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ABSTRACT

Social network systems have produced large-scale data of social signals. However, the
potential mechanism of social signal propagation and how it affects people’s beliefs and
responses are still not well investigated. In this project, we propose a framework and an
explainable Hierarchical Regression Model Tree (HRMT) algorithm to solve the individual-
level and segmentation-level response prediction tasks and therefore provide the solution to
analyze how people’s morality, demographics, and other psychographic characteristics affect
their beliefs and response to the social information influence. We develop a text-based actor
enrichment prediction module based on the Bidirectional Encoder Representations from
Transformers (BERT) language model and predict the message enrichment with a weakly-
supervised topic detection model. The Hierarchical Regression Model Tree is constructed
with regression-error greedy search and reliability test algorithms and then used to construct
the segments of actors based on tree structure and predict future responses. These results
can be applied for many downstream researches and tasks, such as sociological analysis,
influence campaign detection, advertisement, and recommender systems. We also proposed
two novel evaluation metrics, normalized segment Discounted Cumulative Gain (nsDCG)
and invariant nsDCG. Experimental evaluations show the proposed HRMT outperforms the
state-of-the-art models by 0.12 in the nsDCG metrics. We also introduce the application of

HRMT in analyzing the characteristics of actors’ beliefs based on the tree structure.
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CHAPTER 1: INTRODUCTION

Social network systems have become more and more popular and meanwhile also produce
large-scale data, which can be viewed and captured as large-scale social signals [1]. The
engineers have investigates how to characterize the physical signals and what kind of re-
sponse is produced in the physical world. However, the potential mechanism of how social
information signals are propagated and how it affects people’s beliefs and responses are still
not well investigated or understood. In this project, we proposed a novel framework, as
is shown in Figure 1.1, to detect, analyze, and understand the way how people’s (social
actors’) demographics, morality belief, and other psychographics, as well as information
signals (messages), impacts the social response and the segmentation of actors on social
networks. The proposed framework can help us better understand the social information
influence mechanism between actors and messages on the social network and benefits a lot
of downstream research and applications, such as sociological analysis, influence campaign

detection, advertisement, and recommender systems.
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Figure 1.1: Overall Framework of the actor segmentation and response prediction task
and the proposed solution with Enrichment Detection modules and Hierarchical Regres-
sion Model Tree algorithm.

In this project, we abstract and focus on two tasks, the individual-based response predic-
tion, and segmentation-based response prediction tasks. We focus on two kinds of entities,
the actors and messages, abstracting the information propagation and influence process on
most social network systems. In both tasks, the input data includes the interaction data

between the actors and messages with timestamps, as well as the contextual data of them.



The contextual data of actors can be the historical messages they posted and the profile
data, while the contextual data of messages can be, for example, text, images, and videos.
The individual-based response prediction focus on the time series prediction of the individ-
ual actor’s response towards a specific type of messages, such as the message with given
concerns, agendas, or emotions. The segmentation-based response prediction includes two
sub-tasks, including (i) clustering the actors into segments and (ii) segment-level response
time series prediction. Solving these two tasks can help us understand how actors’ demo-
graphic and psychographic characteristics can cluster and affects their beliefs and response
to social messages.

The existing literature has also explored the time series prediction of social response [2, 3,
4]. However, most existing models focus on developing complex models (such as deep neural
networks) and improving prediction accuracy, neglecting the importance of model explain-
ability. This limits their ability and application on understanding the potential mechanism
of actors’ beliefs and social information influence. We propose the Hierarchical Regression
Model Tree algorithm, which is an explainable actor segmentation and response prediction
model. As is shown in Figure 1.1, it consists of three modules, (i) Enrichment Predic-
tion, (ii) Hierarchical Regression Model Tree (HRMT) Construction, and (iii) Segmentation
Inference and Response Prediction. In the Enrichment Prediction module, we develop a
text-based classification model for morality, demographics, and psychographics prediction
of actors based on the BERT [5] language model. We adopt the weakly-supervised topic
detection model CatE [6] for the message enrichment prediction of agenda, emotion, and
concerns. In the Tree Construction module, we develop a novel explainable regression model
tree algorithm, named Hierarchical Regression Model Tree (HRMT). We construct the tree
with a reliability test and greedy search for regression error. In the Tree Inference Module,
we introduce the segmentation algorithm based on the tree nodes and the algorithm to find
the best match of tree node and predict response.

We evaluate the individual-based response prediction task with Lift code [7] and propose
two evaluation metrics, the normalized segment Discounted Cumulative Gain (nsDCG) and
invariant normalized segment Discounted Cumulative Gain (insDCG) for the segmentation-
based response prediction task. The evaluation of the French Election 2017 dataset shows
that the proposed framework outperforms the state-of-the-art baselines by 0.12 on average
on the nsDCG metric. We also introduce the method to analyze the characteristics of actors’

beliefs based on the tree structure.



CHAPTER 2: RELATED WORKS

There has been much existing literature introducing the modeling based on the tree struc-
ture. The strength of these existing tree-based models including our proposed HRMT model
is that the models are explainable. We may reveal lots of findings, including statistical

analysis of features, and the latent mechanism of the prediction model.

2.1 DECISION TREE

The decision tree is a fast and reliable machine learning model based on a tree structure,
which is widely used in classification and regression tasks. The decision tree model builds
either the regression or classification model based on the split of the datasets. It starts with
the root node, which represents the whole dataset. It then splits the dataset hierarchically
into smaller sizes according to some features. In this way, it split the parent nodes with
multiple levels of children nodes and therefore generates a tree. There are mainly two kinds
of splitting measures used for decision trees, the information gain, and the Gini index.

The information gain is defined as:
IG(X,a) = H(X)— H(X|a), (2.1)

where IG(X, a) is the information gain of a random variable X given the value of attribute
a. H(X) is the information entropy of X, which describe the uncertainty of X. H(X|a) is
the conditional entropy of X given the attribute a. With the information gain as a splitting
measure, our objective is to decrease the amount of entropy starting from the root node (the
top of the tree) to the leaf node (the bottom of the tree). In this way, we can greedily decide
how to split the nodes, which is called ID3 algorithm [8].

The Gini index (or Gini Impurity), on the contrary, is used by Classification And Regres-
sion Tree (CART) algorithms to split the dataset into a decision tree. It keeps searching for
the best splitting scheme which satisfies the best homogeneity for the child nodes, under the
Gini index criterion. The Gini index is a metric for the classification tree of CART, which

is defined as,
n

Gini=1-Y (p)*, (2.2)

i=1
where p; is the probability to classify samples to i-th class. The Gini index varies from 0 to
1. 0 represents the classification is pure. 0.5 represents there is an equal distribution over

the classes. When it’s 1, the distribution is random across various classes. The objective
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Figure 2.1: One example of the Decision Tree model built for regression task [9]. The blue
rectangles are the names of features, which represent the feature of the weather. The grey
rectangles are the values of features. The orange rectangles are the target values, which
represent the weather appearing hours.

is to find the best splitting scheme so that the Gini index is decreasing when we split the
nodes from the root to the leaf.

In this paper, we focus on the regression task of response prediction. The regression
decision tree [9] is slightly different from the classification decision tree. An example of the
regression decision tree is shown in Figure 2.1. Take the ID3 algorithm as an example, we
can apply the decision tree for the regression task by replacing the information gain metric

with standard deviation reduction, which is defined as
SDR(X,a) =0(X) —0(X,a) (2.3)

where o(X) is the standard deviation of target variable X. (X, a) is the standard deviation
of X when node is split via attribute a. In this way, we choose the child node with the largest

standard deviation reduction when the size of the sub-dataset is larger than a threshold.

2.2 MODEL TREE

Although decision tree is a fast and well-known algorithm in the statistics and machine
learning fields, it still suffers from over-fitting problems. The prediction of the decision tree
is some simple numerical variables saved in the leaf nodes, which also leads to the instability

of the model when the distribution is different between the training and testing samples.



id_node: 0
X[9] <= -0.18464
loss: 1.6825
samples: 5000

id_node: 1 id_node: 2
X[2] <= 0.094 X[3] <= 0.08998
loss: 1.4008 loss: 1.5170
samples: 2083 samples: 2917

id_node: 3 id node: 4 id_node: 7 id_node: 8
X[8] <=0.01073 loss: 1 4427 X[1] <= 0.34563 X[9] <= 0.6563
loss: 1.2032 '18'5_ 973 loss: 1.3454 loss: 1.3089
samples: 1110 Sampies: samples: 1573 samples: 1344

id_node: 5
loss: 1.1453
samples: 534

id_node: 6
loss: 1.2570
samples: 576

id_node: 9
loss: 1.2608
samples: 984

id_node: 10
loss: 1.4868
samples: 589

id_node: 11
loss: 1.1740
samples: 780

id_node: 12
loss: 1.4956
samples: 564

Figure 2.2: Example of a linear model Tree [11] on a generated regression data. In each
node, a model is fitted and used for deciding the split. The root node includes all the data
samples, which are further split into levels of child nodes. Split only happens when the
criterion of child nodes is smaller than parent nodes, which implies the reduction of losses.

In addition to the decision tree, another closely related work is the Model Trees [10],
which also inspires us to propose our HRMT Model. Unlike the decision tree, the Model
Tree algorithms apply some other machine learning models (such as Linear Models) in the
leaf node instead of some simple numerical variables. Figure 2.2 shows an example of a
Linear Model Tree. The splitting scheme of the model trees in a node is the criterion of
target fitting with the machine learning model. The criterion for the regression task can be
Mean Square Error (MSE), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE),
etc. The algorithm will choose the child node split with the smallest regression error. It will
only split when the weighted loss of the child nodes is lower than the parent node’s loss.

The losses are calculated based on the fitted model on the respective nodes.



CHAPTER 3: FORMULATION

In this chapter, we will introduce the formulation of the data, tasks, and models. We

focus on data abstraction from social networks and two kinds of response prediction tasks.

3.1 DATA FORMULATION

In this work, we focus on the data from social networks. We abstract two kinds of entities
from social network systems, actors and messages. Most social network systems contain
these two abstractions since the social networks are represented as actors (or users) and the
messages they transmit. For example, on Twitter, the actors are referring to the users while
messages are referring to the short-text-based tweets, while on Instagram the actors are users
and messages are images. We use A to represent the set of all actors and a for one actor.
We use M to represent the set of all messages and m as one message. The dataset from the
social network should include the interaction records between the actors and messages (such
as posting, forwarding, or liking a message) and the timestamp t for each interaction. We
use eﬁyj to denote the interaction that happens at time ¢ between the ¢-th actor and the j-th
message. We use E to denote the interaction data. Optionally the data may contain the
contexts of the actors (such as id, name, and profile data) and the contexts of the messages
(such as images, and texts). We use X to denote the contextual feature matrix of actors or

messages, and use z; or x; for the feature of i-th actors or j-th messages.

3.2 INDIVIDUAL-BASED RESPONSE PREDICTION TASK

The first task is to predict the response of individual actors in the future, based on
historical data. The response of an actor is defined as the expected number of an actor
responding to messages (such as the number of tweets a user posts in a time period). We use
R; to denote the response of actors in the ¢-th time period, and use r! to denote the response
of i-th actor at time period t. Note that the response is not necessarily an integer, it may also
be a continuous variable when the responding action to a message is modeled as a probability.
In addition, in this paper, we further consider the indicator-specific response. Since we have
the contextual feature of the messages, we can further classify these messages into multiple
categories according to the indicators (such as agendas, emotions, and concerns). For each
message, we compute the probability to assign it to different indicators. We then calculate

the response of an actor to a specific indicator by summing up all the probabilities of that



indicator responded by that actor. We will introduce the detail of producing the indicator
in the following chapters.

We split the time of the training interaction data into n parts of the same length (such as
one week). In this way, we obtain the time series of training interactions, E = Fi, Es, ..., E,,
the time series of contextual features X = X;, X», ..., X,,, and the time series of responses of
a given indicator R = Ry, Ry, ..., R,. Our objective is to construct a model ® which receives

the historical time series and predicts the response énﬂ in the future.

R = ®(E,X,R) (3.1)

3.3 SEGMENTATION-BASED RESPONSE PREDICTION TASK

The second task is a segment-based variant of the first task. In this task, instead of
predicting the response of individual actors, the objective is to first compute segments of
actors and then predict the response of segments. The advantage of resolving this task is
that we can not only have a precise prediction for the actors which are associated with
segments, but we can also further investigate the relationship between actors according
to their demographic or psychographic features. We may also figure out some valuable
conclusions by investigating the potential mechanism of segmentation. For example, we
may conclude that "the female users who are interested in environment protection belong
to the same segment, and they are more likely to respond to democratic messages”.

Similarly, we split the time of the training data into n parts and construct the time
series of training interactions, E = F,, Es, ..., E,, the time series of contextual features
X = X1, Xo, ..., X, and the time series of responses of a given indicator R = Ry, Rs, ..., R,,.
The objective of the segmentation-based task is to construct a segmentation of all actors, and
in the meanwhile predict the individual actor responses with the assistance of segmentation.
We use S = {s1, o, ..., S } to denote the produced segment set, where s; is a segment, which
is a set consisting of all associated actors, s; = {ay, as, ..., a,, }. The algorithm can produce
any number of segments, which means the algorithm can decide the number of k. However,
the overlap between the segments is not allowed. In this way, the algorithm has to find a
balance in the trade-off between precision and recall by controlling the number of produced
segments.

Assuming we have an algorithm denoted by ®, the objective of this task is to predict
the segmentation of actors S and also the response of individual actor response §n+1 in the

future.

S, Ry = ®(E,X,R) (3.2)



CHAPTER 4: METHODOLOGY

In this chapter, we will introduce the modeling for actor and message enrichment predic-
tion, as well as the proposed Hierarchical Regression Model Tree (HRMT) algorithm. As is
shown in Figure 1.1, after receiving the processed data (data processing will be introduced in
Section 5.1), we will apply two kinds of enrichment prediction models for actor and message,
respectively. For the actors, we will predict their morality, demographic features (such as
age, and gender), and psychographic features (such as political orientation and religion). For
the messages, we will predict the emotion, concern, and agenda according to the contextual
data of messages. The detailed constitution of actor enrichment and message enrichment for
the French Election dataset is shown in Table 4.1 and Table 4.2.

Actor Enrichment Sub-Categories
. Authority, Care, Equality, Loyalty,
morality Proportyionality, ]gum‘ty? Digzityy
education Less than high school, High School, Some College,
Bachelor, Master, Doctorate
ethnicity White, North African, Black, Asian,
Prefer not to say, Other
religion C’hristiamty, Islam, Judqism, Hinduism,
Buddhism, Nonreligious, Other
honor Dignity, Face, Honor
age [18,22], [22,27], [27,34], [34,43], [43,65+]
gender Male, Female, Other
political orientation Left, Median, Right
ladder Integer from 1 to 10 representing the income level

Table 4.1: Actor enrichment indicators and their sub-categories are applied in the actor
enrichment prediction module. We model the actor enrichment detection as a classification
task and therefore we assign each actor a value in the sub-categories as the prediction.

4.1 ACTOR ENRICHMENT PREDICTION MODULE

Most of the existing social network data will provide the contextual information of actors
and messages. This project, as an example, focuses on short-text-based social networks
(such as Twitter), therefore in the dataset, we have the information on actors’ historical
posts, as well as the text content of the messages. The first part of our segmentation and
response prediction is the enrichment detection module, as is shown in Figure 1.1. We use

two modules to detect the enrichments for actors and messages, respectively. For actors,



Message Enrichment Sub-Categories

Economy, Candidates, Democracy, Terrorism,

concern Religion, Immagration, International organizations,

Russia, National Identity, Environment and climate, Fake news
Anger/Hate, Guilt/Shame/Sadness,

emotion Admiration/Love, Optimism/Hope, Joy/Happiness, Pride,
Fear, Amusement, Other Positive, Other Negative
agenda 12 sub-categories about beliefs towards political election

Table 4.2: Message enrichment indicators and their sub-categories are applied in the message
enrichment prediction module. We model the message enrichment detection as a classifica-
tion task and therefore we assign each message a value in the sub-categories as the prediction.

Scaled Dot-Product Attention Multi-Head Attention

MatMul
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Figure 4.1: The architecture of self-attention and multi-head self-attention mechanism [12],
which is the key module in the Transformers model, which is also adapted in the pre-trained
BERT models.

we care about morality, demographics, and psychographics statistics. For messages, we care
about what kind of agendas, concerns, and emotions they are discussing. We list the possible
enrichment in Table 4.1 and Table 4.2.

The morality foundations theory [13] is a theory in psychology and cognitive science
which has been successfully proven to be effective in describing the psychographic belief
of people. It has also been proven that it’s possible to extract the relevant psychographics
from the text [14], where the text embeddings are used to estimate the magnitude of the
relationship between language and each moral concern, across individuals, and the result
shows that the moral concerns are predictable from the language with a satisfactory average
R? score. It also shows that the state-of-the-art language model, the Bidirectional Encoder
Representations from Transformer (BERT) model achieves the best result when compared
to the moral lexicon-based methods (such as MFD [15]) and traditional natural language

processing language models (such as LDA [16] and GloVe [17]). Inspired by this, we propose
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Figure 4.2: The framework of BERT model [5], which is pre-trained on the masked language
model task, in an unsupervised policy.

to build an enrichment prediction model based on the BERT language model.

The framework of BERT model [5] and the architecture of Transformers [12] is shown
in Figure 4.2 and Figure 4.1. In the Transformer model, it first receives the text (e.g.
the social network text in our dataset) as the input, and models it as the sequence of
text tokens’ embedding (xy, s, ...,2,). The encoder of the transformer received the input
embedding sequence and encodes it with several multi-head attention layers. The output of
the encoder is a sequence of continuous representations z = (z1, 2, ..., 2,). In this project,
we are interested in the embedding of the message (text), which can be obtained by taking

the average of encoded representations,

n

1
stg = ﬁ Z Ziy (41)
=1
where n is the number of tokens for the message. Finally, we compute the actor’s contextual

text embedding by taking the message-level average of all messages (posts) of an actor,

instead of the word-level average,

|
Za = N Z ansg’ (42)
k=1
where 2* _is the embedding of the k-th message for the actor a. The advantage of message-
msg g g g g

level average has been proven in [14].
The attention mechanism is the kernel effective module in the Transformer and BERT
models. As is shown in Figure 4.1, for the input sequence of variables, it transforms the

variables into a sequence of queries (@), Keys (K), and Values (V'), with the linear trans-
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formation. Then, it calculates the inner produces of pairs of queries and keys and calculates
attention coefficients. Finally, the output of the attention layer is the weighted average of

the values,
T

Attention(Q, K, V) = softmax(%)‘/, (4.3)
k

where dy, is a hyper-parameter that determines the dimensions of queries and keys.

With the produced attention, we can then feed the features into a positional-wise feed-
forward network, which consists of two linear transformations with the ReLU activation
function,

¢<JJ) = U(XWl + bl)WQ -+ bg, (44)

where o(x) = max(0,x) is the ReLU activation function. In this way, the encoder will
produce an encoder sequence of representations z, which can be fine-tuned and applied to
our morality prediction task.

The BERT pre-training process shown in Figure 4.2 has been proven to be effective in
improving the downstream classification of tweet text [18, 19]. Therefore, in this project, we
also adopt the BERT pre-trained model to improve the performance of the language model
on downstream demographics and psychographics prediction tasks of actors. It pre-trains
the transformer model in the Masked Language Model (MLM) task, where we randomly
mask some tokens in the sentence as unknown and require the language model to recover
those tokens. The advantage of this process is that it’s fully unsupervised (self-supervised),
which means we do not need large-scale annotation for the text data.

With the pre-trained BERT encoder and the produced actor contextual text embedding
Zq, we further fine-tune the BERT encoder for the downstream task with an additional
classification head. We model the classification head with a multiple-layer perceptron (MLP).
For each actor enrichment in the first column of Table 4.1, we train the model as a multi-
class classification task, where the classes are the sub-categories in the second column. The

MLP classification head is formulated as,
P(z,) = softmax(o(z,W; + by)Wa + by), (4.5)

where in the first layer, the parameter of weight matrix W, € R"*"n  the bias b; € R,
given that h, is the dimension of BERT representation output, h,, is the dimension of the
hidden state of MLP. In the second layer, W, € R'»*" and b, € R’ where h, is the
number of classes for a specific actor enrichment classification task. The softmax function

normalizes the output of the MLP into the scale between 0 and 1 representing the likelihood

11



to assign the actor to that class, which is

softmaz(y;) = Ziy;yk. (4.6)

We then calculate the negative log-likelihood as the loss function, which can be formulated

as,
1
L=-) v log(é(=)), (4.7)
k=1
where y* is the label of the target class. We optimize this loss function as the objective and

obtain the classifier for the enrichment of actors.

4.1.1 Data Annotation for Psychographics

To train the proposed classification model for actor enrichment prediction, we need to
annotate the actor with their morality, honor belief, and demographics. To achieve this, we
designed a questionnaire based on the MFQ-2 [20]. MFQ-2 is a newly validated version of the
original Moral Foundations Questionnaire (MFQ), with significantly better psychometrics,
and validated in 21 countries. We also queried the participants’ demographics such as ages
and genders. We focus on the Twitter platform and select about 3000 participants and we
ensure that the participants must be active Twitter users and willing to provide us with their
Twitter IDs. The participants’ Twitter data (both text and network data) will be extracted.
We also collect the participants’ stances on a series of issues with societal significance, such
as vaccination, global warming, freedom of speech, trust in governments, etc. In this way,

we can train the language model and classification with the collected labels.

4.2 MESSAGE ENRICHMENT PREDICTION MODULE

As is shown in Figure 1.1, receiving the input of interaction data between actors and
messages, as well as the contextual data, we deploy a message enrichment prediction module
to detect the enrichment of messages including the agenda, emotion, and concern which the
messages are discussing. In this project, we focus on text-based social media platforms and
use the data from Twitter for the experiments. We summarize the message enrichment and
their possible values in Table 4.2. For the concern classification, the input is a message
(e.g. a tweet text) and the output is assigning the message into a concern category, such as

Economy, Candidates, Democracy, etc. For the emotion classification, we classify a text into

12
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Figure 4.3: The embedding produced by the CatE model [6] and the word distributional
specificity. The embedding of the CatE model is spherical and has the property of distribu-
tional specificity. For the food category, which is a broader terminology, the distribution of
the word embedding is more dispersive. For the seafood category, the distribution of word
embedding is more concentrated to a smaller range of angles. This property benefits the
application of the CatE model in our message enrichment prediction task.

categories of the message’s emotional tendency such as Anger/Hate, Guilt/Shame/Sadness,
Admiration/Love, etc. The agenda classification focus on the political belief a tweet is
discussing, such as voting for an entity, voting against an entity, etc.

The detected message enrichment can be applied to the downstream tasks in our frame-
work. It can improve the performance of produced regression tree model and also the
accuracy of response prediction. Since our regression model tree is an explainable machine
learning model, we can also have a more specific understanding of the relationship that how
the actors’ demographics and psychographics affect the response action on a specific kind of
message (message with specific enrichment), which will also benefit the following sociological
research and downstream applications of our system.

Similarly, we model the message enrichment prediction task as a multi-class classification
task. In this project, we adopt the CatE [6] model to classify the messages into categories of
agenda, concerns, and emotion. The CatE model is a weakly supervised classification model,
which means we do not need to have a large-scale annotation for many data samples. We
only need to provide some textual explanation for the categories we are planning to classify
the data samples. For example, we only need to add some textual notation to explain what
is Economy, what is Democracy, etc. The CatE model leverages this textual information and
analyzes the textual correlations on the full documents, and produces the classification re-
sults. The advantages of the CatE model are that it simultaneously modeling of the category

tree structure in the spherical space, preserves the relative category hierarchical structure
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in the spherical embedding space, and it also encourages inter-category distinctiveness for
clear topic interpretation. The CatE model proposes a category-name-guided embedding
algorithm. There are mainly two parts to the embedding algorithm, (1) user-guided text
generative process and (2) category name guided text embedding model.

For the first user-guided text generative process, given the user-provided n category names,
the text generation process is modeled as tree parts. First, we generate a document d based
on one category out of all of the n categories. Second, we condition the words, which are
denoted as w;, based on the semantic information of the generated document d. Third, the
neighboring words w; of the original word w; are generated based on w;. The likelihood of
the corpus generation conditioned on the category information provided by the user can be
formulated as,

p(0IC) = [T pldlea) TT ptwidd) T plesslw) (18)
deD w;Ed w; N (w;)
where N (w;) is the neighboring words of w;. Modeling the above equation as a negative

log-likelihood (NLL) loss function, we can model the loss functions as three parts,

Liopic = — »_logp(d|ca) (4.9)
deD
Laiobar = — > > _ log p(w;|d) (4.10)
deD w;ed

/Clocal = - Z Z Z logp(w]|wl) (411)

deD wied wjeN (w;)

Based on these loss functions, we can optimize the text generation process with the text
generation loss function Lge, = Liopic + Lgiobar + Liocar- Based on this loss function, we
can then model and optimize to obtain the optimal word embedding and the classification
likelihood. Assume wu,, is the word embedding of the word w and v, is the contextual
embedding for word w, which represents the contextual information of the neighboring word
of w. d is the embedding for the document and ¢ is the embedding for the category. We can
therefore model the log-likelihood with the following formulas,

exp(¢] uw)
plGlw) = , 4.12
) =5 e enpcTw) 2
exp(ul d)
p(w;|d) = - , 4.13
() = S ep(uT ) (4.13)
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Figure 4.4: The tree constructed for the indicator of agenda for advocating to vote for the
entity on the French Election dataset, with the proposed Hierarchical Regression Model Tree.

exp(ul, v,,)

w' eV exp(ulTUi Uy ) ’

p(w;lw;) = 5 (4.14)

With the learned word embedding w; and category embedding ¢, we can predict the likelihood

of classifying an input message into the categories with the p(c;|w) formula.

4.3 HIERARCHICAL REGRESSION MODEL TREE ALGORITHM

In this project, we propose the Hierarchical Regression Model Tree (HRMT) model for
the individual-based response prediction task and the segmentation-based response predic-
tion. The advantage of the proposed HRMT model is that the model is based on the tree
structure which splits over the actors’ enrichment, and therefore the proposed method is an
explainable machine learning model. One example of the constructed tree of the HRMT
model is shown in Figure 4.4. Starting from the root node, it hierarchically split the actors
into sub-datasets for the child nodes, according to the actor enrichment, such as morality,
age, gender, schooling, etc. In every node of the HRMT tree, we construct a regression
model and implement it for the response prediction task and estimate the reliability score
and error. In this way, each node of the HRMT is representing a hierarchical subset of the
actor, which can also be interpreted as segments or clusters of users. We use greedy search

to find the best structure of the tree so that for each split, we ensure the split is reliable and
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we choose the split with the lowest regression error. In this way, the split of the tree also
reflects an optimum segmentation of the actors. HRMT is capable of simultaneously finding

the solutions to both the segmentation task and the response prediction task.

4.3.1 Response Time Series

As is shown in Figure 1.1, after obtaining the actor enrichment and the message enrich-
ment, we need to split the data into the time series of responses for the specific message
enrichment indicators. For example, we need to produce a time series of responses and split
all the data according to their time stamp. We also aggregate all the response rates towards
the given message enrichment indicator for the actors, in order to generate the response
rate of the actor towards that indicator. Assuming we have the interaction data e, € E
representing that the actor a; responds to the message m; at time ¢. e;f’j is either 0 for not
responding or 1 for responding to m;. Assuming we also have the probability of message m;
being classified to the message enrichment category ¢ (e.g. concern-Economy), denoted as

p(c|m;), the aggregated response for actor a; can be formulated as,

M|

ri = Zp(c]mj)e;j, (4.15)

j=1

where |M]| is the number of all messages. ¢ is the ¢-th time range after the time split. In
this work, we consider splitting the whole time range into smaller time ranges weekly or bi-
weekly. In this way, we obtain the response time series R = Ry, Ro, ..., R,. In addition, we
also split the interaction data into time series E = E, E», ..., E,, and the actor enrichment
time series X = X7, Xo, ..., X,,. In the following section, we will introduce how we construct
the tree hierarchically and subtract the sub-time series of some specific user to build the

sub-datasets for the child tree nodes.

4.3.2 Tree Node

Every tree node is an abstraction for a cluster or a segment of actors. For the segment of
actors, we have the response time series training data for those actors. Every node will also
include a kernel model for the regression task. The kernel model can be any kind of machine
learning or statistical model supporting the regression of time series and supporting the
metric-based evaluation. Currently, we have implemented the kernel models including Linear

Regression (LR), Lasso Regression (Lasso), Support Vector Regression (SVR), multiple-layer
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perceptron (MLP), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and
Histogram-based Gradient Boosting Decision Tree (HGBDT).

4.3.3 Tree Construction

In this section, we will introduce how we construct the tree by greedy-search the best split
scheme which minimizes the regression error and ensures reliability. The detailed algorithm

can be found in Algorithm 1.

e First, we build a queue data structure to save the nodes and push the root node into
the queue. The root node will automatically train the regression model of the specified
kernel model (e.g. Linear Regression) upon the construction of the node, and then it

uses cross-validation to compute the validation error.

e Second, similar to the Breadth First Search (BFS) algorithm, we repeatedly fetch the
node in the front of the queue and if the fetched node is not marked as a shadow node

(existence == True), we continue trying to split it.

e Third, we try all the possible actor enrichment values to split the nodes (e.g. concern-
Economy). We calculate the regression error and reliability score for each possible
split method and select the best split. If the split is not reliable or the error is not

satisfactory, we will not further split the current node.

e Finally, we push the new child to the queue if the split is successful. We save all the

successful regression models, data, and statistics in the nodes for future inference.

Reliability Test When deciding whether to split a node, one of the condition is the
regression model in the child node has to pass the reliability test, which mean the reliability
score 7 is larger than the threshold. We adopt the reliability test algorithm proposed in the
Sparse Regression Cube [21] (SRC) algorithm. We will conduct the reliability test before
the greedy search for regression error.

In our tree node, a kernel model such as Linear Regression, Support Vector Regression,
and Multiple-Layer Perception, is used to fit the time series regression data. The expected

prediction error can be formulated as,
E(y —xn.)*] = E[(xne + € = x17.)*] = E[(x(1c = 1) + €)’] (4.16)

where 7). is the actual regression parameters and 7, is the estimated regression parameters.

x is the input data and y is the regression target. In the extreme case, when the prediction
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is perfectly fitted, the expected regression error would become,
EPE = E[¢’] = o2, (4.17)

where o is the standard deviation. We can then use the reliability criterion to bound the
prediction error with a 95%-confidence, and use Cauchy-Schwarz inequality to derive the

bound, which can be formulated as,
EPE = E[(XT(% - ﬁC))z] + E[GQ] S E[XTX(WC - ﬁC)T(nc - ﬁC)] + 02' (4'18)

If the reliability condition holds, we can conclude that with the probability of 95%, we have
e — M| < 6, so the prediction error can be bounded with a probability of 95% as,

EPE < E[x"x]6* + o2, (4.19)

where 6 is the confidence interval and || - || is the [ norm. With the bounded prediction error
above, we can use the following criterion to test whether a split is reliable (whether a child

node is reliable).

Definition 4.1 (Tree Node Reliability). The tree node is reliable if the following condition

is satisfied,
~2

_ ko
02 Amin(©)

where k is the number of dimensions of data. d is the confidence interval, where is practically

Ngate > k and < 0.05, (4.20)

set as the Iy norm of 1., § = ||7,||. & is the estimated standard deviation. © = X7 X € Rk**

and A, is the minimum eigenvalue.

Another advantage of applying this node reliability along with the greedy search of re-
gression error is the computation time. In computing the regression error, we would need to
conduct cross-validation, which is a computation-intensive task. With computing the relia-
bility test, we can prune the unreliable branch and skip some unnecessary cross-validation

computation.
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Algorithm 4.1: Construct Hierarchical Regression Model Tree
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28

Data: Response Time Series R, Actor Enrichment X

Result: Hierarchical Regression Model Tree
node_queue < [root];
while node_queue # @ do
parent < node_queue.pop();
if parent.existence == Fualse then

continue;

end
available_enrichment_types <— enrichment_types not yet used by parent;
for enrichment_type in available_enrichment_types do
for For enrichment_value in enrichment_type do
child < new node;
child.actors <— parent.actors whose enrichment_type is enrichment_value;
child.data < parent.data whose actor is child.actors;
child.model < train(child.data);
child.reliability_score < reliability_test(child.model, child.data);
child.error <— cross_validation(child.model, child.data);
child.parent_error < cross_validation(parent.model, child.data);
if child.error < child.parent_error and child.reliability_score > threshold

then

‘ child.existence <— True
else

‘ child.existence <— False

end

candidate_children[enrichment_type].append(child)
end
avg_error[enrichment_type| <— mean([child.error if child.existence else

child.parent_error for all child]);

end

best_enrichment_type <— arg min(avg_error);

node_queue.push(candidate_children[best_enrichment_type|);

end
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Regression-Error-based Greedy-Search of Node Split Line 15-21 of Algorithm 1
defines how we compute the errors and decide whether to split the child node. We conduct
a greedy search to find the best split with the smallest error. There are in total two kinds of
errors to compute. First, we compute the error of the parent node’s regression model (which
is trained on the parent node’s data) on the cross-validation of the child’s data, which is
denoted as €,. Second, we compute the error of the child’s regression model on its own data,
denoted as €.. The split criterion for our HRMT model is €. < ¢, and the node passed the
reliability test defined in Definition 4.1. There could be multiple splits passing this condition.
In that case, we will choose the split with the smallest ¢..

Practically, we implemented 2 kinds of regression error for the greedy search, including
the Mean Absolute Error (MAE),

1« A
MAE = =3 [y~ i, (421)
i=1
the Mean Square Error (MSE),
1 < A
MSE = n Z(yz —9:)°. (4.22)
i=1

We use temporal cross-validation to compute the validation error. Assuming the length of
the time series is n, the sliding window of cross-validation is n — 1 and the last value is the
target y. In this way, the regression model, such as the linear regression model, will receive
a time series of size n — 1 as input and predict a one-step future value in the cross-validation
phase. Note that in the inference phase we will re-train a full regression model on the full

time series of n for the final prediction.

4.3.4 Response Prediction

To predict the response of individual actors, we need to find the best-matched node and
retrieve the best regression model for the response of a given actor. The recursive algorithm
to find the matched node can be found in Algorithm 2. The input is the actor a and its
actor enrichment . Starting from the root node, we use Depth-First-Search (DFS) to find
a path from the root to a leaf node, where along the path the actor enrichment of the nodes
is matched with the actor’s enrichment. Line 2 of Algorithm 2 is checking whether the actor
enrichment is matched, and line 3 recursively calls the Algorithm 2 itself to find the next

level. After the target leaf node is found, we will call the kernel regression model in that
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node to predict the future response for the given actor.

4.3.5 Segment Prediction

One advantage of the proposed HRMT algorithm is that the constructed tree node can
also be applied to generate the segmentation of actors. The structure of the tree is optimized
for the response regression task, and therefore the split of the node can represent the best
segmentation of actors, where each group (segment) have similar behavior with respect to
the response to the message.

To generate a hierarchical segmentation of the actors, in which case the overlap between
segments is allowed, we can directly output all of the tree nodes, each one as a segment.
In the case when the overlap between segments is not allowed, we can use a similar way as
Algorithm 2 to find the target tree node for every actor and put actors in the same segment

if their target nodes are the same.

Algorithm 4.2: Recursive Inference of Hierarchical Regression Model Tree
Data: Hierarchical Regression Model Tree, depth, actor a and its enrichment x

Result: Predicted response in future R, 1,
1 for child in node.children do

2 if actor.enrichment_value[depth] == child.enrichment_value/depth/: then

3 return recursively_call_self(child, actor, depth+1)
4 end
5 end

6 return node.model.predict(node.data)
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CHAPTER 5: EXPERIMENTS

5.1 DATASET

In the experiments, we focus on the Twitter platform, which is a short-text-based social
network system. In this section, We will introduce the collection of the dataset and the

statistical analysis and verification of the dataset.

5.1.1 Data Collection

In this project, we have two kinds of Twitter data collected by different teams or tools.
The first dataset is the French Election 2017 dataset, which contains the discussion about
the French election in 2017 and the language is French. This dataset is provided by DARPA
Influence Campaign Awareness and SenseMaking (INCAS) project. We will report the
statistical experimental results but will not publish the dataset. For the French Election
dataset, we have translated all the tweets from French to English, using the API of a pre-
trained deep translation model. The second kind of Twitter data is collected via the Apollo
platform [22], which is a website interface allowing the user to collect Twitter data with
some keywords, as is shown in Figure 5.1. For both these two datasets, data is collected via
the official Twitter API.

Anatomy of Conflict

2022 Russian Invasion Of Ukraine

from 2022/02/22 to 2022/03/01 Historical Trend m
i
Rt

Figure 5.1: The user-interface website of the Apollo system, which is capable of collecting
data from social media platforms such as Twitter and Reddit, automatically conducts anal-
ysis based on collected data. We've also integrated the proposed HRMT algorithm on the
Apollo system.
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Figure 5.2: The distribution of the response rate. The x-axis is the response rate. The
y-axis is the number of the actor whose response rate falls in the histogram bin. The overall
distribution follows the exponential distribution, where most actors have a relatively low
response rate.

5.1.2 Dataset Statistics and Analysis

We first conduct some statistical analysis on the French Election 2017 dataset. We analyze
the distribution of the response rate, which is shown in Figure 5.2. In the French Election
dataset, the most actor has a very low response rate. The overall distribution of response
rate follows the exponential distribution, which is also proved in [2]. The sparsity of the
response data also indicates the response time series will be very sparse, which means there
would be many Os in the time series. The ability of the modeling to handle the sparsity
problem becomes important.

In addition, to analyze the data, we also want to verify the effectiveness of the predicted
actor enrichment and message-enrichment-specified response rate. The assumption is that
there should be a correlation between the actor and the specified response rate. Figure 5.3
shows the heatmap of the average actor response rate given the value of actor enrichment
and the message enrichment of concern. We can conclude that there is a strong correla-
tion between the response rate and the actor and message enrichments. We can actually
have a lot of reasonable and interesting findings for the French Election dataset based on
this heatmap. For example, the actor whose age is between 22 and 27 responds the most
towards the economy messages. Males also respond much more to economic concerns than
females. People with a morality of high proportionality will respond more to the message
with international and democratic concerns.

We conduct the Analysis of variance (ANOVA) test on the actor and message enrichment

and report the F-values in Figure 5.4. From the figure, we can conclude that the correlation
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Figure 5.3: The heatmap of average actor response rate. Each cell in the figure means the
average response rate to one message enrichment of concern (x-axis) over actors belonging
to one actor enrichment category (y-axis).

is significant in most of the cells. There is a strong correlation between gender and economy,
a strong correlation between honor belief with democracy, etc. Intuitively, this conclusion
fits the belief of people, with respect to the French election event. This experimental result

shows that the actor and message enrichments are effective in the French Election dataset.

5.2 EXPERIMENT SETTING

The implementation of our algorithm is based on Python3. The experiments are con-
ducted on a device with 128-core CPU and 256 GB memory. The implementation of HRMT
and experiments are CPU-based, and therefore no GPU resources are required. We apply
grid-search for the best hyper-parameters for the HRMT model, such as the learning rate,
reliability threshold, and depth limit of the tree, etc.

5.3 EVALUATION METRICS

In this project, we evaluate the experimental results of the individual-based response
prediction task and the segment-based response prediction tasks. For the first task, we
use the Lift ranking score to evaluate the ranked individual actor list with the predicted

response. For the second task, we use an improved Discounted Cumulative Gain (DCG)
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Figure 5.4: The heatmap of the ANOVA F-value represents the correlation between the
message enrichment on the x-axis and the actor enrichment on the y-axis.

score and normalized Discounted Cumulative Gain (nDCG) score specially designed for the

ranking of segments.

5.3.1 Lift Score

The Lift score or the Lift statistics are the metrics for the predictivity commonly used in
marketing and actuarial circles for evaluating models. For our individual response prediction
task, we have the set of all the actors A and in the evaluation phase, we have the ground
truth of the response for each actor, which is denoted as r"*'. We also have the predicted
response value for actor a;, which is denoted as 7"*'. We perform the following process to

obtain the lift score,

e We rank the actors by the predicted response 77" and get an non-decreasing ranking

sequence of actors.

+1

e We divide the data into deciles and sum the ground truth of response ;""" within each

decile to produce the z value, z1, 29, ..., z10.

o A lift chart is a figure plotting z; versus j. We can compute the Lift statistic (Lift
score) as z19/z1. For a non-predictive model, the expected lift statistic is 1, and as

predictivity improves, the lift statistic gets bigger.

25



5.3.2 Segment-Based DCG and nDCG Metrics

In the second task, given a fixed message-enrichment-based indicator (such as concern-
Economy) L, the output of the model include the segment set S = {s1, s9, ..., i} as well as
the predict response for each actor, which is denoted as f?“. We assume S is a collection
of disjoint segments associated with L, which means we do not allow overlap between the
output segments.

The Discounted Cumulative Gain at k£ metric for the ranking of S is defined as

DOG(k) = z % (5.1)

where R(s) is some measure of relevance or engagement of segment s towards the message-
enrichment-based indicator. For example, R(s) can be the average response prediction of all

actors in segment s.

Definition 5.1 (Average and Total Engagements for Segment). For one segment, we define

the average and total engagements as,

~n+1

Rave(s) =Y ﬁ (5:2)

a;Es

and
~n+1

Rtotal Z ~n+l ’5’ Z

a; €S a; €S

- yisave(S)a (53>

where [s| is the size of segment s.

Definition 5.2 (Average and Total DCG for Segment). Let S = {s1, so, ..., sx} be the output

collection of segments, the average, and total DCG at k for S are defined as,

s
DCG e (k A 5.4
Z logy(i + 1) (54)
and
k
DCGtoml Z Rtotal Z| a'ue z (55)
log, (i + 1 log

However, the average and total DCG metrics for segments have limitations for the eval-
uation of segments, since we leave the number of segments as the choice of the algorithms.

This means the algorithm can produce any number of segments as the output set S. If an
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algorithm produces an extreme case of the number of segments, it may achieve a very high
score on either the average DCG metric or the total DCG metric. This is very similar to
the trade-off of precision and recall. Therefore, we need a more robust metric combining the
average DCG and total DCG metric, in analogy with the F1l-score metric.

We observe that the maximum average DCG score DCG (k) for k > 1 can be achieved
by assigning each actor a; into a separated segment s;, so that |S| = |A|. For any s;, we

have s; = {a;} and |s;| = 1. In this case, we obtain the maximum value of the average DCG,

n+1
=D max .
(072 OGave, Z 10g2 i + 1 (5 6)

where 7" is the ground truth of response for actor a;.
Similarly, we observe the maximum total DCG score can be achieved when the model put
all the actors into a single segment. In this case, we have S = {s;} and |s;| = |A]. We

denote the maximum value of the total DCG score as

BA = DCGtotal,max(k) - Rtotal(A) - Z r;"H—l' (57)

a; €A
In this, we can normalize the average and total DCG metrics introduced in Definition 5.2
with their possible maximum values «y, and 4.

Definition 5.3 (Normalized Segment DCG). We define the normalized segment DCG (ns-
DCG) metric as,

nSDCG(]{}) 2 (DCGave(k:) + DCGtotal(k))

) 3 I An(s)
=2k ( )log2<z‘+1>‘

The nsDCG metric, however, is not population-invariant. In addition to the nsDCG

(5.8)

metric, we define a population-invariant nsDCG (insDCG) as an auxiliary metric.

Definition 5.4 (Invariant Normalized Segment DCG). We define the invariant normalized
segment DCG (insDCG) metric as,

insDCG(k Zk ( 'S’)M (5.9)

log, (i + 1)

In the following experiments, we will use the Lift score metric for the first individual-based
response prediction and use the nsDCG and insDCG metrics for the second segment-based

response prediction.
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Figure 5.5: Fitted global response curve used in the Replay Baseline in the French Election
dataset. The blue points are the historical total response rate, and the blue curve is the
fitted response trend curve. The orange point is the ground truth of future total response.
The red star is the predicted future total response. We can also observe the response rate is
increasing with time, which is also consistent with our intuition about the election event.

5.4 BASELINES

5.4.1 Replay Baseline

We design a replay baseline for the individual-based response prediction task. We observe
that the global response rate is increasing in the dataset. Therefore, simply using the
historical response rate of actors as the prediction is not appropriate. To solve this problem,
we calculate the total response rate in each time slot in the history and use linear curve
fitting to find the predicted total response rate Rn+1 in time range ¢,,,1. Then assuming the

historical response for actor a; is rf, we predict the actor’s future response as,

= n

Ro1
Frtl n”+ r 5.10
e ; : (5.10)

where R; = Z'Z’i'l rt is the historical total response rate.

5.4.2 KMeans Baseline

The KMeans baseline is designed for the second segment-based response prediction task.
In this baseline, we first calculate the historical total response rate R,, = Y, , R; for actor
a;. Then, we apply the one-dimensional KMeans algorithm on R,, to cluster the actors,

based on their historical response. In this way, we obtain the clusters (segments) collection
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S. Then, we deploy the LR, SVR, and MLP models as the kernel for each segment s; € S

generated by KMeans to predict the individual-level response rate at time ¢,,,1.

5.4.3 Graph-Based Segmentation Algorithm

Co-Cluster Infomax for Bipartite Graphs (COIN) [23] is a graph-based algorithm to pro-
duce clusters of actors. In this model, both the actors and messages are modeled as the
nodes in a bipartite graph. The historical interaction data eij with 1 <t < n can be used
as the edges in the bipartite graph. Given a fixed number of clusters as input, by training
the COIN algorithm, we obtain a clustering result S assigning every actor to the clusters
(segments). Similar to the KMeans Baseline, we further apply LR, SVR, and MLP as the

kernel models for each segment s; € S to predict the individual-level response rate.

Model Name | Cross Val. | Kernel | Time Split | Msg. Indicator | Lift Score
. - - weekly concern 39.074
Replay Baseline - - bi-weekly concern 45.021
False LR weekly concern 40.574
True LR weekly concern 42.964
HRMT True Lasso weekly concern 41.308
True LR bi-weekly concern 47.746
Ground Truth - - - concern 867.182

Table 5.1: The evaluation result for the individual-based response prediction task on French
Election 2017 Dataset. HRMT with the LR kernel with bi-weekly time split and cross-
validation achieves the highest Lift score.

5.5 EXPERIMENTAL RESULT

For the individual-based response prediction task, the numerical evaluation result is shown
in Table 5.1. From the table, we can find the proposed HRMT model with the LR kernel
with bi-weekly time split and cross-validation achieves the highest Lift score. We can also
conclude that splitting the time bi-weekly benefits the response prediction result. The reason
is that the time series is very sparse, as is shown in Figure 5.2. Therefore, splitting bi-weekly
can relieve the effect of sparsity.

For the segment-based response prediction task, the numerical evaluation result is shown
in Table 5.2. From the table, we can find that the proposed HRMT achieves the best score
on the primary nsDCG@5 metric. On the auxiliary insDCG@5 metric, the KMeans baseline
achieves a much better result than the other models. This is because the insDCG metric

has a higher weight on the average DCG, which is denoted as DCG ., and therefore favors
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Figure 5.6: Heatmap for actor enrichment split counts. The x-axis is the level of the tree,
while the y-axis is the actor enrichment. The number in a cell means how many times a
split is based on the given actor enrichment in the given level of the tree.

smaller segments, as is introduced in Equation 5.6. In our experiment, we set the number
of clusters k for the KMeans baseline as k& = 20, which is much larger than the segments
produced by the HRMT algorithm and COIN algorithm.

In addition to the numerical evaluation, we also analyze how the split happens according
to the actor enrichment at different levels. The heatmap of which is shown in Figure 5.6.
From the Figure, we can conclude that in the first level of the tree, the split happens only
based on the ethnicity and ladder (income index), which represents that the ladder and
ethnicity is the most critical factor for the actors’ response. The second important actor

enrichment in the second level includes gender, honor-face, morality-purity, etc.
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Model Name | Kernel Name | Message Indicator | nsDCG@5 | insDCG@5
LR agenda 0.343 2.988
COIN-Graph MLP agenda 0.326 2.855
SVR agenda 0.342 2.988
LR agenda 0.274 264.971
KMeans MLP agenda 0.167 9.901
SVR agenda 0.274 264.971
MLP agenda 0.463 1.799
LR agenda 0.477 1.510
HRMT SVR agenda 0.476 1.461
GBDT agenda 0.477 1.565
HGBDT agenda 0.485 1.386
LR concern 0.366 0.937
COIN-Graph MLP concern 0.350 0.868
SVR concern 0.366 0.937
LR concern 0.197 56.297
KMeans MLP concern 0.218 5.153
SVR concern 0.198 55.974
MLP concern 0.463 0.763
LR concern 0.475 0.767
HRMT SVR concern 0.478 0.752
GBDT concern 0.461 0.798
HGBDT concern 0.462 0.784
LR emotion 0.362 1.166
COIN-Graph MLP emotion 0.346 1.084
SVR emotion 0.346 1.084
LR emotion 0.313 144.697
KMeans MLP emotion 0.196 26.914
SVR emotion 0.312 146.375
MLP emotion 0.471 0.888
LR emotion 0.478 0.903
HRMT SVR emotion 0.475 0.891
GBDT emotion 0.465 0.937
HGBDT emotion 0.473 0.871

Table 5.2: The evaluation result for the segment-based response prediction task on French
Election Dataset. We set k = 5 for both the nsDCG and insDCG metrics, for which metric
the higher the better. HRMT with different kernels achieves the highest score on all of the
3 message indicators. KMeans baseline achieves the highest insDCG on all of the 3 message
indicators.
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CHAPTER 6: CONCLUSION

We propose a novel framework to tackle the individual-based and segmentation-based
response prediction tasks on social networks, which can help us understand the potential
mechanism of how social information influences and shapes actors’ believes and affects their
response to messages. We formulate the tasks as context-aware individual-level time series
prediction and segment-level time series prediction and proposed a series of techniques to
solve the tasks. We predict the demographics and psychographics of actors with a text-based
BERT language model and predict the messages’ agenda, concern, and emotion based on a
weakly-supervised topic detection model. We then propose a novel algorithm to construct the
Hierarchical Regression Model Tree (HRMT) to simultaneously solve the actor segmentation
and segment-level response prediction problem. Finally, we conduct experiments to show
the effectiveness of the proposed HRMT model on segment-level response prediction as well
as the application of analyzing the characteristics of actors’ beliefs and response behaviors

based on the tree structure.
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