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ABSTRACT 

 

 

The subfield of pathology known as ‘digital pathology’ encompasses the procedures for 

image acquisition, organization, distribution, labeling, and computational analysis.  

Digital pathology is expanding quickly and has already produced a remarkable impact in 

academia and business1. For research, clinical trials, telehealth, remote image processing, and 

overall patient treatment, the capacity to quickly transmit and evaluate a considerable volume of 

pathology data is revolutionary2. The use of artificial intelligence is at the center of this new wave 

of innovation, dieselizing the astonishing advancements in this increasingly digital climate.  

This Ph.D. thesis is centered around developing advanced pathology machine learning 

tools to enhance both the analysis and measurement of pathology samples. This dissertation 

provides a summary of my main pathology related research results, in chronological order, 

comprising an evolution in machine learning complexity applied to the quantitative assessment of 

pathology samples.  

First, I studied pancreatic ductal adenocarcinoma (PDAC) tissue fiber properties using a 

segmentation algorithm, which constitutes a good reference point for automating the dissection of 

specific features in tissue biopsies to derive clinically relevant statistics.  

After being approached by Abbott Laboratories to help examine the myelin content in 

certain areas of the brain, we used our research group’s quantitative phase imaging techniques to 

image 19 piglet brain tissue slides. I applied both manual segmentation schemes and deep learning 

methods to correlate the tissue properties with related size and diet statistics of the tissue subjects.  

The results exceeded our expectations in terms of discernment capabilities at the single 

frame level, a task altogether impossible for an expert histopathologist.  
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Additionally, a series of blood smears slides were imaged and subjected to various deep 

learning devices to not only bypass the need for the standard Wright’s stain, but automatically 

delineate and label four major white blood cell groups. 

Finally, in an effort to simplify the pathology slide scanning procedure altogether, and after 

various attempts and approaches, we arrived at what is now termed ‘GANscan.’  

This is a deep learning microscopy method that enables a thirtyfold increase in whole-slide 

scanning durations using standard equipment and software. This technique has recently been 

reviewed and declared a “transformative solution [that] can be used to further accelerate the 

adoption of digital pathology”3 by the eminent scientist Professor Ozcan in a review article on our 

technique. 
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CHAPTER 1: Introduction 

 

1.1 Background and Approach  

 

Image acquisition, management, distribution, annotation, and computer-aided analysis are 

all included in the subfield of pathology known as digital pathology.  

Breakthroughs in digital pathology are occurring at an increasing rate, and a number of 

very sophisticated platforms are already established in academia and business1. Research, clinical 

trials, telemedicine, downstream image analysis, and overall patient care are transformed by the 

ability to quickly transmit and evaluate huge amounts of pathology data2. High throughput 

scanning microscopes, which are at the core of this revolution, comprise the first step and 

foundation of this rapidly evolving field. The use of several new scanning microscopes and their 

digital pictures by pathologists in their clinical workflow for primary diagnosis has already been 

authorized by regulatory bodies. 

The next Machine Learning (ML) revolution in histopathology will undoubtedly be 

propelled by increasingly extensive annotated databases. The speed and throughput of modern 

digital pathology scanners, though, are among the main bottlenecks to all the related headway 

downstream. Each histology slide can produce gigapixels worth of data when scanned in its 

entirety (with an objective lens of 40/0.75NA, for example). Although recent improvements in 

hardware and software have sped up scanning times2,4, there is still a rate-limiting step that hinders 

innovation in the field. This is because high-throughput scanners cost between $150K and $300K, 

making them few in number in many deployment spaces because buying multiple scanners is not 

economically viable. 

The mechanical requirements of the scanning stage are frequently what cause the scanning 

speed rate-limiting step for a standard brightfield scanning microscope  
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There have been numerous initiatives to speed up the entire scanning of these microscopes.  

One possibility is to upgrade the microscope apparatus with hardware elements, such as 

coded illumination5-8, which necessitates a post-processing computing step to decode the encoded 

specimen data9.  

More recently, machine learning (ML) algorithms were used to speed up digital 

microscopic scanning. This included improvements in resolution, depth of field, and refocusing 

capabilities10. Also available now is the ability to computationally generate multiple stains on the 

same tissue section, which effectively speeds up the imaging process by multiplying the useful 

information channels from each slide11.  

In this thesis, I report on machine learning analysis techniques to study pathology slides, 

as well as on a novel technique for enhancing whole-slide scanning speeds12.  

The analysis section of this thesis will be related to quantitative pathology of pancreatic 

ductal carcinoma (PDAC), myelin content in the internal capsule, and white blood cells (WBCs) 

in blood smears. 

The whole-slide scanning innovation, coined GANscan, works by switching from the 

conventional "stop-and-stare" imaging approach to a continuous scanning strategy. The resulting 

image is recreated by using a machine learning-based image restoration approach on a motion-

blurred scanned image. This deep learning-based method replaces the requirement for specialized 

add-on hardware components and is applied on a common scanning microscope.  

The method's primary contribution is decoupling the imaging speed from the stage 

movement. We used the Pix2Pix image translation framework13 to accomplish this purpose. In this 

instance, the rapid movement of the stage causes a severely motion-blurred image, which serves 

as the input, but the label is a sharp, high-resolution image taken at regular speeds. This supervised 
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image-to-image translation14 strategy, built on a Generative Adversarial Network (GAN)15 model, 

enables pixel-level reconstructions of blurry images through precisely paired registered pictures. 

A Generator and a Discriminator are the two competing networks that make up GANs. The 

Generator's job is to take an input image—in this case, one with significant motion blur—and 

produce an image that resembles the matched label, while the Discriminator's job is to provide 

feedback on the Generator's performance. The Generator is forced by the Discriminator to match 

the labels' sample distribution, producing outputs that are clear and convincing-looking.  

After being trained, the deep neural network is used to deblur images that had been 

continually scanned at stage speeds of up to 5000 µm/s with an acquisition rate of 30 fps, or 

roughly 1.8 GPixels in 100 seconds, using a typical high throughput scanning microscope. The 

ground truth photos were taken at a stage speed of 50 µm/s, or 100 times slower, for comparison 

(see Figure 1.1). 

 

 

 

 
Figure 1.1 A demonstration of motion deblurring by GANscan.  

 

 

We illustrate this using a variety of biopsies and tissue components, as well as brightfield 

and phase contrast microscopy methods.  
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Additionally, our method has demonstrated outstanding success for imaging a sample that 

is defocused by +/-5 µm. This is crucial for any potential practical application of the approach 

because defocusing is a common issue for these scanners (especially at high magnifications), and 

the significant speed boost (X 30 times faster) that this all-algorithmic method has achieved would 

have been largely lost with the increased number of focus correction steps. 

By enhancing scanning microscope throughput, this strategy can improve clinical and 

research workflows and boost the use of digital pathology.  

Without extra hardware alterations, it may make use of microscopes that are already in use 

in clinical settings. In general, our approach can power future computer-aided diagnosis systems 

and assist in democratizing research. 

 

1.2 Thesis Overview  

 

This thesis is organized as follows. In Chapter 2, I discuss a segmentation algorithm to 

investigate the fiber characteristics of pancreatic ductal adenocarcinoma (PDAC) tissue, which 

serves as a useful benchmark for automating the dissection of particular features in tissue biopsies 

to produce clinically useful statistics. 

In Chapter 3 & 4, I discuss the outcome of Abbott Laboratories contacting our research 

group to assist in examining the myelin content in certain regions of the brain. I will explain the 

use of both manual segmentation systems and deep learning techniques. The results shown have 

exceeded our expectations in terms of single-frame discerning abilities, which is a task that would 

be completely beyond the scope of a skilled histopathologist. 

In Chapter 5, I describe the work I have done on blood smear slides. The samples were 

scanned and exposed to a variety of deep learning tools in order to not only do away with the 
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conventional Wright's stain, but also automatically delineate and annotate four main white blood 

cell types. 

I end with Chapter 6, wherein I discuss the culmination of my work as a Ph.D. candidate, 

namely how I arrived at what is now referred to as "GANscan", after making numerous attempts 

to streamline the pathology slide scanning process. Using common tools and software, this deep 

learning microscopy technique increases whole-slide scanning times by a factor of thirty. 
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CHAPTER 2: Quantitative Pathology of Pancreatic Cancer 

 

2.1 Abstract 

 

 

New quantitative prognostic markers are needed for improved pancreatic ductal 

adenocarcinoma (PDAC) prognosis. Second harmonic generation microscopy has been used to 

show that collagen fiber alignment in PDAC is a negative prognostic factor. In this work, a series 

of PDAC and normal adjacent tissue (NAT) biopsies were imaged with Spatial Light Interference 

Microscopy (SLIM). Quantitative analysis performed on the biopsy SLIM images show that 

PDAC fiber structures have lower alignment per unit length, narrower width, and are longer than 

NAT controls. Importantly, fibrillar collagen in PDAC shows an inverse relationship between 

survival data and fiber width and length (p<0.05).  

 

2.2 Motivation and Overview  

 

 

Globally, pancreatic cancer is the 12th most common malignancy and the seventh and 

eighth cause of cancer-related death in men and women, respectively 16. Its occurrence is growing 

exponentially, and it is projected to be the second most lethal cancer in the US by 2020 17. 

Approximately 85% of pancreatic malignancies are classified as ductal adenocarcinomas. 

Pancreatic abnormalities are first confirmed and partially diagnosed through conventional 

imaging, such as helical computed tomography (CT) 18, contrast-enhanced ultrasound (US) 19, and 

enhanced magnetic resonance imaging (MRI) 20.18F Fluorodeoxyglucose (FDG) positron emission 

tomography (PET) has emerged as another method that can detect malignant pancreatic tumors 

with high sensitivity and specificity 21. Endoscopic ultrasound - guided fine-needle aspiration 
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biopsy is a reliable technique for classifying tissue of suspected PDAC patients 22,23, though it can 

produce false negative results 24. 

When a suspicious region is indicated by imaging, a tissue biopsy is obtained and prepared 

for pathology examination with hematoxylin and eosin (H&E) staining. Diagnosis by a pathologist 

for most cancers is typically highly accurate, although sometimes the subjective human 

investigation results in inter-observer variability 25. Prognosis of pancreatic cancer, on the other 

hand, is far less definitive, having the weakest record among digestive tract cancers 26. It remains 

a challenge to ascertain the prospects of recovery after PDAC surgery, as well as the degree of a 

possible disease regression 27. After tumoral excisions, more than 75% of PDAC patients have a 

survival period of less than 5 years. This poor outcome is due to residual lesions left behind by 

surgery or new metastasis sites, which lead to relapse 28-31.  

One of the ongoing deficiencies in PDAC management is the lack of unique detectable 

qualities that can predict the likely course of the disease. The ability to evaluate the risk of systemic 

recurrence is vital, as it can help exclude the need for aggressive options, such as vascular resection 

and reconstruction 32. PDAC tissue may be readily identified by its pronounced desmoplasia, 

which is composed of extracellular matrix (ECM) molecules, pancreatic stellate cells (PSCs), as 

well as other substances, such as cytokines, growth factors, and ECM metabolizing enzymes 

secreted by the immune system 33. Recent efforts have demonstrated a strong correlation between 

stromal microenvironments and patient outcome 34. It has been found that the extent of 

organization and symmetry in stromal ECM, particularly in the fibrillar collagen region, plays a 

critical role in tumor development 35-37. During cancer progression, the structural integrity of 

fibrillar collagen is compromised, which leads to tissue strengthening, mechanical interactions 38, 

a change in metabolites 39 and conditions conducive to cell infiltration 35. It has recently been 
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shown that PDAC-associated stroma has a markedly aligned configuration, differentiating it from 

that in benign pancreatic stroma 40. Furthermore, it was found that stromal collagen alignment has 

significant potential as a quantifiable PDAC biomarker and is linked to patient survival following 

surgery 27. These observations were first made using second-harmonic generation microscopy 

(SHGM) 41 which is specific to non-centrosymmetric structures, such as collagen fibers. SHGM is 

a valuable research tool, but might offer limited adoption in the clinic, as it uses bulky and 

expensive instrumentation and has limited throughput due to raster scanning. The LC-PolScope,  

an enhanced form of polarized light microscopy 42, has been proposed as a suitable alternative to 

SHGM for quantitatively imaging fibrillar collagen in tissues, and compared well against SHGM 

using breast and pancreatic cancer pathology slides 43. It was shown that the LC-PolScope, a more 

economic, and simpler system to SHGM, can be used successfully for the quantification of 

collagen fibers in terms of orientation and alignment 43.  

Though it is convenient to use imaging modalities that are specifically sensitive to fibrillar 

collagen such as SHGM and LC-PolScope, acquiring signal from other tissue features has 

advantages. For instance, it is constructive to have a comprehensive representation of a biopsy 

core, cell, ducts and matrix included, for label free diagnosis in surgical pathology. We present 

that spatial light interference microscopy (SLIM) 44  can be used for this purpose. Recently, it has 

been shown that similar collagen information can be extracted using SLIM, which is less expensive 

than SHGM and can be as much as a factor of ~1,000 faster 45. Specifically, the collagen fiber 

orientation in cancerous breast tissue was quantified based on SLIM data 45. It was shown that the 

composition, orientation, and alignment of collagen fibers in tumor-adjacent stroma affect tumor 

growth and metastasis. SLIM is not only sensitive to this fiber orientation but can also detect other 

components of the tumor biopsy such as tumor cells 46. 
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In this chapter, we use SLIM as a label-free quantitative phase imaging (QPI) technique 

44,47, along with an established fiber quantification software approach 48, to explore how collagen 

fiber properties: alignment per length, width, length, and straightness, relate to malignancies and 

patient data profiles. Quantitative phase imaging is a method that can measure nanometer scale 

pathlength changes in a biological specimen 47. Recent studies show that QPI has clear potential 

for clinical applications 49-52. SLIM has previously been used toward the effective diagnosis of 

breast cancer, which is usually performed through qualitative H&E stained tissue examinations 46.   

In addition to its ease of use, efficiency and conduciveness to fiber analysis, the phase images 

produced by SLIM have also been used to extract various tissue properties, such as scattering 

length (the average distance between two scattering events) of light scattered by the tissue 53), 

optical anisotropy (the average cosine of the scattering angle, found to be reduced in low prostate 

survival cases 54), and the spatial fluctuations in refractive index, known as disorder strength 55. 

The refractive index of tissue is also accessible in SLIM images, and has previously been used as 

a marker for prostate malignancies 54. Furthermore, SLIM uses broadband illumination light that 

diminishes speckle artifacts and lends itself well to automated segmentation tools that need both 

sharp morphological contrast and precise quantitative information 56,57.  

In this chapter, we used our analysis to segment stromal fibers, including collagen, in both 

PDAC and NAT cores. In contrast to the previous fiber tracking work on SLIM breast tissue 

images, which only evaluated fiber orientation58, here we incorporate four fiber properties and do 

not require any structural segmentation. Since SLIM is not uniquely sensitive to collagen, an 

involved process with filters was previously employed to exclude all signals except for the 

isotropic collagen fibers. Here, however, we leverage the greater number of fiber properties and 

the drastic morphological dissimilarity in PDAC and NAT cores to dispense with any prior feature 
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extraction. We found significant differences between the filament properties in the two groups and 

a strong correlation between these and patient survival.  

2.3 Methods 
 

2.3.1 Tissue Microarray (TMA) 

 

The patient cohort consisted of 90 tumor cores and 90 normal adjacent tissue, and one 

marker core (US Biomax, Inc.,#HPan-Adel180Sure-010). From the PDAC group, 62 cases were 

ductal adenocarcinoma, 20 cases were adenocarcinoma, 4 were adenosquamous carcinoma, 3 were 

mucinous adenocarcinoma, and 1 was mucinous cystadenoma. Staging levels were I-II, IA, IB, II, 

IIA, IIB, and IV. The mean overall survival was 23.7 months (range 0-87 months). Sixty of the 

patients were males and thirty were females. The mean age of the patients was 58.3 years (range 

36-83 years). An example of the brightfield cores can be seen in Figure 2.1.  

A board-certified pathologist, who was blinded to clinical grading and all computed data, 

performed diagnosis on each core using the H&E brightfield images acquired by Aperio 

ImageScope (Leica Biosystems). The pathologist also indicated the presence of cancer cells and 

desmoplasia in PDAC histology, as well as healthy acini, veins, ducts, and islets of Langerhans in 

normal tissue. TMA cores containing necrotic debris or partially missing tissue were all omitted 

from the final analysis. 



11 
 

 

Figure 2.1 Stitched brightfield H&E images of whole pancreas biopsy cores (Hpan-Ade180Sur-

01). (a) NAT pancreatic core with insets showing zoomed in regions of a duct, acini, a vein, and 

Islets of Langerhans. (b) Corresponding patient PDAC core, with inset showing the characteristic 

dense desmoplastic stroma. 

 

2.3.2 Spatial Light Interference Microscopy (SLIM) 

 

The cores were imaged with spatial light interference microscopy (SLIM) with a resolution 

of 380 nm using a Nikon Plan-APO 40x/0.95 N.A objective (Fig. 2.2). SLIM is composed of an 

inverted phase-contrast microscope with a module attachment at the output (CellVista SLIM Pro, 

Phi Optics, Inc.). A liquid crystal spatial modulator (SLM) placed at the back focal plane of a 

Fourier lens (Fig. 2.2) provides additional phase shifts between the scattered and unscattered light, 

in increments of π/2. The pattern projected on the SLM matches exactly the phase ring of the 

objective pupil. Four intensity images with different phase delays are acquired consecutively, 

enabling the computation of a phase map 44. SLIM thereby generates quantitative phase images of 

the sample that, in turn, provides information on its dry mass density at femtogram precision 59. 

All cores were acquired through an automated scan of 1388 x 1044-pixel tiles using our integrated 
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custom SLIM software 60. The scanning procedure took approximately 20 minutes to prepare and, 

subsequently, each core was covered within 3.3. minutes at a rate of 1 frame/s. The total imaging 

dimensions amounted to 24 x 40.2mm2, and consisted of 24,120 individual SLIM images, which 

were stitched to form a mosaic using a python algorithm developed in-house (Fig. 2.3(a-d)). 

 

Figure 2.2 Schematic for SLIM. The SLIM module is attached to a commercial phase contrast 

microscope (Nikon Eclipse Ti). 

 

2.3.3 Fiber Tracking 

 

 

Fibrillar structure analysis was performed on SLIM images using the default settings in the 

CT-FIRE software package, as previously described 37,40,56 (Fig. 2.3(e)). Alignment per length was 

calculated according to relative fiber angles in a core, spanning a range of 0.0-1.0 (1.0 indicates 

all fibers are parallel), divided by the length of the traced fiber in microns. Length and width were 

generated initially in pixels and then converted to microns according to a scale calibrated from the 
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40X Nikon objective. Straightness of fibers was calculated based on tangent angles at successive 

points tagged on a segmented line (1.0 denotes all fibers are in the same direction). To account for 

intra-tumoral PDAC heterogeneity on the TMA, all fibers from the cores, amounting to between 

4,000 and 5,000 tracking fragments per core, were included in the analysis. We also incorporated 

the available patient information (grade, stage, gender, age) as covariates in our analysis to 

estimate their potential clinical application. 

 

 

 
 

Figure 2.3 (a) Stitched SLIM images of the whole TMA slide (Hpan-Ade180Sur-01). (b-d) 

SLIM images of PDAC/NAT biopsy cores (scale bar 50 μm). (e) Corresponding CT-Fire 

mapping of fibers for D. 
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2.3.4 Statistical Analysis 

  

Statistical analysis was performed in MATLABTM. The histograms were generated using 

data retrieved from each fiber. Differences between NAT and PDAC parameters were evaluated 

using standard deviations for alignment measurements - to account for differences in overall fiber 

alignment per core - and mean values for the other three properties, with p values obtained from 

student t-tests. The decision boundary for the principal component analysis (PCA) was obtained 

using a linear discriminant analysis (LDA) classifier. Survival curves were constructed according 

to the Kaplan-Meier estimation, with differences calculated according to the Log-rank test. Cutoff 

values were selected according to the first and last of histogram distributions. The cutoffs for 

alignment per length were below 0.9°/µm and after 1.15°/µm, for width 0.4µm and 0.5µm, for 

straightness 0.919 and 0.928, and for length they were 6.0µm and 7.9µm. Similar figures were 

applied to NAT computations. The correlation percentages were computed according to the 

Pearson’s linear correlation coefficient 61.  

2.4 Results  

 

2.4.1 Relationship between PDAC and NAT fiber tracking properties  

 

Since the TMA used in this study includes two cores per patient, we were able to image 

and quantify filamentary details in normal and PDAC regions from the same patient. Upon visual 

examination, there were evident discrepancies in morphology between cancerous and NAT cores, 

with notably dense desmoplasia present in PDAC tissue cores. To explore how filament structures 

relate to malignant characterization, we applied the fiber tracking algorithm on both PDAC and 

corresponding NAT cores. Since the SLIM signal from NAT cores is nearly as extensive as that 

from PDAC cores (Fig. 2.3(b)), there were similar amounts of tracking elements in both core types. 

The PDAC segments predominantly trace collagen fibers, while those of NAT cores track collagen 
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in addition to the boundaries of acini, veins, ducts, and islets of Langerhans (Fig. 2.1). Our data 

show that PDAC cores had fibrillar structures with less alignment per length, narrower width, and 

greater length and straightness than the corresponding NAT tissue (Fig.2.4). In addition to the four 

fiber properties being significantly different in PDAC compared to normal tissue, considerable 

distributions in all four fiber features were calculated in each core.  

In order to enhance the distinguishing information between core types, quantitative data 

provided by SLIM was included, along with the four fiber parameters, and dimensionally reduced 

using PCA. LDA was thereafter performed to distinguish PDAC from NAT cores (Fig. 2.5(a)). In 

this case, the mean dry mass density was evaluated for each core according to previously detailed 

methods using SLIM 59. A confusion matrix yielded an accuracy of 0.7. Using individual 

parameters may be more effective however, as ROC curves constructed for each fibrous property 

(Fig. 2.5(b)) show that straightness and length have the greatest diagnostic value, with AUCs of 

0.83 and 0.82, respectively. There was no significant difference in the four calculated fiber 

properties between PDAC cores of low and high histological grade. Furthermore, there were no 

significant correlations found between the other patient characteristics and fiber properties.  
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Figure 2.4 Histograms (log) of both normal adjacent tissue (NAT) and pancreatic ductal 

adenocarcinoma (PDAC) (a) fiber angle/length, (b) fiber width, (c) fiber length, and (d) fiber 

straightness of individual fibers across all cores. 
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Figure 2.5 (a) Plot of first two principal components of mean width, straightness, length, 

alignment/length fiber parameters, as well as dry mass density for PDAC and NAT cores, with 

decision boundary. (b) ROC curves for discriminating cancerous tissue based on mean fiber 

length, alignment/length, straightness, and width. 

 

2.4.2 Stromal fibers as marker for patient outcome 

 

PDAC patients with high alignment per length of segmented fibers exhibit significantly 

reduced survival rates (Fig. 2.6(a)). Fiber width and length were greater in low survival cases, 

having associated survival periods of approximately 40 and 60 months, respectively, compared to 

80 months for cases with narrower and shorter fiber profiles (Fig. 2.6(b) and 2.6(c)). Our results 

indicate that straightness has less predictive value in survival rates (Fig. 2.6(d)). The width and 

length distributions had the greatest standard errors, indicating largest intra-class variability. 

Surprisingly, the typical disease predictors in tissue, such as tumor stage and grade, were not 

significant in this patient cohort (Fig. 2.7). This result is likely due to most of our cases being low 

stage, mostly IB and IIB. 
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Figure 2.6 Kaplan-Meier survival curves for pancreatic ductal adenocarcinoma (PDAC), 

comparing different grades of (a) fiber alignment/length, (b) fiber width, (c) fiber length, and (d)  

fiber straightness. Log-Rank χ𝟐 of 50.7 (str), 37.43 (width), 25.7 (al), 50.8 (length). 
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Figure 2.7 Difference between stage groups 1 A-B and 2 A-B in pancreatic ductal adenocarcinoma 

(PDAC) (a) fiber alignment, (b) fiber width, (c) fiber length, and (d) fiber straightness. p-values 

are 0.36, 0.98 ,0.184, 0.31, respectively. 

 

 

2.4.3 Correlation of NAT fiber characteristics with patient data  

 

The NAT tissue of PDAC survival rates did not differ significantly in terms of filament 

alignment per length, width, length, and straightness (Fig. 2.8). In the multivariate assessments of 

NAT cores, comprising stage, grade, age, gender data, no significant differences in the patient 
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cohort were found, which may indicate that NAT cores are not informative of neighboring 

cancerous tissue.  

 

 

 
 

Figure 2.8 Kaplan-Meier survival curves for normal adjacent tissue (NAT), comparing different 

grades of (a) fiber alignment, (b) fiber width, (c) fiber length, and (d) fiber straightness. Log-

Rank χ𝟐 of 38.61 (str), 37.43 (width), 21.9 (al), 44.15 (length). 

 

2.5 Summary and Conclusion  

 

 

The implementation of efficient and sensitive techniques to detect new PDAC markers is 

vital for effective treatment of this lethal condition. SLIM generates quantitative phase images that 

inform on useful tissue properties and has high-throughput tissue scanning capability. Using a 
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SLIM-based automated procedure, we show that PDAC cores differ sharply from NAT in terms 

of segmented properties, including alignment per length, width, length and straightness, enabling 

rapid and automated diagnostic stratifying potential.  

This modality holds promise for clinical application without the need for prior structural 

processing. SLIM has the advantage over collagen-specific modalities, such as SGHM and LC-

PolScope, of providing more inclusionary quantitative information of the cellular 

microenvironment such as cells and matrix that can be used to detect new prognostic markers. 

Furthermore, though SLIM is not uniquely sensitive to collagen signals, it holds great promise for 

diagnostic evaluations on label-free samples such as in surgical pathology application, since there 

is significant discrepancy in morphology between PDAC and NAT cores, which is fully described 

in the phase maps. Furthermore, it was found that both larger width and greater length of PDAC 

collagen fibers are associated with poor patient prognosis. To further explore the value in extracted 

fiber data, we evaluated the clinical relevance of the variables in patient profiles. The fiber data 

from NAT cores were evaluated with the same approach. No substantial heterogeneity was 

observed among patients for NAT, either in survival rates, or stage, grade, gender and age.  

These findings establish novel insights on the ECM based morphological aspects of PDAC 

tissue and its relationship with those of normal adjoining regions. This is an especially important 

revelation since pancreatic cancer is commonly associated with bleak post-operative prospects.  

In summary, we have demonstrated that combining quantitative phase imaging with a fiber 

tracking algorithm can assist in diagnostic and prognostic evaluations, which may prove beneficial 

in the clinical setting. Before our method becomes adoptable, further investigations on different 

tissue samples are needed to consolidate and fine-tune this process. Since SLIM provides a 
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quantitative map of tissue, it lends itself well to the application of machine learning tools to bypass 

and expedite tedious and expensive histological procedures, as well as refine tissue analysis. 
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CHAPTER 3: Quantifying Myelin Content in Brain Tissue using Color Spatial Light 

Interference Microscopy (cSLIM) 

 

3.1 Abstract  

  

Deficient myelination of the brain is associated with neurodevelopmental delays, 

particularly in high-risk infants, such as those born small in relation to their gestational age (SGA). 

New methods are needed to further study this condition.  Here, we employ Color Spatial Light 

Interference Microscopy (cSLIM), which uses a brightfield objective and RGB camera to generate 

pathlength-maps with nanoscale sensitivity in conjunction with a regular brightfield image. Using 

tissue sections stained with Luxol Fast Blue, the myelin structures were segmented from a 

brightfield image. Using a binary mask, those portions were quantitatively analyzed in the 

corresponding phase maps. We first used the CLARITY method to remove tissue lipids and 

validate the sensitivity of cSLIM to lipid content. We then applied cSLIM to brain histology slices. 

These specimens are from a previous MRI study, which demonstrated that appropriate for 

gestational age (AGA) piglets have increased internal capsule myelination (ICM) compared to 

small for gestational age (SGA) piglets and that a hydrolyzed fat diet improved ICM in both. The 

identity of samples was blinded until after statistical analyses.  

 

3.2 Introduction  

 

 

Myelin is a critical component of the nervous system white matter. The myelin sheath 

surrounds axons and thereby provides the necessary insulation for the efficient transmission of 

neural electrical signals across brain regions62. Myelination of fiber bundles is one of the slowest 

processes of brain maturation in humans, starting at 16 weeks gestational age and increasing 

rapidly from 24 weeks through to the perinatal period and continuing until puberty63. The rapid 
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growth phase during the perinatal period represents a vulnerable time for neural development and 

is a critical period for small for gestational age (SGA) infants. Myelin formation plays a crucial 

role in the operation of diverse cognitive faculties during the perinatal period64-68 and continuing 

throughout adulthood69. 

Particularly impacted by deficient myelination are intrauterine growth-restricted (IUGR) 

and low birth weight (LBW) infants.  These infants are at higher risk of morbidity and mortality 

early in life70 and display adverse neurological outcomes that include developmental disorders, 

learning and attention difficulties, behavioral issues, neuropsychiatric disorders and epilepsy that 

persist into adulthood71-77. Approximately 24% of newborn human infants are IUGR, and more 

than 20 million infants are born each year with LBW78,79. Currently, there are no available 

therapeutic interventions to prevent or treat brain damage in the IUGR newborn. Early dietary 

interventions aimed at mitigating the cognitive deficits associated with IUGR and LBW are 

important given that rapid growth occurs early in postnatal life.  

Multiple modalities have been used to assess myelin deposition in biological samples. 

Luxol Fast Blue (LFB) is a dye that stains myelin in formalin fixed tissue80. LFB provides 

information on the presence of myelin in terms of its spatial distribution but does not allow 

quantification. Magnetic resonance imaging (MRI) at high field strength allows in vivo 

visualizations of human brain structures81 and has simplified the analysis of myelin 

concentrations82. However, MRI detection is indirect, relying on the proton spins of water 

molecules. Although a reasonable agreement between MRI and LFB staining has been shown, 

MRI remains a low sensitivity method for myelin imaging83.  

Other efforts to quantify myelin in brain tissue have included the use of the proton-induced 

X-ray emission (PIXE), which generates X-rays with an energy spectrum that is characteristic of 
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a chemical component82. This enables a quantitative determination of the spatial distribution of 

components within a sample. However, its resolution is relatively poor and it involves tedious 

calculations and cumbersome equipment81.  

Here, we use the technique called color spatial light interference microscopy (cSLIM)58 as 

a quantitative phase imaging (QPI) technique47,49,52-55,84-88 to quantify myelin in brain tissue. As 

discussed in Chapter 2, QPI is a technique that can evaluate nanometer scale pathlength changes 

in biological specimens. The data in the phase image, ( , )x y , is a numerical assessment of the 

nanoarchitecture of the tissue biopsy. This evaluation is direct, enabling the computation of the 

sample’s dry mass density from phase information 89, and has a resolution that is three orders of 

magnitude higher than that of MRI 81. 

Traditional interferometric methods use coherent light sources, which obstruct the contrast 

in images with speckle artifacts90,91. cSLIM overcomes this issue by exploiting a white light 

illumination, which averages the speckles and, overall, boosts the phase sensitivity44,92-94. The 

SLIM principle of operation relies on phase shifting interferometry applied to a phase contrast 

geometry. Thus, we shift the phase delay between the incident and scattered field in increments of 

2  and acquire 4 respective intensity images, which is sufficient to extract the phase image 

unambiguously. Because cSLIM uses a brightfield objective and RGB camera, one of the 4 

intensities is the standard LFB color image. Thus, simultaneously, cSLIM yields both a brightfield 

image and a phase map, as illustrated in Figure 3.1. The contrast in the cSLIM (phase) images are 

produced by the tissue refractive index spatial inhomogeneity, which is an intrinsic morphological 

marker with relevance to key disease features46,95. Unlike previous QPI methods applied for 

diagnosis, cSLIM is employed on already stained tissue slides, can scan an entire biopsy slide 

quickly, and generate the brightfield image and corresponding phase map. Furthermore, the effects 
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of the stain on the phase image are normalized, using a procedure reported earlier58. One important 

application of cSLIM is to use the stain map from the brightfield image to create a binary mask, 

which is then applied to the phase image. This way, the intrinsic tissue architecture and density are 

analyzed on specific regions of interest, as revealed by the stain, yet, free of stain artifacts.  

 

 

Figure 3.1 Schematic setup for cSLIM. (a) The cSLIM module is attached to a phase contrast 

microscope and uses a brightfield objective with an RGB camera. (b) The four phase-shifted color 

interferograms, with the initial unshifted frame corresponding to a brightfield image. (c) Computed 

SLIM image. 

 

In an effort to first probe our technique’s sensitivity, we employed the CLARITY method96 

on mouse brain tissue. Clarity removes the lipid component of myelin and renders the brain tissue 

transparent. The resultant cleared brain-hydrogel hybrid is physically stable and maintains the 
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internal structure of proteins and nucleic acids isotropically. Comparing measurements before and 

after applying the clarity procedure allowed myelin lipids to be assessed specifically in terms of 

absolute dry mass values96. 

Next, we applied our cSLIM approach to analyze myelin content in piglet brain tissue. 

Piglets are useful to study neurodevelopmental disorders, because like humans, they are 

gyrencephalic and they share common brain growth patterns.  In order to validate our method, we 

used two variables: gestational age and diet. Previously, a proprietary blend of dietary hydrolyzed 

fats (HF) increased relative volumes of 7 brain regions and white matter volume measured by MRI 

in both SGA and AGA piglets compared to a control fat blend.  We analyzed brain sections from 

these piglets using cSLIM while blind to the treatments. The results show that our method 

recapitulated the impact of both HF and gestational age on the HF myelin content in the internal 

capsule.  

 

3.3 Methods 
 

3.3.1 Animals and Diets  

 

Tissues were obtained from piglets used in a previous study97. Piglets were PIC 

Camborough (dam) x PIC 359 (sire), full term, naturally delivered, sex-matched littermate pairs 

(n = 18 AGA, n = 18 SGA) obtained from the University of Illinois Swine Farm at 2 days old to 

allow colostrum consumption. Piglets underwent minimal routine processing on the farm (e.g., 

males were not castrated), but received iron dextran (Henry Schein Animal Health, Dublin, OH, 

USA) and antibiotic injection (Gentamicin Piglet Injection, Agri Laboratories, Ltd., St. Joseph, 

MO, USA) per routine farm practice and according to label. SGA was defined as piglets weighing 

0.5-0.9 kg at birth, and AGA was defined as piglets weighing 1.2-1.8 kg at birth. Piglets were 
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placed individually into a caging system under standard conditions as described in a previous 

publication98 and randomly assigned to HF or CON diet treatment groups in a 2 x 2 factorial 

arrangement of size (AGA or SGA) and diet (CON or HF). All animal care and experimental 

procedures were in accordance with the National Research Council Guide for the Care and Use of 

Laboratory Animals and approved by the University of Illinois at Urbana-Champaign Institutional 

Animal Care and Use Committee.  

Diets were formulated to meet the nutritional needs of neonatal piglets99 and were supplied 

in a premixed, ready to feed format by Abbott Nutrition (Columbus, OH, USA). CON formula 

contained 100% triglyceride rich oil as a fat source. HF formula contained a proprietary blend of 

soy free fatty acids, monoacuglycerol palmitate, and phospholipids. In HF diet, 50% triglyceride 

oil was replaced with HF blend. Piglets were weighed each morning and provided the liquid diet 

(300 mL formula/kg body weight/d) in 5 equal bolus feedings given at 09:00, 13:00, 16:00, 19:00, 

and 22:00. Supplemental water as not provided aside from that in the diet. At 26-29 days of age, 

piglets were anesthetized (telazol:ketamine:xylazine cocktail (100/50/50 mg/kg; 0.022 mL/kg 

body weight i.m.)) and then euthanized by intracardiac injection of sodium pentobarbital (Fatal 

Plus; 72 mg/kg body weight). Brains were quickly extracted, and the left hemisphere placed in 

10% neutral buffered formalin (NBF; Leica Biosystems, Wetzlar, Germany) for fixation, 

refreshing the formalin solution after 24 hours to ensure adequate fixation.  

 

3.3.2 Piglet Tissue Samples  

 

The brains were cut in coronal sections 5 mm thick per block beginning 0.5 mm rostral to 

the optic chiasm. Blocks were soaked in 10% NBF overnight before processing. Fixed tissue 

blocks were then cut into 4 µm thick sections, mounted on glass slices and subsequently stained 

with LFB by the Veterinary Diagnostic Laboratory (University of Illinois Urbana-Champaign, 
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Urbana, IL, USA) according to standard protocols for formalin-fixed, paraffin embedded brain and 

spinal cord tissue sections. Following LFB staining, slides were selected for imaging. Hyper-

stained slides, where the blue signal was obstructed, were omitted from imaging analysis as intense 

cresyl violet background staining may have interfered with cSLIM measurement. Final analysis 

included 10 AGA slides (5 HF fed and 4 CON fed), and 9 SGA (5 HF and 4 CON) slides. For all 

the imaging and analysis, we were blind to the sample diet categories. The internal capsule regions 

were selected for analysis because the area is myelin-rich myelin, as indicated by the dense dye 

regions (dark blue, in Figure 3.2 a). 

 

 

Figure 3.2 High and low myelin. (a) Picture of a slide of a piglet brain tissue with the internal 

capsule delineated in red. (b) A stitch of brightfield cSLIM images with selected single frames of 

high and low myelin regions (scale bars: 35 μm). (c) Histograms of the dry mass density values 

per quarter frame in one AGA tissue sample. (d) Histogram of the dry mass density values per 

quarter frame in one SGA tissue sample. Gaussian fitting is used to separate the high and low 

myelin regions. 
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Figure 3.3 Color SLM calibrations. (a) Original SLIM image. (b) SLIM image obtained from 

different red, green, and blue SLM calibrations. (c) histograms of (a) and (b). (d) ‘RGB SLIM’ 

images composed of red, green, and blue SLIM images respectively. 

 

 

 

3.3.3 cSLIM 

 

The cSLIM system was implemented using a commercial SLIM module (Cell Vista SLIM 

Pro, Phi Optics, Inc) attached to a commercial phase contrast microscope (Axio Observer Z1, 

Zeiss). The system was outfitted with a Zeiss EC Plan-Neofluar 40x/0.45NA objective and a Point 

Grey color camera. cSLIM is fully automated and operates as a whole slide scanner that provides 

simultaneously a standard brightfield image (e.g., of H&E, immunochemical stains, etc.) and a 

quantitative phase map58.  
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The annular condenser ring is still employed and allows shifting of the unscattered light at the 

spatial light modulator (SLM) of the add-on module (Fig 3.1). For every phase shift, three intensity 

frames are acquired for each channel of the camera: 

( , ; ) ( , ; ) ( , ; ) ( , ; ),I x y rR x r gG x y bB x y   = + +   (1) 

where the weighing coefficients , ,r g b  are related such that 1.r g b+ + =  For our measurements, we 

used 0.1, 0.6, 03r g b= = = , to generate a grayscale image, the ratios having been determined 

empirically by finding the equivalent central wavelength, ,  at which the phase modulation of the 

SLM occurs. The phase map is then computed from the four frames as previously described with 

SLIM44. The measurement with an RGB camera resembles interferometry with 3 different sources 

58. Combining the three channels makes the problem similar to the grayscale camera case, except 

the temporal autocorrelation function and coherence length are slightly different (see 

Supplementary Information in 58).  Since we calibrate the SLM with the three channels combined, 

the phase shifts are automatically corrected for dispersion effects. To demonstrate this, here we 

calibrated the SLM according to each channel separately and captured images of the same field of 

view for each color, with their respective calibration. We then compared the resulting SLIM image 

from one calibration (Fig 3.3a) with the one from the three calibrations (Fig 3.3b). The histograms 

of both images show an almost complete overlap (Fig 3.3 c). If we create an RGB composite of 

three SLIM images corresponding to each channel, we would obtain an image as shown in Fig 

3.3d.   

The effects of the stain on the phase map are accounted for in the normalization technique. 

Previous analysis showed that changes induced in the images by dispersion were weak and that 

the final phase map, after our applied normalization, remains equivalent to the original SLIM. 
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3.3.4 Dry Mass Measurement  

 

The dry mass density  of the tissue section is computed from cSLIM phase images using 

the following relationship: 

( , ) ( , ),
2

x y x y


 


=                     (2) 

Where  is the center wavelength of the optical source, 0.2 ml g = , corresponding to an average 

of reported values, and ( , )x y is the phase value of the tissue at different points. The resulting dry 

mass density has units of mass/area. Once the phase map of myelin alone was generated, the total 

dry mass density was calculated by integrating  over all selected quarter frames.  

 

 

3.3.5 Image Processing  

 

We imaged the entire internal capsule from each slide. The data from each slide consisted 

of 625 cSLIM images, each the result of 12 intensity measurements (four phase shifted color 

images). The resolution is dictated by the diffraction limit. Our images are oversampled at 7.2 

pixels per micron. To confirm that the entirety of the internal capsule was captured, a mosaic was 

constructed for each slide (Figs 3.2a-b). The regions adjacent to and surrounding the internal 

capsule were segmented out, because they contain primarily cell body content as indicated by the 

reduced LFB stain, prior to myelin content cSLIM quantification.  

In order to separate the high and low myelinated regions, a histogram of dry mass for each 

quarter frame was evaluated, generating a bimodal pattern, which we described using gaussian fits, 

thereby selecting out the high myelin quarter frames from the rest of the sample (Fig 3.2b). After 

determining each quarter frame corresponding to the internal capsule, we applied a segmentation 

scheme to remove all the components of the tissue that do not correspond to myelin. The brightfield 
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image for each frame was first used to generate a binary mask specific to myelin through a color 

threshold and a filtering function (Figs 3.4 a-b). The SLIM counterpart image was then multiplied 

by the mask to produce a phase map specific to myelin (Figs 4 c-d). As a result, this procedure 

renders the phase signal specific to the blue areas in the color image. Thus, the staining is simply 

used to locate the myelin structures. The intensity values of the stain are only involved in 

determining a binary threshold, while the phase map is used to directly measure the dry mass 

density of the myelin. All measurements were made while blind to slide-diet pairings.

 

 

 
 

Figure 3.4 Myelin segmentation process. (a) A brightfield image is first used to create a (b) 

binary mask specific to myelin, which is then multiplied by the (c) corresponding SLIM image. 

(d) The result is a phase map uniquely describing the myelin content of the image, with former 

cellular areas (encircled in red) deleted. (e) Plot of the cross section in (a). (f) Plot of the cross 

section in (c) and (g) its Fourier transform, which has a mean frequency of 1
0.36 m

− , 

corresponding to an average axonal width of 2.7 m .
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3.3.6 Myelin Sheath Diameter  

 

Cross sections over myelinated axons were traced in both brightfield and corresponding 

SLIM images (Figs 3.4 a,c). The resulting spectra of intensity and pathlength are shown in Figs 3. 

4 e-f. Taking the Fourier transform and computing the mean amplitude-weighted spatial frequency 

yields a value of 1
0.36 m

− , translating to 2.7 m  as the average external diameter of the myelin 

sheaths, which agrees well with previous findings100.  

 

3.3.7 CLARITY  

 

Clearing brain tissue with the CLARITY method removes its lipids and therefore reduces 

drastically the myelin content. CLARITY was applied on coronal mouse brain (the piglet samples 

were permanently coverslipped) sections using 8% sodium dodecyl sulfate (SDS) according to a 

standard protocol101. Scans of 53 by 95 frames were captured and computationally stitched to form 

a mosaic image (Figs 3.5 a-b). The anterior commissure and the corpus callosum were targeted for 

analysis (Figs 3.5 a-b) because these regions are comprised primarily of myelinated axon tracts. 
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Figure 3.5 CLARITY results. 53 x 93 frame stitches of a mouse brain tissue (a) before and (b) 

after the clearing procedure. Dry mass density histograms of (c) the anterior commissure portions 

and (d) the corpus callosum structure. (* p<0.05).

 

 

3.4 Results 
 

3.4.1 Control Experiment  

 

To test the ability of cSLIM to assess the dry mass content of myelin, we cleared mouse 

brain sections stained with LFB and imaged the specimens before and after clearing. The samples 

were scanned by cSLIM in 53 by 93 frames and the same segmentation scheme was used to process 

the images. Fig 3.5 shows a composite image of a coronal mouse brain section, stained with LFB, 

before and after the clearing process. The anterior commissure and corpus collosum, indicated in 

Figs 3.5 a-b, were chosen for comparative analysis. Contrasting the tissue before and after 
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CLARITY revealed reductions in dry mass density measurements in both the anterior commissure, 

from an average value of 2
0.4 pg m to 2

0.2 ,pg m and the corpus callosum, from an average value 

of 2
0.4 pg m  to 2

0.3 ,pg m which was significant in the case of the anterior commissure, but not 

in the case of the corpus callosum (Figs3.5 c-d). The clearing of the corpus callosum, which is a 

much larger structure, may have been less extensive than that of the smaller anterior commissure. 

Since the Luxol Fast Blue stain attaches to the protein content of the myelin, and its hue is still 

present after clearing (Fig 3.5 d), it is clear that part or all of the lipid content was removed. This 

confirms that the cSLIM is sensitive to the dry mass of myelin lipids. 

 

3.4.2 Diet Composition and Myelin Dry Mass Density  

 

 

We evaluated samples from 4 treatment groups: AGA and SGA piglets on HF or CON diet. 

The regions analyzed were the internal capsule, which represented a myelin-rich and the 

corresponding surrounding parenchyma, which represented a low myelin brain region. Juxtaposing 

the brightfield images of SGA samples with those of AGA revealed that the four sets of samples 

differed in the depth of color and density of cells. The internal capsule contained darker, more 

fibrous structures, whereas the low myelin areas contained more numerous, larger cell bodies 

(Figure 3.6). 

Significant differences were found between control and HF diet samples in all four tissue 

classifications, as shown in Figure 3.7. Myelin dry mass density in the internal capsule was 

markedly higher in AGA compared to SGA piglets, (p <0.01). Similarly, higher myelin dry mass 

content was found in the surrounding parenchyma in AGA compared to SGA piglets (p<0.05). 

The mean values for dry mass surface density in the internal capsule was approximately 2
1 pg m  

for the control AGA piglets, and approximately 2
0.8 pg m for the control SGA piglets (Figs 3.7a-
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b).  Markedly lower average dry mass densities were found in the surrounding parenchyma for 

both AGA and SGA piglets (~ 2
0.5 pg m ) (Figs 3.7 c-d). These results are consistent with the 

previously mentioned work on these piglets using MRI. 

 

 

 

Figure 3.6 Comparison of brightfield frames. Single brightfield frames of high and low myelin 

areas in both appropriate for gestational age (AGA) and small for gestational age (SGA) 

samples. Scale bar: 35 .m  
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Figure 3.7 Dry mass comparisons. (a) Difference in dry mass density per quarter frame of total 

AGA tissue with high myelin, (b) SGA with high myelin, (c) AGA with low myelin, (d) and 

SGA with low myelin. (* p<0.05, ** p<0.01). 
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Figure 3.8 Relationship between dry mass, area and intensity. (a) Dry mass of myelin from 100 

frames of 10 slides plotted against the area of the binary masks, (b) 3D plot of dry mass, area of 

the mask, and color intensity of the fibers, (c) difference between control and experimental slides 

in mask area, (d) and difference between control and experimental slides in color intensity (** 

p<0.01). 

 

 

3.5 Summary and Discussion  

 

Our findings extend the field of analytical techniques that can quantify myelin in complex 

brain slices.  Specifically, we present evidence that our method can detect differences in myelin 

dry mass using both the CLARITY method in mouse brain samples, and a nutritional intervention 

previously shown to impact myelination in the internal capsule of SGA and AGA piglet brains.   

This is an important advance in the field given both the importance of myelination in brain 

development and function, and the difficulty of quantitatively measuring myelin in brain slices.  
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To date, myelin measurement studies have been largely qualitative or have involved indirect 

quantifications and cumbersome, costly procedures. Novel quantitative approaches that are 

efficient and accurate are needed to enhance our understanding of deficient myelination and assess 

possible nutritional remedies.  

In order to compare dry mass differences from diet with those of the binary masks and 

color intensities, all three features were computed in 100 frames from each slide of the average 

category. The area values were calculated by summing the binary masks, and the intensity values 

were evaluated from segmented brightfield images. Fig 3.8a shows the correlation between dry 

mass density and the corresponding binary areas. Fig 3.8b is a 3D plot of all three properties, 

indicating a strong positive relationship. Figs 3.8 c-d show that significant differences between 

diet categories can be obtained using only the binary mask area and color intensity in brightfield 

images.  

We employed CLARITY to mouse brain samples to validate the ability of cSLIM to detect 

variations in myelination under controlled conditions that specifically removed lipids.  Coupled 

with a segmentation based on the LFB stain, we measured myelin differences with great 

sensitivity. Our methodology successfully detected CLARITY-mediated decreases in myelin dry 

mass. These findings indicated that cSLIM is sensitive to myelin lipid loss following 

demyelination.  

We then tested the ability of cSLIM to recapitulate previously reported nutritionally and 

birth status driven differences in myelination in the internal capsule of piglets. These changes in 

myelin dry mass were substantially smaller in magnitude than the changes caused by CLARITY.  

Further, differences in myelination caused by birth status (SGA vs AGA) are likely to be 

qualitatively different from those caused by changes in dietary fat.  We were able to reproduce the 
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higher internal capsule myelin dry weight in AGA compared to SGA piglets using cSLIM in 

blinded fashion.  We also reproduced the HF-mediated increase in internal capsule myelin dry 

weight in both SGA and AGA piglet brain samples.  Additionally, we compared the dry myelin 

weight in the parenchyma surrounding the internal capsule to both the relevant internal capsule 

and across AGA and SGA and found substantially lower myelin density.   Taken together, our 

results demonstrated that cSLIM was able to detect differences in myelin dry weight across a wide 

range of myelin concentrations in challenging biological tissues.    

In summary, we have introduced a new technique for quantifying myelin content in brain 

tissue. Our approach involves the combination of the cSLIM imaging modality with a specificity 

mask provided by the simultaneous brightfield image of the stained tissue. To test our system, we 

imaged samples from piglets of different gestational ages fed diets with or without HF. We were 

able to recapitulate previous MRI findings using cSLIM in a blinded protocol.  cSLIM can thus 

quantitate myelin content with high sensitivity and offers great promise for aiding the design of 

nutritional interventions for brain health.  

We plan further studies to calibrate and fine-tune our assessment of myelin. For example, 

we plan to evaluate the absolute protein content of myelin at the single axon level by creating 

specificity masks using fluorescent tags for myelin proteins, such as the proteolipid protein. Co-

culturing neurons and oligodendrocytes would allow an investigation into the dynamic formation 

of myelin around a single axon, in real-time.  The development of technologies and imaging 

modalities for directly investigating myelination, deficiencies of myelin, and the processes of 

demyelination (disease) and remyelination (repair) in the context of dietary interventions is 

warranted given the substantial disability and high mortality rate associated with human myelin 

disorders, and particularly, those associated with IUGR and SGA. 
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CHAPTER 4: Label-free screening of brain tissue myelin content using phase imaging with 

computational specificity (PICS) 

 

4.1 Abstract  

 

As discussed in Chapter 3, inadequate myelination in the central nervous system is 

associated with neurodevelopmental complications. Thus, quantitative, high spatial resolution 

measurements of myelin levels are highly desirable. We combined SLIM micrographs with an AI 

classifying model that allows us to discern subtle disparities in myelin distributions with high 

accuracy. This concept of combining QPI label-free data with AI for the purpose of extracting 

molecular specificity has recently been introduced by our laboratory as phase imaging with 

computational specificity (PICS). Training on eight thousand SLIM images of piglet brain tissue 

with the 71-layer transfer learning model Xception, we created a two-parameter classification to 

differentiate gestational size and diet type with an accuracy of 82% and 80%, respectively. To our 

knowledge, this type of evaluation is impossible to perform by an expert pathologist or other 

techniques.  

 

4.2 Introduction  

 

As discussed in Chapter 2, myelin is a proteolipid-rich membrane that covers axons and 

provides the necessary insulation to effectively transmit electrical neural signals throughout 

various brain regions 62. As well, quantitative phase imaging (QPI) 47,49,53,55,84,86-89,102-112 is a label-

free imaging approach that can evaluate pathlength changes in biological samples at the nanometer 

scale. QPI has numerous medical diagnostic applications 85. Di Caprio et al have applied QPI to 

research sperm morphology 113, and Marquet et al. have used QPI to study living neurons 114, Lee 

et al. to study cell pathophysiology 115 and Din et al. to examine macrophages and hepatocytes116. 
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Conventional quantitative phase methods, however, use coherent light sources that tarnish image 

contrast with speckles. With the use of a broadband field, SLIM overcomes this disadvantage, and 

measures nanoscale information and dynamics in live cells by interferometry 44. 

In Chapter 2 we discussed the analysis of piglet brain tissue using color spatial light 

interference microscopy (cSLIM) 58,117, which uses a brightfield objective and an RGB camera, 

and generates 4 intensity images, one of which is a standard LFB color image. Thus, cSLIM 

simultaneously yields both a brightfield image and a phase map. We showed that appropriate for 

gestational age (AGA) piglets have increased internal capsule myelination (ICM) compared to 

small for gestational age (SGA) piglets, and that a hydrolyzed fat diet improves ICM in both118 . 

However, this analysis was largely manual.  

Recently, there has been growing interest in applying the capacity of AI to investigate 

specific datasets in medical fields 119-126. AI has special image processing capabilities to discern 

multi-faceted features that would otherwise elude trained pathologists. Deep convolution networks 

provide the opportunity to test thousands of image related feature sets to recognize specific tissue 

configurations 127,128. 

Here, we apply phase imaging with computational specificity (PICS)129,130 a new 

microscopy technique that combines AI computation with quantitative data to extract precise 

molecular information. Specifically, we combine deep learning networks with SLIM data to define 

subtle myelin variations in brain tissue, a strategy undertaken for the first time to our knowledge. 

We used a SLIM-based tissue scanner in conjunction with deep learning methods to classify the 

associated gestational size and diet of the tissue, which is inherently linked to myelin distribution 

and mass density. Such a system does not require staining of tissue. However, we performed our 

measurements on LFB stained samples and computationally normalized the phase maps to account 
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for the effects of the stain 58. The refractive index of stained tissue is expected to vary from that of 

unstained tissue because of the absorptive properties of the stain. Our normalization technique has 

been developed by comparing the phase maps of the same tissue samples before and after staining. 

Furthers details on this calculation can be found in the original cSLIM paper58. 

 

 

4.3 Methods  
 

4.3.2 Phase Imaging with Computational Specificity (PICS) 

 

We have combined deep learning with SLIM data to predict gestational size and diet 

regimen from single images. Our label-free SLIM scanner comprises custom hardware and in-

house developed software. The interface enables scanning of the slide with automated focus 

adjustment. Depending on the focus points selected for the four edges of the area to be imaged, an 

Figure 4.1 (a) Image of one of the 16 brain sections with the internal capsule demarcated in red. 

(b) Stitched mosaic of an internal capsule of an AGA piglet with experimental diet obtained using 

625 cSLIM images. (c) Stitched mosaic of an internal capsule of an AGA piglet with control diet 

obtained using 625 cSLIM images. (d) Sample AGA experimental-diet frame, (e) sample AGA 

control-diet frame, (e) sample SGA control-diet frame, (g) sample SGA experimental-diet frame. 

Scale bar 50 µm.    
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interpolation of z-values is calculated to ensure adequate focus throughout measurement. The size 

of a frame in this case is 255 µm x170 µm (1624 pixels x 1224 pixels), and the lateral step size is 

1580 µm and 1180 µm, horizontally and vertically, which allows sufficient overlap to create 

stitches. The duration of the scan for 25 x25 images is 10 minutes after the setup of focus points.  

The SLIM principle of operation relies on phase shifting interferometry applied to a phase contrast 

setup (see Ref. 30 for details). An add-on module (Cell Vista SLIM Pro, Phi Optics, Inc) with a 

spatial light modulator is connected to a commercial phase contrast microscope (Axio Observer 

Z1, Zeiss). We shift the phase delay between the incident and scattered field in increments of π/2 

and acquire 4 respective intensity images, which suffices to extract the phase image 

unambiguously. Figure 4.1 shows examples of SLIM images of piglet brain tissue corresponding 

to the area of the internal capsule (IC).  

 

 

4.3.3. Deep Learning Model  

 

We employed a transfer learning approach in our deep learning framework to construct our 

machine learning classifier. This technique is recommended for training a model when there is a 

relatively small number of image instances.  

As outlined in Figure 4.2 a, we selected the Xception model, which comprises 71 layers 

and has been pretrained on a large dataset of over 1.6 million images of different sizes and groups. 

Xception is the most accurate pretrained model with the least number of parameters131,132. We also 

selected this model due to its robust feature extraction capacity and superior performance with our 

data instances over alternatives, such as ResNet 133 and MofileNet 134. We fine-tuned the base 

model to include two dropout layers of 0.75 (Fig. 4.2. a).  
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Figure 4.2 (a) Machine learning Xception network components of a single block. (b) Entire 

network structure with a finetuned classification segment and three different output models. 

 

 

4.4 Results 
 

4.4.1 Data 

 

Our training data included 8,016 out of the total 10,000 SLIM images of piglet brain 

samples, obtained from 16 sections of different piglets divided equally between four categories: 

AGA-diet, SGA-diet, AGA-control, and SGA-control. Full IC reconstructions and sample frames 

are illustrated in Figures 4.2 b-c. 992 images were reserved in each category and randomly selected 

for validation as well as for testing. Brightfield images were not included in the model, as we 

wanted to achieve label-free detection without any stain. The patch size of 1624 x 1224 pixels 

coincided with the field of view of our imaging equipment. Images were augmented for training 

using rotation, x-axis flip, and y-axis flip. The phase distributions of the various groups are 

displayed in Figures 4.3a-f. Each graph displays one of the six possible pairings of the four 
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categories. Figures 4.3a-b show the different phase distributions caused by diets in the same 

gestational classes, while figures 4.3 c-d show such differences caused by gestational age in the 

same diet categories. Figures 4.3 e-f contrast mixed diet-age distributions. The closeness and 

extent of overlap for each combination illustrates the minute numerical differences in the pixels, 

suggesting that diagnostic capabilities are largely due to differences in spatial distributions and 

phase density.  This is further substantiated in the statistical differences in dry mass measurements 

of the same samples found in our previous study 117 only after applying binary myelin masks to 

the quantitative data. 

 

 
Figure 4.3 Histograms of the count of pixel data in SLIM images for (a) AGA groups, (b) SGA 

groups, (c) Control diet groups, (d) Experimental diet groups, and (e-f) mixed gestational age 

and diet groups. 
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4.4.2 Model Accuracy and Loss 

 

 

Model accuracy and losses for three types of classifications are shown in Figure 4.4. In the 

case of distinguishing brain tissue based on diet regimens, we obtained an accuracy of 80% (Fig. 

4.4 a) and a loss of 0.35 (Fig. 4.4 b). These results are significant considering that the subtlety of 

these difference would otherwise be undiscernible to a trained histopathologist. There is negligible 

underfitting or overfitting in these models and they could be characterized as having appropriate 

and balanced fitting. In the case of classifying phase maps based on gestational size, the results 

were slightly stronger with an accuracy of 82% (Fig. 4.4 C) and a loss under 0.3 (Fig. 4.4 d). There 

is minimal underfitting in this model, however the training loss is noisy near the final epochs, 

while the validation loss is relatively smooth, likely due to a greater variety of instances in the 

training set and the large number of parameters being evaluated. Lastly, the results for the 

classification of both diet and gestational age categories are, as is expected, considerably lower 

with an accuracy of 63% and a slight degree of underfitting (Fig. 4.4 e). The loss values are also 

higher than individual comparisons, tapering off at the final epochs around 0.8 instead of 0.3 (Fig. 

4.4 f).  
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Figure 4.4 Plots for diet classification (a) accuracy and (b) loss, (c) gestational size accuracy and 

(d) loss, and (e) all categories accuracy and (f) loss. 

 

 

 

4.4.3 Confusion Matrices for Validation and Loss 

 

 

The confusion matrix offers a quantitative indication of the performance of a classifier. 

There are four classes in our confusion matrix: “Diet - AGA”, “Control - AGA”, “Diet - SGA”, 

and “Control - SGA”. This confusion matrix can have three kinds of errors: the sample can be 

labelled incorrectly in terms of diet, gestational size, or both. In the case of a perfect classification 

model, the confusion matrix is diagonal with only true negatives or true positives. Figure 4.5a 

shows a 4x4 confusion matrix for the classification of each category on all test images from 16 

slides.  

The first row, corresponding to the Control-AGA category, indicates 80% of samples 

labelled correctly with most errors attributed to designating the samples with the same diet but 

with a small gestational size. The second row, corresponding to Diet-AGA, has 74% correct 
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labelling, with most errors due to a mismatch of the diet type. The third row, for Control-SGA, has 

71% correct labeling and the last row, for Diet-SGA, has only 62% correct labelling, with 14% 

mislabeled as Control-SGA. The AGA categories outperform those of SGA, presumably due to a 

lower myelin abundance inherent in the smaller gestational size, which may have been 

counterbalanced by the experimental diet, thereby confusing the Diet-SGA category with either 

AGA classes. 

To further validate our model on slides that were not used for training, we evaluated images 

from an untrained slide that is associated with an experimental diet and SGA. This is a test that is 

separate and additional to the 10% of images used for testing from the 16 sections. The results, 

shown in a confusion matrix (Fig. 4.5.b), were better than anticipated, exceeding the performance 

of test images in this category, with a true positive rate of 72 % for both size and diet, with 77% 

for just diet, and 94% for just size.  

 

 
 

Figure 4.5 (a) Confusion matrix for classification of all four categories on the 16 slides that were 

used for training, and (b) confusion matrix of an untrained Experimental diet-SGA slide. 
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4.5 Conclusions  

 

 

Current histopathological findings depend on manual investigations of stained tissue slices 

under a microscope by a trained pathologist. The alternative methods of assessing myelin density, 

such as MRI and PIXE, are indirect, cumbersome, and costly. Here, we present evidence that our 

method of combining AI with spatial light interference microscopy (SLIM) can quickly determine 

differences in myelin content without the use of molecular stains or manual analysis.  This is an 

important contribution to neuroscience, especially given the significance of myelination in brain 

development and the current challenges of measuring myelin quantitatively.  

We demonstrated that applying AI to SLIM images delivers excellent performance in 

classifying single phase maps of brain tissue to detect the level of myelin adequacy. The 

approximately 80 percent accuracy outcomes for both binary distinctions, and 62 percent for all 

four categories, indicate that the proposed method may be useful in quick screenings for cases of 

suspected myelin disorders. These results are significant as it would otherwise be impossible for a 

trained histopathologist to distinguish such myelin discrepancies. Not only does this technique 

offer automatic screening, but multiple tissue samples can be analyzed rapidly as the overall 

throughput of the SLIM tissue scanner is comparable with that of commercial whole slide scanners.  

One way to improve on these results without simply adding more images, while keeping the 

samples label-free, would be to infer additional information through digital staining. This has 

already been performed successfully with phase images129, RI tomography135, and 

autofluorescence11. In our case, artificially recreating the LFB stain or a myelin proteolipid protein 

fluorophore could help enhance our results.  
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Future scope thus includes evaluating myelin content with multiple modalities and creating 

specificity masks using fluorescent tags for constituent proteins. Employing PICS to mimic such 

tags would facilitate investigations into the dynamic generation of myelin around axons in real-

time. 
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CHAPTER 5: White Blood Cell Detection, Classification and Analysis using Phase Imaging 

with Computational Specificity (PICS) 

 

5.1 Abstract  

 

Treatment of blood smears with Wright’s stain is one of the most helpful tools in detecting 

white blood cell abnormalities. However, to diagnose leukocyte disorders, a clinical pathologist 

must perform a tedious, manual process of locating and identifying individual cells. Furthermore, 

the staining procedure requires considerable preparation time and clinical infrastructure, which is 

incompatible with point-of-care diagnosis. Thus, rapid and automated evaluations of unlabeled 

blood smears are highly desirable. In this chapter, we used color spatial light interference 

microcopy (cSLIM), a highly sensitive quantitative phase imaging (QPI) technique, coupled with 

deep learning tools, to localize, classify and segment white blood cells (WBCs) in blood smears. 

The concept of combining QPI label-free data with AI for the purpose of extracting cellular 

specificity has recently been introduced in the context of fluorescence imaging as phase imaging 

with computational specificity (PICS). We employed AI models to first translate SLIM images 

into brightfield micrographs, then ran parallel tasks of locating and labelling cells using 

EfficientNet, which is an object detection model. Next, WBC binary masks were created using U-

net, a convolutional neural network that performs precise segmentation. After training on digitally 

stained brightfield images of blood smears with WBCs, we achieved a mean average precision of 

75% for localizing and classifying neutrophils, eosinophils, lymphocytes, and monocytes, and an 

average pixel-wise majority-voting F1 score of 80% for determining the cell class from semantic 

segmentation maps. Therefore, PICS renders and analyzes synthetically stained blood smears 

rapidly, at a reduced cost of sample preparation, providing quantitative clinical information.  
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5.2 Introduction  

 

White blood cells (WBCs) are essential components of the immune system and of the 

body's protection against infections. The five key forms of WBCs are lymphocytes (including B 

and T cells), eosinophils, neutrophils, monocytes and basophils. In healthy individuals, these WBC 

populations have specific concentration ranges and any deviations from these parameters are 

clinically informative 136.   

Wright's staining of blood smears is one of the most common methods for detecting white 

blood cell aberrations137. However, it is time-consuming and laborious for a clinical pathologist to 

detect and identify individual cells in order to diagnose leukocyte abnormalities. Furthermore, the 

staining procedure is involved, which altogether makes diagnosis tied to a clinical infrastructure. 

Another way to calculate WBC relative percentages is with flow cytometry, where fluorescently 

labeled antibodies are used to differentially mark WBC populations 138. With long-established 

laboratory procedures, this approach is widely used in clinical practice. Modern cytometers, such 

as mass cytometers, can evaluate up to 40 parameters in any single measurement. However, they 

are limited to analyzing cell phenotypes based on the expression degree of antibody labels, similar 

to fluorescence-based cytometers139.  

Recent efforts to further facilitate these tasks by analyzing label-free white blood cells 

include the use of intensity-based imaging flow cytometry 138,140, in which the benefits of digital 

microscopy, such as the measurement of morphology, are combined with the high-throughput and 

statistical certainty of a flow cytometer. Using this technique, white blood cells can be detected, 

classified and counted. However, this method requires expensive equipment, involved sample 

preparation, is of low resolution, and does not provide quantitative information on cellular 

components. 
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Phase imaging approaches typically use coherent light sources, which compromises 

multiple factors of image quality, such as signal-to-noise ratio (SNR) and contrast, due to speckles. 

SLIM overcomes this drawback by using a broadband field to derive nanoscale details and 

dynamics in live cells using interferometry44. This system, as discussed in Chapter 3, uses a 

brightfield objective and an RGB camera, and generates 4 intensity images, a regular color 

micrograph being one of them. This image, φ(x,y), is a data matrix relating to the nanoarchitecture 

of the imaged sample.  

As shown in Chapter 4, there has recently been a surge of interest in using AI to analyze 

relevant datasets in medical fields 119-126 . AI has unique image processing capabilities allowing it 

to detect multi-dimensional features that qualified pathologists would otherwise miss. Deep 

convolutional networks enable thousands of image-related feature sets to be tested to recognize 

complex biological data 127,128. 

Here, we apply phase imaging with computational specificity (PICS)129,130,141, a novel 

microscopy technique that combines AI computation with quantitative data, to analyze WBCs in 

blood smears. Specifically, we combine deep learning networks with cSLIM micrographs to 

detect, classify and segment four types of white bloods cells: neutrophils, lymphocytes, 

monocytes, and eosinophils. To the best of our knowledge, this is the first time such a strategy has 

been implemented.  Such a system does not require staining of cells as we convert phase maps, 

which contain biologically relevant data into Wright’s stain brightfield images. This is 

unprecedented and indisputably valuable for standard clinical produces requiring the accurate 

assessment of WBCs without the use of tedious preparations and extraneous labels.   
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5.3 Methods 

 

5.3.1 Blood Smears Preparation  

 

Eighteen blood smears stained with Wright’s stain were used for our analysis. Each smear 

was scanned in a configuration of 12x12-40 frames, depending on the size of the ‘zone of 

morphology,’ to avoid clumped areas at the application point as well as sparse areas near the 

feathered edge. Examples of brightfield and counterpart phase images (3x4 frame stitches) of the 

smears are shown in Figures 5.1 a-b, with zoom-in instances of a neutrophil, monocyte, eosinophil, 

and lymphocyte in Figures 5.1 c-f. Each slide was imaged to produce both brightfield and 

quantitative channels. The classifications of boundaries and segmentations were performed 

manually in MATLAB using the ‘Image Labeler’ application. Basophils were omitted from 

analysis due to insufficient numbers needed for training and validation. The ground truth 

classification of the WBCs was performed by a board-certified hematopathologist. The procedures 

used in this chapter for conducting experiments using human subjects were approved by the 

institute review board at the University of Illinois at Urbana–Champaign (IRB Protocol Number 

13900). Furthermore, all blood smear slides came already fully prepared, and all methods were 

carried out in accordance with relevant guidelines and regulations, and dissociated from patient 

statistic, with informed consent that was obtained from all subjects and/or their legal guardians. 
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Figure 5.1 Blood smear images. (a) 3x4 stitch of brightfield images from a single scan. Scale 

bar: 200 µm. (b) corresponding SLIM images to (b). Examples of (c) a neutrophil, (d) monocyte, 

(e) eosinophil, and (f) lymphocyte in brightfield and phase channels. Scale bars: 5 µm. 

 

 

 

5.3.2 Image-to-image translation  

 

 

The purpose of converting phase images to the original brightfield version is for situations 

when an unstained slide is imaged, or a slide is captured with a grayscale camera. The phase map 

created with cSLIM is the equivalent of these versions.  A translation from QPI to Wright’s stain, 

as far we know, has never been heretofore achieved. 

The conversion of SLIM micrographs to artificial brightfield images of stained WBCs was 

accomplished using a conditional generative adversarial network (GAN) based network called 

pix2pix13. GAN models have been very successfully at converting micrographs types from one 

modality to another119,142. A total of 504 images were used for processing and among these 50 

images were held out as test images.  The remaining images were split between training and 
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validation in an 8:1 ratio. In this pix2pix network, there are two components: a generator (G) and 

a discriminator (D). The task of the discriminator is to distinguish between a real image and the 

fake image generated by the generator. The generator and discriminator play an adversarial min-

max game, the GAN loss can be mathematically written as:  

, ,( , ) [log ( , )] [log(1 ( , ( , ))]cGAN x z x zL G D E D x y E D x G x z= + −
                 (5.1) 

where ,x zE is the expected value over real and fake instances, x is the input image, and z is the 

random noise. This trains the generator G to create artificial images which are supposed to fool 

the discriminator. An L1 loss is also combined with this GAN loss for more stable training. An 

Adam optimizer143 with a learning rate of 0.0002 was used to train the generator and the batch size 

was set to 2. Input SLIM images were downsampled to 512X512 to fit the GPU memory. 

The semantic segmentation was performed in multiple steps as shown schematically in 

Figure 5.2. The EfficientDet model144 was used for localization and classification of different 

WBC classes. A U-Net was used to generate binary segmentation maps of WBC cells.  The 

localizations and binary maps were combined to generate semantic segmentation map through a 

process described below.  The same test images were used in these steps also. The training and 

validation data were split randomly 5 times, and with each trained model the localization, 

classification and segmentation was performed with the same set of testing images. The detailed 

descriptions of these steps are given below. 
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Figure 5.2 Image processing. (a) The procedure for analyzing WBCs begins with an image-to-

image translation with pix2pix from SLIM to brightfield. (b) The translated image is then trained 

with EfficientDet to locate and classify all cell types, (c) in parallel with a U-net that produces 

binary masks of the WBCs. (d) Finally, combining both networks enables the semantic 

segmentation of different WBCs in each frame. 

 

5.3.3 Localization and Classification of WBCs 

 

 

The localization and classification of white blood cells were performed by a state-of-the-

art deep learning-based object detection model, EfficientDet144. The EfficientDet model took an 

image as input and predicted localization-bounding boxes with associated WBC class labels. An 

example of a rectangular label is shown in Figure 5.3. In Figure 5.2, a generic schematic is shown 

where the input of the EfficientDet model is a translated brightfield image. In this chapter, the 

architecture of the EfficientDet was specified as EfficientDet-D0. It uses EfficientNet-B0 as the 

backbone network for feature extraction. The weights of EfficientNet-B0 in the EfficientDet model 

were initialized with an EfficientNet-B0 that was pre-trained on the ImageNet dataset 145 for an 

image classification task. The whole EfficientDet network was subsequently fine-tuned by use of 
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the translated images in the training set. In the fine-tuning process, the EfficientDet was trained by 

minimizing a compound focal and smooth L1 loss that measures the classification errors and 

bounding box prediction errors, respectively144. The loss function was minimized with an Adam 

optimizer143 with a batch size of 8. The learning rate was set to 5 × 10−5, which was determined 

based on the network performance on the validation set. The network training was stopped if the 

mean average precision (mAP) of validation set did not increase for 10 consecutive epochs. The 

EfficientDet network weights that yielded the highest validation mAP during the training process 

were selected to establish the final EfficientDet model.  

The trained EfficientDet was tested on the unseen testing set with mAP as the performance 

metric. The mean classification and localization time per frame was 140 ms. For a more robust 

evaluation, the training process described above was repeated five times corresponding to the five 

random partitions of training and validation data. These five EfficientDet models were tested on 

the same unseen testing set. The corresponding outcomes are discussed in the Results section of 

this chapter. 

 

5.3.4 Binary Segmentation WBCs 

 

 

For binary segmentation of WBC cells, a U-Net network was used. The U-Net model took 

a translated brightfield image as input and predicted a binary map in which each pixel represented 

either WBC class or background class. An example of how cells were labeled for this is shown in 

Figure 5.3 b. In Figure 5.2, a general schematic is shown where the input to the U-Net model is a 

translated brightfield image and the output is a binary segmentation map. 

 

 



61 
 

 
Figure 5.3 Labelling examples using the MATLAB imageLabeler for both (a) rectangle (in this 

case of an eosinophil) and (b) pixel labels (in this case of two lymphocytes). 

 

The architecture of the U-net consists of 5 blocks and 4 blocks in the expansion path and 

contraction path, respectively. Each block in the expansion path includes a convolutional layer, 

Max-pooling layer, and a BatchNorm layer; each block in the contraction path includes a 

convolutional layer, an up-sampling layer, and a BatchNorm layer.  

The training and validation sets used for U-Net were consistent with those used for the 

previous EfficientDet model training.  In this step, the ground truth for each image sample was the 

binary mask map of WBCs. The U-Net was trained by using an Adam optimizer143 to minimize 

the mean squared error loss that measures the difference between the ground truth segmentation 

map and the prediction of the U-Net. The learning rate and batch size were 3 × 10−5 and 2, 

respectively. The validation loss was monitored in the training process. The network training was 

stopped if there was no decrease in validation loss for 5 consecutive epochs, while we chose the 

weights corresponding to the lowest validation loss. The training process was repeated five times 

based on the same partitions of training and validation data described previously. Additionally, the 
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testing dataset was the same as described in the previous section of image-to-image translation, 

with mean processing times of 110 ms per frame.  

 

 

5.3.5 Semantic Map Generation  

 

In the previous two steps, localization-classification of WBC cells using EfficientDet 

model and binary segmentation by U-Net model were described. This step combined the results of 

these previous two steps to generate semantic maps. In Figure 5.4, for a given translated brightfield 

image, the output of the EfficientDet model and U-Net model were combined to generate the 

semantic segmentation map. The semantic segmentation map was generated by combining the 

predicted labeled boxes and binary maps in a pixel-wise manner, described as follows: the pixels 

outside cell regions in the binary map were classified into the background class. For pixels inside 

cell regions, if they also existed inside one unique labeled box, these pixels were classified into 

the WBC class of the associated cell box; if a pixel was contained within two or more labeled 

boxes, which was observed to be a very rare case in our studies, the pixel was classified into the 

WBC class of the labeled box with the highest confidence score according the majority class; in 

all other cases, the pixels were assigned to the background class. 

With the five pairs of trained EfficientDet and U-Net models in the previous two steps, five 

semantic maps were generated for a given translated image. The five semantic maps were finally 

combined into one for a more reliable prediction by applying a pixel-wise majority-voting process. 

The combined semantic map was the final predicted semantic map for the image. Pixel-wise recall, 

precision, and F1 scores were used to evaluate the semantic segmentation performance of the 

proposed approach on the unseen testing set. The pixel-wise recall, precision, and F1 scores were 
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computed between the predicted semantic maps and their ground truth values for all the images in 

the unseen test. The corresponding results are discussed in the Results section.  

 

5.4 Results  

 

Our dataset included 504 images that were selected from the scans to include white blood 

cells. We analyzed 267 neutrophils, 117 eosinophils, 192 lymphocytes, and 82 monocytes. There 

were insufficient basophils to include in the set. Due to the natural proportion of white blood cells 

to one another, with neutrophils comprising 40-60%, lymphocytes 20-40%, monocytes 2-8%, and 

eosinophils 1-4% of total WBCs 146,147, it was difficult to deliberately make an even number of 

cells in each category. Although the SLIM images contribute new structural information, the color 

disparity in some of the cellular components is sometimes diminished, such as in WBC nuclei.  

In Figure 5.4, a sample translated brightfield image, generated by the image-to-image translation 

model from an input SLIM image, is shown along with the corresponding original brightfield 

images. Visually, both the images appear identical. Upon closer inspection, it can be seen that 

some of the WBC nuclei are not as dark in hue as in the original images, and the background is 

slightly grainy in some areas. Figure 5.4 d shows the combined GAN and L1 loss plots of the 

generator. The model weights corresponding to the lowest validation loss were chosen to generate 

the translated brightfield images from the test set SLIM images. The quantitative results for 

localization, classification and segmentation are described in the following sections.  
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Figure 5.4 Image-to-image translations. (a) Example of an input SLIM micrograph. (b) 

Corresponding brightfield image that serves as ground truth. (c) The translated brightfield output 

of the model. (d) Loss plot of the training sessions, combing GAN and L1 losses. Scale bar: 25 

µm. 

 

 

5.4.1 Localization and Classification  

 

 

The mean and standard deviation of mAPs for the four categories (neutrophils, eosinophils, 

lymphocytes, and monocytes) corresponding to five sets of testing are shown in Table 1. For a 

comparative analysis, we employed the same strategy to train five EfficientDet models with 

annotated SLIM images and ground truth brightfield images, respectively. The corresponding 

results are shown in Table 1.  
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Table 5.1. Localization and Classification. Mean average precision (AP) values for localization 

and classification of all five test sets, using EfficientDet, for SLIM, brightfield and translated 

images. 

 

In general, the brightfield and translated images both produced better results for the four 

WBC categories in terms of the average mAPs over the five test sets. An example of a labeled 

translated image is shown in Figure 5.5 a. In this case, there is an eosinophil in the bottom left 

corner that is recognized and correctly labeled with 99% certainty. In the top right corner, a 

neutrophil is correctly labeled with 91% certainty. These values are not indicative of all respective 

cell types, even in the case of localization and classification, but only pertain to these specific 

cases. The Precision-Recall curves for each WBC in all tested translated images are shown in 

Figure 5.5b, with comparisons of original image types in Figure 5.6. 

 

 The best performance is that of the eosinophils, with a precision score of 90.09%, likely 

due to a very distinctive red granular cytoplasm, and the lowest is that of lymphocytes, with 56.6 

%, likely because many large lymphocytes appear similar to small monocytes, even to a trained 

pathologist. These translated images were produced using only quantitative phase image input and 

can therefore be regarded as being equivalent to unlabeled blood smears.   
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Figure 5.5 Localization and classification. (a) Example of an input translated brightfield 

micrograph with an eosinophil and neutrophil located and classified with 99% and 91% certainty, 

respectively. (b) Precision-Recall curves for all cell categories in all images. Scale bar: 20 µm. 

 

 
Figure 5.6 Precision-recall curves for SLIM (a), and brightfield (b) images.  

 



67 
 

5.4.2 Segmentation  

 

 

The results of the semantic segmentation on translated images are listed in Tables 5.2-3. 

These numbers are based on pixel-wise F1 scores. Eosinophils had the highest scores, with 86.7%, 

and neutrophils and lymphocytes had the lowest, with 68.5%, for reasons similar to those in 

localization and classification tasks. These results confirm the reliability of the translated model 

to convert unseen, unstained quantitative phase images into typical Wright’s stain brightfield 

images.  

Table 5.2. Semantic Segmentation. Semantic segmentation results in terms F1 scores for all five 

test sets, and the average values for all three image versions.  
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Table 5.3. Majority Voting. Results based on the combination of all five semantic maps for a 

reliable prediction with majority-voting: F1 scores for image and cell classes, with average 

values in the rightmost column.  

 

 

An example of a WBC segmentation is shown in Figure 5.7 for SLIM, brightfield and 

translated cases. In this example there is a neutrophil in the top right corner, one in the bottom 

left corner, and a lymphocyte in the bottom left corner. Figures 5.7 d-f are the predicted labels 

from the model, and Figures 5.7 g-i are the ground truth, with further examples presented in 

Figure 5.8. Both brightfield and translated images have predicted labels similar to the ground 

truth, with all three cells correctly identified.  
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Figure 5.7 Semantic segmentation results. (a) Example SLIM input, (b) example brightfield 

input, and (c) example translated input. (d-f) Corresponding predicted labels, and (g-i) 

corresponding ground truth labels. Scale bars; 20 µm. 
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Figure 5.8 Prediction examples for a frame with (a) two neutrophils(red) and a lymphocyte 

(blue) and (b) a frame with an eosinophil (green) and a lymphocyte (red). 

 

5.5 Discussion  

 

Here, we present evidence that our method of combining AI with color spatial light 

interference microscopy (cSLIM) can quickly identify different white blood cells, such as 

neutrophils, monocytes, lymphocytes and eosinophils, without manual analysis.  This is an 

important contribution to blood smear analysis, especially given the significance and multitude of 

leukocyte complications.  We demonstrated that applying AI to cSLIM images delivers excellent 

performance in first artificially generating brightfield micrographs and afterwards localizing and 

classifying different WBCs. The results for all four categories indicate that the proposed method 

may be useful in quick screenings for cases of suspected leukocyte disorders.  

Not only does this technique offer automatic screening, but multiple blood smear slides 

can be evaluated rapidly as the overall throughput of the cSLIM scanner is comparable with that 
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of commercial whole slide scanners.  Inferring additional information through digital staining 

would be one way to improve upon these results other than simply adding more images, while 

keeping the samples label-free. This has recently been accomplished with phase images148, RI 

tomography135, and autofluorescence11. In our case, artificially recreating various fluorescent tags 

to identify specific components of white blood cells, such as a molecular tag for human neutrophil 

elastase (HNE), could help enhance our results.  Future scope includes evaluating more images 

with sufficient instances of basophils and bands to add to the current WBC categories list, as well 

as imaging blood smears with specific leukocyte abnormalities, such as autoimmune neutropenia 

and leukemia.  
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CHAPTER 6: GANscan: Continuous Scanning Microscopy using Deep Learning 

Deblurring 

6.1 Abstract  

 

 

Most whole slide imaging (WSI) systems today rely on the “stop-and-stare” approach, 

where, at each field of view, the scanning stage is brought to a complete stop before the camera 

snaps a picture. This procedure ensures that each image is free of motion blur, which comes at the 

expense of long acquisition times. In order to speed up the acquisition process, especially for large 

scanning areas, such as pathology slides, we developed an acquisition method in which the data is 

acquired continuously while the stage is moving at high speeds. Using generative adversarial 

networks (GANs), we demonstrate this ultra-fast imaging approach, referred to as GANscan, 

which restores sharp images from motion blurred videos. GANscan allows us to complete image 

acquisitions at 30x the throughput of stop-and-stare systems. This method is implemented on a 

Zeiss Axio Observer Z1 microscope, requires no specialized hardware, and accomplishes 

successful reconstructions at stage speeds of up to 5,000 μm/s. We validate the proposed method 

by imaging H&E stained tissue sections. Our method not only retrieves crisp images from fast, 

continuous scans, but also adjusts for defocusing that occurs during scanning within +/- 5μm. 

Using a consumer GPU, the inference runs at <20ms/ image. 

 

6.2 Introduction  

 

Numerous microscopy applications require large fields of view (FOV), including digital 

pathology 149, micro-mirror and biosensor assembly 150, and in vivo imaging 151. Acquisition time 

demands are a major bottleneck to fixing modest or partially filled FOVs in standard microscopy 

techniques. Improvements in both hardware and computation are thus actively sought to push the 

efficiency of optical measurements beyond traditional boundaries. Accelerating either image 
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acquisition or analysis can have drastic benefits in diagnostic assessments and has been shown to 

provide critical advantages in cell detection152, disease screening153, clinical studies154 and 

histopathology155,156. 

In standard microscope systems, the objective lens dictates the resolution and field-of-view 

(FOV), forcing a trade-off between the two parameters. In commercial whole slide scanners, the 

FOV is extended through lateral scanning and image mosaicking. Most forms of microscopy 

require serial scanning of the sample region, which slows down measurement acquisitions and 

diminishes the temporal resolution.  

There are three classes of strategies used in traditional microscopy for slide-scanning. The 

first technique uses the so called “stop-and-stare" style, which entails sequentially moving the 

sample across a scanning grid, pausing the stage, and exposing the camera for discrete recordings. 

This tactic generates high-quality images as a result of long measurement durations, but is not 

especially time-efficient157. A second technique involves illuminating a moving sample with bursts 

of light that help circumvent the motion blur, which would otherwise compromise the image 

resolution. As a result of the short exposure times with this method, the resulting images have a 

relatively poor signal-to-noise ratio (SNR)157. Thus, there is a cost to optimizing image clarity or 

acquisition speed in these approaches. Third, there are line scanning 158 and time-delay integration 

(TDI) 159 methods, which use 1D sensors, where a camera vertically handles continuous signals 

line by line to reduce read-out time and increase SNR. However, even the latest versions of these 

instruments require specialized imaging equipment and readout methods160,161. 

Different imaging methods have been proposed to improve the throughput of scanning-

based microscopy techniques, such as multifocal imaging162 and coded illumination157. 

Computational methods of microscopy imaging163-167, such as ptychography, which scans and 
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fuses portions of spatial frequencies, can produce large FOVs with resolutions that surpass the 

objective’s diffraction limit. However, these solutions end up either complicating the microscopy 

system configuration, deteriorating the image quality, or extending the post-processing period. 

Additionally, iterative algorithms that are used in Fourier ptychography to reconstruct an image 

from a sequence of diffraction patterns often suffer from convergence issues168.   

The mechanical specifications of the scanning stage, rather than the optical parameters of 

the microscope, generally hinder the throughput performance of WSI systems169. The space-

bandwidth product (SBP), which is the dimensionless product of the spatial coverage (FOV) and 

the Fourier coverage (resolution) of a system, can quantify the information across an imaging 

system170. Enhancements to the SBP have been the objective of various innovations in imaging 

techniques 5,6,9,171-173, but typically require either specialized hardware or time-consuming post-

processing.  

The advent of accessible deep learning tools in recent years has led to a new host of 

strategies to address lingering microscopy challenges 172, including super-resolution imaging 174, 

digital labeling of specimens119,129,175-180, Fourier ptychography microscopy171, and single-shot 

autofocusing181, among others182. These methods, which take advantage of recent breakthroughs 

in deep learning, need no modification to the underlying microscopic gear and produce faster and 

more comprehensive imaging results than traditional image reconstruction and post-processing 

algorithms. Generative adversarial networks (GANs), which comprise two opposing networks 

competing in a zero-sum dynamic, have been especially prominent in image-to-image translation 

tasks, due in large part to their outstanding execution of pixel-to-pixel conversions119,142. 

In this work, we propose a computational imaging technique, termed GANscan, which 

employs a GAN model to restore the spatial resolution of blurred videos acquired via continuous 
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stage scanning at high speeds using a conventional microscopy system. Our method involves 

continuously moving the sample at a stage speed of 5,000 μm/s and an acquisition rate of 30 frames 

per second (fps). This acquisition speed is on par with the state-of-the-art TDI technology of 1.7-

1.9 gigapixels in 100 seconds 159,161. However, unlike TDI, our approach is using standard optical 

instrumentation, which lowers the threshold for broad adoption in the field. 

In contrast to other high-throughput imaging endeavors, GANscan adds no complexity to 

the hardware, with single frame restorations that can be computed in a matter of milliseconds. The 

results of this novel technique demonstrate that basic modifications in measurements, coupled with 

artificial intelligence (AI), can provide the framework for any rapid, high-throughput scanning 

operation.  

This chapter is structured as follows: first, we present the workflow for continuous imaging 

microscopy in both slow and fast acquisitions. Second, we describe the theory behind blur motion 

artifacts and why deconvolutions are limited in restoring the spatial bandwidth of control images. 

Third, we discuss the imaging procedures and registration of slow-moving samples with the 

motion-smeared ones. Fourth, the parameters of the GANscan network are explained, as well as 

the data processing techniques prior to model training. Lastly, reconstruction performances are 

evaluated using an unseen test set, including a test set from different patients, which is also 

compared against stop-and-stare controls and deconvolutions using standard image metrics. 

 

 

6.3 Theory and Results  

 

6.3.1 Workflow  

 

Figure 6.1 depicts the workflow of our approach. To demonstrate the benefits of this technique, 

we imaged a large sample of a pathological slide of a ductal carcinoma in situ (DCIS) biopsy, 
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covering roughly half a standard microscopy slide area (~30 mm x 15 mm), as well as an unstained 

blood smear. All slides studied in this work were divorced from patient statistics, with consent 

from Carle and Christie Clinic in Urbana, Il, and their use was approved by the institute review 

board at the University of Illinois at Urbana–Champaign (IRB Protocol Number 13900). Both 

slides were scanned in a row-major configuration, capturing movies across the slide horizontally 

(Fig. 6.1a). There were no modifications to a standard commercial microscope (Axio Observer Z1, 

Zeiss), and the only adjustments in the measurement were the speed of the stage and the continuous 

recording of the camera.  In order to obtain ground truth images for training, the same rows were 

captured at a slow (50 μm/s) stage speed and at the same exposure time of 2 ms. Once pairs of 

sharp and defocused images were assembled through Pearson correlations, a GAN network was 

trained to enable restoring unseen motion blurred micrographs (Fig 6.1b). 

 

Figure 6.1 (a) Scanning stage of the AXIO observer Zeiss microscope with an example slide 

showing the row-major continuous scanning direction. (b)  Motion blurred reconstruction scheme 

using a slow-moving stage as the control for GAN training. 
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6.3.2 Theory  

 

At rest, let the image be ( , ).I x y  During the sample translation, the translated image, I , has the 

following time dependence: 

( , ; ) ( , )I x y t I x vt y= +  (1) 

where v  is the stage speed. Considering the camera integration time T, the “blurred” detected 

frame is then: 
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where ( )
t

T
  is the 1D rectangular function of width T. The integration is the sum of the frames 

accumulated during the acquisition time T  (Fig. 2a). 

Using the central-ordinate theorem 183: 
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where   indicates the Fourier transformation.  

Using the convolution theorem 47, Eq. 3 can be rewritten as: 
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In Eq. 5, we recognize a Fourier transform of a product, which yields the following convolution 

operation, 

( , ) ( , ) ( )x

v

x x
I x y I y

v vT
= ⓥ  (6) 

where x

v

ⓥ  indicates the convolution operator over the variable x/v, which has dimensions of time. 

This result captures the physical description of the image spatial blurring as the result of a temporal 

convolution operation. Thus, the smeared image is the sharp image convolved along the direction 

of the scan by a rectangular function, which has a width proportional to the acquisition time.  For 

a scanning speed of 5,000v m s= and 2T ms= , 10vT m= . This corresponds to a length 

roughly twenty times the diffraction resolution of our imaging system. 
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Figure 6.2 (a) A few frames from a video taken with a stage speed of 50 μm/s, with time labels 

indicating a slow forward movement. (b)  Middle image of the sharp sequence a used as ground 

truth. (c)  The convolution of (b)  with the blur function. (d) The deconvolution of (c) with the blur 

function. Scale bar 25 µm. 

 

 

6.3.3 Deconvolution  

 

We performed the 1D deconvolution on our acquired images, thus, inverting the effect of 

Eq. 5, and used the results as the standard of comparison for the deep learning results. These 

deconvolutions were evaluated by first establishing the best match through the ‘convolve’ filter in 

ImageJ, and then using the same line dimension in MATLAB with the ‘deconvblind’ function. 

This tool deconvolves an image via the maximum likelihood algorithm and a starting estimate of 

the point-spread function (PSF), which in our case is a single row of 47 pixels of value 1.  
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A sample frame of the biopsy and its convolution with the line of the blur width are shown 

in Fig 6.2 b-c, and deconvolving again produces the original frame but with compromised high 

spatial frequencies (Fig.6.2d). The artifacts of lines along both edges of the image are a result of 

the filter brushing against the boundaries of the image. The deconvolution operation succeeds at 

shrinking features horizontally to restore their true width. However, the image still suffers from 

poor overall resolution, due in part to the higher spatial frequencies being suppressed through the 

convolving effect of imaging a rapidly moving sample. This shortcoming is our principal 

motivation of employing deep learning techniques to predict the standard spatial bandwidth.  

 

 

6.3.4 Image Acquisition   

 

Images were acquired with a commercial microscope (Axio Observer Z1, Zeiss) in 

brightfield and phase contrast settings and a Point grey color camera, using a Zeiss EC Plan-

Neofluar 40x/0.45 NA objective. The samples were a ductal carcinoma in situ (DCIS) breast tissue 

biopsy and an unstained blood smear of a healthy patient. The stage speed and coordinates were 

precisely manipulated using the Zeiss MTB (MicroToolBox) software, and the camera settings, 

such as shutter time (2 ms), frame rate (30 pfs), and gain (8 dB), were selected using the 

Grasshopper GRAS- 2054C software. For stitching images, a vertical step size of 200 µm was 

used, and horizontal videos were acquired for 1 minute at the slow speed of 50 µm/s to ensure the 

correspondence of 15 horizontally adjacent frames in the video captured at 5000 µm/s. The videos 

of each row at the accelerated stage speed was 0.6 seconds.  After the image acquisition, off-line 

processing involved image registration of blurry and sharp images through MATLAB with 

Pearson correlation estimates. For the 5,000 µm/s datasets, we extracted 256x256 crops from 

paired images to create a training volume of 1050 image pairs.  
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We performed deconvolutions on each input test image and compared them with GANscan 

results, as shown in Figure 6.3. The mean SSIM of the GANscan biopsy images is 0.82, while the 

deconvolved images had an SSIM of 0.73, when compared to the same control images. The mean 

SSIM of the GANscan phase contrast images is 0.73, while the deconvolved images had an SSIM 

of 0.66, when compared to the same control images.  PSNR values were also calculated with 

GANscan outperforming deconvolutions 27 to 26 for both image types. All analysis was 

performed in MATLAB.  

 

 

Figure 6.3 (a-f) Example comparisons of stop-and-stare images with images recorded at 50µm/s 

with SSIM values. Scale bar 5 µm. 
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6.3.5 Image Pair Registration  

 

 

In order to prepare pairs of blurred and sharp images for training, consecutive sharp images 

in the fast videos were matched to their motion-smeared counterparts by evaluating the maximum 

Pearson correlations in a set of slightly shifted clear images (Figs. 6.4, 6.5). The “ground truth” 

images were captured at a stage speed of 50 μm/s, which, at the acquisition time of 2 ms results in 

a blur size of 0.1 μm, i.e., below the diffraction limit of our system. As a result, there are 

approximately 100 frames in the sharp videos for each image in the 5,000 μm/s, motioned blurred 

videos, as shown in Figure 6.4.  

Evaluating the Pearson correlation between the input (smudged) frame and a series of 

potential ground truth frames produces values ranging from 0.4 to 0.76. The frame associated with 

the highest Pearson correlation value was selected as the ground truth. It should be noted that the 

rapidly captured images expose the camera to a larger field of view than the slowly-captured ones 

by the length of the blur, which is 10 μm for a scanning speed of 5,000 µm/s. This difference is 

delineated in Figure 6.4.  

In order to confirm the reliability of the ground truth images obtained at 50 µm/s, standard 

stop-and-stare images were also acquired for comparison as part of a test set. This was achieved 

by serially scanning images with a lateral shift of 1 µm, mimicking the distribution of slowly 

moving images but fully halted. It was necessary to capture sufficient images in order not only to 

perfectly register the stop-and-stare images with the 50 µm/s images, again using a Pearson 

correlation computation, but also with the blurry images. As shown in Figure 6.3, the stop-and-

stare images look identical to the 50µm/s images, with SSIM values upwards of 0.9. Variability in 

values is possibility indicative of noise inherent in the images. These are further compared with 

the moving ground truths against the reconstructed images, discussed below.  
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Figure 6.4 (a) Registration of images through maximum Pearson coefficient between sharp frames 

at 50 μm/s and (b) the blurry one at 10,000 μm/s. The scanning measurement is compared with 

each sharp contender (green dashed lines) and the resulting coefficient score is listed above each 

image. The best match is delineated in red, indicating the sharp image bearing the overall highest 

resemblance to the streaked measurement. The dashed rectangle at left edge of (b) outlines the 

extra margin of features contained in a blurry image (10 μm). 
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Figure 6.5 Registration of images through maximum Pearson coefficient between (a) sharp frames 

at 50 μm/s and (b)  blurry ones at 4000 μm/s. The images are labelled with time stamps indicating 

a forward moving slow stage and best matches indicated with dashed lines. 

 

 

6.3.6 Generative Adversarial Network (GAN)  

 

Once the registered pairs were assembled, they were cropped and resized to dimensions of 

256x256x1-3 (3 RGB color channels for brightfield and 1 channel for phase contrast images) for 

faster computation, with 1,050 images earmarked for training and 50 reserved for testing for both 

sample types.  The architecture of the model consists of a generator U-net with eight encoding and 

decoding layers, and a four downchannel discriminator, all displayed in Figure 6.6. As shown in 

Figure 6.7, the network input is the motion-blurred image and the control is the slowly scanned, 

sharp image. Since the slide was scanned in a row-major style, the margin of additional field of 

view is always on the same side, which is likely to help the network to undo the motion distortion. 
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Figure 6.6 Model architecture. (a)  The network consists of a generator model, (b)  and a 

discriminator model, competing with one another. The generator endeavors to render a sharp 

image and trick the discriminator into judging it as authentic. 

 

The GAN model was trained for over 200 epochs (Fig. 6.7c) until the loss function 

plateaued. Our results indicate that running the model on the training set produces nearly perfect 

restorations (Fig. 6.7d). The spatial power spectrum of the input image (Fig 6.7e) clearly shows a 

smaller range of higher spatial frequencies than that of the restored image (Fig 6.7f). Interestingly, 

the power spectrum of the input image has higher spatial frequencies along the vertical axis as a 

result of the smearing produced along the x-axis, whereas the power spectrum of the restored image 

is broader and more isotropic.  

A separate model for repairing out-of-focus images was computed using 2420 training 

image pairs (taken from two different slides), with nearly half of the blurry set captured at four 

different levels of focus: -10 µm, -5 µm, +5 µm, and +10 µm. The rest of the parameters were the 

same as the models described above, with the ground truth images all being in perfect focus.  
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Figure 6.7 (a) Training example of the blurry input, (b) and control, (c) with the loss plot. (d)  The 

generated result for a training instance. (e)  The power spectra of the input and f of the result with 

a circle outlining the diffraction spot.  Scale bar in (a), (b), and (d) 25 µm. 

 

 

6.3.7 Performance Testing  

 

Once the training was complete, the model was tested on 50 unseen images of the same 

slide of the dataset, and 160 images from slide corresponding to a different patient, as shown in 

Figures 6.8 and 6.9, respectively. 50 unseen blood smear images were also reconstructed, a sample 

of which is shown in Figure 6.10. The network does an effective job at restoring the high spatial 

frequencies of epithelial and stromal (fibrous) areas in biopsy samples, as compared to the line 

deconvolutions (Fig. 6.11). Since the cellular and fibrous areas are recovered with such high 

fidelity, the diagnostic information in the tissue images is maintained in full. In terms of numerical 

assessments, the first biopsy test sets achieved an average structural similarity index measure 
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(SSIM) of 0.82 and a mean peak signal-to-noise-ratio (PSNR) of 27 when calculated against their 

controls. For the same dataset, the deconvolution results gave inferior results of SSIM and PSRN 

of 0.71 and 26, respectively. The biopsy test set corresponding to a different patient achieved a 

similar average structural similarity index measure (SSIM) of 0.83 and a mean peak signal-to-

noise-ratio (PSNR) of 26 when calculated against their controls, proving that the technique is 

applicable to samples entirely separate from of the training data (Fig 6.12). For the same dataset, 

the deconvolution results again gave inferior results of SSIM and PSRN of 0.77 and 25, 

respectively. 

The same metrics were also calculated against stop-and-stare ground truths set. Figure 6.13 

shows that there is no statistically significant difference between the values using the stop-and-

stare and the 50 μm/s controls, indicating that the pairing strategy is valid. 

 

Figure 6.8 (a-f) Brightfield test set conversion of 5000 µm/s with control of 50 µm/s. Scale bar 5 

µm. 
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Figure 6.9 (a-c) and (d-f) Test set conversion of 5000 µm/s with control of 50 µm/s from two 

patients not included in the training dataset. Scale bar 5 µm. 

 

Another way the results were evaluated was using line sections and plot profiles. Figure 

6.14 shows a sample biopsy image in all three modes with their power spectra and line sections. 

The brightfield plot profiles show a strong overlap between the slow and reconstructed images, 

whereas the blurry image has a line profile that is smeared and diminished in intensity. In the 

frequency domain, the slow and reconstructed images show broader and higher frequencies as 

compared to the power spectrum of the blurry image, as expected.  

The blood smear phase contrast images were reconstructed with similar success (Figure. 

6.15). GANscan does an effective job at replicating a standard phase contrast image from a highly 

blurred input. Although some of the cell edges are not as smooth and round as in the control data, 

there rarely seems to be any hallucination of new cell boundaries. In this case, the test sets achieved 
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a slightly lower average structural similarity index measure (SSIM) of 0.73 and a mean peak 

signal-to-noise-ratio (PSNR) of 27 when calculated against their controls. For the same dataset, 

the deconvolution results gave inferior results of SSIM and PSRN of 0.66 and 26, respectively. A 

possible reason for the lower GANscan values with phase contrast microscopy may be that only 

the edges and halo of the blood cells contain any signal, causing a more severe blur in these images. 

Also, a single grayscale channel provides less information and context for the network to deal with.  

 

 

Figure 6.10 (a-f) Test set conversion of phase contrast unlabeled blood smear images moving at 

5000 µm/s with control at 50 µm/s. Scale bar 5 µm. 
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Figure 6.11 (a) Comparison of examples of deconvolved images with GANscan results, as well 

as (b)  SSIM and PSNR values for the test sets. (**) indicates a p value<0.01. Scale bar 25 µm. 

 
Figure 6.12 (a) SSIM and (b) PSNR comparisons between GANscan results and Deconvolution 

for the different patient test set. (**) indicates a p value<0.01. 
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Figure 6.13 (a)  SSIM values for the test sets with comparison of stop-and-stare ground truth with 

50 µm/s ground truth. (b) SSIM values for the test sets with comparison of stop-and-stare ground 

truth with 50 µm/s ground truth. 

 

 

Figure 6.14 (a)  Example test images in fast, slow and reconstructed versions with the intensity 

plot profiles of the red dash line through the image. (b)  The power spectra of a with plot profile 

of purple dashed line in the images. Scale bar 5 µm. 
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Figure 6. 15 (a) Comparison of examples of deconvolved phase contrast blood smear images 

with GANscan results, as well as (b) SSIM and PSNR values for the test sets. (**) indicates a p 

value<0.01. Scale bar 25 µm. 

 

Large mosaics of the motioned blurred biopsy images were also reconstructed (Fig. 6.16) 

by concatenating the images horizontally and vertically in their respective scanning order, 

producing a 7 x 15 stitch of roughly 3 mm x 1.5 mm in size. The difference in clarity is much less 

apparent with such a large FOV, but at a closer look it is evident there is significant improvement 

in the overall distinction of features. Stitches for 4,000 μm/s were also made for comparison (Fig. 

6.17). 
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Figure 6.16 (a)  Stitch of the motion blurred images, (b)  as well as the reconstructed GANscan, 

showing a large area of a breast biopsy, with respective zoom-ins. Scale bar 5 µm. 
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Figure 6.17 Example of a stitch with training data of (a) blurry, (b)  sharp control and c 

reconstructed images. Scale bar 25 µm. 

 

6.3.8 Adjusting Out-of-focus Images  

 

In order to assess the ability of GANscan to repair defocused images, the test set from a 

different patient was captured at 5000 μm/s at the plane of focus, but also at -10 µm, -5 µm, +5 

µm, and +10 µm. This idea was inspired by previous work addressing autofocusing methods using 

GAN models10. Figure 6.18a shows a sample of images in all three modes at various levels of 

focus. They are not corresponding FOVs, as it is not possible to perfectly match different focal 

scans of blurry images. As it can be seen, the reconstructed images become progressively worse 

with increasing distance from the focal plane. Figure 6.18b shows the SSIM and PSNR curves for 

the whole test set with standard deviation margins from 30 instances (images) per level of focus. 

It is clear that the SSIM and PSNR start dipping as the image loses focus, from over 0.82 and 25, 

respectively, dropping to below 0.65 and 22 at the +/- 10 μm mark.  
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Figure 6.18 (a)  example images from 5 different points of focus in fast, slow and reconstructed 

modes. (b)  SSIM and PSRN values at the different points in the focal plane with shading 

representing the standard deviation across the 150-image (30 per plane) test set. Scale bar 5 µm. 

 

6.4 Discussion  

 

I presented in this chapter a high-throughput imaging approach, GANscan, which employs 

continuous motion deblurring using labelled GAN reconstruction. Through both theoretical and 

experimental analysis, we have demonstrated the applicability of our method to brightfield and 

phase contrast microscopy on tissue slides. Our results indicate that GAN models provide, in 

combination with greater stage speeds, up to 30x faster acquisition rates than in conventional 

microscopy. This throughput is superior or on par with the state-of-the-art rapid scanning 

techniques, which in turn use nonstandard hardware. GANscan requires no specialized equipment 

and generates restored images with successfully removed motion blur. Of course, should a camera 

with a higher frame rate be used, the stage speed can be scaled up proportionally. Further, our 
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proposed deep learning deblurring method produces high-quality reconstructions which restores 

the high frequency portions of the tissue and cells, as opposed to deconvolution operations.  

Such a methodology will not only provide a drastic benefit in the clinical setting for 

pathologists for diagnosis of cancer in biopsies and cell abnormalities in blood smears, but at the 

research level as well, including cell cultures of large dimensions. Future work should address 

achieving similar results with different microscope modalities, such as fluorescence and 

quantitative phase imaging.  
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