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ABSTRACT

Model predictive control (MPC) is a powerful feedback technique that is often used in

data-driven robotics. The performance of data-driven MPC depends on the accuracy of

the model, which often requires careful tuning. Furthermore, specifying the task with an

objective function and synthesizing a feedback policy are not straightforward and typically

lead to suboptimal solutions driven by trial and error. In this work, we seek to address these

challenges by investigating data-driven methods for system identification, task specification,

and control synthesis of unknown dynamical systems. First, we conduct a case study on

the design of a data-driven MPC for performing automatic needle insertion in deep anterior

lamellar keratoplasty, a challenging ophthalmic microsurgery task. We propose a data-

driven method for controller synthesis and selection and demonstrate that the synthesized

controller outperforms a state-of-the-art baseline in ex vivo physical experiments. Next, we

present AutoMPC, an open-source Python package for automatic synthesis of data-driven

MPC. We demonstrate the AutoMPC outperforms a state-of-the-art offline reinforcement

learning algorithm on several standard control benchmarks. We further demonstrate that

AutoMPC outperforms standard control baselines in physical experiments on an underwater

soft robot.
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CHAPTER 1: INTRODUCTION

Model predictive control (MPC) is a powerful framework for designing robot controllers.

By leveraging knowledge of the dynamics, it can predict and optimize a robot’s behavior over

a multi-step time horizon and has been demonstrated to be effective on high-dimensional

robots [1]. Moreover, MPC has been used as a component of model-based reinforcement

learning (RL) solvers for continuous control problems to improve the sample complexity [2].

Successfully implementing MPC is challenging, as the control performance relies heavily

on the accuracy of the model. For soft robots or robots with complex dynamics, i.e., aero-

dynamic or hydrodynamic interactions, developing a representation from first-principles can

often be laborious or even intractable. Alternatively, researchers are increasingly relying on

data-driven models using—among others— neural networks [3], Gaussian processes [4], or

Koopman operators [5]. On the other hand, system identification (SysID) methods typically

suffer from tedious hyperparameter tuning, scalability issues, or limited model capacity [6].

Further, when done manually, hyperparameter tuning is time-consuming and prone to errors.

Besides model accuracy, the control performance of MPC is also sensitive to factors such

as the objective function, including regularization terms, the planning horizon, and state

or control constraints. These hyperparameters create a large search space that is often left

largely unexploited leading to suboptimal solutions. The optimizer must also be carefully

chosen to exploit any nonlinearities in the dynamics. This is especially true for nonlin-

ear objectives (e.g., “sparse rewards” in the RL community) and underactuated nonlinear

systems.

In this work, we make two key contributions. First, we conduct a case study of data-driven

MPC design for an ophthalmic surgical robot (Chapter 3). We study a highly challenging

microsurgery procedure known as deep anterior lamellar keratoplasty (DALK). This setting

poses unique modelling challenges due to the small-scale (< 30 µm) interactions between the

surgical instrument and soft tissue, as well as robust control challenges, due to the sensitivity

of the procedure to small errors in tool positioning. We develop a data-driven MPC for this

procedure based on a learned autoregressive (ARX) model of the system dynamics. We also

propose a cross-validation-like measure for offline evaluation and tuning of the MPC. We

demonstrate in physical ex vivo experiments that our controller outperforms an established

baseline controller, which was shown to have comparable performance to human surgeons.

In our second contribution, we seek to generalize the approaches used in the surgical

robotics case study, by developing AutoMPC, an open-source Python package for the auto-

matic synthesis of data-driven MPC (Chapter 4). The goal of this package is to make MPC
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accessible to non-experts in the same way that AutoML libraries such as auto-sklearn [7]

and AutoKeras [8] have done for supervised machine learning. The package implements a

wide variety of SysID models (autoregression, Gaussian Processes (GP), Koopman opera-

tors, SINDy, neural networks) and optimizers (LQR, iLQR, direct transcription, and Model

Predictive Path Integral (MPPI) control), and presents an open framework for contributors

to add their own algorithms. We demonstrate that AutoMPC-generated controllers achieve

superior performance to a state-of-the-art offline reinforcement learning algorithm on sev-

eral standard control benchmarks (Chapter 5). We also present extensions to AutoMPC

(Chapter 6) to improve robustness, support multi-task controllers, and improve scalability.

We also evaluate the performance of AutoMPC on a physical underwater soft robot system,

where we demonstrate superior performance compared to several standard control techniques

(Sec. 6.4).

This work has been presented at several venues, including

• Preliminary findings of the surgical robotics case study (Chapter 3) were presented at

the 2020 IROS Cognitive Robotic Surgery Workshop [9].

• AutoMPC package design (Chapter 4) and results (Chapter 5) were presented at the

2021 IEEE Conference on Robotics and Automation (ICRA) [10].

• Full results of the surgical robotics case study (Chapter 3) were published in Robotics

and Automation Letters 2022 [11] and were also presented at ICRA 2022 [12].

• A manuscript presenting the physical experiments with AutoMPC on the underwater

soft robot (Sec. 6.4) has been submitted to ICRA 2023 and is currently under review

[13].
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CHAPTER 2: BACKGROUND

Model Predictive Control: MPC is a widely used closed-loop control approach in

robotics that incorporates state and control constraints [3, 14, 15]. For linear systems, the

theory of closed-loop stability has been established and optimization is carried out efficiently

with convex optimization solvers or avoided by offline precomputation known as explicit

MPC [15]. However, for general nonlinear systems the closed-loop behavior is not yet well

understood and successfully implementing MPC requires manual tuning.

Besides the high computational demand, MPC relies on accurately modeling the system

dynamics. Although it has has been shown to achieve the desired performance when using

models learned from data [2], inaccurate data-driven representations can cause suboptimal

performance and even unstable control. Although robust MPC can address model inaccuracy

[16] for linear systems, robust nonlinear control is harder to analyze and achieve. In this

work, we will address this issue by automatically tuning the hyperparameters with Bayesian

optimization where the performance of the SysID, task specification, and control synthesis

is tuned end-to-end on a simulated surrogate model.

System Identification and Data-driven Control: System identification has been

thoroughly explored [6] and theory of data-driven control for linear systems is relatively well

developed, with regret bounds derived for policy gradient methods [17]. However, nonlinear

SysID and data-driven control remains an open research question. Recently, there has been

significant interest in using deep neural networks [3, 18, 19], GP based methods [4] and

Koopman operator theory [5, 20]. Both classical system identification techniques and deep

learning-based techniques require careful hyperparameter tuning to obtain useful models.

Our work is also related to model-based RL approaches [21, 22, 23], which explicitly learn a

dynamics model and rewards, and run an optimizer to generate the agent’s policy. However,

to generate experience model-based RL accesses the true system, which is often infeasible or

even unsafe. Our setting is also related to offline RL, which does not use online interaction

with the robot [24, 25, 26]. In this work, we will present a method which is both offline and

model-based, and also auto-tuned.
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CHAPTER 3: CASE STUDY: AUTOMATIC NEEDLE INSERTION FOR
DEEP ANTERIOR LAMELLAR KERATOPLASTY

Deep anterior lamellar keratoplasty (DALK) is a cornea transplantation technique which

has been shown to improve patient outcomes compared to prior methods. Whereas the

alternative penetrating keratoplasty (PKP) method transplants the full thickness of the

cornea, DALK is a partial thickness transplant, replacing only the anterior layers (around

90% of the total thickness), while leaving the original endothelium and Descemet’s membrane

intact [27]. This has been shown to significantly reduce the risk of tissue rejection [28].

One approach to DALK is the “big-bubble” technique. As shown in Fig. 3.1, a cannulation

needle is carefully inserted into the cornea and its tip is positioned just above the cornea

apex. Air is then injected through the needle to perform pneumodissection. Ideally, an

air bubble is formed which separates the endothelium and Descemet’s membrane from the

anterior cornea layers [29]. In practice, the air bubble frequently fails to form properly.

Borderie et al. [30] found that the bubble failed to achieve pneumodissection in around

59% of cases, though the success rate can vary significantly depending on the surgeon and

technique [31].

Successful bubbles can be classified as either type I or type II. Type I bubbles form within

the stroma, while type II bubbles form deeper, between the stroma and the Descemet’s

Membrane. Depending on the type of bubble formed, the surgeon will have to modify the

graft preparation [32]. Moreover, the type of bubble impacts the perforation rate and the

histological properties of the graft [32, 33]. Thus, it is highly desirable to control the type

of bubble formation. Yoo et al. [32] found that the relative depth of the needle within the

cornea is an important factor for both the success rate and type of bubble formation. They

found that type I bubbles were consistently formed when the relative depth of the needle

was between 75% and 85%, while type II bubbles dominantly formed for depths greater than

90%. Depths between 85% and 90% yielded a mix of bubble types. Thus, when the needle

depth can be controlled to within 5% of intended, it is possible to reliably achieve bubble

formation of a particular type. Depending on thickness of the cornea, this corresponds to an

accuracy of approximately 30µm, which is challenging for human surgeons to achieve due

to the small scales and difficulty of depth perception [34].

The need for small scale manipulation and visualization make the DALK procedure a

promising application for surgical robotics, and there have been several recent works ad-

dressing this. Guo et al. [35] and Park et al. [36] use custom robots to guide the needle

insertion, but these devices have limited range of movement and are limited to steeper nee-

dle insertion angles, which has been associated with worse pneumodissection outcomes [37].
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Air Pocket

Begin Insertion

Needle Deflection Corneal Deformation

Successful 
Pneumodissection

Figure 3.1: Top: In deep anterior lamellar keratoplasty (DALK), a cannulation needle is
inserted from the side of the cornea and air is injected to separate the cornea layers for
dissection. Bottom: Needle deflection and corneal deformation are sources of error that can
prevent the needle from reaching the desired target depth.

Rigid Predicted Path
Actual Path

Figure 3.2: Four points in time of the same needle insertion. Notice that the rigid predicted
path (magenta) diverges from the actual path (green) and that the cornea surface deforms
as the insertion proceeds.

Draelos et al. [38, 39] develop a surgical robot system which mounts the needle on a 6-DoF

arm, granting a wider range of movement. The needle insertion is guided using feedback

from an optical coherence tomography (OCT) sensor, which images the location of the nee-

dle with respect to the cornea surfaces. The system can be operated either in cooperative

mode, wherein the needle is guided by a human surgeon, or automatic mode, wherein the

needle insertion is done autonomously.

Planning for automatic needle insertion in Draelos et al. is based on the assumption that

both the cornea and needle remain rigid [39]. However, they observe that as the needle is

inserted into the cornea, the relationship between the robot end-effector and the needle tip

deviates from this rigid assumption, suggesting that either the needle or some component of

the attachment assembly is deforming. Moreover, the cornea itself can deform significantly

as the needle is inserted, effectively creating a moving target. Fig. 3.1 illustrates both of

these effects and Fig. 3.2 shows examples in OCT data. To address these issues, the authors’

approach reacts to deformation via feedback control rather than constructing an accurate

plan. Once embedded, the needle cannot be translated laterally, which it makes difficult to
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correct course once the needle has drifted off track. This can cause the needle to miss its

target position by more than 100 µm.

This paper presents an insertion controller which accounts for the predicted needle and

cornea deformation. A data-driven model is created to predict the motion of both the needle

and the cornea in response to the robot’s motion. A model predictive controller (MPC) then

uses this model to plan an insertion path consistent with the learned dynamics. We use

a cross-simulation controller selection procedure, similar to cross-validation, to compare

candidate models for MPC without using physical experiments.

An autoregressive linear model (ARX) is chosen for the MPC controller based on this

scoring procedure. We evaluate the method on ex vivo corneas and find that it outperforms

the state-of-the-art [39] in terms of both final error in cornea depth achieved by the needle

(3.96 ± 1.48% vs 7.80 ± 3.37% for a target depth of 90%) and in terms of vertical error

(43.29 ± 15.78 µm vs 75.71 ± 33.90 µm). Furthermore, the method achieves less than 5%

error in relative depth (the threshold found by Yoo et al. [32] to be associated with reliable

control of bubble type) in 61% of trials, as opposed to 42% for the baseline.

3.1 RELATED WORK

Robots have been widely studied in microsurgery applications to overcome the limits of

human perception and dexterity. Tasks to which surgical robots have been applied include

cochlear implantation [40], vascular anastomosis [41], and variocolectomy [42]. In particular,

there has been considerable effort to develop robotic surgical tools for ophthalmic surgery

[43, 44, 45, 46], including systems which use magnetic fields to guide the tool [47, 48]. Many

of these systems are designed for teleoperation by human surgeons, but there has also been

work on automatic motion planning for surgical robotics. In particular, automatic steering

of flexible needles has been done using sampling-based planners [49] and inverse kinematics

[50], though these techniques require a model of needle-tissue interaction. Learning from

demonstration (LfD) has also been used for surgical tasks [51, 52], and Keller et al. [53] uses

LfD and reinforcement learning (RL) for DALK. LfD and RL can pose safety concerns in

a surgical setting and typically require large amounts of data to be effective, which can be

expensive to obtain.

A significant challenge in surgical robotics is modelling the interaction of surgical instru-

ments and tissues [54]. Finite Element Modelling (FEM) has been used to model such

interactions [55], but such FEM models are often difficult to develop and computationally

intensive to simulate. They are, therefore, not well-suited for the real-time demands of sur-

gical robots. In other robotics domains, data-driven model predictive control (MPC) has
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IRB 120 Robot ARM

DALK Handpiece

OCT Scanner

AAC

Figure 3.3: The DALK Workstation uses an IRB 120 robot arm which holds the needle via
the DALK Handpiece. The artificial anterior chamber (AAC) holds the cornea sample while
the OCT scanner provides feedback.

been used to control challenging systems such as cutting food [3], aggressive driving [18],

and robotic fish [56]. Data-driven MPC is less computationally intensive than techniques

like FEM and more data-efficient than LfD and RL, making it a more suitable choice for

surgical robotics. In this work, we apply data-driven MPC to the DALK task.

3.2 DALK WORKSTATION

Our experimental platform is the DALK workstation (shown in Fig. 3.3) previously de-

scribed in [39]. It includes a manipulation subsystem, which guides the needle, and a

perception subsystem, which tracks the position of the needle and cornea. The manipu-

lation subsystem consists of an IRB 120 robot arm (ABB robotics; Shanghai, China), and a
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custom-designed “DALK handpiece,” which attaches to the robot’s end-effector and holds

the 27-gauge cannulation needle. The arm and handpiece are designed so that they can

guide the needle into the cornea without colliding with either the patient’s anatomy or other

equipment in the surgical theater. The perception subsystem consists of a custom optical

coherence tomography (OCT) scanner mounted beneath a stereo microscope. The OCT

scanner captures volumetric images of the cornea and needle during the DALK procedure

at a rate of ∼1.5 Hz. Fig. 3.2 shows sample cross-sections of the OCT volumetric image,

capturing the needle at several points through the insertion.

The perception subsystem extracts features of interest from the OCT-acquired volumetric

image in real-time. The anterior and posterior cornea surfaces are segmented using Dijkstra’s

algorithm using the method described in [57]. The cornea apex is then identified by fitting a

parabola to the posterior cornea surface. The needle is tracked by matching a 3D model of

the needle to the OCT voxels using the iterative closest point algorithm [58]. The positions

of both the needle and the posterior cornea surface are corrected for the index of refraction

imposed by the curved anterior cornea surface. Refer to [39] for more details.

Draelos et al. [39] also proposed methods for automatic needle insertion. The insertion is

divided into an embedding phase and an advancement phase. During the embedding phase,

the robot executes an open-loop motion to embed the needle tip in the peripheral cornea.

During the advancement phase, the needle is steadily advanced centripetally. Ideally, the

needle tip moves steadily deeper as it is advanced, reaching the target depth at the cornea

apex. A target depth of 90% is used since this depth has been associated with successful

pneumodissection [59]. The advancement phase uses feedback from the perception system to

correct the needle if it drifts off path. Draelos et al. describe multiple advancement planners;

however, we take as a baseline the line planner, which attempts to follow a straight line

path between the needle tip and the target position under the assumption of no needle or

cornea deformation. In this work, we design a data-driven model predictive controller for

the advancement phase which predicts and plans for the mechanical effects of needle-cornea

interaction.

3.3 SOURCES OF ERROR

The DALK procedure requires great precision, with less than 50µm on average separating

a successful pneumodissection from a failure [59]. There are several sources of error which

affect needle insertion performance. As the needle is inserted along its axial direction, both

the cutting force at the needle tip required to separate the cornea tissue and the friction

along the needle shaft are difficult to model. When the needle is pitched or translated along
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its lateral direction, it will pull against the cornea tissue, both deforming the cornea and

applying torque to the needle. These forces can cause the needle shaft and holder to flex

independently from the robot end-effector, accentuating the non-rigid relationship between

the end-effector and needle. The deformation induced in the cornea also complicates planning

by effectively creating a moving target. We have also observed that even after the robot has

stopped moving, the needle and cornea may continue to move due to residual tension in the

needle shaft and cornea.

Limitations of the perception system can also create error. The RMS tracking error for

the needle tip position and orientation is typically around 12 µm and 0.5° respectively, but
failures of the ICP algorithm can occasionally lead to much larger errors or cause the needle

tracking to fail entirely. Error in calibration and actuation give the robot a total repeatability

of 25.4 µm [39].

As shown in Fig. 3.2, the opaque needle shaft creates a shadow which makes segmenta-

tion of the posterior cornea surface beneath the shaft difficult and prone to error. This is

complicated by the fact that as the needle shaft is inserted, the cornea tissue is displaced,

causing the posterior cornea surface to deform downward. This deformation occurs within

the needle’s shadow and makes it difficult to judge the needle’s depth in real-time.

Finally, there are also anatomical differences between individual corneas, due to factors

such as the patient’s age, medical history, and in the case of ex vivo corneas, tissue preser-

vation time. The cornea thickness varies, and we have observed that some corneas are more

resistant to cutting than others. There is also variation in the cornea optical properties, and

as a result we have observed that some corneas produce needle tracking failures and surface

segmentation failures more frequently than others.

3.4 DATA-DRIVEN MODELLING OF NEEDLE-TISSUE INTERACTION

We train a data-driven model to predict the cornea-needle interaction, based on the fea-

tures extracted by the perception system and the commanded robot arm movements. For-

mally, we consider a discrete-time sequence of features and control inputs, where xt and ut

denote the features and control inputs at time t respectively and xl:h and ul:h denote the

sequence of features and control inputs respectively between times l and h inclusive. The

learning task is to predict xt+1:t+H given x1:t and u1:t+H−1, for a prediction horizon H.
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𝑢

𝑣

𝑑 =
𝑢
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Figure 3.4: Selected state features include the 2D needle position (nx, ny), 2D apex position
(ax, ay), needle pitch np, and needle depth d.

3.4.1 Dynamic model

We select the dynamic model and features of the system state based on their relevance

to planning (see Fig. 3.4) and model selection experiments in Sec. 3.4.2. The needle state

is represented by the 2D needle tip position in the OCT coordinate frame, denoted (nx, ny),

and the needle pitch np. Since the needle predominantly moves within a plane and the OCT

volume is re-sampled such that the z-axis is perpendicular to the needle shaft, it suffices to

consider only two dimensions. We also include the 2D apex position in the OCT coordinate

frame, denoted (ax, ay). Modelling apex movement allows the planner to account for cornea

deformation as it guides the needle to its target position just above the cornea apex. Finally,

we consider the needle depth ratio d. As shown in Fig. 3.4, the depth ratio is computed by

finding the index-corrected ray normal to the anterior cornea surface which intersects the

needle tip and then intersecting the ray with the posterior cornea surface. Modelling the

depth ratio allows the planner to ensure that the needle is embedded in the cornea with

sufficient depth and to accommodate variations in corneal thickness. The perception system

also provides a segmentation of the cornea surface, but experiments below indicate that

including cornea shape features reduces performance due to overfitting.

Control inputs are also modeled in the OCT coordinate frame. Prior to insertion, the

system is calibrated using the method described in [39] to obtain a rigid transform between

the robot end-effector and the needle tip. At each time step, forward kinematics calculates

the rigid needle tip position, denoted (rx, ry), and the rigid needle pitch, denoted rp. As

previously noted, the rigid needle tip position will differ from the actual needle tip position

due to the mechanical interaction of the needle and the cornea. We then choose our control

inputs to be [ux]t = [rx]t+1 − [rx]t, [uy]t = [ry]t+1 − [ry]t, [up]t = [rp]t+1 − [rp]t. Since
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movement is largely limited to the plane it suffices to consider only 2 dimensions. We define

the control inputs in the OCT coordinate frame rather than the robot workspace and use

the system calibration to convert to Cartesian robot movements. This approach makes the

model invariant to variability in needle mounting.

Let N denote the number of insertions in the training set and let x
(i)
t = [nx ny np ax ay d]

T

and u
(i)
t = [ux uy up]

T denote the features and controls respectively at the t-th timestep

of the i-th insertion. Let Ti denote the i-th insertion length. We model the cornea-needle

interaction using a linear autoregressive model with an exogenous variable (ARX), which

models the dynamics as a linear function of a fixed-size window of the feature and control

history. ARX has a long history of use in time-series prediction and control problems [60] and

is straightforward to use in MPC. In contrast to nonlinear models such as neural networks,

trajectory optimization with an ARX model can be formulated as a quadratic program (QP),

which can be optimized quickly and reliably. Specifically, ARX predicts x̂t+1 = AkΘt, where

Θt = [xt xt−1 . . .xt−k+1 ut ut−1 . . .ut−k+1 1]
T , (3.1)

Ak is the learned parameter matrix, and k is a hyperparameter controlling the size of the

history window, which is also known as the order of the model. Let Θ
(i)
t denote the feature

vector at the t-th time step of the i-th insertion. Ak is learned by using linear least-squares

regression to minimize the objective

N∑
i=1

Ti−1∑
t=1

∥∥∥AkΘ
(i)
t − x

(i)
t+1

∥∥∥2
2
, (3.2)

where ∥·∥2 denotes the L2-norm. Since this ARX model considers features of the needle,

depth, and apex, we refer it as the ARXk-NDA model. In order to make predictions

within the first k time steps of an insertion, we also train separate ARX models with orders

1 ≤ h ≤ k. We normalize the OCT coordinate frame by applying a translation so that the

initial cornea apex position is at the origin. This makes the model invariant to translations

of the cornea with respect to the OCT scanner.

3.4.2 Training and Model Selection

Using a dataset of 38 insertions from Draelos et al. [39], we combined 19 randomly selected

insertions with 5 additional insertions taken from preliminary ex vivo experiments as a

training set, and used the remaining 19 from Draelos et al. [39] for validation. Altogether,
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Figure 3.5: Comparison of several models in needle tip (nx, ny) prediction accuracy.
Heatmaps in (c,d) evaluate model accuracy at varying prediction horizons H and prediction
starting timesteps.

this yields 771 time steps in the training set and 545 time steps in the validation set. We

compare the prediction accuracy of several models on the validation set at varying prediction

horizons. In Fig. 3.5a, we evaluate the impact of model order on the prediction accuracy

of the ARXk-NDA model. We observe that at k = 1, the model prediction accuracy is

significantly worse, while among 2 ≤ k ≤ 5 the impact of model order is minor, only

becoming apparent at the longest horizons. In Fig. 3.5b we compare ARXk-NDA to several

other model classes, using k = 4 as a representative example. We compare against the

rigid model and two other data-driven models. The multi-layer perceptron (MLP) model

operates over the same feature space as the ARXk-NDA models, and uses hyperparameters

automatically selected by AutoMPC [10]. The ARX4-NDAS model expands the feature

space to include points sampled along the top and bottom cornea sufaces. For each surface,

10 points are sampled at even intervals in the x-axis. We find that the ARX4-NDA model

significantly outperforms each of these alternatives at most prediction horizons. A key
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Figure 3.6: The needle advancement MPC begins by constructing a straight-line reference
trajectory between the needle tip and goal, then optimizes a trajectory to track it, while
predicting needle and apex motion.

property of the ARX model is that it considers a window of history, whereas the rigid and

MLP models only use the most recent observation. The superior prediction accuracy of ARX

suggests that historical observations and controls are very useful for predicting the needle-

tissue interaction. On the other hand, the ARX4-NDAS model suffers from overfitting due

to its larger feature space.

Figs. 3.5c and 3.5d evaluate the rigid and ARX4-NDA models respectively at varying

prediction horizons and varying starting points in the insertion. We observe that the per-

formance of the rigid model varies with the insertion starting point, with particularly high

error occurring when prediction begins from the first few time steps. Though similar trends

do hold for the ARX model, it does consistently outperform the rigid model at more than

90% of all starting points and prediction horizons.

3.5 NEEDLE ADVANCEMENT MPC

Using the data-driven model of cornea-needle interaction, we design a model predictive

controller (MPC) to control the needle advancement phase. At a high level, the controller

begins by constructing as a reference trajectory a straight line path between the needle

tip and the goal position (see Fig. 3.6). The controller then optimizes for a trajectory

consistent with the data-driven dynamics model which closely tracks the reference trajectory.
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The optimized trajectory is penalized for deviations from the reference trajectory at both

intermediary states and the terminal state.

3.5.1 MPC Optimization

During the advancement phase, the controller is triggered whenever a new OCT volume is

acquired and processed, which normally occurs every ∼0.65 s. At this time, we observe the

state (nx, ny, np, ax, ay, d). The needle starting point is adjusted to account for the expected

time for planning, which is denoted tlag. This is computed as sx = nx+tlagvx, sy = ny+tlagvy,

and sp = np+ tlagvp, where vx, vy, and vp denote the current commanded needle tip velocities

in x, y, and pitch respectively. The initial state for planning is xinit = [sx sy sp ax ay d]
T .

The goal needle tip position is computed by adding a constant offset to the current apex

position, gx = ax+xoff and gy = ay + yoff. The goal needle pitch is horizontal gp = 0 and the

goal depth is set to gd = 90%. Finally, in order to limit cornea deformation, the goal apex

is the same as the current apex position. Thus, the goal state is xgoal = [gx gy gp ax ay gd]
T .

A reference trajectory is constructed for all state dimensions. The length of the reference

trajectory is determined by the horizontal distance between the start position sx and the

goal position gx as well as the desired x-axis speed vrefx . We have m = ⌊|sx − gx|/vrefx ⌋. The

state reference trajectory is computed by linearly interpolating between xinit and xgoal. That

is, the i-th step of the reference trajectory is given by xref
i = i

m
xgoal+

m−i
m

xinit for 0 ≤ i ≤ m.

The reference control trajectory is constructed as the sequence of controls needed to achieve

the reference state trajectory assuming the rigid dynamics model. That is, for the x-axis,

we have [uref
x ]i = [nref

x ]i+1 − [nref
x ]i for 0 ≤ i < m and uref

y and uref
p are defined similarly.

Next, we optimize for a state and control trajectory which tracks the reference trajectory

and is consistent with the data-driven dynamics model. This is done by constructing and

solving a quadratic program (QP). Although the reference trajectory is m steps long, in

order to account for movement of the needle after the robot has stopped moving, we solve

for a longer m+ l + 1 state trajectory with the final l steps having zero control input. The
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quadratic program is given by

min
x0:m+l,u0:m−1

(
m∑
i=1

x̄T
i Qx̄i + ūT

i Rūi

)
+ x̃T

mF x̃m + x̃T
m+lGx̃m+l

s.t. x0 = xinit

xi = Ah [xi−1 . . .xi−k ui−1 . . .ui−k 1]
T

where x̄i = xi − xref
i ūi = ui − uref

i

x̃i = [[nx]i − [gx]i [ny]i − [gy]i [d]i − gd]
T

h = min(i, k).

(3.3)

Q,R, F, and G denote tune-able cost matrices. The QP is solved using the OSQP [61] solver.

To achieve good real-world performance, there are several additional practical considera-

tions. To avoid large out-of-plane angular changes near the apex, replanning is stopped once

the needle-apex horizontal distance is less than 0.5mm and the last active plan is followed

until completion. The controller must also be able to gracefully handle failures of perception,

for which we use a simple outlier rejection scheme. When the observed needle position differs

from the needle position predicted by the rigid model by more than a certain threshold, we

assume a perception failure. In this case, the rigid model prediction is used to replace the

observed needle position, and the observed needle depth is replaced by the observation at

the previous time step. Outlier rejection does not apply to the apex observations which are

less susceptible to perception failures.

3.5.2 Cross-Simulation Controller Selection

The designer of a data-driven MPC must make a number of key choices, such as feature

selection, model class selection, cost matrix tuning, and regularization. Each of these can

have a significant impact on system performance, so the designer must weigh each option

carefully. The gold standard would be to evaluate each design option with a sufficiently large

sample size of physical experiments in order to achieve a reliable comparison. However in

many applications, this approach would be prohibitively expensive and time-consuming for

comparing more than handful of candidate designs. Instead, designers often use simulators

as a proxy for physical experiments. This approach often suffers from the so-called sim-

to-real gap, where inaccuracies in the simulation create bias in the estimation of MPC

performance, a problem which can be especially significant in hard to model systems such

as those involving deformable objects. Moreover, in a novel application, developing a high-

15



quality simulator may be itself a more challenging problem than designing a data-driven

MPC. We faced both of these challenges in the DALK task. Physical experiments are not

only time and labor-intensive, but consume a limited supply of cornea tissue samples, and

the interaction of the needle with deformable tissue is very hard to model in simulation.

Instead we propose cross-simulation controller selection. We randomly re-sample the

training set for the planning model in order to obtain a simulation model training set, which

is used to train an ARX simulation model. We then simulate the needle advancement MPC

using the planning model in the controller and the simulation model in place of a simulator.

This process is repeated, each time with a new simulation model created through random

re-sampling. This technique allows us to assess how robust the MPC is to model uncertainty

caused by the limited size of the training set, and we find it to be empirically a good predictor

of real-world performance.

We use the cross-simulation technique to compare several candidate controllers, which

mainly differ in the choice of planning model. For each controller, we run 100 trials, each

with a different simulation model and initial configuration. Each simulation model is of the

same class as the planning model, but uses a randomly bootstrapped training set. Each

initial configuration is sampled randomly from real-world data. For each trial, we evaluate

the final depth error |d− gd| and the final error in vertical position |ny− gy|. We present the

summary statistics in Table 3.1.

First, we evaluate the impact of ARX model order on controller performance. We consider

orders 3 ≤ k ≤ 5 and denote the corresponding controllers ARX3-NDA-MPC, ARX4-NDA-

MPC, and ARX5-NDA-MPC. For brevity, we will drop the -MPC suffix when this does not

create ambiguity. We find that of these three controllers, ARX4-NDA achieves the lowest

error both in final depth and final vertical position, which leads us to choose k = 4 as

the model order. We note that this occurs in spite of the fact that the ARX3-NDA model

had slightly better prediction accuracy, suggesting that prediction accuracy alone is not

sufficient to evaluate the suitability of a model for control. Qualitatively, we observe that

every controller produces some outliers with much higher depth and vertical error, creating

relatively high standard deviations. Typically, this is caused by sudden deformations of the

needle or apex in the last few steps of the simulation. When the model fails to predict these

deformations, the needle cannot correct, so errors remain high.

In the interest of avoiding overfitting and unnecessary complexity in trajectory optimiza-

tion, we next consider performing feature selection amongst ARX models. We propose

several controllers which use hybrid models, where ARX is used to predict only some state

dimensions, while the rigid model is used to predict others. For example, the ARX4-DA-

RN-MPC controller uses the rigid model to predict the needle tip, but uses ARX for the
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Table 3.1: Results of cross-simulation controller selection. 100 trials are run per controller.
We report final error in relative depth and vertical position (smaller is better), with ±95%
CI.

Depth Error (%) Vertical Error (µm)
µ σ µ σ

ARX3-NDA-MPC 6.9±1.0 5.1 41.3±8.4 42.9
ARX4-NDA-MPC 6.1±0.9 4.8 40.4±8.1 41.3
ARX5-NDA-MPC 7.1±1.2 6.2 65.9±12.8 65.1
ARX4-DA-RN-MPC 41.5±5.0 25.7 1,137.2±90.1 459.9
ARX4-ND-RA-MPC 7.7±1.0 4.9 50.6±8.3 42.2
ARX4-NA-MPC 7.2±0.9 4.5 36.3±5.3 26.8

apex and depth dimensions. The ARX4-ND-RA-MPC controller is similar, but uses the

rigid model to predict the apex. Since the rigid model cannot be used to predict the needle

depth, we cannot use the hybrid model to assess the impact of modelling the depth dimen-

sion. Instead, the ARX4-NA-MPC controller entirely removes the depth feature from the

model, as well as the associated cost terms in the MPC formulation. For these comparisons,

we always take the simulation model to be the ARX4-NDA, rather than choosing the same

class as planning model. We find that while the ARX4-NA slightly outperforms ARX4-NDA

in terms of vertical accuracy at 36.43±5.2 µm vs 40.4±8.1 µm, none of the three outperform

ARX4-NDA in terms of depth error, which is the most clinically relevant factor. Thus, we

choose to proceed with ARX4-NDA-MPC in the ex vivo experiments.

3.6 EX VIVO EXPERIMENTS

We evaluate our controller on human cadaver corneas in an ex vivo setting, simulating

intraocular conditions using an artificial anterior chamber (Katena Products; Denville, NJ).

This model has been well-validated in literature [34, 62], and we used only cornea samples

with short preservation times suitable for transplantation, so the effects of post-mortem

deterioration should be minimal. We used 6 corneas and performed 8 needle insertions per

cornea, for a total of 48 trials. The baseline controller is the automatic line planner used in

[39]. For each cornea, we randomly assigned half of the trials to the MPC and half to the

baseline. Two of the MPC trials were excluded due to needle tracking failures in the final

steps of the insertion which prevented accurate measurement of the final depth. We choose

the target depth to be 90% and measure the actual final depth based on the needle and

cornea segmentations given by the perception system (referred to as auto-graded depth).
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Table 3.2 summarizes the results.

We find that the MPC significantly (p < 0.05) outperforms the baseline in terms of final

depth error, and also outperforms the baseline in terms of final vertical error, though this

result is not statistically significant due to the large variance in the baseline. This variance

is caused by a number of factors, including perception noise, unpredictable needle and tissue

deformation, and differences in cornea geometry and mechanical properties. We also note

that under the baseline planner, the needle perforated the posterior cornea surface in 2 of

24 insertions, which would result in a clinical failure. No perforations were observed in the

MPC insertions. Fig. 3.7 shows an example plan generated by the MPC in one of the ex

vivo experiments. Qualitatively, we observe that the needle tracks the planned path well,

and that the MPC correctly anticipated that the needle would take a lower path than the

rigid model would have predicted.

To better understand the factors influencing performance in the ex vivo experiments, we

perform post hoc analyses. First, we calculate the plan tracking error for both MPC and

baseline. For a starting time t and a planning horizon Hplan, the plan tracking error is

the minimum distance between planned path computed at time t and the actual position

[(nx, ny)]t+Hplan
. The plan tracking error is averaged over all insertions and starting points.

In essence, this metric measures how accurately the needle reaches the positions intended

by the planner. Fig. 3.8a compares the plan tracking errors of the MPC and baseline over

varying planning horizons. We observe that while the MPC tracking error is higher than

the baseline at the one-step planning horizon, the MPC exhibits lower tracking error for

all longer horizons. This indicates that the MPC is superior to the baseline in producing

realistic plans that can be followed by the needle. In the baseline trials, we frequently observe

that the needle deflects significantly early in the insertions, but this deflection decreases as

the needle is inserted deeper. As a result, the plan tracking accuracy of the baseline actually

improves as the horizon increases from 10 to 15 time steps. Although the cause of this

phenomenon is not known, it may be that as the needle is inserted, the tension created by

needle deflection increases until some other part of the system begins to give, allowing the

needle to return closer to its rigid position.

We also analyze model prediction accuracy on a testing set taken from the ex vivo exper-

iments (Fig. 3.8b), comparing the ARX and rigid models. Both models perform worse on

the testing set compared to the validation, but ARX still outperforms the rigid model at all

prediction horizons. The difference in model accuracy between the validation and testing set

may be partially explained by domain shift, since the MPC drives the system to a different

distribution of states than the planners used in the training and validation sets.

Finally, we note that while the results presented here based on the auto-graded depth are
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Table 3.2: Results of N = 46 insertions (22 MPC, 24 Baseline) on 6 ex vivo corneas. We
report # of perforations, final error in relative depth (auto-graded), and vertical position
(smaller is better), with ±95% CI. P-values are from a two-sample t-test.

Perforations Depth Error (Auto) (%) Vertical Error (µm)
µ σ µ σ

MPC 0 3.96±1.48 3.35 43.29±15.78 35.60
Baseline 2 7.80±3.37 7.98 75.71±33.90 80.27
P-Value 0.039 0.082

Needle Path
Planned Needle Path
Commanded Needle Path
Apex Path
Planned Apex Path

Figure 3.7: Example plan produced by MPC in testing.

significant, we also manually graded the depths to correct for perception errors and did not

find a significant difference between the MPC and the baseline in terms of depth error (MPC

5.40± 1.96% vs Baseline 5.45± 3.11%). This indicates that the performance of the planner

is constrained by limitations of the perception system. Improving the perception accuracy

is outside the scope of this work, but an important area of future research.

3.7 DISCUSSION & CONCLUSION

In this chapter, we demonstrate that data-driven techniques can accurately model the

interaction between cannulation needle and cornea in the DALK procedure. We also demon-

strate that the technique of cross-simulation controller selection can evaluate controller per-
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Figure 3.8: Analysis of the ex vivo experiments. 3.8a compares the plan tracking accuracy
in the needle tip (nx, ny) dimension of the MPC vs the baseline planner; 3.8b evaluates
model prediction accuracy in the needle tip (nx, ny) dimension on the ex vivo data.

formance with offline data, and the results are predictive of real-world performance. The

data-driven model predictive controller (MPC) developed using this approach enables the

surgical robot to achieve superior accuracy in needle placement compared to the baseline.

These improvements have the potential to significantly improve the reliability and consis-

tency of the DALK procedure. In future work, we hope to directly evaluate the impact

data-driven MPC on the pneumodissection success rate, particularly when combined with

an improved perception system.
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CHAPTER 4: AUTOMPC PACKAGE DESIGN

In this section, we describe the design of AutoMPC, an open-source Python package for

automatic synthesis of data-driven model predictive controllers (MPC). First, in Sec. 4.1,

we define the MPC synthesis problem and describe our approach based on simulation with

learned surrogate dynamics. Second, in Sec. 4.2, we discuss the details of our implementation

of AutoMPC, including including the specific System ID models, optimization algorithms, and

objective functions which our package provides.

4.1 DATA-DRIVEN MPC TUNING

We automate MPC using the framework illustrated in Fig. 4.1. As input, the user provides

a dataset D of state/control trajectories, and a task τ = (J,umin,umax,xmin,xmax, I), where

J is a performance metric which assigns numerical scores to trajectories, and (umin, . . . ,xmax)

give bounds for the controls and states, and I is a set of initial states. A complete MPC

controller consists of a SysID model, learned from a training subset, and an optimizer. Each

component has number of tunable hyperparameters (Sec. 4.1.2), with a hyperparameter

setting denoted a configuration. The controller defined by a configuration is optimized end-

to-end using Bayesian optimization (Sec. 4.1.3).

At the start of tuning, D is randomly partitioned a SysID training set DI ⊂ D and a

holdout dataset DH = D \ DI , which is used to train a surrogate dynamics model. We

then evaluate configurations in an order selected by Bayesian optimization. To evaluate a

configuration, we synthesize the corresponding MPC by learning a dynamics model from DI ,

initializing the optimizer, and selecting the objective function based on the configuration

hyperparameters. Control actions are then selected by the optimizer using the dynamics

SimulatedSimulated Task
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Figure 4.1: AutoMPC controller synthesis, tuning, and deployment.

21



model and objective function. We then evaluate the closed-loop performance of the MPC

from the initial states I using the surrogate dynamics model. After a fixed number of

iterations, the best performing controller is provided as output. Details are given below.

4.1.1 Problem Definition

We assume a fully-observable discrete-time dynamical system with state xt ∈ Rn and

control ut ∈ Rm. We use the notation xt:r and up:q to denote the sequences (xt, xt+1, . . . xr)

and (up, up+1, . . . , uq) respectively. The dynamics of the system are written as

xt+1 = f(xt, ut). (4.1)

At each time step, MPC optimizes a trajectory over a fixed horizon H with respect to some

objective function L and constraints ϕ. This optimization has the form

min
xt:t+H ,ut:t+H−1

L(xt:t+H ,ut:t+H−1)

s.t. xi+1 = f(xi, ui) and ϕ(xt:t+H ,ut:t+H−1) ≤ 0.
(4.2)

We do not have access to the true system dynamics, so we must estimate an approximate

model f̂ identified from D.
The user designates a performance metric J(x1:T ,u1:T ) which scores rolled-out trajectories.

We allow J to have arbitrary form. The terminal time T may be constant or dynamically

determined by some goal condition, also specified.

Note that we distinguish the objective L used in the optimizer from the performance

metric J , for several reasons. First, certain optimization methods require L to have a

particular structure. For example, LQR requires L to be quadratic while iLQR requires L

to be twice differentiable. Second, J is evaluated over the entire trajectory while L is only

optimized over a fixed horizon H, and optimizing repeatedly over a fixed horizon may not

lead to good overall performance. This is particularly true for metrics that include terminal

cost, since terminal cost does not provide useful guidance to the MPC until near the end of

the trajectory. Third, certain optimizers cannot accept state or control constraints, so the

objective function may encode constraints as barriers in the objective function. Finally, L

may include regularization terms that penalize deviation from the training data.

Note that learning f̂ from D can be viewed as supervised learning, but the MPC context

adds additional considerations. For example, a simpler, less accurate model may be preferred

to a more complex, more accurate one if the former is cheaper to evaluate, suffers from fewer
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local minima, or is less prone to overfitting. Moreover, the generalization performance of the

model outside of the data distribution is critical, as the MPC may guide the system away

from the distribution in order to “exploit” the model inaccuracies and produce unrealistic

trajectories. This is known as distribution shift and can be partially alleviated by tuning L

to penalize trajectories which deviate from the data distribution.

4.1.2 Hyperparameters

Hyperparameters can take on a mixture of continuous, integer, and categorical values. We

also allow for conditional relationships between hyperparameters. For example, a continuous

hyperparameter specifying the weight of a particular term in the objective function can be

conditioned on a boolean hyperparameter which turns the term on or off.

First, we let HS denote the set of hyperparameters for the SysID method. For example,

the linear autoregression model uses an integer k to control the size of the state history.

Next, we let HL denote the set of objective function hyperparameters. For example, a

quadratic cost function might rescale the diagonal values of the cost matrices. Finally, we

let HO denote the set of optimizer hyperparameters. This includes the planning horizon H

as well as any other optimizer-specific settings, e.g., MPPI sets the number of trajectories

that are sampled in each iteration. Considering these components together, we have a joint

hyperparameter space H = HS ×HL ×HO for the end-to-end system.

4.1.3 Tuning with Surrogate Functions

AutoMPC implements tuning in three modes: 1) End-to-end tuning, which tunes the entire

pipeline for closed-loop performance, 2) SysID tuning, which only tunes the dynamics model

for accuracy, 3) Decoupled tuning, which first performs SysID tuning and then tunes the

optimizer for closed-loop performance.

To search the hyperparameter space H, we use the Bayesian optimization algorithm Se-

quential Model-based Algorithm Configuration (SMAC) [63], as implemented in the Python

package smac3. SMAC builds a model using a random forest to predict the performance

of a configuration h before it is evaluated. This model is used to select the next configura-

tion to evaluate. The use of a random forest, in contrast to the Gaussian Process models

used by many other Bayesian optimization algorithms, allows SMAC to handle structured

hyperparameter spaces that contain a mixture of discrete and continuous hyperparameters,

and conditional hyperparameter relationships. The details of the three tuning modes are as

follows:
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Algorithm 4.1: End-to-end AutoMPC tuning.

1: Input: Task τ , dataset D, surrogate config hsurr, number of iterations n
2: Randomly partition DI ∪ DH = D, DI ∩ DH = ∅
3: f̂surr ← TRAIN(DH , hsurr)
4: history = { }
5: for i← 1 to n do
6: h ← BAYES-OPT(history)
7: f̂ ← TRAIN(DI , h)
8: L ← BUILD-OBJECTIVE(h)
9: optimizer ← BUILD-OPTIMIZER(h)
10: controller ← BUILD-CONTROLLER(f̂ , L, optimizer)
11: trajectory ← SIMULATE(controller, f̂surr, τ)
12: Ĵ[h] ← SCORE(trajectory, τ)
13: history ← history ∪ (h, Ĵ[h])
14: end for
15: Return h with minimum Ĵ[h]

End-to-End tuning Given a configuration h ∈ H, we learn f̂ from DI and derive an

MPC controller πh,f̂ . We define the controller’s true performance as

J[h] =
∑
si∈I

J(xi
1:T ,u

i
1:T−1) (4.3)

where I is the set of initial states, xi
1 = si, and each trajectory is generated by a closed-loop

rollout of πh,f̂ to the true dynamics f .

Without access to f , we define a surrogate performance Ĵ that is identical to (4.3) except

the rollout is performed with respect to a learned surrogate dynamics model f̂surr, which is

learned on the holdout set DH . We avoiding sharing data between system ID and surrogate

training sets to ensure that the surrogate is not identical to model f̂ used for control. We use

Bayesian optimization to minimize Ĵ over H. Although Ĵ is an imperfect approximation of J,
our experiments show that it is still useful for tuning. Specifically, for two controllers π1, π2

with a non-negligible difference in J(π1) and J(π2), it almost always holds that Ĵ(π1) < Ĵ(π2).

The end-to-end tuning procedure is described in Alg. 4.1.

SysID Tuning This optimizes the SysID hyperparameters HS for accuracy, akin to clas-

sical model selection. AutoMPC allows the choice to tune for 1-step prediction accuracy or

k-step prediction accuracy on the testing set DH .
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Decoupled tuning This approach first performs SysID tuning to fix f̂ and then tunes

the configuration over HL ×HO to optimize performance Ĵ.

4.2 IMPLEMENTATION

We provide an implementation of AutoMPC as an open-source Python library. We designed

the package so that: 1) AutoMPC should be accessible enough that a non-expert should be

able to achieve a performant MPC with minimal manual tuning; 2) AutoMPC should be useful

to experts, providing tools to analyze system performance, and allowing a combination of au-

tomatic and manual fine-tuning; 3) AutoMPC should provide a uniform API for components,

allowing users to implement their own methods to be tuned by AutoMPC. The components

implemented in the current version of AutoMPC and their hyperparameters are summarized

in Tab. 4.1 and described in more detail next.

4.2.1 System Identification

Each SysID technique estimates the dynamics function f from a dataset DI .

ARX: A linear autoregression predicting the state as a linear function of the state and

control history for the previous k time steps. That is

xt+1 = [xt, . . . xt−k+1, ut, . . . , ut−k+1]θ (4.4)

with θ the model coefficients. Training is performed using least-squares regression on the

prediction error. The hyperparameter for ARX is the size of the history window k.

Koopman Operators learn a linear operator over an augmented state x̄ =

[x, ϕ1(x), . . . , ϕs(x)]
T , where ϕ1, . . . , ϕs are referred to as basis functions [64]. We use hy-

perparameters to select the basis functions, which can include polynomial terms xs with

2 ≤ s ≤ 8 and trigonometric terms sin(ωx) and cos(ωx) where 1 ≤ ω ≤ 8.

Sparse Identification of Nonlinear Systems (SINDy) represents dynamics in the form

f(xt, ut) =
N∑
i=1

aifi(xt, ut), (4.5)

where f1, . . . , fN are nonlinear basis functions [65]. SINDy uses a fixed set of candidate

functions g1, . . . , gM and performs sparse linear regression to identify a subset of N < M

basis functions for the dynamics. We use the pySINDy library [66] in our implementation
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Table 4.1: For each SysID method, objective function, and optimization method, we list
the total number of hyperparameters, and the names of hyperparameters. The possible
number of active hyperparameters, which varies depending on the choice of values, is listed
in parentheses.

SysID #hyper. (act.) Hyperparameters

ARX 1 (1) history

Koopman 4 (3-4) usepolybasis, polydegree,

usetrigbasis, trigfreq

SINDy 4 (2-4) usepolybasis, polydegree,

usetrigbasis, trigfreq

GP 1 (1) inducingcount

MLP 7 (4-7) numhiddenlayers,

hiddensize{1,2,3,4},
learnrate, activation

Objective #hyper (act.) Hyperparameters

Simple Quadratic 2n+m (2n+m) qdiagvals{1,..,n},
fdiagvals{1,..,n},
rdiagvals{1,..,m}

Gaussian Reg.
Term

2 (2) stateregweight,

controlregweight

Optimization #hyper. (act.) Hyperparameters

LQR 2 (1-2) ishorizonfinite, horizon

Direct Transcrip-
tion

1 (1) horizon

iLQR 1 (1) horizon

MPPI 4 (4) horizon, numtrajs,

noisemagn, costscale

and use hyperparameters to select the set of candidate functions in the same way that we

select basis functions for the Koopman operator.

Gaussian Processes (GPs) are a non-parametric model that has been commonly used

for MPC [4]. Standard GPs use the full training set for inference, so they do not scale well

to larger data sets. Instead, we use an approximate variational GP [67] implemented by the

gPyTorch library [68], which selects a learnable subset of training points to use for inference.

This subset is referred to as the inducing set. The hyperparameter we use for GP is the size

of the inducing set.
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Multi-layer Perceptrons (MLP) A feed-forward neural network architecture. We use

hyperparameters to control the number of hidden layers in the network, the number of

neurons in each layer, the choice of activation function (from ReLU, SeLU [69], tanh and

sigmoid), and the learning rate during training. The number of training iterations are

currently fixed.

4.2.2 Objective Functions

The next tunable component is the optimizer’s objective function L. AutoMPC allows users

to specify custom objective functions with tunable hyperparameters. We provide several pre-

defined objectives which can be used as building blocks to define an objective. First, we

consider the simple quadratic objective

LQ(xt:t+H ,ut:t+H−1;hL) = (xt+H − xgoal)
TF (xt+H − xgoal)

+
t+H∑
i=t

[(xi − xgoal)
TQ(xi − xgoal) + uT

i Rui],
(4.6)

with hyperparameters h1 . . . h2n+m dictating the matrices

Q = diag(h1, . . . , hn), F = diag(hn+1, . . . , h2n),

and R = diag(h2n+1, . . . , h2n+m).
(4.7)

This objective can be effective for simple tasks which drive the system to a target state, such

as the pendulum and cart-pole swing-up tasks.

The objective function can also include a regularization term to guide the optimization

toward regions of the state space where model accuracy is better. We implement an option

to penalize deviation from the data distribution of D as modeled by a multivariate Gaussian

with mean µx and covariance matrix Σx. Similarly we model the controls in D with mean

µu and covariance Σu. We add a regularization term to the objective:

LR(xt:t+H ,ut:t+H−1;hL) =
t+H∑
i=t

h1(xi − µx)
TΣ−1

x (xi − µx)

+ h2(ui − µu)
TΣ−1

u (ui − µu)

(4.8)

with hyperparameters h1, h2.
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4.2.3 Optimizers

We currently implement four optimizers. Each method has a hyperparameter for the

planning horizon.

Linear Quadratic Regulators (LQR) solve the optimal control problem for tasks with

linear models and quadratic cost functions [70]. We introduce a categorical hyperparameter

to choose between finite and infinite horizon LQR.

Direct Transcription (DT) is a common method for formulating trajectory optimization

as a nonlinear programming (NLP) problem [71]. DT requires the system model and the

cost function to be differentiable. Our implementation uses IPOPT [72] to solve the NLP.

Iterative Linear Quadratic Regulator (iLQR) is a popular method for trajectory

optimization similar to DT [1]. iLQR requires the system model to be differentiable and the

cost function to be twice-differentiable.

Model Predictive Path Integral (MPPI) is a sampling-based optimizer that can be

used with non-differentiable system models, and has been demonstrated to work effectively

with neural networks [18]. We introduce hyperparameters for the number of trajectories

sampled on each iteration, the magnitude of the noise, and the cost scaling factor.

Note that the choice of optimizer is constrained by the choices of system model and

objective function, and vice versa. For example, if the model is linear and the objective

function is quadratic, then an LQR controller may be used, but a nonlinear system model

requires the use of a more advanced optimizer. iLQR and Direct Transcription require the

system model to be differentiable, while MPPI can work with non-differentiable models. At

the moment, the model and optimizer classes must be chosen manually, but in future work

we are exploring auto-tuning both.
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CHAPTER 5: AUTOMPC RESULTS

We consider three robotics tasks: pendulum swing-up, cart-pole swing-up, and half-

cheetah running as implemented in the HalfCheetah-v2 environment in OpenAI Gym [73].

Each training set consists of 1,000 trajectories generated by applying, at each time step,

controls chosen randomly from a uniform distribution. Each trajectory lasts for 10 s and

the time step is 0.05 s. The train-test split is 50-50, and a MLP is trained as the surrogate

model. The pendulum and cart-pole tasks are to move from the pole-down state to the

pole-up state xgoal, and use the following rollout performance metric

J(x1:T ,u1:T−1) =
T∑
i=1

1 | xi − xgoal |∞> δ

0 otherwise
(5.1)

where δ = 0.1 for the pendulum and δ = 0.2 for the cart-pole. For the half-cheetah, we use

a static initial state and set

J(x1:T ,u1:T−1) = 200−R(x1:T ,u1:T−1), (5.2)

where R is the reward function defined in Gym.

5.1 SURROGATE FUNCTION TUNING

The first experiment, shown in Fig. 5.1 evaluates the correlation between the surrogate

performance Ĵ and the true performance J. Each point in the scatter plot corresponds

to a configuration h for a MLP-iLQR-Quad pipeline on the cart-pole task. The surrogate

value varies depending on the random draw of DH , so the surrogate estimation procedure

was repeated 10 times for each configuration. The error bars in Fig. 5.1 indicate the inter-

quartile range. For some configurations the inter-quartile range is 0. The correlation between

J and Ĵ is not perfect and some configurations have considerably higher variance in Ĵ than

others. However, the relationship between J and Ĵ is still mostly monotonic. This suggests

that Ĵ is a useful metric for tuning.

5.2 SYSTEM ID TUNING

Our next experiment compares the performance of each system ID method on each sample

system. The system ID data set DI is split into a training set, validation set, and testing
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Figure 5.1: Comparing true performance J and the surrogate performance Ĵ. Error bars
indicate interquartile range over 10 random draws of the dataset. Equality is indicated by
the dotted line.

set containing 70%, 15%, and 15% of the trajectories respectively. Each method is tuned

for 100 iterations (or until the search space is exhausted) by SMAC based on the 1 s rollout

RMSE prediction error on the validation set.

Tab. 5.1 shows the 1 s error on the testing set for the tuned models. Note that the

performance of the methods considered here varies significantly, both across methods for a

given task and across tasks for a given method. For example, SINDy is the best performing

scheme for the pendulum and cart-pole tasks, but is not for the half-cheetah task. This is

because the dynamics of the pendulum and cart-pole systems can be represented as a sum of

the nonlinear basis functions implemented for SINDy, while the dynamics of the half-cheetah

are more complicated. This variability in performance highlights that methods are typically

optimal only with respect to certain systems, motivating the need for auto-tuning to avoid

the tedious process of searching among models.

5.3 OPTIMIZER TUNING

Next, we compare the performance of each optimizer on all three tasks. For each system,

we test with a hand-tuned system ID model (SINDy for pendulum and cart-pole and MLP

for half-cheetah). For the LQR optimizer, the dynamics are linearized around the target

state. The objective and optimizer hyperparameters are tuned for 100 iterations by SMAC

based on the surrogate performance. Since the outcome of the tuning process varies, we

tune each setting three times, randomizing the dataset, model weights, and SMAC seed.
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Table 5.1: Performance of SysID methods for three systems. Each combination is tuned
and evaluated based on the RMSE at a 1 s time horizon.

Sys. ID Pendulum Cart-pole Half-cheetah

ARX 2.08 1.87 5.68
Koopman 2.48 2.04 5.62
SINDy 0.02 0.00 5.70
GP 1.52 3.76 6.10
MLP 0.21 0.17 5.05

Tab. 5.2 reports the best tuning outcome for each task and optimizer. We also report the

results of the iLQR optimizer with the Gaussian regularization objective. For the pendulum

task, we observe that all methods perform comparably, though iLQR is slightly worse. For

the cart-pole, we observe that all methods perform identically except for LQR which fails to

complete the task. For the half-cheetah, iLQR achieves the best performance, while MPPI

also performs decently. We note that as with system ID, the best optimizer varies from

system to system.

5.4 END-TO-END TUNING

Next, we evaluate the end-to-end system performance of several tuning approaches, and

compare with a hand-tuned baseline. We use the example of MLP-iLQR-Quad on the cart-

pole, and tune using the following approaches: 1) We tune the system ID for accuracy in the

same manner as in Sec. 5.2, while the objective and optimizer are fixed to the hand-tuned

baseline; 2) We tune the system ID model based on the surrogate performance, keeping

objective and optimizer fixed; 3) Using a system ID pre-tuned on data (i.e. the result of

tuning under the first mode), we tune the optimizer and objective hyperparameters; 4) We

perform full pipeline tuning of all hyperparameters simultaneously.

Fig. 5.2 compares the results against the hand-tuned baseline over 100 tuning iterations.

We run each tuning method five times and plot the median scores. Except for tuning system

ID for accuracy, all methods perform comparably and are able to exceed the baseline.
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Table 5.2: Performance of optimizers for three systems. For each system, we fix a hand-
tuned SysID, and tune the optimizer and objective function hyperparameters by an MLP
surrogate. For each combination, we show the best result out of three tunes. Lower values
indicate better performance.

Optimizer Pendulum Cart-pole Half-cheetah

LQR 31.0 201.0 261.5
iLQR 35.0 21.0 -29.5

iLQR w/ Gauss. Reg. 31.0 21.0 134.1
Direct Transcription 30.0 21.0 221.8

MPPI 31.0 21.0 52.2

0 20 40 60 80 100
Tuning iterations

25

50

75

100

125

150

175

200

Tr
ue

 D
yn

 P
er

f.

Tuning MLP-iLQR-Quad on Cartpole
Tune SysID on Data
Tune SysID on Perf.
Tune Obj/Opt, Pre-tuned SysID
Full Pipeline Tune
Hand-tuned Baseline

Figure 5.2: Comparing auto-tuning procedures. The y-axis plots true performance on the
ground truth dynamics, median of 5 trials.
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Figure 5.3: Tuning curves for three robotics tasks compared to the offline RL algorithm
BCQ. For each system, we run ten tuning trials, plotted in grey. The median and best
performances for each system are highlighted. Performance is evaluated with respect to
ground truth dynamics.
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5.5 COMPARISON TO OFFLINE RL

Next, we compare the true performance of full pipeline tuning to the offline RL algorithm

Batch-constrained Deep Q Learning (BCQ) [24]. We train BCQ for one million iterations

with the same dataset size and distribution as used in prior sections. To limit the hyperpa-

rameter space for the half-cheetah, we use a custom quadratic objective which only tunes the

weights for the vertical position, horizontal velocity, and front thigh, shin, and foot angles.

The custom objective also allows the target velocity to be tuned. For each system, we repeat

the tuning procedure ten times, randomizing the dataset, model weights, and SMAC seed.

For the half-cheetah system, we observe that the surrogate model evaluation occasionally

produces highly implausible estimates, and so we modify the tuning procedure to reject

performance estimates which fall outside of a predefined plausible range. Results in Fig. 5.3

demonstrate that in the median case, our method achieves superior performance to BCQ on

each task. We remark that BCQ was originally presented as learning on data produced from

a moderately good controller. In these experiments, we consider the much more challenging

task of learning on data generated by a completely uninformed (random) controller. Even

with uninformed initial data, AutoMPC achieves reasonable performance in almost all cases.

In the more challenging half-cheetah system, the controllers produced by AutoMPC exhibit

larger variations in performance, but at least some perform well. For such problems, we

suggest to run the tuning process multiple times on the same dataset to obtain different

controllers, then acquire a new dataset on the physical system using those controllers, and

finally re-run tuning on the new dataset.

5.5.1 Analysis of Selected Hyperparameters

We observe a few interesting trends in the hyperparameters selected by AutoMPC. First,

AutoMPC rarely selects ReLU activations for MLP system ID models. Instead, it more often

selects tanh or SeLU activations. This may suggest that the discontinuities of ReLU cause

problems for optimizations. Additionally, AutoMPC typically selects at least two MLP layers

at least one of which has more than 150 neurons. Second, we observe that AutoMPC typically

selects longer prediction horizons for the half-cheetah system, but prediction horizon appears

to be less relevant for the simpler systems. Finally, for the pendulum and cart-pole systems,

AutoMPC typically places a large objective weight on pendulum angle compared to other state

dimensions.
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CHAPTER 6: AUTOMPC EXTENSIONS

In this section, we introduce several futher extensions to AutoMPC. In Sec. 6.1, we introduce

an ensemble-based tuning method to increase the robustness of AutoMPC tuning to modelling

uncertainty. In Sec. 6.2, we introduce a method for synthesizing controllers which can be

applied to multiple control tasks and describe a method for tuning controllers to achieve

good task generalization. In Sec. 6.3, we describe the architecture we use to scale AutoMPC

in high-performance computing environments. Finally, in Sec. 6.4, we present results of

physical experiments with AutoMPC on an underwater soft robot.

6.1 ENSEMBLE-BASED TUNING

In Sec 4.1, we introduced the surrogate-based controller tuning procedure. Since we do

not assume access to the ground truth dynamics during the tuning procedure, we began

by training a surrogate dynamics model f̂surr on the holdout dataset DH . We then defined

the estimated performance metric Ĵ, computed by performing closed-loop simulation of the

candidate controller with respect to the surrogate model f̂surr. This metric Ĵ was used for

evaluating controllers during the tuning process. In Sec. 5.1, we empirically demonstrated

that Ĵ is a reasonable estimate for J, and in Sec. 5.4, we demonstrated that tuning based

on Ĵ is able to produce controllers which perform well on the ground truth dynamics. How-

ever, these experiments also showed that surrogate-based tuning is not fully robust on the

higher dimensional HalfCheetah benchmark. In several trials, AutoMPC made no progress

beyond its starting configuration, while in others, high-performing configurations were later

discarded in favor of low-performers. These issues can be caused by a) the difficulty of

searching the combinatorially large controller design space, and b) discrepancies between

the estimated controller performance Ĵ and the true controller performance J, which are

in turn caused by inaccuracies in the surrogate dynamics model f̂surr. In this section, we

propose a bootstrapping-based ensemble-evaluation method to address the latter.

Discrepancies between simulated and ground truth dynamics is a widely studied issue in

robotics, particularly in the area of reinforcement learning, where it is commonly referred to

as the sim-to-real gap [74]. RL policies trained under simulated dynamics frequently fail to

generalize to the real world. A variety of approaches have been taken to address this issue,

including domain randomization [75, 76], policy distillation [77], and generative adversarial

networks to improve simulation realism [78]. In this work, we use a bootstrapping-based

ensemble method to replace the point estimate Ĵ with an uncertainty distribution estimate
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Figure 6.1: Ensemble-based tuning for HalfCheetah system. Shaded region shows 20th-80th
percentile of ensemble estimates.

Ĵ . We then tune a controller to be robust against modeling uncertainty.

Inaccuracy of the surrogate dynamics model can be caused by either the inductive bias

inherent to the model class or by model variance due insufficient coverage of the training

data. Model variance can be particularly large in high-dimensional systems, since the amount

of training data required for good coverage of the state space scales exponentially with the

dimensionality. Analytically describing the impact of model variance on the variance of the

estimate performance metric Ĵ is very difficult due to the effect of the closed-loop nonlinear

controller. Bootstrapping is a common method used in statistics to estimate the variance of

an estimator in the absence of an analytic approach [79]. The available data is repeatedly

resampled with replacement and the estimator is computed for each resample. The resulting

empirical distribution has been shown to often be a good estimate for the uncertainty of the

estimator.

Inspired by this approach, we propose an ensemble-based tuning method. The hold out

dataset DH is randomly resampled with replacement N times. Each sample is used to train

a separate dynamics model, giving a surrogate ensemble {f̂surr,1, . . . , f̂surr,N}. To evaluate

a configuration, the candidate controller is simulated N times against each of the models

in the surrogate ensemble, giving the empirical performance distribution Ĵ . Finally, Ĵ is

aggregated to obtain an evaluation metric for tuning. There are several options for this

aggregator, including the median, worst-case, or fixed percentile. The choice of aggregator

represents a tradeoff between confidence and performance in the tuned controller.

6.1.1 Ensemble-Based Tuning Results

To evaluate the capabilities of ensemble-based tuning, we perform two tuning trials

35



on the HalfCheetah benchmark. As in Sec. 5.4, we use datasets with 1000 trajectories of

200 time steps each, generated by application of uniform random controls. The ensembles

contain 10 MLP models trained on bootstrap samples. We aggregate the empirical perfor-

mance distribution of each candidate controller by taking the 80th percentile performance.

For each trial we use independently random dataset generation and bootstrap sampling. In

Fig. 6.1, we visualize the controller performance under the true dynamics, as well as the

distribution of estimated performance (shaded region is 20th to 80th percentile of perfor-

mance estimates). We observe that the true dynamics performance consistently falls within

the range of estimates of the surrogate ensemble, suggesting that ensemble-based tuning is

an effective means of quantifying uncertainty during the tuning process. We also observe

that in both trials, AutoMPC is able to make significant improvements in true dynamics per-

formance over the course of tuning, suggesting that ensemble-based tuning is effective at

tuning controllers for high-dimensional systems.

6.2 MULTI-TASK TUNING

Another limitation of the tuning procedure developed in Sec 4.1 is that the synthesized

controllers can only perform a single task. For example, a controller synthesized for the

Cart-pole system will always control the robot to a single target state. To control the robot

to a second target state, an entirely new controller would need to be synthesized and tuned

from scratch. This is highly inefficient, since one would intuitively expect considerable over-

lap in the solution manifolds of controllers performing similar tasks. Moreover, MPCs are

commonly used to control systems on a distribution of possible tasks through modification of

the objective function. The multi-task problem has been studied in the context of reinforce-

ment learning with a variety of approaches, including an augmented observation space [80]

and meta-reinforcement learning [81]. In this section, we present an extension to AutoMPC

which allows a single controller to be executed on multiple tasks by modifying suitable terms

of the objective function. We also present a method for explicitly tuning AutoMPC controllers

to achieve good task generalization performance.

To enable AutoMPC controllers to generalize to multiple tasks, we introduce the notion of a

task transformer Θ, which maps a task and configuration to an objective function Θ(τ, h)→
Lτ,h. The task transformer functionally replaces the configurable objective function described

in Sec. 4.1.1. To apply the same controller to two distinct tasks τ1 and τ2, the transformer

is simply invoked to generate task-specific objective functions Lτ1,h and Lτ2,h. The system

ID model and all optimizer hyperparameters are shared. Although AutoMPC allows the

transformer to have arbitrary structure, we introduce the notion of task properties to make
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it easier to design general transformers. For example, any task that specifies a single goal

state has the goal property. This allows a task transformer to use knowledge of the goal

state without knowing anything else about the structure of the task or performance metric.

For example, the quadratic task transformer produces an objective function of the form

LQ(xt:t+H ,ut:t+H−1;hL) = (xt+H − xgoal)
TF (xt+H − xgoal)

+
t+H∑
i=t

[(xi − xgoal)
TQ(xi − xgoal) + uT

i Rui],
(6.1)

where xgoal is read from the input task properties. As with the tunable quadratic cost

defined in Sec. 4.2.2, the diagonal values of the Q,R, and F matrices are determined by the

configuration h.

Notice that though the task transformer allows a controller to be applied to multiple tasks,

it makes no guarantees of good generalization performance. In particular, when a controller

is tuned for performance on only a single task, it may not generalize well to others. To

address this, we introduce multi-task tuning. Rather than providing a single task as input

to the tuning process, the user provides a set of tasks {τ1, . . . , τN}. To evaluate a candidate

configuration h, the tuner simulates the controller against each of the tasks separately. Each

simulation uses a task-specific objective function generated by the transformer Lτi,h and is

scored by the task-specific performance metric Jτi . Finally the task scores are aggregated to

produce a single controller score. This aggregation can be performed in a number of ways,

including mean, worst-case, or specified percentile performance.

The extended AutoMPC tuning procedure including both the ensemble- and multitask-

extensions is described in Alg. 6.1.

6.2.1 Multi-task Tuning Results

To evaluate multi-task tuning, we propose a multi-task variation to the Cart-pole bench-

mark defined in Ch. 5. We define a set of five goal states for the cart-pole, each with the

pole in the upright position, and with the base at positions -6, -3, 0, 3, and 6, respectively.

Similar to Ch. 5, we define the performance metric as

J(x1:T ,u1:T−1) =
T∑
i=1

1 | xi − xgoal |∞> δ

0 otherwise
(6.2)
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where δ = 0.2 and xgoal varies with the task.

In Fig. 6.2, we show the results of 100 iterations of tuning an MLP-iLQR-QuadCost

controller on the multi-task Cart-Pole benchmark. We use a surrogate ensemble of size 4

and tune based on the median performance across all tasks and ensemble members. For each

iteration of tuning, we visualize the median and range of performance across the task-set

of the best-known controller. We find that AutoMPC is able to make consistent progress in

improving the median task performance and is eventually able to find a controller which

achieves consistent performance across all tasks.

6.3 SCALING & PARALLELISM

An important practical consideration in the design of AutoMPC is efficient use of available

computational resources. Each step of the main tuning loop (Alg 6.1, Line 10), requires both

system ID model training and closed-loop controller simulation. Both of these operations can

carry high cost in both time and memory. These requirements scale with the dimensionality

of the system, since higher-dimensional systems require larger models and may also require

a greater number of tuning iterations to adequately search the controller design space. The

computation time required for model training is also impacted by the size of the input

dataset. 100 iterations of tuning on the HalfCheetah can take 18-24 hours to run on a

modern CPU. Moreover, the extensions introduced for ensemble-based tuning (Sec. 6.1)

and multi-task tuning (Sec. 6.2)., significantly increase the computation requirements. In a

setting withN tasks in the tuning set andM members in the ensemble model, a total ofN ·M
independent controller simulations must be performed at each iteration of the main tuning

loop. To effectively meet these requirements, we have explored the use of high-performance
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Algorithm 6.1: AutoMPC tuning with ensemble- and multitask- extensions.

1: Input: Tuning tasks {τ1, . . . , τN}, dataset D, surrogate config hsurr, ensemble size M ,
number of iterations n

2: Randomly partition DI ∪ DH = D, DI ∩ DH = ∅
3:

4: for i← 1 to n do
5: bootstrap sample ← resample(DH)
6: f̂surr,i ← TRAIN(bootstrap sample, hsurr)
7: end for
8: history = { }
9:

10: for i← 1 to n do
11: h ← BAYES-OPT(history)
12: f̂sysid ← TRAIN(DI , h)
13: optimizer ← BUILD-OPTIMIZER(h)
14: Ĵ ← {}
15:

16: for j ← 1 to N do
17: L ← Transformer(τj, h)

18: controller ← BUILD-CONTROLLER(f̂sysid, L, optimizer)
19:

20: for k ← 1 to M do
21: trajectory ← SIMULATE(controller, f̂surr,k, τj)
22: score ← SCORE(trajectory, τj)

23: Ĵ ← Ĵ ∪ {score}
24: end for
25: end for
26: history ← history ∪ {(h, AGGREGATE(Ĵ ))}
27: end for
28: Return h with minimum AGGREGATE(Ĵ )

computing resources for AutoMPC tuning. We have extended AutoMPC with several additional

features which allow it to efficiently exploit the highly parallel nature of these environments.

Since AutoMPC is a Python library, it is constrained by the global interpreter lock (GIL),

a feature of the Python interpreter which only allows one thread to execute at a time. To

avoid this constraint, we instead use process-based parallelism. We make use of three process

classes:

• A single master process is responsible for overall program flow control and performs

Bayesian optimization using the smac library.

• On each iteration of the main tuning loop (Alg. 6.1, Line 10), an evaluation process
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Figure 6.3: AutoMPC can use Dask to parallelize evaluations of multiple tasks and surrogate
models across an HPC cluster.

is launched to run controller evaluation. The purpose of a separate evaluation process

is two-fold. 1) AutoMPC makes use of a number of low-level libraries for model learning

and optimization. These libraries may generate errors which cannot be handled by the

Python exception system. To handle these cases, the master process monitors the eval-

uation process, and in the event of an unexpected crash, the configuration is recorded

as having infinite cost and tuning proceeds gracefully. 2) The time required for model

training and controller simulation can vary greatly between configurations and some

configurations may require an intractable amount of time to evaluate. If evaluation

exceeds a user-defined time limit, the master process terminates the evaluation process

and again an infinite configuration cost is recorded.

• A number of worker processes are used to perform computations which can be run

in parallel. Depending on the backend used, either a fixed number of worker processes

are launched at the beginning of tuning and run for the duration, or worker processes

are launched on demand.

The evaluation process is created and managed using the standard multiprocessing li-

brary and communicates with the master process via pipes. The worker processes may

be managed by one of several backends, including Joblib1, which provides easy parallelism

1joblib.readthedocs.io
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Table 6.1: Time required for a tuning Cart-Pole with 40-member ensemble with varying
numbers of workers

Number of Workers Run Time

1 1h 51m 25s
5 0h 22m 36s
10 0h 12m 13s
40 0h 5m 58s

within a single computer, and Dask Distributed2, which allows worker processes to be de-

ployed across multiple nodes of a high-performance cluster. All data passed between pro-

cesses are represented as Python objects encoded using the pickle library. One implemen-

tation challenge is the need to pass very large objects between processes, including datasets

and trained models, which often cause performance issues for inter-process communication.

To address this, we use a filesystem-based datastore for large objects. When needed, large

objects are serialized to the datastore and replaced by a handle pointing to their location.

The handle can be easily passed between processes and used to deserialize the large object

when it is needed for computation. The datastore also reduces the memory requirements of

AutoMPC, since large objects are kept on disk when they are not needed.

The worker processes are used in several places to parallelize computation. When

ensemble-based tuning is used, the workers are used on Alg 6.1, Line 4 to train the ele-

ments of the surrogate ensemble in parallel, and Line 20, to perform controller simulations

for each surrogate in parallel. When multi-task tuning is used, the workers are used on Line

16 to perform controller simulations for each task in parallel. This means that with a suf-

ficient number of worker processes, ensemble- and multitask-tuning can be performed with

no time penalties. Deployment of this architecture onto a cluster using Dask is illustrated in

Fig. 6.3. In the future, we are also interested in modifying the Bayesian optimization loop to

allow for multiple configurations to be evaluated in parallel, further increasing performance.

6.3.1 Scaling & Parallelism Results

To evaluate the impact of our scaling improvements, we measure the time required for an

AutoMPC tuning trial under varying numbers of workers. In each trial, we perform 2 iterations

of MLP-iLQR-QuadCost controller tuning on the Cart-pole benchmark with 200 trajectories

2distributed.dask.org
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in the dataset and a 40-member surrogate ensemble. We repeated this experiment with 1, 5,

10, and 40 worker processes. All trials were run on the Delta Supercomputer at the National

Center for Supercomputing Applications using the Dask Distributed backend. The total

time required for each tuning trial is reported in Table 6.1. We observe that the required

time consistently decreases with more workers, and that for 1, 5, and 10 workers, the speed-

up is approximately linear. For 40 workers, the speed-up is slightly sublinear, due to fixed

overhead.

6.4 PHYSICAL EXPERIMENTS ON UNDERWATER SOFT ROBOT

We also demonstrate the performance of AutoMPC using physical experiments on an un-

derwater soft robot. The robot (shown in Fig. 6.4) consists of two modules, each with two

parallel actuators. The water pressure in each actuator can be varied independently to alter

the shape of the soft robot. Feedback is provided by pressure sensors in each actuator as

well as ten computer vision markers placed along the spine of the robot. We define the

state space of the robot as x = (xmarker,xpressure) consisting of eleven 2D Cartesian marker

locations and four analog pressure readings, and its control u consisting of 8 binary solenoid

inputs, controlling the intake and outtake valves for each actuator. For more details on the

construction and design of the robot, see [82].

The task space for the underwater soft robot is divided up into 2x2 cm goal regions. Each

Selected Robot 
Task Space

Out of
Distribution 
Targets

Tuning Task
Targets

#
of

 T
ra

in
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g 
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m
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Figure 6.4: Training data coverage map visualized by a 2D histogram corresponding to
number of data samples collected where the robot’s end-effector is inside a given 2x2 cm
square region. The ten blue targets are used for tuning, and the remainder are used for
testing. Peripheral targets are used to test out-of-distribution generalization.
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Figure 6.5: 2D Histograms of accuracy data for AutoMPC and baseline controllers on the
chosen task space.

task τ is associated with a goal-region Gτ . The performance metric is defined to be the

number of seconds for which the robot end-effector is not in the goal region, that is

Jτ (x1:T ,u1:T−1) = ∆t

T∑
j=1

(1− 1Gτ ([xee]j)) , (6.3)

where ∆t gives the controller period, and 1Gτ gives the goal region indicator function. A

subset of 10 tasks (shown in Fig. 6.4) were selected for tuning and a total of 11,358 time

steps of data were collected from the robot.

Fig. 6.5 compares end-effector placement accuracy of the AutoMPC controller to two base-

line controllers. The Open Loop IK baseline uses a learned IK model to predict the pressure

levels needed to obtain the target position and a simple pressure controller drives the ac-

tuators to the intended pressure without any feedback from the comptuer vision markers.

The Visual Servo baseline uses the pressure level feedback and a PI controller to adjust the

target position and correct for steady-state error in the open-loop controller. The AutoMPC

controller significantly outperforms both of these baseline controllers across most tasks. We

also evaluate the AutoMPC controller on 18 tasks outside of the tuned task distribution.

We find that AutoMPC generalizes generally well, though with slightly higher error than the

in-distribution tasks.
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CHAPTER 7: CONCLUSION

In this work, we studied data-driven techniques for the design of model predictive con-

trollers (MPC) for novel robots with unknown dynamics. We began by reviewing the relevant

literature (Chapter 2) and concluded that there was a need to study methods for automatic

and offline tuning of MPC. Next, we presented a case study (Chapter 3) on the application

of data-driven MPC to performing needle insertion in the deep anterior lamellar keratoplasty

(DALK) ophthalmic surgical procedure. We proposed data-driven methods for offline MPC

tuning, and tested our synthesized MPC in physical experiments, demonstrating superior

performance to a baseline which had previously been shown to be comparable to human

surgeons. Next, we presented the design of AutoMPC (Chapter 4), an open-source Python

package for automatic, offline MPC synthesis. We conducted simulated experiments with

AutoMPC (Chapter 5), evaluating its performance across several standard control benchmarks

and demonstrating superior performance to a state-of-the-art offline reinforcement learning

algorithm. Finally, we presented several extensions to AutoMPC (Chapter 6), including an

ensemble-based method for improving tuning robustness, a method for synthesizing and

tuning multiple controllers, scaling and performance improvements for deployment in high-

performance computing environments, and evaluation of AutoMPC in physical experiments

on an underwater soft robot.

We believe that there are many interesting future directions in the space of data-driven

MPC design, including 1) the use of meta-learning techniques to improve the speed of con-

troller tuning, 2) the use of active learning techniques to automatically identify informative

strategies for robot data collection, 3) automatic tuning for adaptive controllers, 4) automatic

tuning for stochastic environments, and finally 5) integration of AutoMPC with reinforcement

learning and imitation learning methods.
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