1_base64="29guthjpT3bmKjWDmgKn5cv3knY=">AAACCnicbVC7SgNBFJ2Nrxhfq5Y2o0GIhWFXg9oIQS0sI5oHZEOYndxNhsw+nJkVwpLaxl+xsVDE1i+w82+cJFto4oELh3Pu5d573IgzqSzr28jMzS8sLmWXcyura+sb5uZWTYaxoFClIQ9FwyUSOAugqpji0IgEEN/lUHf7lyO//gBCsjC4U4MIWj7pBsxjlCgttc3dqF06d3yiesJPKmJYcK6AK4JvscPhHh8eH7TNvFW0xsCzxE5JHqWotM0vpxPS2IdAUU6kbNpWpFoJEYpRDsOcE0uICO2TLjQ1DYgPspWMXxnifa10sBcKXYHCY/X3REJ8KQe+qztHR8tpbyT+5zVj5Z21EhZEsYKAThZ5MccqxKNccIcJoIoPNCFUMH0rpj0iCFU6vZwOwZ5+eZbUjor2SdG+KeXLF2kcWbSD9lAB2egUldE1qqAqougRPaNX9GY8GS/Gu/Exac0Y6cw2+gPj8wf1Dpki</latexit>

p4 = Pr(�S  �3)

<latexit sha1_base64="T0HYFd7HUoRy/fo/D5lNRM4226A=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIqMeiF48VbC00pWy2L+3SzSbsbsQS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4JvcfHlFpHst7M0mwF9Gh5CFn1FjJ9yNqRkGYPU37br9ac+vuDGSZeAWpQYFmv/rlD2KWRigNE1TrrucmppdRZTgTOK34qcaEsjEdYtdSSSPUvWyWeUpOrDIgYazsk4bM1N8bGY20nkSBncwz6kUvF//zuqkJr3oZl0lqULL5oTAVxMQkL4AMuEJmxMQSyhS3WQkbUUWZsTVVbAne4peXSfus7l3UvbvzWuO6qKMMR3AMp+DBJTTgFprQAgYJPMMrvDmp8+K8Ox/z0ZJT7BzCHzifPyrUkcU=</latexit>x0

<latexit sha1_base64="QH6irL99uHblFyphqS/0mm0zKAg=">AAAB+XicbVBNS8NAFHypX7V+RT16WSxCvZSkiHosevFYwdZCG8Jmu2mXbjZhd1Msof/EiwdFvPpPvPlv3LQ5aOvAwjDzHm92goQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WpJLRNYh7LboAV5UzQtmaa024iKY4CTh+D8W3uP06oVCwWD3qaUC/CQ8FCRrA2km/btX6E9SgIs6eZ3zj3Xd+uOnVnDrRK3IJUoUDLt7/6g5ikERWacKxUz3US7WVYakY4nVX6qaIJJmM8pD1DBY6o8rJ58hk6M8oAhbE0T2g0V39vZDhSahoFZjKPqZa9XPzP66U6vPYyJpJUU0EWh8KUIx2jvAY0YJISzaeGYCKZyYrICEtMtCmrYkpwl7+8SjqNuntZd+8vqs2boo4ynMAp1MCFK2jCHbSgDQQm8Ayv8GZl1ov1bn0sRktWsXMMf2B9/gCgPJMB</latexit>

(x2)1

<latexit sha1_base64="2TP5TVfYlS9d8Nov1Sg3BXmZrds=">AAAB+XicbVBNS8NAFHypX7V+RT16WSxCvZSkiHosevFYwdZCG8Jmu2mXbjZhd1Msof/EiwdFvPpPvPlv3LQ5aOvAwjDzHm92goQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WpJLRNYh7LboAV5UzQtmaa024iKY4CTh+D8W3uP06oVCwWD3qaUC/CQ8FCRrA2km/btX6E9SgIs6eZ3zj3Hd+uOnVnDrRK3IJUoUDLt7/6g5ikERWacKxUz3US7WVYakY4nVX6qaIJJmM8pD1DBY6o8rJ58hk6M8oAhbE0T2g0V39vZDhSahoFZjKPqZa9XPzP66U6vPYyJpJUU0EWh8KUIx2jvAY0YJISzaeGYCKZyYrICEtMtCmrYkpwl7+8SjqNuntZd+8vqs2boo4ynMAp1MCFK2jCHbSgDQQm8Ayv8GZl1ov1bn0sRktWsXMMf2B9/gCeuJMA</latexit>

(x2)0

<latexit sha1_base64="3cV1qmhoCkewajhPvk2IzP1pvHQ=">AAAB+XicbVBNS8NAFHypX7V+RT16WSxCvZSkiHosevFYwdZCG8Jmu2mXbjZhd1Msof/EiwdFvPpPvPlv3LQ5aOvAwjDzHm92goQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WpJLRNYh7LboAV5UzQtmaa024iKY4CTh+D8W3uP06oVCwWD3qaUC/CQ8FCRrA2km/btX6E9SgIs6eZ3zj3G75dderOHGiVuAWpQoGWb3/1BzFJIyo04Vipnusk2suw1IxwOqv0U0UTTMZ4SHuGChxR5WXz5DN0ZpQBCmNpntBorv7eyHCk1DQKzGQeUy17ufif10t1eO1lTCSppoIsDoUpRzpGeQ1owCQlmk8NwUQykxWREZaYaFNWxZTgLn95lXQadfey7t5fVJs3RR1lOIFTqIELV9CEO2hBGwhM4Ble4c3KrBfr3fpYjJasYucY/sD6/AGhwJMC</latexit>

(x2)2

<latexit sha1_base64="lxVU2Ab/UwIb9/lKruHHbmmtOwI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWpoi6LblxWsA9oS5hMJ+3QySTMTIol9E/cuFDErX/izr9x0mahrQcGDufcyz1z/JgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++C7z2xMqFYvEo57GtB/ioWABI1gbybPtSi/EeuQH6dPMq517F55ddqrOHGiVuDkpQ46GZ3/1BhFJQio04VipruvEup9iqRnhdFbqJYrGmIzxkHYNFTikqp/Ok8/QmVEGKIikeUKjufp7I8WhUtPQN5NZTLXsZeJ/XjfRwU0/ZSJONBVkcShIONIRympAAyYp0XxqCCaSmayIjLDERJuySqYEd/nLq6RVq7pXVffhsly/zesowgmcQgVcuIY63EMDmkBgAs/wCm9War1Y79bHYrRg5TvH8AfW5w+jRJMD</latexit>

(x2)3
<latexit sha1_base64="XTkWPMhm337lYpIiUzZZ7nRr+s0=">AAACC3icbVDLSgMxFM3UV62vUZduQovgqswUUZdFNy4r2Ad0ypBJM21okhmSjFiG2bvxV9y4UMStP+DOvzHTjqCtB0IO59zLvfcEMaNKO86XVVpZXVvfKG9WtrZ3dvfs/YOOihKJSRtHLJK9ACnCqCBtTTUjvVgSxANGusHkKve7d0QqGolbPY3JgKORoCHFSBvJt6ueoiOOoIepxNDjSI+DMP357zO/kfl2zak7M8Bl4hakBgq0fPvTG0Y44URozJBSfdeJ9SBFUlPMSFbxEkVihCdoRPqGCsSJGqSzWzJ4bJQhDCNpntBwpv7uSBFXasoDU5kvqRa9XPzP6yc6vBikVMSJJgLPB4UJgzqCeTBwSCXBmk0NQVhSsyvEYyQR1ia+ignBXTx5mXQadfes7t6c1pqXRRxlcASq4AS44Bw0wTVogTbA4AE8gRfwaj1az9ab9T4vLVlFzyH4A+vjG1wpm0Q=</latexit>� � x2

<latexit sha1_base64="MwDQv3Npt1OmGj4XMh8N7Vsleg4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU01E1GPVi8cKpi20oWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6m/rNJ1Sax/LRjBMMIjqQvM8ZNVbyadc7u+mWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNjp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvg4zLJDUo2XxRPxXExGT6OelxhcyIsSWUKW5vJWxIFWXG5lOyIXiLLy+TxnnVu6x6DxeV2m0eRxGO4BhOwYMrqME91MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucP4EGOEw==</latexit>

a1/A

<latexit sha1_base64="2M/LEx4C6SVBh0/2od4AOWUoGCM=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9Vj14rGCaQttKJPtpl262YTdjVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6CRTlPk0EYlqhaiZ4JL5hhvBWqliGIeCNcPh3dRvPjGleSIfzShlQYx9ySNO0VjJx271/KZbKrsVdwayTLyclCFHvVv66vQSmsVMGipQ67bnpiYYozKcCjYpdjLNUqRD7LO2pRJjpoPx7NgJObVKj0SJsiUNmam/J8YYaz2KQ9sZoxnoRW8q/ue1MxNdB2Mu08wwSeeLokwQk5Dp56THFaNGjCxBqri9ldABKqTG5lO0IXiLLy+TRrXiXVa8h4ty7TaPowDHcAJn4MEV1OAe6uADBQ7P8ApvjnRenHfnY9664uQzR/AHzucP4ceOFA==</latexit>

a2/A

<latexit sha1_base64="/UPluFGRsvRyTFUN+sF0QXICgdE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUaPXLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rXuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDtKmM4A==</latexit>

V

Figure 4.5: An illustration of a neural network with 0.5(S2 + 3S) + 1 inputs, one hidden layer, and a
h(= 4)-dimensional output. Here, the output can be written as x2 = ψ2(W

2ψ1(W
1x + b1) + b2), where

x = (a1/A, a2/A, ..., v, v1, . . . , C11, C12, . . . ) = x0 is the input. W 1 is the matrix weights from the input layer
to the hidden layer and W 2 is the matrix from the hidden to the output layer. b1,b2 are biases and ψ1, ψ2

are activation functions. The normalized exponential filter (4.9) normalizes h−dimensional vectors, resulting
in a probability distribution consisting of h probabilities.

categorized as a classification problem.

In addition, we note that machine learning techniques [130–132] have recently been developed as more

computationally tractable alternatives to phase field models. In such studies, grains are fully resolved and

the training data constitute movies of evolving grains with no explicit input on physical laws. From this

perspective, our use of machine learning is markedly different since the goal here is to arrive at a coarse-grained

model. Moreover, the training of our neural network is facilitated by the von Neumann–Mullins-inspired

choice of input variables, described in Section 4.3.4.

4.4.1 A deep learning approach

A deep neural network is a hierarchical model where each layer applies a linear transformation followed by a

nonlinearity to the preceding layer [133]. For demonstration, consider a neural network consisting of k-layers,

which takes x0 ∈ Rn as an input and outputs a h-dimensional vector xk. See Fig. 4.5 for an illustration

of a neural network with k = 2 layers. We are using upright bold Roman letters to denote the inputs and

outputs to the layers of a generic neural network. The zeroth layer is called the input layer, and the last

layer is called the output layer. Other layers in between are called hidden layers. The input and output

dimensions d1, . . . , dk−1 of hidden layers are not necessarily monotonously increasing or decreasing. The

operations occurring between the j − 1 and j-th layers are expressed as

xj = ψj(W
jxj−1 + bj), 1 ≤ j ≤ k,

where W j ∈ Rdj×dj−1 is a linear transformation, bj ∈ Rdj is a bias, and ψj : R
dj → Rdj is an element-wise

non-linear activation function acting on each component of (W jxj−1 + bj). The final output xk of the neural
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network, parametrized by the weights, is given by

xk(x0; {W j}, {bj}) = ψk(W
kψk−1(W

k−1...ψ2(W
2ψ1(W

1x0 + b1) + b2)...+ bk−1) + bk). (4.8)

The map xk(x0; {W j}, {bj}) constitutes the neural network map.

Recalling the form of FS in (4.7), we will now interpolate FS using a deep neural network map with

n = 0.5(S2 + 3S) + 1, h = 4 and x0 = x. To ensure that for each x, Fs(x) is a probability distribution, we

compose the neural network map xk(x; {W j}) with a normalized exponential filter σ : R4 → [0, 1]4, defined

as

σi(z) =
ezi∑4
j=1 e

zj
, (i = 1, . . . , 4) (4.9)

and express FS as a function parametrized by the weights:

FS(x; {W j}, {bj}) = σ ◦ xk. (4.10)

FS is now completely described by the weights and biases, which will be obtained by fitting FS to training

data collected from phase field simulations. In particular, as grains in a phase field simulation evolve, their

coarse grain descriptors xi ∈ Rn and corresponding topology changes pi ∈ [0, 1]4 are recorded. We are using

an overline to emphasize that the pair (xi,pi) are training data. Due to the deterministic nature of the phase

field simulation, pi has the form of a one-hot vector, which depends on the type of the event as follows:

pi =





(1, 0, 0, 0) if topology does not change,

(0, 1, 0, 0) if the number of edges increases by one,

(0, 0, 1, 0) if the number of edges decreases by one,

(0, 0, 0, 1) if the grain vanishes.

. (4.11)

Given m training data points {(xi,pi) : i = 1, . . . ,m}, we optimize the weights W j and biases bj by

defining a negative log-likelihood loss function L as

L(W 1, . . . ,W k,b1, . . . ,bk) = −
m∑

i=1

diag(w1, . . . , w4)pi · log pi, (4.12)

where diag(w1, . . . , w4) is a 4×4 diagonal matrix formed by appropriate weights, and pi = FS(xi; {W j}, {bj}).
The log pi in (4.12) is in R4, and it is defined component-wise as (log(pi))l := log((pi)l),

The problem of learning network weights is then formulated by the following optimization problem:

{W1, . . . ,Wk ,b1, . . . ,b
k} = argminL({W j}, {bj}) (4.13)

A variety of computational techniques, including stochastic gradient decent and back-propagation [134–137],

are available to solve (4.13). The main challenge here is that (4.13) is usually not a convex function of

{W j} due to the product of the W j variables and the nonlinearities ψk in (4.8). Furthermore, it is hard to

justify whether the converging solution to (4.13) is the global minima. Therefore, we will need an appropriate

procedure to validate the solution of the optimization problem.
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(a) Initial condition (b) t = 5× 10−3s

Figure 4.6: Snapshots of isotropic grain growth using the KWC phase field simulation. Number of grains
decreases and the average grain size increases.

4.4.2 Training data

To train parameters {W j ,bj} of the neural network, we collected training data from the phase field grain

growth simulations. In particular, we employed the generalized Kobayashi–Warren–Carter (KWC) model (2.7)

developed in Chapter 2. The isotropic grain boundary energy is enabled by selecting a constant core energy

function J ([[θ]]) = 0.5. Note that this is disallowed in the original KWC model [20, 21], which is limited to

Read–Shockley-type grain boundary energy.

To generate a training data set, we constructed 100 polycrystals, obtained as Voronoi tessellations of

uniformly distributed random points, occupying the region Ω = [0, 1]2. The grain microstructure is described

on a 2500 × 2500 regular grid. Each polycrystal consists of 200 grains, and a configuration is shown in

Fig. 4.6a as an example. The thresholding algorithm developed in Chapter 3 is used to generate motion by

curvature. The grain boundary length scale parameter ϵ is set to ϵ1 = 0.006. The form (3.8) results in a

time-step ∆t1 = 0.25ϵ2 = 9.0×10−6t, while the reduced mobility mγ = 1µm2/s and the unit conversion factor

t = 1s/µm2. We remind here that the length scale parameter ϵ also determines the minimum size of grains

that can be resolved by the phase field method. If a grain shrinks to a size close to O(ϵ), it automatically

vanishes at the end of the thresholding step.

A snapshot of an evolving microstructure in Fig. 4.6 shows that the average grain size increase while the

number of grains in the system decreases. Fig. 4.7, which shows the rate of change of grain areas of different

topologies and their standard deviations during the time interval [2.5× 10−4t, 5.0× 10−4t], confirms that the

von Neumann–Mullins law is statistically satisfied. The variance in Fig. 4.7 originates from the transient

perturbations from 120◦ that some vertex angles experience when topology changes occur in the neighboring

grains [105].

The raw data from a phase field simulation is in the form of a time-series of grain labels (or grain indices)

defined on the discrete grid. To train the neural network, it is required to post-process the simulation data

to obtain the coarse-grained descriptors — area, side and the indices of the neighbors of each grain. The

post-processing is done as follows. First, the area of each grain is estimated by counting the number of the

grid point occupied by each grain. Second, the topological state of a grain is evaluated by counting the
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Figure 4.7: Confirmation of the von Neumann–Mullins law during isotropic grain growth simulation of the
KWC model (2.7) using the thresholding method.

number of distinct neighbors.4 Third, the neighborhood of a grain is conveyed using an adjacency matrix M

of size 200× 200, where 200 is the initial number of grains. The number of sides of i-th grain is identified

as the sum of the non-zero elements in the i-th row of M . The indices of the neighboring grains are the

column indices of the non-zero elements of the i-th row M . Finally, the resulting coarse-grain descriptors are

further processed and collected as an array x(t) = (a1/A, a2/A, ..., V, v1, ...., C11, C12, ...), where all variables

appearing on the right are time-dependent. In addition, topology changes are recorded in a time-dependent

one-hot vector p described in (4.11). The data preprocessing is summarized graphically in Fig. 4.8.

Each phase field simulation proceeded 200-time steps from the initial configuration, and yielded approxi-

mately 150 critical events. Fig. 4.9 shows the evolution of the topologies of three grains and their normalized

areas. The red plot in Fig. 4.9a shows an initially five-sided grain lose a side at the 25th timestep, and

disappear at the 77th timestep. The blue plot shows the variation of the normalized area. Fig. 4.9b shows an

initially seven-sided grain continuously growing as its topology changes from seven- to eight-sided and back

to seven-sided. On the other hand, Fig. 4.9c shows the area of an initially growing grain stabilizing after it

transforms to a hexagon. Since the grain growth rate is discontinuous at instances when topologies change,

the slopes of the blue plots are expectedly discontinuous. However, although the variation of area has to

be continuous, we record discontinuities as seen in Fig. 4.9. This is a consequence of the limited resolution

of shrinking grains when their size is below a critical size that is determined by ϵ. In intervals around the

discontinuities, either the central grain or one of its neighbor is shrinking. Since the instances when they

vanish cannot be precisely identified, discontinuities appear in the blue plots. Moreover, when the central

grain is shrinking, the discontinuity is more pronounced (75th timestep in Fig. 4.9a) compared to when a

neighboring grain is shrinking. While decreasing ϵ will attenuate the discontinuities of Fig. 4.9, they cannot

be completely removed since the growth rate converges to −∞ as the grain size tends to zero.

It is important to note that critical events are rare. For example, Fig. 4.9a shows that there are only

two critical events corresponding to one-hot vectors (0, 0, 1, 0) and (0, 0, 0, 1). In all other time instances, the

4This may not be true in some exceptional cases, wherein a pair of neighboring grains share multiple edges. However, such
cases are rare in our simulations.
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Figure 4.8: A schematic representation of raw data processing for collecting training data for the TTM.
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Figure 4.9: Time histories of areas and topologies of three grains showing topology transformations.

topology does not change resulting in p = (1, 0, 0, 0). Therefore, the one-hot vectors collected as training

data are highly imbalanced. Such an imbalance in data may cause severe challenges to training algorithms for

solving (4.13) [138]. To address this, we randomly under-sampled data corresponding to the case when there

is no topology change p = (1, 0, 0, 0), and ensured that the ratio of its occurrence relative to the other three

cases is 4:1.

4.4.3 Training of neural network functions

We implemented a standard deep learning framework to solve the optimization problem (4.13) using the

Pytorch library [139], a python-based open source machine learning framework. Recall that we would like

to construct FS , and the number of inputs, n = 0.5(S2 + 3S) + 1, depends on the grain topology S. Thus,

we built seven separate neural networks, one for each grain topology, ranging from 3- to 9-sided grains.

Since grains with two sides and more than nine sides are rarely observed during isotropic grain growth

(< 0.05%), we assume that their effect on the overall grain statistics is negligible. We selected fully-connected

networks (4.8) as the neural network architecture. A rectified linear unit, or ReLU [140]

ψ(x) = max{0, x}
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Topology Number of Number of Number of Number of Training accuracy (%)
S inputs n data m neural network parameters layers k
3 10 948 428 5 91.0
4 15 9738 2000 5 94.7
5 21 16854 6500 4 91.1
6 28 30620 4713 5 91.2
7 36 23800 4023 4 91.8
8 45 10560 4425 4 90.8
9 55 2270 1423 5 94.1

Table 4.1: A summary of neural networks and their training accuracy.

is used for all the nonlinear activation functions ψj . The weight of each event {wj} in the loss function

L (4.12) is set to the inverse of the total number of events in the collected training data.

Adams optimization with AMSGrad [141, 142] is implemented to solve (4.13). The convergence rate of

the training process can be affected by several algorithmic parameters, typically including batch size, epochs,

and shuffle. Batch-size controls the number of samples from a dataset used to evaluate one gradient update;

a batch size of 1 is associated with a full stochastic gradient descent optimization. One epoch is one round of

training on a dataset. It is common to re-shuffle a dataset many times and perform the back-propagation

updates because data shuffling for each epoch would result in an updated parameter set {W j}, {bj}. We

set the batch size as 1,500, and each neural network model is trained using 17,000 epochs. Decreasing loss

curves (4.12) as a function of the epoch during the training of the networks corresponding to five-, six-, and

seven-sided grain are shown in Fig. 4.10. At the end of training process, oscillations in loss function at each

epoch is more prominent, while the improvement in loss function is marginal.

After the completion of the training process, we can use the expression for FS in (4.10) to evaluate the

probability of topology transformation of a grain based on its state and the states of its neighbors, described

by its input x. The input may or may not be in the training data set. The probability p outputted by the

TTM is typically not a one-hot vector unlike those in the training data set. The realization of an event is

determined by first thresholding the output p to a one-hot vector as

pi =




1 if pi = max(p1, . . . , p4)

0 otherwise,
(4.14)

and choosing the event corresponding to it from (4.11).

We can evaluate the training accuracy, or fitting accuracy, by comparing the realization predicted by

the TTM with the training data. We evaluate the training accuracy in terms of realizations. The accuracy

measured by the ratio of the number of correct answers to the total data is summarized in Table 4.1. The

training accuracies of the neural networks are over 90 %. The validation accuracy of a neural network can also

be evaluated using a validation dataset that was not used for training. Such a validation study is important

to assess the transferability of the network. However, since the TTM is a coarse-scale model that outputs

probabilities, such a validation study should involve a statistical comparison. Therefore, we proceed to MC

simulation, where we evolve grain statistics using the probabilities outputted by the TTM. This will enable

statistical validation of our model.
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Figure 4.10: Examples of loss curves (4.12) as a function of the number of epochs for the 5-, 6- and 7-sided
grain neural networks.

4.5 The Monte Carlo (MC) simulation for evolving grain statistics

In this section, we present a MC implementation of the stochastic framework described in Section 4.3.1,

wherein we use trained neural networks (from Section 4.4) to statistically evolve the side and area distributions

during grain growth and validate the framework. We remind that the input to the framework is a joint

probability distribution F (A,S, t = 0) of grain area and number of sides, and the output is its time evolution

F (A,S, t). The outline of the MC simulation, which is initially introduced in Section 4.3.1, is re-briefed using

a schematic in Fig. 4.11.

4.5.1 Algorithm

The MC algorithm begins with initializing states (Ai, Si) of N rep grains sampled from the initial distribution

F (A,S, t = 0). The states of all the rep grains are stored in two N -sized one-dimensional arrays A and S.

The strategy of the MC simulation is to evolve the states (Ai(t), Si(t)) using the von Neumann–Mullins law

and the TTM to deduce F (A,S, t).

We will now describe the steps to evolve the states of the rep grains. First, we construct the neighbors of

each rep grain by drawing them from the current distribution of the rep grains.5 We store the neighbors of

the rep grains in an adjacency list D, a N × 9 sized matrix, where 9 is the possible maximum number of

neighbors in the framework.

The first Si entries in the i-th row di of D are the labels of the neighbors of the i-th grain. Moreover,

the order of the entries in a row conveys the connectivity between the neighbors — the neighbor grain (di)1

is connected to the neighbor (di)2, which is also connected to (di)3, and so on. The last neighbor (di)Si
is

connected to (di)1. At t = 0, the adjacency list is populated by drawing the neighbors of the rep grains

from F (A,S, 0). Here, we emphasize that although neighbors are drawn from the distribution of the rep

grains, they are not rep grains. This implies that even if j-th grain is in the neighborhood of an i-th rep

grain, the i-th grain is not necessarily in the neighborhood of the j-th rep grain. We can form the inputs

xi = (a1/Ai, . . . , aSi
/Ai, Vi, v1, . . . , vSi

, C) to the TTM at any time using the matrices A,S and D.

5From Section 4.3.1, recall that our system is assumed to be spatially homogeneous, which enables us to introduce the notion
of representative grains and their distribution, and use the same distribution for the neighbors of each rep grain.
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Figure 4.11: A schematic description of the Monte Carlo simulation using rep grains, introduced in Sec-
tion 4.3.1.

For a given time step size ∆t, the topologies of rep grains are updated using the TTM by thresholding

the probabilities FSi(xi) using (4.14).6 Since we assumed that the influence of grains with sides less than

three and greater than nine is negligible, the probabilities of losing an edge in FS3 and gaining an edge in

FS9 are set to zero. If i-th rep grain gains a side, we add a new random grain to di by sampling the current

distribution. If the rep grain loses a side, we delete the neighbor which has the lowest vα from di. This is

because the negative vα with the largest magnitude indicates a vanishing grain, which is also most likely to

lose a side. On the other hand, if the rep grain disappears, we delete it and all the entries of di. Clearly, the

number of rep grains would decrease if we do not compensate for their loss. Since rep grains constitute a

statistical representation of the grain microstructure, we would like to conserve their number. Therefore,

when a rep grain disappears, we add a new random grain that is sampled from the current distribution.

Using the updated topologies Si(∆t), we update the areas of the rep grains using the von Neumann–Mullins

law (4.1) to obtain Ai(∆t). Grains may also disappear if their areas turn negative. 7 In this manner, the

states of the rep grains are evolved until a desired time.

The algorithm to evolve grain statistics is summarized in Algorithm 2.

4.5.2 Results

The goal of this section is to 1) examine the asymptotic grain state distribution predicted by our stochastic

framework, 2) assess the stability of the asymptotic distribution with respect to the initial conditions, and 3)

validate the stochastic framework by comparing to phase field simulations.

6The probabilities outputted by FSi
may be used as is within our MC implementation. Instead, we opted to threshold them

as this choice resulted in the correct asymptotic side distribution.
7A majority of grain vanishing events are attributed to the TTM. This is because, as soon as the grain size becomes smaller

than the smallest size that can be resolved by the phase field model, the TTM marks the grain to vanish. Then, we process di

as previously stated. Because area and side states of a virtual neighbor grain are synchronized with the rep grain that shares the
same index, the states of virtual neighbors are also updated when the TTM is invoked on all the rep grains.
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Algorithm 2 OpenGBStat: An algorithm to evolve a joint distribution of grain areas and topologies

1: Input: a) Initial grain statistics F (A,S, t = 0); b) trained TTMs F1, . . . ,F9 for topology transformation
probabilities; c) time step size ∆t; d) final time T; and e) number of rep grains N.

2: Initialize the random states (Ai, Si) (i = 1, . . . , N) of N rep grains using F (A,S, t = 0)
3: for (i = 0 to N) do
4: Construct the states {(aαi, sαi) : α = 1, . . . , Si} of the neighbors of grain i using the initial distribution
F (A,S, 0)

5: Form the adjacency list D. ▷ Initialize neighbor information.
6: end for
7: t=0
8: while (t ≤ T) do
9: i = 1

10: while (i ≤ N) do
11: Let A = Ai, S = Si, and α = 1, . . . , Si
12: Form the adjacency matrix C from the i-th row of D
13: Calculate vα and V using (4.5) and (4.6), respectively
14: Let x = (a1/A, . . . , aS/A, V, v1, . . . , vS ,C)
15: p = FS(x)
16: if Si = 3 then ▷ to guarantee the possible range for side numbers from 3 to 9.
17: p(∆S = −1) = 0
18: else if (Si = 9) then
19: p(∆S = +1) = 0
20: end if
21: Threshold p according to (4.14) to obtain the topology change ∆S
22: if (∆S = 0) then
23: continue
24: else if (∆S = 1) then
25: Add a new random labels to di
26: else if (∆S = −1) then
27: Delete one neighbor grain from di that has minimum vα
28: else if (∆S ≤ −3) then
29: Delete the i-th rep grain and di. Generate a new random rep grain using F (A,S, t).
30: Construct the random neighbors to di.
31: end if
32: Si ← Si +∆S
33: Ai ← Ai + (π/3)(Si − 6)∆t
34: if (Ai ≤ 0) then
35: Delete the i-th rep grain and di. Generate a new random rep grain using F (A,S, t).
36: Construct the random neighbors to di.
37: end if
38: i← i+ 1
39: end while
40: t← t+∆t
41: Calculate F (A,S, t) from the current rep grain states {(Ai, Si) : i = 1, . . . , N}
42: end while
43: Output: {F (A,S, t) : 0 ≤ t ≤ T}
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Figure 4.12: Evolution of the average grain side and area during the MC simulation.

For our first goal, we considered an initial distribution F (A,S, 0) of rep grains that is “far” from the

asymptotic distributions of isotropic grain growth commonly reported in the literature [101, 104, 147]. The

dependence of initial F on S was assumed to be a uniformly distributed from 3 to 9 sides. On the other hand,

its dependence on A was assumed to be a Dirac delta distribution centered at A = Aavg, where Aavg = 0.005

is the initial average grain area in the training data obtained from a phase field simulation of 200 grains in

the domain Ω = [0, 1]2. In other words, the initial areas of all rep grains are all equal to 0.005. We note here

that such an initial distribution is unrealistic. In general, the grain side distribution is highly constrained due

to the condition that a grain configuration must fill the entire space without any hole. Such a geometric

constraint is satisfied in phase field simulations as the grain microstructures are fully resolved. However, these

constraints do not arise in our stochastic framework as it does not require constructing grain microstructures.

In the MC simulation, we start with N = 5, 000 rep grains and use a timestep size ∆tM = 9 × 10−6t,

which is equal to the value used in the thresholding algorithm to obtain the training data. Fig. 4.12 shows

the histories of the averages of the number of sides and areas of the rep grains. From the plot it is clear

that the average area grows linearly, while the average number of sides converges to 6. Fig. 4.13 shows the

evolution of the side and area distributions recorded in the MC simulation. The plots demonstrate that

the distributions reach an asymptotic state at around 5,500 timesteps, when the statistics of the two state

descriptors do not change with time. The simulation time to attain asymptotic statistics using a single-core

machine was 2 hours. Moreover, one of the fundamental assumptions of the current framework, that rep

grains do not interact with each other, guarantees straightforward parallelization of Algorithm 2, allowing

more room for further speed up.

Moving to our next goal, we explore the sensitivity of the asymptotic distributions to the choice of initial

side distributions. Again, these initial distributions are only possible because the MC simulation do not

construct actual microstructure. Fig. 4.14 shows that four distinct initial distributions evolve to almost

identical late stage self similar distributions. The results confirm that the asymptotic grain statistics are

robust and largely independent of initial conditions.

In our third goal we validate the results of the MC simulation by comparing to statistics observed in a
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Figure 4.13: The evolution of grain statistics predicted by the MC simulation. At approximately 5,500 time
steps, the distributions for grain sides and areas arrive at an asymptotic state.

Dist. Curve Expectation Standard Dev. Skewness
Current Work 5.992 1.091 0.276
Phase Field I.C. 5.995 1.316 0.353
Phase Field Later 5.992 1.088 0.465

Ref. [143] 5.993 1.276 0.476

Table 4.2: Quantitative comparisons of the asymptotic side distributions from different methods

Dist. Curve Expectation Standard Dev. Skewness
Current Work 0.238 0.466 3.231
Phase Field 0.239 0.448 3.087
Ref. [143] 0.388 0.510 2.518

Table 4.3: Quantitative comparisons of the asymptotic area distributions from different methods

KWC phase field simulation of 3, 000 initial grains. The grain microstructure is described using a 9999×9999
grid. We fix the grain boundary length scale parameter ϵ2 = 0.0012 in the KWC energy density, defined

in (2.7). The resulting time-step size of the large scale phase field simulation is ∆t2 = 3.6 × 10−7t [22].

The initial configuration of the KWC phase field simulation was generated using a Voronoi tessellation of

uniformly distributed random seeds. The side distribution corresponding to the initial configuration is shown

as a blue dashed line in Fig. 4.15a. The initial side distribution peaks at S = 6, which is a known property of

a Voronoi tessellation [148]. The phase field simulation was run until half of the initial grains remain. The

computational bottleneck of the KWC phase field numerical solver is the Fast Fourier Transform (FFT) on

the discrete grid [22]. Despite the parallelization of the FFT on 20 cores, it took approximately 72 hours to

obtain the self-similar asymptotic grain statistics from the KWC phase field simulation.

Fig. 4.15 compares the asymptotic side and area distributions observed in the KWC phase field simulation

with those predicted by the Monte Carlo simulation, and demonstrates that they are in good agreement.

Results from other simulation methods [101, 104, 147] are also plotted for reference. Learning from the KWC

phase field simulation training data, the asymptotic statistics of the MC simulation is closer to the result of

phase field simulation than the results from the other simulations. Grain statistics are also quantitatively
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Figure 4.14: Asymptotic distributions for number of sides resulting from the MC simulation with different
initial distributions of rep grains. The asymptotic distributions converge suggesting that they are independent
of the choice of the initial distribution.
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(a) The side distribution
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(b) The area distribution

Figure 4.15: Comparisons of the asymptotic distributions for number of sides and areas of grains from different
methods [22, 143]. The results from the current stochastic framework are in good agreement with the phase
field simulation.
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Figure 4.16: Comparison of asymptotic side distribution to experimental results [144, 145] of gas bubbles
and soap froths. Little disagreements between experiments and simulation are attributed to the finite size of
experimental samples [146].
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Figure 4.17: The joint probability density function of the number of sides and areas at asymptotic states
confirms positive correlation between the two descriptors.
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(a) Transient side distribution in MC simulation
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(b) Transient side distribution in PF simulation
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(c) Transient area distribution in MC simulation
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(d) Transient area distribution in PF simulation

Figure 4.18: A comparison of transient grain statistics obtained in the MC and phase field simulations.
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compared in Table 4.2 and 4.3 using several characteristic metrics of distributions: expectation, standard

deviation, and skewness. The expectations ⟨S⟩ of grain topology from all methods, are close to 6. The value

is related to the Euler’s characteristic equation, which is an essential geometric condition for polygons filing

the space [45]. The standard deviation of the asymptotic side distribution from the MC simulation is also

close to that of the late-stage phase field simulation. All curves have positive skew values, suggesting longer

tails on the right side from the average value, i.e., S > 6. The quantitative comparisons of area distributions

confirm the similarity between distributions of the MC simulation and the late-stage phase field simulation.

In Fig. 4.16, the asymptotic grain side distribution from the MC simulation is also compared with

experimental data marked with uncertainties in the measurement. Here, the experimental results are obtained

from observations of gas bubbles and soap froths [144, 145]. Note that in these systems, the assumption of

isotropic surface tension and mobility is more valid than actual grain growth which entails anisotropic nature

of surfaces. While the result from the MC simulation matches the overall shape of experimental results, there

still exists a minute discrepancy as well. In particular, the observation from Glazier et al. [145] shows a peak

value of S at 5 not in 6. This is attributed to the finite size of samples [146].

In Fig. 4.17, we plot the joint distribution (Fig. 4.17) of A and S from the MC and phase field simulation,

which are also in good agreement. The results demonstrate a positive correlation between the number of

sides and areas, a feature that is not shared by the chosen initial distributions in the MC simulation. This

confirms the Lewis’ empirical law [149, 150], which states that the average grain area and the average number

of grain sides are proportional in two-dimensional cellular structures.

Lastly, we compare the transient grain statistics from two simulations in Fig. 4.18. In this test, the

initial grain statistics of the MC simulation is set to that of the initial configuration used in the large-scale

phase field simulation. The time step size of the MC simulation ∆tM = 3.6× 10−7 is also set to that of the

large-scale phase field simulation ∆t2, which is 25 times smaller than the value ∆t1(= 9.10× 10−6t) used

for generating training dataset for the neural network functions of the TTM. This enables us to check the

scale-invariance of the TTM as we intended in the model construction in the form (4.5) and (4.6). In both

methods, as the side distributions evolve, the fraction of 6-sided grains increases mostly at the expense of the

fraction of 4-sided grains (see Fig. 4.18a and Fig. 4.18b). However, there exists some mismatch between two

methods as well. The result from the MC simulation shows an overshoot in the fraction of 6-sided grains,

before it arrives at an asymptotic state. The mismatch is attributed to the lack of geometrical constraints in

the MC simulation. However, the overall transient area distributions in both schemes also remain similar.

The area distributions evolve to decrease the level of size homogeneity (see Fig. 4.18c and Fig. 4.18d).

From the above results, we conclude that the MC simulation is able to predict the transient and the

asymptotic grain statistics of the two coarse descriptors with a significantly reduced computational time. Of

course, this does not mean that the current stochastic framework can be regarded as a complete replacement

of phase field models. As a higher-order model, phase field simulations can also readily predict richer physics:

microstructure evolution beyond isotropic grain growth as well as statistics of other grain state descriptors. In

general, the value of a lower model depends on the quantity of interest. If fast predictions on grain statistics

of side and areas are only primary interest, the current framework outperforms the phase field approach.

4.6 Discussion and future work

In this section, we highlight an important feature of the suggested framework in more detail and discuss

potential research directions for future work.

51



(a) Dimension reduction

Choice of grain descriptors

(b) Deterministic/stochastic equations for evolving grain descriptors

(eg. von Neumann--Mullins law + TTM)

(c) Train the evolution laws

using machine learning

(d) Monte Carlo simulation

(e) Time-dependent

grain statistics

(f) Validate

the stochastic framework

Success?

yes

no

Applications

Phase-field simulations

iterate

Training dataset

Grain statistics from
phase field simulations

Figure 4.19: A generalized workflow of ML-informed paradigm to develop a stochastic framework.
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We note a distinguishing feature of the suggested framework is that the areas and topologies are not subject

to any geometrical constraints that ensure the space is always filled, as opposed to conventional simulation

methods that fully resolve the grain microstructure. It is generally known that geometric constraints are

also important constraints of grain growth as well as thermodynamics, because grains must completely fill

space [151–153]. In phase field models, the space-filling constraint manifests in the form of restrictions on the

joint distributions of areas and number of sides. However, the TTM is a local model that considers local

connectivity as opposed to global connectivity, and the stochastic framework does not require the rep-grains

to fill space. Nevertheless, it is interesting that the current stochastic framework arrives at asymptotic

distributions of A and S that are similar to those observed in phase field simulations. This observation

implies that despite the coarse-graining, geometric constraints are baked in to the TTM to an extent that

their effect on the asymptotic distributions is preserved.

Concluding this chapter, we summarize the workflow of our machine-learning (ML) informed modeling

paradigm in Fig. 4.19. It involves the following key steps — a) dimension reduction, b) a deterministic and/or

probabilistic evolution laws, and c) Monte Carlo simulation. A reduced description of the grain microstructure

using areas and topologies constituted step (a). The von Neumann–Mullins law and the TTM were introduced

in step (b) to evolve the grain descriptors. The computational efficiency of our stochastic framework in

predicting grain microstructure evolution motivates us to generalize the framework to anisotropic grain

growth and three dimensions. In particular, we identify the following research directions for future work.

• We anticipate that our framework can be immediately extended to 3D isotropic grain growth. While

the rate of change of volume of a 3D grain is not entirely a topological property according the 3D von

Neumann–Mullins law [111], we may alternately employ a statistical von Neumann–Mullins law [112,

113] to obtain an expression in terms of the number of faces of a grain.

• For grain growth under anisotropic energies, the grain area and topology are not sufficient descriptors

to develop a coarse-graining framework. This is because the von Neumann–Mullins law needs to be

modified as the sum of all the internal angles at the vertexes of each grain, which are no longer 120◦.

In this case, the orientation of each grain should be considered as an additional state descriptor. Using

the force equilibrium at triple junctions, we can determine the internal angels of grain vertexes. Then,

we may consider the above generalized von Neumanns’ law, to evolve the area states.

• Finally, we also envision an automated process of identifying the key descriptors for a coarse-graining

framework for three-dimensional anisotropic grain growth. For instance, from the above example, it

is not clear whether only the grain areas, topologies, and orientations are sufficient descriptors for

constructing a statistical model for general microstructure evolution. It is plausible that we may also

need to consider descriptors such as grain perimeters and aspect ratios. Consequently, an interesting

question arises — how do we know which are the significant grain state-descriptors that determine its

evolution? We expect that a number of tools from data analytics offer promising routes to explore the

above question.

Overall, the generalized workflow of ML-informed microstructure evolution paradigm rely on appropriate

choices for dimension reduction and stochastic modeling for evolution equations. While an immediate benefit

from such a coarse-grained framework is in their capability of accelerating predictive computations in support

of material design, we can certainly find additional values in our approach beyond a practical engineering

perspective.
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First, we believe that ideas employed here can impact wider areas that share some common features. For

illustration, while mean curvature flow was originally proposed as a model for the formation of grain boundaries

in the annealing of pure metal, remarkably similar rules are found in various physical phenomena, in evolution

of soap films, growth of some biological tissues [154], and engineering process of digital images [155]. On the

other hand, we have also seen that how the models of Fradkov [121] utilizes the analogy of random collision

in gas dynamics to establish the rule of grain topology transformations. Likewise, these fields learn new ideas

from the other and develop further by adapting them in their own contexts.

Moreover, our approach suggests an alternative way to take advantage of the emerging machine-learning

techniques to impact classical mechanics. While machine-learning algorithms have been applied to facilitate

and automate the dimension reduction of a physical system, a blind use of these black box algorithms may

get rid of opportunity to discover important insights and universal laws that could have been found in

physics-based reduced-order models. However, recall that our approach requires a dimension reduction based

on a reasonable hypothesis (e.g., the von Neumann–Mullins law of its neighbors), which would be tested

through following validation processes. If the framework fails the task, one needs to iterate and construct a

new hypothesis. All of these processes certainly belong to the general scientific method.
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Chapter 5

Thesis summary

Recent additive manufacturing technology can strategically transform material microstructures, even at lab

scales, using sophisticatedly-controlled thermo-mechanical loads. However, exploring the enormous process-

microstructure space via experiments alone is expensive and time-consuming. Advanced manufacturing

techniques may benefit from a faster computational infrastructure, which can rapidly simulate the relevant

thermo-mechanical treatments. In this regard, the aim of this thesis was to develop an efficient model and

computational framework for predicting the microstructure evolution during two-dimensional grain growth.

In Part I, including Chapter 2 and 3, we developed a computationally efficient mesoscale model to describe

grain growth under misorientation-dependent grain boundary energies. This was achieved by generalizing the

KWC model for grain boundaries. While the modified form allowed incorporating a crystal symmetry-invariant

grain boundary energies in the dual-field KWC model, it resulted in zero mobility for the grain boundaries

and grain boundaries cease to move. To address this flaw, we designed a new computational algorithm

that evolves grain boundaries by their curvature. The algorithm, which utilizes a primal-dual and the fast

marching methods, has a O(N logN) computational complexity. The computational speed is also shown

to be orders of magnitude faster than the finite-element implementation of the original KWC model. We

validated our implementation by predicting the Herring angle relation, and simulated a two-dimensional

polycrystal consisting of [110] tilt grain boundaries.

In Part II (Chapter 4), restricting our attention to isotropic grain growth, we turned our focus on developing

a lightweight coarse-grained stochastic framework for tracking grain statistics. Under the assumption of

spatial homogeneity, we employed areas and topologies (number of sides) as the coarse-grained descriptors of

the lightweight model. Starting with an initial joint distribution of areas and the number of sides of grains,

the framework seeks to evolve the joint distribution by evolving the areas and topologies of a representative

collection of grains, or rep grains. The areas of the rep grains were evolved deterministically using the

von Neumann–Mullins law. On the other hand, since the topology transformation of a grain is a complex

phenomenon, we developed a stochastic topology transformation model (TTM). The TTM postulates that

the probability that a grain’s topology changes can be expressed as a function of the states of the grain

and its neighbors. Then, we introduced a data-driven approach to map the probability of the TTM using

a fully-connected deep neural network. The parameters of neural network models are trained using data

collected from phase field simulations. The evolution of the joint distribution is implemented using a Monte

Carlo simulation with transition probabilities obtained from the TTM. We demonstrated that the stochastic

framework is able to predict both the transient and asymptotic grain size and topology distributions observed
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in phase field simulations. The framework is confirmed to be robust in that the asymptotic distributions are

not sensitive to the choice of the initial distribution. Finally, key ideas to extend the machine-learning-informed

paradigm were noted.
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Appendix A

Results on the 1D KWC model

In this section, we collect results on the one-dimensional KWC model which describes an infinite bicrystal

with a grain boundary at the origin. In particular, we present the derivation of the steady-state analytical

solution under Dirichlet boundary conditions, and the resulting grain boundary energy as a function of

misorientation.

Consider the following KWC energy functional without the |∇θ|2 regularizing term

W[η, θ] =

∫ ∞

−∞

[
ϵ

2
|∇η|2 + (1− η)2

2ϵ
+ g(η)|∇θ|

]
dV. (A.1)

The Euler–Lagrange equation associated with the above functional is

ϵ△η − η − 1

ϵ
− g,η |∇θ| = 0, (A.2)

where g,η is used to denote ∂g/∂η. In what follows, we derive a steady-state solution of (A.2) under Dirichlet

boundary conditions

η(±∞) = 1, θ(∞) = −θ(−∞) = θ/2. (A.3)

We begin with the ansatz that θ(x) is a step function satisfying (A.3) with a discontinuity at the origin.

Multiplying (A.2) by η′, and integrating with respect to x in a region away from the origin, we obtain

ϵ

2
η,2x−

(1− η)2
2ϵ

= 0, =⇒ η,x= ±
(1− η)

ϵ
, (A.4)

On the other hand, multiplying (A.2) with η′, and integrating over an arbitrarily small neighborhood of 0

results in the jump condition

ϵJη,x K = g,η (η̄)JθK, (A.5)

where η̄ := η(0) is the value of η at the grain boundary. From (A.4) and (A.5), it follows that

ϵη,x=




1− η if x > 0,

−(1− η) otherwise,
(A.6)

and

g,η (η̄)JθK = 2(1− η), (A.7)
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which relates η̄ to JθK. The analytical solution for η can be obtained by integrating (A.4). With our choice of

g = − ln(1− η), the result can be explicitly written as a function of misorientation JθK:

∫ η

η̄

ϵ

1− η dη = x, =⇒ η(x) = 1−
√

JθK
2

exp

(
−|x|
ϵ

)
. (A.8)

The grain boundary energy γ as a function of misorientation is calculated by evaluating W[η, θ] using the

steady state solution for η derived above. From (A.4), we have

γ(JθK) =W[η, θ] =

∫ ∞

−∞

[
ϵ

2
η2,x +

(1− η)2
2ϵ

]
dx+ g(η̄)JθK

= 2

∫ ∞

0

(1− η)2
ϵ

dx+ g(η̄)JθK

= 2

∫ 1

η̄

(1− η) dη + g(η̄)JθK = (1− η̄)2 + g(η̄)JθK. (A.9)

Note that the grain boundary energy γ and η̄ are independent of ϵ, which reinforces that the model converges

to its sharp interface as ϵ → 0 while the energy remains unchanged. Again specializing the analytical

expression γ with the choice of the logarithmic g, we obtain

γ(JθK) = (1− η̄)2 − JθK ln(1− η̄)

=
JθK
2
− JθK ln

(√
JθK
2

)
. (A.10)
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Appendix B

The covariance model of grain

boundary energy

The covariance model for grain boundary energy, developed by Runnels et al. [26, 27], estimates grain

boundary energy using the covariance of atomic densities of the two lattices adjoining a grain boundary.

In the covariance model, a lattice density measure ρ̄ for a given lattice1 L, defined as an infinite sum of

Dirac measures with support at the lattice points points of L:

ρ̄(x) =
∑

d∈L

δ(x− d). (B.2)

A lattice density field ρ is introduced as the convolution of ρ̄ with a thermalization function ξ, i.e.

ρ(x) = ρ(x) ∗ ξ(x), (B.3)

where

ξ(x) =
1

σ3π3/2
e−∥x∥2/σ2

, (B.4)

with σ2 as the dimensionless temperature. The planar covariance of two thermalized lattices LA and LB
with their respective density fields ρA and ρB , measured on R2, is defined as

c[ρA, ρB ] =

∫

y∈R2

ρA(P
Ty)ρB(P

Ty)λ(y) dA, (B.5)

where λ(x) is an appropriately chosen window function (see (B.8), P : R3 → R2 is the projection

P =

(
1 0 0

0 1 0

)
(B.6)

1A lattice L is defined using three lattice vectors l1, l2, and l3 as

L = {n1l1 + n2l2 + n3l3 ni ∈ Z}. (B.1)
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Figure B.1: A plot of the normalized grain boundary energy versus the misorientation angle predicted by
the covariance model for a [110] symmetric-tilt grain boundary in fcc copper, computed using the relaxation
algorithm of [26, 27]. For comparison, grain boundary energies obtained from experiment [156], and MD
simulations [28] are shown in blue and square points respectively.

on to the plane R2. Expressing the functions ρA and ρB in Fourier series, the integral in (B.5) simplifies as

c[ρA, ρB ] =
1

λ̂(0)

∑

kA∈L′
A

∑

kB∈L′
B

ρ̂(kA)ρ̂
∗(kB)λ̂ (P (kB − kA)) , (B.7)

where kA and kB are lattice vectors of the dual lattices L′
A and L′

B , and the window function is defined in

terms of its Fourier transform as

λ̂(k) = e−∥k∥/ω, (B.8)

with an adjustable parameter ω. The grain boundary energy in the covariance model is defined as

γcov = E0

(
1− c[ρA, ρB]

cgs

)
, (B.9)

where cgs is the ground state covariance defined as the supremum, over all planes, of c[ρA, ρA]. For example,

in fcc, cgs corresponds to covariance measured with respect to the [111] plane. Finally, we note that the

covariance model has three adjustable parameters {E0, σ, ω} that can be used to fit γcov to data from

experiments or molecular dynamics simulations. It is known that while (B.9) is a good indicator of grain

boundary energy, it over-predicts the energy for low angle grain boundaries as the above model does not

account for facet formation. [26, 27] have shown that a further relaxation of the grain boundary energy,

which signifies the formation of facets, yields necessary corrections to the energy predicted by the model.
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Appendix C

The primal-dual method

Primal-dual methods is a class of first-order algorithms1 that have a long history in the context of optimization

problems [157–159]. As the name suggests, primal-dual methods proceed by concurrently solving a primal

problem and a dual problem. The main benefit of primal-dual splitting is that it replaces an original hard

problem with a set of two easy sub-problems (primal- and dual-). Because of this advantage, the method

has been widely used in diverse fields including compressed sensing, image processing, signal processing, and

machine learning [160–162].

The motivation to use a primal-dual algorithm to solve the minimization problem in (3.1) for η arises due

to the presence of a highly nonlinear term g(η)J (JθK) along with |∇η|2. Therefore, we adopt a primal-dual

method by introducing an auxiliary dual variable which enables us to cast (3.1) as an equivalent optimization

problem. The choice of the dual variable is based on the observation that

ϵ

2
∥∇η∥2L2(Ω) = ϵ∥∇η∥2L2(Ω) −

ϵ

2
∥∇η∥2L2(Ω)

= −ϵ
∫

Ω

η△η dV −
∫

Ω

ϵ

2
∇η · ∇η dV, (C.1)

where we have used the divergence theorem, and the Neumann boundary condition ∇η · n = 0. Introducing

an auxiliary variable ψ, and identifying it with −ϵ△η, we have

ϵ

2
∥∇η∥2 = sup

ψ∈(Ḣ1(Ω))∗

[∫

Ω

η(x)ψ(x) dV − 1

2ϵ
∥∆−1∇ψ∥2L2(Ω)

]

= sup
ψ∈(Ḣ1(Ω))∗

[∫

Ω

η(x)ψ(x) dV − 1

2ϵ
∥ψ∥2

(Ḣ1(Ω))∗

]
, (C.2)

where Ḣ1(Ω) denotes the set of all functions inH1(Ω) with zero average, and (Ḣ1(Ω))∗ is its dual. Substituting

(C.2) into the KWC functional WG, the minimization problem in (3.1) transforms to the following saddle

point problem:

inf
η∈L2(Ω)

sup
ψ∈(Ḣ1(Ω))∗

Φ[η, ψ], (C.3)

where

Φ[η, ψ] = − 1

2ϵ
∥ψ∥2

(Ḣ1(Ω))∗
+

∫

Ω

(ηψ + f(η)) dV +

∫

S
g(η)J (JθK) dS. (C.4)

1An algorithm that only requires the calculation of the gradient of a functional.
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The problems of minimizing Φ with respect to η, and maximizing it with respect to ψ are referred to as η and

ψ sub-problems respectively. The advantage of using a primal-dual algorithm is evident from the observation

that Ψ does not depend on the gradients of η, which renders the η sub-problem local, and the nonlinearity

in g(η) is no longer a concern. The existence and uniqueness of solutions to the sub-problems follows from

standard convex analysis.

We solve for the saddle point of Φ using the following primal-dual update scheme (Algorithm 2 in [161]):

ηn+1 = arg min
η∈L2(Ω)

[
Φ(η, ψn) +

1

2τn
∥η − ηn∥2L2(Ω)

]
, (C.5a)

ψn+1 = arg max
ψ∈(Ḣ1(Ω))∗

[
Φ(η̃n+1, ψ)−

1

2σn
∥ψ − ψn∥2L2(Ω)

]
, (C.5b)

where

η̃n+1 = (1 + µn)ηn+1 − µnηn

with

µn = 1/
√

1 + 2τn/ϵ, τn+1 = µnτn, σn+1 = σn/µn.

The scalars τn and σn are the step sizes of the η- and ψ-update respectively. The stability [68, 161] of

the update scheme in (C.5) is guaranteed if τnσn ≤ 1. We select τ0 = ϵ, σ0 = 1/ϵ. The solution to (C.5)

is obtained by solving the following Euler–Lagrange equations corresponding to gradient flows of the two

functionals in (C.5) 2

(
1

ϵ
+

1

τn

)
η2(x) +

(
ψn(x)−

2

ϵ
− (1 + ηn)

1

τn

)
η(x)− J ⋆ ([[θ]]) + 1

ϵ
− ψn +

1

τn
ηn = 0, (C.6)

(1/ϵ−∆/σn+1)ψn+1 = −∆(η̄n+1 + ψn/σn+1), (C.7)

where the surface measure J (JθK) dS has been replaced by a volume measure J ⋆ dV = J (JθK) exp(−x2/2ϵ4) dV
that depends on the distance x from the grain boundary. From (C.6), we note that the primal dual algorithm

along with the choice g(η) = − log(1 − η) not only renders the η sub-problem local but also analytically

solvable.

We solve (C.6) and (C.7) on a uniform grid of size N = Nx ×Ny. Since (C.6) is solved analytically at

each grid point, its cost remains O(N). We solve for ψn+1 in (C.7) using the fast Fourier transform (FFT),

resulting in an O(N logN) complexity for the primal dual algorithm. We use the following stopping criterion

for the update scheme in (C.5),

∥ηn+1 − ηn∥∞ = max
1≤j≤N

|(ηn+1)j − (ηn)j | ≤ e, (C.8)

where e is the tolerance of the iterative scheme. Finally, we note that the use of FFT to solve (C.7) necessitates

periodic boundary conditions on η. On the other hand, for Neumann boundary conditions, we use the discrete

cosine transform given by

ψ̂pq = λpλq

Nx−1∑

i=0

Ny−1∑

j=0

ψ

(
i

Nx
,
j

Ny

)
cos

(
π(2i+ 1)p

2Nx

)
cos

(
π(2j + 1)q

2Ny

)
,

0 ≤ p ≤ Nx − 1

0 ≤ q ≤ Ny − 1,
(C.9)

2In order to obtain (C.7), we note that the constrained gradient in (Ḣ1(Ω))∗ of
∫
Ω η̃n+1ψ dV with respect to ψ is −△η̃n+1.
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with

λp =

{
1/
√
Nx, p = 0,

√
2/Nx, 1 ≤ p ≤ Nx − 1,

and λq =




1/
√
Ny, q = 0,

√
2/Ny, 1 ≤ q ≤ Ny − 1.

(C.10)
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Appendix D

Note on the derivations of

thresholding scheme

In this section, we describe the steps to obtain (3.8) from (3.7). We begin by separating the domain of

integration in (3.7) as

∫ l0

−∞
(1− u(l/ϵ))2 dl =

∫ 0

l0

(1− u(l/ϵ))2 dl +
∫ +∞

0

(1− u(l/ϵ))2 dl. (D.1)

Substituting the solution in (3.6) into (D.1), we have

(u(0)− 1)2

( 2ϵ − κ)
exp

[(
2

ϵ
− κ
)
l0

]
=

(u(0)− 1)2

( 2ϵ − κ)

(
1− exp

[(
2

ϵ
− κ
)
l0

])
+

(u(0)− 1)2

( 2ϵ + κ)
. (D.2)

Dividing both sides by (u(0)− 1)2 and collecting the l0 terms, we obtain

2 exp
[(

2
ϵ − κ

)
l0
]

( 2ϵ − κ)
=

1

( 2ϵ − κ)
+

1

( 2ϵ + κ)
=

4
ϵ

( 4
ϵ2 − κ2)

. (D.3)

Taking a logarithm, we have

(
2

ϵ
− κ
)
l0 = log

(
2/ϵ

2/ϵ+ κ

)
= log

(
1

1 + (ϵκ)/2

)
. (D.4)

A Taylor expansion of the right-hand-side of (D.4) with respect to ϵκ/2 results in

(
2

ϵ
− κ
)
l0 = −ϵκ

2
+
ϵ2κ2

4
− ϵ3κ3

8
+O(ϵ4κ4). (D.5)

Multiplying by ϵ on both sides, we have

(2− κϵ) l0 = −ϵ
2κ

2
+
ϵ3κ2

4
+
ϵ4κ3

8
+O(ϵ4κ4). (D.6)

Finally, using the approximation 2− κϵ ≈ 2, we get (3.8).

As mentioned in Section 3.2, in practice, the infinite bounds of the integral in (D.1) are replaced by finite
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bounds of magnitude lb. Under this change, (D.6) modifies as

(
2

ϵ
− κ
)
l0 = log




2
ϵ

2
ϵ + κ

+
1

2
exp

(
−
(
2

ϵ
− κ
)
lb

)
−
(
2
ϵ − κ

)

2
(
2
ϵ + κ

) exp
(
−
(
2

ϵ
+ κ

)
lb

) 
. (D.7)

It can be easily shown that the boxed terms resulting from a finite value of db decay exponentially as ϵ→ 0,

which leaves (3.8) unchanged.
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Appendix E

Fast marching method

The fast marching method (FMM), developed by Ref. [71] is used to evolve a surface in the outward unit

normal direction with a speed V (x) > 0. The fast marching method reformulates a time-dependent initial

value problem describing the evolution of a surface into an equivalent boundary value formulation. In this

section, we summarize the FMM algorithm as described in [163]. For illustration, let s(t) describe a surface

evolving with speed V from a given initial surface s(0) = Γ. Instead of solving a time-dependent problem for

s(t), the fast marching method solves for a function ζ(x) which represents the time it takes for the surface to

reach x. By the definition of ζ, we have

ζ(s(t)) = t, (E.1)

with ζ = 0 on Γ. Differentiating (E.1) with respect to t, and noting that ∇ζ is normal to the surface, we

arrive at the following boundary value problem

|∇ζ|V = 1, ζ = 0 on Γ, (E.2)

commonly referred to as the Eikonal equation.

Next, we describe the algorithm to solve (E.2) on a two-dimensional grid. In order to compute |∇ζ|, an
operator D−x

ij , representing the standard backward finite difference operation on the grid point ij, is defined

as

D−x
ij ζ =

ζij − ζ(i−1)j

∆x
. (E.3)

Similarly, D+x, D−y, and D+y denote forward in x, backward and forward in y finite difference operators

respectively. To guarantee a unique viscosity solution1 of the evolving surface, one should consider an upwind

finite difference scheme to compute the gradient, which is conveniently written as

|∇ζ| ≈
[
(max(D−x

ij ζ, 0)
2 +min(D+xζij , 0)

2 + (max(D−y
ij ζ, 0)

2 +min(D+yζij , 0)
2
]1/2

=
[
(max(D−x

ij ζ, 0)
2 +max(−D+xζij , 0)

2 + (max(D−y
ij ζ, 0)

2 +max(−D+yζij , 0)
2
]1/2

.
(E.4)

Using (E.4), we rewrite (E.2) in an algebraic form

[
(max(D−x

ij ζ,D
+xζij , 0)

2 + (max(D−y
ij ζ,−D+yζij , 0)

2
]1/2

=
1

V (x, y)
. (E.5)

1See Ref.[163] on the reason behind seeking a viscosity solution.
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Figure E.1: The level sets of the solution to the Eikonal equation (E.2), computed using the fast marching
method, describe a surface evolving with outward normal velocity V (x, y) = 1.

Note that if the neighboring values of ζij are known, then (E.5) is a quadratic equation for ζij that can be

solved analytically.

The fast marching method begins with the following initialization step

1. Assign ζ(x) = 0 for grid points in the area enclosed by the initial surface, and tag them as accepted.

2. Assign ζ(x) = +∞ for the remaining grid points, and tag them as far.

3. Among the accepted points, identify the points that are in the neighborhood of points tagged as far,

and tag them as considered.

The key step in the fast marching method is to update ζ with a trial value using (E.5) for grid points tagged

as considered , but only accept the update with the smallest value. In order to identify the smallest value

efficiently, the grid points tagged as considered are stored in a min-heap2 structure [164] borrowed from

discrete network algorithms. The fast marching method then proceeds as follows.

1. Construct a min-heap structure for the considered points.

2. Access the root (minimum value) of the heap.

3. Find a trial solution ζ̃ on the neighbors of the root using (E.5). If the trial solution is smaller than the

present values, then update ζ(x) = ζ̃.

4. If a point, previously tagged as far, is updated using a trial value, relabel it as considered, and add it to

the heap structure.

5. Tag the root of the heap as accepted, and delete it from the heap.

6. Repeat steps 2 to 5, until every grid point is tagged as accepted.

2A min-heap structure is a complete binary tree with a property that the value at any given node is less than or equal to the
values at its children.
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Fig. E.1 demonstrates the fast marching method used to track an initial surface

(9x2 − 1)2 − (3y + 1)(1− 3y)3 = 0, (E.6)

growing with a uniform outward normal velocity V (x) = 1.
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