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Abstract

The development of in situ process monitoring techniques for additive manufacturing

(AM) has increased in recent years. While extrusion-based AM methods enable the fabrication

of complex structures, ensuring the geometric accuracy of these structures requires direct

measurements of the deposited material. Moreover, part fidelity can be improved by imple-

menting control strategies to correct the geometric errors detected through process monitoring.

Despite current research focusing on in situ process monitoring, few efforts investigate the

relationships between process inputs and resulting print geometry for extrusion-based AM.

Consequently, process control is often based on causal relationships or neglected altogether.

This work presents a process monitoring and control strategy for reducing the geometric

errors in parts fabricated via extrusion-based direct write printing. A laser scanner integrated

into the AM system directly measures the deposited material in situ during the print but not

in real time. These measurements are processed online with a custom algorithm to determine

the material’s spatial placement and bead width errors. An iterative learning control (ILC)

algorithm is applied to the deposition process to compensate for the geometric errors.

We experimentally validate the process monitoring and control strategy on a direct write

printing system by fabricating 3D periodic lattice structures, specifically functionally graded

scaffolds. Here, the ILC algorithm uses the online measurements to learn the errors in the

structure’s repetitive elements as they are printed, then corrects the errors in subsequently

fabricated elements. The results show improved material bead widths in scaffolds fabricated

using the proposed process monitoring and control strategy.
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Chapter 1

Introduction

The research presented in this thesis aims to improve the quality and reliability of direct

write (DW) printing by reducing the geometric errors of fabricated structures. To achieve this,

we develop a process monitoring system that directly measures the deposited material in situ,

then processes the collected data online to determine the material’s spatial and dimensional

errors. The process monitoring system is paired with a learning controller to compensate for

the measured errors. We implement the proposed process monitoring and control strategy

on a DW printing system to fabricate multi-layer lattice scaffold structures. While this

research targets DW printing of 3D periodic structures like lattice scaffolds, the generalized

process monitoring and control approach can be extended to other extrusion-based additive

manufacturing (AM) processes.

The remainder of this introduction provides background information pertinent to the

topics covered in this thesis and is structured as follows: Section 1.1 presents an overview of

DW printing, its use in fabricating 3D periodic structures like lattice scaffolds, and some of

its limitations; Section 1.2 introduces the iterative learning control (ILC) algorithm used for

process control and briefly reviews its usage in AM applications. Finally, an outline of the

remaining chapters in this thesis is presented in Section 1.3.
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1.1 Direct Write Printing

Direct write (DW) printing—also known as direct ink write, robocasting, or robotic

deposition—is an extrusion-based AM technique. In DW, a continuous material filament is

extruded from a nozzle and deposited layer-by-layer onto a surface, forming a 3D structure

[1], [2]. The rheological properties of the materials used in DW, referred to as inks, are

characteristic of yield-pseudoplastic fluids. As these inks are dispensed, they experience

increased shear stresses when the material is forced through the nozzle, which causes the ink’s

viscosity to decrease, improving its flow. Once the ink exits the nozzle, the shear stresses

are removed, so the material’s viscosity increases, allowing the ink to retain its shape once

deposited [2]–[5]. The variety of inks compatible with DW makes it a versatile AM technique

with various applications, such as bioprinting.

1.1.1 Manufacturing of Lattice Scaffolds

One advantage of AM is its ability to fabricate complex structures that would otherwise

be difficult to fabricate with other manufacturing methods [1], [6]. 3D periodic structures,

such as the lattice structure shown in Fig. 1.1, are one example. In a lattice structure, rods

are stacked atop one another to form a porous structure. Varying the width, spacing, or

angle of these rods changes the macro porosity of the structure [1], which makes lattice-like

structures useful in applications where controlling a structure’s porosity is desirable.

The versatility of DW printing has enabled the fabrication of lattice structures for various

applications. Lattices fabricated through DW methods have been used as scaffolds in tissue

engineering [7]–[9], photonic band gap materials [10], [11], and drug delivery systems [12]. In

these applications, the structure’s porosity is integral to its function. Therefore, fabricating a

structure with desired porosity characteristics via DW printing requires precise control over

the spatial placement and size of the deposited lattice rods.
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Figure 1.1: Example architecture for a lattice scaffold structure.

1.1.2 Current Limitations of Direct Write Printing

In DW printing, as with any extrusion-based AM technique, there are two main reference

frames to consider (Fig. 1.2) [13]. Borrowing terms from robotics, we refer to the first

reference frame as the joint space to represent the joint positions of the machine’s axes. The

second frame is the task space, which is the space where the machine’s task is defined. In AM,

the machine’s task is material deposition, so the task space represents the material’s spatial

placement and dimensions. Although the structure’s geometry is reflected in the task space,

its reference trajectory is given in the joint space as the set of motions followed by the axes

so that the nozzle traces the shape of the desired structure while depositing the material.

It is often assumed that accurate machine positioning in the joint space will translate

to accurate material geometry in the task space. Previous work in DW has investigated

using position feedback from encoders—which only provide information about the machine’s

position in the joint space—for precision motion control in the joint space [14]–[16]. However,

nozzle alignment errors, nozzle tip deflection, and the nonlinear and time-dependent material

behavior create a disconnect between the two spaces [13], [17]. As a result of the imperfect

coordination between the two spaces, perfect tracking in the joint space is insufficient to
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Figure 1.2: Visual representation of the two reference frames in AM. The joint space, depicted
in blue, represents the joint positions of the machine’s axes. The task space, depicted in
red, represents the deposited material’s geometry. Since the coordination between the two
spaces is imperfect, perfect tracking in the joint space does not guarantee the desired material
geometry in the task space. Adapted from [13].

guarantee that the material will be placed as desired in the task space, giving rise to geometric

errors in the final structure. It follows that error detection using direct in situ process

monitoring in the task space would enable correction of the material’s spatial placement and

dimensions, resulting in improved geometric fidelity of printed structures.

For extrusion-based AM processes like DW printing, current research efforts have mainly

focused on in situ data collection [18], [19] while neglecting process control [20]. Furthermore,

when process control is implemented, it is often based on causal relationships due to the

limited investigation into the relationships between process inputs and print geometry for

extrusion-based AM [18].

Although sparse, some efforts have been made in DW printing to incorporate process

monitoring and control in the task space frame. Hoelzle et al. [21]–[23] monitored the

deposition process with a vision system and used machine vision to calculate the material’s

volumetric flow rate. Likewise, Armstrong et al. [13], [24]–[26] determined the geometric

errors from a 3D point cloud of the deposited material generated by moving a 2D laser scanner

across the part. Both approaches effectively used iterative learning control algorithms to

control the material geometry in the task space; however, the lack of online data processing

meant information from the current print could not be used concurrently for control. In
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another approach, Piovarci et al. [27] trained a neural network in simulation to reduce under-

and over-extrusion by modifying the print trajectory based on real-time feedback from a vision

system. They demonstrated their process on outline and infill printing, but the limitations of

their vision system restricted the approach to single-layer prints.

1.2 Iterative Learning Control

Iterative learning control (ILC) is a feedforward control strategy implemented on systems

that perform the same task multiple times. First described in [28], the premise behind

ILC is that system performance can be improved by learning from previous task iterations.

By exploiting trajectory repetition, ILC is able to compensate for unmodeled dynamics,

nonlinearities, and repeated disturbances [29]. For systems with a repeated reference trajectory,

discontinuous operation, iteration-invariant dynamics, and iteration-invariant disturbances,

ILC can achieve high-performance trajectory tracking without rigorous system modeling

[30]–[33]. These conditions are common in manufacturing, making ILC well-suited for

manufacturing applications.

ILC generates the feedforward control signals by storing the control inputs and errors of

past iterations and mapping them to the current iteration control inputs. This process of

updating the input signals occurs offline between iterations. ILC, therefore, is an appealing

control strategy for systems that are difficult to measure in situ or in real time [21], [34]–[36]

since offline measurements can be used to update the signals. Furthermore, while these

systems often operate in open-loop, ILC can still be implemented if the system is open-loop

stable [22].

Consider the discrete-time system P that maps the input signal uj(k) to the measured

output signal yj(k). The error signal ej(k) is defined as the difference between the iteration-

invariant desired reference trajectory r(k) and the measured output for the current iteration
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Figure 1.3: Visual depiction of the ILC algorithm illustrating the time and iteration domains.
After each iteration, the previous input signal uj(k) and the resulting error signal ej(k) are
used to calculate the updated input signal for the next iteration uj+1(k). Adapted from [29].

yj(k), given as

ej(k) = r(k)− yj(k) (1.1)

where k ∈ [0, N − 1] is the discrete time index for the iteration with N samples, and the

subscript j represents the iteration index. A commonly used ILC update law for calculating

the next iteration’s updated input signal uj+1(k) from the current iteration’s error ej(k) and

input uj(k) signals is

uj+1(k) = Q(q)
[
uj(k) + L(q)ej(k)

]
. (1.2)

Here q is the typical forward time-shift operator qx(k) ≜ x(k+1), while Q(q) and L(q) denote

the Q-filter and learning function, respectively. Provided a properly designed Q-filter and

learning function, the input signal converges to a final value with each subsequent iteration,

consequently leading to the error signal converging to a small final value. Figure 1.3 visually

depicts the ILC algorithm, illustrating the inputs to the update law and its iteration-to-

iteration effect on the input and error signals. While Eq. (1.2) is the most commonly used
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update law, it should be noted that alternatives exist. Regardless, the premise of using

previous input signals and resulting error signals to iteratively improve performance persists

across update laws.

1.2.1 Iterative Learning Control in Additive Manufacturing

AM’s repetitive processes and lack of online process monitoring tools make it well-suited

for ILC. In addition to precision motion control [14]–[16], ILC has been utilized in DW

printing to control the material’s volumetric flow rate [21]–[23] and the filament’s spatial

placement and width [13], [24]–[26], as mentioned previously. Other applications of ILC

to AM processes include controlling the melt pool temperature [37], [38] and layer height

[38]–[41] in directed energy deposition, powder bed temperature distributions in laser powder

bed fusion [42]–[44], and part size in fused deposition modeling [45]. Additionally, spatial ILC

(SILC), which assumes a spatial relationship between inputs and outputs, has found use in

material jetting for controlling droplet placement and size [46]–[49]. These implementations

of ILC learn from previous parts or layers, except for [22], [23], which learn a set of basis

signals that compose the complete trajectory. To our knowledge, learning within a layer has

yet to be demonstrated, likely due in part to the absence and difficulties of online process

monitoring in AM.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 describes the DW printing

system and its positioning, deposition, and process monitoring subsystems used in this work;

Chapter 3 introduces the methods utilized for process monitoring to position the sensor

and process its output; Chapter 4 discusses the development of models relating deposition

process inputs to print geometry and integrating these models with the measurements from

the process monitoring system into an ILC algorithm to improve the material placement
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accuracy; Chapter 5 presents the fabrication of spatially graded scaffolds to demonstrate

the proposed process monitoring and control strategy; Chapter 6 provides a summary of the

research contributions and suggests directions for future work.
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Chapter 2

Direct Write Printing System

Direct write (DW) printing is an extrusion-based AM technique in which a continuous

material filament is extruded from a nozzle and deposited in layers to form a 3D structure.

The two main components of a DW printing system are the positioning and deposition

subsystems. The positioning system moves the deposition system through 3D space along a

defined trajectory to deposit material in the shape of the desired part. The DW system used

in this work also incorporates a process monitoring sensor that directly measures the deposited

material in situ. This chapter describes the DW printing system and its components.

2.1 System Components

This section details the DW printing system’s positioning system, end effector, deposition

system, process monitoring sensor, and controller. An image of the printing system is shown

in Fig. 2.1.

2.1.1 XYZθ Positioning System

A four-axis gantry (Aerotech AGS-10000) is used to control the position of the end effector

on the DW system. The axes are stacked in a serial configuration, with the x-axis carrying
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the y-axis, the y-axis carrying the z-axis, and the z-axis carrying the θ-axis, as illustrated

in Fig. 2.1. Brushless linear motors drive the x- and y-axes and rotary motors drive the z-

and θ-axes. The z-axis motor connects to a precision ball screw via a belt drive, while the

θ-axis motor connects to a harmonic drive. Each axis motor is a three-phase brushless DC

motor connected to an amplifier (Aerotech BA Series) running in “current command.” The

current commands are sent to the amplifier by the Nservo controller as a ± 10 V analog

output signal. Optical encoders provide position feedback for each axis at resolutions of 1

µm for the x- and y-axes, 0.1 µm for the z-axis, and 31.4 µrad for the θ-axis.

Figure 2.1: The DW printing system. An XYZθ positioning system moves the end effector
containing the material deposition system (extruder) and process monitoring sensor (laser
scanner) along a defined trajectory. As the end effector moves, the extruder deposits the
material in the shape of the desired part, and the laser scanner measures the deposited
material.

2.1.2 End Effector

The end effector attached to the θ-axis of the DW system contains the deposition system

and process monitoring sensor, as shown in Fig. 2.2. The deposition system mounts to a

two-axis fine linear positioning stage attached to the end effector. The fine positioning stages
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adjust the nozzle’s position so that it is concentric with the axis of rotation of the θ-axis.

The nozzle is aligned manually based on visual feedback from a camera fixed to the frame of

the DW system. When the nozzle is concentric with the axis of rotation, moving the θ-axis

does not change the position of the nozzle in the task space; thus, the position of the nozzle

is controlled only by joint positions of the x-, y-, and z-axes.

An arm attached to the end effector positions the scanner so that the height of the nozzle

is within the z-axis measurement range of the scanner, ensuring that the scanner can measure

the deposited material. The arm also offsets the scanner from the nozzle and the axis of

rotation of the θ-axis. Offsetting the scanner allows it to trail the nozzle during material

deposition by rotating the θ-axis and end effector.

Figure 2.2: The end effector of the DW printing system. The end effector attached to the
positioning system’s θ-axis contains the process monitoring sensor (laser scanner) and the
material deposition system (extruder). The fine positioning stages affix the extruder to the
end effector and adjust the nozzle’s position to align with the end effector’s axis of rotation.
As the nozzle traces out the shape of the desired part, the end effector is rotated so that the
laser scanner tracks the deposited material.
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2.1.3 Deposition System

The deposition system consists of both the ink material and the extrusion mechanism.

This work uses Nivea Créme (Beiersdorf Global AG) as the ink for the deposition system

because ink development is beyond the scope of this research; furthermore, Nivea Créme

is commonly used as a test ink in bioprinting due to its consistent composition, low cost,

and availability [50]. Using Nivea Créme avoids the need to fine-tune the ink’s rheological

properties to be suitable for printing and ensures consistent ink properties between prints.

Further information regarding bioprinting inks can be found in [51]–[54].

The second component of the deposition system is the extrusion mechanism (green

highlighted box in Fig. 2.2). Material is extruded by a motor-driven rotary screw (Techcon

TS7000-DMP), also known as an auger. In the extrusion system, the material is stored in a

syringe barrel (Nordson EFD) and supplied to the screw chamber by pressurized air (15 psi)

acting on a piston. As the motor rotates the screw, the material is forced out of the chamber

and through a deposition head. The DC motor driving the screw is connected to an amplifier

(Advanced Motion Controls 12A8 servo drive) running in “current command.” In this mode,

the amplifier supplies a current to the motor proportional to a ± 10 V analog output signal

generated by the controller. This mode is also called “torque command” since motor torque

is proportional to the current supplied to the motor.

The deposition head consists of a Nordson EFD general purpose tip as the dispensing

nozzle and is mounted perpendicular to the substrate onto which the material is deposited.

Since the screw chamber is oriented horizontally relative to the substrate, it is connected to

the nozzle via a 90◦ elbow.

2.1.4 Process Monitoring Sensor

The deposited material geometry is monitored in the task space using a 2D laser dis-

placement sensor (Keyence LJ-G030), also known as a laser line scanner. Laser line scanners
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triangulate the displacement of an object by projecting a line of laser light onto the surface

of an object and measuring the light reflection. The scanner triangulates the displacement

at discrete points along the laser line, generating a 2D surface profile output as a vector of

(x, z) coordinates relative to the scanner.

The LJ-G030 has a trapezoidal measurement region, and the profile measurements are

given relative to its reference point 30 mm away from the bottom of the sensor (Fig. 2.3).

In the z-direction, the measurement range for the scanner is ± 10 mm from the reference

point. The sensor’s x-direction measurement range depends on the position within the z-axis

measurement range. Closer to the sensor, the x-direction measurement range is ± 10 mm

from the reference point; further from the sensor, it is ± 12.5 mm from the reference point.

The repeatability is 1 µm and 5 µm for measurements in the z and x-directions, respectively.

−10 +10

−12.5 +12.5

30

+10

−10

x-axis measurement range

z-axis
measurement

range

0

reference
point

Units: mm

x

z

Figure 2.3: Measurement region of the Keyence LJ-G030 2D laser displacement sensor used
for process monitoring.

During fabrication, a triggering signal is sent to the scanner by the controller. When

triggered, the scanner records height measurements at fixed 33 µm intervals in the x-direction
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along the laser line. The height profile is then output as a proportional analog voltage signal

at a fixed rate of 500 µs per measurement. This signal is sampled every 250 µs by a 16-bit

analog input on the Nservo controller and discretized into a vector of (x, z) coordinates

relative to the scanner. Once the profile signal is recorded, the controller sends another

triggering signal to collect a new scan. Profiles are collected at an average rate of 1.77 Hz,

with the limiting factor being the data collection rate of the Nservo controller since the

scanner’s profile output rate can reach up to 120 Hz.

2.1.5 Controller

An Aerotech Nservo controller generates the reference signals for the axes, extruder, and

laser scanner; it also monitors the feedback signals for each axis and the analog output signal

from the laser scanner. The Nservo controller runs the A3200 software motion controller

(SMC), which interprets commands to generate the appropriate signals output by the Nservo

controller. The A3200 SMC architecture is split into two levels that run independently.

Time-critical activities such as the servo loops, motion profiles, and drive communication are

handled at the lower level running on a real-time kernel; less time-critical activities, such

as console displays and analog signal collection, are handled by the higher level running in

Windows.

The A3200 SMC interprets commands written in the RS-274 numerical control language

(G-code) in addition to other controller-specific commands. Using a C library for the A3200

SMC, a custom C++ program buffers commands into a queue on the A3200 SMC that

the controller will sequentially execute. When consecutive motion commands are issued to

the A3200 SMC, the interpolator blends the motions into a continuous motion trajectory.

This means the axes do not decelerate between consecutive motions, which helps ensure the

material deposition is smooth and consistent.
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2.2 Coordinate Frames and Transformations

Since the components described in Section 2.1 are physically connected to the DW

system, their positions relative to a coordinate frame can be described mathematically using

transformations. Suppose point q has local coordinates qA =
[
qAx, q

A
y , q

A
z

]⊤
with respect to

frame A. The coordinates of q can be expressed relative to frame B using the equation

q̄B = HB
Aq̄

A (2.1)

where q̄ is the homogeneous representation of point q, given as

q̄ =



q

1


 (2.2)

and HB
A is the 4 × 4 matrix representing the coordinate transformation from frame A to

frame B. These 4× 4 homogeneous transformation matrices are constructed using matrices

representing basic rotation and translation operations multiplied together. Translations along

the x-, y-, and z-axes are respectively given by

Tx(a) =




1 0 0 a

0 1 0 0

0 0 1 0

0 0 0 1




(2.3)

Ty(b) =




1 0 0 0

0 1 0 b

0 0 1 0

0 0 0 1




(2.4)
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Tz(c) =




1 0 0 0

0 1 0 0

0 0 1 c

0 0 0 1




(2.5)

and the combined translation by the vector v = [a, b, c]⊤ is given as

Txyz(v) = Tx(a)Ty(b)Tz(c)

=




1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1



.

(2.6)

Rotations about the x-, y-, and z-axes by the angles α, β, and γ are respectively given as

Rx(α) =




1 0 0 0

0 cos(α) − sin(α) 0

0 sin(α) cos(α) 0

0 0 0 1




(2.7)

Ry(β) =




cos(β) 0 sin(β) 0

0 1 0 0

− sin(β) 0 cos(β) 0

0 0 0 1




(2.8)

Rz(γ) =




cos(γ) − sin(γ) 0 0

sin(γ) cos(γ) 0 0

0 0 1 0

0 0 0 1



. (2.9)
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2.2.1 System Coordinate Transformations

The coordinate frames of the DW system are illustrated in Fig. 2.4. The four frames, all

of which follow the right-hand rule, are:

� Base Frame OB−xByBzB: The frame fixed to the base of the gantry positioning system.

The frame’s axes align with the respective Cartesian axes of the DW system.

� End Effector Frame OE − xEyEzE: The frame attached to the end effector of the DW

system. The zE-axis points upward, parallel to the zB-axis and aligned with the axis of

rotation of the θ-axis. The xE-axis points toward the nozzle frame.

� Nozzle Frame ON − xNyNzN : The frame with its origin ON centered at the end of the

nozzle. The zN -axis points upward, parallel to the zB-axis. The xN -axis is parallel with

the xE-axis of the end effector frame and points in the same direction.

� Scanner Frame OS − xSySzS: Profiles measurements from the laser scanner are given

in coordinates relative to the Scanner Frame. The origin OS is placed at the reference

point, and the xS- and zS-axes align with the respective axes of the scanner shown in

Fig. 2.3. The zS-axis is parallel to the zB-axis, and the xS-axis is perpendicular to the

xE-axis.

The position of the axes relative to the base frame determines the position of the end

effector frame. As the axes of the DW are stacked in a serial configuration, the position of

the end effector frame is determined by a translation of each of the Cartesian axes, denoted

by the vector dBE = [X, Y, Z]⊤, followed by a rotation about the current z-axis by the angle

θ. Thus, the homogeneous transformation relating the end effector frame to the base frame is
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Figure 2.4: The coordinate frames of the DW system.

given by

HB
E = Txyz

(
dBE

)
Rz(θ)

=




cos (θ) − sin (θ) 0 X

sin (θ) cos (θ) 0 Y

0 0 1 Z

0 0 0 1



.

(2.10)

Since the nozzle and scanner are attached to the end effector, the positions of the nozzle

and scanner frames relative to the end effector frame are constant. These positions are

represented by the vectors dEN and dES, which are the vectors from the end effector frame’s

origin OE to the origins of the nozzle frame ON and scanner frame OS, respectively. Using

Eq. (2.10), the coordinates of the nozzle can be expressed relative to the base frame as

d̄BN = HB
Ed̄

EN . (2.11)
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When the nozzle and the axis of rotation of the θ-axis are aligned, then dEN is the zero

vector, which substituted into Eq. (2.11) yields dBN = dBE. Thus, when the nozzle is aligned

with the axis of rotation, its position coincides with end effector frame’s origin and depends

only on the translation of the Cartesian axes.

For the laser scanner, the homogeneous transformation relating the scanner frame to the

end effector frame can be represented as a translation by the vector dES =
[
dES
x , dES

y , dES
z

]⊤
,

followed by a rotation about the current z-axis by the angle α, and is given by

HE
S = Txyz

(
dES

)
Rz(α)

=




cos (α) − sin (α) 0 dES
x

sin (α) cos (α) 0 dES
y

0 0 1 dES
z

0 0 0 1



.

(2.12)

Multiplying Eq. (2.12) with the transformation HB
E from Eq. (2.10) yields the transformation

relating the scanner and base frames, given as

HB
S = HB

EH
E
S

=




cos (θ + α) − sin (θ + α) 0 X + dES
x cos(θ)− dES

y sin(θ)

sin (θ + α) cos (θ + α) 0 Y + dES
x sin(θ) + dES

y cos(θ)

0 0 1 Z + dES
z

0 0 0 1



.

(2.13)

Since the x-axes of the scanner and end effector frames are perpendicular, α = π/2, and
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Eq. (2.13) further simplifies to

HB
S =




− sin (θ) − cos (θ) 0 X + dES
x cos(θ)− dES

y sin(θ)

cos (θ) − sin (θ) 0 Y + dES
x sin(θ) + dES

y cos(θ)

0 0 1 Z + dES
z

0 0 0 1



. (2.14)

2.3 Reference Trajectory

The reference trajectory input to fabricate a part is given as a deposition path and a width

reference. The deposition path defines the Cartesian coordinates (x, y, z) that the nozzle

must pass through to trace the desired shape of the part, while the width reference defines

the width of the material filament along the deposition path. The trajectory is discretized

into a set of N reference points uniformly spaced along the deposition path. At each reference

point, the velocity and extrusion reference inputs are derived from the width reference based

on mappings that are discussed in Chapter 4. The velocity and extrusion reference inputs are

combined with the input deposition path to generate the motion and extrusion commands.

These commands are issued to the A3200 SMC, generating the signals output by the Nservo

controller to control the DW system.
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Chapter 3

Task Space Process Monitoring

As discussed in Chapter 1, the improper coordination in AM between the joint and task

spaces necessitates monitoring the material deposition process directly in the task space to

determine the errors in the deposited material’s geometry. In this chapter, we define the

geometric errors related to the spatial placement and dimensions of the deposited material

that the process monitoring system will measure. To determine the geometric errors, we

use the 2D laser line scanner integrated into the DW system from Chapter 2 to take direct

in situ measurements of the deposited material. A motion plan presented in this chapter

enables the laser scanner to track and measure the material during printing. Computer

vision techniques are used in a custom algorithm that processes these measurements into the

material’s geometric errors concurrently with the printing process.

3.1 Material Geometry Error Definitions

Accurate material geometry in AM is characterized by the spatial location of the extruded

material relative to the desired position in the task space frame and the dimensions of the

extruded material. For the lattice scaffolds fabricated in this work, the extruded material’s

dimension of interest is the width of the extruded material filament.

The spatial placement of the material is defined by how well the actual path of the
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deposited material tracks the desired path in the task space. Often in extrusion printing, it

is assumed that accurate machine and extruder positioning in the joint space will result in

accurate material geometry in the task space [13]. However, due to the imperfect coordination

between the two spaces, perfect tracking in the joint space frame is insufficient to guarantee

that the material will be placed in the task space at the desired location with the specified

dimensions.

Material width is defined as the width of the deposited filament along the trajectory

(Fig. 3.1a). Various factors can affect the material width, including changes in the axis speed,

sharp corners in the reference trajectory, or clogs in the extrusion system. Axis speed is

inversely related to the material filament width; given the same material flow rate from

the extrusion system, a faster axis speed will reduce the material’s width versus filaments

extruded at a slower speed. Trajectories with tight corners can cause material buildup in

these sections, leading to an increased width. Furthermore, clogs in the extrusion system

reduce the material’s flow rate, decreasing the filament width.

The process monitoring system developed in this work aims to directly measure the

material geometry in situ, from which two error metrics related to the accuracy of the

material deposition can be calculated. We will refer to these error metrics as the material’s

“geometric errors.” The first metric is the material width error eW , which is defined as the

difference between the desired and actual widths of the material filament along the reference

path (Fig. 3.1a). The second metric is the material centerline contour error ec, which is

defined as the distance from the reference path to the actual centerline of the material along

the path normal vector N (Fig. 3.1b). The path normal vector is the vector in the xy-plane

perpendicular to the path tangent vector T and points in the direction such that the two

vectors (T ,N ) form a right-handed frame with the z-axis. The path tangent vector T is the

vector in the xy-plane that is tangent to the centerline of the deposition path and points in

the direction of motion along the path. The centerline contour error is positive or negative

depending on whether the contour error points in the same or opposite direction of the path
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normal vector.
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Figure 3.1: Illustrations of the material width error (a) and the material centerline contour
error (b). The depicted centerline contour error ec is negative since it points in the opposite
direction of the path normal vector N . Adapted from [24].

3.2 Laser Scanner Motion Planning

When fabricating a part, the deposition path defines the set of Cartesian coordinates

(x, y, z) that the nozzle must pass through to trace the shape of the desired part. The trajectory

p(t) connecting these points can be represented by the path P =
{
p(t) ∈ R3 | t ∈ [ti, tf ]

}

parameterized by time t, where p(ti) and p(tf) are the initial and final points of the path,

respectively. Since the nozzle is assumed to be aligned with the end effector’s axis of rotation,

the deposition trajectory also defines the trajectory for the end effector’s position in the task

space; this is equivalent to defining the trajectory of the Cartesian axes in the joint space.

Note that the deposition trajectory only specifies the position of the end effector, not its

orientation, which is controlled by the rotational θ-axis. Since the laser scanner attached

to the end effector is offset from the axis of rotation, its position is determined by the end

effector’s position and orientation. By defining the orientation of the end effector, we can

rotate the laser scanner around the nozzle, enabling the laser scanner to track and take in
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situ measurements of the deposited material as the nozzle follows the deposition path. To

determine the end effector orientation along the deposition path, thus the joint positions for

the θ-axis, we define a motion plan for the laser scanner. We simplify the laser scanner’s

motion plan to two-dimensional motion in the xy-plane since rotating the θ-axis does not

change the z-component of the laser scanner’s position.

3.2.1 Motion Plan Objective

The purpose of the laser scanner is to take in situ measurements of the deposited material

during the deposition process. Therefore, the laser scanner motion plan aims to center the

laser scanner’s measurement region over the reference material path while the nozzle follows

the deposition path. This objective is chosen because the material must pass through the

laser scanner’s measurement region to be measured. To further simplify the motion planning,

the deposition and material paths are assumed to be the same.

Although the reference material path will differ slightly from its actual path due to material

placement errors, using the reference path for motion planning should not significantly impact

the laser scanner’s ability to take measurements of the material. As mentioned in Section 2.1.4,

the laser scanner’s measurement region extends a minimum of ± 10 mm from its center along

its x-direction. This measurement region is much larger than the magnitude of the material

placement errors, so material that deviates from the reference path should still pass through

the measurement region and be measured.

3.2.2 Reference Path Construction

The position that centers the scanner’s measurement region on the deposition path can

be found by analyzing the workspace of the laser scanner. In robotics, the workspace is

the locus of points that the origin of a frame can reach through all possible motions of the

axes [55], [56]. While printing, the laser scanner’s movement is restricted to the motion of

the θ-axis since the deposition path dictates the motion of the Cartesian axes. Thus, the

24



scanner’s workspace is the circle traced out by the origin of the scanner frame s = [sx, sy]
⊤

if the θ-axis completed one full revolution (Fig. 3.2). This workspace also represents the

locus of points that the center of the measurement region can reach. As the laser scanner’s

workspace changes based on the position of the nozzle, we denote the scanner’s workspace at

a given end effector position p = [px, py]
⊤ as Sp.

x

y

p

dES
xS

y
S

s

xE

yE

θ

ϕ

Scan Line

Sp

Scanner’s Workspace

Figure 3.2: The scanner’s workspace Sp, shown as the dashed red circle, represents the locus
of points the scanner can reach when the end effector is at point p. The scan line represents
the projection of the laser scanner’s measurement region in the xy-plane.

We define the set of points in the workspace Sp using the forward kinematics of the

scanner, which we derive from the homogeneous transformation for the laser scanner frame

given by Eq. (2.14). Simplifying the kinematics to two dimensions, the coordinates of point

s = [sx, sy]
⊤ in the workspace are given in terms of the θ-axis joint position θ and the nozzle

position p = [px, py]
⊤ by the parametric equations:

sx(θ) = px + dES
x cos(θ)− dES

y sin(θ) (3.1a)

sy(θ) = py + dES
x sin(θ) + dES

y cos(θ) (3.1b)

where dES =
[
dES
x , dES

y

]⊤
is the constant vector from the end effector frame to the scanner

frame. Alternatively, the workspace can be defined as the points on the circle centered at
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point p with radius rS, given as

(sx − px)
2 + (sy − py)

2 = rS. (3.2)

Here, rS is the length of dES projected onto the xy-plane, given as rS =
√
(dES

x )2 + (dES
y )2.

Since the scanner’s workspace represents the locus of points reachable by the center of the

measurement region, the position that centers the measurement region on the material lies at

the intersection of the scanner’s workspace Sp and the deposition path P . The intersection

points can be found as the points of path P that satisfy Eq. (3.2) at the given nozzle position

p. However, the intersection between the workspace and deposition path is not always unique,

as shown by the example in Fig. 3.3. Therefore, we define the desired position for the scanner

sd =
[
sdx, s

d
y

]⊤
as the intersection point that the nozzle has passed through most recently.

x

y
p(ti)

p(T )

p(tf )

p(t1)

p(t2)sd(T ) =

p(t3)

Sp(T )

P

rS

Figure 3.3: An example illustrating multiple intersections between the scanner workspace
Sp(T ) and the deposition path P. When the intersection point is not unique, the desired
position for the scanner sd is selected as the intersection point that the nozzle has passed
through most recently. For this example, the desired scanner position is chosen as sd = p(t2).

For example, let P be the deposition path defined on the interval t ∈ [ti, tf ], and p(T ) ∈ P

be the position of the nozzle at time T ∈ [ti, tf ]. Suppose the workspace at the position of

the nozzle Sp(T ) intersects the path P at points p(t1), p(t2), and p(t3), as shown in Fig. 3.3.

When choosing the desired scanner position, we only select intersection points on the section
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of the path P the nozzle has traced out because those are the locations where material has

been deposited. This section is the subset of P defined on the interval t ∈ [ti, T ], which we

denote as P̄ . Since p(t3) /∈ P̄ , p(t3) is not chosen as the desired position since the nozzle has

not yet passed through that point. Conversely, p(t1), p(t2) ∈ P̄, so the nozzle has passed

through both points. However, the location of the nozzle p(T ) is closer along the path to

p(t2) than to p(t1). Therefore, p(t2) is chosen as the desired position of the scanner sd(T )

when the nozzle is at point p(T ).

Once the desired position for the scanner sd =
[
sdx, s

d
y

]⊤
is found in the task space

frame, the desired joint position for the θ-axis θd must be calculated. For a given position

p = [px, py]
⊤ on the deposition path, the joint position θ that moves the scanner to point

s = [sx, sy]
⊤ in the workspace can then be calculated using inverse kinematics. The inverse

kinematics are derived geometrically from Fig. 3.2 as

θ = ϕ+ π

θ = atan2(sy − py, sx − px) + π (3.3)

where atan2(y, x) is the two-argument arctangent function that returns a value ϕ on the

interval ϕ ∈ (−π, π]. Thus, Eq. (3.3) returns a value θ on the interval θ ∈ (0, 2π]. Substituting

s = sd into Eq. (3.3) yields the desired joint position θd for the θ-axis.

3.2.3 Feasible Trajectory with Constraints

To calculate the desired trajectory for the θ-axis using the methods described in Sec-

tion 3.2.2, we first discretize the deposition trajectory p(t) into N points using a fixed

sampling period Ts. The resulting discretized deposition trajectory p(k) defines the points

pk for k = 0, 1, . . . , N − 1 that the end effector must reach at times tk = kTs. For each

point pk, the desired position of the scanner sdk is found and then converted into the desired

joint position θdk for the θ-axis. This results in a discretized trajectory θd(k) for the θ-axis
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synchronized with deposition trajectory p(k).

While the desired trajectory θd(k) satisfies the objective for taking in situ measurements,

it assumes that there are no physical constraints for the θ-axis. Given that the axis will

have limits on its position, velocity, and acceleration, it may be infeasible for the θ-axis to

track the desired trajectory without exceeding those limits. Therefore, the optimal feasible

trajectory θ∗(k) should minimize the deviation from the desired trajectory θd(k) to respect

the path planning objectives while not violating the physical constraints imposed on the

θ-axis. Written in mathematical terms, the optimal feasible trajectory θ(k) = θ∗(k) solves

the following constrained optimization problem:

minimize
1

2

N−1∑

k=0

(
θdk − θk

)2
(3.4a)

subject to: θ− < θk ≤ θ+ (3.4b)

∣∣θ̇k
∣∣ ≤ ωmax (3.4c)

∣∣θ̈k
∣∣ ≤ αmax. (3.4d)

Here θ+ and θ− are the respective upper and lower position limits for the axis, and ωmax and

αmax are the respective limits on the axis velocity and acceleration magnitudes. The discrete

velocity and acceleration terms in Eqs. (3.4c) and (3.4d) are approximated using forward

finite differences as

θ̇k =
θk − θk−1

tk − tk−1

for k ∈ [1, N − 1] (3.5)

and

θ̈k =
θ̇k − θ̇k−1

tk − tk−1

for k ∈ [2, N − 1] (3.6)

respectively. We obtain the discrete trajectory θ∗(k) that solves the optimization problem

given by Eq. (3.4) using the nonlinear programming solver fmincon in MATLAB.
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3.3 Simulated Motion Plan

To assess the proposed motion planning scheme described in Section 3.2, we use a single-

layer rectilinear raster pattern, shown in Fig. 3.4, as the deposition path. The raster path

consists of four 34.5 mm long rods, each spaced 1.5 mm apart and connected with linear

corner segments to form a continuous path. In the figure, the labels Ri and Ci denote the

ith rod and corner segment, respectively. The rod segments’ length is set greater than twice

the offset distance between the scanner and nozzle rS = 15.25 mm. This ensures that the

scanner’s workspace intersects the rod midpoints. Additionally, we extend the final segment

with a lead-out line equal to rS so that the final path points intersect the workspace after

the nozzle has passed through them. The deposition trajectory follows the sample path at a

constant axis velocity of v = 1 mm/s.

x

y

R1

R2

R3

R4

C1

C2

C3

lead-out line

34.5mm15.25 mm

1.5mm

Figure 3.4: The deposition path used to assess the motion planning scheme for the laser
scanner. The path segments are labeled Ri and Ci for the ith rod and corner segment,
respectively. A lead out line, shown as the dashed line, is added to scan the final points of
the path.

When calculating the desired trajectory for the laser scanner, the deposition trajectory is

discretized with a sampling period of Ts = 50 ms. The feasible trajectory is generated from

the desired trajectory using the constraints listed in Table 3.1.

Constraint Limit
Lower Position θ− −π

6
rad

Upper Position θ+ 7π
6
rad

Velocity Magnitude ωmax 1.39 rad/s
Acceleration Magnitude αmax 3.49 rad/s2

Table 3.1: Constraints for the θ-axis on the DW system.
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The simulated position, velocity, and acceleration profiles for the desired reference trajec-

tory θd(k) and the feasible trajectory θ∗(k) are shown in Fig. 3.5. The times when the nozzle

reaches the end of a path segment are indicated with vertical dotted lines and labeled on

the x-axis at the top of the figure; these labels correspond to the segments labeled on the

deposition path in Fig. 3.4. Note that the desired trajectory θd(k) (solid black line) violates

the velocity and acceleration constraints (dashed red line) in the rods R2, R3, and R4 due to
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Figure 3.5: Position, velocity, and acceleration profiles for the desired and feasible trajectories
of the θ-axis. The x-axis at the top indicates the segment of the deposition path that the
nozzle is on at the given time, where the labels Ri and Ci correspond to the segments labeled
in Fig. 3.4
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the change in the desired position. In contrast, the feasible trajectory θ∗(k) (dashed blue

line) starts the axis’ motion in anticipation of the position change so that the axis’ velocity

and acceleration stay within the imposed limits during the move.

In addition to respecting the physical constraints of the axis, the feasible trajectory θ∗(k)

should also position the laser scanner so it can take in situ measurements of the deposited

material. The path traced out by the center point s of the measurement region only partially

tracks the deposition path, as shown in Fig. 3.6. However, perfect tracking is not required

for the entire deposition path to be scanned. If the deposited material enters the scanner’s

measurement region, it can be measured. For the laser scanner on the DW system, the

measurement region extends a minimum of ± 10 mm from s along the scan line. Since the

resulting area covered by the measurement region—shown in Fig. 3.6 as the region shaded in

gray—completely encompasses the deposition path, the entire path can be measured.

0 5 10 15 20 25 30 35
−15

−10

−5

0

5

X (mm)

Y
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m
)

p deposition path s scanner path scan line direction scanned area

Figure 3.6: The path of the scanner and the resulting area scanned when tracking the feasible
trajectory θ∗(k). The scanner’s path is shown as the dashed blue line, and the blue arrowheads
indicate the scanner’s direction of motion. The orientation of the scan line is depicted at
various points along the path by the red arrows. The area the laser scanner’s measurement
region covers (shaded gray region) completely encompasses the deposition path (solid black
line), indicating that the entire deposition path can be measured.
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While the area covered by the scanner’s measurement region covers the entire deposition

path, the scanner’s sampling rate must also be considered to determine which points along

the deposition path are scanned. Since the sampling rate is fixed, the density of points

scanned will be inversely related to the scanner’s linear velocity, which depends on both the

deposition trajectory and θ-axis velocities. Accordingly, slower velocities are preferred when

taking in situ measurements because that will increase the concentration of scanned points

along the deposition path.

Figure 3.7 marks the approximate points on the deposition trajectory where profile mea-

surements will be taken at the average scanner sampling rate. As mentioned in Section 2.1.4,

the average sampling rate of the laser scanner is 1.77 Hz, meaning that a profile of the

material is captured approximately every 0.56 seconds. When accounting for the sampling

rate, the measured points are spaced an average of 0.56 mm along the rods, which is the

approximate distance traveled by the Cartesian axes between scans at the given trajectory

velocity of v = 1 mm/s. Conversely, no profile measurements are taken of the corner segments.

Based on Fig. 3.6, the scanner rotates while its measurement region passes over the corner

segments, which adds an additional component to the scanner’s linear velocity. Given the

short segment length, slow sampling rate, and θ-axis rotation increasing the scanner’s velocity,

the measurement region passes over the corner segments between profile measurements,

resulting in their lack of measurements.
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Figure 3.7: The approximate points on the deposition trajectory measured by the laser
scanner at its average sampling rate.
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It should be noted that the scanner’s sampling rate can reach up to 120 Hz, but the

hardware collecting the scanner’s output signals limits it to 1.77 Hz. Therefore, hardware

accommodating a faster sampling rate could be used to increase the measurement density in

the corner segments. Additionally, measurement density would increase if the scanner’s linear

velocity were reduced during the rotation of the θ-axis. Achieving this would involve either

limiting the θ-axis’ angular velocity or shortening the offset distance between the scanner and

nozzle rS. However, both options have drawbacks; the former may reduce the tracking and

scanning performance of the path plan, and the latter may not be possible due to physical

interferences between components on the end effector.

3.4 Measurement Processing

The 2D laser line scanner incorporated into the DW system takes direct in situ measure-

ments of the deposited material’s surface profile. As the scanner moves over the deposited

material, we process the surface profiles online to generate a 2D projection of the deposited

material in the horizontal plane. This projection, which represents the material’s geometry

in the task space, is used to calculate the geometric errors.

The algorithm that generates the material’s geometric errors is outlined in Fig. 3.8 and

further described in Section 3.4.1. Visual depictions of the algorithm’s steps are also shown in

Fig. 3.9. We implement the algorithm in C++ utilizing OpenCV, an open-source computer

vision library [57]. The developed program processes the profile measurements, generates

the 2D projection of the deposited material, and extracts the material placement errors

concurrently with the printing process.
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Figure 3.8: Flowchart of the measurement processing algorithm. The processes in the dashed
boxes correspond to the steps described in Section 3.4.1.
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(c) Convert the height profile to a grayscale image, then threshold the profile to find the material edges.

(d) Transform edge coordinates
from the scanner frame to the
task space frame and project
them onto a binary image.

(e) Group the points into inner
(green) and outer (magenta) edge
points.
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Figure 3.9: Visual depictions of the main steps used to convert the profile measurements
from the laser scanner into the material’s geometric errors.
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3.4.1 Measurement Processing Algorithm

Step 1: Map the trajectory to an image

Before the start of the print, the deposition trajectory is partitioned into smaller segments.

Partitioning the trajectory enables the material’s geometric errors to be determined before the

print completes by measuring the material and processing the print segments in parallel. If

the entire print trajectory is not partitioned, the projection and errors will only be calculated

once the print finishes. For example, the sections processed for a raster pattern like the one

shown in Fig. 3.9 correspond to the rod and corner segments of the pattern.

The 2D projection of each layer is represented as a separate binary image. For an

individual layer, the coordinates in a region of interest surrounding the deposition path are

mapped to the pixel coordinates of the image (Fig. 3.9a). A point with coordinates
(
xB, yB

)

in the task space frame is related to the coordinates
(
xI, yI

)
in the image coordinate system,

given in pixels, using the following transformation:




xI

yI

1



= HI

B




xB

yB

1



, where HI

B =




1/sf 0 −x0/sf

0 1/sf −y0/sf

0 0 1



. (3.7)

The coordinates (x0, y0) define the origin of the region of interest in task space coordinates,

and sf is a scaling factor given in the length units of the task space per pixel. A scale factor

of sf = 20 µm/pixel is used in this work, meaning the center of each pixel in the image

coordinate system represents the intersection point on a grid with a spacing of 20 µm in the

task space.

Step 2: Find the edges of the material in the surface profile

When the scanner is triggered, the joint positions of each axis are stored, and the material

surface is measured at n discrete points spaced at 33 µm intervals in the x-direction along
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the laser line (Fig. 3.9b). The measured height profile is output as a vector of z coordinates

relative to the scanner coordinate frame. The height profile is converted into an n× 1 64-bit

grayscale image, where the pixel’s intensity value represents the height measurement at each

x-coordinate along the laser line (Fig. 3.9c). Next, a binary image of the material is created

by applying a threshold to the height profile such that points above the threshold indicate

where the material was measured. The threshold value is obtained using the Otsu method,

which is an algorithm commonly used in image processing for determining a threshold that

separates pixels of foreground objects from background pixels in a grayscale image [58], [59].

When applied to the height profile, the threshold separates the deposited material from the

background, creating a binary image of the deposited material. Taking the second derivative

of the binary material profile using the Sobel operator [60], then finding the zero-crossings

yields a binary image with the edge points of the material. The detected edge points given as

x-coordinates in the scanner frame are then transformed to task space coordinates using the

homogeneous transformation given by Eq. (2.14) and the stored axis positions. The edge

points in task space coordinates are then projected onto a binary image using Eq. (3.7).

Step 3: Determine the material outline from the measured points

Once enough discrete edge measurements have been taken along a section of the material,

the individual edge points can be connected to form a continuous material outline (Fig. 3.9f).

Before the edge points are connected into a continuous edge, the points are first grouped into

inner and outer edge points (Fig. 3.9e). We define the outer edge as the edge which the path

normal N vector points toward and the inner edge as the edge which the path normal vector

points away from, shown as the magenta and green edges in Fig. 3.10, respectively.

After separating the inner and outer edge points, outliers are removed from each group of

points using a mask that approximates the shape of the edge. Any points outside the mask are

treated as outliers and removed. Next, the remaining edge points are smoothed by attenuating

the shorter wavelength components of the edge profile using a spatial Gaussian filter defined
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Figure 3.10: The path normal vector N points toward the outer edge, shown in magenta,
and points away from the inner edge of the path, shown in green.

by its cut-off wavelength λc. Details regarding the implementation of the spatial Gaussian

filter can be found in Appendix A. Finally, the smoothed points are connected to the nearest

neighboring point using a piecewise linear curve to form the estimated continuous material

edge (Fig. 3.9f). The outlier removal and smoothing processes are repeated independently for

the inner and outer edge points, and the resulting edges are stored in separate binary images.

To create the mask applied to remove outliers, we first filter the edge points using a

spatial Gaussian filter. This filter’s cut-off wavelength is twice the cut-off of the filter that

smooths the edge points once the outliers are removed (i.e., λmask
c = 2λsmooth

c ). The filtered

points are then connected with a piecewise linear curve to create a masking edge. Finally,

the masking edge is dilated using a square kernel as the structuring element to create the

mask. The size of the morphology structuring element used to dilate the edge is chosen such

that points greater than 0.26 mm from the approximated edge are removed as outliers.

It should be noted that the filter cut-off wavelengths and morphology structuring elements

utilized in this step may need to be adjusted for other systems or applications. For instance,

larger-scale AM systems may benefit from longer cut-off wavelengths and larger structuring

elements since the parts fabricated on these system will likely have edge features with longer

wavelengths. When tuning the parameters, longer cut-off wavelengths will attenuate shorter
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wavelength components of the profile, resulting in a smoother profile with less noise. However,

if the cut-off wavelength is too long, the shorter details of the profile may be lost. Additionally,

larger morphology structuring elements may introduce artificial features into the profile since

fewer outliers will be removed. Therefore, choosing the filter and morphology parameters will

depend on factors such as the length of an edge’s designed features, the distance between

sampled points, and the accuracy and precision of the edge point measurements.

Step 4: Calculate the geometric errors

The width and centerline contour errors are calculated by finding the distance from the

reference trajectory to the inner and outer edges (Fig. 3.9h). Since the inner and outer

edges are stored as binary images, the distance to the edges can be found using an image

processing method known as a distance transform. In a binary image containing objects of

interest, a distance transform maps the value of each pixel to the distance of the nearest

object of interest [61], [62]. The mapped distances can be represented as an intensity value

in a grayscale image, where brighter pixels represent longer distances, as illustrated by the

example distance transform in Fig. 3.11. When a distance transform is applied to the binary

image containing one of the material edges, a distance field is created where each pixel value

is replaced with the shortest Euclidean distance to that material edge. The distance fields

shown in Fig. 3.9g are masked to show only the distances inside the edges of the material as

a grayscale intensity value.

By converting the points p(k) on the reference path to points pI(k) in the image coordinate

system using Eq. (3.7), the respective distance field can be sampled at those image coordinates

to obtain the distances to the inner and outer edges from the reference path. These distances

are shown in Fig. 3.9h as the green line labeled Din(k) and the magenta line labeled Dout(k),

respectively. As the distances obtained from the distance fields are given in units of pixels,

the distances can be scaled from pixels to task space units by multiplying by scale factor sf .

If the point pI(k) lies within the boundary of the deposited material, the actual width of
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Figure 3.11: An example of a distance transform. The binary image on the left indicates
objects of interest as white pixels with a value of one. Using the distance transform, the
image’s pixel values are mapped to the distance of the nearest nearest non-zero pixel, creating
the distance field on the right. When applied to a binary image of the material edge, the
mapped values represent the distance in pixels to the material edge.

the material is the sum of the scaled distances to the inner and outer edges, i.e., W (k) =

sf
(
Dout(k) +Din(k)

)
. The width error is then calculated as

eW (k) = Wd(k)− sf
(
Dout(k) +Din(k)

)
(3.8)

where Wd(k) is the reference width at point p(k) on the reference path. Furthermore, the

distance from either edge to the material’s actual centerline will equal half the actual width

W (k). Recall that the centerline contour error ec is defined as the distance from the reference

path along the path normal vector to the actual centerline of the material. Since the contour

error is positive or negative whether the contour error points in the same or opposite direction

of the path normal vector, the contour error can be calculated by subtracting half the actual

width from the distance to the outer edge. Thus, the centerline contour error is calculated as

ec(k) = sfDout −
W (k)

2

= sf
Dout(k)−Din(k)

2
.

(3.9)
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If the pI(k) lies outside the boundary of the deposited material, Eqs. (3.8) and (3.9) no

longer apply because the distances to the edges are scalar values. In this case, the actual

width will be the magnitude of the difference between the edge distances, i.e., W (k) =

sf
∣∣Dout(k)−Din(k)

∣∣. Thus, the width error is

eW (k) = Wd(k)− sf
∣∣Dout(k)−Din(k)

∣∣. (3.10)

Because pI(k) is outside the boundary defined by the edges, the distance to the actual

centerline will be half the width added to the distance to the nearest edge since the point.

Therefore, the centerline contour error can be calculated as

ec(k) =





−
(
1
2
W (k) +Dout

)
if Dout < Din

1
2
W (k) +Din else

(3.11)

which simplifies to

ec(k) = sgn(∆) sf
Dout(k) +Din(k)

2
, where ∆ = Dout(k)−Din(k). (3.12)

Here, the sign function, denoted by sgn(·), determines if the centerline contour error will be

negative, which occurs when Dout < Din.
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Chapter 4

Control Strategy and Design

This chapter describes the methods to control the geometry of 3D periodic structures

fabricated via direct write printing. Here, the focus is on controlling and reducing the errors

in the material bead width along the deposition trajectory.

We first develop material models to predict the material’s behavior during extrusion.

These models are calibrated from experimental data, allowing us to map the material filament

width to the input signals of the extrusion system. However, modeling the extrusion behavior

is difficult and prone to errors due to the nonlinear and time-dependent flow behavior of the

inks used in direct write printing [25], [63]. Therefore, relying solely on the material models

to predict the final dimensions of the material can still result in geometric errors. To this

end, we implement an iterative learning control (ILC) algorithm to correct dimensional errors

obtained from the process monitoring system described in Chapters 2 and 3. By exploiting

the repetitiveness of 3D periodic structures, the ILC algorithm learns the inputs for repetitive

elements within the structure as they are fabricated. These learned inputs are then applied

to fabricate the subsequent elements remaining in the structure.
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4.1 Material Deposition Modeling

When fabricating a part, the width of the deposited material filament is specified at

control points along the deposition path. For the rotary screw extrusion system described in

Chapter 2, the input signals that can be modified to change the output filament width W are

the extruder motor torque τ and the axis velocity v (Fig. 4.1). Other process parameters, such

as the material, nozzle, and screw dimensions, can also affect the filament width; however,

these parameters do not change during the deposition process. This section describes the

development of the models that map the width reference signal to the extruder torque and

axis velocity input signals.

v
(input)

ω

W
(output)

Reservoir Piston

Nozzle

Screw

Extruded

filament

DC

Motor

τ (input)

Figure 4.1: Schematic of the extrusion system. Pressurized air applied to the piston feeds
material from the supply reservoir to the screw chamber. The screw rotates when the DC
motor applies a torque τ (input) to it, forcing the material out through the nozzle. Moving
the gantry axes at a velocity v (input) while extruding the material deposits a bead of
material with a filament width W (output).
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4.1.1 Model Development

Chen [64] developed a model for the flow rate from a motor-driven rotary screw through

a nozzle, given as

Q+

(
c22
cn1

+
c22
cn3

)
Qn = c21ω + c22 (Pp − Pa) . (4.1)

Here, the flow rate Q is expressed in terms of the power law index n, the rotational speed of

the screw ω, the pressure applied to the material in the reservoir Pp, and the pressure at the

nozzle outlet Pa. The coefficients c1, c21, c22, and c3 depend on the geometries of the screw,

nozzle, and connection to the supply reservoir.

As the inks used in direct write printing are yield-pseudoplastic fluids, which by definition

have non-Newtonian flow (n ̸= 1), solving Eq. (4.1) is challenging since the equation is

nonlinear. To facilitate the development of a simplified model, we assume the inks are

Newtonian (n = 1); as a result, Eq. (4.1) has the following analytical solution for the flow

rate:

Q =
c21ω + c22 (Pp − Pa)

1 + c22
c1

+ c22
c3

. (4.2)

Although this assumption may reduce the models’ accuracy over a range of operating

conditions, the control strategy detailed later in this chapter will mitigate these errors

introduced by the increased model uncertainty.

The flow rate can also be expressed as the product of the cross-sectional area of the

material filament Acs and the axis velocity v. Assuming the filament has a circular cross-

sectional area, which is consistent with the observations in literature [2], [21], [25], [65], the

flow rate is also given by

Q = Acsv

=
π

4
W 2v

(4.3)

where W is the material width.

Combining Eqs. (4.2) and (4.3), then lumping the constant terms into the coefficient a1
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yields

W (ω, v) = a1

√
ω + 1

v
. (4.4)

While Eq. (4.4) expresses the material width W in terms of the axis velocity v input signal,

it also depends on the screw speed ω, which is not an available input to the extrusion system.

When the extruder’s DC motor applies a torque τ to the screw, it will accelerate until

the screw reaches steady state, at which point its rotational speed will be constant. Here, a

reasonable assumption is that the motor reaches equilibrium quickly. Since motor torque is

proportional to screw speed at equilibrium, Eq. (4.4) can be approximated in terms of the

input signals by substituting in torque for speed. Thus, Eq. (4.4) is approximated as

W (τ, v) = a1

√
τ

v
(4.5)

which expresses the material width W in terms of the axis velocity v and extruder torque

τ input signals. If the axis velocity is held constant, the width becomes a function of the

extruder torque, given as

W (τ) = b1
√
τ . (4.6)

Similarly, if the extruder torque is held constant, the width becomes a function of the axis

velocity, given as

W (v) = c1

√
1

v
. (4.7)

The coefficients for the models are determined by fitting the equations to experimental

data collected from a series of calibration prints. When fitting the data, additional coefficients

are added to Eqs. (4.6) and (4.7) to achieve a better fit. Therefore, the models fit to the

experimental data are

W (τ) = b1
√
τ + b2 (4.8)

and

W (v) = c1

√
1

v
+ c2. (4.9)
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4.1.2 Model Calibration

A series of calibration prints were fabricated to determine the coefficients of Eqs. (4.8)

and (4.9). The prints consisted of a single layer of parallel rods, where each rod was extruded

with the same axis velocity but a different extruder torque. After each rod, the torque input

signal, which is proportional to the torque applied by the motor, was changed by 0.1 V over

the entire 0.2–1 V range of inputs. The trajectory was repeated for velocities in the operating

range of 1–3 mm/s at 0.5 mm/s intervals. This range was chosen as these speeds display

consistent adhesion of the material filaments to the substrate. A Nordson 23GA general

purpose tip with an inner diameter of ∅ = 330 µm was used for the nozzle of the extrusion

system. The nozzle was offset above the substrate by a layer height of 0.75(∅), where ∅ is

the nozzle’s inside diameter. An example calibration print is shown in Fig. 4.2.

Figure 4.2: Example calibration print used to identify the coefficients of the material models.
The material was extruded at a constant axis velocity while the extruder torque was changed
after each vertical rod. The print was fabricated as a continuous extrusion, resulting in short
segments of material connecting the ends of the rods. However, the width of these connecting
segments was not used when calibrating the material models.

The material width along the rods was computed from profile scans collected by the

Keyence laser scanner using the process described in Section 3.4. An average width was

calculated for each rod, and Eqs. (4.8) and (4.9) were fit to the experimental data, as shown

in Fig. 4.3. The resulting coefficients for Eqs. (4.8) and (4.9) are listed in Tables 4.1 and 4.2,
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respectively.
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Figure 4.3: The experimental data from the calibration prints with the curve fits used to
determine the coefficients of the models (Eqs. (4.8) and (4.9)) relating the output material
width to the torque (left) and velocity (right) inputs.

v (mm/s) b1 b2
1.0 2.03 −0.64
1.5 1.55 −0.50
2.0 1.31 −0.44
2.5 1.02 −0.28
3.0 0.83 −0.19

Table 4.1: Coefficients of Eq. (4.8) for different constant velocity inputs.

τ (V) c1 c2
0.3 0.54 −0.06
0.4 0.68 −0.07
0.5 0.87 −0.11
0.6 1.14 −0.23
0.7 1.32 −0.28
0.8 1.53 −0.35
0.9 1.64 −0.35
1.0 1.76 −0.36

Table 4.2: Coefficients of Eq. (4.9) for different constant torque input commands.
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4.2 Iterative Learning Control

Modeling the material extrusion dynamics is complex due to the material’s nonlinear and

time-dependent flow behavior. While the material models developed in Section 4.1 allow us to

map material widths to the extruder torque and axis velocity input signals, relying solely on

the models may still result in fabricated parts with geometric errors due to the simplifications

and uncertainties of the model. The inability to accurately predict the material behavior

using the models warrants the use of process monitoring and control strategies to enable the

measurement and correction of dimensional errors.

The process monitoring system described in Chapters 2 and 3 directly measures the

deposited material in situ. As discussed in Section 3.4, these measurements are processed

online, determining the material’s geometric errors in a segmented fashion. Since these errors

are not obtained in real time, ILC is an appealing control strategy because it updates the

input signal offline between iterations of the given task. Moreover, ILC is well-suited for

AM since AM processes often include trajectory repetition—for example, repeating the same

deposition trajectory between parts or layers.

As this work focuses on the fabrication of lattice scaffolds, we leverage the repetitiveness

of 3D periodic structures to decompose the structure into sets of repeating elements. Rather

than treating each structure as a single task, the repeated elements can be treated as repeated

sub-tasks that are learned individually using ILC. The concatenation of these sub-tasks forms

the sequence of operations that fabricate the desired structure. When combined with the

online measurements from the process monitoring system, this segmented ILC approach is

used to correct dimensional errors online without the need to suspend the print process.

4.2.1 Trajectory Partitioning

ILC typically tracks a repeated reference trajectory on systems with discontinuous opera-

tion, iteration-invariant dynamics, and iteration-invariant initial conditions. When applying
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ILC to learn the sub-tasks instead of the complete trajectory, these characteristics influence

the choice of sub-tasks that partition the trajectory. Accordingly, the sub-tasks are chosen

with the following properties:

1. Repetitive within the main task—A sub-task should repeat within the main task to

provide the trajectory repetition necessary for ILC to learn the given sub-task.

2. Spatially-invariant dynamics—Analogous to the iteration-invariant dynamics typically

required for ILC, spatially-invariant dynamics allow the repetitive sub-task trajectories

to be rotated and translated in space without their dynamics changing.

3. ILC update interval—Typically, ILC uses a task’s discontinuous operation to update

the input signals offline between iterations. With the segmented ILC approach, the

sub-task sequence should have periods between sub-task iterations during which the

ILC updates can occur. This allows the ILC algorithm to run and update signals

without suspending the main task, ensuring its operation remains continuous.

While these properties guide the selection of sub-tasks, the final choice will be trajectory and

system dependent.

The use of time-delayed measurements also influences the sub-task selection. When the

measurements are time-delayed, the time interval between sub-task iterations must be longer

than the combined measurement delay and time to perform the ILC updates. Otherwise,

the next iteration of the sub-task will start before the ILC algorithm can update the input

signals from the previous iteration.

4.2.2 Partitioning the Scaffold Trajectory

3D periodic structures, like the lattice scaffolds focused on in this work, are constructed

of elements that repeat within the structure. When fabricating a multi-layer lattice scaffold,

we use a deposition trajectory like the one shown in Fig. 4.4, where the trajectory for each

layer follows the same rectilinear raster pattern that is rotated 90◦ relative to the previous
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layer. Since each layer’s trajectory is the same, we define the following three sub-tasks to

partition a single-layer raster trajectory:odd-numbered rods, even-numbered rods, and corners.

These sub-tasks are illustrated in Fig. 4.5, which colors the trajectory based on the segment’s

respective sub-task.

x

y
z

Figure 4.4: Deposition trajectory for a lattice scaffold structure. Each layer of the structure
has a trajectory that follows a rectilinear raster pattern.

x

y

R1(Odd Rod)
(Corner) C1

R2(Even Rod)
C2

R3
C3

R4

Figure 4.5: The trajectory for a single layer of a scaffold structure (left) is partitioned using
repeating elements as the sub-tasks (right). The red, blue, and yellow segments of the
partitioned trajectory correspond to the odd-numbered rod, even-numbered rod, or corner
sub-tasks.

A diagram of the sub-task sequence with the measurement and ILC update intervals for

the chosen sub-tasks is shown in Fig. 4.6. While this partitioning of a lattice scaffold is not

unique, the selected sub-tasks provide sufficient time between sub-task iterations to acquire

the measurements and update the input for the next iteration, as depicted in the figure.

Other choices of sub-tasks, such as treating all rods as a single sub-task, may not provide
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sufficient time for the process monitoring system to finish measuring the sub-task before its

next iteration.

time

R1 C1 R2 C2 R3 C3 R4

R1 R3

R2 R4

C1 C2 C3

Measurement acquisition
+ ILC updates

Sub-task sequence

Figure 4.6: The sub-task sequence for the raster trajectory from Fig. 4.5 is depicted as the
filled segments in the light gray region. The intervals during which a sub-task’s measurements
and ILC updates occur—depicted as the outlined segments in the dark gray region—must
complete before the next iteration begins. The arrows indicate the flow of information from
the previous sub-task to the process monitoring system and ILC algorithm, then to the next
iteration. As the sub-tasks execute, their errors are measured and then used by the ILC
algorithm to update the inputs for the next iteration.

4.2.3 Iterative Learning Controllers

For each sub-task, ILC is used to modify the width reference signal before it is mapped

to the extruder inputs using the models developed in Section 4.1. The ILC update law used

to determine the input for the subsequent iteration is

um
j+1(k) = um

j (k) +Qm(q)
[
Km

p emj (k)
]

(4.10)

which uses a proportional, or P-type, learning function. Here, the superscript m indicates

the sub-task index, and Km
p is the proportional gain. Although the update laws for each

sub-task are separate, all update laws use a learning function with the proportional gain

of Kp = 1 and the same Q-filter Q(q). Including a Q-filter in Eq. (4.10) can help improve

the error convergence by filtering out high-frequency noise [29]. In this work, the Gaussian

filter described in Section 3.4.1 that smooths the measured material edges acts like a lowpass

Q-filter applied to the error signal. Alternatively, using an error estimate in Eq. (4.10)
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may achieve similar improvements to the error convergence as a substitute for the more

conventional Q-filter.
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Chapter 5

Experimental Validation

This chapter discusses the fabrication of functionally graded scaffolds to validate the

process monitoring and control strategies described in Chapters 3 and 4. The functional

grading is achieved by varying the filament width along the scaffold’s reference trajectory.

Before fabricating the scaffold, each layer of the reference trajectory is partitioned into

repeated sub-tasks, and the reference widths are mapped to the extrusion system input

signals using experimentally calibrated models. During fabrication, the profile measurements

of the deposited material are collected along each sub-task’s trajectory and processed online

to determine the material width error. An iterative learning control (ILC) algorithm uses

these measurements to learn the inputs for the sub-tasks as they are fabricated, then updates

the inputs for the subsequent sub-tasks within the layer.

5.1 Fabrication of Functionally Graded Scaffolds

Scaffolds, a type of 3D periodic structure, have been used in tissue engineering to repair

damaged tissues and organs by providing a structure to stimulate tissue regeneration [66].

The porous architecture of a scaffold influences its mechanical and biological functions, both

of which must be considered when designing a successful scaffold [67], [68]. As a tissue’s

role largely dictates its structure, many natural tissues exhibit heterogeneous structures to
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provide various functions [69]. Hence, functionally graded scaffolds, which are scaffolds with

spatially gradient porosities, have been investigated for use in tissue engineering because they

can be designed to mimic the function of natural tissues more closely.

Different approaches have been used to vary the porosity in a scaffold spatially. Many

designs achieve this simply by changing the spacing between rods [70]–[73]. Alternatively,

other designs modify the angle between rods [74] and the rod width [75] in different sections

of the layer, or they continuously vary the filament width along the deposition path [25]. As

this work aims to control the filament width, a structure with a varying filament width is

appealing for validating the process monitoring and control strategies.

5.1.1 Test Scaffold

The structure used to validate the process monitoring and control approach is the

functionally graded scaffold shown in Fig. 5.1 based on a similar design from [25]. Each

scaffold layer is a rectilinear raster pattern with 24 tapered rods spaced 1.5 mm apart. The

height of the first and second layers are 0.25 mm and 0.32 mm, respectively. All rods narrow

to a width of 0.65 mm at the midpoint, but the width at the ends of the rod is different due

to the differing rod lengths of each layer. In the first layer, the rods are 37.5 mm long and 1

mm wide at the ends; in the second layer, the rods are 34.5 mm long and 0.97 mm wide at

the ends. Choosing the lengths as described ensures that the rod midpoints are measured

by the process monitoring system. Tapering the rod width along their lengths results in a

scaffold with a porosity that increases inward from the corners in the xy-plane.

For the test structure to be suitable for the control strategy described in Chapter 4,

the sub-tasks learned by the ILC algorithm, which correspond to the odd-numbered rods,

even-numbered rods, and corners of the raster pattern, should have spatially- and iteration-

invariant dynamics. When deposited upon a supporting structure (e.g., the substrate or

previous layer’s material), the filament may be compressed between the support and the

nozzle, causing its width to increase or “swell.” Thus, the supporting structure for a layer
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Figure 5.1: The functionally graded scaffold used in experimental validation. Both layers
consist of tapered rods with the same tapered filament pattern, shown on the right, that
creates a spatially varying porosity in the scaffold. The height of the first and second layers
are 0.25 mm and 0.32 mm, respectively.

can be viewed as an external disturbance that acts on the rod width. Unlike the first layer,

where the substrate provides a uniform support structure for the entire layer, the second

layer is supported non-uniformly by the previous layer’s deposited material. If the rods were

the same length in both layers, as shown in Fig. 5.2, the second-layer-exterior rods would be

the only rods supported by the corners of the first layer; however, the interior rods would

be supported by the rods of the first layer. In this case, the different supporting structures

would introduce an iteration-varying disturbance into the rod sub-task dynamics that could

degrade the performance of the ILC algorithm [29]. Therefore, to avoid introducing an

iteration-varying disturbance, we extend the first-layer rods so that their corners are not used

to support the second layer.

The support structure also differs between second-layer rods due to the taper of the

first-layer filaments. The resulting disturbance repeats at the same frequency since the

supporting rods are equally spaced and printed at a constant velocity. However, the taper

angle changes the ratio of supported and unsupported material, which can be viewed as

55



varying the duty cycle of the resulting disturbance signal. While the small taper angle will

cause a disturbance that varies slightly across iterations, the variation will be minor and

should not significantly impact the ILC algorithm’s performance.

x

y

1

2

3

4
Rod 3

Rods 2 & 3

Rod 1

x

z

Figure 5.2: The first layer of the scaffold (dark gray) is the supporting structure for the second
layer (light gray). The side profiles on the right illustrate the different support structures for
the interior and exterior rods. Rod 1 is supported only by corners, rods 2 and 3 are supported
only by rods, and rod 4 is supported by both rods and corners.

5.1.2 Printing Parameters

The scaffold structure described in Section 5.1.1 is fabricated at a constant axis velocity

of 1 mm/s, and the desired filament width is achieved by varying the extruder torque along

the deposition path. The reference filament widths are mapped to the initial extruder torque

inputs using the material models identified in Section 4.1. Lead-in lines are added before the

start of each layer to initialize the material flow from the extruder. Each layer of the scaffold

is printed separately to allow additional data to be collected after fabrication. This data is

only used to evaluate performance and not to change the control inputs between layers or

prints.

5.1.3 Process Monitoring and Control Implementation

The raster trajectory of the test structure is partitioned into the odd-numbered rod,

even-numbered rod, and corner sub-tasks following the segmented ILC approach described in
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Section 4.2. These sub-tasks are also the same segments processed online with the algorithm

that calculates the material’s geometric errors from the scanner measurements (Section 3.4.1).

The geometric errors are calculated along the rod sub-tasks using a Gaussian filter with a

cut-off wavelength of λc = 7 mm to smooth the measured material edges. Limitations of the

process monitoring system result in sparsely measured corner segments, so the geometric

errors cannot be calculated effectively for this sub-task. Accordingly, the ILC algorithm

(Eq. (4.10)) is applied to correct the measured material width errors in the odd- and even-

numbered rod sub-tasks. If error measurements were available along the entire trajectory,

the results from implementing ILC in the corner sub-tasks would likely be similar to those

for the rod sub-tasks since all sub-tasks use the same ILC update law.

5.2 Printing Results

We fabricate scaffolds described in Section 5.1 using the unmodified inputs generated

from the material models and again using the process monitoring and control strategy to

update the input signals online; the resulting scaffolds, which we will respectively describe

as “uncontrolled” and “controlled,” are shown in Fig. 5.3. In the figure, a lead-in line

marks the start of each layer’s deposition path. Compared with the reference, the entire

uncontrolled scaffold appears under-extruded. The initial rods of the controlled print show

similar under-extrusion; however, subsequent rods show increased material width as the

inputs are learned and updated by the ILC algorithm, especially near the ends of the rods.

The increased material width leads to improved pore size in the controlled scaffold compared

with the uncontrolled scaffold.

The quality of the fabricated scaffolds is assessed by calculating the material width error

at each reference point along the deposition path. Figure 5.4 shows the width error magnitude

plotted spatially along the deposition path as a color shading. The colorbar below the

figure relates the color shading to the width error magnitude, with darker colors representing
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Figure 5.3: Images of the fabricated scaffolds. The top row shows the first layer, while the
bottom row shows the second layer. From left to right, the columns show the uncontrolled
print, the controlled print, and the reference trajectory. A lead-in line marks the start of
each layer.

larger error magnitudes. The black squares in the figure demarcate the start of each layer’s

deposition path. The uncontrolled prints show similar shading across all rods, signifying that

the magnitude of the width error remains consistent throughout both layers of the structure.

However, the plots for the controlled prints show a shift from darker to lighter colors after

the first rods within a layer, indicating that the width error decreased. This shift aligns with

the point when ILC updated the initial input signals.

The error dynamics in the iteration domain further illustrate the impact of the ILC

algorithm, as shown in Figs. 5.5 to 5.7. Recall that the odd- and even-numbered rods are

the individual sub-tasks learned using ILC. Since a single scaffold layer has 24 rods, each

sub-task has twelve total iterations per layer. Although the sub-tasks have separate iteration

domains, their iteration domain error dynamics are similar since the odd- and even-numbered

rods have the same reference trajectory (Fig. 5.5). Both layers of the controlled print show
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Figure 5.4: The width error magnitude, shown along the reference trajectory as a color
shading, for the uncontrolled (left) and controlled (right) prints. Here, lighter colors indicate
a smaller error magnitude at a given spatial location. The sections not measured by the
process monitoring system, namely the corners of the raster trajectory, are colored gray. A
black square indicates the start of each layer’s trajectory.

that after iteration 0, the width error magnitude is reduced for all subsequent iterations.

In contrast, the uncontrolled layers show no definitive trend in the iteration domain error

dynamics (Fig. 5.6).

The reduction to the material width error is additionally quantified using the root mean

square (RMS) error. The RMS error is a common metric for evaluating the performance of

ILC algorithms and is often normalized at each iteration by the initial iteration’s RMS error,

i.e., RMS(ej)
/
RMS(e0). Plotting the normalized RMS width error in the iteration domain

(Fig. 5.7) illustrates the performance difference of the ILC algorithm between the first and

second layers of the controlled prints. Specifically, the errors in the controlled print’s first

layer converge faster than those in the second layer, possibly due to the different support

structure in the second layer making the material width less sensitive to input signal changes.

The faster error convergence in the first layer contributes to its improved performance over
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Figure 5.5: Dynamics of the width error magnitude in the iteration and time domains for the
sub-tasks in the controlled print. The sub-tasks correspond to the odd- and even-number
rods in each layer of the scaffold trajectory.
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the second layer. Since the ILC algorithm only modifies the inputs for the rods printed after

iteration 0, we compare the RMS error for the initial rods (iteration 0) to the RMS error in

the remainder of the print (iterations 1–11). Compared with iteration 0, the RMS error in

the rest of the controlled print is reduced by 81.5% and 61.1% in the first and second layers,

respectively.

While the error is reduced after the initial rod iterations, the increased errors in the initial

sections could impact the performance of the overall structure. One option to reduce the

errors in these sections is to add lead-in rods that are used to learn and update the inputs

for the initial rods. Furthermore, the initial inputs for subsequent scaffold layers could be

learned from previous layers rather than treating the layers as separate tasks. Alternatively,

an additional ILC algorithm could be applied part-to-part to learn the inputs from previously

fabricated scaffolds.
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Figure 5.7: Iteration domain RMS width error for the uncontrolled and controlled prints.
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Chapter 6

Conclusion

6.1 Summary of Contributions

Additive manufacturing (AM) facilitates the fabrication of complex structures that

would otherwise be difficult to make using other manufacturing methods. The spatial and

dimensional errors that arise during fabrication using extrusion-based AM methods like direct

write (DW) printing inhibit manufacturing parts with increased geometric fidelity. This

research presents a method for measuring and correcting geometrical errors in DW-printed

3D periodic structures while they are fabricated. A process monitoring system is developed

to measure the deposited material directly, and an iterative learning control (ILC) algorithm

is implemented to compensate for the measured errors.

The process monitoring system integrated into the DW printing system utilizes a 2D laser

line scanner to take direct in situ profile measurements of the deposited material. As the part

is fabricated, the laser scanner follows a motion plan that tracks the print head’s position,

generating time-delayed profile scans of the deposited material. An algorithm is developed to

process the scans into a 2D projection of the structure and calculate the material’s bead width

and centerline contour errors. This algorithm runs during the print, enabling the process

monitoring system to determine the part’s geometric errors asynchronously, i.e., online but
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not in real time.

The measurements from the process monitoring system are used to generate models

that map the part’s reference bead width to the extrusion process’s input signals. The ILC

algorithm modifies these inputs based on the errors that the process monitoring system

measures online. Here, a segmented approach to ILC is taken, where the structure is treated

as sets of sub-tasks rather than a single task. For the 3D periodic structures this strategy is

applied to, the structure’s repeating elements serve as the sub-task sets learned by the ILC

algorithm. With this implementation, the learning occurs concurrently with the printing

process, which reduces the part’s errors as it prints.

6.2 Future Work

While this research demonstrates the ability to measure and correct a fabricated part’s

geometric errors during the printing process, there are several directions in which future

work could improve the current methods. This section presents potential ideas for further

increasing part fidelity and expanding the control strategy.

Further improvements to part geometry can be gained by expanding the control approach

to correct the material’s spatial placement using the centerline contour errors measured by

the process monitoring system. One potential strategy to correct contour errors is to modify

the axes paths based on a compensation vector formed by mirroring the error about the

reference path [13], [76]. Future work could also enable error correction throughout the

structure by revising the process monitoring system to reduce the unmeasured sections during

a print. Increasing the scanner’s sampling rate or shortening the offset between the nozzle and

scanner would improve measurement coverage by increasing the measurement density along

the material deposition trajectory. Alternatively, augmenting the laser scanner with a camera-

based vision system would expand the process monitoring system’s field of view. Image

processing techniques similar to those used in the current measurement processing algorithm
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could be utilized to process the output from the camera since the laser scanner’s measurements

are essentially processed as images. Determining the material’s spatial placement, especially

distinguishing material on different layers, may be less reliable when using the light intensity

captured by the camera instead of the laser scanner’s height profiles; however, the camera

measurements could be used to estimate the material’s placement in the unmeasured sections.

Future work should also investigate methods to decrease the need to post-process prints,

which currently involves removing the lead-in lines and likely the uncorrected initial segments

of the structure. Incorporating the deposition process’ time dynamics into the material

models would improve starting and stopping material extrusion, removing the need for lead-in

lines. Moreover, the errors in the initial segments could be compensated for by modifying

the initial inputs using the ILC algorithm initialized with errors measured from a training

routine or previously fabricated parts or layers.

Another direction for future work is to expand the trajectory flexibility of the segmented

ILC approach and apply it to fabricate non-periodic structures. One possible strategy, similar

to the one explored in [23], would be to create a library of simple parameterized basis elements

and then combine different permutations of these elements to form larger, more complex

structures. Parameterizing the elements would facilitate designing parts with repeated basis

elements to provide trajectory repetition within the structure, allowing a single basis element

to be learned with ILC from its various permutations.
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Appendix A

The Gaussian Filter

In the continuous domain, the impulse response for a Gaussian filter is defined as

g(x) =
1

σ
√
2π

exp

(
− x2

2σ2

)
. (A.1)

Performing the Fourier transform on Eq. (A.1) yields the filter’s frequency response, given as

G(jω) = exp

(
−ω2σ2

2

)
(A.2)

where the parameter σ can be used to tune the filter’s frequency response. The filter parameter

σ can be defined in terms of the cut-off frequency ωc, which is the frequency at which the

filter’s frequency response is |G(jωc)| = −3 dB. However, because the Gaussian filters are

applied spatially in this application, it is more intuitive to define the cut-off in terms of

the spatial wavelength λ, which is related to the frequency by ω = 2π/λ. Solving for the

wavelength at which |G(j2π/λ)| = −3 dB yields the following relationship between the cut-off

wavelength λc and σ:

σ = λc

√
ln 2

2π
. (A.3)

Since the Gaussian filter is applied to a set of discrete points rather than a continuous

profile, the filter is implemented in the discrete domain using the sampled impulse response,
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given as

gd(k) =
1

σ
√
2π

exp

(
−k2d2s

2σ2

)
, for −m ≤ k ≤ m (A.4)

where ds is the distance between sampled points and the parameter m defines the span of the

filter. It should be noted that Eq. (A.4) assumes the distance between points ds is constant.

While the distance between points in the edge profiles to which the filter is applied will vary

slightly, it is reasonable to assume a constant distance ds between edge points based on the

simulation results shown in Fig. 3.7. Thus, we assume the distance between points is equal to

ds = v/fs, where v is the axis velocity and fs is the sampling rate of the scanner. Additionally,

the selected cutoff wavelength is assumed to be larger than the Nyquist wavelength, which is

the shortest resolvable wavelength and given as twice the sampling distance.

Although the filter’s impulse response extends infinitely, it can be approximated as a finite

impulse response (FIR) filter. Since the values of the sampled impulse response decay as m

increases, the contributions to the filtered output from the points outside of the truncated

span will be negligible if the filter’s span is sufficiently long. Therefore, we truncate the filter

by finding the integer m that satisfies

gd(m) ≤ εgd(0) (A.5)

where ε is an arbitrarily small value. Solving Eq. (A.5) for m yields that

m ≥ σ

ds

√
−2 ln ε. (A.6)

When truncating the impulse response, we use ε = 10−3 and choose m as the nearest integer

greater than Eq. (A.6). Sampling and truncating the impulse response can alter the filter’s

DC gain so the sampled filter is normalized to ensure a unitary DC gain, i.e.,

ḡd(k) =
gd(k)∑m

l=−m gd(l)
. (A.7)
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The filter is applied as a discrete convolution with the sampled impulse response. Given

a discrete profile y(k), k ∈ [0, N − 1], the filtered output z(k) is

z(k) =
m∑

i=−m

ḡd(i)y(k + i), for k ∈ [m,N − 1−m]. (A.8)

Note that Eq. (A.8) only determines the filtered output for k ∈ [m,N − 1 − m] because,

outside this interval, the term y(k + i) is not defined for all values of i ∈ [−m,m]. To filter

the ends of the profile, we adjust the weights of the Gaussian filter based on the sample index

to maintain a unitary DC gain. Therefore, the filtered output over the entire profile interval

is

z(k) =
b∑

i=a

ḡd(i)

S
y(k + i), with S =

b∑

l=a

ḡd(l), for k ∈ [0, N − 1] (A.9)

where the bounds are

a = −min(m, k)

b = min(m,N − 1− k).

(A.10)
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