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ABSTRACT

Different forms of constraints have been a useful kind of artifacts across multiple computer
science domains, especially in code analysis and generation tasks. Existing constraint-based
approaches (being guided by constraints) often work under the assumption that in the solu-
tion to the target problem, every constraint must be satisfied. However, we show that this
assumption may limit the effectiveness of the existing constraint-based approaches.

To overcome the aforementioned limitation, we explore ideas to extract and maintain prob-
abilistic constraints in this dissertation. Probabilistic constraints are defined as constraints
assigned with a probability distribution denoting the likelihood of each constraint to be sat-
isfied. The probability distribution allows us to incorporate a broader range of constraints
with different levels of confidence reflected by the probability, thus helping with the tasks of
code analysis and generation.

To effectively guide code analysis and generation with probabilistic constraints, we propose
approaches in four specific tasks. In the first half of this dissertation, we investigate the code
analysis tasks. In the first part (REINAM), we focus on how to maintain the probability
distribution on the grammatical constraints to allow better generalization ability in the
grammar-guided fuzzing problem. In the second part (Groot), we focus on how to design
different types of constraints to more accurately locate the root cause when conducting root
cause analysis in a complicated microservice system. In the second half, we investigate the
code generation tasks. In the third part (NL2Viz), we focus on how to extract probabilistic
constraints from ambiguous inputs such as natural language (NL) and data context in the
task of NL-to-visualization (in short as NL2Visualization). In the fourth part (NRRanker),
we focus on how to generate additional probabilistic constraints based on the given NL
instruction to rank the initial candidate regular expressions in the task of NL-to-regular-
expression (in short as NL2Regex).

Based on the empirical evaluations of our proposed approaches in the four tasks, we
find that the guidance of probabilistic constraints substantially improves the effectiveness of
constraint-based approaches on the tasks of code analysis and generation.
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CHAPTER 1: INTRODUCTION

Different forms of constraints have been a useful kind of artifacts across multiple computer
science domains. One popular example for constraints is a context-free grammar (CFG),
which can be seen as the constraints on a string input, and represented in a set of production
rules in the form of A −→ α, with A being a terminal symbol and α being a sequence of
terminal and/or non-terminal symbols [1]. Other forms of constraints include property-value
pairs [2], input-output examples [3, 4, 5] and so on.

In software engineering, particularly the tasks of code analysis and generation, different
forms of constraints are widely used. In code analysis, constraints are usually extracted from
the code under analysis and then used to guide downstream tasks. For example, in the task of
fuzz testing [6, 7], an input grammar is often synthesized to guide the input string generation
in fuzz testing. While in the task of root cause analysis [8, 9], constraints are usually not only
about the input value under consideration, but also about different components of the whole
system. In the tasks of code generation such as program synthesis [2, 3, 4, 5, 10, 11, 12],
constraints are extracted from different sources of input such as natural language (NL) and
then used by constrained-synthesis algorithm to produce the desired output program.

Existing constraint-based approaches with constraint guidance often work under the as-
sumption that in the solution to the target problem, every constraint must be satisfied.
However, this assumption may limit the effectiveness of the existing approaches. For exam-
ple, Glade [13], an approach of inferring an input grammar, requires every production rule
to be valid in its inferred CFG, indicating that the approach requires the inferred grammar
to always produce a valid input string. Once any incorrect input string is produced from the
inferred grammar, Glade would invalidate and remove latest added production rule. This
“satisfied-or-invalid” assumption assures the overall validity of the CFG inferred by Glade.
But as shown in Chapter 2, the generalization ability of Glade is limited by this assump-
tion. In code generation, especially the tasks of NL to code (NL2Code), the users want to
synthesize a program from their NL instructions. Due to the ambiguity of the NL input, it
is often hard to extract constraints that must be satisfied [14].

To overcome the aforementioned limitation, we explore ideas to extract and maintain
probabilistic constraints in this dissertation. Probabilistic constraints are defined as con-
straints assigned with a probability distribution denoting the likelihood of each constraint
to be satisfied. The likelihood of each constraint reflects the confidence level that the con-
straint should be satisfied according to our estimation. In other words, these constraints may
not always be satisfied at the same time. One example for such probabilistic constraints is
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probabilistic context-free grammar (PCFG). PCFG is a CFG with a probability assigned to
each production rule. The probability denotes the likelihood for each production rule to be
applied when a string is generated from the grammar. As shown in Chapter 2, by using
probabilistic constraints in the form of PCFG in the task of learning an input grammar, our
proposed approach can infer the input grammar with substantially higher grammar coverage
and the fuzzer guided by our inferred grammar could achieve higher code coverage.

Leveraging probabilistic constraints is a challenging task for three main reasons. First, in
code analysis and generation, probability distributions are usually not given as part of the
given input. To extract probabilistic constraints, we need to initialize and dynamically adjust
the probability distribution or use other heuristics to resemble the probabilities. Second,
since not every constraint needs to be satisfied, we need to consider all constraints with
a non-zero probability to be satisfied. There are a large number of constraints with non-
zero probability. To effectively conduct downstream tasks, we need to design mechanisms
to filter out constraints with low probability without a large impact on the result. Third,
when constraints are applied in later steps such as constrained synthesis, due to the increased
number of probabilistic constraints to be considered and different combinations of constraints
to be satisfied in the solution, an effective algorithm of pruning and ranking is also important
to produce accurate results within reasonable time.

To tackle these challenges, we propose approaches to guide code analysis and generation
with probabilistic constraints in four specific tasks. In the first half, we investigate the
code analysis tasks. In the first part (Chapter 2), we focus on how to maintain the prob-
ability distribution on grammatical constraints to allow better generalization ability in the
grammar-guided fuzzing problem. In the second part (Chapter 3), we focus on how to design
different types of constraints to more accurately locate the root cause when conducting root
cause analysis in a complicated microservice system. In the second half, we investigate the
code generation tasks. In the third part (Chapter 4), we focus on how to extract proba-
bilistic constraints from an ambiguous input such as NL and data context in the task of
NL-to-visualization (in short as NL2Visualization). In the fourth part (Chapter 5), we focus
on how to generate additional probabilistic constraints based on the given NL instruction
to rank the initial candidate regular expressions in the task of NL to regular expression (in
short as NL2Regex).

1.1 THESIS STATEMENT

In this dissertation, we make the following thesis statement:
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Effective extraction and application of probabilistic constraints can improve the effective-
ness of constraint-based approaches in the tasks of code analysis and generation.

In this dissertation, we first investigate the task of grammar-guided fuzz testing in the
code analysis part. In this task, a program accepting a string as input and producing a
YES/NO label as output is given. The task is to synthesize the context free grammar that
would generate all input strings with the expected output label YES and then use the gram-
mar to perform grammar-guided fuzz testing. We find that Glade [13], a state-of-the-art
input grammar synthesizer has limited generalization ability. We introduce probabilistic
constraints to the problem by generalizing the synthesized CFG into a PCFG. We use rein-
forcement learning (RL) techniques to adjust the probability distribution in the PCFG so
that we can keep a balance between the ability to generalize and the synthesized grammar’s
accuracy. We find our approach REINAM substantially improve the coverage (recall) of the
synthesized grammar without losing the accuracy of the grammar. The fuzzer guided by our
synthesized grammar can also achieve higher code coverage compared to an industry fuzzer
and other grammar-guided fuzzers.

We then investigate the task of root cause analysis in a large-scale microservice system.
In this task, the dependency of the system and related logs, metrics are given. The task is
to locate the root cause for a given anomaly report. We find existing approaches already
leverage probabilistic constraints but they fail to address the operational, scale and moni-
toring complexity of the problem. We design event-based constraints to effectively tracking
on the causality graph that is generated using the event-based constraints. We then apply
root cause ranking algorithm based on the graph to locate the most probable root cause.
We find our approach Groot substantially improve the accuracy of the root cause located.

In the part of the code generation, we first investigate the task of NL to visualization
(NL2Visualization). In this task, an NL instruction and a dataset is given. The task is to
generate a program to produce the visualization based on the dataset to match with the NL
description. We find that the classical constraints extracted from the NL description are not
enough to synthesize the desired visualization program. We extract additional probabilistic
constraints from the data and program context. We then apply a constrained syntax-guided
synthesis algorithm using the combination of classical and probabilistic constraints to syn-
thesize the visualization programs. We find our approach NL2Viz achieve substantial higher
accuracy compared to state-of-the-art approaches on the NL2Visualization task.

We then investigate the task of NL to regular expression (NL2Regex). In this task, an
NL instruction and a set of sample strings input/output are given. The task is to find a
regular expression that matches with the NL instruction. (The regular expression also needs
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to pass the sample input/output pairs.) We find existing approaches only rely on constraints
that are the example input/output pairs provided by users. Therefore existing approaches
find it difficult to rank their list of candidate regular expressions being synthesized. We
generate probabilistic constraints by generating input strings that are able to differentiate
different candidate regular expressions and their corresponding expected output labels using
a pre-trained model as the oracle. We use the feedback on the probabilistic constraints to
rank the candidate regular expressions and substantially improve the ranking of the results.

Note that although we investigate the extraction and application of probabilistic con-
straints in this dissertation, some constraints we explored do not come with an explicit
probability distribution. These constraints still have an implicit and inherent probability
distribution denoting the likelihood of each constraint to be satisfied. But in certain sce-
narios, we are unable to precisely quantify the accurate probability distribution for the
constraints. Therefore we have designed and implemented techniques to extract and apply
the probabilistic constraints without an accurate probability distribution. For example, in
NL2Viz, we treat some constraints as soft constraints that should be satisfied as many as
possible.

1.2 CONTRIBUTIONS

This dissertation makes the following main contributions:

• An input-grammar inference framework namely REINAM using reinforcement learn-
ing. In REINAM, the task is to synthesize the grammar (which is in the form of CFG
in this work) of the input string that can be accepted by a given program. In this work,
we specifically focus on an approach to maintain a PCFG based on the input strings
dynamically sampled during the inference process. We use reinforcement learning to
leverage the feedback from the program under test to adjust the probability distribu-
tion for the PCFG. We evaluate REINAM on 11 real-world benchmarks with manually
written grammars used in real scenarios. Our evaluation results show that REINAM
outperforms Glade [13] (a state-of-the-art tool) in terms of precision, recall, and fuzz
testing coverage for most of the benchmarks. In one of our benchmarks—namely,
the input grammar encoding regular expressions that can be accepted by the GNU
Grep [15]—REINAM improves recall from 0.02 to 1.0, indicating that the grammar
inferred by REINAM actually covers the entire program input space.

• A graph-based root cause analysis approach namely Groot for microservice architec-
ture. In Groot, the task is to find the root cause of a reported anomaly in a microser-
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vice system. In this work, we specifically focus on incorporating domain knowledge
from site reliability engineering (SRE) engineers into a set of constraints to define the
events and causalities between the events in the system. We use such rule constraints
to construct an event-based causality graph to perform root cause analysis (RCA) in
a large distributed-system. We implement and evaluate Groot on eBay’s production
system that serves more than 159 million users and features more than 5,000 services.
Our experimental results show that Groot is able to achieve 95% top-3 accuracy and
78% top-1 accuracy for 952 real production incidents collected over 15 months with
the help of event-building rule constraints.

• An NL to visualization tool namely NL2Viz. In NL2Viz, the task is to generate a
visualization according to the NL description given by users and its corresponding data
set. In this work, we specifically focus on extracting constraints from the given NL
input as the hard constraints and complement the hard constraints using constraints
extracted from other sources of input such as code or data context as the soft con-
straints. We implement NL2Viz as a plug-in tool in the popular Jupyter Notebook
environment. Our evaluation results show NL2Viz achieves the accuracy comparable
to state-of-the-art tools, and data scientists find the tool easy to use in real world
scenarios.

• An NL to Regular Expression (NL2Regex) tool namely NRRanker. In NRRanker,
the task is to synthesize a regular expression from an NL description given by users.
In this work, we specifically focus on generating probabilistic constraints consisting of
additional test input strings that can differentiate behaviors of the candidate regular
expressions being synthesized and their corresponding expected test outputs generated
from the NL description. NRRanker further integrates an existing NL2Regex sys-
tem with the preceding test generation using pre-trained models. We have evaluated
our approach on two most commonly used datasets to show the effectiveness of NR-

Ranker. NRRanker achieves the top-1 accuracy of 89.8% and 90.1% on the two
datasets, respectively, outperforming state-of-the-art approaches by 11.1% on average.

1.3 ORGANIZATION OF DISSERTATION

The remaining chapters of this dissertation are organized as follows.
Chapter 2: REINAM: Reinforcement Learning for Input-Grammar Inference
This chapter presents REINAM, a novel framework to synthesize program-input grammars

based on reinforcement learning.
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Chapter 3: Groot: An Event-graph-based Approach for Root Cause Analy-
sis

This chapter presents Groot, an event-graph-based approach for root cause analysis
tackling challenges in industrial settings.

Chapter 4: NL2Viz: Natural Language to Visualization via Constrained
Syntax-Guided Synthesis

This chapter presents NL2Viz, a novel NL2Code approach that aims to address chal-
lenges on the user inputs and interactions in the application domain of NL2Visualization.

Chapter 5: NRRanker: Translating Natural Language to Regular Expression
via Integrating Pre-Trained Model and Test Generation

This chapter presents NRRanker, an approach that integrates an existing NL2Code
system with novel test generation using a pre-trained model.

Chapter 6: Related Work
This chapter presents an overview of related work on the topics of input grammar inference,

root cause analysis, and NL2Code program synthesis.
Chapter 7: Conclusions and Future Work

This chapter summarizes the chapters covered in this dissertation, concludes the dis-
sertation, and discusses possible future work that can be done following the work in this
dissertation.
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CHAPTER 2: REINAM: REINFORCEMENT LEARNING FOR
INPUT-GRAMMAR INFERENCE

2.1 OVERVIEW

Many programs take a string of symbols as inputs. The set of such strings that a
program accepts is called a language, which is represented by a program-input grammar.
Program-input grammars facilitate understanding of the input structure and are essential
for a wide range of applications such as symbolic execution [16, 17] (generally test-input
generation), reverse engineering, protocol specification [18], delta debugging [19], prevention
of exploits [20, 21], and identification of a software system’s acceptability property [22]. De-
spite the importance of program-input grammars, acquiring them often demands a lot of
manual effort, and they are often either not specified or specified in a machine-unfriendly
form (e.g., textual documents). For example, the full specification of the PDF format is
available only in the form of textual document with over 1,300 pages [23]. For a program
whose input grammar is not specified in a machine-friendly form, existing approaches at-
tempt to infer the input grammar based on program analysis [24, 25, 26, 27], language
induction [13, 28, 29, 30, 31], and machine learning [32, 33, 34].

However, these existing approaches of grammar inference are not able to produce gram-
mars of sufficient quality (in terms of completeness and accuracy) for real-world software
systems due to the following three main challenges.

Unanalyzable code. The existing approaches based on program analysis [24, 25, 26, 27]
infer input grammars based on static-analysis information of the target program’s code or
from runtime program information collected via instrumentation of the program. However,
these approaches cannot handle programs that cannot be instrumented (such as web services)
or parts of programs that are too difficult for static program analysis to handle (such as native
code or dynamic language features).

Low variety and quality of seed inputs. The existing approaches based on language
induction [13, 28, 29, 30, 31] leverage the language-induction algorithms to synthesize input
grammars given a set of seed inputs. However, the effectiveness of language-induction algo-
rithms highly depends on the variety and quality of the seed inputs. For example, to infer
an input grammar for a program that parses IP addresses, if the seed inputs contain only
IPv4 addresses, the grammar inferred by language-induction algorithms could not capture
the IPv6 formats.

Unavailability of a large number of seed inputs. Given a large number of seed
inputs, the existing approaches based on machine learning [32, 33, 34] can train a machine-
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learning model representing input grammars that can be used to generate inputs for fuzz
testing. However, for many programs, there are not so many valid examples to learn from,
and the machine-learning model is not human-comprehensible. As the model serves solely
for the generation purpose, human analysts would not be able to have a similar level of un-
derstanding about the model as they understand regular languages or context-free grammars
(CFGs) [35, 36].

To tackle the preceding challenges, we aim to address an inherent limitation in existing
state-of-the-art approaches for grammar inference (e.g., Glade [13]). Existing approaches
usually leverage active learning which includes an iterative process of generalization steps,
each of which generates new grammar candidates from the given seed inputs (more details
are described in Section 2.2). Such approach discards a grammar candidate if any of its
generated strings is rejected by the program that implements the grammar check. Such
design decision is common in active learning approaches, resulting in a rigid strategy of no-
overgeneralization-allowed to ensure that grammar candidates in each generalization step
are accurate (i.e., all strings generated from a synthesized grammar are covered by the ideal
input grammar). However, such design decision also misses the opportunity to potentially
expand the coverage of the final synthesized grammar (i.e., the overlapping scope of all the
strings generated from the final synthesized grammar and all the ones generated by the ideal
input grammar).

To retain the opportunity of expanding coverage in a generalization step while achieving
high accuracy for the final synthesized grammar, our work leverages the probability distri-
bution in the Probabilistic Context-Free Grammar (PCFG) model learned from the given
seeded inputs to improve imperfect grammar candidates instead of discarding them as done
by the rigid no-overgeneralization-allowed strategy used by the existing approaches [13]. To
train a probabilistic generative model such as PCFG, a large dataset is usually needed.
Because the available seed inputs are quite limited, we conduct reinforcement learning [37]
to tune the probability distribution in PCFG. In reinforcement learning, the program that
implements the grammar check can be used as a black-box oracle to give feedback for im-
proving the PCFG model to gradually generate more data to further tune the probability
distribution.

Centered around the PCFG model gradually enhanced via reinforcement learning, in this
chapter, we propose, REINAM, a novel framework of reinforcement learning that synthesizes
comprehensive and interpretable program-input grammars. Figure 2.1 shows how REINAM
creatively formulates the grammar-synthesis task into a reinforcement learning problem in-
cluding an agent (a PCFG) that interacts with an environment (the target program). The
agent generates an action (a set of program inputs) that causes a state transition of the
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Figure 2.1: Modeling Grammar Synthesis as a Reinforcement Learning Process

environment. Upon each performed action, the agent observes the next state (the inputs
being accepted or rejected) and receives a reward (the ratio of accepted inputs).

In REINAM, we compute probabilities in the PCFG, and then use the probabilities to
determine whether we are keeping the candidates after applying certain generalization opera-
tors to evolve the structure of our agent. REINAM is in contrast to traditional reinforcement
learning (e.g., Deep Q-learning [37]), which tunes the parameters of the agent (e.g., deep
neural network) without changing the structure of the agent to maximize the corresponding
reward. In our problem setting, we need to constantly evolve the structure of our agent
(i.e., PCFG) to achieve a more comprehensive and accurate grammar, as accomplished by
REINAM.

We design REINAM based on our two key insights. First, REINAM enhances the com-
pleteness of the final synthesized grammar by improving the incorrect production rules in-
stead of discarding the rules. Built upon the benefit of PCFG and reinforcement learning,
REINAM gradually mutates incorrect production rules through the reinforcement learning
agent to make the rules accurate. In contrast, the existing approaches [13] just discard these
production rules if any membership query returns negative. Second, applying a single gener-
alization operator often results in an inaccurate grammar, while as illustrated in Section 2.3,
if we compose multiple such inaccurate generalizations, the composed generalizations may
complement each other, forming an accurate composite generalization. REINAM represents
the accuracy of each production rule as a probability, being a parameter of the reinforcement
learning agent (the PCFG). Such representation allows inaccuracy to exist in single gener-
alization step, and decreases/eliminates the inaccuracy through composite generalizations
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later.
We evaluate REINAM on eleven real-world subjects with manually written grammars used

in real scenarios. We measure the precision and recall of the synthesized grammars. We also
evaluate the benefits of the synthesized grammars in assisting the task of fuzz testing. Our
evaluation results show that REINAM outperforms Glade in terms of precision, recall, and
fuzz-testing coverage for most of the subjects. In one subject whose input grammar is all
regular expressions accepted by the GNU Grep [15], REINAM improves the recall of the
grammar from 0.02 to 1.0, indicating that the grammar inferred by REINAM even covers
the whole input space.

This chapter makes the following main contributions:

• A novel framework, REINAM, to synthesize program-input grammars based on rein-
forcement learning.

• Novel formulation of the grammar synthesis problem as a reinforcement learning prob-
lem where we use the PCFG as the agent, sampled inputs as the actions, and the
ratio of accepted inputs on each production rule as the reward function. The training
procedure decides to take the generalization operator in each iteration by adjusting
the probability of the corresponding production rule.

• Evaluations on eleven real-world subjects showing that REINAM effectively synthesizes
generalized and interpretable grammars, and evaluations on fuzz testing showing that
REINAM is helpful in improving effectiveness of fuzz testing.

2.2 BACKGROUND

Glade [13] is an existing state-of-the-art approach for synthesizing a program-input gram-
mar from a given set of seed inputs specified by the users for a program that includes input
validation for accepting only the valid inputs. Glade requires only black-box access to the
program and uses it as an oracle to determine whether a given input is valid or not. The
algorithm used by Glade iteratively generates new candidate grammars by applying gener-
alization operators (from a predefined set of operators) upon the given seed inputs. The
algorithm then verifies the correctness of these candidate grammars by applying a set of
checks on the new inputs generated from the candidate grammars against the program or-
acle. Glade’s algorithm consists of two steps. The first step learns a regular grammar by
applying generalization operators such as repetition and alternation as illustrated below
on the given seed inputs. The second step transforms the learned regular grammar into a
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context-free grammar by applying merging operators as illustrated below. In between the
first and second step, the character generalization operator is applied to generalize over
characters.

• Repetition is to repeat a certain substring in a regular grammar. For example, the
regular grammar a can be generalized to a(a)∗ by using repetition.

• Alternation is to alternate a substring in a regular grammar into its decompositions in
a string quoted by ‘*’. For example, the regular grammar (ab)∗ can be generalized to
(a|b)∗.

• Merging is to equate two non-terminal symbols in the context-free grammar translated
from the regular grammar resulted from Step 1. For example, we have a Context-Free
Grammar (CFG) S → (′a′ T ′a′)∗;T → (′b′ | ′c′)∗ (note that this CFG is not a standard
form of CFG). Then we merge S and T by substituting T with S. The grammar
becomes S → (′a′ S ′a′)∗;S → (′b′ | ′c′)∗.

• Character generalization is the simplest operator. The idea is that for some terminal
symbols, such as ‘a’ in “(a)∗”, we are also testing other characters ‘b’,‘c’,... in the
alphabet other than ‘a’. The intuition is that often the time if one letter can work,
the others would probably also work.

Glade then performs a set of checks in order to avoid overgeneralization. It constructs a
set Chk of strings and for each α ∈ Chk, the string α has the production rule that we just
mutate in its derivation. Then Glade executes the program with each input string in Chk

to get the result of either accepted or rejected. If any string α gets rejected, Glade rejects
this generalization.

Note that this mechanism is designed to follow the
no-overgeneralization-allowed strategy mentioned in section 2.1, but overgeneralization could
still happen in Glade. The reason is that the set Chk may not be sufficient to check all
possible generated strings. It could be all strings in Chk are accepted but there still exists
string generated from the grammar that would be rejected by the program. We can see
overegeneralization also appear in Glades’ synthesized grammar in the evaluation.

Probabilistic Context-Free Grammar (PCFG) is a CFG augmented with a proba-
bilistic distribution. A PCFG G is defined by a tuple:

G = (M,T,R, S, P ) (2.1)
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genchar →′ 0′ | ′A′ | ′a′

nbchar → genchar | s | t | ′!′ | ′”′ | ′#′ | ′$′ | ′%′ | ′&′ | ′′′

| ′,′ | ′.′ | ′/′ | ′ :′ | ′;′ | ′ <′ | ′ =′ | ′ >′

| ′@′ | ′_′ | ′‵′ | ′ ∼′

npchar → nbchar | ′ +′ | ′ ∗′ | ′?′

char → nbchar | nbchar npchar | char p nbchar

nums→ numall | nums numall

tok → char | tok char

single→ tok | single tok

single→ single ′\′ ′{′ nums ′\′ ′}′

| single ′\′ ′{′ nums ′,′ nums ′\′ ′}′

single→ single ′[′ tok ′]′ | single ′[′ ′ ∧′ tok ′]′

| single ′[′ ′ =′ tok ′ =′ ′]′ | single ′[′ ′.′ tok ′.′ ′]′

| single ′[′ ′ :′ tok ′ :′ ′]′

regex→ single | regex single

regex→ regex ′\′ ′(′ regex ′\′ ′)′

Figure 2.2: The ground-truth grammar of “GREP” program

where M is the set of non-terminal symbols, T is the set of terminal symbols, R is the set
of production rules, S is the start symbol, and P is the probabilities of each production
rule. The probabilities are defined as follow: for each non-terminal symbol A, suppose
that it has k different production rules. They can be connected by the ‘ | ’ symbol to be
A → Prod1 | Prod2 | ... | Prodk. Then when we want to apply rules on A, we have the
probability PA(i) of choosing production rule A→ Prodi. The probabilities should have the
property of

∑k
i=1 PA(i) = 1.

2.3 MOTIVATING EXAMPLES

Despite its utility, Glade has a number of limitations shown by the motivating examples
discussed in this section. According to the evaluation results of Glade [13], for some programs
under evaluation, Glade synthesized a grammar that achieved high coverage of the valid
input space, and a fuzzer equipped with the grammars inferred by Glade outperformed
other fuzzers under comparison. However, we find that the “GREP” program used in the
evaluation can achieve only very low coverage of the valid input space, and also in “GREP”
even a naive fuzzer can outperform the fuzzer equipped with the grammars inferred by Glade.

Figure 2.2 shows that the grammar of the “GREP” program consists of many special char-
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acters (nbchar and npchar). These special characters not only form the basic building blocks
for the grammar (char) but also serve as the special control characters in the grammar (see
the production rule of single). Therefore, in Glade’s Step 1, which involves generalization of
regular languages, the generalization would be likely to fail. For example, suppose the seed
input is “ [∧a]”, then neither generalization operator in Step 1 are able to cover the grammar
“[= (a)∗ =]”. What we can do at best is that we first apply the character generalization
operator, the grammar would become “[(∧| =)a]”. Next we can apply the repetition opera-
tor, the grammar can be generalized into “[(∧| =)(a)∗]”. However, because in the character
generalization step, “=” served as a simple character, we will not be able to generalize the
grammar to be able to cover “[= (a)∗ =]”, in which “=” is served as the special character in
the production rule of the symbol single.

In this case, since the generalization in Step 1 would easily fail, the hope of synthesizing a
grammar with good coverage lies on the quality of seed inputs, i.e., whether the set of seed
inputs can contain the case of [= a =]. In the experiment setting of Glade, the author uses
only 50 seed inputs that are randomly generated from the ideal grammar. The first concern
here is that in the real world scenario, the developers using the tool are unlikely to know the
ideal grammar. One possible case is that they only use the strings used in the tests as the
seed inputs. Therefore we can expect the quality of seed inputs will be far worse than those
sampled from the ideal grammar.

The second concern is as the grammar of “GREP” queries is very coarse in terms that
special characters form both content of queries and format of the queries, randomly generated
seed input won’t be enough for Glade to synthesize the desired grammar.

Based on these concerns, the quality of seed input highly affects the performance of Glade.
So we are inspired to use the power of test generation tools, for example, Pex [38, 39]. Pex
is a white-box automated testing tool based on dynamic symbolic execution. It will explore
possible program execution paths to generate test input that cover as largely as possible
of the program. Our results show that we significantly increase both the precision and the
recall on the “GREP” program with the help of Pex.

The second limitation of Glade is that, it does not allow overgeneralization. If the any
string in the constructed set Chk gets rejected by the program, Glade would reject this gener-
alization. (Overgeneralization could still happen since the set Chk is not complete, however
it’s not desired by design of Glade.) However, sometimes an overgeneralized intermediate
grammar could increase the coverage of grammar. Moreover, if we further apply generaliza-
tion on this intermediate grammar, the overgeneralization might be avoided. To see this, let’s
consider the grammar in Figure 2.2 again. For the example of grammar “([= a =])∗”, we have
claimed that any further alternation won’t be able to cover the string “[.a.]” since it requires
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S →′ a′ T ′a′

T → P Q T | P Q

P → ...

Q→ ...

=⇒

S →′ a′ S ′a′

S → P | Q
P → ...

Q→ ...

Figure 2.3: An imaginary grammar: initial grammar(left) and the generalized gram-
mar(right)

S →′ a′ T ′a′

T → P T | Q T | P | Q
P → ...

Q→ ...

Figure 2.4: An imaginary grammar: perform alternation on the initial state

character generalization at two places at same time. However, if we allow overgeneralization,
which means we keep the intermediate grammar “([= a(= |.)])∗” after applying character
generalization at the second “=”. Note this grammar will produce input like “[= a.]”. which
will be rejected by the program. But if we apply another character generalization at the first
“=”, the grammar can be transformed into “([(= |.)a(= |.)])∗”, which both increases the cov-
erage (now can cover string “[.a.]”), and avoids overgeneralization. Currently Glade is taking
the strategy of "No Overgeneralizations Allowed" making the previous generalization steps
impossible. We noted that Glade is using PCFG (Probabilistic Context-Free Grammar) in
the seed input generation. We want to see what else can the probability in the PCFG help
other than only generating the seed inputs. And by the help reinforcement learning, we
are allowed to adjust the probability distribution of this PCFG to reflect its accuracy (how
overgeneralized each rule is). So that we could keep some overgeneralization intermediate
grammar to have larger coverage, while sacrificing small percentage of accuracy.

The third limitation of Glade is that, the generalization operators are divided stiffly into
two steps, that is repetition and alternation in Step 1 and merging in Step 2. Glade only
performs the repetition and alternation in Step 1 and latter transformed corresponding
changes to the translated context-free grammar. However, the repetitions and alternations
are still viable and actually needed in Step 2.

To show this, we can see in Figure 2.3. This is an imaginary grammar in the procedure
of Glade execution. The left grammar is the intermediate state in the progress of Step 2
generalization. The right grammar is one possible generalization of the left one. We can
see that actually it generalize the first two production rules by introducing a production
rule S →′ a′ (P |Q)∗ ′a′ (this rule is not written in formal CFG format). Let’s say the right
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Figure 2.5: Workflow of REINAM

grammar is a subset of the ideal grammar, which means the generalization is correct and
should increase the coverage of the resulting grammar. We show that this generalization can
be done in two steps, with the first to be an alternation that changes the production rule of
T from P Q to P | Q. Then we can perform a merging on the symbol T and S. Finally we
get the below grammar in Figure 2.3. However, in Glade, such generalization is not viable,
because as we stated in the previous paragraph, no repetition and alternation is performed
in phase 2. This example inspires us to combine the two phases of Glade. We can directly
perform the four different kinds of generalization all on the context-free grammar, which
also simplifies the generalization procedure as we do not need to split two steps.

2.4 APPROACH

We next present our REINAM approach, which consists of two phases: generating higher-
variety, higher-quality, and higher-quantity seed inputs using Pex and conducting general-
ization on the PCFG using reinforcement learning.

As shown in Figure 2.5, the input to REINAM is the target program for which we want to
synthesize input grammars. We first leverage symbolic execution engine Pex [38] to generate
strings as the test input of program. We then use these strings as the initial inputs of
language inference algorithm such as Glade. The resulting grammar is the output of Phase
1.
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In Phase 2, we first initialize the PCFG from the CFG generated in Phase 1. Then we
use reinforcement learning to refine our PCFG. The procedure of reinforcement learning
consists of four steps: applying generalization operators, sampling strings from the PCFG,
calculating the reward for each production rule, and adjusting the probability distribution
based on the calculated reward. Noted that the generalization operators are applied to
mutate the current PCFG. The operators can be specified according to mutant operators
for different grammars. These pluggable operators bring flexibility to our approach. Our
approach can be easily extended to grammar-transformation operators other than the ones
discussed in this work.

2.4.1 Phase 1: Generating Seed Inputs using Pex

Phase 1 is a one-pass procedure that takes the assembly code of a program as the input
to symbolic execution engine, uses the engine output as the initial inputs of Glade, and then
runs Glade.

We use symbolic execution engine Pex [38] in phase 1. Pex performs path-bounded dy-
namic symbolic execution by repeatedly executing the program to generate path-based con-
straints and using SMT (satisfiability modulo theories) checker to solve these constraints
to obtain the program inputs that would lead to different execution paths. The idea of
using Pex to generate seed input is inspired by the fact that better seed inputs would likely
produce better grammar. Such correlation is discussed both in the Glade paper [13] and
in section 2.3. Additionally, as we point out in section 2.3, a set of seed inputs is good
mostly determined by the different "categories" of input it can cover, which implies a high
code coverage if we track the amount of code covered by executing the program with these
inputs. Pex, by its design, is targeting to achieve high code coverage. Other test generation
tools may also be used in this phase.

2.4.2 Phase 2: Generalization on the PCFG using Reinforcement Learning

Initialization of PCFG Between the phase 1 and 2, we have an intermediate step of
PCFG initialization. For each nonterminal symbol S, we count the number n of production
rules that expand S (S on the left side of →), then each of these rules would be assigned a
probability of 1

n
equally.

Reinforcement Learning (RL) Reinforcement learning is an area of machine learning
inspired by behaviorist psychology. The basic concerns are how software agents take actions
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in the environment to maximize some metric called reward. In our context of the grammar
synthesis problem, these concepts are:

• Environment. The program under test.

• Action. The set of input strings sampled from the PCFG.

• State. The program output (accept or reject) when taking the sampled input strings.

• Reward. The ratio of the number of accepted inputs out of total number of sampled
input.

• Agent. The PCFG itself. Note that the purpose of general RL is to optimize the
agent’s ability to make better actions in terms of getting better reward. The purpose
in our context is to increase the quality (precision and recall) of the grammar. We
achieve our purpose by applying generalization operators to the existing grammar to
generate a mutated grammar each time. The generalization will increase (at least not
decrease) the recall. So our purpose of the reward function is to keep the precision
to prevent overgeneralization. We use the maximum likelihood estimation to tune the
probability distribution of the PCFG so that if any production rule’s probability is
lower than the threshold, we will remove the rule from the PCFG. By this means, we
are improving the ability of our agent (grammar) to make actions (generating inputs)
to get better reward (achieving higher coverage).

Generalization Operators

• Character Generalization. Same as the character generalization introduced in Sec-
tion 2.2. The intuition is that often the time if one letter can work, the others would
probably also work. We would assign the probability of 1

#(current characters)
to the newly

added character and reduce other probabilities in proportion. Take the GREP program
in section 2.3 for example, in the string ”[= a =]”, we are also testing other characters
′b′,′ c′, ... in the alphabet other than ′a′.

• Repetition. Repetition is to change part of the grammar from ”p” into ”p(p) ∗ ”. In
the CFG, we do the repetition by picking a production rule and trying to repeat the
symbols on the right hand side. For example, for the production rule S → P Q, we
would try both S → P P ∗ Q and S → P Q Q∗. To express ′∗′ in CFG, we’ll translate
it into S → P1 Q; P1→ P1 P ; P1→ P and S → P Q1; Q1→ Q1 Q; Q1→ Q. The
probability of S → P1 Q remains same as the original S → P Q, and the probability
of P1→ P1 P and P1→ P are both set to 0.5.
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• Alternation Alternation is to change part of the grammar from ”pq” into ”p|q”. In the
CFG, we do the alternation by picking one production rule and randomly decomposing
a substring of the production rule into two parts and list them as alternations. For
example, for the production rule S → P Q ′a′. Then we will try these new production
rules S → P1 ′a′; P1 → P | Q. The probability of original S → P Q ′a′ would be
divided by 2 to be assigned to both S → P Q ′a′ and S → P1 ′a′. The probability of
P1→ P | Q would be 1.

• Merging. Merging two nonterminal symbols is to substitute all usage of one sym-
bol into another. For example, if we have P → ... and Q → ..., if we want to
merge P and Q, we simply add one rule P → Q. We would assign the probabil-
ity of 1

#(production rules of P )
to P → Q and reduce other probabilities in proportion.

The reason why we choose these generalization operators is based on two factors. First,
these rules substantially increases grammar coverage in Glade’s evaluation, and the form of
these rules is simple which provides convenience for both implementation and human under-
standing. Second, many existing works also used same or similar operators/mutants [27, 40].
Such fact implies the effectiveness and flexibility of the operators.

Input Sampling. We perform the following steps n times to sample n strings from our
PCFG:

• Start with the starting symbol S, α = S.

• For each non-terminal symbol A in α, randomly apply one production rule on A based
on the probability of each rule.

• If there is still non-terminal symbol in α, repeat the previous step.

• Return the string α = α1...αk, in which all αi is a terminal symbol (character).

After sampling n inputs from the grammar, we execute the program on these n inputs and
collect the output from the program. We record whether the program accept or reject our
test inputs.

Probability Adjustment. The purpose of the probability adjustment is that, in our
PCFG, the probability indicates the correctness of the production rule, that is whether this
rule should exist in the ideal grammar. Remind that our model allows overgeneralization to
exist. In glade, if a input string generated by a production rule is rejected by the program,
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that rule is no longer viable, and the generalization step that produced such rule should be
revoked. However, in our model, we may keep such rule if it can simultaneously generate
strings with accept result. We achieve this by adjusting the probability of each production
rule based on the reward function.

The reward function is calculated for each production rule. We track the production rule
used in the sampling step for each input string. Therefore the reward function is defined on
each production rule ri ∈ R:

reward(ri) =
#(accepted inputs using ri)

#(inputs using ri)
(2.2)

The probability adjustment is using a maximum likelihood estimation [41]. We consider
different non-terminal symbols separately since the probability is only related to different
production rules of the same non-terminal symbol. Suppose we are considering the non-
terminal symbol P and the probability distribution for all its production rules is θ. P has k
production rules rP1 , ..., r

P
k , and before the adjustment, the probability for each production

rule is θ(rPi ). The standard policy gradient [41] gives us the new θ′ to be:

θ′ = θ + α∇θlogπθ(st, at) ∗ v (2.3)

in which πθ(st, at) is the probability of the agent to produce action at under state st, α is a
constant to be the learning rate and v is the reward. So here, the formula can be inferred
to be:

θ′(rPi ) = θ(rPi ) + α∇θlog(θ(r
P
i )) ∗ reward(rPi )

= θ(rPi ) + α
#(inputusing rPi ) ∗ reward(rPi )

θ(rPi )
(2.4)

We normalize the new probability distribution θ′(rPi ) to make the sum to be 1. We would run
the sampling and adjustment steps multiple times for one generalization until the probability
is stabilized. After we calculate the adjusted probability, we will remove the production rules
with the probability lower than the threshold.

It is also an option to keep all the production rules and not to remove them as they have
the probability of zero. But this would waste computations on generalizations of "dead"
production rules to make the time complexity unscalable.
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2.4.3 Reasoning and Discussion on the Probability in REINAM

We note that in the probability adjustment formula (2.4), the gradient
#(inputusing rPi )∗reward(rPi )

θ(rPi )
is non-negative. To address such issue, we normalize the probability

to make the sum of all θ′(rPi ) to be 1. After the normalization, we can see that the fact that
all gradient is non-negative is not a problem here. If a certain production rule rPi is higher in
the reward function such that strings produced using this rule is more likely to be accepted,
then the gradient added in formula (2.4) would be larger, which leads to larger normalized
new probability. On the contrary, if certain rule has lower reward function value, it will lead
to the normalized new probability to be less than the probability before the adjustment.

We can also deduce the time complexity of our approach by estimating the number of sam-
pling and adjustment for the convergence. Suppose the threshold we used to determine stabil-
ity of the probability is ϵ (i.e., if no probability of the production rules in one symbol changes
is more than ϵ, we will terminate this round of RL process and start the next generalization)
and the set of sampled inputs producing the same reward each time, we can see the gradient
difference each time is α#(inputusing rPi )∗reward(rPi )

θ(rPi )
in which α∗#(inputusing rPi )∗reward(rPi )

remains constant under same set of sampling strings. So the θ(rPi ) would converge propor-
tionally to the ratio of accepted strings among all string using that rule. The number of
sampling and adjustment for the convergence is approximately O( 1

α∗ϵ) which is constant.
The time complexity of our approach is O(n∗m∗RL(n)), n denoting the number of symbols

in the grammar and RL(n) is the time needed for one RL process with a n-symbol grammar,
m is the number of total production rules. The O(n∗m) is the upper bound of generalizations
that may be tried, though each generalization would introduce new production rules, but
we only do generalization on the initial production rules set. RL(n) equals the time used
for sampling strings and getting the results of the program execution using the sampling
strings as input. The time used for probability adjustment is negligible. Per our previous
discussion, each generalization takes O( 1

α∗ϵ) rounds of sampling and adjustment, so RL(n) =

O(#(Total strings sampled)∗average execution time
α∗ϵ ).

Another thing need to clarify is that the probability in our PCFG model represents how
likely the resulting string would be accepted by the program if we apply certain production
rule, but the probability does not represent the probability of the actual frequency of certain
production rules used as the input grammar. The reason is that we don’t actually have
the distribution of strings in the real usage of the input grammar. As we mentioned in the
previous sections, we initially set the probability of each production rule rPi under same
symbol P to be the same. Afterwards we are adjusting the probabilities such that they are
converged proportionally to the ratio of accepted strings among all strings using that certain
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rule. The probability is used to eliminate the production rules with too small probability to
eliminate the unreasonable overgeneralizations.

2.5 EVALUATION

To evaluate the effectiveness of REINAM and how much each phase contributes to the
effectiveness of the tool, we have conducted evaluations on eight subjects.

We seek to answer the following research questions:

• RQ2.1: How effective is the final grammar synthesized by REINAM in terms of pre-
cision and recall?

• RQ2.2: How effective is the final grammar synthesized by REINAM in the fuzz testing
scenario?

• RQ2.3: How does the two phases of REINAM contribute to the grammar’s preci-
sion/recall and performance in fuzz testing?

• RQ2.4: What’s the execution time of REINAM?

In RQ2.1, we compare REINAM with Glade in terms of the precision and recall of the
final synthesized grammar. We compute the two metrics using the manually written ideal
grammar for the subjects as ground truth. In RQ2.2, we evaluate the capability of REINAM
to learn a grammar for a fuzz testing task. We feed the synthesized grammar by REINAM to
a grammar-based fuzzer to perform fuzz testing on programs. We compare our results with
Glade and a industry fuzzer. In RQ2.3, we compare the grammar after our phase 1 (using
Pex generated seed input for Glade) and the final grammar after our phase 2 (generalization
using RL). We compare the difference in both precision/recall and fuzz testing coverage to
see the different improvement that each part brings in. In RQ2.4, we measure the time used
by each phase of our tool.

2.5.1 Study Subjects

We use the subjects of manually written grammars from Glade [13]. These subjects are
listed as follows:

• A grammar used to match URLs [42]. Note that we separate this grammar into four
subjects based on the protocols (i.e., “http”, “https”, “mailto” and “nntp”). We will
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test whether REINAM can infer a complete grammar starting from seed inputs only
including one of the four protocols.

• A grammar for the regular expression accepted as input of GNU Grep [15]. This
grammar is discussed in Figure 2.2 in section 2.3.

• A grammar for a simple Lisp parser [43], including support for quoted strings and
comments.

• A grammar for a XML parser [44], including all XML constructs except that only a
fixed number of tags are included (to ensure that the grammar is context-free).

• A grammar for CSS parser [45], Cascading Style Sheets (CSS) is a language to describe
the presentation of a document written in a markup language like HTML.

In addition to the existing subjects in Glade, we also add two subjects that generated
from ANTLR [46]. ANTLR is a widely used parser generator tool. We use the two subjects
to evaluate our tool’s performance on synthesizing a program that generated by a automatic
parser generator. We select grammars on the official website of ANTLR [46] which has less
than 100 non-terminal symbols.

• A grammar used to match CSV files [47].

• A grammar used to describe simple first order logic formulas [48].

2.5.2 Experiment Settings

Precision and Recall We measure precision in order to determine whether our final
synthesized language L is overapproximating the ideal grammar L∗. We calculate precision
as |Eprec∩L∗|

|Eprec| , where Eprec is a set of 1,000 strings randomly sampled from L. The number is
essentially how much percent of the strings generated from our final synthesized grammar
would be covered by the ideal grammar. We measure recall in order to determine whether L
is underapproximating L∗. We calculate recall as |Erec∩L|

|Erec| where Erec is a set of 1,000 strings
randomly sampled from a reference grammar created to the specification of L∗.

Precision in this context measures the probability that a randomly selected string from
the grammar would be accepted by the target program. Recall in this context refers to the
percent of the strings generated from the ideal grammar that belong to our final synthesized
grammar.
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Generate Seed Input We use Pex’s existing capabilities for dynamic symbolic execution
in order to generate input strings that the parser accepts. We then use this set of strings as
input to Glade.

Sampling from PCFG We sample a production A from PCFG G as follows:

• First, randomly select a production A′ belonging to A.

• Second, for all A1 A2 ... An that make up A′, if Ai is a nonterminal, recursively sample
Ai, else if Ai is a terminal, return Ai.

All choices made are made over a uniform distribution for simplicity.
Program used for evaluation Because Pex requires source code to do the dynamic

symbolic execution in order to generate program inputs, we write programs in C# to parse
the grammars we listed in Section 2.5.1. We use parsers in the .NET system library to parse
the grammar of URL, IP, regular expression and XML. We also test against an open-source
lisp parser and an open-source css parser. The programs of two ANTLR grammars are
generated by ANTLR in C# mode.

Fuzz testing Fuzz testing or fuzzing is an automated software testing technique. An
effective fuzzer will generate "valid enough" inputs and then monitor the execution of the
program on these inputs. One of the purpose in using fuzz testing is to observe the program’s
behavior under various inputs, so we want the fuzzer to get a high code coverage.

Grammar-based Fuzzer From Glade and REINAM, we can synthesize a CFG L which
approximates the ideal language L∗. We use a grammar-based fuzzer to adapt the synthesized
grammar into the fuzzing task. The fuzzer is similar to the input sampling step we described
in section 2.4. We randomly sample 1,000 strings from the grammar based on the probability.
However, for both grammars synthesized by REINAM and Glade, we treat the probability
as a uniform distribution. The reason why we use uniform distribution instead of using the
distribution from our PCFG is that the distribution in the PCFG has no relation to the real
distribution. Then we execute the program on the sampled input and use Visual Studio to
measure the code coverage which is denoted as the blocks covered. We use the code coverage
by the manually written ideal grammar as the upper bound.

We compared our fuzzer against a state of the art fuzzer that does not employ grammar-
based methods, Radamsa. Radamsa combines random bit-flipping with domain independent
heuristics meant to test edge cases in order to create high quality mutation.

The tool for Learn&Fuzz [32] is not available for us to obtain at the experiment time. So
we cannot use it to compare with our tool.
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Table 2.1: Precision (P) and Recall (R)

Subject http https nntp mailto ip css xml grep lisp csv fol
P R P R P R P R P R P R P R P R P R P R P R

LI .79 .06 .77 .07 .80 .05 .99 .13 1.0 .50 .99 1.0 .32 1.0 .79 .02 .65 1.0 1.0 .24 .90 .30
LI+SE .96 .50 .96 .64 .97 .49 .97 .42 .91 1.0 .99 1.0 .56 1.0 .98 .40 .91 1.0 1.0 .40 .88 .45

LI+SE+RL .87 .77 .91 .70 .95 .82 .93 .77 .82 1.0 .86 1.0 .50 1.0 .78 1.0 .73 1.0 .94 1.0 .75 .45

Table 2.2: Coverage (numbers are basic blocks covered in code)

LI (Language Inference algorithm): results of Glade only
LI+SE (Symbolic Execution engine): results of REINAM phase 1
LI+SE+RL (Reinforcement Learning): results of REINAM phase 1+2
Radamsa: code coverage of the fuzzer Radamsa.

Subject http https nntp mailto ip lisp css xml grep csv fol
Radamsa 1579 1558 1461 1157 2272 131 737 1349 1819 82 216

LI 1625 1623 1618 1691 2241 175 1819 1349 1819 88 348
LI+SE 1750 1796 1673 1829 2318 176 1642 1349 1819 88 353

LI+SE+RL 1784 1811 1716 1863 2325 211 1809 1349 1819 92 353
Total 2164 2164 2164 2164 2421 211 1948 1349 1819 111 414

2.5.3 RQ2.1: Precision and Recall

We can see from table 2.1 that our tool in general is very effective in grammar inference.
The row “LI” shows the result of the grammar synthesized by solely running Glade and the
row “LI+SE+RL” shows the result of the final grammar synthesized by REINAM.

On average, we can see that the precision almost stays at the same level, with a less
than 1% change (-0.36% on average), while the recall gets drastically improved by 49.2%
on average. The number is calculated by subtracting the number on the third row by the
first row and taking the average after. So among the 11 subjects we evaluate, REINAM can
outperform Glade in recall which represents the coverage of the final synthesized grammar
without losing precision which represents the accuracy of the final synthesized grammar.

If we look into details to compare the performance of REINAM and Glade in each of the
subjects. We can find that in the three subjects “css”, “xml” and “lisp”, Glade can already
achieve 1.0 recall which means the grammar it synthesized already cover the whole input
space of the three programs. In this sense, REINAM cannot further improve the recall but
it manages to keep the perfect score as expected. After taking a closer look into these three
subjects, we can see they are all in the similar form of parentheses matching pattern. “lisp”
is a sequence of statements quoted by parentheses while “css” and “xml” have to match the
tag names like parentheses.

For the 4 subjects (“http”, “https”, “nntp” and “mailto”) separated from the “url” gram-
mar, we can see a drastically increase in recall. As we mentioned in the section 2.5.1, we
intentionally split the “url” grammar into 4 parts. As expected, Glade is performing poorly
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with the recall lower than 0.15 in all 4 subjects. This is due to the limitation of Glade that
the quality of its synthesized grammar highly depends on the quality of the seed input as
we mentioned in section 2.1. So since we only feed strings starting with “http” (or “https”,
“nntp”, “mailto” in other 3 subjects) as the seed input, Glade is not able to explore other
possible url protocols. Meanwhile, REINAM could leverage the help of Pex in phase 1 to
have a seed input set with higher coverage. Therefore the final synthesized grammar of our
tool gets in these 4 subjects have the recall to be above .70 without losing precision. The
“ip” subject is similar. Glade start with the seed input in IPv4 and it could not get enough
generalization to cover the IPv6 case. These 5 subjects are more like following a protocol
type grammar.

The performance on subjects “grep”, “csv” are similar. We already analyzed why Glade
is only achieving .02 recall in section 2.3. And we can see that our tool can get 1.0 recall
which means all possible strings that can be accepted by the program are covered by the final
synthesized grammar of REINAM. Considering we have very close precision (.78 vs. .79), the
improvement is huge. The “csv” subject is similar. Since the grammar describes all possible
contents in csv file, there are also a lot of special characters which could be data field of the
file as the terminal symbols, with a few characters serving both as the separating symbols
and content symbols. Therefore REINAM also easily outperforms Glade by improving from
.24 recall to 1.0 again. These two subjects are more in a miscellaneous pattern such that
many special characters are used as the terminal symbol.

The case for “fol” subject is quite unique. Though somehow improved on recall from .3
to .45, the precision decreases from .90 to .75 and this is the only subject that REINAM
cannot achieve a recall over 0.5. Intuitively first order logic formulas are harder to write.
For example, to write a simple http address, it only needs to be started with “http://” and
having a “.” between the site and domain part. However first order logic formulas are strictly
formatted. So the intuition is that the ideal grammar of first order logic formulas is quite
small, which means if we consider the whole input space of an FOL parser, it would be much
smaller than the input space of a URL parser. Therefore the generalization operator in our
tool may not be able to generalize to the complicated structure of the fol grammar.

2.5.4 RQ2.2: Application in Fuzzers

In the fuzz testing application, we can see that REINAM also improves largely from
Table 2.2 and Figure 2.6. If we compare the row “Radamsa”, “LI” and “LI+SE+RL”, we can
find that on average, our tool improves 18.4% in coverage compared to the Radamsa fuzzer
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Figure 2.6: Code coverage of different fuzzers in percentage

and 4.9% compared to the Glade’s grammar-based fuzzer.
In the two misc pattern subjects “xml” and “grep”, all fuzzers achieve perfect code coverage.

It may be strange that grammar synthesized by Glade itself (“LI”) only achieves .02 recall
in Table 2.1 but the fuzzer which uses this grammar can still get perfect code coverage. The
reason is that different strings generated from the same grammar can share same or similar
execution path that would cover similar basic blocks in code. Therefore the coverage metric
is has different meaning from recall.

If we rule out the two subjects with perfect coverage for all the tools, REINAM beats
the naive fuzzer in all other subjects. When compared with Glade’s grammar-based fuzzer,
REINAM only slightly loses at the “css” subject but outperforms in all other subjects. This
advantage is due to the benefit we get from allowing overgeneralization. Our tool will produce
more rejected inputs compared to glade. These rejected inputs are going to cover the part
of source code in which the accepted inputs cannot cover, for example, the additional code
used specifically to deal with the illegal cases.

Another thing worth notice is that the Radamsa fuzzer performs badly in the parentheses
matching pattern subjects “lisp”and “css” and also in the subject “fol”. Especially in “css”
subject, it cannot even reach 40% code coverage. The reason is that as we discussed, the ideal
grammar for “lisp”, “css” and “fol” is more structured than other subjects. The character-level
mutation used by a non grammar-based fuzzer cannot synthesizes these structured strings
while the generalization operators REINAM uses can generalize to such structures.
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2.5.5 RQ2.3: Comparison of Phase 1 and 2

From table 2.1, table 2.2 and figure 2.6, we find that phase 1 and phase 2 contribute
differently to the improvements over Glade in terms of precision/recall and fuzzing.

In RQ2.1, if we compare the the row “LI+SE” which shows the result of the grammar
synthesized by running Glade on the Pex generated seed input (REINAM phase 1) against
the row “LI” which shows the result of synthesized grammar of Glade itself, we can find
phase 1 on average improves precision by 9.2% and recall by 29.1%.

In the three parentheses matching pattern subjects “css”, “xml” and “lisp” which Glade
already achieves 1.0 recall. Obviously both phase 1 and phase 2 cannot improve the recall.
However, phase 1 does improve precision in both “xml” and “lisp” subjects and remains
the same precision in “css”. The reason is that Pex generate a set of seed input which has
higher coverage. As we described in section 2.2, the first step of Glade directly synthesizes
a regular grammar that only captures the seed inputs. Therefore a set of seed input with
higher coverage would result in an initial regular grammar with higher coverage, so it needs
fewer further generalizations to achieve the ideal grammar. Since imprecision happens during
generalization, fewer generalization would result in a higher precision. Similar things can
also be observed in other subjects especially when the precision of Glade grammar is not
high.

However, for the three subjects “fol”, “ip” and “mailto”. We find that Glade’s synthesized
grammar already achieves near or already perfect precision and the recall improves a lot
after the phase 1 grammar. In this case, the precision after phase 1 does get decreased.
This decrease is a sacrifice for the improvement in recall. The reason is that a seed input
set with higher coverage brings more opportunity for generalization and also causes the
checking mechanism in Glade to fail more so that some overgeneralization is not rejected,
which decreases the precision.

Also in RQ2.1, if we compare the the row “LI+SE” which shows the result of the grammar
synthesized by running Glade on the Pex generated seed input (REINAM phase 1) and the
row “LI+SE+RL” which shows the result of the final synthesized grammar of REINAM, we
can find that, on average, the results after phase 2 improves 20.1% in recall but worsens
9.5% in accuracy.

First thing we can observe is that the precision decreases for all subjects compared to
the results of phase 1. This is expected as the reinforcement learning in phase 2 allows
overgeneralization to further generalize possible grammar candidates. Compared to the no-
overgeneralization-allowed strategy used in Glade, our allowance of overgeneralization would
sure decrease the precision.
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Table 2.3: Execution time breakdown of REINAM (number in seconds and percentage of
total time)

Subject http https nntp mailto ip lisp css xml grep csv fol
SE 900 (33.5%) 900 (32.3%) 900 (37.8%) 900 (35.3%) 14 (22.2%) 208 (20.5%) 900 (62.5%) 605 (32.2%) 44 (7.8%) 190 (50.5%) 307 (40.8%)
LI 624 (23.2%) 834 (29.9%) 84 (3.5%) 825 (32.3%) 14 (22.2%) 358 (35.2%) 49 (3.4%) 01 (0.0%) 167 (29.7%) 4 (1.1%) 11 (1.5%)
RL 1160 (43.2%) 1051 (37.7%) 1398 (58.7%) 827 (32.3%) 35 (55.6%) 450 (44.3%) 492 (34.1%) 1273 (67.8%) 351 (62.5%) 182 (48.4%) 435 (57.8%)

Total 2684 2785 2382 2612 63 1016 1441 1878 562 376 753

Then we observe that, in the subjects of url grammar (“http”, “https”, “nntp” and “mailto”),
“grep” and “csv”, after phase 1, the recall is still low . The highest is “https” with .64 recall,
all others are less than .50. So the reinforcement learning in phase 2 could further generalize
the grammar to achieve higher coverage. Table 2.1 shows that, among these six subjects,
we observe an average improvement of 35.1% in recall compared to the phase 1 result. And
the “grep” and “csv” even achieve 1.0 recall which means the final synthesized grammar of
REINAM can perfectly cover the whole input space of the program. This result suggests
that our reinforcement learning approach is effective especially in the case when the input
space is large but existing approaches can only synthesize a grammar that covers part of the
input space.

In the fuzz testing task, we calculate the average improvement of REINAM’s synthesized
grammar-based fuzzer’s coverage (row “LI+SE+RL”) against the coverage of grammar-based
fuzzer using the phase 1 grammar (row “LI+SE”) to be 3.2%. And the average improvement
of row “LI+SE” against row “LI” is 1.7%. From the data we can see that phase 2 contributes
more to the code coverage improvement. This comparison proves the benefits of keeping some
overgeneralized rules in our RL algorithm. We see that for the subjects like “css”, phase 2
does not increase the recall rate (recall rate remains 1.0). However the final synthesized
grammar improves the coverage by 8.6% (1809 vs. 1642) compared to phase 1. This means
that though phase 2 does not improve the overlapping scope of the all the strings generated
from the final synthesized grammar and the ones generated by the ideal grammar., the
grammar of phase 2 actually is able to generate strings that cover more basic blocks in the
code. This further indicates that our reinforcement learning approach is effective not only in
exploring the input space of all valid program input, but also in generating invalid program
input similar to the valid ones which could cover different execution paths.

2.5.6 RQ2.4: Execution Time

We can see from Table 2.3 that the RL phase is taking in average 49.2% of the total
execution time. The Pex is taking in average 34.2% of time in phase 1. The execution time
of Pex can be tuned by setting the timeout parameter. The timeout in the evaluation is set
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to 900 seconds as we can see actually in 5 subjects, Pex timed out.
Based on the discussion in Section 2.4.3, the execution time of the RL phase is mainly

dependent on the size of the grammar and the execution time of the program on the sampling
strings. The time overhead of RL phase here is not satisfying. However, the bottleneck of
phase 2 is waiting for execution results of the program from the sampling strings. This step
can be parallelized to execute the program on k sampling strings simultaneously. Currently
we execute the program on 1500 sampling strings on 4 threads. The results can be improved
on parallelizing the program execution on more threads.

2.6 SUMMARY

In this chapter, we have presented REINAM, a reinforcement learning approach for syn-
thesizing a probabilistic context-free grammar that encodes the language of valid program
inputs. To address the challenge of lacking high-variety, high-quality, and high-quantity seed
inputs faced by the existing approaches, REINAM includes an industrial symbolic execution
engine (Pex [38]) to generate initial seed inputs for the given target program, and includes
a grammar-generalization loop to proactively generate additional inputs during grammar
inference. In the grammar-generalization loop, instead of eliminating production rules (in
a candidate grammar) that may not be accurate initially (as done by Glade [13], an exist-
ing state-of-the-art approach), REINAM keeps and evolves them, thus being able to infer
ground-truth grammars whose inference requires composite generalizations from the initial
seed inputs. To efficiently search for such composite generalizations in a huge search space of
candidate generalization operators, REINAM includes a novel formulation of the search prob-
lem as the problem of reinforcement learning. Our evaluation results show that REINAM
outperforms Glade, an existing state-of-the-art approach, on both precision and recall of
the synthesized grammars, and fuzz testing based on REINAM substantially increases the
coverage of the valid input space. REINAM is often able to synthesize a grammar covering
the whole valid input space without decreasing the precision of the grammar.
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CHAPTER 3: GROOT: AN EVENT-GRAPH-BASED APPROACH FOR
ROOT CAUSE ANALYSIS

3.1 OVERVIEW

Since the emergence of microservice architecture [49], it has been quickly adopted by
many large companies such as Amazon, Google, and Microsoft. Microservice architecture
aims to improve the scalability, development agility, and reusability of these companies’
business systems. Despite these undeniable benefits, different levels of components in such
a system can go wrong due to the fast-evolving and large-scale nature of microservices
architecture [49]. Even if there are minimal human-induced faults in code, the system might
still be at risk due to anomalies in hardware, configurations, etc. Therefore, it is critical
to detect anomalies and then efficiently analyze the root causes of the associated incidents,
subsequently helping the system reliability engineering (SRE) team take further actions to
bring the system back to normal.

In the process of recovering a system, it is critical to conduct accurate and efficient root
cause analysis (RCA) [50], the second one of a three-step process. In the first step, anoma-
lies are detected with alerting mechanisms [51, 52, 53] based on monitoring data such as
logs [54, 55, 56, 57, 58], metrics/key performance indicators (KPIs) [59, 60, 61, 62, 63], or
a combination thereof [9, 64]. In the second step, when the alerts are triggered, RCA is
performed to analyze the root cause of these alerts and additional events, and to propose
recovery actions from the associated incident [54, 65, 66]. RCA needs to consider multiple
possible interpretations of potential causes for the incident, and these different interpreta-
tions could lead to different mitigation actions to be performed. In the last step, the SRE
teams perform those mitigation actions and recover the system.

Based on our industrial SRE experiences, we find that RCA is difficult in industrial practice
due to three complexities, particularly under microservice settings:

• Operational Complexity . For large-scale systems, there are typically centered (aka
infrastructure) SRE and domain (aka embedded) SRE engineers [67]. Their commu-
nication is often ineffective or limited under the microservice scenarios due to a more
diversified tech stack, granular services, and shorter life cycles than traditional sys-
tems. The knowledge gap between the centered SRE team and the domain SRE team
gets further enlarged and makes RCA much more challenging. Centered SRE engineers
have to learn from domain SRE engineers on how the new domain changes work to
update the centralized RCA tools. Thus, adaptive and customizable RCA is required
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instead of one-size-fits-all solutions.

• Scale Complexity . There could be thousands of services simultaneously running
in a large microservice system, resulting in a very high number of monitoring sig-
nals. A real incident could cause numerous alerts to be triggered across services. The
inter-dependencies and incident triaging between the services are proportionally more
complicated than a traditional system [63]. To detect root causes that may be dis-
tributed and many steps away from an initially observed anomalous service, the RCA
approach must be scalable and very efficient to digest high volume signals.

• Monitoring Complexity . A high quantity of observability data types (metrics, logs,
and activities) need to be monitored, stored, and processed, such as intra-service and
inter-service metrics. Different services in a system may produce different types of logs
or metrics with different patterns. There are also various kinds of activities, such as
code deployment or configuration changes. The RCA tools must be able to consume
such highly diversified and unstructured data and make inferences.

To overcome the limited effectiveness of existing approaches [50, 51, 62, 64, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78] (as mentioned in Section 6.2) in industrial settings due to the afore-
mentioned complexities, we propose Groot, an event-graph-based RCA approach. In par-
ticular, Groot constructs an event causality graph, whose basic nodes are monitoring events
such as performance-metric deviation events, status change events, and developer activity
events. These events carry detailed information to enable accurate RCA. The events and
the causalities between them are constructed using specified rules and heuristics (reflecting
domain knowledge). In contrast to the existing fully learning-based approaches [51, 58, 70],
Groot provides better transparency and interpretability. Such interpretability is critical in
our industrial settings because a graph-based approach can offer visualized reasoning with
causality links to the root cause and details of every event instead of just listing the re-
sults. Besides, our approach can enable effective tracking of cases and targeted detailed
improvements, e.g., by enhancing the rules and heuristics used to construct the graph.

Groot has two salient advantages over existing graph-based approaches:

• Fine granularity (events as basic nodes). First, unlike existing graph-based ap-
proaches, which directly use services [72] or hosts (VMs) [77] as basic nodes, Groot

constructs the causality graph by using monitoring events as basic nodes. Graphs
based on events from the services can provide more accurate results to address the
monitoring complexity. Second, for the scale complexity, Groot can dynamically
create hidden events or additional dependencies based on the context, such as adding
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dependencies to the external service providers and their issues. Third, to construct
the causality graph, Groot takes the detailed contextual information of each event
into consideration for analysis with more depth. Doing so also helps Groot incor-
porate SRE insights with the context details of each event to address the operational
complexity.

• High diversity (a wide range of event types supported). First, the causality graph
in Groot supports various event types such as performance metrics, status logs, and
developer activities to address the monitoring complexity. This multi-scenario graph
schema can directly boost the RCA coverage and precision. For example, Groot is
able to detect a specific configuration change on a service as the root cause instead of
performance anomaly symptoms, thus reducing triaging efforts and time-to-recovery
(TTR). Second, Groot allows the SRE engineers to introduce different event types
that are powered by different detection strategies or from different sources. For the
rules that decide causality between events, we design a grammar that allows easy
and fast implementations of domain-specific rules, narrowing the knowledge gap of
the operational complexity. Third, Groot provides a robust and transparent rank-
ing algorithm that can digest diverse events, improve accuracy, and produce results
interpretable by visualization.

To demonstrate the flexibility and effectiveness of Groot, we evaluate it on eBay’s pro-
duction system that serves more than 159 million active users and features more than 5,000
services deployed over three data centers. We conduct experiments on a labeled and vali-
dated data set to show that Groot achieves 95% top-3 accuracy and 78% top-1 accuracy for
952 real production incidents collected over 15 months. Furthermore, Groot is deployed in
production for real-time RCA, and is used daily by both centered and domain SRE teams,
with the achievement of 73% top-1 accuracy in action. Finally, the end-to-end execution
time of Groot for each incident in our experiments is less than 5 seconds, demonstrating
the high efficiency of Groot.

We report our experiences and lessons learned when using Groot to perform RCA in the
industrial e-commerce system. We survey among the SRE users and developers of Groot,
who find Groot easy to use and helpful during the triage stage. Meanwhile, the developers
also find the Groot design to be desirable to make changes and facilitate new requirements.
We also share the lessons learned from adopting Groot in production for SRE in terms of
technology transfer and adoption.

In summary, this chapter makes four main contributions:
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(a) Dependency graph (b) Causality graph

Figure 3.1: Motivating example of event causality graph

• An event-graph-based approach named Groot for root cause analysis tackling chal-
lenges in industrial settings.

• Implementation of Groot in an RCA framework for allowing the SRE teams to instill
domain knowledge.

• Evaluation performed in eBay’s production environment with more than 5,000 services,
for demonstrating Groot’s effectiveness and efficiency.

• Experiences and lessons learned when deploying and applying Groot in production.

3.2 MOTIVATING EXAMPLES

In this section, we demonstrate the effectiveness of event-based graph and adaptive cus-
tomization strategies with two motivating examples.

Figure 3.1 shows an abstracted real incident example with the dependency graph and
the corresponding causality graph constructed by Groot. The Checkout service of our
e-commerce system suddenly gets an additional latency spike due to a code deployment on
the Service-E. The service monitor is reporting API Call Timeout detected by the ML-based
anomaly detection system. The simplified sub-dependency graph consisting of 6 services is
shown in Figure 3.1a. The initial alert is triggered on the Checkout (entrance) service. The
other nodes Service-* are the internal services that the Checkout service directly or indirectly
depends on. The color of the nodes in Figure 3.1a indicates the severity/count of anomalies
(alerts) reported on each service. We can see that Service-B is the most severe one as there
are two related alerts on it. The traditional graph-based approach [72, 77] usually takes
into account only the graph between services in addition to the severity information on each
service. If the traditional approach got applied on Figure 3.1a, either Service-B, Service-D, or
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Figure 3.2: Example of event type addition

Service-E could be a potential root cause, and Service-B would have the highest possibility
since it has two related alerts. Such results are not useful to the SRE teams.

Groot constructs the event-based causality graph as shown in Figure 3.1b. The events
in each service are used as the nodes here. We can see that the API Call Timeout issue in
Checkout is possibly caused by API Call Timeout in Service-A, which is further caused by
Latency Spike in DataCenter-A of Service-C. Groot further tracks back to find that it is
likely caused by Latency Spike in Service-E, which happens in the same data center. Finally
Groot figures out that the most probable root cause is a recent Code Deployment event in
Service-E. The SRE teams then could quickly locate the root cause and roll back this code
deployment, followed by further investigations.

There are no casual links between events in Service-B and Service-A, since no causal rules
are matched. The API Call Timeout event is less likely to depend on the event type High
CPU and High GC. Therefore, the inference can eliminate Service-B from possible root
causes. This elimination shows the benefit of the event-based graph. Note that there is
another event Latency Spike in Service-D, but not connected to Latency Spike in Service-C
in the causality graph. The reason is that the Latency Spike event in Service-C happens in
DataCenter-A, not DataCenter-B.

Figures 3.2 and 3.3 show how SRE engineers can easily change Groot to adapt to new
requirements, by updating the events and rules. In Figure 3.2, SRE engineers want to add
a new type of deployment activity, ML Model Deployment. Usually, the SRE engineers first
need to select the anomaly detection model or set their own alerts and provide alert/activity
data sources for the stored events. In this example, the event can be directly fetched from
the ML model management system. Then Groot also requires related properties (e.g., the
detection time range) to be set for the new event type. Lastly, the SRE engineers add the
rules for building the causal links between the new event type and existing ones. The blue
box in Figure 3.2 shows the rule, which denotes the edge direction, target event, and target
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Figure 3.3: Example of event and rule update

service (self, upstream, and downstream dependency).
Figure 3.3 shows a real-world example of how Groot is able to incorporate SRE insights

and knowledge. More specifically, SRE engineers would like to change the rules to allow
Groot to distinguish the latency spikes from different data centers. As an example in Figure
3.1b, Latency Spike events propagate only within the same data center. During Groot

development, SRE engineers could easily add new property DataCenter to the Latency
Spike event. Then they add the corresponding “conditional” rules to be differentiated with
the “basic” rules in Figure 3.3. In conditional rules, links are constructed only when the
specified conditions are satisfied.

3.3 APPROACH

Figure 3.4 shows the overall workflow of Groot. The triggers for using Groot are usu-
ally alert(s) from automated anomaly detection, or sometimes an SRE engineer’s suspicion.
There are three major steps: constructing the service dependency graph, constructing the
event causality graph, and root cause ranking. The outputs are the root causes ranked by
the likelihood. To support fast human investigation experience, we build an interactive UI as
shown in Figure 3.8: the service dependency, events with causal links and additional details
such as raw metrics or the developer contact (of a code deployment event) are presented to
the user for next steps. As an offline part of human investigation, we label/collect a data set,
perform validation, and summarize the knowledge for further improvement on all incidents
on a daily basis.
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Figure 3.4: Workflow of Groot

3.3.1 Constructing Service Dependency Graph

The construction of the service dependency graph starts with the initial alerted or suspi-
cious service(s), denoted as I. For example, in Figure 3.1a, I = {Checkout}. I can contain
multiple services based on the range of the trigger alerts or suspicions. We maintain domain
service lists where domain-level alerts can be triggered because there is no clear service-level
indication.

At the back end, Groot maintains a global service dependency graph Gglobal via dis-
tributed tracing and log analysis. The directed edge from nodes A to B (two services or
system components) in the dependency graph indicates a service invocation or other forms of
dependency. In Figure 3.1a, the black arrows indicate such edges. Bi-directional edges and
cycles between the services can be possible and exist. In this work, the global dependency
graph is updated daily.

The service dependency (sub)graph G is constructed using Gglobal and I. An extended
service list L is first constructed by traversing each service in I over Gglobal for a radius
range r. Each service u ∈ L can be traversed by at least one service v ∈ I within r steps:
L = {u|∃v ∈ I, dist(u, v) ≤ r or dist(v, u) ≤ r}. Then, the service dependency subgraph
G is constructed by the nodes in L and the edges between them in Gglobal. In our current
implementation, r is set to 2, since this dependency graph may be dynamically extended in
the next steps based on events’ detail for longer issue chains or additional dependencies.
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3.3.2 Constructing Event Causality Graph

In the second step, Groot collects all supported events for each service in G and con-
structs the causal links between events.

Collecting Events Table 3.1 presents some example event types and detection techniques
for Groot’s production implementation. For detection techniques, “De Facto” indicates that
the event can be directly collected via a specific API or storage. The detection either runs
passively in the back end to reduce delay and improve accuracy, or runs actively for only
the services within the dependency graph range to save resources.

There are three major categories of events: performance metrics, status logs, and developer
activities:

• Performance metrics represent an anomaly of monitored time series metrics. For
example, high CPU usage indicates that the service is causing high CPU usage on a
certain machine. In this category, most events are continuously and passively detected
and stored.

• Status logs are caused by abnormal system status, such as spike of HTTP error code
metrics while accessing other services’ endpoints. Different types of error metrics are
important and supported in Groot, including third-party APIs. For example, Bad
Host indicates abnormal patterns on some machines running the service, and can be
detected by a clustering-based ML approach.

• Developer activities are the events generated when a certain activity of developers is
triggered, such as code deployment and config change.

In Groot, there are more than a dozen event types such as Latency Spike as listed in
the column 2 of Table 3.1. Each event type is characterized by three aspects: Name

indicates the name of this event type; LookbackPeriod indicates the time range to look
back (from the time when the use of Groot is triggered) for collecting events of this
event type; PropertyType indicates the types of the properties that an event of this event
type should hold. PropertType is characterized by a vector of pairs, each of which indi-
cates the string type for a property’s name and the primitive type for the property’s value
such as string, integer, and float. Formally, an event type is defined as a tuple: ET =<

Name, LookbackPeriod, PropertyType > where PropertyType =< (string, type1), ...,
(string, typen) > (n is the number of properties that an event of this event type holds).

Each event of a certain event type ET is characterized by four aspects: Service indicates
the service name that the event belongs to; Type indicates ET ’s Name; StartTime indicates
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Table 3.1: List of example event types used in Groot

Type Event Type Detection Technique

Performance Metrics

High GC (Overhead) Rule-based
High CPU Usage Rule-based

Latency Spike Statistical Model
TPS Spike Statistical Model

Database Anomaly ML Model
Business Metric Anomaly ML Model

Status Logs

WebAPI Error Statistical Model
Internal Error Statistical Model

ServiceClient Error Statistical Model
Bad Host ML Model

Developer Activities
Code Deployment De Facto

Configuration Change De Facto
Execute URL De Facto

the time when the event happens; Properties indicates the properties that the event holds.
Formally, an event is defined as a tuple: e =< Service, Type, StartT ime, Properties >

where Properties is an instantiation of ET ’s PropertyType.
For example, in Figure 3.1, the generated event for Latency Spike in DataCenter-A in

Service-C would be < “Service-C′′, “Latency Spike′′, 2021/08/01-12:36:04,
< (“DataCenter′′, “DC-1′′), ... >>.

Constructing Causal Link After collecting all events on all services in G, in this step,
causal links between these events are constructed for RCA ranking. The causal links (red
arrows) in Figure 3.1b are such examples. A causal link represents that the source event can
possibly be caused by the target event. SRE knowledge is engineered into rules and used to
create causal links between the pairs of events.

A rule for constructing a causal link is defined as a tuple: Rule =< Target-Type,
Source-Events, Target-Events,Direction,

Target-Service, Condition > (Condition can be optionally specified). Target-Type in-
dicates the type of the rule, being either Static or Dynamic (explained further later).
Source-Events indicates the type of the causal link’s source event (Source-Events are
listed in the names of the rules shown in Figures 3.2, 3.3 and 3.5). Target-Events indi-
cates the type of the causal link’s target event. Direction indicates the direction of the
casual link between the target event and source event. Target-Service indicates the service
that the target event should belong to. Note that Target-Service in Static rules can be
Self , which indicates that the target event would be within the same service as the source
event, or Outgoing/Incoming, which indicates that the target event would belong to the
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Figure 3.5: Example of dynamic rule

downstream/upstream services of the service that the source event belongs to in G.
There are two categories of special rules. The first category is dynamic rules (i.e.,

rules whose Target-Type is set to Dynamic) to support dynamic dependencies. Here
Target-Service does not indicate any of the three possible options listed earlier but in-
dicates the name of the target service that Groot would need to create. For example,
live DB dependencies are not available due to different tech stacks and high volume. In
Figure 3.5, a DB issue (DB Markdown) is shown in Service-A. Based on the listed dynamic
rule, Groot creates a new “service” DB-1 in G, a new event “Issues” that belongs to DB-1,
and a causal link between the two events. In practice, the SRE teams use dynamic rules to
cover a lot of third-party services and database issues since the live dependencies are not
easy to maintain.

The second category of special rules is conditional rules. Conditional rules are used when
some prerequisite conditions should be satisfied before a certain causal link is created. In
these rules, Condition is specified with a boolean predicate. As shown in Figure 3.3, the
SRE teams believe Latency Spike events from different services are related only when both
events happen within the same data center. Based on this observation, Groot would first
evaluate the predicate in Condition and build only the causal link when the predicate is
true. A conditional rule overwrites the basic rule on the same source-target event pair.

When constructing causal links, Groot first applies the dynamic rules so that dynamic
dependencies and events are first created at once. Then for every event in the initial services
(denoted as I), if the rule conditions are satisfied, one or many causal links are created from
this event to other events from the same or upstream/downstream services. When a causal
link is created, the step is repeated recursively for the target event (as a new origin) to
create new causal links. After no new causal links are created, the construction of the event
causality graph is finished.
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Figure 3.6: Example of personalization vector customization

3.3.3 Root Cause Ranking

Finally, Groot ranks and recommends the most probable root causes from the event
causality graph. Similar to how search engines infer the importance of pages by page links, we
customize the PageRank [79] algorithm to calculate the root cause ranking; the customized
algorithm is named as GrootRank. The input is the event causality graph from the previous
step. Each edge is associated with a weighted score for weighted propagation. The default
value is set as 1, and is set lower for alerts with high false-positive rates.

Based on the observation that dangling nodes are more likely to be the root cause, we
customize the personalization vector as Pn = fn or Pd = 1, where Pd is the personalization
score for dangling nodes, and Pn is for the remaining nodes; and fn is a value smaller than
1 to enhance the propagation between dangling nodes. In our work, the parameter setting
is fn = 0.5, α = 0.85, maxiter = 100 (which are parameters for the PageRank algorithm).
Figure 3.6 illustrates an example. The grey circles are the events collected from three
services and one database. The grey arrows are the dependency links and the red ones are
the causal links with the weight of 1. Both of the PageRank and GrootRank algorithms
detect event5 (DB issue) as the root cause, which is expected and correct. However, the
PageRank algorithm ranks event4 higher than event3. But event3 of Service-C is more likely
to be the second most possible root cause (besides event5), because the scores on dangling
nodes are propagated to all others equally in each iteration. We can see that event3 is
correctly ranked as second using the GrootRank algorithm.

The second step of GrootRank is to break the tied results from the previous step. The tied
results are due to the fact that the event graph can contain multiple disconnected sub-graphs
with the same shape. We design two techniques to untie the ranking:

1. For each joint event, the access distance (sum) is calculated from the initial anomaly
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Figure 3.7: Example of using access distance to untie the ranking results

service(s) to the service where the event belongs to. If any “access” is not reachable,
the distance is set as dm + 1 where dm is the maximum possible distance. The one
with shorter access distance (sum) would be ranked higher and vice versa. Figure 3.7
presents an example, where Service-A and Service-B are both initial anomaly services.
Since Groot suspects that event2 is caused by either event3 or event1 with the same
weight. The scores of event3 and event1 are tied. Then, event3 has a score of 1 (i.e.,
0 + 1) and event1 has a score of 2 (i.e., 0 + 2), since it is not reachable by Service-B).
Therefore, event3 is ranked first and logical.

2. For the remaining joint results with the same access distances, Groot continues to
untie by using the historical root cause frequency of the event types under the same
trigger conditions (e.g., checkout domain alerts). This frequency information is gener-
ated from the manually labeled dataset. A more frequently occurred root cause type
is ranked higher.

3.3.4 Rule Customization Management

While Groot users create or update the rules, there could be overlaps, inconsistencies, or
even conflicts being introduced such as the example in Figure 3.3. Groot uses two graphs
to manage the rule relationships and avoid conflicts for users. One graph is to represent the
link rules between events in the same service (Same-Graph) while the other is to represent
links between different services (Diff-Graph). The nodes in these two graphs are the event
types defined in Section 3.3.2. There are three statuses between each (directional) pair of
event types: (1) no rule, (2) only basic rule, and (3) conditional rule (since it overwrites
the basic rule). In Same-Graph, Groot does not allow self-loop as it does not build links
between an event and itself.
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When rule change happens, existing rules are enumerated to build edges in Same-Graph
and Diff-Graph based on Target-Events and Target-Service. Based on the users’ operation
of (1) “remove a rule”, Groot removes the corresponding edge on the graphs; (2) “add/up-
date a rule”, Groot checks whether there are existing edges between the given event types,
and then warns the users for possible overwrites. If there are no conflicts, Groot just
adds/updates edges between the event types.

After all changes, Groot extracts the rules from the graphs by converting each edge to a
single rule. These rules are automatically implemented, and then tested against our labeled
data set. The Groot users need to review the changes with validation reports before the
changes go online.

3.4 EVALUATION

We evaluate Groot in two aspects: (1) effectiveness (accuracy), which assesses how
accurate Groot is in detecting and ranking root causes, and (2) efficiency, which assesses
how long it takes for Groot to derive root causes and conduct end-to-end analysis in action.
Particularly, we intend to address the following research questions:

• RQ3.1. What are the accuracy and efficiency of Groot when applied on the collected
dataset?

• RQ3.2. How does Groot compare with baseline approaches in terms of accuracy?

• RQ3.3. What are the accuracy and efficiency of Groot in an end-to-end scenario?

3.4.1 Evaluation Setup

To evaluate Groot in a real-world scenario, we deploy and apply Groot in eBay’s
e-commerce system that serves more than 159 million active buyers. In particular, we
apply Groot upon a microservice ecosystem that contains over 5,000 services on three
data centers. These services are built on different tech stacks with different programming
languages, including Java, Python, Node.js, etc. Furthermore, these services interact with
each other by using different types of service protocols, including HTTP, gRPC, and Message
Queue. The distributed tracing of the ecosystem generates 147B traces on average per day.

Data Set The SRE teams at eBay help collect a labeled data set containing 952 incidents
over 15 months (Jan 2020 - Apr 2021). Each incident data contains the input required by
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Groot (e.g., dependency snapshot and events with details) and the root cause manually
labeled by the SRE teams. These incidents are grouped into two categories:

• Business domain incidents. These incidents are detected mainly due to their business
impact. For example, end users encounter failed interactions, and business or customer
experience is impacted, similar to the example in Figure 3.1.

• Service-based incidents. These incidents are detected mainly due to their impact on
the service level, similar to the example in Figure 3.5.

An internal incident may get detected early, and then likely get categorized as a service-
based incident or even solved directly by owners without records. On the other hand,
infrastructure-level issues or issues of external service providers (e.g., checkout and shipping
services) may not get detected until business impact is caused.

There are 782 business domain incidents and 170 service-based incidents in the data set.
For each incident, the root cause is manually labeled, validated, and collected by the SRE
teams, who handle the site incidents everyday. For a case with multiple interacting causes,
only the most actionable/influential event is labelled as the root cause for the case. These
actual root causes and incident contexts serve as the ground truth in our evaluation.

Groot Setup The Groot production system is deployed as three microservices and
federated in three data centers with nine 8-core CPUs, 20GB RAM pods each on Kubernetes.

Baseline Approaches In order to compare Groot with other related approaches, we
design and implement two baseline approaches for the evaluation:

• Naive Approach. This approach directly uses the constructed service dependency graph
(Section 3.3.1). The events are assigned a score by the severeness of the associated
anomaly. Then a normalized score for each service is calculated summarizing all the
events related to the service. Lastly, the PageRank algorithm is used to calculate the
root cause ranking.

• Non-adaptive Approach. This approach is not context-aware. It replaces all special
rules (i.e., conditional and dynamic ones) with their basic rule versions. Its other parts
are identical to Groot.

The non-adaptive approach can be seen as a baseline for reflecting a group of graph-based
approaches (e.g., CauseInfer [69] and Microscope [80]). These approaches also specify certain
service-level metrics but lack the context-aware capabilities of Groot. Because the tools
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Table 3.2: Accuracy of RCA by Groot and baselines

Groot Naive Non-adaptive
Top 3 Top 1 Top 3 Top 1 Top 3 Top 1

Service-based 92% 74% 25% 16% 84% 62%
Business domain 96% 81% 2% 1% 28% 26%

Combined 95% 78% 6% 3% 38% 33%

for these approaches are not publicly available, we implement the non-adaptive approach to
approximate these approaches.

3.4.2 Evaluation Results

RQ3.1 Table 3.2 shows the results of applying Groot on the collected data set. We
measure both top-1 and top-3 accuracy. The top-1 and top-3 accuracy is calculated as the
percentage of cases where their ground-truth root cause is ranked within top 1 and top 3,
respectively, in Groot’s results. Groot achieves high accuracy on both incident categories.
For example, for business domain incidents, Groot achieves 96% top-3 accuracy.

The unsuccessful cases that Groot ranks the root cause after top 3 are mostly caused
by missing event(s). More than one-third of these unsuccessful cases have been addressed
by adding necessary events and corresponding rules over time. For example, initially, we
had only an event type of general error spike, which mixes different categories of errors and
thus causes high false-positive rate. We then have designed different event types for each
category of the error metrics (including various internal and client API errors). In many
cases that Groot ranks the root cause after top 1, the labeled root cause is just one of the
multiple co-existing root causes. But for fairness, the SRE teams label only a single root
cause in each case. According to the feedback from the SRE teams, Groot still facilitates
the RCA process for these cases.

Our results show that the runtime cost of applying Groot is relatively low. For a service-
based incident, the average runtime cost of Groot is 1.06s while the maximum is 1.69s. For
a business domain incident, the average runtime cost is 0.98s while the maximum is 1.14s.

RQ3.2 We additionally apply the baseline approaches on the data set. Table 3.2 also
shows the evaluation results. The results show that the accuracy of Groot is substantially
higher than that of the baseline approaches. In terms of the top-1 accuracy, Groot achieves
78% compared with 3% and 33% of the naive and non-adaptive approaches, respectively. In
terms of the top-3 accuracy, Groot achieves 95% compared with 6% and 38% of the naive
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Table 3.3: Comparison of Groot results on the dataset and end-to-end scenario

Service-based Business Domain
Dataset End-to-End Dataset End-to-End

Top-1 Accuracy 74% 73% 81% 73%
Top-3 Accuracy 92% 91% 96% 87%
Average Runtime Cost 1.06s 3.16s 0.98s 2.98s
Maximum Runtime Cost 1.69s 4.56s 1.14s 3.61s

and non-adaptive approaches, respectively.
The naive approach performs worst in all settings, because it blindly propagates the score

at service levels. The accuracy of the non-adaptive approach is much worse for business
domain incidents. The reason is that for a business domain incident, it often takes a longer
propagation path since the incident is triggered by a group of services, and new dynamic
dependencies may be introduced during the event collection, causing more inaccuracy for the
non-adaptive approach. There can be many non-critical or irrelevant error events in an actual
production scenario, aka “soft” errors. We suspect that these non-critical or irrelevant events
may be ranked higher by the non-adaptive approach since they are similar to injected faults
and hard to be distinguished from the actual ones. Groot uses dynamic and conditional
rules to discover the actual causal links, building fewer links related to such non-critical or
irrelevant events for leading to higher accuracy.

RQ3.3 To evaluate Groot under an end-to-end scenario, we apply Groot upon actual
incidents in action. Table 3.3 shows the results. The accuracy has a decrease of up to 9
percentage points in the end-to-end scenario, with some failures caused by production issues
such as missing data and service/storage failures. In addition, the runtime cost is increased
by up to nearly 3 seconds due to the time spent on fetching data from different data sources,
e.g., querying the events for a certain time period.

3.5 EXPERIENCE

Groot currently supports daily SRE work. Figure 3.8 shows a live Groot’s “bird’s eye
view” UI on an actual simple checkout incident. Service C has the root cause (ErrorSpike)
and belongs to an external provider. Although the domain service A also carries an error
spike and gets impacted, Groot correctly ignores the irrelevant deployment event, which has
no critical impact. The events on C are virtually created based on the dynamic rule. Note
that all causal links (yellow) in the UI indicate “is cause of”, being the opposite of “is caused
by” as described in Section 3.3.2 to provide more intuitive UI for users to navigate through.
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Figure 3.8: Groot UI in production

Groot visualizes the dependency and event causality graph with extra information such as
an error message. The SRE teams can quickly comprehend the incident context and derived
root cause to investigate Groot further. A mouseover can trigger “event enrichment” based
on the event type to present details such as raw metrics and other additional information.

We next share two major kinds of experience:

• Feedback from Groot users and developers, reflecting the general experience
of two groups: (1) domain SRE teams who use Groot to find the root cause, and (2)
a centered SRE team who maintains Groot to facilitate new requirements.

• Lessons learned, representing the lessons learned from deploying and adopting Groot

in production for the real-world RCA process.

3.5.1 Feedback from Groot Users and Developers

We invite the SRE members who use Groot for RCA in their daily work to the user
survey. We call them users in this section. We also invite different SRE members responsible
for maintaining Groot to the developer survey. We call them developers in this section. In
total, there are 14 users and 6 developers who respond to the surveys.

For the user survey, we ask 14 users the following 5 questions (User-Question 3.4-3.5 have
the same choices as User-Question 3.1):
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Figure 3.9: Survey results

• User-Question 3.1. When Groot correctly locates the root cause, how does it help
with your triaging experience? Answer choices: Helpful(4), Somewhat Helpful(3), Not
Helpful(2), Misleading(1).

• User-Question 3.2. When Groot correctly locates the root cause, how does it
save/extend your or the team’s triaging time? (Detection and remediation time not
included) Answer choices: Lots Of Time Saved(4), Some Time Saved(3), No Time
Saved(2), Waste Time Instead(1).

• User-Question 3.2. Based on your estimation, how much triage time Groot would
save on average when it correctly locates the root cause? (Detection and remedia-
tion time not included) Answer choices: More than 50%(4), 25-50%(3), 10-25%(2),
0-10%(1), N/A(0).

• User-Question 3.4. When Groot correctly locates the root cause, do you find that
the result “graph” provided by Groot helps you understand how and why the incident
happens?

• User-Question 3.5. When Groot does not correctly locate the root cause, does the
result “graph” make it easier for your investigation of the root cause?

Figure 3.9a shows the results of the user survey. We can see that most users find Groot

very useful to locate the root cause. The average score for User-Question 3.1 is 3.79, and 11
out of 14 participants find Groot very helpful. As for User-Question 3.3, Groot saves the
triage time by 25-50%. Even in cases that Groot cannot correctly locate the root cause, it
is still helpful to provide information for further investigation with an average score of 3.43
in User-Question 3.5.
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For the developer survey, we ask the 6 developers the following 5 questions (Dev-Question
3.2-3.5 have the same choices as Dev-Question 3.1):

• Dev-Question 3.1. Overall, how convenient is it to change and customize events/rules/-
domains while using Groot? Answer choices: Convenient(4), Somewhat Conve-
nient(3), Not Convenient(2), Difficult(1).

• Dev-Question 3.2. How convenient is it to change/customize event models while
using Groot?

• Dev-Question 3.3. How convenient is it to add new domains while using Groot?

• Dev-Question 3.4. How convenient is it to change/customize causality rules while
using Groot?

• Dev-Question 3.5. How convenient is it to change/customize Groot compared to
other SRE tools?

Figure 3.9b shows the results of the developer survey. Overall, most developers find it
convenient to make changes on and customize events/rules/domains in Groot.

3.5.2 Lessons learned

In this section, we share the lessons learned in terms of technology transfer and adoption
on using Groot in production environments.

Embedded in Practice. To build a successful RCA tool in practice, it is important to embed
the R&D efforts in the live environment with SRE experts and users. We have a 30-minute
routine meeting daily with an SRE team to manually test and review every site incident. In
addition, we actively reach out to the end users for feedback. For example, the users found
our initial UI hard to understand. Based on their suggestions, we have introduced alert
enrichment with the detailed context of most events, raw metrics, and links to other tools
for the next steps. We also make the UI interactive and build user guides, training videos,
and sections. As a result, Groot has become increasingly practical and well adopted in
practice. We believe that R&D work on observability should be incubated and grown within
daily SRE environments to bring developers with rich RCA experience into the R&D team.

Vertical Enhancements. High-confidence and automated vertical enhancements can em-
power great experiences. Groot is enhanced and specialized in critical scenarios such
as grouped related alerts across services or critical business domain issues, and large-scale
scenarios such as infrastructure changes or database issues. Furthermore, the end-to-end
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automation is also built for integration and efficiency with anomaly detection, RCA, and
notification. For notification, domain business anomalies and diagnostic results are sent
through communication apps (e.g., slack and email) for better reachability and experience.
Groot now supports 18 business domains and sub-domains of the company. On average,
Groot UI supports more than 50 active internal users, and the service sends thousands of
results every month. Most of these usages are around the vertical enhancements.

Data and Tool Reliability. Reliability is critical to Groot itself and requires a lot of
attention and effort. For example, if a critical event is missing, Groot may infer a totally
different root cause, which would mislead users. We estimate the alert accuracy to be greater
than 0.6 in order to be useful. Recall is even more important since Groot can effectively
eliminate false positive alerts based on the casual ranking. Since there are hundreds of
different metrics supported in Groot, we spend time to ensure a robust back end by adding
partial and dynamic retry logic and high-efficiency cache. Groot’s unsuccessful cases can
be caused by imperfect data, flawed algorithms, or simply code defects. To better trace the
reason behind each unsuccessful case, we add a tracing component. Every Groot request
can be traced back to atomic actions such as retrieving data, data cleaning, and anomaly
detection via algorithms.

Trade-off among Models. The accuracy and scalability trade-off among anomaly detection
models should be carefully considered and tested. In general, some algorithms such as deep-
learning-based or ensemble models are more adaptive and accurate than typical ones such
as traditional ML or statistical models. However, the former requires more computation
resources, operational efforts, and additional system complexities such as training or model
fine-tuning. Due to the actual complexities and fast-evolving nature of our context, it
is not possible to scale each model (e.g., deep-learning-based models), nor have it deeply
customized for every metric at every level. Therefore, while selecting models, we must make
careful trade-off in aspects such as accuracy, scalability, efficiency, effort, and robustness.
In general, we first set different “acceptance” levels by analyzing each event’s impact and
frequency, and then test different models in staging and pick the one that is good enough.
For example, a few alerts such as “high thread usage” are defined by thresholds and work
just fine even without a model. Some alerts such as “service client error” are more stochastic
and require coverage on every metric of every service, and thus we select fast and robust
statistical models and actively conduct detection on the fly.

Phased Incorporation of ML. In the current industrial settings, ML-powered RCA products
still require effective knowledge engineering. Due to the higher complexity and lower “signal
to noise ratio” of real production incidents, many existing approaches cannot be applied in
practice. We believe that the knowledge engineering capabilities can facilitate adoption of
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technologies such as AIOps. Therefore, Groot is designed to be highly customizable and
easy to infuse SRE knowledge and to achieve high effectiveness and efficiency. Moreover,
a multi-scenario RCA tool requires various and interpretable events from different detec-
tion strategies. Auto-ML-based anomaly detection or unsupervised RCA for large service
ecosystems is not yet ready in such context. As for the path of supervised learning, the
training data is tricky to label and vulnerable to potential cognitive bias. Lastly, the end
users often require complete understanding to fully adopt new solutions, because there is no
guarantee of correctness. Many recent ML algorithms (e.g., ensemble and deep learning) lack
interpretability. Via the knowledge engineering and graph capabilities, Groot is able to
explain diversity and causality between ML-model-driven and other types of events. Moving
forward, we are building a white-box deep learning approach with causal graph algorithms
where the causal link weights are parameters and derivable.

3.6 DISCUSSION

In this section, we discuss some future extension or improvements on the system.
Many related works for anomaly detection are discussed in Section 6.2. Some approaches

are using adaptive concept drifting, which can self-adapt to the target event without manual
tuning [81]. One major burden in our event construction is that we need to build different
detection strategies/algorithms for different events, while some events are still needed to be
manually tuned or detected by rules. Auto-ML is yet to come for anomaly detection, and the
interpretability of the result is also a big challenge for end-to-end usability. The filter range
for some events also needs manual tuning which requires large amount of domain expertise
and is not robust. As of now, we are investing self-adaptive approaches and building time
series metrics anomaly detection platform to reduce the event on-boarding cost.

Also, our approach, which requires a fair amount of “one-time" effort, utilizes rules to
build links between events. A lot of the rules have similar patterns. Despite that our users
prefer to have their own control, rules can be inferred from historical patterns. A great
extension to this work is the use of machine learning or grammar inference techniques [82]
to automatically or semi-automatically infer the rules.

3.7 SUMMARY

In this chapter, we have presented our work around root cause analysis (RCA) in industrial
settings. To tackle three major RCA challenges (complexities of operation, system scale,
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and monitoring), we have proposed a novel event-graph-based approach named Groot that
constructs a real-time causality graph for allowing adaptive customization. Groot can
handle diversified anomalies and activities from the system under analysis and is extensible
to different approaches of anomaly detection or RCA. We have integrated Groot into eBay’s
large-scale distributed system containing more than 5,000 microservices. Our evaluation of
Groot on a data set consisting of 952 real production incidents shows that Groot achieves
high accuracy and efficiency across different scenarios and also largely outperforms baseline
graph-based approaches. We also share the lessons learned from deploying and adopting
Groot in production environments.
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CHAPTER 4: NL2VIZ: NATURAL LANGUAGE TO VISUALIZATION VIA
CONSTRAINED SYNTAX-GUIDED SYNTHESIS

4.1 OVERVIEW

Recent development in Natural Language to Code (NL2Code) research allows the end-
user, especially novice programmers to create a concrete implementation of their ideas by
providing natural language (NL) instructions. While code generation for general-purpose
languages such as Python is still challenging [83], NL2Code for a domain-specific language
(DSL) such as SQL [84, 85, 86] or NL2Code in a specific application domain such as com-
petitive programming [87] has witnessed major advances. Given that data science has seen
tremendous growth in recent years, data visualization has become a great application do-
main of NL2Code. The main reason is that data scientists need to frequently produce
visualization to help them perform exploratory data analysis (EDA) to discover useful infor-
mation from data and draw insights to support decision making. Yet it is quite a burden on
data scientists as they have to memorize names of data visualization APIs and their many
parameters [88]. Indeed, in our user study (Section 4.4.4), data scientists confirm that they
could not memorize all the API options and have to look into API documentation frequently.

It is difficult for an NL2Code tool to achieve its goal due to three major challenges. First,
in the stated NL instruction, the user may use words whose semantics can be determined
only in the context. For example, different NL2Sql approaches include different strategies
to handle schema encoding to create a mapping from the user input to the entities in the
database, while few approaches have achieved good adaptability [86]. In visualization, an
NL2Code task gets more complicated as the user may already write some code to process
the data and then use the Natural Language to Visualization (NL2Visualization) tool.
So the tool also needs to understand the program context. Second, the user may not include
all details (needed for code generation) in the NL instruction. For example, when trying
to produce a line plot, the user may not specify the name of the data column used for the
x-axis especially when there is a data column with index or time value. Third, the results of
NL2Code are often imperfect and thus require the user’s further interaction or update to
fix issues in the results. Especially in data analysis, data scientists often need to make quick
changes to visualization as data analysis is a data-driven process. The first two challenges
on the user input may make the user’s further interaction even more necessary.

To address the aforementioned three challenges, in this chapter, we propose a new approach
and its supporting tool named NL2Viz in the domain of NL2Visualization with three
salient features. First, we leverage not only the user’s NL input but also the contextual
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input, i.e., data and program context that the underlying query is upon. The data context
includes the data tables that the user is working on and also the intermediate data vectors
that the user has produced. The program context includes the previous code and existing
plots that the user has produced (including the previous instruction-plot pairs produced by
our NL2Viz tool for the user). For example, when the user creates her own filtering function
and refers to the function name in her instruction, we would be able to understand and use
the function in the generated plotting code by leveraging the program context. Second, to
better fill the missing or ambiguous details in the NL input, we differentiate between hard
constraints and soft constraints retrieved from the NL input and contextual input. The hard
constraints are the ones that we have high confidence in and could be explicitly specified
by the user. For example, the user states that she wants a scatterplot, and then the plot
type to be scatterplot would be a hard constraint. Meanwhile the soft constraints are the
ones that we do not have high confidence in and could be inferred from the context. For
example, the user does not mention the data column for the x-axis but the column with time
information would be the likely x-axis data. Third, we provide the user interface to allow
iterative refinement for the user to further fix or change the results. We allow the user to
give additional NL instructions to make changes to the visualization. Moreover, we are not
only having the plot as the output but also the working code snippet that produces the plot.
The user can also directly make changes on the code snippet; data scientists find making
code changes convenient as shown in our user study (Section 4.4.4).

We implement our approach as a tool named NL2Viz in the Jupyter Notebook environ-
ment [89]. NL2Viz is directly embedded into the user’s daily workflow without the burden
to switch between different environments. At a high level, NL2Viz first parses the NL in-
struction (given by the user) using semantic parsing [90, 91] into symbolic constraints that
the target visualization program needs to satisfy. NL2Viz also generates such constraints
after retrieving the data, program, and existing plot context in the current notebook. Next,
NL2Viz uses a novel syntax-guided program synthesis algorithm to generate a complete
visualization program from these hard/soft constraints. During this process, NL2Viz keeps
multiple candidates at each synthesis state and assigns a heuristic fitness score to help priori-
tize the most likely structure. Finally, NL2Viz can take a further refinement NL instruction
to change the generated visualization program or the user can choose to directly use or apply
changes to the generated program.

We assess NL2Viz using four evaluations. First, we assess the synthesis accuracy in a one-
shot scenario. Our benchmark contains 295 NL instructions collected from data scientists
and online homework assignments. Overall, NL2Viz is able to achieve an overall accuracy
of 74.6%. Second, we assess NL2Viz’s accuracy in interactive scenarios. Given an initial
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plot and an instruction for describing a small change, NL2Viz achieves 62.5% accuracy in
40 scenarios. Third, we also assess NL2Viz in a public dataset [92]. NL2Viz outperforms
a state-of-the-art approach [92] in easy to medium categories while achieving comparable
overall accuracy of 55.0%. Fourth, we assess the usability of NL2Viz via a user study,
where we ask 6 data scientist professionals to use NL2Viz to complete 5 visualization tasks.
The participants are able to successfully complete 4.17 out of the 5 tasks on average. Most
participants like NL2Viz and are willing to use it before writing actual visualization code.

This chapter makes the following main contributions:

• We propose a novel NL2Code approach that aims to address challenges on the user
input and interactions in the application domain of NL2Visualization by leveraging
the data/program context, retrieving hard/soft constraints, and providing interactive
refinement support.

• We present NL2Viz, an end-to-end synthesis tool implemented in the Jupyter Note-
book environment for helping data scientists visualize their data using an NL interface.
NL2Viz shows both the plot and the readable code snippet for generating that plot,
allowing the user to modify, extend, and reuse the code snippet.

• We evaluate NL2Viz on a real-world visualization benchmark and a public dataset to
show its applicability. We also conduct a user study with data scientist professionals
on real world scenarios, finding that NL2Viz is easy to use and helpful for generating
not only plots, but also readable code that could be extended and reused.

In the rest of this chapter, Section 4.2 illustrates our overall approach using a motivating
example. Section 4.3 discusses the implementation of NL2Viz. Section 4.4 presents our
evaluation results and Section 4.5 summarize this part of work.

4.2 MOVIVATING EXAMPLES

This section provides a high-level overview of NL2Viz via a motivating example. In this
example, a data scientist named Alice wants to study the trend of COVID-19 infection in
Europe. She opens Jupyter Notebook [89], a popular platform among data scientists, to
load a COVID-19 dataset1 ( 4.1). Each row in the dataset reports the numbers of daily
confirmed cases and deaths for a country in a certain day, along with the accumulated
numbers of confirmed cases and deaths until that date.

1https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
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Figure 4.1: The “COVID-19” dataset (sampled 10 rows).

(a) The user invokes NL2Viz to obtain a plot
with code.

(b) The user creates another plot by adapting
the existing one.

Figure 4.2: The screenshots of NL2Viz in Jupyter Notebook while working with the moti-
vating example.

Alice first wants to see the trend of confirmed cases for all countries in Europe. Alice
understands that she needs to restrict the continent column to “Europe”. Because there
are multiple countries in Europe, Alice also needs to group data by country before she can
iterate and plot a line chart for each country. In the plot, the x-axis is the date sorted
chronologically and the y-axis is the confirmed cases for that date. 4.2a shows the desired
plot and code.

The plotting code is non-trivial. Alice not only has to pick the right functions in matplotlib

(e.g., plot), but also needs to process the data and construct the desired arguments for these
functions. In our user study (Section 4.4.4), data scientists usually could not remember the
usage of plotting functions and have to look up their documentation or search for similar code
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Figure 4.3: The workflow of NL2Viz.

in help forums. This context switching breaks the data scientists’ workflow and negatively
affects their productivity.

In contrast, Alice can perform the same task in NL2Viz by typing “%plot line showing total
confirmed cases for countries in Europe” (%plot is our magic command to invoke NL2Viz

in Jupyter Notebook). Because our target audience is data scientists who have sufficient
coding skills, NL2Viz shows both the plot and the code to produce it (4.2a). Having access
to the code allows Alice to tune the plot if she wants. For instance, she can modify the code
to change the x-axis tick labels from every 5 days to a different number. Alice can also reuse
the code. For example, Alice can easily wrap the synthesized code inside a function that
plots the total number of confirmed cases in any given continent, and then loops over the
function to create plots for all continents.

Alice also has an option to interactively change the existing plots using NL. For instance,
she may type %plot change y label to “Total confirmed cases” to update the y-axis label, or
“%plot change to Asia” to change the plot to countries in Asia (4.2b). Doing so is feasible
because NL2Viz also uses knowledge of existing plots when synthesizing plots from text.
Our approach. We next explain how our NL2Viz approach synthesizes the desired visu-
alization program from the following three modalities of specifications for the example from
4.2:

• The data/program context, which includes the “COVID-19” dataset, as shown in 4.1.

• The visualization context, which includes existing plots and their NL instructions.

• An NL instruction that describes the desired visualization task, e.g., “%plot line show-
ing total confirmed cases for countries in Europe” provided by Alice as the instruction.

Given these inputs, NL2Viz synthesizes the desired program in two steps, as shown schemat-
ically in 4.3. In the first phase (semantic parsing), NL2Viz parses the three inputs into
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symbolic constraints. Then, in the second phase (program synthesis), NL2Viz synthesizes
a complete program that satisfies these constraints.

More specifically, given an NL instruction and the current data context and program
context, NL2Viz uses semantic parsing techniques [91] to generate a ranked list L of tuples,
each of which T consists of two sets of constraints: a set Rmust of hard constraints and
a set Rmay of soft constraints (Figure 4.4 shows a simplified version of our grammar for
the semantic parser). The set Rmust includes hard constraints that must be satisfied by
the desired program P , whereas constraints in set Rmay are soft, indicating that they may
be satisfied by P . In NL2Viz, the constraints take the form of (a subset of) rules (of the
grammar) used to generate plotting programs. For instance, for the example from 4.2, our
semantic parser generates the following tuple (Rmust,Rmay) (among possibly others)2:

Rmust = { PlotType → “LinePlot”,
YAxis → “total_confirmed”,

FilterColumn → “continent”,
GroupColumn → “country”,
FilterValue → “Europe” }

Rmay = { XAxis → “date”,
DataFrame → “df” }

(4.1)

Here, the first rule PlotType→ “LinePlot” in Rmust is a hard constraint: when we synthe-
size the target plotting program using the visualization domain-specific language’s (DSL’s)
context-free grammar (CFG), the derivation in the synthesize process should use the rule
PlotType → “LinePlot”. The hard constraints in Rmust are extracted from the English
instruction that directly corresponds to the user’s intent. In contrast, the first constraint
XAxis → “date” in Rmay is soft, indicating that the program may use the “date” column
as the x-axis. These constraints in Rmay are generated from analyzing the data/program
context and existing plots. Since these inputs provide only contextual hints that may be
useful for deriving the complete program, we treat Rmay as soft constraints.

Once NL2Viz finishes generating hard and soft constraints from specifications, our sec-
ond phase (program synthesis) synthesizes a complete visualization program from these
constraints. NL2Viz synthesizes a program from the visualization CFG that uses all rules
in Rmust and as many rules in Rmay as possible. In the final step, NL2Viz translates the
program in the DSL to the target language (Python). For instance, given the preceding
tuple (Rmust,Rmay), our synthesizer is able to generate the desired program P in 4.2a. Our

2Note that although the NL instruction does not mention continent, the parser is able to include that
column because the parser could derive a relationship between “Europe" and continent from the data
context.
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Root ::= PlotElems

PlotElems ::= PlotElem PlotElems?

PlotElem ::= HistoElems| · · · | FilterElem| GroupElem
HistoElems ::= HistoElem HistoElems?

HistoElem ::= HistoType| Column| Bins| Stack| Log| Density
· · ·

GroupElem ::= GroupType| GroupColumns| GroupOperator

Figure 4.4: Simplified version of the NL grammar.

synthesizer generates one program Pi for each tuple Ti in L and finally returns a program
P that has the smallest cost among all Pi’s. (The cost of each derivation is defined later in
Section 4.3.4.)

Given the NL instruction in 4.2b, the semantic parser returns the hard constraint set
Rmust = {FilterValue → “Asia” , FilterColumn → “continent”}. The soft constraint set
Rmay now also includes the constraints of the previous plot. Given these constraints, NL2Viz

is able to adapt the plot in 4.2a to the plot in 4.2b with minimal human guidance.
We next discuss the design and the implementation of NL2Viz.

4.3 APPROACH

Figure 4.3 depicts our overall workflow for converting the given NL instruction to visual-
ization code. First, we use a semantic parser to extract Rmust, the set of constraints that
must be used, from the user-provided NL instruction. We then analyze the data/program
context to extract a set of constraints that may be used (i.e., Rmay). Finally, our synthesis
algorithm synthesizes the program in our visualization domain-specific language from the
extracted constraints, and translates the program into Python.

4.3.1 Parsing NL Instruction to Constraints

Figure 4.4 shows a partial simplified version of our attribute grammar (NL grammar)
used to parse an NL instruction to constraints. We design this grammar by analyzing online
tutorials, visualization courses, and Jupyter Notebooks with high upvotes in the Kaggle
competitions [93]. We attach semantic rules in the form of S-attributes to the grammar.
Each nonterminal in the NL grammar is associated with a list of attribute-value pairs, which
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Plot ::= plt(Data, Mappings, PlotType, Legends)

Data ::= DataSet | process(Data, Processor)
Processor ::= filter(...) | groupBy(...) | orderBy(...)
Mappings ::= nil | list(Mapping, Mappings)
Mapping ::= xaxis(XAxis, Scaling?, Options?) | yaxis(...) | ...
Scaling ::= range(Float, Float) | log(Scaling) |

step(Scaling, Float) | ...
Options ::= stacking(Options) | transparent(Options) | ...)

PlotType ::= “Histogram” | “Scatter” | “Lineplot” | ...
Legends ::= legend(Title : String, Labels, ...)

Labels ::= label(XAxisLabel : String, YAxisLabel : String, ...)

Figure 4.5: Simplified visualization DSL.

Root

Plot Elements

LinePlot
Elem

Column
Lineplot

Type

line total confirmed countries

Property:
PlotType: Line

Score=1.0

in

Property:
PlotType: Line
Column_To_Plot: total_confirmed
Filter_Column: continent
Filter_Value: Europe
Group_Column: country

Score=0.415

Europecases for

Property:
Column: 
total_confirmed

Score=0.6

Column

LinePlot
Element

Group 
Element

Column_
Value

Property:
Column: continent
Column_Value: 
Europe

Score=1.0

Filter 
Element

Property:
Column_To_Plot: 
total_confirmed

Score=0.6

Property:
Column: country

Score=0.875

Property:
Filter_Column: 
continent
Filter_Value: 
Europe

Score=1.0

Property:
Group_Column: 
country

Score=0.875

showing

Figure 4.6: The parse structure for the motivating example.

corresponds to the semantics of this nonterminal. Given an NL instruction, we use a semantic
parser [91] (which uses an enhanced CYK algorithm [94]) to parse the instruction into a list
of attribute-value pairs. These pairs form our Rmust set.

Figure 4.6 shows a simplified parse structure for the example in Section 4.2. We obtain
the parse structure by making the following enhancements to the CYK algorithm.

Setting attribute values for terminals. We use annotators to initialize the attribute
values. For example, for the nonterminal Column, we have an annotator ColumnValue that
parses the token “europe” into a ColumnValue nonterminal symbol. The ColumnValue an-
notator maps one or multiple consecutive tokens to a value in some column in the given
dataset. By using annotators, the semantic parser is able to parse tokens in a data-context-
sensitive manner (e.g., parsing “Europe” as a ColumnValue and inferring “continent” as its
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ColumnName) and program-context-sensitive manner (e.g., parsing “foo” as a function name
if a function of that name appears in the Jupyter Notebook code cell).

Setting attribute values for rule N ::= N1N2. The attributes are propagated from
children to parent following the semantic rules. Most semantic rules just propagate the lists
of attributes without change. However, in some cases, the semantic rules can change the
attribute name in children’s list. For example, in the FilterElem symbol, the attribute
ColumnValue changes its attribute name (e.g., ColumnValue becomes FilterValue).
Fitness score. Each nonterminal also has a fitness score in the range of [0, 1] to represent
the probability of producing that parse structure. For instance, the token “countries” does
not exactly match the column name “country” in the dataset; hence, its symbol “Column”
is given a score of 0.87 based on the edit distance of the two strings. The score of a parent
symbol is simply the product of the scores of its children.

Note that our NL grammar is inherently ambiguous to capture different interpretations
of an NL instruction. From an NL instruction, our semantic parser produces multiple parse
structures, each of which has a Rmust set and a fitness score.

4.3.2 Using Data/Program Context to Construct May-use Constraints

Because the instruction usually does not contain all information necessary to synthesize
the visualization (i.e., Rmust is not complete), NL2Viz uses multiple heuristics to infer the
potential omitted information (i.e., Rmay) from the data/program context. For example,
when plotting a scatter plot, if the mapping of data columns to axes is not evident from the
user’s NL instruction, our approach prefers a categorical column to be on the x-axis.

Our heuristics in NL2Viz also capture popular data preprocessing patterns. For example,
if the user wants to plot a line plot, but we find that there are multiple points on the same
x-axis coordinate in the dataset, then it is likely that there is an inherent grouping step by
the column on the x-axis before plotting. NL2Viz analyzes each column to determine (a)
the type of values in that column, (b) whether the column is categorical, and (c) all the
distinct values in that column. We use this information to create Rmay. For example, even
if the instruction in Figure 4.2 does not mention “continent” in the text, NL2Viz infers that
AuxColumn→ “continent” in the FilterElem rule based on data insights, and adds it to Rmay.

4.3.3 Designing Visualization Domain-Specific Language

Given the sets of Rmust and Rmay, our synthesis algorithm synthesizes a visualization
program in a domain-specific language (DSL). Figure 4.5 shows a simplified version of this
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visualization DSL (nonterminals start with uppercase letters, function symbols start with
lowercase letters, and terminals are within quotes). Programs in this DSL are then translated
to a target visualization library (such as matplotlib or seaborn) in the final translation
step.

To design this DSL, we first perform a preliminary study on the Jupyter Notebook dataset
released by Felipe et al. [95]. Based on the stats of different plots used in the dataset and
the documentation of popular visualization libraries, such as mathplotlib, seaborn, and
ggplot2, we include the frequently used plot types and parameters including the column to
be plotted and the size/color/style of the visualization element. Additional grammar rules
in R link these parameters with the corresponding plot type.

Based on the analysis of the plotting code fragments collected from the Jupyter Note-
book dataset, we also include rules (in R) that perform data preprocessing operations. For
example, we observe that three commonly used typical patterns of data preprocessing are
filtering, grouping, and ordering; hence, we extend the grammar rules R to include rules
that perform these steps.

4.3.4 Constrained Syntax-Guided Synthesis

Having defined the NL grammar and the visualization DSL, we next illustrate our main
synthesis algorithm (Algorithm 4.1). The algorithm takes a grammar G = (terminal set T ,
nonterminal set N , production rules R, start symbol Plot), and a pair (Rmust,Rmay) of must-
use and may-use constraints (used for constraining derivations) as input; informally a deriva-
tion is application of a grammar rule toward generating the target program. The algorithm
returns a program (generated by G), generating which undergoes a derivation that satisfies
Rmust and minimizes the cost function.

In the visualization DSL, we begin with the start symbol Plot and perform a series
of derivations to further extend to a complete program. More formally, a derivation is
a sequence of terms that start with the start symbol Plot, and each subsequent term is
obtained from the previous term by applying a production rule in G. If we use P1 →r1 P2 to
denote that P2 is derived from P1 by applying r1, then a derivation of P , denoted by d, can
be written as

Plot→r0 P1 →r1 P2 →r2 · · ·Pk →rk P (4.2)

A program is incomplete if it contains a non-terminal symbol. A complete program contains
only functions and terminal symbols. As an example, the derivation for the first program
shown in Section 4.2 is shown in Figure 4.7 with some simplification.
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Plot→ plt(Data, Mappings, PlotType, Legends)
Data→3 process(process(DataSet, Processor), Processor)
DataSet→ “df”
Processor→ filter(FilterColumn, FilterValue)

→2 [filter(“continent”, “Europe”), group(“country”)]
Processor→ group(GroupColumn)→ group(“country”)
Mappings→2 list(Mapping, list(Mapping,nil))
Mapping→ xaxis(XAxis)→ x(“date”)
Mapping→ yxis(YAxis)→ y(“total_confirmed”)
PlotType→ “Lineplot”
Legends→ Labels→ labels(XAxisLabel, YAxisLabel)

→2 labels(“date”, “total_confirmed”)

Figure 4.7: The derivation of the program in Section 4.2.

The algorithm works by maintaining a worklist that consists of tuples (P, d, c), where P

is a (potentially incomplete) program generated by derivation d whose cost is c. In each
iteration, the algorithm works by picking an element (P, d, c) from the worklist. If the
program P cannot be completed to a program that satisfies Rmust (determined using a
subroutine feas) or the current cost c is already more than the best cost found so far, we
just prune this search branch and continue with the next iteration (Line 7). If not, then we
further process this tuple (P, d, c). We first check whether P is already a complete program
(Line 9), and if so, we update the best solution found so far and continue to the next iteration
(Lines 10-12). If P is not complete, we apply all possible single-step rewrites to P and add
new items to our worklist (Lines 15-17).

We next describe the subroutine feas(d,Rmust) that checks whether derivation d satisfies
the constraint Rmust. If d is a complete derivation (generating a complete program), then
feas(d,Rmust) returns “true” iff all rules in Rmust are included in derivation d.

Since we aim to satisfy all constraints in Rmust and as many constraints in Rmay as
possible, for each derivation we define its cost to be equal to the number of the production
rules (used in this derivation) that do not belong to the set Rmay. In the following definition
of the cost function, we use the notation d|i to denote the subderivation (S, r0, P1, ··, ri−1, Pi)

of the derivation d consisting of the first i rule applications. If d has k rule applications,
d|k = d. Given the may-use constraint Rmay, the cost of a derivation d is defined as follows:

cost(d,Rmay) =
k∑

i=1

coste(ri | d|i,Rmay) (4.3)
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Algorithm 4.1: Branch-and-bound for cSyGuS.
Inputs : A CFG G := (N , T ,R, S), a pair (Rmust,Rmay) of constraints on G
Output: A program P whose derivation d in G satisfies Rmust and has minimum cost

under cost(d,Rmay)
1 P ∗ ← Null ; // best program found so far
2 c∗ ←∞ ; // cost of the best program found so far
3 Q← {(S, ⟨S⟩, 0)} ; // worklist queue
4 while Q ̸= {} do
5 (P, d, c)← Remove an element from Q;
6 if feas(d,Rmust) is false or c > c∗ then
7 continue
8 end
9 if P has no nonterminals then

10 P ∗ ← P ;
11 c∗ ← c;
12 continue
13 end
14 R← all rules in R applicable on P ;
15 foreach r ∈ R do
16 add (P ′, ⟨d, r, P ′⟩, c′) to Q where P →r P

′ and c′ = c+ coste(r|d,Rmay)
17 end
18 end
19 return P ∗

where the elementary cost function coste is defined as

coste(r | d,Rmay) =

{
0 if r ∈ Rmay

1 otherwise
(4.4)

The cost of a derivation is simply the number of rules (in the derivation) that are not
included in Rmay. Note that
cost(d,Rmay) = 0 iff every production used in d lies in Rmay.

4.3.5 Extension to An Interactive System

We have implemented our approach with a supporting interactive tool. After NL2Viz

synthesizes the first Python program and shows the generated plot, if the user is not sat-
isfied with it, then the user can give another NL instruction to refine the plot. In the
subsequent re-synthesis runs, NL2Viz uses additional information from the program context
– the production rules used to generate the previous programs are included in the set Rmay

(as may-use production rules) to help the synthesizer prefer programs that are similar to the
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Figure 4.8: The “Auto-MPG” dataset (sampled 10 rows).

previously generated programs.

4.4 EVALUATION

We implement our approach as a Python package that registers a magic ipython com-
mand [96] plot in the popular Jupyter Notebook environment [89]. Hence, a user can input
“plot a histogram of cylinders” to obtain an appropriate plot (see 4.2). The Jupyter
interface for NL2Viz also supports rudimentary auto-complete, suggesting column names,
keywords, and pre-processing function names. The data for plotting is assumed to be in the
form of a dataframe object from the widely used Pandas library [97]. We choose Matplotlib
and Seaborn as the target plotting libraries for the generated code.

Our evaluation aims to answer four specific research questions:

• RQ4.1: One-shot accuracy. How accurately can NL2Viz produce the target plot
from a single NL instruction? How effectively can the data/program context help
NL2Viz resolve ambiguities in the user’s NL instruction?

• RQ4.2: Plot-and-change accuracy. How accurately can
NL2Viz create a new chart from an NL change instruction? How much does the user
benefit from NL2Viz in this scenario in terms of the instruction length reduction?

• RQ4.3: Comparison with the state of the art. How does NL2Viz compare with
other related state-of-the-art tools for visualization synthesis?

• RQ4.4: Usability. How usable and accurate is NL2Viz in a real setting?

Benchmark We collect 303 NL instructions for 54 plots from two sources.
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Auto-MPG plot descriptions. In this source, there are 267 manually written NL in-
structions for 18 plots selected from online tutorials that use the “Auto-MPG” dataset3,
which contains technical specifications of 398 cars as shown in Figure 4.8. These NL instruc-
tions are provided by 15 professionals with experience in data science.

Homework and COVID-19 assignments. We also collect 36 scenarios from homework
assignments and Jupyter Notebooks that use COVID-19 datasets in GitHub. In these sce-
narios, we use the problem statements as the NL instructions and the plots as the expected
results. We exclude 5 instructions from these scenarios in which the plot types are not
supported by NL2Viz.

NL2VIS dataset. Luo et al. [92] publish an NL2Visualization dataset named NL2VIS.
The NL2VIS dataset is generated by applying a neural-network-based NL2SQL-to-NL2VIS

model on a popular NL2SQL dataset named Spider [98]. Although the NL2VIS dataset has
an impressive number of 25,750 (NL, VIS) pairs, we find that the dataset mainly focuses on
the data preprocessing steps as most visualizations in the dataset are a direct presentation
of the output by a SQL query from the Spider dataset without the plot options such as
formats and legends. So we evaluate NL2Viz on the NL2VIS dataset in only RQ4.3 to
compare with the results reported in Luo et al.’s paper [92].

4.4.1 RQ4.1 Results: One-Shot Accuracy

Correctness We classify the output plots of NL2Viz into four separate types based on
how well they match the ground truth:

• Exact Match. In this case, the output of NL2Viz exactly matches the ground truth.

• Functionally Equivalent. In this case, the output plot is functionally equivalent to
the ground truth plot, but differs in a minor, often visual, detail. For example, when
the instruction does not specify that a histogram should have normalized frequency on
the y-axis, the ground truth does use frequencies, while NL2Viz produces a histogram
using counts instead of frequencies. However, the two plots are functionally equivalent
for most purposes. Therefore, we also consider this type to be correct.

• Functionally Different. In this case, the output plot differs from the ground truth
in significant details. For example, the output plot has an axis plotted using a linear
scale, while the ground truth uses a logarithmic scale.

3https://www.kaggle.com/uciml/autompg-dataset
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Table 4.1: Accuracy of NL2Viz. The columns em, fe, fd, and nm denote exact match,
functionally equivalent, functionally different, and no match, respectively.

Category # Correct Incorrect
em fe Tot. fd nm Tot.

Total 295 173 47 220 37 38 75
Homework 31 19 2 21 5 5 10
Auto-MPG Total 264 154 45 199 32 33 65
Auto-MPG - Easy 119 86 16 102 15 2 17
Auto-MPG - Hard 145 68 29 97 17 31 48

• No match. Here, the produced plot is completely different from the ground truth.
We differentiate “functionally different” from “no match” because in a “no match” case,
often the time the semantic parser is not able to capture the intention from the NL
instruction, while in a “functionally different” case, usually the synthesizer is not able
to synthesize a reasonable program indicating that we should extract more may-use
constraints with higher accuracy.

When measuring the accuracy, we consider the exact match and functionally equivalent
types to be correct, and functionally different and no match to be incorrect.

Results The results of the evaluation are summarized in Table 4.1. Overall, NL2Viz

is able to produce the correct output in 74.5% of the cases (with 58.6% being an exact
match, and 15.9% being functionally equivalent). Of the remaining, 12.5% of the cases are
functionally different.

To further analyze the results, we separate the Auto-MPG instances into two categories,
hard and easy, based on whether the plot requires or not additional data preprocessing steps
and additional parameters not in the input or dataframe. The idea to differentiate hard
and easy plots is due to the observation that in an easy scenario, the synthesizer should be
able to generate a correct program using only or mostly must-use constraints; while in a
hard scenario, some information of the plot is often missing or vague in the NL instruction
such that the synthesizer requires enough may-use constraints to generate a correct program.
Among the 18 plots, 8 are categorized as easy and 10 as hard. As shown in Table 4.1, the
system achieves an accuracy of 85.7% and 70% in the easy and hard cases, respectively. We
discuss the failure cases below.

Analysis of Failure Cases For the Homework category, the main reason for failures
is missing context – the homework assignments often contain relevant data in previous
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Table 4.2: Accuracy of the baseline approach (NL2Viz without context and data under-
standing).

Category # Correct Incorrect
em fe Tot. fd nm Tot.

Total 295 84 21 105 50 140 190
Homework 31 7 2 9 12 10 22
Auto-MPG Total 264 77 19 96 38 130 168
Auto-MPG - Easy 119 77 16 93 21 5 26
Auto-MPG - Hard 145 0 3 3 17 125 142

discussions or problems. In the two “no match” cases in the “Auto-MPG - Easy” category,
the semantic parser interprets the parameter representing point sizes as a group by column.
For example, for the input “scatter plot of mpg and acceleration with point size by cylinder”,
the semantic parser interprets cylinder as a group by column instead of a parameter for
the point size. Most “functionally different” cases in both the “Auto-MPG - Easy” and
“Auto-MPG - Hard” categories involve bin sizes in histograms. For example, for the input
“plot a bar graph that shows me the number of rows with MPG in range 5 to 10, 10 to 15,
and so on", NL2Viz is unable to identify the bin sizes due to the limitations of its DSL
grammar.

For the “Auto-MPG - Hard” category, the limitation of NL2Viz is in the parsing of the
filtering or group by clauses. For example, the input fragment yearly or annual represents
the “group by model_year” clause in the “Auto-MPG” dataset. However, NL2Viz is unable
to do these translations in a fraction of the cases. As mentioned in Section 4.3.1, we choose to
use a context free grammar to represent the NL instruction because the grammar would cover
most cases. However, for words such as yearly or annual that are functionally equivalent to
the column name model_year, we are unable to enumerate and cover all equivalent words in
the grammar. Recent developments in the field of detecting equivalence via extrapolation [99]
present a potential solution, and we believe that these scenarios can be correctly handled
with better NL understanding.

Effect of Context and Data Understanding We also run a baseline synthesizer whose
results are shown in Table 4.2. The baseline uses only NL information (extracted using the
semantic parser described in Section 4.3.1), and does not use the data/program context. As
expected, the code generated by the baseline approach in certain cases is incomplete. For
example, in the instruction “plot scatter average mpg by cylinder”, there is an inherent group
operator since it is required to calculate the aggregation function average for the “mpg”
column. However, the “cylinder” column cannot function as both the column for the x-axis
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Table 4.3: Results of change experiments. The columns Avg. InitLen., Avg. ChgLen.,
Avg. FinLen., and Avg. Red. stand for Average Initial Instruction Length, Average Change
Instruction Length, Average Final Instruction Length, and Average Instruction Length Re-
duction in Correct cases, respectively. Instruction length is in the number of characters.

Plot Type Change Category Total Correct Avg. InitLen. Avg. ChgLen. Avg. FinLen. Avg. Red.

Easy Add 5 5 37.2 13.6 46.4 68%
Replace 5 3 36.4 16.4 38.2 57%

Hard
Add 10 8 55.6 22.5 73.0 64%

Replace 10 5 54.3 29.1 61.7 54%
Add+Replace 10 4 57.2 37.0 69.9 49%

and group column, resulting in a missing group operation. Tables 4.1 and 4.2 show that
using the data/program context substantially improves the results, especially in the “Auto-

MPG - Hard” category. In particular, no cases of the “Auto-MPG - Hard” category can
get exact match results because all the plots in this category require information from the
data context.

Performance We measure the performance of NL2Viz by the execution time. It turns
out that NL2Viz is quite efficient, and we set a timeout bound to be 30 seconds. The
average execution time for an instruction is around 3 seconds, and 95% of the instructions
finish within 5 seconds. There are 3 instructions causing timeout, all of which are in the
“Auto-MPG - Hard” category. They all have a length of more than 150 characters with
the longest one being 340 characters, resulting in timeout in the phase of semantic parsing.

4.4.2 RQ4.2 Results: Plot-and-Change Accuracy

This section shows the evaluation results of NL2Viz with respect to RQ4.2, i.e., in the
setting where NL2Viz is provided with an already existing plot and a change instruction.
For example, the initial plot could have been generated given the instruction “scatter plot
of mpg and acceleration grouped by cylinders” and the change instruction can be “change to
average mpg and accleration”. For the initial instruction, an initial plot is generated such
that each car is a single point colored based on the number of cylinders. For the change
instruction, a plot should be generated such that each point corresponds to a group of cars
with the same number of cylinders, with the coordinates given by average mpg and average
acceleration.

Table 4.3 shows the information about the 40 tests. We separate the plots into the “Easy”
and “Hard” types based on whether contextual information is needed to generate a plot.
Further, we group the change instructions into the Replace and Add categories: Replace
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change instructions replace the value of some plot aspect with another, while Add change
instructions add a new aspect to a plot. We do not consider the Delete category: in most
practical scenarios, users start with a simple plot and add more complexity over time.

Accuracy Results Table 4.3 shows the accuracy results of NL2Viz on the change experi-
ments. We find that NL2Viz performs well in general, achieving 67.5% accuracy (25 correct
out of 40 total). NL2Viz is more effective in processing Add instructions than Replace
instructions. Replace instructions change an existing, correct aspect in the plot. Hence,
NL2Viz needs to both locate the aspect to be replaced and parse the new aspect correctly.
While in an Add instruction, because the new aspect usually does not interfere with existing
rules, NL2Viz just needs to add the new aspect.

Instruction Length Results We also evaluate how much instruction length is saved by
the change instruction. For each initial instruction and change instruction pair, we also
generate a combined instruction from which NL2Viz can produce the intended plot in one
attempt. In terms of absolute numbers, we can see that the average length of a Replace
instruction is higher than that of an Add instruction, due to the need of specifying both
the component to replace and the replacement. On the other hand, the average length of
a combined instruction is higher than that of an Add instruction, due to the additional
information added by the combined instruction.

We also measure the average instruction-length reduction, given by
1 − Length(change instruction)

Length(combined instruction)
. We evaluate the setting where the user has already used the

initial instruction to create a plot, and later wants to update it, either by using the change
instruction or directly using the combined instruction. We find that in general we achieve
58% instruction-length reduction via the interaction enabled by the change instructions. We
achieve higher reduction in the Add change category since the combined instruction text has
to specify both the old and new aspects, while the change instruction has to specify only
the new aspects.

Analysis of Failure Cases We note that the Add change category has a higher accuracy
than the Replace change category because the aspect that the user wants to replace is often
implicit in the change instruction. In the example in Section 4.2, the change instruction is
“change to Asia”. In this instruction, by the help of data context, it is easy to infer that the
aspect needs to be replaced is “Europe”. However, in some cases, it is unclear whether the
instruction is to change an existing aspect or to add a new aspect. For example, when the
initial instruction is “plot scatter of mpg versus model year”, which would cause to produce
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Table 4.4: Comparison with the state of the art.

DeepEye NL4DV SEQ2VIS NL2VIZ
Easy 9.5% 11.5% 67.4% 83.9%

Medium 15.4% 22.5% 69.6% 74.2%
Hard 1.4% 7.6% 60.5% 41.5%

Extra Hard 6.1% 4.1% 61.8% 13.3%
Overall 9.1% 13.7% 65.7% 58.8%

a scatter plot with each point representing a car and its mpg (y-axis) versus model year
(x-axis). The change instruction is “change to average mpg for all cylinders”. The idea
of this change is to produce a final instruction that is “plot scatter of average mpg for all
cylinders". The final plot is a scatter plot where x-axis represents cylinder number and
y-axis represents average mpg. In this case, the “for all cylinders” in the instruction text
represents a Replace change. However, it can also be the case that the final instruction is
“plot scatter of average mpg versus model year group by cylinders”. In this case, the final
plot is a scatter plot where x-axis represents model year and y-axis represents average mpg
with different cylinders, having points with different colors on the plot.

4.4.3 RQ4.3 Results: Comparison with the State of the Art

Luo et al. [92] report the accuracy of their neural-translation-model-based tool SEQ2VIS

along with two other rule-based and semantic-parser-based tools DeepEye [100] and
NL4DV [101] on a test set containing 3990 (NL, VIS) pairs from their NL2VIS dataset.

Due to the different target libraries of NL2Viz and the NL2VIS dataset (Matplotlib vs.
Vega-Lite), although it is possible to translate one to another, we find it not reasonable to
directly compare the visualization programs as different programs may lead to the same,
or the essentially same plots. We also notice that in Luo et al.’s paper [92], they measure
the “tree matching accuracy” to compare their SEQ2VIS tool with other tools. The “tree
matching accuracy” measures whether the flow of data transformation for each data column
and its corresponding data shown on the axis are correct. Therefore, for each test case, we
need to manually examine whether our synthesized visualization program is equivalent to
their program, which is the labeled output. We are able to manually verify the 500 (NL,
VIS) pairs sampled from their 3990-pairs test set. We treat our output to be correct if it is
an Exact Match or Functionally Equivalent as defined in Section 4.4.1.

Table 4.4 shows NL2Viz’s accuracy against other state-of-the-art tools on the NL2VIS

dataset. Out of the 500 sampled pairs, there are 32 visualizations that are currently not
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Figure 4.9: The distribution of succeeded tasks and scores among 6 participants.

supported by NL2Viz. First, we can see that NL2Viz outperforms the other two rule-
based tools by a large margin in all difficulty groups. The reason is that our tool supports
the synthesis of data preprocessing steps while the other two tools do not have support or
have only very limited support. When compared to SEQ2VIS (a neural-translation-model-
based approach), we find that in the “Easy” and “Medium” categories, our NL2Viz tool
outperforms SEQ2VIS. A possible reason is that the “Easy” cases here are similar to the
“Easy” cases in Section 4.4.1, and the “Medium” cases here are similar to the “Hard” cases,
and for both categories we see similar accuracy as that in Section 4.4.1, being 83.9% vs.
85.1% and 74.2% vs. 70%. In these two categories, our NL grammar and Visualization DSL
can cover the target visualization program. Therefore, we are able to achieve higher accuracy
than a learning-based approach by using constrained syntax-guided synthesis. However, in
the “Hard” and “Extra Hard” cases, the accuracy of NL2Viz declines drastically. The reason
is that the NL instructions in these two categories are usually generated from nested SQL

queries, especially for the “Extra Hard” category. Our grammar or DSL does not cover such
data processing steps; therefore, it is impossible for NL2Viz to produce correct visualization.

Overall, NL2Viz achieves lower but comparable accuracy compared with the SEQ2VIS

tool, while being able to achieve higher accuracy in “Easy” to “Medium” cases without the
need for training data. NL2Viz also outperforms existing rule-based approaches by a large
margin by leveraging the data/program context.

4.4.4 RQ4.4 Results: Usability and Interaction

To evaluate the usability of NL2Viz, we ask volunteers who have an average of 7.4 years of
experience in data science to complete 5 plotting tasks using NL2Viz. Among the 5 plots in
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the tasks, there are 2 histogram/bar charts, 1 scatter plot, and 2 line plots. Each participant
is first asked to answer multiple background questions, and is then given an explanation of
the “Auto-MPG” dataset. Next, we ask the participants to complete the 5 tasks in order
until they are satisfied or are not willing to try NL2Viz any more. Each participant is given
20 minutes to finish all 5 tasks. Then, the participants are asked to rate NL2Viz on a scale
of 1 (least positive) to 5 (most positive) on the following aspects:

• User-Question 4.1. Do you find NL2Viz easy to use?

• User-Question 4.2. Do you find it easy to interpret the code generated by NL2Viz

and change for future usage?

• User-Question 4.3. Do you want to use NL2Viz before you do visualization in
future?

• User-Question 4.4. Is NL2Viz able to understand your input?

On average, the participants successfully complete 4.13 out of 5 tasks. Figure 4.9 shows
that the participants are generally in favor of NL2Viz, with an average of 4 out of 5 for all
questions. The high variance for question 3 is due to that participants with high expertise
who are very familiar with writing visualization code strongly do not prefer to use NL2Viz.

Suggestions from the participants highlight two major issues. Three participants (S2, S4,
and S6) suggest that NL2Viz should have a built-in feature of “highlighting” to show which
part of their natural language corresponds to which part of the generated code. This feature
would help users change their input when NL2Viz misinterprets their intention. Another
suggestion is to modify NL2Viz to produce multiple candidate plots for the same input (S1,
S2, and S3). It is fairly straightforward to modify our semantic parser and synthesizer to
produce multiple candidates, and we intend to make this modification. Other suggestions
include allowing for click selecting columns as an input modality (S3), displaying a confidence
score for the generated plot (S6), and a separate cleaning step before visualization (S5).

4.5 SUMMARY

In this chapter, we have presented a novel NL2Visualization approach and its sup-
porting tool named NL2Viz for automatically synthesizing visualization programs from a
user’s NL instruction. The key idea underlying our approach is to leverage not only the
NL instruction, but also the other contextual information (namely data context and pro-
gram context) and then convert the different kinds of specifications provided by the user
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into symbolic constraints, which can be used to generate the desired visualization programs
using syntax-guided program synthesis. Moreover, NL2Viz includes an interactive interface
for allowing the user to further refine and reuse the resulting visualization. We evaluate
NL2Viz on a real-world visualization benchmark and a public dataset to show the effective-
ness of NL2Viz. We also perform a user study involving 6 data scientist professionals to
demonstrate the usability of NL2Viz, the readability of the generated code, and NL2Viz’s
effectiveness in helping users generate desired visualizations effectively and efficiently.
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CHAPTER 5: NRRANKER: TRANSLATING NATURAL LANGUAGE TO
REGULAR EXPRESSION VIA INTEGRATING PRE-TRAINED MODEL

AND TEST GENERATION

5.1 OVERVIEW

Translating natural language (NL) descriptions into code (NL2Code) [102, 103, 104,
105, 106, 107] has become an important task for both natural language processing (NLP)
and program synthesis [107, 108, 109, 110, 111, 112, 113, 114]. End users may not have
the expertise to understand and write a complete program or a code snippet. Even for
experienced developers, tasks such as writing a regular expression (regex in short) or a SQL
query could be time-consuming and error-prone. Therefore, synthesizing programs from NL
descriptions is useful for both end users and developers.

To help address the ambiguity of NL description, recent research [115, 116, 117] has
proposed various approaches to leverage additional specifications, especially pairs of a test
input and its expected test output, named as test cases, to help with the synthesis process.
For example, in the task of NL to regular expression (NL2Regex), test cases are often defined
as example strings (test inputs) and the output label (expected output) of each string to be
either positive or negative, indicating whether the resulting regex should match the string.
For example, Zhong et al. [118] and Ye et al. [116] have proposed approaches that require
such positive/negative examples to filter the candidate regexes being synthesized by checking
whether each candidate regex matches the positive/negative examples.

Although existing approaches show the advantage of leveraging test cases in NL2Code
tasks [115, 116, 117], these approaches still face two major challenges. First, unlike the
traditional program-by-example (PbE) scenario [3], in NL2Code tasks, test cases are often
missing or of low quality. Since end users of NL2Code systems may not have domain exper-
tise, end users may not be able to provide examples, or the examples provided by end users
may not be helpful in identifying plausible candidates. Second, even when an NL2Code sys-
tem has access to example test cases, these test cases often remain a fixed test set. The fixed
test set allows the system to eliminate synthesized candidate programs that cause at least
one example test case from the test set to fail, but the system is unable to effectively rank
plausible candidate programs that do not cause any example test case to fail. For example,
in the HumanEval evaluation set proposed by Chen et al. [119], each task is equipped with
example test cases. The CodeX [119] model is able to achieve the accuracy of 77.4% when
the result is considered correct if one or more candidate programs out of the top-100 syn-
thesized candidates are correct (noted as pass@100) determined by whether they can pass
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a comprehensive set of evaluation test cases. All these top-100 candidates are able to pass
the example test cases. But when we consider only whether the top-1 synthesized candidate
program is correct (noted as pass@1), the accuracy drastically decreases to only 33.5%.

To address the aforementioned two challenges, in this work, based on two major insights,
we propose a new approach named NRRanker that generates example test inputs for dif-
ferentiating behaviors of the candidate programs being synthesized, and further integrates
an existing NL2Code system with the preceding test generation using a pre-trained model.
Insight 5.1. To filter/rank the candidate programs being synthesized does not require the
generated example test cases to be equipped with correct expected test outputs (i.e., not
requiring generated test cases to all pass on a correct program). The authors of the Alpha-
Code approach [120] train a separate model (from the model used to synthesize programs)
to generate test cases. Although the generated test cases may contain mistakes (e.g., in-
correct expected test outputs), these test cases still help improve the pass@10 accuracy by
nearly 6%. Insight 5.2. A pre-trained code model could help predict the expected test
output of the given generated test input. Recent development [119, 120] in pre-trained large
language models (LLMs) has helped improve the accuracy in NL2Code tasks with the help
of pre-trained models’ flexibility in understanding various NL descriptions. With the idea
that predicting expected test outputs is an easier task than generating a complete program,
we find that using a pre-trained model could predict the expected test output and achieve
considerable accuracy, thus helping filter/rank the candidate programs.

We implement NRRanker for the task of NL2Regex. First, we obtain a list of candidate
regexes being synthesized using an existing approach [116, 121]. Second, our approach
generates test input strings to differentiate the candidate regexes. For each candidate regex
a, we create a set Da of example test cases being the union of differentiating example
input strings (for the pair of a and each remaining candidate regex) that can match a

but cannot match the remaining candidate regex, and these example input strings’ output
labels (positive or negative) predicted via a pre-trained code model, indicating whether such
example input string is consistent with the NL description. Finally, for each candidate regex
a, we compute the ratio of the input strings with a positive label among Da (indicating how
high percentage of example string inputs in Da whose matching results with a are likely to
be consistent with the NL description determined via a pre-trained code model) and rank
the candidate regexes based on the ratio.

We evaluate NRRanker on two datasets: KB13 [122] and Turk [121]. Our evaluations
show that NRRanker is able to achieve the top-1 accuracy of 89.8% and 90.1% on the two
datasets, respectively, outperforming state-of-the-art approaches by 11.1% on average.

In summary, this chapter makes three major contributions:
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Table 5.1: Regex: Syntax → Semantics

Non-Terminals
x & y → x and y x.* → starts with x x & y & z → x and y and z
x | y → x or y .*x.* → contains x x{N,} → x: ≥ N times
∼(x) → not x x | y | z → x or y or z x{1, N} → x: ≤ N times
x → only x (x)+ → x: ≥ 1 time \b x\b → words with x

.*x → ends with x (x)* → x: ≥ 0 time .*x.*y → x followed by y
Terminals

[a-z] → a lowercase letter word → the string ‘word’ [0-9] → a number
[A-Z] → an uppercase letter [AEIOUaeiou] → a vowel . → a character

• We propose a new approach named NRRanker that integrates an existing NL2Code
system with novel test generation using a pre-trained model.

• We implement NRRanker for the task of the NL2Regex problem.

• Our evaluations on the KB13 and Turk datasets show that NRRanker achieves 89.8%
and 90.1% top-1 accuracy, respectively, outperforming state-of-the-art approaches by
11.1% on average.

5.2 BACKGROUND

In this section, we introduce the definition of regular expression used in this chapter and
two existing approaches, DeepRegex [121] and DeepSketch [116].

5.2.1 Regular Expression

Regular expressions (regexes) often come in different formats, such as the syntax in the
POSIX standard, the Perl syntax, or other user-defined forms. In this chapter, we follow
the syntax specified in the dataset collected by Locascio et al. [121] since we evaluate our
approach on the dataset created in their work.

Table 5.1 shows the grammar of regex used by Locascio et al. For each rule listed in the
table, the left-hand side of each rule is the syntax of the notation, and the right-hand side
is the corresponding semantic. For example, the rule “(x)+ → x:≥ 1 time ” illustrates that
“(x)+” means that the element x appears at least once.

5.2.2 DeepRegex

To leverage learning approaches in the task of NL2Regex, Locascio et al. [121] use an
LSTM-based seq-to-seq model to directly transform the NL description into the correspond-
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Figure 5.1: DeepRegex and sketch-based NL2SQL example

ing regex, without utilizing any other syntax or semantic information.
Specifically, let L = l1, l2, ..., lm be the input NL description, where each li is a word in

the vocabulary. Locascio et al. use an RNN model with LSTM cells to generate the regex
(another sequence of tokens) R = s = r1, r2, ..., rn as the output. For example, 1 and 2 in
Figure 5.1 correspond to the two steps in DeepRegex. The input is the NL description “the
max number of digits before comma is 15 then accept at max 3 numbers after the comma”.
Feed the input into the LSTM-based model, and we can get the following output regex:

[0− 9]{1, 15}\, ([0− 9]{1, 3}){0, 1} (5.1)

5.2.3 DeepSketch

To leverage the multi-modality of inputs (both NL descriptions and example test cases),
Ye et al. [116] propose a sketch-based approach. They assume that NL could first be used to
build a partial regex (a sketch or a regex with holes), representing the high-level structure.
Then they use example test cases to help fill in the details. In our work, we adapt the
instantiation of Ye’s regex generation tool namely DeepSketch to generate the initial list of
candidate regexes.

In Ye’s work, to maintain a clearer structure of regex, they introduce the intermediate
representation (IR) of regex used in DeepSketch (see Equation (5.2)); the IR’s semantic is
different but self-explanatory. This IR can be easily transformed to the output regex that
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conforms to the syntax in Table 5.1.

S := C | StartsWith(S) | EndsWith(S)

| Contains(S) | Optional(S)

| Repeat(S, k) | KleeneStar(S)

| RepAtLeast(S, k)

| RepRange(S, k1, k2)

| Concat(S, S) | And(S, S) | Or(S, S)

| □{S, ..., S} (5.2)

In DeepSketch, end users provide an NL description and a set of example test cases with
positive/negative labels. Then they get a regex that conforms to the syntax in Table 5.1 as
the output.

First, DeepSketch feeds the NL description L = l1, l2, ..., lm into a seq-to-seq model that is
similar to DeepRegex to generate the sketch (another sequence of tokens) S = s1, s2, ..., sn.
For example, 1 and 3 in Figure 5.1 correspond to the first step of DeepSketch. The language
description “the max number of digits before comma is 15 then accept at max 3 numbers after
the comma” is fed into the seq-to-seq model, and we get the following sketch:

Concat(□{<num>,<,>},□{RepRange(<num>,1,3),<,>}) (5.3)

Second, DeepSketch uses a search-based program synthesis technique to fill in the holes
(denoted as the square in Equation (5.3), namely synth-operator). Specifically, DeepSketch
expands each synth-operator with the options in its following brace recursively until a spec-
ified maximum depth d. If the expanded regex contains no holes, then this concrete regex
is checked with positive and negative examples. The concrete regex is returned to users if it
matches the expected test outputs on the given test inputs, or is discarded otherwise. For
example, 4, 5, and 7 in Figure 5.1 correspond to the second step of DeepSketch. One way
to expand the sketch in Equation (5.3) is shown below:

Concat(RepRange(<num>,1,15), Option(

Concat(<,>,RepRange(<num>,1,3)))) (5.4)

Finally, DeepSketch transforms the regex in Equation (5.4) into the form in Equation
(5.1), as 6 shown in Figure 5.1.
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Figure 5.2: The workflow of NRRanker

5.2.4 Pre-trained Code Model in the NL2Code Task

As formally defined in CodeXGLUE [123], a Text2Code or NL2Code task aims to gener-
ate code from an NL description. Various approaches have been proposed to address this
task [102, 124], which incorporates techniques such as semantic parsing, deep learning, and
obtains promising results.

In addition, an NL2Code task can also be directly tackled with large language model
(LLM), or more specifically pre-trained code model, which has recently shown great capa-
bilities in code understanding and generation [103, 104, 105, 125, 126, 127]. People pre-train
those models on datasets [128, 129] that contain billions of code and NL, and later fine-tune
the models for the downstream tasks.

To interact with a pre-trained model, usually a “prompt” is designed as the input to
the model [130]. In an NL2Code task, the “prompt” is often designed to obtain the NL
description of the task, the additional constraints that the target program should meet, such
as input/output examples, and a partial program to complete in the code completion task.

5.3 APPROACH

The overall workflow of NRRanker is shown in Figure 5.2. First, we apply existing
NL2Regex systems to get a list of candidate regular expressions (regexes) that are being
synthesized. In this work, we use DeepRegex [121] or DeepSketch [116] to obtain the list of
candidate regexes discussed in Section 5.2. Then we generate test input strings to differenti-
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ate the candidate regexes. For each candidate regex a, we generate strings (for the pair of a
and each remaining candidate regex) that can match a but cannot match the remaining can-
didate regex. These strings are named differentiation test input strings matched by a. Next,
we use a pre-trained code model to predict the expected test output of the differentiation
strings matched by a. The expected test output indicates whether the “ground-truth” regex
would match the test input string, i.e., the string is consistent with the NL description. If
the string matched by a is consistent with the NL description, we label it as positive (noted
as “√” in Figure 5.2), and otherwise negative (noted as “×” in Figure 5.2). Based on the
ratio of expected output labels being positive among the differentiation strings matched by
each candidate regex, we produce a refined ranking of the candidate regexes, with the first
regex being the one that is most likely to be correct.

5.3.1 Generation of Differentiation Test Inputs

We first obtain the list of candidate regexes noted as R = {r1, r2, ..., rk} using an existing
NL2Regex system. We would like to generate test input strings so that we can determine
the correctness of each candidate regex by checking whether the matching result with the
candidate regex on each string is consistent with the NL description. The simplest way to
generate strings would be simply sampling multiple strings from each ri. Since these sample
strings would always match each ri, we can just check whether these strings are consistent
with the NL description. The issue is that, based on our observation, the candidate regexes
are semantically similar to the correct answer and also similar to each other; therefore,
randomly sampled strings would not be effective in identifying wrong regexes.

Algorithm 5.1 shows the algorithm to generate the strings. First, we notice that both
DeepRegex and DeepSketch could generate semantically equivalent regexes in the list of
candidates. To reduce redundancy in the calculation, we first check the equivalence of
different regex in the list by comparing whether their corresponding minimal Deterministic
Finite Automaton (DFA) is equivalent, which is noted as the subroutine DFAEquivalent()

in the algorithm. After we get the “unique” regex set U , for each pair of regex (ri, rj) in
the set U , we sample strings from both ri& ∼ (rj) and Rj& ∼ (ri) and insert the sampled
strings to the corresponding set DStri and DStrj so that all strings in DStri would match ri

and similarly for DStrj. Ideally, if ri is a correct regex, then all test input strings in DStri

should have the expected output label of “positive”, and for every other Rj, some strings in
DStrj (strings sampled from rj& ∼ (ri)) should have the expected output label of “negative”.
So theoretically, if all output labels can be predicted perfectly, NRRanker would always
put the correct regex on the top-1 position in the refined ranking.
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Algorithm 5.1: Differentiation Test Input String Generation Algorithm.
Input : R: A list of candidate regular expressions {r1, ..., rk}
Outputs: PStr: A set of test input strings that should have the expected output

label to be positive.
NStr: A set of test input strings that should have the expected output

label to be negative.
U: A list of index {p1, ..., pl}. rpi is the unique regex under

DFA-equivalence. Formally, pi meets the condition that
∀j < pi,¬DFAEquivalent(rj, rpi).

DStr: A list of l sets of test input strings. For each rpi , DStri is a set of
strings whose expected output labels are to be determined.

1 PStr← GetSamplesIntersect(r1, ..., rk) ;
2 NStr← GetSamplesIntersect(∼ r1, ...,∼ rk) ;
3 U← ∅ ;
4 for i← 1 to k do
5 Flag← True;
6 for j ← 1 to i− 1 do
7 if j ∈ U and DFAEquivalent(rj, ri) then
8 Flag← False;
9 break;

10 end

11 end
12 if Flag = True then U.pushback(i);

13 end
14 l← U.length();
15 DStr← {∅, ...(l times)};
16 for i← 1 to l do
17 for j ← 1 to i− 1 do
18 DStri.insert(GetSamplesIntersect(rUi ,∼ rUj)) ;
19 DStrj.insert(GetSamplesIntersect(rUj ,∼ rUi)) ;

20 end

21 end
22 return PStr, NStr, U, DStr

Note that since we do not require users to provide example test cases, to give the pre-
trained model necessary contextual information, we sample strings from the intersection of
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Figure 5.3: An example prompt

all ri (GetSamplesIntersect(r1, ..., rk) in the algorithm) as the test input strings that are
expected to have positive test output label and strings from the intersection of all ∼ (ri)

(GetSamplesIntersect(∼ r1, ...,∼ rk) in the algorithm) as the test input strings that are
expected to have negative test output label. Such expected positive/negative test inputs
could be wrong if any ri is not a correct regex. However, in such a case, any ranking would
not result in a correct regex output. Therefore we simply treat strings from r1&r2&...&rk

and ∼ r1& ∼ r2&...& ∼ rk as positive/negative test inputs.
In the algorithm, we use the GetSamplesIntersect function to represent the process of

sampling strings from the intersection of different regexes. If we calculate the intersection
DFA of all DFAs transformed from each regex and then sample the strings from the intersec-
tion DFA, both time and space complexity could be exponential. Therefore, when sampling
the strings from the intersection, we randomly sample strings from the first regex and then
check whether the other regex accepts the sampled string. We find that this technique is
much more efficient in practice.

5.3.2 Test Output Prediction

After the differentiation test input strings are generated, we now need to determine
whether the “ground-truth” regex could match the strings. Since we do not have access to the
“ground-truth” regex in a practical setting, we could check only whether the string is consis-
tent with the NL description instead. We find this scenario similar to the few-shot learning
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response = openai.Completion.create(
model="code-davinci-002",
prompt="def␣check(input):\n␣␣␣␣\"\"\"\n␣␣␣␣......", #Same as

↪→ the prompt text in Fig.5.3
temperature=0,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=[")"]
)

Figure 5.4: Sample Python request of the prompt

scenario in NLP, in which LLM such as GPT-3 has shown impressive performance [131].
Therefore, we turn to the CodeX pre-trained code model [119] to predict the expected test
output label of the differentiation strings.

As discussed in Section 5.2.4, to interact with the pre-trained model, we need to design a
prompt with the necessary input. Figure 5.3 shows the example prompt that we construct
with the NL description “the max number of digits before comma is 15 then accept at max
3 numbers after the comma”. Lines 1-6 are the pseudo-function representing the “ground-
truth” regex, with the comments in Lines 3-5 containing the corresponding NL description.
Lines 9-13 are the strings in PStr as the positive test cases provided to the pre-trained model,
while Lines 14-18 are the strings in NStr as the negative test cases provided.

This prompt transforms the prediction problem of test output labels into a code completion
task. The model reads the prompt as input and is expected to produce either “True)” or
“False)” as the predicted output label. The exact Python request to interact with CodeX is
shown in Figure 5.4.

5.3.3 Regex Ranker

After obtaining the expected test output labels from the pre-trained model, we rank all
candidate regexes in descending order by the ratio of expected test output labels to be
positive among DStri. The ratio indicates the percentage of test input strings in DStri (they
all match ri) that are likely to be consistent with the NL description determined by the
pre-trained model. If there is a tie, we keep the original order in the initial candidate list.
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5.4 EVALUATION

To evaluate the performance of NRRanker, we implement it on the task of natural
language to regular expression (NL2Regex). NRRanker takes in the given NL description
as the input and applies an existing tool, namely DeepRegex [121] or DeepSketch [116] first
to obtain the initial list of candidate regexes being synthesized. In this process, as discussed
in Section 5.2, DeepSketch takes in a set of test cases in the training or synthesis process.
We do allow DeepSketch to take the same set of test cases to conduct a fair comparison.
However, NRRanker itself does not take into account any additional test cases other than
the NL description. After applying the three steps explained in Section 5.3 to the initial
candidate list, NRRanker would produce a ranked list of the regexes as an output sorted
with the first regex in the list to be the most likely correct regex.

Our evaluation aims to answer the following three research questions:

• RQ5.1. How accurate is the top regex produced by NRRanker compared to the
baselines? In this research question, we calculate the accuracy of the top-1 regex
produced by each tool to compare the results.

• RQ5.2. How does NRRanker improve the ranking of the candidate regexes? In
this research question, we evaluate the accuracy of the entire list of candidate regex
produced by each tool in terms of the top-1, 3, 5, 10, 20 accuracy.

• RQ5.3. How is the accuracy on the label prediction of expected test output related to
the top-1 accuracy of the resulting regex? What factors affect the accuracy on the label
prediction of expected test output? In this research question, we evaluate the accuracy
of the output labels predicted by the pre-trained model against the ground-truth and
compare the accuracy with different test generation strategies.

Datasets. We evaluate our approach on the KB13 and NL-RX datasets in this chapter.

• KB13. KB13 [122] contains 824 pairs of NL descriptions and regexes. These pairs are
collected in two steps. First, Amazon Mechanical Turk workers are asked to generate
NL descriptions of certain lines of files. Then, programmers from oDesk are asked to
generate corresponding regexes for each NL description generated by the workers.

• NL-RX-Synth. NL-RX-Synth [121] contains 10000 pairs of NL descriptions and
regexes collected by Locascio et al.; NL-RX-Synth is is much larger than the size of
KB13. To save human effort, Locascio et al. construct a small grammar to randomly
generate regexes and their corresponding NL descriptions.
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• NL-RX-Turk. NL-RX-Turk [121] contains the same 10000 pairs of NL descriptions
and regexes and was generated by post-processing the NL-RX-Synth dataset. To
generate more “natural” language descriptions, the authors generate the NL-Regex
pairs in two steps. First, the authors use their hand-crafted grammar to randomly
generate regexes as in NL-RX-Synth. Then, the author ask some programmers to
interpret the generated regexes and get their corresponding NL descriptions. In this
chapter, we evaluate our approach on only NL-RX-Turk (noted as Turk) due to the
limited budget on using the pre-trained model.

Baseline. We use the DeepRegex or DeepSketch tool to generate initial candidates to NR-

Ranker, and also be the baseline to compare with. We directly adapt the implementation
released by Ye et al. in their DeepSketch paper [116]. (They have done a re-implementation
of DeepRegex as well.) We note the original DeepRegex model as DeepRegex in the
evaluation. We use DeepRegex trained with maximum marginal likelihood (MML) on a
test set as the baseline for DeepRegex with examples, noted as DeepRegex-MML in the
evaluation. We use DeepkSketch trained with MML as the baseline for DeepSketch, noted
as DeepSketch in the evaluation. DeepSketch also allows for the input of additional su-
pervised heuristic sketches. Therefore, we also include this option as a baseline, noted as
DeepSketch-Gold (DeepSketch with pseudo-gold sketches as prior knowledge) in the eval-
uation. We make these models to produce their list of k-best regexes. In the evaluation, the
k is set to 20.

Training. For training, we directly apply the trained model released by Ye et al. in
https://github.com/xiye17/SketchRegex/tree/master/DeepSketch. Therefore the train-
ing settings and hyperparameters remain the same. For the test output prediction discussed
in Section 5.3.2, we use the “code-davinci-002” model provided by OpenAI as the pre-trained
code model to predict the output labels.

5.4.1 RQ5.1. Regex Accuracy

In RQ5.1, we aim to evaluate how much NRRanker improves the top-1 accuracy. So for
the four initial models (DeepRegex, DeepRegex-MML, DeepSketch, and DeepSketch-Gold)
upon which we are applying NRRanker, we calculate the accuracy of the top-1 regex
produced by each model and the accuracy of the top-1 regex after NRRanker produces
the refined ranked list.

Note that two regexes could be different in syntax but semantically equivalent, indicating
that they would match the same set of strings. Here, we denote the top-1 accuracy as
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Table 5.2: Top-1 accuracy without/with NRRanker

Naive : Top-1 accuracy of the model.
NRRanker : Top-1 accuracy after applying NRRanker on the model
DeepRegex, DeepRegex-MM, DeepSketch, DeepSketch-Gold : different models explained in base-
line

Naive NRRanker
Dataset KB13 Turk KB13 Turk
DeepRegex 65.6% 58.2% 80.1% 84.0%
DeepRegex-MML 68.2% 62.4% 82.0% 85.7%
DeepSketch 82.5% 84.3% 84.0% 86.8%
DeepSketch-Gold 86.4% 86.2% 89.8% 90.1%

the percentage of the top-1 regex (in the candidate list) that is semantically equivalent to
the ground-truth regex. The equivalence is checked by the same DFAEquivalent process
mentioned in Section 5.3.

Table 5.2 shows the results of the top-1 accuracy with and without applying NRRanker.
NRRanker is able to achieve 89.8% and 90.1% top-1 accuracy on each dataset, respectively,
when taking the best model’s synthesized regexes as the initial candidates. Overall, we can
see that NRRanker improves the top-1 accuracy by 11.1% on average. On the KB13
dataset, NRRanker improves the top-1 accuracy by 8.3% on average, and on the Turk
dataset, NRRanker improves the top-1 accuracy by 13.9% on average.

When looking into the specific models, NRRanker has much more improvement over the
candidate list produced by DeepRegex than DeepSketch, with an improvement of 19.4% on
DeepRegex and DeepRegex-MML compared to 2.8% on DeepSketch and DeepSketch-Gold
on average. The reason is that DeepRegex does not take an example test set as part of
input when performing the NL to regex translation. Therefore, applying NRRanker on
DeepRegex’s result would improve the top-1 accuracy by a larger margin.

We also notice that despite the results of DeepSketch-Gold having a higher top-1 accu-
racy than the results of DeepSketch, NRRanker’s improvement on DeepSketch-Gold is
higher (4.2% compared to 2.0% on average). The reason is that DeepSketch-Gold would
use a pseudo-gold sketch that is generated from heuristics and the ground-truth regex as
an additional input. Therefore, the regexes synthesized by DeepSketch-Gold would actually
be similar in the sketch structure to the ground-truth regex. Meanwhile, the regexes syn-
thesized by DeepSketch would include some candidate regexes that are unlikely to be the
correct answer. Therefore, a refined ranking of the DeepSketch-Gold results would be more
helpful.
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Figure 5.5: Top-k accuracy comparison on KB13 and TURK

5.4.2 RQ5.2. Ranking Efficiency

In RQ5.2, we aim to evaluate how NRRanker improves the ranking of the candidate
regex list. So for the four models, we calculate the accuracy of the top-1,3,5,10,20 regexes
in the candidate list produced by each model with or without applying NRRanker. Top-k
accuracy is defined as the percentage of candidate lists in which any of the top-k regexes is
semantically equivalent to the ground-truth regex.

Table 5.3 and Figure 5.5 show the top-k accuracy without/with NRRanker on the KN13
and Turk datasets. Note that the top-20 accuracy remains the same after NRRanker is
applied since NRRanker does not synthesize any new candidate regex. Overall, we can see
that NRRanker does a great job in terms of ranking a correct regex higher. If we define
the relative accuracy to be the ratio of top-1 accuracy divided by top-20 accuracy, indicating
that the conditional top-1 accuracy if at least one semantically correct regex is among the
list of top-20 candidates. (If any regex in the top-20 is not correct, then no ranking of the
candidates would be helpful). On average, NRRanker can achieve a relative accuracy of
98.2%, compared to a relative accuracy of 76.2% without NRRanker.

We also find that compared to DeepRegex, DeepSketch is able to produce a candidate list
with a better ranking, with a relative accuracy of 94.7% compared to 75.6% with DeepRegex.
The most possible cause is still the help of the test cases that DeepSketch is leveraging.
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Table 5.3: Top-k accuracy without/with NRRanker

(a) KB13

Naive NRRanker
Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20

DeepRegex 65.6% 71.8% 76.9% 80.1% 81.1% 80.1% 80.6% 80.6% 80.6% 81.1%
DeepRegex-MML 68.2% 72.8% 78.3% 82.0% 83.0% 82.0% 82.5% 82.5% 83.0% 83.0%
DeepSketch 82.5% 83.5% 84.4% 85.0% 85.4% 84.0% 84.4% 85.0% 85.0% 85.4%
DeepSketch-Gold 86.4% 87.9% 89.3% 90.8% 91.3% 89.8% 90.8% 90.8% 91.3% 91.3%

(b) Turk

Naive NRRanker
Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20

DeepRegex 58.2% 70.2% 77.2% 82.4% 86.0% 84.0% 85.0% 85.6% 85.9% 86.0%
DeepRegex-MML 62.4% 71.8% 78.9% 83.3% 87.1% 85.7% 86.4% 86.7% 87.0% 87.1%
DeepSketch 84.3% 86.2% 87.2% 88.4% 89.1% 86.8% 87.4% 88.2% 88.8% 89.1%
DeepSketch-Gold 86.2% 88.7% 90.4% 91.9% 92.6% 90.1% 91.6% 92.2% 92.5% 92.6%

5.4.3 RQ5.3. The Prediction Accuracy of Expected Test Output Labels

In RQ5.3, we aim to evaluate the accuracy of predicting the expected test output labels.
The accuracy is defined as the percentage of the output labels predicted by the pre-trained
model being correct. We also would like to understand the connection between the output
label prediction accuracy and the top-1 accuracy of the resulting candidate regexes. To
calculate the output label prediction accuracy, for each differentiate test input string gener-
ated, we check whether the ground-truth regex would match the string and compare with
the predicted label. We compare NRRanker with three other strategies in the task of
output label prediction. The first baseline is noted as “Random-String”, in which instead of
generating the differentiation test input strings discussed in Section 5.3.1, we simply sample
strings from each candidate regex and let the pre-trained model determine the expected
test output of the test input string. The second baseline is noted as “No-PStr-NStr”. The
prompts that we generate in this baseline would not include the two sets of strings “PStr”
and “NStr” in Algorithm 5.1 that can be seen in Lines 9-18 in the example prompt shown
in Figure 5.3. Instead, the prompt in this baseline would include only the string whose ex-
pected test output label is to be predicted. The third baseline is “Majority-Vote”, in which
instead of using the pre-trained model to predict the expected output label, we match the
test input string with each candidate regex and use the label of the majority result to be
the expected output label.

Table 5.4 and Figure 5.6 show the evaluation results. The first finding is that NRRanker

actually does not achieve a very high accuracy in terms of the output label accuracy, with
an overall accuracy of 80.8%. This finding gives us the insight that although the expected
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Table 5.4: Expected Test Output label accuracy and Top-1 accuracy with different strategies

Random-String : Sample random strings instead of differentiation strings for each regex.
No-PStr-NStr : Not providing the expected-positive and expected-negative examples to the pre-trained
model
Majority-Vote : Use the majority vote as the expected label of each string.

(a) KB13

NRRanker Random-String No-PStr-NStr Majority-Vote
Accuracy Label Top-1 Label Top-1 Label Top-1 Label Top-1
DeepRegex 85.0% 84.0% 89.8% 80.3% 67.6% 60.1% 51.5% 52.9%
DeepRegex-MML 83.7% 85.7% 90.4% 82.8% 67.2% 61.7% 52.1% 53.2%
DeepSketch 81.1% 86.8% 89.2% 84.1% 60.2% 58.2% 54.4% 58.7%
DeepSketch-Gold 79.9% 90.1% 88.1% 85.8% 59.5% 63.5% 56.3% 60.2%

(b) Turk

NRRanker Random-String No-PStr-NStr Majority-Vote
Accuracy Label Top-1 Label Top-1 Label Top-1 Label Top-1
DeepRegex 85.0% 84.0% 89.8% 80.3% 67.6% 60.1% 51.0% 47.3%
DeepRegex-MML 83.7% 85.7% 89.6% 82.8% 67.2% 61.7% 51.6% 48.8%
DeepSketch 81.1% 86.8% 89.2% 84.1% 60.2% 58.2% 55.2% 52.3%
DeepSketch-Gold 79.9% 90.1% 88.1% 85.8% 59.5% 63.5% 58.2% 54.9%

test output prediction in this chapter does not achieve very high accuracy, it can still help
produce a substantially better ranking of the candidates, thus improving the top-1 accuracy.

Another interesting finding is that the “Random-String” strategy actually achieves higher
output label accuracy than the differentiation string strategy used by NRRanker, with
the overall accuracy being 88.9% on average. The possible explanation is that the strings
randomly sampled from each regex would be less complicated than the strings that need
to differentiate two regexes. Somehow counter-intuitively, higher output label accuracy
does not lead to higher top-1 accuracy when we actually compare the top-1 accuracy of
the “Random-String” strategy against NRRanker. This result is potentially due to the
fact that randomly sampled strings are less effective in eliminating the plausible candidate
regexes since most strings matched by the plausible candidate regexes are highly likely to
be also matched by the ground-truth regex. We can see that the top-1 accuracy of the
“Random-String” strategy on the DeepSketch model is similar to the top-1 accuracy of the
DeepSketch model without applying NRRanker (column “Naive” in Table 5.2). The reason
is that the randomly sampled test input strings serve similar roles to the positive/negative
test input strings that are already leveraged in the DeepSketch model. Therefore using the
“Random-String” strategy does not improve the top-1 accuracy in such cases. However, since
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Figure 5.6: Top-1 Accuracy versus Expected Test Label Accuracy on KB13 and Turk

the DeepRegex model does not take advantage of example test cases, the “Random-String”
strategy could still improve the top-1 accuracy substantially.

On the other hand, the “No-PStr-NStr” strategy has much worse accuracy in terms of both
label prediction accuracy and top-1 accuracy. The label prediction accuracy is only 62.7%.
(Note that randomly guessing the output label would have an expected accuracy of 50%)
This result gives us the insight that the few-shots learning scenario does help the pre-trained
code model a lot in understanding the task that it is given; such insight is already shown by
NLP researchers [131]. Such a low accuracy in label prediction has made the refined ranking
even worse than original list of candidates.

For the “Majority-Vote” strategy, we find that both the label prediction accuracy and the
top-1 accuracy are really poor. The reason is that usually the correct regex would differ
with other candidate regex when matching with the differentiation strings. So, using the
majority vote as the estimate for the output label often the time would be incorrect.

We also notice that the output label prediction accuracy of NRRanker is lower in the
DeepSketch model, with the average accuracy in DeepRegex and DeepSketch being 83.2%
and 78.5%, respectively. The reason is that the DeepSketch model generates regexes that
are semantically more similar to each other. Therefore, it would be harder to predict the
expected test output in the input strings of the differentiation test for more similar regexes.
The randomly sampled strings in the “Random-String” strategy do not have such a difficulty
gap, so there is not much difference in label accuracy in DeepRegex versus DeepSketch
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(89.5% versus 88.3%) in the “Random-String” strategy.

5.5 DISCUSSION

In our evaluation, one observation is that despite NRRanker achieving only 80.8% ac-
curacy on the expected test output labels predicted, it still improves the ranking of the
candidates by a large margin. This result leads to the insight that even getting access to
a non-perfect oracle that is able to predict test output labels for new test inputs would be
helpful in eliminating plausible candidate programs being synthesized in NL2Code tasks.
Therefore, Chen et al. [132] and Inala et al. [133] have both proposed new approaches to
simulate an oracle as discussed in Section 6.3.2. Compared to their approaches, our proposed
approach in this chapter does not require training any additional model while leveraging a
pre-trained code model to predict the expected test output label. While directly letting the
pre-trained model produce a complete program still remains a major challenge [104, 105, 125],
tasks such as generating additional test inputs or predicting test output labels could be sim-
pler for the pre-trained model and thus more helpful in the synthesis process.

The second observation is that the test inputs on which the candidate programs would
potentially have different test outputs could be more helpful than the test inputs on which the
expected test outputs are more accurate, as shown in Section 5.4.3. This observation leads
to the insight that we should try to generate test cases that can differentiate behaviors of the
candidate programs other than simply generating the test cases based on the NL description.
In this chapter, our proposed NRRanker approach functions more like the post-processing
of the results produced by other tools. A potential generalization of NRRanker would be
deeper integration into the synthesis process. Current program synthesis approaches that
leverage multi-modality synthesis often work on a fixed set of test cases [115, 117]. If we are
able to dynamically verify the current candidates during the synthesis process, we believe
that it could further improve the top-1 accuracy in the result. However, one major challenge
is that example-based synthesis (program-by-example, PbE) often relies on the correctness
of the test cases [3]. It would be challenging to adapt such approaches to a set of non-perfect
test cases.

5.6 SUMMARY

In this chapter, we have presented a novel NL2Regex approach named NRRanker to
synthesize a regular expression from a NL description given by users. The key insights
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underlying our approach are to generate test inputs that can differentiate behaviors of the
candidate regular expressions being synthesized and generate their expected test outputs
from the NL description. NRRanker further integrates an existing NL2Code system with
the preceding test generation using pre-trained models. We have evaluated our approach on
two most commonly used datasets to show the effectiveness of NRRanker. NRRanker

achieves the top-1 accuracy of 89.8% and 90.1% in the two datasets, respectively, outper-
forming the state-of-the-art approaches by 11.1% on average.
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CHAPTER 6: RELATED WORK

6.1 INPUT GRAMMAR INFERENCE

Our approach draws on both existing work in grammar inference and techniques used in
machine learning and automated test generation.

Inferring Input Grammars. Höschele et al. [27, 134] propose the Autogram tool based
on dynamic taint tracing to extract syntactic entities of a given seed input. By tracing
the data flow of particular characters of the seed input in the parsing method of the target
program, Autogram decomposes formats into meaningful fields. However, since Autogram
traces only paths taken by a given seed input, Autogram requires that the given set of seed
inputs capture all meaningful features of the input grammar.

Coverage-Guided Fuzzing. In recent years, coverage-guided fuzzing has achieved sub-
stantial success with tools such as American Fuzzy Lop (AFL)4 and Fairfuzz [40]. However,
many fuzzers fail to explore paths reaching which requires a difficult check such as string-
equality comparisons. Recent advances in grey-box fuzzing have utilized lightweight program
analysis in order to mitigate this problem. Steelix [135] tracks progress in string-comparison
checks in order to incrementally discover inputs that can bypass these checks. Angora [136]
solves path constraints via a searching algorithm based on gradient descent. Other tools,
such as Driller [137], use more heavyweight program analysis in order to bypass these checks
by symbolically executing an intermediate representation and solving constraints in order to
bypass these checks. REINAM is able to discover constants that are capable of bypassing
these checks as a part of the grammar-inference process as shown in REINAM’s inference
of the url protocol, which necessarily requires discovery of protocol names such as “mailto”
and “https”, which would be unlikely to be discovered by grey-box approaches.

Machine Learning for Fuzzing. Godefroid et al. [32] use a recurrent neural network
to learn an input model and generate inputs for fuzzing with the Learn & Fuzz algorithm.
They have recently formalized fuzzing as a reinforcement learning problem [138]. Mingyuan
et al. [139] propose an approach to treat the mutation generation problem as a multi-armed
bandit problem to allow dynamically mutation strategy adjustment. There approach could
further extend REINAM’s mutation process.

PCFG Inference from Examples. The problem of inferring a probabilistic context
free grammar (PCFG) from a set of examples has been studied extensively for the purpose
of natural language processing. Belz [140] extends standard split/merge grammar inference

4http://lcamtuf.coredump.cx/afl/
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techniques in order to optimize grammars from examples. However, it requires a large
corpus of annotated examples, which is not viable for inferring program-input grammars.
Scicluna and Higuera [141] propose an unsupervised approach to grammar inference, which
naturally does not need annotated examples. While they show that this approach works
for small samples with respect to NLP standards (the polynomial number of examples with
respect to the number of productions in ideal grammars), this approach is still not viable for
inferring program-input grammars. REINAM addresses these issues by expanding its corpus
by analyzing the target program before synthesizing its grammar.

6.2 ROOT CAUSE ANALYSIS

Anomaly Detection. Anomaly detection aims to detect potential issues in the system.
Anomaly detection approaches using time series data can generally be categorized into three
types: (1) batch-processing and historical analysis such as Surus [142]; (2) machine-learning-
based, such as Donut [60]; (3) use of adaptive concept drift, such as StepWise [81].

Groot currently uses a combination of manually written thresholds, statistical models,
and machine learning (ML) algorithms to detect anomalies. Since our approach is event-
driven, as long as fairly accurate alerts are generated, Groot is able to incorporate them.

Root Cause Analysis. Traditional RCA approaches (e.g., Adtributor [143] and HotSpot [144])
find the multi-dimensional combination of attribute values that would lead to certain qual-
ity of service (QoS) anomalies. These approaches are effective at discrete static data. Once
continuous data are introduced by time-series information, these approaches would be much
less effective.

To address these difficulties, there are two categories of approaches based on ML and
graph, respectively.

ML-based RCA. Some ML-based approaches use features such as time series informa-
tion [70, 77] and features extracted using textual and temporal information [51]. Some other
approaches [60] conduct deep learning by first constructing the dependency graph of the
system and then representing the graph in a neural network. However, these ML-based ap-
proaches face the challenge of lacking training data. Gan et al. [58] proposed Seer to make
use of historical tracking data. Although Seer also focuses on the microservice scenario, it
is designed to detect QoS violations while lacking support for other kinds of errors. There
is also an effort to use unsupervised learning such as GAN [60], but it is generally difficult
to simulate large, complicated distributed systems to give meaningful data.

Graph-based RCA. A recent survey [50] on RCA approaches categorizes more than 20
RCA algorithms by more than 10 theoretical models to represent the relationships between
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Table 6.1: The scale of experiments in existing RCA approaches’ evaluations (QPS: Queries
per second)

Approach Year Scale Validated on Real Incidents?
FChain [68] 2013 <= 10 VMs No
CauseInfer [69] 2014 20 services on 5 servers No
MicroScope [80] 2018 36 services, ∼5000 QPS No
APG [77] 2018 <=20 services on 5 VMs No
Seer [58] 2019 <=50 services on 20 servers Partially
MicroRCA [63] 2020 13 services, ∼600 QPS No
RCA Graph [72] 2020 <=70 services on 8 VMs No
Causality RCA [78] 2020 <=20 services No

components in a microservice system. Nguyen et al. [68] proposed FChain, which introduces
time series information into the graph. But they still use server/VM as nodes in the graph.
Chen et al. [69] proposed CauseInfer, which constructs a two-layered hierarchical causality
graph. It applies metrics as nodes that indicate service-level dependency. Schoenfisch et
al. [71] proposed to use Markov Logic Network to express conditional dependencies in the
first-order logic, but still build dependency on the service level. Lin et al. [80] proposed
Microscope, which targets the microservice scenario. It builds the graph only on service-
level metrics, so it cannot get full use of other information and lacks customization. Brandon
et al. [72] proposed to build the system graph using metrics, logs, and anomalies, and then use
pattern matching against a library to identify the root cause. However, it is difficult to update
the system to facilitate the changing requirements. Wu et al. [63] proposed MicroRCA, which
models both services and machines in the graph and tracks the propagation among them.
It would be hard to extend the graph from machines to the concept of other resources, such
as databases for Groot.

As mentioned in Section 3.1, by using the event graph, Groot mainly overcomes the
limitations of existing graph-based approaches in two aspects: (1) build a more accurate and
precise causality graph use the event-graph-based model; (2) allow adaptive customization
of link construction rules to incorporate domain knowledge in order to facilitate the rapid
requirement changes in the microservice scenario.

Our Groot approach uses a customized page rank algorithm in the event ranking, and
can also be seen as an unsupervised ML approach. Therefore, Groot is complementary to
other ML approaches, as long as they can accept our event causality graph as a feature.

Settings and Scale. The challenges of operational, scale, and monitoring complexities are
observed, especially being substantial in the industrial settings. Hence, we believe that the
target RCA approach should be validated at the enterprise scale and against actual incidents
for effectiveness.
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Table 6.1 lists the experimental settings and scale in existing RCA approaches’ evaluations.
All the listed existing approaches are evaluated in a relatively small scenario. In contrast, our
experiments are performed upon a system containing 5,000 production services on hundreds
of thousands of VMs. On average, the sub-dependency graph (constructed in Section 3.3.1)
of our service-based data set is already 77.5 services, more than the total number in any of the
listed evaluations. Moreover, 7 out of the 8 listed approaches are evaluated under simulative
fault injection on top of existing benchmarks such as RUBiS, which cannot represent real-
world incidents; Seer [58] collects only the real-world results with no validations. Our data
set contains 952 actual incidents collected from real-world settings.

6.3 NL2CODE

Natural Language to Code Natural language has been an important source of input
specification for the program synthesis problem due to its flexibility and ease of use for users
of different backgrounds [14].

In the task of NL descriptions to general-purpose programs, pre-trained models have
recently shown their strength in code understanding and generation. For example, Alpha-
Code [104], Codex [105] and PANGU-CODER [125] are three of the most powerful and
popular closed-source tools to transform natural language specifications to programs. There
are also many open-source big models trying to address the NL2Code problem such as
CODEGEN [103], INCODER [126], and PolyCoder [127].

To focus more on specific program synthesis tasks, there are tasks such as NL2SQL and
NL2Regex, which aim to transform natural language into domain-specific languages instead
of general-purpose languages. In these specified tasks, existing approaches have shown better
accuracy.

For example, in the NL2SQL task, Iyer et al. [145] propose to directly use neural sequence
models to transform natural language into the corresponding SQL. Later, Iyer et al. [124]
propose an idiom-based semantic parsing approach to transform NL into SQL. Moreover,
Finegan-Dollak et al. [146] provide new datasets and new ways to more properly evaluate
these text-to-SQL systems.

In the NL2Regex task, Kushman et al. [122] use a probabilistic combinatory categorical
grammar model to transform NL to a regex. And Locascio et al. [121] use a neural translation
model to directly transform a sequence of NL tokens to a sequence of regex tokens without
utilizing any domain-specific crafting. Later Zhong et al. [147] propose a semantics-based
approach to optimize the semantics-based objective for generating regular expressions from
NL descriptions.
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Test Generation in NL2Code As discussed in Section 5.1, a set of test cases could
substantially improve the accuracy of the NL2Code task. Test cases such as examples have
been an important part of program synthesis. Therefore, researchers have proposed different
approaches to help with test case generation in NL2Code tasks.

CODET [132] can generate code solutions and corresponding test cases with different
prompts. And the best solution is selected based on a compound metric of how many test
cases each solution can pass and how many solutions can pass each test case (called dual
execution agreement in Chapter 5).

Inala et al. [133] propose a fault-aware ranker that takes into account a context and a
program generated from this context and predicts the different types of execution information
without actually executing the program. Inala et al. show that by trying to predict the
execution information (such as the compile/runtime error type), the ranker can better rank
the sampled programs from a code generation model.
Syntax Guided Synthesis. The constrained syntax-guided synthesis problem is an exten-
sion of the syntax-guided synthesis (SyGuS) problem first introduced by Alur el al. [148].
Our constrained SyGuS problem asks for a program that is not only generated by the given
grammar, but also uses specific rules and non-terminals of the grammar. Successful solu-
tion strategies for SyGuS are based on bottom-up enumeration [149, 150, 151], model-based
quantifier instantiation [152], and top-down search over the grammar [153]. Hu et al. [154]
consider QSyGuS, a variant of the SyGuS problem where a cost model given by a weighted
tree automaton assigns costs to programs, and the task is to generate the minimal cost
program that satisfies the semantic constraint. However, the solution used by Hu et al. is
infeasible in our setting because of the presence of derivation constraints.

6.3.1 Natural Language to Visualization

Natural Language to Visualization. The idea of using natural language (NL) as a query
interface for visualization is getting popular with the development in NL2Code.

Tong et al. [155] present DataTone, a mixed-initiative approach to address the ambiguity
problem in NL interfaces for visualization. Unfortunately, because DataTone is not publicly
available, we could not perform a direct comparison between DataTone and NL2Viz.
Zhang et al. [156] propose Text-to-Viz, whose usage scenario is quite different from ours.
Text-to-Viz is a visualization recommendation tool that focuses on data exploration. It
does not support precise NL instructions to a specific visualization. Instead, the user’s
input works as a guide to explore charting options on certain columns or combination of
columns. We find it not fair to compare Text-to-Viz’s accuracy on our dataset as it is
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not designed to produce visualization with the NL instruction provided. Similarly, Sun et
al. [157] propose Articulate, a two-step process to generate visualization from the given
NL instruction. First, it parses the NL instruction into commands using supervised learning.
It then generates visualizations for the commands using heuristics. Articulate also focuses
on data exploration instead of synthesizing precise visualization according to the given NL
instruction.

Narechania et al. [101] propose NL4DV, which has similar functionalities as NL2Viz. It
is also integrated into the Jupyter Notebook environment while producing the results in the
Vega-Lite format [158]. However, NL4DV relies on only the NL instruction to generate the
visualization. It checks the data only to identify the database entities in the NL instruction
without leveraging other contextual information from the data/program context. Similarly,
it also lacks the ability to create the necessary data preprocessing steps. Luo et al. [92]
publish a public dataset named NL2VIS consisting of 25,750 (NL, VIS) pairs. They propose
a NL2SQL-to-NL2VIS model to translate the (NL, SQL) pairs in the popular Spider [98]
dataset to the (NL, VIS) pairs. Luo et al. [92] also propose a learning-based approach named
SEQ2VIS based on the SEQ2SEQ model [159] used in NL2SQL tasks. They evaluate their
approach on the dataset by comparing it with two other approaches namely NL4DV [101]
and DeepEye [100], which is a keyword-based approach previously proposed by them too.
They find their approach largely outperforms the other two approaches. However, since the
Spider dataset is an NL2SQL dataset. Their approach focuses only on how the output is
calculated using the data transformations defined in the SQL query. The NL instructions in
the NL2VIS dataset completely ignore important options of visualizations such as formats
and legends. Despite this dataset’s limitations, we also evaluate NL2Viz on this dataset in
Section 4.4.3.

It is worth noting that unlike NL2Viz, the preceding related approaches do not support
further refinement on the result, limiting the ability of users to further modify or reuse the
results later in other tasks.

Rong et al. [160] propose CodeMend, which uses neural network to infer the correspon-
dence between the given NL query and functions/parameters in the target visualization
program. Similarly, Setlur et al. [161] propose Evizas, which allows users to refine existing
visualizations by asking questions or direct manipulation. However, both approaches lack
the ability to generate complete visualization code and also cannot generate the necessary
data preprocessing steps. These approaches can be seen as complementary with NL2Viz:
these approaches can be combined with the interactive technique in NL2Viz to provide
better user experience after the first-shot query.
Visualization Recommendation. Visualization recommendation focuses on producing
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the recommended visualization encoding based on design domain knowledge [162].
Dominik et al. [163] present Draco, which represents a visualization as a set of logical

facts and thus converts visualization design patterns into a set of constraints. It then uses
constraint solving to recommend the best visualization scheme based on the collection of
domain knowledge. Ding et al. [164] present QuickInsights to discover interesting patterns
from multi-dimensional datasets by formalizing the notion of interesting patterns (insights)
and present them as visualizations. Siddiqui et al. [165, 166] propose an interactive visual
analytic platform named Zenvisage to find desired visual patterns from large datasets. It
extends Vispedia proposed by Chan et al. [167], which performs only a keyword query of
collected graphs.

While the output of NL2Viz is also a visualization, the focus is different. Visualization
recommendation tries to follow visualization design patterns. NL2Viz focuses on eliminating
the ambiguity in NL instructions by bringing insights from data. NL2Viz is also extensible
and can be integrated with existing visualization recommendation approaches.

6.3.2 Natural Language to Regex

Regular expressions (regexes) are very useful for pattern matching. However, end users
might find it challenging to write a proper regex for their tasks. To reduce this difficulty,
various approaches have been proposed.

For example, Kushman et al. [122], Locascio et al. [121], Zhong et al. [147] and Park et
al. [168] propose different approaches to transform the NL description to the corresponding
regex. In addition, many existing methods use test cases (namely example strings) to infer
the correct regex for users [169, 170, 171, 172, 173, 174, 175, 176]. Moreover, there also
exists a lot of work combining the power of both NL descriptions and test cases to generate
the desired regexes [115, 116, 117].

More specifically, Locascio et al. [121] use a neural translation model to directly transform
a sequence of NL tokens to a sequence of regex tokens without utilizing any domain-specific
crafting. Later Zhong et al. [147] propose an approach to optimize the semantics-based
objective for generating regexes from NL specifications. Then Chen et al. [117] and Ye et
al. [116] both propose an approach to first parse the NL description into a sketch (partial
regex with holes) and then to concretize the sketch with the help of examples. Most recently,
Li et al. [115] propose TRANSREGEX, which is the first to treat the NLP-and-example-
based regex synthesis problem as the problem of NLP-based synthesis with regex repair.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

Constraints are key components in code analysis and generation tasks. Probabilistic con-
straints, with the ability to describe the confidence level of each constraint, can help improve
the performance of code analysis and generation systems by incorporating knowledge with
uncertainty. However, it is challenging to extract and apply the probabilistic constraints in
code analysis and generation tasks.

In this dissertation, we investigate different approaches to leverage the probabilistic con-
straints in code analysis (Chapters 2 and 3) and generation (Chapters 4 and 5). First, this
dissertation investigates the problem of grammar-guide fuzz testing in code analysis (Chap-
ter 2). Second, this dissertation investigates the problem of root cause analysis in code
analysis of microservice infrastructure (Chapter 3). Third, this dissertation investigates the
problem of natural language to visualization in code generation, more specifically NL2Code

(Chapter 4). Lastly, this dissertation investigates the problem of natural language to regular
expression in NL2Code (Chapter 5).

In the problem of grammar-guided fuzz testing, this dissertation has presented REINAM,
an input-grammar inference framework. In REINAM, we learn the probabilistic constraints
of the program input in the form of a PCFG. We use reinforcement learning to leverage the
feedback from the program under test to adjust the probability distribution for the PCFG.
We evaluate REINAM on 11 real world benchmarks with manually written grammars used
in real world scenarios. Our evaluation results show that REINAM outperforms Glade (a
state-of-the-art tool) in terms of precision, recall, and fuzz testing coverage for most of
the benchmarks. On average, REINAM improves code coverage by 18% compared to the
baseline fuzzer and by 5% compared to Glade’s grammar-based fuzzer.

In the problem of root cause analysis, this dissertation has presented Groot, a graph-
based approach of root cause analysis (RCA) for microservice architecture. In Groot, the
task is to find the root cause of a reported anomaly in a microservice system. We use a set
of rule constraints to define the events and causalities between the events in the system and
then construct an event-based causality graph to perform RCA. We implement and evaluate
Groot on eBay’s production system that serves more than 159 million users and features
more than 5,000 services. Our experimental results show that Groot is able to achieve 95%
top-3 accuracy and 78% top-1 accuracy for 952 real production incidents collected over 15
months with the help of event-building rule constraints.

In the problem of natural language to visualization, this dissertation has presented NL2Viz.
In this work, we specifically focus on extracting constraints from natural language input as
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the hard constraints and complement the hard constraints using constraints extracted from
other sources of input such as code or data context as the soft constraints. We implement
NL2Viz as a plug-in tool in the popular Jupyter Notebook environment. Our evaluation
results show that NL2Viz achieves the accuracy comparable to state-of-the-art tools, and
data scientists find the tool easy to use in real world scenarios.

In the problem of natural language to regular expressions (NL2Regex), this dissertation
has presented an NL2Regex tool namely NRRanker. In NRRanker, we generate proba-
bilistic constraints, which are additional test input strings that can differentiate behaviors of
the candidate regular expressions being synthesized and corresponding expected test outputs
generated from the NL description. NRRanker integrates an existing NL2Regex system
with the preceding test generation using a pre-trained model. We have evaluated our ap-
proach on two most commonly used datasets to show the effectiveness of NRRanker. NR-

Ranker achieves the top-1 accuracy of 89.8% and 90.1% on the two datasets, respectively,
outperforming state-of-the-art approaches by 11.1% on average.

Based on the empirical evaluations of our proposed approaches in the four tasks, we
find that the guidance of probabilistic constraints substantially improves the effectiveness of
constraint-based approaches on the tasks of code analysis and generation.

7.1 FUTURE WORK

In this section, we discuss future work that can further advance the work presented in this
dissertation.

Probability Quantification for Probabilistic Constraints. As mentioned in Sec-
tion 1.1, although the subject investigated in this dissertation is probabilistic constraints,
due to certain limitations, we are not able to explicitly assign accurate probability distri-
butions to the constraints. For example, we are not able to assign the probability for the
additional test input-output pairs described in Chapter 5. Existing approaches [132, 133]
have been proposed to train additional models for test generation in NL2Code. If we can
also train additional models to measure the accuracy of the additional tests generated, it
would be more helpful in filtering and ranking the candidate programs when we can estimate
the confidence level of each additional test being generated.

Automated Probabilistic Constraints Generation. In the tasks of code analysis and
generation discussed in this dissertation, we treat constraints as an intermediate task for
the final tasks such as fuzz testing or visualization generation. To design the syntax and
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semantics of the constraints, we need to carefully consider the domain knowledge and con-
straints defined by existing systems. Such process requires a lot of manual effort. Existing
approaches [4, 177] have been proposed under a specific set of domain-specific languages
(DSLs). If we can use a DSL given by users to specify the syntax of the constraints, it
would be helpful to have a model that can automatically infer the specific constraints and
corresponding semantics from the examples provided by the users.

Constraint-based Language Model Training. With the recent development in large
language models [178], large language models trained with a code corpora [103, 104, 105,
125, 126, 127] have been shown to be useful in various programming tasks including code
generation. However, existing code-based large models treat the code as simple natural
language. They just replace the natural language tokens with code-based tokens (identifiers,
keywords and so on). This treatment results in that these code-based large models consider
only the syntactic features. It would be helpful to also have the constraints in the training
corpora and design a specific mechanism for models to incorporate the constraints so that
semantic features can also be considered by the models.
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