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ABSTRACT

Social network systems have produced large-scale data of social signals. However, the

potential mechanism of social signal propagation and how it affects people’s beliefs and

responses are still not well investigated. In this project, we propose a framework and an

explainable Hierarchical Regression Model Tree (HRMT) algorithm to solve the individual-

level and segmentation-level response prediction tasks and therefore provide the solution to

analyze how people’s morality, demographics, and other psychographic characteristics affect

their beliefs and response to the social information influence. We develop a text-based actor

enrichment prediction module based on the Bidirectional Encoder Representations from

Transformers (BERT) language model and predict the message enrichment with a weakly-

supervised topic detection model. The Hierarchical Regression Model Tree is constructed

with regression-error greedy search and reliability test algorithms and then used to construct

the segments of actors based on tree structure and predict future responses. These results

can be applied for many downstream researches and tasks, such as sociological analysis,

influence campaign detection, advertisement, and recommender systems. We also proposed

two novel evaluation metrics, normalized segment Discounted Cumulative Gain (nsDCG)

and invariant nsDCG. Experimental evaluations show the proposed HRMT outperforms the

state-of-the-art models by 0.12 in the nsDCG metrics. We also introduce the application of

HRMT in analyzing the characteristics of actors’ beliefs based on the tree structure.
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CHAPTER 1: INTRODUCTION

Social network systems have become more and more popular and meanwhile also produce

large-scale data, which can be viewed and captured as large-scale social signals [1]. The

engineers have investigates how to characterize the physical signals and what kind of re-

sponse is produced in the physical world. However, the potential mechanism of how social

information signals are propagated and how it affects people’s beliefs and responses are still

not well investigated or understood. In this project, we proposed a novel framework, as

is shown in Figure 1.1, to detect, analyze, and understand the way how people’s (social

actors’) demographics, morality belief, and other psychographics, as well as information

signals (messages), impacts the social response and the segmentation of actors on social

networks. The proposed framework can help us better understand the social information

influence mechanism between actors and messages on the social network and benefits a lot

of downstream research and applications, such as sociological analysis, influence campaign

detection, advertisement, and recommender systems.
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Figure 1.1: Overall Framework of the actor segmentation and response prediction task
and the proposed solution with Enrichment Detection modules and Hierarchical Regres-
sion Model Tree algorithm.

In this project, we abstract and focus on two tasks, the individual-based response predic-

tion, and segmentation-based response prediction tasks. We focus on two kinds of entities,

the actors and messages, abstracting the information propagation and influence process on

most social network systems. In both tasks, the input data includes the interaction data

between the actors and messages with timestamps, as well as the contextual data of them.
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The contextual data of actors can be the historical messages they posted and the profile

data, while the contextual data of messages can be, for example, text, images, and videos.

The individual-based response prediction focus on the time series prediction of the individ-

ual actor’s response towards a specific type of messages, such as the message with given

concerns, agendas, or emotions. The segmentation-based response prediction includes two

sub-tasks, including (i) clustering the actors into segments and (ii) segment-level response

time series prediction. Solving these two tasks can help us understand how actors’ demo-

graphic and psychographic characteristics can cluster and affects their beliefs and response

to social messages.

The existing literature has also explored the time series prediction of social response [2, 3,

4]. However, most existing models focus on developing complex models (such as deep neural

networks) and improving prediction accuracy, neglecting the importance of model explain-

ability. This limits their ability and application on understanding the potential mechanism

of actors’ beliefs and social information influence. We propose the Hierarchical Regression

Model Tree algorithm, which is an explainable actor segmentation and response prediction

model. As is shown in Figure 1.1, it consists of three modules, (i) Enrichment Predic-

tion, (ii) Hierarchical Regression Model Tree (HRMT) Construction, and (iii) Segmentation

Inference and Response Prediction. In the Enrichment Prediction module, we develop a

text-based classification model for morality, demographics, and psychographics prediction

of actors based on the BERT [5] language model. We adopt the weakly-supervised topic

detection model CatE [6] for the message enrichment prediction of agenda, emotion, and

concerns. In the Tree Construction module, we develop a novel explainable regression model

tree algorithm, named Hierarchical Regression Model Tree (HRMT). We construct the tree

with a reliability test and greedy search for regression error. In the Tree Inference Module,

we introduce the segmentation algorithm based on the tree nodes and the algorithm to find

the best match of tree node and predict response.

We evaluate the individual-based response prediction task with Lift code [7] and propose

two evaluation metrics, the normalized segment Discounted Cumulative Gain (nsDCG) and

invariant normalized segment Discounted Cumulative Gain (insDCG) for the segmentation-

based response prediction task. The evaluation of the French Election 2017 dataset shows

that the proposed framework outperforms the state-of-the-art baselines by 0.12 on average

on the nsDCG metric. We also introduce the method to analyze the characteristics of actors’

beliefs based on the tree structure.
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CHAPTER 2: RELATED WORKS

There has been much existing literature introducing the modeling based on the tree struc-

ture. The strength of these existing tree-based models including our proposed HRMT model

is that the models are explainable. We may reveal lots of findings, including statistical

analysis of features, and the latent mechanism of the prediction model.

2.1 DECISION TREE

The decision tree is a fast and reliable machine learning model based on a tree structure,

which is widely used in classification and regression tasks. The decision tree model builds

either the regression or classification model based on the split of the datasets. It starts with

the root node, which represents the whole dataset. It then splits the dataset hierarchically

into smaller sizes according to some features. In this way, it split the parent nodes with

multiple levels of children nodes and therefore generates a tree. There are mainly two kinds

of splitting measures used for decision trees, the information gain, and the Gini index.

The information gain is defined as:

IG(X, a) = H(X)−H(X|a), (2.1)

where IG(X, a) is the information gain of a random variable X given the value of attribute

a. H(X) is the information entropy of X, which describe the uncertainty of X. H(X|a) is

the conditional entropy of X given the attribute a. With the information gain as a splitting

measure, our objective is to decrease the amount of entropy starting from the root node (the

top of the tree) to the leaf node (the bottom of the tree). In this way, we can greedily decide

how to split the nodes, which is called ID3 algorithm [8].

The Gini index (or Gini Impurity), on the contrary, is used by Classification And Regres-

sion Tree (CART) algorithms to split the dataset into a decision tree. It keeps searching for

the best splitting scheme which satisfies the best homogeneity for the child nodes, under the

Gini index criterion. The Gini index is a metric for the classification tree of CART, which

is defined as,

Gini = 1−
n∑

i=1

(pi)
2, (2.2)

where pi is the probability to classify samples to i-th class. The Gini index varies from 0 to

1. 0 represents the classification is pure. 0.5 represents there is an equal distribution over

the classes. When it’s 1, the distribution is random across various classes. The objective

3
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Figure 2.1: One example of the Decision Tree model built for regression task [9]. The blue
rectangles are the names of features, which represent the feature of the weather. The grey
rectangles are the values of features. The orange rectangles are the target values, which
represent the weather appearing hours.

is to find the best splitting scheme so that the Gini index is decreasing when we split the

nodes from the root to the leaf.

In this paper, we focus on the regression task of response prediction. The regression

decision tree [9] is slightly different from the classification decision tree. An example of the

regression decision tree is shown in Figure 2.1. Take the ID3 algorithm as an example, we

can apply the decision tree for the regression task by replacing the information gain metric

with standard deviation reduction, which is defined as

SDR(X, a) = σ(X)− σ(X, a) (2.3)

where σ(X) is the standard deviation of target variable X. σ(X, a) is the standard deviation

of X when node is split via attribute a. In this way, we choose the child node with the largest

standard deviation reduction when the size of the sub-dataset is larger than a threshold.

2.2 MODEL TREE

Although decision tree is a fast and well-known algorithm in the statistics and machine

learning fields, it still suffers from over-fitting problems. The prediction of the decision tree

is some simple numerical variables saved in the leaf nodes, which also leads to the instability

of the model when the distribution is different between the training and testing samples.
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id_node: 0
X[9] <= -0.18464
loss: 1.6825
samples: 5000

id_node: 1
X[2] <= 0.094
loss: 1.4008
samples: 2083

id_node: 2
X[3] <= 0.08998
loss: 1.5170
samples: 2917

id_node: 3
X[8] <= 0.01073
loss: 1.2032
samples: 1110

id_node: 4
loss: 1.4427
samples: 973

id_node: 7
X[1] <= 0.34563
loss: 1.3454
samples: 1573

id_node: 8
X[9] <= 0.6563
loss: 1.3089
samples: 1344

id_node: 5
loss: 1.1453
samples: 534

id_node: 6
loss: 1.2570
samples: 576

id_node: 9
loss: 1.2608
samples: 984

id_node: 10
loss: 1.4868
samples: 589

id_node: 11
loss: 1.1740
samples: 780

id_node: 12
loss: 1.4956
samples: 564

Figure 2.2: Example of a linear model Tree [11] on a generated regression data. In each
node, a model is fitted and used for deciding the split. The root node includes all the data
samples, which are further split into levels of child nodes. Split only happens when the
criterion of child nodes is smaller than parent nodes, which implies the reduction of losses.

In addition to the decision tree, another closely related work is the Model Trees [10],

which also inspires us to propose our HRMT Model. Unlike the decision tree, the Model

Tree algorithms apply some other machine learning models (such as Linear Models) in the

leaf node instead of some simple numerical variables. Figure 2.2 shows an example of a

Linear Model Tree. The splitting scheme of the model trees in a node is the criterion of

target fitting with the machine learning model. The criterion for the regression task can be

Mean Square Error (MSE), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE),

etc. The algorithm will choose the child node split with the smallest regression error. It will

only split when the weighted loss of the child nodes is lower than the parent node’s loss.

The losses are calculated based on the fitted model on the respective nodes.
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CHAPTER 3: FORMULATION

In this chapter, we will introduce the formulation of the data, tasks, and models. We

focus on data abstraction from social networks and two kinds of response prediction tasks.

3.1 DATA FORMULATION

In this work, we focus on the data from social networks. We abstract two kinds of entities

from social network systems, actors and messages. Most social network systems contain

these two abstractions since the social networks are represented as actors (or users) and the

messages they transmit. For example, on Twitter, the actors are referring to the users while

messages are referring to the short-text-based tweets, while on Instagram the actors are users

and messages are images. We use A to represent the set of all actors and a for one actor.

We useM to represent the set of all messages and m as one message. The dataset from the

social network should include the interaction records between the actors and messages (such

as posting, forwarding, or liking a message) and the timestamp t for each interaction. We

use eti,j to denote the interaction that happens at time t between the i-th actor and the j-th

message. We use E to denote the interaction data. Optionally the data may contain the

contexts of the actors (such as id, name, and profile data) and the contexts of the messages

(such as images, and texts). We use X to denote the contextual feature matrix of actors or

messages, and use xi or xj for the feature of i-th actors or j-th messages.

3.2 INDIVIDUAL-BASED RESPONSE PREDICTION TASK

The first task is to predict the response of individual actors in the future, based on

historical data. The response of an actor is defined as the expected number of an actor

responding to messages (such as the number of tweets a user posts in a time period). We use

Rt to denote the response of actors in the t-th time period, and use rti to denote the response

of i-th actor at time period t. Note that the response is not necessarily an integer, it may also

be a continuous variable when the responding action to a message is modeled as a probability.

In addition, in this paper, we further consider the indicator-specific response. Since we have

the contextual feature of the messages, we can further classify these messages into multiple

categories according to the indicators (such as agendas, emotions, and concerns). For each

message, we compute the probability to assign it to different indicators. We then calculate

the response of an actor to a specific indicator by summing up all the probabilities of that
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indicator responded by that actor. We will introduce the detail of producing the indicator

in the following chapters.

We split the time of the training interaction data into n parts of the same length (such as

one week). In this way, we obtain the time series of training interactions, E = E1, E2, ..., En,

the time series of contextual features X = X1, X2, ..., Xn, and the time series of responses of

a given indicator R = R1, R2, ..., Rn. Our objective is to construct a model Φ which receives

the historical time series and predicts the response R̃n+1 in the future.

R̃n+1 = Φ(E,X,R) (3.1)

3.3 SEGMENTATION-BASED RESPONSE PREDICTION TASK

The second task is a segment-based variant of the first task. In this task, instead of

predicting the response of individual actors, the objective is to first compute segments of

actors and then predict the response of segments. The advantage of resolving this task is

that we can not only have a precise prediction for the actors which are associated with

segments, but we can also further investigate the relationship between actors according

to their demographic or psychographic features. We may also figure out some valuable

conclusions by investigating the potential mechanism of segmentation. For example, we

may conclude that ”the female users who are interested in environment protection belong

to the same segment, and they are more likely to respond to democratic messages”.

Similarly, we split the time of the training data into n parts and construct the time

series of training interactions, E = E1, E2, ..., En, the time series of contextual features

X = X1, X2, ..., Xn, and the time series of responses of a given indicator R = R1, R2, ..., Rn.

The objective of the segmentation-based task is to construct a segmentation of all actors, and

in the meanwhile predict the individual actor responses with the assistance of segmentation.

We use S = {s1, s2, ..., sk} to denote the produced segment set, where si is a segment, which

is a set consisting of all associated actors, si = {a1, a2, ..., am}. The algorithm can produce

any number of segments, which means the algorithm can decide the number of k. However,

the overlap between the segments is not allowed. In this way, the algorithm has to find a

balance in the trade-off between precision and recall by controlling the number of produced

segments.

Assuming we have an algorithm denoted by Φ, the objective of this task is to predict

the segmentation of actors S and also the response of individual actor response R̃n+1 in the

future.

S, R̃n+1 = Φ(E,X,R) (3.2)

7



CHAPTER 4: METHODOLOGY

In this chapter, we will introduce the modeling for actor and message enrichment predic-

tion, as well as the proposed Hierarchical Regression Model Tree (HRMT) algorithm. As is

shown in Figure 1.1, after receiving the processed data (data processing will be introduced in

Section 5.1), we will apply two kinds of enrichment prediction models for actor and message,

respectively. For the actors, we will predict their morality, demographic features (such as

age, and gender), and psychographic features (such as political orientation and religion). For

the messages, we will predict the emotion, concern, and agenda according to the contextual

data of messages. The detailed constitution of actor enrichment and message enrichment for

the French Election dataset is shown in Table 4.1 and Table 4.2.

Actor Enrichment Sub-Categories

morality
Authority, Care, Equality, Loyalty,
Proportionality, Purity, Dignity

education
Less than high school, High School, Some College,

Bachelor, Master, Doctorate

ethnicity
White, North African, Black, Asian,

Prefer not to say, Other

religion
Christianity, Islam, Judaism, Hinduism,

Buddhism, Nonreligious, Other
honor Dignity, Face, Honor
age [18,22], [22,27], [27,34], [34,43], [43,65+]

gender Male, Female, Other
political orientation Left, Median, Right

ladder Integer from 1 to 10 representing the income level

Table 4.1: Actor enrichment indicators and their sub-categories are applied in the actor
enrichment prediction module. We model the actor enrichment detection as a classification
task and therefore we assign each actor a value in the sub-categories as the prediction.

4.1 ACTOR ENRICHMENT PREDICTION MODULE

Most of the existing social network data will provide the contextual information of actors

and messages. This project, as an example, focuses on short-text-based social networks

(such as Twitter), therefore in the dataset, we have the information on actors’ historical

posts, as well as the text content of the messages. The first part of our segmentation and

response prediction is the enrichment detection module, as is shown in Figure 1.1. We use

two modules to detect the enrichments for actors and messages, respectively. For actors,

8



Message Enrichment Sub-Categories

concern
Economy, Candidates, Democracy, Terrorism,

Religion, Immigration, International organizations,
Russia, National Identity, Environment and climate, Fake news

emotion
Anger/Hate, Guilt/Shame/Sadness,

Admiration/Love, Optimism/Hope, Joy/Happiness, Pride,
Fear, Amusement, Other Positive, Other Negative

agenda 12 sub-categories about beliefs towards political election

Table 4.2: Message enrichment indicators and their sub-categories are applied in the message
enrichment prediction module. We model the message enrichment detection as a classifica-
tion task and therefore we assign each message a value in the sub-categories as the prediction.

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p

dk, and apply a softmax function to obtain the weights on the
values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q, K, V ) = softmax(
QKT

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Figure 4.1: The architecture of self-attention and multi-head self-attention mechanism [12],
which is the key module in the Transformers model, which is also adapted in the pre-trained
BERT models.

we care about morality, demographics, and psychographics statistics. For messages, we care

about what kind of agendas, concerns, and emotions they are discussing. We list the possible

enrichment in Table 4.1 and Table 4.2.

The morality foundations theory [13] is a theory in psychology and cognitive science

which has been successfully proven to be effective in describing the psychographic belief

of people. It has also been proven that it’s possible to extract the relevant psychographics

from the text [14], where the text embeddings are used to estimate the magnitude of the

relationship between language and each moral concern, across individuals, and the result

shows that the moral concerns are predictable from the language with a satisfactory average

R2 score. It also shows that the state-of-the-art language model, the Bidirectional Encoder

Representations from Transformer (BERT) model achieves the best result when compared

to the moral lexicon-based methods (such as MFD [15]) and traditional natural language

processing language models (such as LDA [16] and GloVe [17]). Inspired by this, we propose
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BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

Figure 4.2: The framework of BERT model [5], which is pre-trained on the masked language
model task, in an unsupervised policy.

to build an enrichment prediction model based on the BERT language model.

The framework of BERT model [5] and the architecture of Transformers [12] is shown

in Figure 4.2 and Figure 4.1. In the Transformer model, it first receives the text (e.g.

the social network text in our dataset) as the input, and models it as the sequence of

text tokens’ embedding (x1, x2, ..., xn). The encoder of the transformer received the input

embedding sequence and encodes it with several multi-head attention layers. The output of

the encoder is a sequence of continuous representations z = (z1, z2, ..., zn). In this project,

we are interested in the embedding of the message (text), which can be obtained by taking

the average of encoded representations,

zmsg =
1

n

n∑
i=1

zi, (4.1)

where n is the number of tokens for the message. Finally, we compute the actor’s contextual

text embedding by taking the message-level average of all messages (posts) of an actor,

instead of the word-level average,

za =
1

N

N∑
k=1

zkmsg, (4.2)

where zkmsg is the embedding of the k-th message for the actor a. The advantage of message-

level average has been proven in [14].

The attention mechanism is the kernel effective module in the Transformer and BERT

models. As is shown in Figure 4.1, for the input sequence of variables, it transforms the

variables into a sequence of queries (Q), Keys (K), and Values (V ), with the linear trans-
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formation. Then, it calculates the inner produces of pairs of queries and keys and calculates

attention coefficients. Finally, the output of the attention layer is the weighted average of

the values,

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (4.3)

where dk is a hyper-parameter that determines the dimensions of queries and keys.

With the produced attention, we can then feed the features into a positional-wise feed-

forward network, which consists of two linear transformations with the ReLU activation

function,

ϕ(x) = σ(XW1 + b1)W2 + b2, (4.4)

where σ(x) = max(0, x) is the ReLU activation function. In this way, the encoder will

produce an encoder sequence of representations z, which can be fine-tuned and applied to

our morality prediction task.

The BERT pre-training process shown in Figure 4.2 has been proven to be effective in

improving the downstream classification of tweet text [18, 19]. Therefore, in this project, we

also adopt the BERT pre-trained model to improve the performance of the language model

on downstream demographics and psychographics prediction tasks of actors. It pre-trains

the transformer model in the Masked Language Model (MLM) task, where we randomly

mask some tokens in the sentence as unknown and require the language model to recover

those tokens. The advantage of this process is that it’s fully unsupervised (self-supervised),

which means we do not need large-scale annotation for the text data.

With the pre-trained BERT encoder and the produced actor contextual text embedding

za, we further fine-tune the BERT encoder for the downstream task with an additional

classification head. We model the classification head with a multiple-layer perceptron (MLP).

For each actor enrichment in the first column of Table 4.1, we train the model as a multi-

class classification task, where the classes are the sub-categories in the second column. The

MLP classification head is formulated as,

ϕ(za) = softmax(σ(zaW1 + b1)W2 + b2), (4.5)

where in the first layer, the parameter of weight matrix W1 ∈ Rhz×hm , the bias b1 ∈ Rhm ,

given that hz is the dimension of BERT representation output, hm is the dimension of the

hidden state of MLP. In the second layer, W2 ∈ Rhm×hc and b2 ∈ Rhc , where hc is the

number of classes for a specific actor enrichment classification task. The softmax function

normalizes the output of the MLP into the scale between 0 and 1 representing the likelihood
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to assign the actor to that class, which is

softmax(yi) =
eyi∑
k e

yk
. (4.6)

We then calculate the negative log-likelihood as the loss function, which can be formulated

as,

L = −
N∑
k=1

1

N
yk log(ϕ(zka)), (4.7)

where yk is the label of the target class. We optimize this loss function as the objective and

obtain the classifier for the enrichment of actors.

4.1.1 Data Annotation for Psychographics

To train the proposed classification model for actor enrichment prediction, we need to

annotate the actor with their morality, honor belief, and demographics. To achieve this, we

designed a questionnaire based on the MFQ-2 [20]. MFQ-2 is a newly validated version of the

original Moral Foundations Questionnaire (MFQ), with significantly better psychometrics,

and validated in 21 countries. We also queried the participants’ demographics such as ages

and genders. We focus on the Twitter platform and select about 3000 participants and we

ensure that the participants must be active Twitter users and willing to provide us with their

Twitter IDs. The participants’ Twitter data (both text and network data) will be extracted.

We also collect the participants’ stances on a series of issues with societal significance, such

as vaccination, global warming, freedom of speech, trust in governments, etc. In this way,

we can train the language model and classification with the collected labels.

4.2 MESSAGE ENRICHMENT PREDICTION MODULE

As is shown in Figure 1.1, receiving the input of interaction data between actors and

messages, as well as the contextual data, we deploy a message enrichment prediction module

to detect the enrichment of messages including the agenda, emotion, and concern which the

messages are discussing. In this project, we focus on text-based social media platforms and

use the data from Twitter for the experiments. We summarize the message enrichment and

their possible values in Table 4.2. For the concern classification, the input is a message

(e.g. a tweet text) and the output is assigning the message into a concern category, such as

Economy, Candidates, Democracy, etc. For the emotion classification, we classify a text into

12



lim
|V |!1

p(wi+j | wi ) =
exp(�wiu

>
wi
vwi+j )Ø

Sp�1 exp(�wiu
>
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,
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>
wi
vwi+j )

Z
,

(11)

where Z denotes the integral in the denominator.
The probability density function of vMF distribution integrates

to 1 over the entire sphere, i.e.,π
Sp�1

cp (�wi ) exp(�wiu
>
wi
vw 0 )dvw 0 = 1,

we have

Z =

π
Sp�1

exp(�wiu
>
wi
vw 0 )dvw 0 =

1
cp (�wi )

.

Plugging Z back to Eq. (11), we obtain
lim

|V |!1
p(wi+j | wi ) = cp (�wi ) exp(�wiu

>
wi
vwi+j ).

⇤

Theorem 1 reveals the underlying generative assumption of the
joint learning model de�ned in Section 4.2—the contexts vectors are
assumed to be generated from the vMF distribution with the center
word vector uwi as the mean direction and �wi as the concentra-
tion parameter. Our model essentially learns both word embedding
and word distributional speci�city that maximize the probability
of the context vectors getting generated by the center word’s vMF
distribution. Figure 1 shows two words with di�erent distributional

“food”
“seafood”

“salad”

“seafood”
“prawn”“crab”

�seafood = 0.728
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�food = 0.615
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

“dessert”

“steak”
“fish” “oyster”

Figure 1: Word Distributional Speci�city.

speci�city. “Food” has more general meaning than “seafood” and
appears in more diverse contexts. Therefore, the learned vMF dis-
tribution of “food” will have a lower concentration parameter than
that of “seafood”. In other words, “food” has a lower distributional
speci�city than “seafood”.

4.4 Selecting Category Representative Words
Finally, the learned distributional speci�city can be used to impose
the constraint that class representative words should belong to the
category. Speci�cally, a category representative word must have
higher distributional speci�city than the category name. However,
we also want to avoid selecting too speci�c terms as category repre-
sentative words. From the embedding learning perspective, words
with higher semantic speci�city may appear fewer times in the
corpus and su�er from lower embedding quality and higher vari-
ance due to insu�cient training, which can lead to the distortion of

the category embedding manifold if they are selected as category
representative words.

Therefore, among all the words that are more speci�c than the
category name, we prefer words that (1) have high embedding
cosine similarity with the category name, and (2) have low dis-
tributional speci�city, which indicates wider semantic coverage.
Formally, we �nd a representative word of category ci and add it
to the set S by

w = arg min
w

ranksim (w, ci ) · rankspec (w)
s .t . w < S and �w > �ci ,

(12)

where ranksim (w, ci ) is the ranking ofw by embedding cosine simi-
larity with category ci , i.e., cos(uw ,ci ), from high to low; rankspec (w)
is the ranking of w by distributional speci�city, i.e., �w , from low
to high.

4.5 Overall Algorithm
We summarize the overall algorithm of discriminative topic mining
in Algorithm 1.

Algorithm 1: Discriminative Topic Mining.
Input: A text corpus D; a set of category names

C = {ci }|ni=1.
Output: Discriminative topic mining results Si |ni=1.
for i  1 to n do

Si  {ci } . initialize Si with category names;
for t  1 tomax_iter do

Train W,C on D according to Equation (2);
for i  1 to n do

w  Select representative word of ci by Eq. (12);
Si  Si [ {w};

for i  1 to n do
Si  Si \ {ci } . exclude category names;

Return Si |ni=1;

Initially, the set of class representative words Si is simply the
category name. During training, Si gradually incorporates more
class representative words so that the category embedding models
more accurate and complete class semantics. The embeddings of
class representative words are directly enforced by Eq. (6) to encode
category distinctive information, and this weak supervision signal
will pass to other words through Eqs. (7) and (8) so that the resulting
embedding space is speci�cally �ne-tuned to distinguish the given
set of categories.

5 EXPERIMENTS
5.1 Experiment Setup
Datasets. We use two datasets, the New York Times annotated
corpus (NYT) [42], the recently released Yelp Dataset Challenge
(Yelp)3. NYT and Yelp each has two sets of categories: NYT: topic
and location; Yelp: food type and sentiment. For NYT, we �rst select
the major categories (with more than 100 documents) from topics
3https://www.yelp.com/dataset/challenge

2125

Figure 4.3: The embedding produced by the CatE model [6] and the word distributional
specificity. The embedding of the CatE model is spherical and has the property of distribu-
tional specificity. For the food category, which is a broader terminology, the distribution of
the word embedding is more dispersive. For the seafood category, the distribution of word
embedding is more concentrated to a smaller range of angles. This property benefits the
application of the CatE model in our message enrichment prediction task.

categories of the message’s emotional tendency such as Anger/Hate, Guilt/Shame/Sadness,

Admiration/Love, etc. The agenda classification focus on the political belief a tweet is

discussing, such as voting for an entity, voting against an entity, etc.

The detected message enrichment can be applied to the downstream tasks in our frame-

work. It can improve the performance of produced regression tree model and also the

accuracy of response prediction. Since our regression model tree is an explainable machine

learning model, we can also have a more specific understanding of the relationship that how

the actors’ demographics and psychographics affect the response action on a specific kind of

message (message with specific enrichment), which will also benefit the following sociological

research and downstream applications of our system.

Similarly, we model the message enrichment prediction task as a multi-class classification

task. In this project, we adopt the CatE [6] model to classify the messages into categories of

agenda, concerns, and emotion. The CatE model is a weakly supervised classification model,

which means we do not need to have a large-scale annotation for many data samples. We

only need to provide some textual explanation for the categories we are planning to classify

the data samples. For example, we only need to add some textual notation to explain what

is Economy, what is Democracy, etc. The CatE model leverages this textual information and

analyzes the textual correlations on the full documents, and produces the classification re-

sults. The advantages of the CatE model are that it simultaneously modeling of the category

tree structure in the spherical space, preserves the relative category hierarchical structure
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in the spherical embedding space, and it also encourages inter-category distinctiveness for

clear topic interpretation. The CatE model proposes a category-name-guided embedding

algorithm. There are mainly two parts to the embedding algorithm, (1) user-guided text

generative process and (2) category name guided text embedding model.

For the first user-guided text generative process, given the user-provided n category names,

the text generation process is modeled as tree parts. First, we generate a document d based

on one category out of all of the n categories. Second, we condition the words, which are

denoted as wi, based on the semantic information of the generated document d. Third, the

neighboring words wj of the original word wi are generated based on wi. The likelihood of

the corpus generation conditioned on the category information provided by the user can be

formulated as,

p(D|C) =
∏
d∈D

p(d|cd)
∏
wi∈d

p(wi|d)
∏

wj∈N (wi)

p(wj|wi), (4.8)

where N (wi) is the neighboring words of wi. Modeling the above equation as a negative

log-likelihood (NLL) loss function, we can model the loss functions as three parts,

Ltopic = −
∑
d∈D

log p(d|cd) (4.9)

Lglobal = −
∑
d∈D

∑
wi∈d

log p(wi|d) (4.10)

Llocal = −
∑
d∈D

∑
wi∈d

∑
wj∈N (wi)

log p(wj|wi) (4.11)

Based on these loss functions, we can optimize the text generation process with the text

generation loss function Lgen = Ltopic + Lglobal + Llocal. Based on this loss function, we

can then model and optimize to obtain the optimal word embedding and the classification

likelihood. Assume uw is the word embedding of the word w and vw is the contextual

embedding for word w, which represents the contextual information of the neighboring word

of w. d is the embedding for the document and c is the embedding for the category. We can

therefore model the log-likelihood with the following formulas,

p(ci|w) =
exp(cTi uw)∑

cj∈C exp(cTj uw)
, (4.12)

p(wi|d) =
exp(uT

wi
d)∑

d′∈D exp(uT
wi
d′)

, (4.13)
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Figure 4.4: The tree constructed for the indicator of agenda for advocating to vote for the
entity on the French Election dataset, with the proposed Hierarchical Regression Model Tree.

p(wj|wi) =
exp(uT

wi
vwj

)∑
w′∈V exp(uT

wi
vw′)

, (4.14)

With the learned word embedding wi and category embedding c, we can predict the likelihood

of classifying an input message into the categories with the p(ci|w) formula.

4.3 HIERARCHICAL REGRESSION MODEL TREE ALGORITHM

In this project, we propose the Hierarchical Regression Model Tree (HRMT) model for

the individual-based response prediction task and the segmentation-based response predic-

tion. The advantage of the proposed HRMT model is that the model is based on the tree

structure which splits over the actors’ enrichment, and therefore the proposed method is an

explainable machine learning model. One example of the constructed tree of the HRMT

model is shown in Figure 4.4. Starting from the root node, it hierarchically split the actors

into sub-datasets for the child nodes, according to the actor enrichment, such as morality,

age, gender, schooling, etc. In every node of the HRMT tree, we construct a regression

model and implement it for the response prediction task and estimate the reliability score

and error. In this way, each node of the HRMT is representing a hierarchical subset of the

actor, which can also be interpreted as segments or clusters of users. We use greedy search

to find the best structure of the tree so that for each split, we ensure the split is reliable and
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we choose the split with the lowest regression error. In this way, the split of the tree also

reflects an optimum segmentation of the actors. HRMT is capable of simultaneously finding

the solutions to both the segmentation task and the response prediction task.

4.3.1 Response Time Series

As is shown in Figure 1.1, after obtaining the actor enrichment and the message enrich-

ment, we need to split the data into the time series of responses for the specific message

enrichment indicators. For example, we need to produce a time series of responses and split

all the data according to their time stamp. We also aggregate all the response rates towards

the given message enrichment indicator for the actors, in order to generate the response

rate of the actor towards that indicator. Assuming we have the interaction data eti,j ∈ E

representing that the actor ai responds to the message mj at time t. eti,j is either 0 for not

responding or 1 for responding to mj. Assuming we also have the probability of message mj

being classified to the message enrichment category c (e.g. concern-Economy), denoted as

p(c|mj), the aggregated response for actor ai can be formulated as,

rti =

|M|∑
j=1

p(c|mj)e
t
i,j, (4.15)

where |M| is the number of all messages. t is the t-th time range after the time split. In

this work, we consider splitting the whole time range into smaller time ranges weekly or bi-

weekly. In this way, we obtain the response time series R = R1, R2, ..., Rn. In addition, we

also split the interaction data into time series E = E1, E2, ..., En, and the actor enrichment

time series X = X1, X2, ..., Xn. In the following section, we will introduce how we construct

the tree hierarchically and subtract the sub-time series of some specific user to build the

sub-datasets for the child tree nodes.

4.3.2 Tree Node

Every tree node is an abstraction for a cluster or a segment of actors. For the segment of

actors, we have the response time series training data for those actors. Every node will also

include a kernel model for the regression task. The kernel model can be any kind of machine

learning or statistical model supporting the regression of time series and supporting the

metric-based evaluation. Currently, we have implemented the kernel models including Linear

Regression (LR), Lasso Regression (Lasso), Support Vector Regression (SVR), multiple-layer
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perceptron (MLP), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and

Histogram-based Gradient Boosting Decision Tree (HGBDT).

4.3.3 Tree Construction

In this section, we will introduce how we construct the tree by greedy-search the best split

scheme which minimizes the regression error and ensures reliability. The detailed algorithm

can be found in Algorithm 1.

• First, we build a queue data structure to save the nodes and push the root node into

the queue. The root node will automatically train the regression model of the specified

kernel model (e.g. Linear Regression) upon the construction of the node, and then it

uses cross-validation to compute the validation error.

• Second, similar to the Breadth First Search (BFS) algorithm, we repeatedly fetch the

node in the front of the queue and if the fetched node is not marked as a shadow node

(existence == True), we continue trying to split it.

• Third, we try all the possible actor enrichment values to split the nodes (e.g. concern-

Economy). We calculate the regression error and reliability score for each possible

split method and select the best split. If the split is not reliable or the error is not

satisfactory, we will not further split the current node.

• Finally, we push the new child to the queue if the split is successful. We save all the

successful regression models, data, and statistics in the nodes for future inference.

Reliability Test When deciding whether to split a node, one of the condition is the

regression model in the child node has to pass the reliability test, which mean the reliability

score τ is larger than the threshold. We adopt the reliability test algorithm proposed in the

Sparse Regression Cube [21] (SRC) algorithm. We will conduct the reliability test before

the greedy search for regression error.

In our tree node, a kernel model such as Linear Regression, Support Vector Regression,

and Multiple-Layer Perception, is used to fit the time series regression data. The expected

prediction error can be formulated as,

E[(y − xη̂c)
2] = E[(xηc + ϵ− xη̂c)

2] = E[(x(ηc − η̂c) + ϵ)2] (4.16)

where ηc is the actual regression parameters and η̂c is the estimated regression parameters.

x is the input data and y is the regression target. In the extreme case, when the prediction
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is perfectly fitted, the expected regression error would become,

EPE = E[ϵ2] = σ2, (4.17)

where σ is the standard deviation. We can then use the reliability criterion to bound the

prediction error with a 95%-confidence, and use Cauchy-Schwarz inequality to derive the

bound, which can be formulated as,

EPE = E[(xT (ηc − η̂c))
2] + E[ϵ2] ≤ E[xTx(ηc − η̂c)

T (ηc − η̂c)] + σ2. (4.18)

If the reliability condition holds, we can conclude that with the probability of 95%, we have

∥ηc − η̂c| ≤ δ, so the prediction error can be bounded with a probability of 95% as,

EPE ≤ E[xTx]δ2 + σ2, (4.19)

where δ is the confidence interval and ∥ ·∥ is the l2 norm. With the bounded prediction error

above, we can use the following criterion to test whether a split is reliable (whether a child

node is reliable).

Definition 4.1 (Tree Node Reliability). The tree node is reliable if the following condition

is satisfied,

ndata > k and
kσ̂2

δ2λmin(Θ)
≤ 0.05, (4.20)

where k is the number of dimensions of data. δ is the confidence interval, where is practically

set as the l2 norm of ηc, δ = ∥η̂c∥. σ̂ is the estimated standard deviation. Θ = XTX ∈ Rk×k

and λmin is the minimum eigenvalue.

Another advantage of applying this node reliability along with the greedy search of re-

gression error is the computation time. In computing the regression error, we would need to

conduct cross-validation, which is a computation-intensive task. With computing the relia-

bility test, we can prune the unreliable branch and skip some unnecessary cross-validation

computation.
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Algorithm 4.1: Construct Hierarchical Regression Model Tree

Data: Response Time Series R, Actor Enrichment X

Result: Hierarchical Regression Model Tree

1 node queue ← [root];

2 while node queue ̸= ∅ do

3 parent ← node queue.pop();

4 if parent.existence == False then

5 continue;

6 end

7 available enrichment types ← enrichment types not yet used by parent;

8 for enrichment type in available enrichment types do

9 for For enrichment value in enrichment type do

10 child ← new node;

11 child.actors ← parent.actors whose enrichment type is enrichment value;

12 child.data ← parent.data whose actor is child.actors;

13 child.model ← train(child.data);

14 child.reliability score ← reliability test(child.model, child.data);

15 child.error ← cross validation(child.model, child.data);

16 child.parent error ← cross validation(parent.model, child.data);

17 if child.error < child.parent error and child.reliability score > threshold

then

18 child.existence ← True

19 else

20 child.existence ← False

21 end

22 candidate children[enrichment type].append(child)

23 end

24 avg error[enrichment type] ← mean([child.error if child.existence else

child.parent error for all child]);

25 end

26 best enrichment type ← arg min(avg error);

27 node queue.push(candidate children[best enrichment type]);

28 end

19



Regression-Error-based Greedy-Search of Node Split Line 15-21 of Algorithm 1

defines how we compute the errors and decide whether to split the child node. We conduct

a greedy search to find the best split with the smallest error. There are in total two kinds of

errors to compute. First, we compute the error of the parent node’s regression model (which

is trained on the parent node’s data) on the cross-validation of the child’s data, which is

denoted as ϵp. Second, we compute the error of the child’s regression model on its own data,

denoted as ϵc. The split criterion for our HRMT model is ϵc ≤ ϵp and the node passed the

reliability test defined in Definition 4.1. There could be multiple splits passing this condition.

In that case, we will choose the split with the smallest ϵc.

Practically, we implemented 2 kinds of regression error for the greedy search, including

the Mean Absolute Error (MAE),

MAE =
1

n

n∑
i=1

|yi − ŷi|, (4.21)

the Mean Square Error (MSE),

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (4.22)

We use temporal cross-validation to compute the validation error. Assuming the length of

the time series is n, the sliding window of cross-validation is n− 1 and the last value is the

target y. In this way, the regression model, such as the linear regression model, will receive

a time series of size n−1 as input and predict a one-step future value in the cross-validation

phase. Note that in the inference phase we will re-train a full regression model on the full

time series of n for the final prediction.

4.3.4 Response Prediction

To predict the response of individual actors, we need to find the best-matched node and

retrieve the best regression model for the response of a given actor. The recursive algorithm

to find the matched node can be found in Algorithm 2. The input is the actor a and its

actor enrichment x. Starting from the root node, we use Depth-First-Search (DFS) to find

a path from the root to a leaf node, where along the path the actor enrichment of the nodes

is matched with the actor’s enrichment. Line 2 of Algorithm 2 is checking whether the actor

enrichment is matched, and line 3 recursively calls the Algorithm 2 itself to find the next

level. After the target leaf node is found, we will call the kernel regression model in that
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node to predict the future response for the given actor.

4.3.5 Segment Prediction

One advantage of the proposed HRMT algorithm is that the constructed tree node can

also be applied to generate the segmentation of actors. The structure of the tree is optimized

for the response regression task, and therefore the split of the node can represent the best

segmentation of actors, where each group (segment) have similar behavior with respect to

the response to the message.

To generate a hierarchical segmentation of the actors, in which case the overlap between

segments is allowed, we can directly output all of the tree nodes, each one as a segment.

In the case when the overlap between segments is not allowed, we can use a similar way as

Algorithm 2 to find the target tree node for every actor and put actors in the same segment

if their target nodes are the same.

Algorithm 4.2: Recursive Inference of Hierarchical Regression Model Tree

Data: Hierarchical Regression Model Tree, depth, actor a and its enrichment x

Result: Predicted response in future Rn+1,

1 for child in node.children do

2 if actor.enrichment value[depth] == child.enrichment value[depth]: then

3 return recursively call self(child, actor, depth+1)

4 end

5 end

6 return node.model.predict(node.data)
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CHAPTER 5: EXPERIMENTS

5.1 DATASET

In the experiments, we focus on the Twitter platform, which is a short-text-based social

network system. In this section, We will introduce the collection of the dataset and the

statistical analysis and verification of the dataset.

5.1.1 Data Collection

In this project, we have two kinds of Twitter data collected by different teams or tools.

The first dataset is the French Election 2017 dataset, which contains the discussion about

the French election in 2017 and the language is French. This dataset is provided by DARPA

Influence Campaign Awareness and SenseMaking (INCAS) project. We will report the

statistical experimental results but will not publish the dataset. For the French Election

dataset, we have translated all the tweets from French to English, using the API of a pre-

trained deep translation model. The second kind of Twitter data is collected via the Apollo

platform [22], which is a website interface allowing the user to collect Twitter data with

some keywords, as is shown in Figure 5.1. For both these two datasets, data is collected via

the official Twitter API.
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Figure 5.1: The user-interface website of the Apollo system, which is capable of collecting
data from social media platforms such as Twitter and Reddit, automatically conducts anal-
ysis based on collected data. We’ve also integrated the proposed HRMT algorithm on the
Apollo system.
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Figure 5.2: The distribution of the response rate. The x-axis is the response rate. The
y-axis is the number of the actor whose response rate falls in the histogram bin. The overall
distribution follows the exponential distribution, where most actors have a relatively low
response rate.

5.1.2 Dataset Statistics and Analysis

We first conduct some statistical analysis on the French Election 2017 dataset. We analyze

the distribution of the response rate, which is shown in Figure 5.2. In the French Election

dataset, the most actor has a very low response rate. The overall distribution of response

rate follows the exponential distribution, which is also proved in [2]. The sparsity of the

response data also indicates the response time series will be very sparse, which means there

would be many 0s in the time series. The ability of the modeling to handle the sparsity

problem becomes important.

In addition, to analyze the data, we also want to verify the effectiveness of the predicted

actor enrichment and message-enrichment-specified response rate. The assumption is that

there should be a correlation between the actor and the specified response rate. Figure 5.3

shows the heatmap of the average actor response rate given the value of actor enrichment

and the message enrichment of concern. We can conclude that there is a strong correla-

tion between the response rate and the actor and message enrichments. We can actually

have a lot of reasonable and interesting findings for the French Election dataset based on

this heatmap. For example, the actor whose age is between 22 and 27 responds the most

towards the economy messages. Males also respond much more to economic concerns than

females. People with a morality of high proportionality will respond more to the message

with international and democratic concerns.

We conduct the Analysis of variance (ANOVA) test on the actor and message enrichment

and report the F-values in Figure 5.4. From the figure, we can conclude that the correlation
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Figure 5.3: The heatmap of average actor response rate. Each cell in the figure means the
average response rate to one message enrichment of concern (x-axis) over actors belonging
to one actor enrichment category (y-axis).

is significant in most of the cells. There is a strong correlation between gender and economy,

a strong correlation between honor belief with democracy, etc. Intuitively, this conclusion

fits the belief of people, with respect to the French election event. This experimental result

shows that the actor and message enrichments are effective in the French Election dataset.

5.2 EXPERIMENT SETTING

The implementation of our algorithm is based on Python3. The experiments are con-

ducted on a device with 128-core CPU and 256 GB memory. The implementation of HRMT

and experiments are CPU-based, and therefore no GPU resources are required. We apply

grid-search for the best hyper-parameters for the HRMT model, such as the learning rate,

reliability threshold, and depth limit of the tree, etc.

5.3 EVALUATION METRICS

In this project, we evaluate the experimental results of the individual-based response

prediction task and the segment-based response prediction tasks. For the first task, we

use the Lift ranking score to evaluate the ranked individual actor list with the predicted

response. For the second task, we use an improved Discounted Cumulative Gain (DCG)
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score and normalized Discounted Cumulative Gain (nDCG) score specially designed for the

ranking of segments.

5.3.1 Lift Score

The Lift score or the Lift statistics are the metrics for the predictivity commonly used in

marketing and actuarial circles for evaluating models. For our individual response prediction

task, we have the set of all the actors A and in the evaluation phase, we have the ground

truth of the response for each actor, which is denoted as rn+1
i . We also have the predicted

response value for actor ai, which is denoted as r̃n+1
i . We perform the following process to

obtain the lift score,

• We rank the actors by the predicted response r̃n+1
i and get an non-decreasing ranking

sequence of actors.

• We divide the data into deciles and sum the ground truth of response rn+1
i within each

decile to produce the z value, z1, z2, ..., z10.

• A lift chart is a figure plotting zj versus j. We can compute the Lift statistic (Lift

score) as z10/z1. For a non-predictive model, the expected lift statistic is 1, and as

predictivity improves, the lift statistic gets bigger.
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5.3.2 Segment-Based DCG and nDCG Metrics

In the second task, given a fixed message-enrichment-based indicator (such as concern-

Economy) L, the output of the model include the segment set S = {s1, s2, ..., sk} as well as

the predict response for each actor, which is denoted as r̃n+1
i . We assume S is a collection

of disjoint segments associated with L, which means we do not allow overlap between the

output segments.

The Discounted Cumulative Gain at k metric for the ranking of S is defined as

DCG(k) =
k∑

i=1

R(si)

log2(i + 1)
, (5.1)

where R(s) is some measure of relevance or engagement of segment s towards the message-

enrichment-based indicator. For example, R(s) can be the average response prediction of all

actors in segment s.

Definition 5.1 (Average and Total Engagements for Segment). For one segment, we define

the average and total engagements as,

Rave(s) =
∑
ai∈s

r̃n+1
i

|s| , (5.2)

and

Rtotal(s) =
∑
ai∈s

r̃n+1
i = |s|

∑
ai∈s

r̃n+1
i

|s| = |s|Rave(s), (5.3)

where |s| is the size of segment s.

Definition 5.2 (Average and Total DCG for Segment). Let S = {s1, s2, ..., sk} be the output

collection of segments, the average, and total DCG at k for S are defined as,

DCGave(k) =
k∑

i=1

Rave(si)

log2(i + 1)
, (5.4)

and

DCGtotal(k) =
k∑

i=1

Rtotal(si)

log2(i + 1)
=

k∑
i=1

|si|
Rave(si)

log2(i + 1)
, (5.5)

However, the average and total DCG metrics for segments have limitations for the eval-

uation of segments, since we leave the number of segments as the choice of the algorithms.

This means the algorithm can produce any number of segments as the output set S. If an
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algorithm produces an extreme case of the number of segments, it may achieve a very high

score on either the average DCG metric or the total DCG metric. This is very similar to

the trade-off of precision and recall. Therefore, we need a more robust metric combining the

average DCG and total DCG metric, in analogy with the F1-score metric.

We observe that the maximum average DCG score DCGave(k) for k ≥ 1 can be achieved

by assigning each actor ai into a separated segment si, so that |S| = |A|. For any si, we

have si = {ai} and |si| = 1. In this case, we obtain the maximum value of the average DCG,

αk = DCGave,max(k) =
k∑

i=1

rn+1
i

log2(i + 1)
, (5.6)

where rn+1
i is the ground truth of response for actor ai.

Similarly, we observe the maximum total DCG score can be achieved when the model put

all the actors into a single segment. In this case, we have S = {s1} and |s1| = |A|. We

denote the maximum value of the total DCG score as

βA = DCGtotal,max(k) = Rtotal(A) =
∑
ai∈A

rn+1
i . (5.7)

In this, we can normalize the average and total DCG metrics introduced in Definition 5.2

with their possible maximum values αk and βA.

Definition 5.3 (Normalized Segment DCG). We define the normalized segment DCG (ns-

DCG) metric as,

nsDCG(k) =
1

2

(
DCGave(k)

αk

+
DCGtotal(k)

βA

)
=

∑
i=1

k
1

2

(
1

αk

+
|si|
βA

)
Rave(si)

log2(i + 1)
.

(5.8)

The nsDCG metric, however, is not population-invariant. In addition to the nsDCG

metric, we define a population-invariant nsDCG (insDCG) as an auxiliary metric.

Definition 5.4 (Invariant Normalized Segment DCG). We define the invariant normalized

segment DCG (insDCG) metric as,

insDCG(k) =
∑
i=1

k
1

2

(
1 +
|si|
βA

)
Rave(si)

log2(i + 1)
. (5.9)

In the following experiments, we will use the Lift score metric for the first individual-based

response prediction and use the nsDCG and insDCG metrics for the second segment-based

response prediction.
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Figure 5.5: Fitted global response curve used in the Replay Baseline in the French Election
dataset. The blue points are the historical total response rate, and the blue curve is the
fitted response trend curve. The orange point is the ground truth of future total response.
The red star is the predicted future total response. We can also observe the response rate is
increasing with time, which is also consistent with our intuition about the election event.

5.4 BASELINES

5.4.1 Replay Baseline

We design a replay baseline for the individual-based response prediction task. We observe

that the global response rate is increasing in the dataset. Therefore, simply using the

historical response rate of actors as the prediction is not appropriate. To solve this problem,

we calculate the total response rate in each time slot in the history and use linear curve

fitting to find the predicted total response rate R̃n+1 in time range tn+1. Then assuming the

historical response for actor ai is rti , we predict the actor’s future response as,

r̃n+1
i =

R̃n+1∑n
t=1Rt

n∑
t=1

rti , (5.10)

where Rt =
∑|A|

i=1 r
t
i is the historical total response rate.

5.4.2 KMeans Baseline

The KMeans baseline is designed for the second segment-based response prediction task.

In this baseline, we first calculate the historical total response rate Rai =
∑n

t=1 Rt for actor

ai. Then, we apply the one-dimensional KMeans algorithm on Rai to cluster the actors,

based on their historical response. In this way, we obtain the clusters (segments) collection
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S. Then, we deploy the LR, SVR, and MLP models as the kernel for each segment si ∈ S

generated by KMeans to predict the individual-level response rate at time tn+1.

5.4.3 Graph-Based Segmentation Algorithm

Co-Cluster Infomax for Bipartite Graphs (COIN) [23] is a graph-based algorithm to pro-

duce clusters of actors. In this model, both the actors and messages are modeled as the

nodes in a bipartite graph. The historical interaction data eti,j with 1 ≤ t ≤ n can be used

as the edges in the bipartite graph. Given a fixed number of clusters as input, by training

the COIN algorithm, we obtain a clustering result S assigning every actor to the clusters

(segments). Similar to the KMeans Baseline, we further apply LR, SVR, and MLP as the

kernel models for each segment si ∈ S to predict the individual-level response rate.

Model Name Cross Val. Kernel Time Split Msg. Indicator Lift Score

Replay Baseline
- - weekly concern 39.074
- - bi-weekly concern 45.021

HRMT

False LR weekly concern 40.574
True LR weekly concern 42.964
True Lasso weekly concern 41.308
True LR bi-weekly concern 47.746

Ground Truth - - - concern 867.182

Table 5.1: The evaluation result for the individual-based response prediction task on French
Election 2017 Dataset. HRMT with the LR kernel with bi-weekly time split and cross-
validation achieves the highest Lift score.

5.5 EXPERIMENTAL RESULT

For the individual-based response prediction task, the numerical evaluation result is shown

in Table 5.1. From the table, we can find the proposed HRMT model with the LR kernel

with bi-weekly time split and cross-validation achieves the highest Lift score. We can also

conclude that splitting the time bi-weekly benefits the response prediction result. The reason

is that the time series is very sparse, as is shown in Figure 5.2. Therefore, splitting bi-weekly

can relieve the effect of sparsity.

For the segment-based response prediction task, the numerical evaluation result is shown

in Table 5.2. From the table, we can find that the proposed HRMT achieves the best score

on the primary nsDCG@5 metric. On the auxiliary insDCG@5 metric, the KMeans baseline

achieves a much better result than the other models. This is because the insDCG metric

has a higher weight on the average DCG, which is denoted as DCGave, and therefore favors
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Figure 5.6: Heatmap for actor enrichment split counts. The x-axis is the level of the tree,
while the y-axis is the actor enrichment. The number in a cell means how many times a
split is based on the given actor enrichment in the given level of the tree.

smaller segments, as is introduced in Equation 5.6. In our experiment, we set the number

of clusters k for the KMeans baseline as k = 20, which is much larger than the segments

produced by the HRMT algorithm and COIN algorithm.

In addition to the numerical evaluation, we also analyze how the split happens according

to the actor enrichment at different levels. The heatmap of which is shown in Figure 5.6.

From the Figure, we can conclude that in the first level of the tree, the split happens only

based on the ethnicity and ladder (income index), which represents that the ladder and

ethnicity is the most critical factor for the actors’ response. The second important actor

enrichment in the second level includes gender, honor-face, morality-purity, etc.
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Model Name Kernel Name Message Indicator nsDCG@5 insDCG@5

COIN-Graph
LR agenda 0.343 2.988

MLP agenda 0.326 2.855
SVR agenda 0.342 2.988

KMeans
LR agenda 0.274 264.971

MLP agenda 0.167 9.901
SVR agenda 0.274 264.971

HRMT

MLP agenda 0.463 1.799
LR agenda 0.477 1.510

SVR agenda 0.476 1.461
GBDT agenda 0.477 1.565

HGBDT agenda 0.485 1.386

COIN-Graph
LR concern 0.366 0.937

MLP concern 0.350 0.868
SVR concern 0.366 0.937

KMeans
LR concern 0.197 56.297

MLP concern 0.218 5.153
SVR concern 0.198 55.974

HRMT

MLP concern 0.463 0.763
LR concern 0.475 0.767

SVR concern 0.478 0.752
GBDT concern 0.461 0.798

HGBDT concern 0.462 0.784

COIN-Graph
LR emotion 0.362 1.166

MLP emotion 0.346 1.084
SVR emotion 0.346 1.084

KMeans
LR emotion 0.313 144.697

MLP emotion 0.196 26.914
SVR emotion 0.312 146.375

HRMT

MLP emotion 0.471 0.888
LR emotion 0.478 0.903

SVR emotion 0.475 0.891
GBDT emotion 0.465 0.937

HGBDT emotion 0.473 0.871

Table 5.2: The evaluation result for the segment-based response prediction task on French
Election Dataset. We set k = 5 for both the nsDCG and insDCG metrics, for which metric
the higher the better. HRMT with different kernels achieves the highest score on all of the
3 message indicators. KMeans baseline achieves the highest insDCG on all of the 3 message
indicators.
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CHAPTER 6: CONCLUSION

We propose a novel framework to tackle the individual-based and segmentation-based

response prediction tasks on social networks, which can help us understand the potential

mechanism of how social information influences and shapes actors’ believes and affects their

response to messages. We formulate the tasks as context-aware individual-level time series

prediction and segment-level time series prediction and proposed a series of techniques to

solve the tasks. We predict the demographics and psychographics of actors with a text-based

BERT language model and predict the messages’ agenda, concern, and emotion based on a

weakly-supervised topic detection model. We then propose a novel algorithm to construct the

Hierarchical Regression Model Tree (HRMT) to simultaneously solve the actor segmentation

and segment-level response prediction problem. Finally, we conduct experiments to show

the effectiveness of the proposed HRMT model on segment-level response prediction as well

as the application of analyzing the characteristics of actors’ beliefs and response behaviors

based on the tree structure.
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