
© 2022 Amit Madhukar

A SCALABLE DISTRIBUTED FRAMEWORK FOR
PARALLEL—ADAPTIVE SPACETIME DISCONTINUOUS GALERKIN SOLVERS

WITH APPLICATION TO MULTISCALE EARTHQUAKE SIMULATION

BY

AMIT MADHUKAR

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Doctoral Committee:

Professor Robert Haber, Chair
Professor Paul Fischer
Professor Ahmed Elbanna
Professor Nikhil Chandra Admal

Abstract

The causal Spacetime Discontinuous Galerkin (cSDG) method is a powerful numerical scheme

for solving hyperbolic systems. cSDG solvers construct asynchronous, unstructured spacetime

meshes that reflect the target system’s characteristic structure. When combined with

spacetime discontinuous Galerkin bases, causal spacetime meshes localize the solution process

to small clusters of spacetime elements called patches such that a localized implicit solution on

each patch depends only on adjacent previously-solved predecessor elements and prescribed

initial–boundary data. Starting with a simplicial space mesh with all vertices assigned

initial-time coordinates, cSDG solvers advance a space-like front mesh through the spacetime

analysis domain. Subsequent front-mesh configurations — in the form of bumpy terrains with

independent time coordinates for each vertex — separate the previously-solved and unsolved

parts of the analysis domain. Discrete increments of a vertex time coordinates advance

the front locally subject to a causality constraint that requires every front configuration

to be space-like. A simplicial spacetime mesh covering the local region between two front

configurations defines a new patch on which a local, implicit and unconditionally stable

cSDG problem is immediately solved. The new configuration then replaces its predecessor

as the current front. The simulation terminates when the entire front-mesh passes the final

time of the simulation. The localized cSDG solution procedure delivers element-wise balance

properties and linear computational complexity in the number of patches.

The cSDG method supports an extremely dynamic form of adaptive spacetime meshing

capable of capturing fast-moving solution features such as sharp wavefronts and dynamic

fracture. Adaptive meshing operations execute at the same patch-level granularity as the

localized solution scheme. If a newly-solved patch fails its adaptive error tolerances, we

discard the patch solution, refine the current front mesh below the failed patch, and restart

the spacetime meshing process to generate simultaneous local refinement in both space and

time. Other adaptive operations, including coarsening, edge flips, and vertex motion (for mesh

smoothing, interface tracking, etc.) are implemented by special patch configurations that

perform the desired operation continuously in spacetime with no need for accuracy-limiting

solution projections. The elimination of global time-step constraints, as in conventional time

ii

marching schemes, makes cSDG adaptive meshing particularly powerful.

The cSDG method possesses a rich parallel structure in which the local operations —

spacetime patch construction, patch solution, and adaptive meshing — form an embarrassingly

parallel unit of computation. Only procedures required to prevent interference between patches

involved in simultaneous parallel processing break the embarrassingly parallel structure. We

show that standard parallel frameworks for PDE solvers are either incompatible with or

would seriously degrade the strengths of cSDG solvers. In particular, the Bulk Synchronous

Parallel (BSP) model (as in standard time marching) is incompatible with the cSDG method’s

asynchronous, fine-grained structure, and the Domain Decomposition Method (DDM) for

parallelization requires expensive rebalancing computations that cannot keep pace with

fine-grained cSDG adaptive meshing. We abandon the BSP model and the DDM and describe

a task-based asynchronous framework for distributed parallel–adaptive cSDG solvers that is

deployable on distributed-memory clusters and that matches the cSDG method’s structure. It

features patch-based parallelization, a latency tolerant scheme for accessing global front-mesh

data (the only distributed data structure), and asynchronous probabilistic load and data

balancing methods.

We demonstrate the effectiveness of the parallel–adaptive cSDG method in multi-scale

earthquake simulations, an application in which fault systems extending for hundreds of

kilometers may require millimeter resolution to capture fine-scale response within rupture

process zones. State-of-the art seismic simulation codes are unable to bridge the resulting

extreme ranges of spatio-temporal scales, even on today’s largest supercomputers. We combine

a dynamic contact model and a slip-weakening friction model with a cSDG model for linear

elastodynamics to build a dynamic rupture model for fault dynamics. We verify our model

with dynamic-rupture benchmark problems from the Southern California Earthquake Center

(SCEC) and demonstrate the power of high-order cSDG models and adaptive spacetime

meshing in bridging the broad range of spatio-temporal scales in these problems. While our

results are in broad agreement with previous solutions, we uncover details of high-frequency

response that are missing in previous solutions. We also discover a new dipole-like feature at

fault branch points that can lead to separation under certain circumstances.

iii

To my father and mother

iv

Acknowledgments

I would like to express my gratitude to Professor Robert Haber who served as my advisor. I

am indebted to him for his insight and guidance which has proven to be invaluable during

my PhD research. I would also like to acknowledge Professors Paul Fischer, Ahmed Elbanna,

and Nikhil Chandra Admal for graciously agreeing to serve on my committee.

I am also thankful to Professor Reza Abedi for taking the time to guide me through

the intricacies of the cSDG code, to Professor Volodymyr Kindratenko for providing the

expertise and computational resources without which none of this would have been possible,

and to Professor Ahmed Elbanna for stimulating and rewarding discussions throughout the

development of the seismic code. I would also like to thank my fellow graduate students,

Christian J. Howard, and Xiao Ma whose help and encouragement was greatly appreciated.

I would not have come this far were it not for the constant love and support of my family,

for which I am deeply grateful.

Last, but by no means the least, I gratefully acknowledge financial support from the College

of Engineering through the Carver Fellowship and the Graduate College through the Illinois

Distinguished Fellowship program. The research in this dissertation was funded in large part

by the National Science Foundation under the SPX Grant No. 1725544 and by the National

Center for Supercomputing Applications at the University of Illinois Urbana–Champaign.

v

Table of contents

Chapter 1 Introduction . 1

Chapter 2 The Causal Spacetime Discontinuous Galerkin (cSDG) Method 3
2.1 Introduction . 3
2.2 Spacetime Meshing . 4
2.3 Formulation of the Causal Spacetime Discontinuous Galerkin Method for

Linear Elastodynamics . 9
2.4 Patchwise cSDG Discretization . 11
2.5 Chapter Summary . 15

Chapter 3 A Distributed Framework for Parallel–Adaptive Implementa-
tions of the cSDG Method . 17

3.1 Introduction . 17
3.2 Distributed Parallel cSDG Architecture . 21
3.3 Distributed Algorithms . 31
3.4 Experimental Set-up . 52
3.5 Numerical Results and Optimizations . 56
3.6 Chapter Summary . 70

Chapter 4 Spacetime Method for Direct Numerical Simulation of Multi-
scale Earthquake Dynamics . 71

4.1 Introduction . 71
4.2 Continuum Formulation . 72
4.3 The cSDG Rupture Model . 80
4.4 Numerical Verification, High-Resolution Capabilities, and Contact–Separation

Model . 86
4.5 Chapter Summary . 109

Chapter 5 Conclusions and Continuing Research . 110
5.1 Conclusions . 110
5.2 Continuing Research . 112

References . 113

Appendix A Wrangler State Machines . 121
A.1 Wrangle finite state-machine . 121
A.2 Store finite state-machine . 123

vi

Chapter 1

Introduction

This dissertation describes the development of a novel distributed parallel–adaptive implemen-

tation of the causal Spacetime Discontinuous Galerkin (cSDG) method and its application

to extreme multiscale problems arising in seismology. The underlying serial cSDG method

for hyperbolic problems [1] features solutions on unstructured spacetime grids that satisfy

a causality constraint that localizes both adaptive mesh generation and the discontinuous

Galerkin solution procedure. This localization enables and supports element-wise balance

properties, element durations governed exclusively by local wave speeds and mesh geometry

(versus globally uniform time steps in traditional synchronous solvers), a highly dynamic

form of adaptive spacetime meshing, and a high-level parallel structure that encompasses

both the localized meshing and solution procedures. In combination with a dynamic contact

algorithm based on weak enforcement of Riemann solutions [2], the serial cSDG method has

proven highly effective in modeling complex multiscale dynamic fracture [3] and shows great

promise for modelling earthquake ruptures. However, modifications to the cSDG formulation

and its adaptive meshing strategy are needed to accommodate and improve fault physics

models, and a complete reworking of existing frameworks for parallel finite element solutions

is required to realize the method’s full potential for parallel scaling on exascale platforms.

A main contribution of this dissertation is the development of an asynchronous, task-based,

and barrier-free parallel–adaptive cSDG solver for hyperbolic partial differential equations

(PDEs). We replace the standard Bulk Synchronous Parallel model [4] (time marching)

with the asynchronous solution scheme of the cSDG method and thereby eliminate the

synchronization barriers that plague many other parallel codes. The parallel architecture uses

causal spacetime patches to define a common granularity for parallel execution of adaptive

meshing, localized finite element solutions, and dynamic balancing of data and computational

load. We implement asynchronous process classes that (i) serve distributed global mesh data,

(ii) gather/scatter coherent fragments of the global data, and (iii) perform embarrassingly

1

parallel adaptive meshing and cSDG solutions over the fragments. We abandon the traditional

Domain Decomposition Method [5, 6] and instead develop novel probabilistic methods to

balance distributed data and computational load that can keep pace with dynamic cSDG

adaptive meshing. We show that the resulting parallel scheme is scalable and latency-tolerant

on a large distributed cluster.

A second focus of this dissertation is the application of the cSDG method to large,

multiscale problems in earthquake-rupture dynamics. We adapt the Riemann contact solutions

in [3] to implement a dynamic fault-response model that accurately captures the evolution of

slip along fault interfaces. We develop specialized adaptive error indicators for earthquake

rupture simulations to govern the cSDG method’s highly dynamic and fine-grained mesh

adaptivity. This allows us to overcome the multi-scale challenges of earthquake simulation

problems where existing non-adaptive methods struggle to resolve critical features, such as

rupture process zones and stress dipoles at branch-fault intersections. We can also model

off-fault damage zones as networks of fine-scale faults in lieu of smeared elastoplastic models.

Fault nucleation, extension, and coalescence are accurately captured to model off-fault damage

accumulation.

The remainder of this dissertation is organized as follows. In Chapter 2 we provide the

motivation and background information of the overall cSDG method. We describe the causal

meshing procedure that is central to the method and briefly introduce the finite element

formulation. We introduce the parallel–adaptive architecture in Chapter 3 along with the

novel distributed algorithms developed to support the code. Optimizations and numerical

results are presented to highlight the scalability of the resulting parallel architecture. Finally

in Chapter 4, we develop an extension of the cSDG method applicable to earthquake rupture

simulations. We demonstrate the method’s dynamic mesh adaptivity that is capable of

resolving the multi-scale nature of such simulations. We present results that showcases

the improved resolution possible with the method. Finally, we demonstrate the use of our

parallel–adaptive method to dramatically accelerate the solution of complicated seismic

problems.

2

Chapter 2

The Causal Spacetime Discontinuous

Galerkin (cSDG) Method

2.1 Introduction

The Galerkin method is a general class of numerical methods for solving partial differential

equations (PDEs) that includes finite element (FE) and spectral element methods among

others. The Galerkin approximation to the analytical solution of a PDE is the unique best

approximation to the exact solution in a given finite-dimensional trial space as measured

with respect to a given error norm.

Reed and Hill introduced the first discontinuous Galerkin (DG) method as a means to

solve neutron transport problems in 1973 [7]. Numerical analysts now use DG methods to

solve ordinary differential equations as well as hyperbolic, parabolic, and elliptic PDEs. A

key feature of DG methods is the use of trial solution spaces that admit piecewise-continuous

functions to form Galerkin approximations. In the context of DG finite element methods,

trial solution spaces admit functions that are continuous on element interiors but admit

discontinuities across element boundaries. The DG method has many advantages over classical

finite volume and finite element methods. Due to the fact that inter-element continuity is not

required, DG methods can support non-conforming meshes, a capability that can simplifying

adaptive mesh generation. Parallelization of DG models is more tractable than conforming

models since solutions involve only face-to-face information exchanges. A review of DG

methods can be found in the work by Cockburn et al. [8].

Although spacetime finite elements had been considered (and largely rejected) decades

earlier, Hughes and Hulbert [9] renewed interest in the topic with a time-discontinuous

DG method that featured conforming bases on unstructured meshes within spacetime slabs

3

having uniform thickness, ∆t, while admitting jumps across constant-time surfaces between

slabs. Wiberg et al. [10] and Li et al. [11] introduced h–adaptive meshing in space, allowing

non-conforming meshes across constant-time boundaries and facilitating adaptive refinement

and coarsening between slabs. However, the conforming basis within each slab requires

re-computation of the entire slab’s solution whenever any refinement occurs inside the slab.

Richter [12] was among the first to introduce a casual Spacetime Discontinuous Galerkin

(SDG) method1 that used unstructured causal meshing with bases that admit discontinuities

across all spacetime inter-element boundaries with no requirement to organize elements into

slabs. Thus, the concept of global time steps is replaced by the durations (time increments)

of individual spacetime elements. When compared to semi-discrete methods, the spacetime

counterparts have considerable benefits. Foremost of which, spacetime methods can produce

fully unstructured and non-conforming meshes in both space and time, allowing for the

development of powerful adaptive schemes. Yin et al. [13] extended the SDG method by

applying unstructured, fully-discontinuous space-time discretizations to linear elastodynamics.

Abedi et al. [1, 14, 15] introduced further refinements that led to more recent versions of the

causal Spacetime Discontinuous Galerkin (cSDG) method.

The cSDG method has been applied to a variety of application domains. Causal spacetime

meshing algorithms were developed over time in the work by Erickson et al. [16], Üngör and

Sheffer [17] and Abedi et al. [18]. These powerful h-adaptive, non-conforming spacetime mesh-

ing capabilities have been applied to a number of applications, including linear elastodynamics

utilizing a one-field [15, 19] and a three-field formulation [20]; fracture and crack-growth

problems [2, 3, 21, 22]; hydraulic fracturing [23, 24]; hyperbolic advection–diffusion problems

[25]; the radiative transfer equation [26]; and electromagnetism [27].

The remainder of this chapter presents the causal spacetime meshing algorithm in Section

2.2 and the spacetime discontinuous Galerkin formulation for linear elastodynamics in Section

2.3. These components are the foundation of the cSDG methods described and applied later

in this dissertation.

2.2 Spacetime Meshing

The cSDG method works on meshes constructed in spacetime. A four-dimensional spacetime

mesh is required for a problem that involves evolving behavior in a three-dimensional spatial

1Richter referred to his method as an explicit finite element method. This is a misnomer in that the
method is more accurately described as locally implicit and has unconditional stability typical of implicit
methods. Richter’s use of explicit might have been motivated by the fact that his method localizes the
solution process similar to an explicit method.

4

domain (3 spatial dimensions × time), for example. This contrasts with traditional semi-

discrete methods where spatial dimensions are discretized independently of time.

The spacetime meshing algorithm, known as Tent Pitcher (developed by [16, 17]), produces

a fully unstructured, simplicial spacetime mesh where the time step in each spacetime element

only depends on the properties of the local, underlying space mesh. By weakly enforcing the

governing equations over each spacetime element the cSDG method eliminates the need for a

time-marching procedure. Global time-marching schemes suffer from the following drawbacks

- either the maximum possible time step is constrained by the worst quality element in

the space mesh 2, or a large coupled system has to be solved at each time increment. By

construction, the Tent Pitcher algorithm avoids both these issues. In fact, by computing

solutions within groups of spacetime elements, or patches, the computational cost is linear in

the number of spacetime elements.

2.2.1 Causality and the Progress Constraint

The characterizing feature of hyperbolic PDEs is the notion of causality. Disturbances

in initial data of hyperbolic boundary value problems travel in a “wave-like” nature along

characteristics of the equation with a bounded wave speed. The characteristics of a hyperbolic

spacetime PDE represents the flow of information through space with time.

Points in spacetime are partially ordered3 by this concept of causality. We say that a

point P depends on another point Q if and only if changes to physical quantities (such as

temperature, displacement, etc.) at point P influences Q. The domain of influence of P

is the set of points that depend on P and the domain of dependence is the set of points

that P depends on. If the governing equations are linear and the material properties are

homogeneous and isotropic, as in the case considered here, the wave speed ω is a constant

and the domains of influence and dependence are circular cones as depicted in Figure 2.1.

We say that one spacetime element
a

depends on another spacetime element
a′ if any point

P ∈
a

depends on any point Q ∈
a′, i.e., if Q is in the domain of influence of P .

We say that a face, or facet, F of a spacetime element is causal if it separates the cone of

influence from the cone of dependence at every point on F (see Figure 2.1). Stated another

way, causality requires each facet to be faster (or closer to horizontal, in spacetime) than the

maximum wave speed, i.e., ||∇F || ≤ 1/ω. In general, the wave speed ω(P) at each point P in

the domain defines a scalar field over the domain. If a facet is causal, information only flows

2Work by [28] allows larger time steps than dictated by the worst quality element in explicit time-stepping
methods by adaptively taking multiple stabilizing steps in each time increment

3A partially ordered set is a set P with a binary relation R ⊂ P ×P satisfying the properties of reflexivity,
antisymmetry and transitivity in set theory.

5

A

B

Time C

Figure 2.1: (Left) Points A and B are independent since B lies outside the cone of influence
of A and A lies outside the cone of dependence of B. (Right) The facet centered on point C
separates the cone of influence from the cone of dependence.

in one direction across that facet. The solution to the hyperbolic boundary value problem

can be computed simultaneously in spacetime elements that obey the causality constraint

and do not depend on each other.

Figure 2.2 illustrates the concept of causality for the simple case of 1D × time. The top

part of the figure depicts an unstructured mesh generated by the Tent Pitcher algorithm

where the arrows indicate the characteristics of the problem. In this case, characteristics

propagate in both directions at a constant speed. The construction of element facets obeys

the causality constraint so information flows only in one direction across each facet. We

can thus label the earlier facets of an element as the inflow facets and the later ones as the

outflow facets based on the direction of the flow of information. As long as the partial element

ordering is observed, solutions to the boundary value problem can be computed locally and

independently within causal elements. For example, if we consider all the level-1 elements,

the solution within these elements only depends on the initial conditions along their bottom

facets and boundary conditions along the left and right domain boundaries. As such, the

solutions within the level-1 elements can be computed locally and concurrently. Any level-2

element can be solved as soon as its immediate level-1 neighbor has been solved, even if other

level-1 element remains unsolved. It becomes clear from this simple example that a causal

spacetime mesh enables asynchronous element-by-element solution with linear complexity.

On the other hand, the bottom part of Figure 2.2 depicts a noncausal mesh corresponding

to a traditional time-marching scheme where each element depends on the other. In this case

all elements must be solved together. Such a meshing scheme does not take advantage of the

causal property inherent to hyperbolic PDEs.

To construct an efficient spacetime mesh, the Tent Pitcher algorithm groups elements

6

Figure 2.2: 1d × time domain meshed with causal (top) and noncausal (bottom) elements.
Reproduced from [29].

in patches each containing a constant number of spacetime elements. All the elements in a

patch must be solved simultaneously as facets of the elements within a patch are not causal.

A patch can more formally be defined as the following:

Definition 2.1 (Spacetime patch Π). A patch Π is a set of one or more spacetime elements

belonging to a spacetime mesh Ω such that [30]:

1. for every element A ∈ Π, there exists B ∈ Π such that A and B are coupled;

2. for every element A ∈ Π, if there exists B ∈ Ω such that A and B are coupled then

B ∈ Π.

The spacetime mesh can be solved in a patch-by-patch manner that respects the partial

ordering of points in the spacetime analysis domain. If we assume polynomial basis function

of bounded degree the resulting system of equations in each patch has bounded size and can

therefore be solved in constant time. We say that the solution strategy is efficient if the total

computation time is proportional to the number of elements in the mesh.

7

In addition to the causality condition, it was determined that another so called progress

constraint is needed to construct the spacetime mesh. Without this constraint, there may be

cases where the construction of causal elements would make it impossible for subsequently

constructed elements to obey the causality constraint, thus making progress impossible.

Practically, this places a further limit on the maximum time-step that can be taken when

constructing a new patch (see Section 2.2.2). We refer readers to the paper by [31] for a more

detailed discussion on the causality and progress constraint.

2.2.2 Advancing Front Spacetime Meshing

The patch-by-patch solution strategy described in Section 2.2.1 respects the partial ordering

of patches in spacetime. Our goal is to now incrementally construct the spacetime mesh that

respects both the causality and progress constraint. This is achieved by the advancing front

meshing procedure.

Definition 2.2 (Front τ). For any time, the front τ is the graph of a continuous time function

τ : Ed → R, such that within every triangle [31],

1. τ is linear;

2. ||∇τ || ≤ 1/ω

i.e., the front is a maximal set of points such that no two points of τ influence each other.

The front is a d-dimensional piecewise linear terrain, a subset of the spacetime domain

Ed × R. Each point P on the front τ can be written as

P = (p, τ(p)) (2.1)

where p is the spatial projection of P and τ(p) is the temporal projection. When the current

front τ is in context, we use the lower-case notation to represent vertex on that front, i.e.,

p ∈ τ . In the previous 1D × time case presented in Figure 2.2, the front is represented by

the facets marked with the solid red line.

Given an initial triangulated front τ : Ed → R, Tent Pitcher selects an arbitrary local

minimum vertex P = (p, τ(p)) and moves it forward in time to a new point P ′ = (p, τ ′(p)),

thus also advancing the local neighborhood. The volume between the new and old front

is called a tent and the edge corresponding to the time increment, i.e., PP ′, is called the

tent-pole. The advancing front method is depicted for the case of 2d × time in Figure 2.3. The

tent is decomposed into spacetime elements (or patch) sharing the noncausal edge PP ′ and

8

thus, must be solved as a coupled system. However, since the causality constraint is placed

on the maximum time step taken when advancing the front, each patch constructed by the

advancing front method depends only on elements adjacent to its inflow boundary, in which

the solution has already been computed. Therefore, the solution within the a new patch can

be computed as soon as the patch is constructed. After solving a patch, we update the front

by increasing the time value of the vertex pitched by the temporal span of the tent-pole, so

the graph of the time function agrees with the new front. Equivalently, to update the front,

we replace the inflow facets of the patch with the outflow facets of the patch.

The algorithm advances local minimum vertices since this guarantees a finite amount of

progress can be made. A local minimum of the front τ is a vertex p such that τ(p) ≤ τ(q) for

every vertex q that is a direct neighbor of p. A list of all local minima are maintained as a

time ordered heap. When deciding the next vertex to pitch over, Tent Pitcher chooses the

first entry in this heap, corresponding to the global minimum vertex. This heuristic approach

to selecting the next pitchable vertex has been found to perform better than others.

The advancing front procedure thus allows us to decouple the patch generation process

from the solution process. This feature has been used in the parallel implementation described

in chapter 3 where the meshing and solution tasks have been separated into distinct units of

work which can be carried out simultaneously.

Another unique capability of the advancing front algorithm is the inherent capability of

localized mesh adaptivity operations. The solution within each patch produces an a posteriori

estimate of the numerical error incurred during the solution. This error estimate can be

used to drive an adaptive meshing algorithm as presented in [32]. Adaptive refinement and

coarsening of the individual patches can occur locally and independently of each other where

dictated by the error. Adaptive operations can be confined within the patch and the solution

only needs to be recomputed within that region. Additionally, patch generation and adaptive

operations can take place simultaneously with the SDG solution procedure in causal patches.

This is an incredibly powerful feature of the SDG method that can be exploited by parallel

execution.

2.3 Formulation of the Causal Spacetime Discontinuous

Galerkin Method for Linear Elastodynamics

2.3.1 Spatial and Spacetime Analysis Domains

Consider an open spatial domain, ω ⊂ Ed, with a suitably regular boundary, ∂ω. We seek a

solution on the spacetime domain, Ω := ω × I ⊂ Ed × R, in which I := (0, T) where 0 and

9

Figure 2.3: Pitching patches (or tents) in spacetime using the advancing front algorithm.
Newly formed patches are shown in wireframe whereas solid surfaces are patches solved by
the SDG solver. Note the partial ordering of patches in accordance to causality. The sequence
is advancing from top to bottom while time is increasing upwards. Reproduced from [19]

T are the initial and terminal times for the simulation. We partition the boundary of Ω as

∂Ω = ∂ΩI ∪ ∂ΩB ∪ ∂ΩT in which ∂ΩI and ∂ΩB are open segments of ∂Ω on which initial and

boundary conditions are enforced while no conditions are enforced on the terminal boundary,

∂ΩT. We further partition ∂ΩB as ∂ΩB = ∂ΩD ∪ ∂ΩN in which ∂ΩD and ∂ΩN are the parts

of ∂ΩB on which Dirichlet and Neumann boundary conditions are enforced.

10

2.3.2 Governing Equations and Initial/Boundary Conditions

The governing equations on Ω for linear elastodynamics, expressed in direct tensor notation,

are

v = u̇; E = sym∇u (2.2a)

Ė = sym∇v (2.2b)

S = C(E); p = ρg(v) (2.2c)

∇ · S+ ρb = ṗ (2.2d)

in which u, v, E, S, p, and b are the displacement, velocity, strain, stress, linear momentum

density, and body force fields, while ρ and C are the mass-density and elasticity-tensor fields.

The metric tensor, assuming a uniform Cartesian coordinate frame on ω for simplicity, is

given by g := δije
i ⊗ ej. From here on we assume isotropic elastic response without loss of

generality. Equations (2.2a) and (2.2b) are the kinematic compatibility relations. Equation

(2.2b) is redundant if equation (2.2a) is strictly enforced, but is required if equation (2.2a) is

only weakly enforced. Equation (2.2c) describes the linear constitutive relations, and (2.2d)

is the Equation of Motion. We specify conforming initial displacement, velocity, and strain

fields on ∂ΩI: uI, vI, and EI := sym∇uI as well as prescribed velocity and traction fields on

∂ΩD and ∂ΩN to close the governing system.

We reduce system (2.2) to a single governing equation in u on Ω \ Γ as follows. We

substitute vu := u̇, Eu := sym∇u, Su := C(Eu), and pu := ρg(v̇u) for, respectively, v, E, S,

and p in Systems (2.2) and (4.1) to strictly enforce eqs. (2.2a) and (2.2c). Strict enforcement

of eqs. (2.2a) implies strict enforcement of eq. (2.2b). Thus, we obtain the Equation of

Motion on Ω written in terms of u,

ρg(ü)−∇ · [C(sym∇u)] = ρb (2.3)

2.4 Patchwise cSDG Discretization

This section describes discrete approximations of continuum solutions to the initial–boundary

value problem of linear elastodynamics by the cSDG method. In particular, we consider

local approximations associated with causal patch meshes generated by procedures described

in Section 2.3. Inter-element jump conditions and the Stokes Theorem are essential to the

development, as with any discontinuous Galerkin formulation. However, spacetime element

facets in patch meshes may have arbitrary orientations in Ed ×R, a space that lacks an inner

11

product and, therefore, provides no objective means to construct normal vectors as required

in tensorial representations of jump conditions and the Stokes Theorem.

Differential forms and the exterior calculus on manifolds provide an alternative mathe-

matical framework that supports objective formulations of cSDG approximations that do not

involve normal vectors. Out of necessity, we follow this approach below. However, our goal

here is to convey to readers — including those unfamiliar with forms and exterior calculus

— a high-level understanding of cSDG solution spaces and weak approximations. To this

end, we present a reformulation of linear elastodynamics using forms and exterior calculus

that omits low-level technical details.4 For each equation in forms notation, we identify the

corresponding tensorial equation in Subsection 2.3.2. Thus, for example, a reader can identify

eqs. (2.2d) and (2.4d) below as the Equation of Motion expressed in alternative formats.

This association is sufficient for our present purposes.

Jump conditions on spacetime interfaces emerge in the forms development as the jump

parts of exterior derivative operators in the governing equations.5 These include, but are not

limited to, jump conditions on material-interface trajectories such the fault trajectories, Γ,

introduced in Subsection 4.2.2. Due to their special orientations in Ed × R, we can equip

material-interface trajectories with purely spatial normal vectors in Ed that support tensorial

formulations of jump conditions. In this special case, the jump conditions presented in tensor

format in Subsection 4.2.2 are fully compatible with the jump conditions in the more general

forms development.

2.4.1 Formulation of Linear Elastodynamics Using Differential

Forms and Exterior Calculus on Manifolds

We replace the three kinematic fields in the tensorial formulation with differential forms as

follows.6 The vector displacement field, u, is unchanged; i.e., it is a 0-form. A differential

1-form with vector coefficients, v, replaces the velocity field, v, and a 1-form with symmetric

second-order tensor coefficients, E, replaces the strain field, E. We combine E and v in a

single spacetime 1-form, ε := E + v, called the strain–velocity.

A d-form with symmetric second-order tensor coefficients, S, replaces the stress tensor

field, S, and a d-form with vector coefficients, p, replaces the linear-momentum-density vector

field, p. These combine to form a single d-form, M := p−S, called the spacetime momentum

4A more detailed development can be found in [1, 20].
5Exterior derivatives of a BV field generally include an absolutely continuous part that holds in regions

where the field is continuous, a Cantor part that we ignore in this work, and a jump part that acts across
discontinuities. Typically, the exterior derivative operator, denoted as d, contains all three parts. In this work,
d denotes only the continuous part, and the jump part appears separately in the form of jump conditions.

6We denote differential forms in bold Italic font in contrast to tensors in bold upright font.

12

flux. The restriction of M to a d-manifold with arbitrary orientation in Ed × R delivers the

flux of linear momentum across that manifold. A (d + 1)-form with vector coefficients, b,

replaces the body-force vector field, b.

Continuum solutions of hyperbolic problems generally include discontinuities in the re-

sponse fields that arise from physical features such cracks, ruptures, and shocks. Discontinuous

Galerkin approximations of hyperbolic solutions introduce additional discontinuities across

element boundaries. The following reformulation of linear elastodynamics accommodates all

such discontinuities across a general set of d-manifolds where jump conditions arise naturally

as the jump parts of exterior derivative operators in the governing system.

We introduce the jump set, ΓJ, that contains all d-manifolds embedded in the spacetime

analysis domain, Ω, across which jumps in the solution may occur for either physical or

numerical reasons. We rewrite System (2.2) using differential forms as follows. The absolutely

continuous part of the governing differential equations on Ω \ ΓJ are written as

ε = symdu (2.4a)

dε = 0 (2.4b)

M = C (ε) (2.4c)

dM = ρb (2.4d)

in which d is the exterior derivative operator, the sym operator acts only on the spatial

gradient part of du, and C is a constitutive operator that maps strain-velocity 1-forms

to spacetime-momentum-flux d-forms. The subequations in System (2.4) are the forms

equivalents of their counterparts in System (2.2). Moreover, the solo eqs. (2.4a) and (2.4c)

cover both branches of (2.2a) and (2.2c).

We add the jump parts of the exterior derivatives in System (2.4) to extend the governing

equations from Ω \ ΓJ to all of Ω. Thus, we have the jump conditions

(
⋆
u− u

)±
∣∣∣∣
ΓJ

= 0 (2.5a)(
⋆
ε− ε

)±
∣∣∣∣
ΓJ

= 0 (2.5b)(
⋆

M −M

)±
∣∣∣∣∣
ΓJ

= 0 (2.5c)

in which a superscript ± denotes a trace on the + or − side of ΓJ, and a superposed ⋆ denotes

a target value determined, depending on context, by a Riemann solution, initial or boundary

condition, or a special physics model such as the fault-rupture model described in Subsection

13

4.2.3.

We obtain a single-field displacement formulation as follows. We substitute εu := symdu

for ε and Mu := C(εu) for M in Systems (2.4) and (2.5) to strictly enforce eqs. (2.4a)

and (2.4c). Strict enforcement of eq. (2.4a) implies strict enforcement of eq. (2.4b).7 The

governing system reduces to a second-order form of the Equation of Motion on Ω \ ΓJ that is

the forms version of eq. (2.3) (except now on Ω \ ΓJ).

dMu = ρb (2.6)

Strict enforcement of eqs. (2.4a) and (2.4c) on Ω\ΓJ does not imply satisfaction or elimination

of any jump conditions. Thus, we have (
⋆
u− u

)±
∣∣∣∣
ΓJ

= 0 (2.7a)(
⋆
ε− εu

)±
∣∣∣∣
ΓJ

= 0 (2.7b)(
⋆

M −Mu

)±
∣∣∣∣∣
ΓJ

= 0 (2.7c)

Compatible initial data, uI, vI, and EI := sym∇uI, and Dirichlet and Neumann boundary

data are specified as before.

2.4.2 Patch-wise cSDG Approximation on a Broken Sobolev Space

A typical cSDG patch mesh is comprised of a set of active spacetime elements on which the

solution has not yet been computed and a set of previously-solved predecessor elements. We

next formulate the cSDG method for computing an approximate solution on the active part

of the patch. Let P denote the set of open spacetime element interiors in the current patch

with the active subset, Pa := {Q ∈ P : Q is active}.
We seek patch-wise solutions that are smooth and continuous on all Q ∈ P while admitting

discontinuities across inter-element boundaries within P and between P and ∂Ω. To this end,

we construct a discrete subspace of a broken Sobolev space on P to support the single-field

cSDG discretization. Let Pk
Q denote the space of polynomial functions of order k on Q ∈ Pa.

The solution space for displacement approximations of polynomial order k on any Q ∈ Pa is

Uk
Q :=

{
u : ui|Q ∈Pk

Q
}
. We form a patch-wise displacement solution space of polynomial

order k as a subspace of a broken Sobolev space on Pa: Uk
P :=

{
u : u|Q ∈ Uk

Q ∀ Q ∈ Pa

}
.

7We have dεu = d(symdu) = 0.

14

Patch-wise weighted residuals problem. RecallingM := p−S, we writeMu = pu−Su

and write the single-field weighted residuals statement as follows. Find u ∈ Uk
P such that for

every Q ∈ Pa∫
Q
v̂u ∧ (dMu − ρb)

+

∫
∂Q

[
v̂u ∧

(
⋆

M −Mu

)
+
(

⋆
u− u

)
∧ p̂u +

(
⋆
ε− εu

)
∧ itŜu

]
= 0 ∀ û ∈ Uk

Q

(2.8)

in which a superposedˆindicates a weighting function and it is the temporal insertion operator.

The terms weighted by v̂u are the continuous and jump parts of the Equation of Motion in

residual form. The terms weighted by p̂u and itŜu are, respectively, the jump-part remnants

of eqs. (2.4a) and (2.4b) in residual form.8

We emphasize that the extent to which individual components of the jump conditions

listed in Systems 2.5 and 2.7 are active depends on the local manifold orientation on ΓJ.

For example, we have already noted that the displacement jump condition, eqs. (2.5a) and

(2.7a), is inactive on material interface trajectories. In general, this orientation dependence

is encoded in the structure of the differential forms in each weighted residual term in the

boundary integral of eq. (2.8).

Patch-wise weak problem. Application of the Stokes Theorem to (2.8) generates the

weak statement of the patch-wise problem. Find u ∈ Uk
P such that for every Q ∈ Pa∫

Q
(dv̂u ∧Mu + v̂u ∧ ρb) =

∫
∂Q

[
v̂u ∧

⋆

M +
(

⋆
u− u

)
∧ p̂u +

(
⋆
ε− εu

)
∧ itŜu

]
∀ û ∈ Uk

Q

(2.9)

We report results from cSDG seismic simulations using this weak formulation in Chapter 4.

2.5 Chapter Summary

The Tent Pitcher algorithm is an advancing front scheme for constructing causal spacetime

meshes that reflect the governing system’s characteristic structure. In combination with

discontinuous Galerkin discretizations, causal meshes localize the cSDG solution procedure to

small clusters of elements called patches. The resulting asynchronous, patch-by-patch solution

scheme has linear computational complexity in the number of spacetime patches and a natural

parallel structure in which adaptive spacetime meshing and solution of system equations

interleave at a common granularity. This unique structure enables dynamic parallel–adaptive

8A projection operator is applied to p̂u to prevent undesirable coupling with the v̂u terms. See [20].

15

cSDG solvers, such as the distributed framework described in the next chapter. The cSDG

formulation for linear elastodynamics developed in this chapter is the basis of the numerical

seismic model introduced in Chapter 4.

16

Chapter 3

A Distributed Framework for

Parallel–Adaptive Implementations of

the cSDG Method

3.1 Introduction

In this chapter, we present a distributed parallelization of the cSDG code. Unlike in the shared

memory model, computations are performed on processor cores that do not share a common

physical memory space and instead, are distributed across the distributed system. This leads

to additional complications when compared to the simpler case of shared-memory, previously

presented in [33]. The need for message passing and load balancing across distributed nodes

must be carefully considered to achieve scalability.

In an effort to reduce computation times, much work has been made to efficiently parallelize

finite element (FE) codes. The domain decomposition method (DDM) is an extremely popular

approach for load balancing and adaptive mesh-generation in many parallel FE codes [34,

35]. Here, the FE problem domain is divided into multiple, smaller subproblems that can be

solved simultaneously [36, 37, 38]. In such a method, the decomposition must be done in a

manner that minimizes dependence between the subproblems. This way, parallel processors

can be assigned to perform computations on a subproblem with minimum communication

between processors. Load balancing must also be performed to dynamically redistribute

workload evenly among each processor. Popular decomposition schemes include graph-based

techniques [39] and geometry-based techniques [40, 41]. One noteworthy method that has

considerable research interest is the finite element tearing and interconnecting (FETI) method

[41, 42]. This method requires fewer interprocessor communications than traditional domain

17

decomposition schemes by partitioning the spatial domain into a set of totally disconnected

subdomains. The global continuity across subdomain interfaces is enforced via Lagrange

multipliers rather than explicit interprocessor dependence.

The solution to elliptic and parabolic PDEs generally involves global coupling and the need

for domain decomposition techniques outlined above. Hyperbolic PDEs on the other hand have

finite propagation speed of disturbances. This allows for more efficient parallelization schemes

as coupling between elements is localized. The discontinuous Galerkin (DG) finite element

method is particularly efficient for hyperbolic problems wherein discontinuous basis functions

are used to formulate the Galerkin approximation [43, 44, 45]. Early works to parallelize the

DG method have utilized the DDM [46, 47, 48, 49], thus introducing synchronization barriers.

More recent works on parallel DG methods such as those by Xia et al. [50], Raj et al. [51],

and Krais et al. [52] continue to utilize the DDM, albeit with greater sophistication and scale.

In this dissertation, we have used the unstructured mesh generation capabilities inherent to

the “Tent Pitching” method [16, 17] and developed a fully asynchronous parallel method.

An ideal program for parallelization is one that can be divided into sub-problems that

involve no communication between the sub-problems. Problems of this type are commonly

called embarrassingly parallel. A major portion of cSDG calculations satisfies this criterion

— specifically, those that involve spacetime mesh generation, the patch-wise finite element

solution process, and local adaptive mesh refinement. All of these execute at a common patch-

level granularity. Since the solution of a new patch depends only on previously computed data

— as guaranteed when respecting the causality constraint (see Section 2.2.1) — there is no

need for communication between active patches during the solution process. The formulation

requires data communication only for flux exchanges between inflow facets and facets of patch

elements and not edges or vertices, and thus has a relatively low communication cost. Finally,

the localized patch-by-patch solution technique limits the number of degrees of freedom per

solve, ensuring much smaller matrix-vector operations when compared to traditional finite

element methods which need to solve large, global matrix equations. For a front mesh of

bounded degree and polynomial order, the cSDG method has linear computational complexity.

These features make the cSDG method uniquely well-suited for parallel implementation.

Our parallel implementation replaces the standard Bulk Synchronous Parallel (BSP) [4]

model with an asynchronous task-based and mostly lock-free solution scheme as described in

this chapter. The BSP model involves three main stages: concurrent computation in multiple

processes using only data stored locally; global communication across multiple processes

to exchange relevant data; and, barrier synchronization where all processes wait until the

communication is complete. A common usage of the BSP model is in traditional finite element

codes with synchronous time-marching. After an iterative implicit update or an explicit

18

time step has been computed on each parallel process, relevant data needs to be exchanged

between subdomains before the next iteration or time-step. Strongly graded mesh refinement

in explicit methods and localized nonlinearity in implicit solvers severely impedes efficiency

due to severe time-step restrictions dictated by stability or accuracy requirements. The BSP

model can become inefficient due to the cost of barrier synchronization which comes in two

parts: the cost caused by the variation in the completion times of the computation steps;

and the cost of reaching a globally-consistent state in all processes after the communication.

The costs associated with these synchronization barriers are substantial in the case when the

computation stage in each process varies greatly in completion times.

While a static domain decomposition supports efficient parallel implementation of non-

adaptive cSDG models, the restriction to non-adaptive models sacrifices one of the method’s

most powerful features. Unfortunately, we find even highly dynamic decomposition incapable

of maintaining load and data balance in the face of dynamic, fine-grained cSDG adaptive

meshing. Re-computing the subdomains requires global communication and a synchronization

barrier which suffers from the limitations of the BSP model as described above.

We abandon both the BSP and DDM in our architecture for the distributed parallel–

adaptive cSDG implementation and replace them with a asynchronous, task–based framework

augmented with a server–client model for managing front-mesh data, our method’s only

global data structure. Contrary to standard practice, we prioritize dynamic management of

data balance and load balance over minimizing communication costs and freely distribute

front-mesh data without consideration for spatial coherence. This unorthodox policy enables

powerful probabilistic techniques for dynamic load and data balancing that execute at

the common patch-level cSDG granularity and keep up with fine-grained cSDG dynamic

adaptive meshing. Data clients request and modify fragments of front-mesh data through

communication with the front-mesh servers and enable dedicated solver processes to construct

patches that can be solved asynchronously and without any further communication. Updates

to the global state of the front data are then communicated to the necessary servers after the

patch computation.

The organization of this chapter is as follows. For the rest of Section 3.1 we describe the

previous efforts to develop the parallel implementation of the cSDG method. Sections 3.2

and 3.3 details the overall parallel architecture, along with the various distributed algorithms

implemented to achieve a high level of parallel scalability across the distributed system. In

Section 3.4 we describe the experimental set-up and target machine on which we develop

and test our method. Finally, we present scaling results and optimizations of the parallel

architecture on a large distributed system to demonstrate its feasibility in Section 3.5

19

3.1.1 Previous Work

Owing to the rich parallel capabilities inherent to the cSDG method, there have been attempts

in the past to parallelize the code. This thesis is part of an ongoing, long-term project to

develop a robust, scalable parallel implementation of the cSDG method. The first prototype

utilized domain decomposition along with the CHARM++ parallel language and run-time

system [53] developed by the Parallel Programming Group at the University of Illinois to

manage interprocessor communication, load balancing, and the automatic dispatch and

scheduling of patches to be solved. While this unpublished work demonstrated promising

speed-up for the non-adaptive case, scalability was limited for the adaptive case where the

re-computation of the global domain decomposition was too slow to keep the computational

load balanced.

A further improvement was performed by optimizing the assembly and solution stages of

the cSDG code where sequential optimization, vectorization and OpenMP multi-threading

lead to good speedups for shared-memory parallelization [54]. Additionally, offloading

computation to a co-processor card based on the Intel Many Integrated Core (MIC) was

explored to further accelerate computation. In this model, multiple patches can be formed

and buffered in main memory before being transferred to the co-processor where these patches

could be assembled and solved in parallel. This execution model could be readily applied to

general-purpose computation on GPUs (GPGPU) where the large number of parallel threads

could be leveraged for the compute-intensive stage of patch assembly and solution. The work

demonstrated limited speedup due to the fact that the mesh generation was not parallelized.

The latest effort to speed-up the method involved parallelization of the meshing and

patch generation code using the POSIX Thread (Pthread) parallel execution model in shared

memory [33]. Multiple software threads, organized into multiple thread pools, simultaneously

and asynchronously build and solve patches. By enforcing the causality constraint on patch

duration1, we guarantee that each thread performs calculations that depend only on previously

computed data. Conflicts between threads trying to construct overlapping spacetime patches

are resolved through a system of locks on front-mesh vertices. Additionally, improvements

to the adaptive meshing scheme allow for local front-mesh refinement and coarsening while

maintaining globally conforming triangulation. This work is the first that balances both data

and computational load for the parallel–adaptive case, leading to a substantial improvement

over past attempts.

The main drawback is that the restriction to shared-memory hosts limits the number of

cores and, therefore, the potential speed-up. This chapter addresses this limitation by describ-

1We define patch duration as the patches temporal diameter, i.e., the non-negative difference in time
coordinate between any two vertices in a patch.

20

ing a novel architecture for distributed-memory, parallel–adaptive cSDG implementations as

well as the various supporting algorithms it requires.

3.2 Distributed Parallel cSDG Architecture

This section describes the distributed parallel cSDG architecture in detail as well as the

various algorithms implemented for communication, thread-safety, and load-balancing —

some of the main challenges for the distributed code.

3.2.1 Terminology and Notation

Before we proceed to the technical details of our distributed parallel architecture, we define

some basic concepts useful to the rest of the chapter. Readers are referred to Section 2.2 for

an introduction to the causal spacetime meshing that is key to our parallel architecture.

Distributed Front Mesh

The space-like front (see definition 2.2) mesh consists of vertices and cells embedded in one

or more spacetime manifold. The front at the beginning of each iteration of our algorithm

represents the frontier of both the incremental mesh construction as well as the solution.

Thus, for any point P = (p, τ(p)) on the front τ , the solution at P has been computed and

the set of points P+ = (p, t+), such that t+ > τ(p), remain to be meshed and the solution

there is unknown. The front mesh advances in time as the solution progresses, but at any

given stage of the solution procedure, each front vertex is assigned non-uniform temporal

coordinates that define the d-dimensional front mesh, analogous to a “bumpy terrain”. In

this way, the front mesh represents the state of the solution progress and forms the only

global data structure in the tent pitcher solution scheme.

For the parallel code, the distributed front mesh data-structure — consisting of d-

dimensional vertices and cells — are uniformly distributed across the distributed system

through a yet-to-be defined partitioning scheme. At its simplest, a general partitioning

scheme attempts to assign equal number of front entities to each subdomain while minimizing

communication costs between subdomains. While a rather intuitive and popular choice for

this scheme is to partition front entities respecting spatial coherence, in practice maintaining

this coherence would require either expensive re-partitioning steps or complicated load and

data-balancing schemes to support adaptivity. As described in Section 3.3.6, as long as the

cost for communication is minimal and the latency is masked, we can simplify the partitioning

21

by abandoning spatial coherence and implement highly dynamic load and data-balancing

schemes that share the same granularity as patch-wise adaptive operations.

Footprint and Extended Footprint

For any vertex v on the front τ , the footprint is defined as a collection of front cells and

vertices that are incident on v. The vertex v is labeled as the base of the footprint. More

formally, we define the footprint as follows:

Definition 3.1 (Footprint ∆). For any vertex v, the footprint on this vertex ∆v is the star

of v where

St(v) = {∆v ∈ τ |∆v ∩ v ̸= ∅}2. (3.1)

The footprint is useful as it is the smallest fragment of the front mesh that is sufficient to

support any adaptive operation such as refinement or coarsening.

For the parallel code, it becomes necessary to include more front entities to the definition

of the footprint. This is motivated by the fact that many refinement operations can alter

connectivity information outside the footprint as defined above. As such, we define the

extended footprint for a front vertex v as:

Definition 3.2 (Extended Footprint ∆̃).

∆̃v =
⋃

f∈St(v)

⋃
c∈edge(f)

St(c). (3.2)

In other words, the extended footprint is the union of the footprint along with all the

front entities that are incident to the faces (or edges) in the star of v. Figure 3.1 depicts the

extended footprint for a two-dimensional front. We will use the terms footprint and extend

footprints interchangeably going forward to solely refer to the extended footprint as this is

more applicable when describing the parallel architecture.

Local Time-minimum Vertex

Definition 3.3 (Local minimum vertex). A local time-minimum vmin of the front τ is a

vertex that satisfies the following:

vmin = {p ∈ τ | τ(p) ≤ τ(q) ∀q ∈ Lk(p)}, (3.3)

2In some definitions, the star is not closed under taking faces. To remove ambiguity, we more precisely
define the footprint as the closed star which is a closed simplicial complex formed by adding all the missing
faces to St(v)

22

A

Figure 3.1: Footprint (blue regions) for a 2 dimensional front over vertex A with link vertices
(•), along with the extended footprint (union of grey and blue regions) and extended vertices
(◦)

where the link operator Lk(·) is defined as all vertices in the open star of v that is disjoint

from v, i.e.,

Lk(v) = {v′ ∈ St(v)|v′ ∩ v = ∅}. (3.4)

Local time-minimum vertices are important in the tent pitcher algorithm as patches that

are pitched over them are guaranteed to make progress in advancing the front [30]. Every

front has a local minimum because it has at least one global minimum which is also a local

minimum.

Pitchable Front Vertex

For a given parallel process, a pitchable front vertex v is a vertex on the current front that

satisfies the following criteria:

1. it is a local time-minimum vertex, cf. Def. 3.3

2. all vertices in its extended footprint, ∆̃v, are owned by that process

A vertex is “owned” by a parallel process if it has exclusive rights to that vertex, very similar

to that of a lock or mutex. We will formalize this concept later in this chapter through the

lock and hold algorithm (see Section 3.3.1).

23

3.2.2 Overall Architecture

The distributed parallel architecture is implemented to leverage the embarrassingly-parallel

structure of the overall cSDG algorithm. An overall task-based framework, augmented with

a server-client execution model, is chosen for the parallel architecture wherein the clients

request data from distributed servers in order to make progress in the simulation by generating

tasks for asynchronous FE solvers. Communication between the clients and servers across

the distributed system is handled by the Message Passing Interface (MPI) framework.

MPI Layer

Process-Private

Distributed Memory

Memory

Process-Private
Memory

Inter-Process
Shared Memory

Figure 3.2: Distributed parallel cSDG architecture depicting the three parallel process types
and client-server communication pattern using the MPI framework.

Figure 3.2 shows the overall software architecture of the distributed parallel implementation

which entails three class of asynchronous processes. The distributed front mesh — our only

global data structure — is partitioned across distributed memory and managed by server

processes called distributed front servers. The client processes, the footprint wranglers,

assemble extended footprints by requesting the necessary front entities from the relevant

front server. The footprints contain all necessary data for the embarrassingly parallel solution

scheme: adaptive front refinement, adaptive construction and solution of spacetime patches,

24

computation, and checking of adaptive error indicators. Once the footprint is assembled in

local memory by the footprint wrangler, it is then pushed onto a solve queue that feeds work

to a paired patch solver processes. Each solver process pitches a patch over the footprints

in this queue and can complete assembly, solve and adaptivity checks without any further

communication or synchronization with other processes using data exclusively in process-

private memory. Therefore, we expect perfect scaling if (i) there is always work in the solve

queue and (ii) if the solvers are isolated from indirect interference by the server and wrangler

processes. The first requirement is easily satisfied by common latency-hiding techniques, but

solver isolation is harder to achieve. We investigate these issues later in this chapter. After

the solution has been computed, the solver returns the updated footprint and solution data

via a store queue to its paired wrangler which outputs solution data and communicates with

the servers to update the distributed front. The number and distribution of each of these

processes vary from system-to-system, but as a general rule, we aim to maximize the system

resources allocated to the patch solvers while keeping the latency between message request

and response manageable.

We present algorithmic details of each of the three distinct parallel process types — (i)

distributed front servers, (ii) footprint wranglers, and (iii) patch solvers — in the following

sections.

3.2.3 Distributed Front Servers

The front servers store, update, and respond to requests for the distributed front mesh

data structure (defined in Section 3.2.1). We make use of non-blocking MPI communication

semantics which ensures that the server processes regains control after initiation of message

transmission. By careful design of the server algorithm, waiting for data to arrive and the

actual transfer of data occurs in the background, leaving resources free to process other

requests.

Table 3.1: Data members for distributed server process

Name Description
Front vertices Partitioned front vertices assigned to the server processes.

Part of the local front mesh fragment
Front chambers Partitioned front chambers/cells assigned to the server

processes. Part of the local front mesh fragment
end cond Boolean attribute updated by a central process to indi-

cate simulation has completed

The server process maintains the local fragments of the distributed front mesh as detailed

25

in Table 3.1. The two main types of operations performed on the servers can be classified

into those that impact the state of the local data and those that do not. Examples of the first

type are: (i) write operations that modify currently stored data, (ii) insert operations that

add a new entity to the local front mesh, and (iii) delete operations that remove an existing

entity from the local front mesh. These operations are typically performed during the store

stage when wranglers send the updated footprint information to the servers. Operations that

do not impact the global state are read requests where wranglers request front entities during

footprint construction.

The overall structure of the distributed front server processes is presented in Algorithm

1. Server processes each initialize their local, partitioned, fragment of the front mesh as

described later in Section 3.3.6 during the initialization stage. This involves reading and

extracting the portions of the initial front mesh that are mapped to the local server process.

The servers then loop until signaled to shut-down and continuously respond to any request

made via MPI non-blocking requests. Based on the type of request received, we either update

the local fragment of front data and termination variables (further discussed in Section 3.3.8)

or send the requested front data to the requesting wrangler.

Algorithm 1 Server Pseudo-code

1: Initialize local distributed front mesh fragment
2: end cond ← false

3: while !end cond do
4: Perform MPI IProbe() to check for incoming messages
5: if message exists then
6: Perform MPI IRecv() and process message
7: if message type = Read then
8: Access local fragment of distributed front mesh
9: Perform MPI ISend() to requesting wrangler rank with data
10: else if message type = Write/Insert/Remove then
11: Update local fragment of distributed front mesh
12: Update termination variables, see Algorithm 15
13: end if
14: end if
15: Update end cond

16: end while
17: Finalize and shut-down

3.2.4 Footprint Wrangler Clients

The footprint wrangler clients are responsible for gathering and constructing extended

footprints that are the basis of all parallel computation in the cSDG method. The wranglers

26

build footprints over local time-minimum vertices in the front. In the parallel code, each

wrangler maintains its own list of unique time-minimum vertices that are initialized as a subset

of the initial front mesh and then updated as the simulation progresses. As in the case of the

server processes, we utilize non-blocking MPI communication semantics for communication

with the servers to maximize the time spent doing useful work.

Each wrangler process maintains the data members outlined in Table 3.2. Local minimum

vertices over which footprints are constructed are taken from the minimum vertex heap

(MVH), a time-ordered priority min–heap. We maintain a further heap — the pending vertex

heap (PVH) — the need for which becomes apparent by considering thread-safety when

multiple wrangler processes are simultaneously attempting to construct footprints over the

front. We utilize a system of vertex locks on each front vertex to prevent collisions between

multiple wrangler processes, as detailed in Section 3.3.1. For now, it is sufficient to view the

construction of a footprint over a local minima as an operation that could fail due to a failure

to acquire all the vertex locks across the entire extended footprint. When such failures occur,

the local minima vertex that formed footprint base is added to the PVH instead of the MVH

to prevent unproductive re-checking of footprints before all their vertices become unlocked.

After some non-negligible time has elapsed, vertices added to the PVH can be moved to the

MVH for reconsideration as the state of the locks on the front can be expected to change.

The management of these heaps are described in greater detail in Section 3.3.5.

Table 3.2: Data members for distributed wrangler process

Name Description
Minimum vertex heap Time ordered priority heap of local minima on the front

mesh allocated to the wrangler process.
Pending vertex heap Time ordered priority heap of local minima on the front

mesh over which footprint construction has failed.
Solve queue FIFO queue for communication between wrangler and

solvers containing fully assembled footprints over which
solvers can pitch and solve patches

Store queue FIFO queue for communication between wrangler and
solvers containing footprints updated after solution on
the solvers

end cond Boolean attribute updated by a central process to indi-
cate simulation has completed

Each wrangler client process has a paired patch solver process which communicates using

the solve and store queues. When a footprint has been successfully assembled by the wrangler

(by gathering all front entities and successfully acquiring all vertex locks in the footprint), it

is pushed onto the solve queue for patch construction and solution by the solver process. The

27

base vertex of the footprint is necessarily a pitchable front vertex, as defined in Section 3.2.1.

Once the footprint has been assembled, there is no further need for global front data and

the downstream tasks performed by the solver are embarrassingly parallel. After the solver

has completed the patch solution, the updated footprint is placed onto the store queue to be

scattered by the wrangler to the relevant front server. Additionally, after the pitch operation

the updated time-coordinate of the footprint base vertex may cause neighbor vertices to

become new local time-minima. We utilize the scheme outlined in Section 3.3.4, which

operates at the same granularity of the patch, to check for such new local minima to replenish

the minima vertex heaps. The pseudo-code for the wrangle and store operations are presented

in Algorithms 2 and 3 respectively. The wrangler process can be implemented with the

wrangle and store operations occurring in sequence or simultaneously using multiple threads.

We find no difference in performance for either case. Both these operations are implemented

internally as a finite-state machine (FSM) where each stage of footprint wrangling/storing

are discrete states of this state machine. Due to the latency between requesting front entities

from the server process and receiving the response, the wrangler process continuously loops

and tries to progress the internal state of the wrangle and store operations based on the

messages received and processed. When we transition to a new state, new messages are sent

to the relevant servers to request or send the front entities needed for that state. The full

description of the stages of the wrangle and store FSMs are given in Section 3.3.3. Similar to

the server processes, the wrangler continuously performs work until signaled to terminate at

the end of the simulation using a globally-updated condition variable.

Because the time-minimum vertices are analogous to a list of available tasks the wrangler

can perform, we must be very careful to distribute these vertices evenly across the distributed

system. If a subset of wranglers exhaust their local list of time-minimum vertices, these

wranglers will be unable to build footprints and, in turn, their associated solver process will

remain idle. This condition is called a solve queue stall since the solve queue shared between

the wrangler and solver empties due a lack of work on the upstream side. We closely monitor

the state of the solve queues and tune the parameters of the parallel code to minimize the

occurrences of solve queue stalls. Additionally, we implement a highly dynamic, probabilistic

load-balancing scheme to balance the distribution of time-minimum vertices on each wrangler,

as detailed in Section 3.3.7.

3.2.5 Embarrassingly Parallel Patch Solver

The patch solver process builds patches over footprints stored in its associated solve queue

and performs the finite element assembly, solution, and adaptive operations on the patch.

28

Algorithm 2 Wrangle Pseudo-code

1: Initialize local minimum vertex heap, pending vertex heap, and solve queue

2: is wrangling ← false

3: end cond ← false

4: while !end cond do
5: if !is wrangling AND solve queue not full then
6: Pop vertex from minimum vertex heap, see Algorithm 10
7: is wrangling← true

8: else if is wrangling then
9: Perform MPI IProbe() to check for incoming messages
10: if message exists then
11: Perform MPI IRecv() and process message
12: Load data into footprint and progress state, if possible
13: end if
14: if footprint state transitioned to new state then
15: Identify distributed data required to progress footprint state
16: Perform MPI ISend() to relevant server rank requesting data
17: end if
18: if footprint wrangling complete then
19: is wrangling← false

20: if locking successful then
21: Add footprint to solve queue

22: else
23: Reset all locks acquired during wrangling
24: Return base vertex to pending vertex heap, see Algorithm 10
25: end if
26: end if
27: end if
28: Update end cond

29: end while
30: Finalize and shut-down

29

Algorithm 3 Store Pseudo-code

1: Initialize local minimum vertex heap, and store queue

2: end cond ← false

3: while !end cond do
4: if store queue has data then
5: Pop footprint from store queue

6: Perform MPI ISend() to relevant server rank with updated footprint data
7: If any vertices are local minima, push onto minimum vertex heap, see Algorithm

9
8: end if
9: Update end cond

10: end while
11: Finalize and shut-down

The solver process follows the task-based execution model where a process (or a group of

parallel processes) continuously poll a task queue for work and executes the task as soon

as one is received. Once complete, the process return to polling the task queue. The data

members for the solver process are listed in Table 3.3. As described in Section 3.2.4, the solve

and store queues are used to transmit footprints from and to the paired wrangler process,

respectively. Fully assembled footprints are popped from the solve queue as soon as they

become available and the patch can be built and solved as outlined in Algorithm 4. By

respecting the causality of the underlying method, all the data needed to perform these

operations are now present in the solver’s process-private memory. There is no need for

further communication or synchronization at this stage. As long as there are tasks present

in the solve queue and space in the associated store queue, the patch solvers can proceed

uninterrupted. Through the separation of MPI communication and patch solution between

the wrangler and solver processes, we hide the latency of MPI communication across the

distributed network from useful computation.

Table 3.3: Data members for solver process

Name Description
Solve queue FIFO queue for communication between wrangler and

solvers containing fully assembled footprints over which
solvers can pitch and solve patches

Store queue FIFO queue for communication between wrangler and
solvers containing footprints updated after solution on
the solvers

end cond Boolean attribute updated by a central process to indi-
cate simulation has completed

30

Algorithm 4 Solver Pseudo-code

1: Initialize local solve queue, store queue

2: end cond ← false

3: while !end cond do
4: if solve queue has data then
5: Pop footprint from solve queue

6: Build patch over footprint
7: Solve patch and perform necessary adaptive operations
8: Store updated footprint onto store queue

9: Update end cond

10: end if
11: Update end cond

12: end while
13: Finalize and shut-down

An important goal for the distributed parallel code is to minimize the cases where solver

processes halt execution due to starvation of tasks from the solve queue, a condition known

as a solve queue stall. Multiple factors contribute to solve queue stalls:

1. A small number of pitchable front vertices relative to the global front size. This is

common during the initial and final stages of the simulation where the number of total

vertices on the active front is limited. Due to conflicts between multiple competing

wranglers, only a small number of local minima vertices satisfy the conditions to be

pitchable.

2. Large latency in communication between servers and wranglers due to network conges-

tion or over–saturation.

3. Insufficient resources allocated to the server and wrangler processes. Since these

processes are responsible for generating tasks for the solvers, a poor allocation of

resources could lead to insufficient footprint generation.

Many design decisions described later in this chapter are based on the objective to minimize

the number of solve queue stalls.

3.3 Distributed Algorithms

In this section we provide further details on the various algorithms implemented for the

distributed-parallel code outlined above.

31

3.3.1 Lock and Hold Management

In the parallel setting, we may encounter collisions from another wrangler process while

attempting to build footprints. A collision occurs when the extended footprint built by

one process extends into the extended footprint of another process. Failure to establish

well-defined algorithms to resolve the collisions would lead to race conditions and thread-safety

issues. Particularly in the case of adaptivity, data corruption can occur if multiple processes

attempt to modify the same portion of the front at the same time. We utilize vertex locks

to establish clear ownership of front mesh vertices to one process over another. In addition,

we favor algorithms that deliver sequences of patch solves that are reasonably close to strict

ascending-time order. We utilize vertex holds to prioritize pitches over vertices that have

smaller time coordinate. We introduce two members for every front vertex object, a lock and

a hold object, as defined below:

Definition 3.4 (Vertex Lock). A lock object is a logical-valued member of every front vertex

object that indicates the ownership of the vertex. An active lock signifies that a front vertex

is unavailable for use in another footprint.

Definition 3.5 (Vertex Hold). A hold object is a member of every front vertex object that

tracks priority rights when collisions occur between footprints. The hold has the following

members:

• Base vertex ID: the ID of the footprint base vertex that set the current hold and,

• Base time: the time-coordinate of the footprint base vertex that set the current hold,

to maintain a close to ascending-time front mesh for parallel efficiency.

A vertex is locked if the owning process has exclusive rights over the vertex and can use

the vertex in constructing footprints. A vertex is held if the owning process has priority

rights when collisions occur (as detailed in Definition 3.6). Finally, a vertex is blocked if it is

already locked or another process has a higher priority hold over it. A hold associated with

the vertex’s native process does not trigger a blocked condition.

When traversing vertices belonging to a footprint under construction on wrangler processes,

each vertex must first pass a block test, the result of which will determine if the vertex is

blocked. This is essential to determine if a footprint constructed on another wrangler process

has priority over the native footprint and should be favored to proceed at the expense of the

native process. The block test is outlined in Figure 3.3 while the algorithm for the same is

presented in Algorithm 5. For a given vertex v in the current footprint, the first check in this

test is the state of the lock. A locked vertex necessarily means that a vertex is blocked — a

32

Blocked = F Blocked = T

Set Hold
Y

Y

N

Vertex Locked

Hold Active

Native Hold

Native Priority

Y

N

Y

N

N

Start

Figure 3.3: Flowchart depicting block test for a vertex.

foreign footprint has ownership of the vertex. If v has no active hold, or if the hold is native

to the footprint base vertex, the native process sets the hold and the vertex is not blocked.

However, if an active hold already exists for v — as in the case for a collision between two

wrangler processes — the priority of the native hold must be compared to that of active hold

object. If the native hold has priority, then the current hold is over-written with the native

hold and the vertex is not blocked. Otherwise, the vertex is blocked.

If the vertex is not blocked, the native process can acquire its lock. This process is

repeated for all vertices in the footprint or until we encounter a blocked vertex. Only once

a process can successfully acquire all the locks in the footprint can we pitch over the base

vertex. The base vertex satisfies the criteria for a pitchable vertex at this stage. Since each

vertex is exclusively partitioned to a single server process this naturally enforces the atomicity

properties that are essential to the logic of this algorithm. In particular, a server process can

only process one request to check the lock status on front data that it controls at a time.

Causality constraints determine a partial ordering of front-mesh vertices that governs

the sequence of patch construction and solution in the cSDG solution scheme. Further, we

only construct patches over vertices that are local time-minima. Among the many sequences

33

Algorithm 5 Pseudo-code for block-test on vertex

INPUT: v id - Vertex ID to check; base id - Vertex ID of footprint base; base time - Time
coordinate of footprint base
OUTPUT: vert blocked - Result of block test

1: procedure Block Test(v id, base id, base time)
2: vert blocked ← false

3: hold ← get vert hold(v id)

4: if v id locked then ▷ If the vertex is locked, then we must be blocked
5: vert blocked ← true

6: else if hold inactive then ▷ If the current hold is inactive, update it
7: hold ← active
8: hold.state() ← (base id, base time)

9: else
10: if hold.owner() != base id then ▷ Previous hold set by foreign footprint
11: new hold.state() ← (base id, base time)

12: if new hold < hold then ▷ Current hold has priority, see Definition 3.6
13: hold ← new hold

14: else ▷ Previous hold has priority
15: vert blocked ← true

16: end if
17: end if
18: end if
19: end procedure

that satisfy these requirements, we prefer those that construct patches over local-minimum

vertices in ascending-time order. This preference is easily attained in serial calculations, but

we relax it to enable efficient asynchronous computations in the parallel case. That is, we

seek parallel algorithms that deliver patch sequences that are close to, but not strictly in,

ascending-time order. Large deviations from the ideal ordering can introduce implicit locks

that impair parallel performance and can make it harder to satisfy causality constraints in

nonlinear problems. For instance, if large portions of the front were pitched far ahead of

other portions, the number of local minima and, in turn, pitchable front vertices on the front

would be much smaller than for a front that is close to ascending-time order. This would

lead to undesirable solve queue stalls as discussed in Section 3.2.5.

To maintain fronts that are close to ascending-time order, we define the priority of the

hold so as to consider the time coordinates of the footprint base vertex that set the hold. In

cases of collisions, the following test is performed to determine which hold has priority:

Definition 3.6 (Hold priority). Given two hold objects h1 and h2 with active states (id1, t1)

34

and (id2, t2) respectively, we say that h1 has a priority over h2 if either of the following hold:

t1 < t2 (3.5a)

t1 = t2; id1 < id2 (3.5b)

In this way, if collisions do occur, the footprint with the earlier in time base vertex

will have priority and the resulting front will satisfy the condition of pitching vertices in

ascending-time order. We use the base vertex’s id in the case of a tie.

When a patch has been successfully solved, part of the update process performed by the

wrangler is to release all the vertex lock and hold objects in the updated footprint. While

resetting the locks involves simply setting the logical value to inactive, when resetting the

holds we retain higher-priority holds in footprints for reuse later on as described in Algorithm

6. In this way any higher-priority holds set after the vertex has been locked by the native

footprint are retained.

Algorithm 6 Pseudo-code for resetting vertex hold

INPUT: v id - Vertex ID to reset hold; base id - Vertex ID of footprint base; base time -
Time coordinate of footprint base

1: procedure Reset Hold(v id, base id, base time)
2: hold ← get vert hold(v id)

3: if hold.owner() = base id then ▷ Only reset if hold is set within the current
footprint

4: hold.state() ← ()

5: hold ← inactive
6: end if
7: end procedure

3.3.2 Abstract Parallel Driver

Each of the parallel processes described in Sections 3.2.3 - 3.2.5 operates with the same

high-level pattern — continuously poll the internal state of a finite-state machine and attempt

to make progress to advance the state. To simplify the development of these processes, we

define an abstract parallel driver class that is used as an abstract base class from which we

derive each of the parallel processes.

The parallel driver class, depicted in Algorithm 7, is a wrapper over a parallel thread that

can asynchronously loop over high-level abstract tasks and check and progress the internal

state of each task through the main loop method. When all the tasks are completed, the

driver will finalize and gracefully exit.

35

Algorithm 7 Parallel Driver Pseudo-code

1: procedure Initialize Driver()
2: Add each high-level task to tasks

3: for each task t in tasks do
4: t.initialize()

5: end for
6: Initialize and launch thread

7: end procedure

Ensure: size of tasks, sub tasks ̸= 0
8: procedure Main Loop()
9: while all tasks not done do
10: for each task t in tasks do
11: t.check for completeness()

12: end for
13: end while
14: for each task t in tasks do
15: t.finalize()

16: end for
17: Notify threads to shut-down
18: end procedure

Each task is represented internally as a FSM with the state variables: state, s and the

number of sub-tasks completed at that stage. Each abstract sub-task is represented by two

purely virtual functions that need to be defined in the derived class:

1. initialize(): Initializes the members and internal state of the sub-task,

2. is subtask complete(): Check completeness and try to progress internal state of

sub-task. Returns a Boolean value indicating whether the sub-task has been completed.

Once initialized, the task sequentially queries each sub-task at the current state and checks

for completeness of the sub-task. Once all sub-tasks are completed at the current state, the

task transitions to the next state, as depicted in Algorithm 8. These high-level abstractions

enable us to represent asynchronous communication patterns between processes cleanly and

with low-level implementation details out of sight.

3.3.3 Wrangler finite-state machines

The wrangler process derives two high-level tasks defined in Section 3.3.2, the wrangle and

store tasks to perform footprint construction and storage respectively. Each of theses tasks

36

Algorithm 8 High-level task Pseudo-code

1: procedure Initialize Task()
2: Add each sub-task: (state s, high-level subtask st) to sub tasks

3: for each sub-task state s in sub tasks do
4: for each sub-task st in state s do
5: st.initialize()

6: end for
7: end for
8: end procedure

9: procedure Check For Completeness()
10: if state = Complete then ▷ no more work to do for current task
11: return
12: end if
13: for each sub-task st in current state state do
14: st complete ← st.is complete

15: if !st complete then
16: st complete ← st.is subtask complete()

17: num subtasks complete ← num subtasks complete + st complete

18: end if
19: end for
20: all subtasks complete ← (num subtasks complete == st.size())
21: if all subtasks complete then ▷ transition to next state
22: all subtasks complete ← false

23: num subtasks complete ← 0
24: state ← next state
25: end if
26: end procedure

are represented as a FSM where each state is represented as a sub-task defined below. The

full pseudo-code for these state machines are present in Appendix A for brevity.

Wrangle Task

The wrangle task is responsible for constructing footprints over pitchable front vertices. Once

a local time-minimum vertex has been selected from the minima vertex heap, we activate

the wrangle task and continuously check and progress the state. Since none of the required

front data is present in process-private memory of the wrangler, at each stage of the FSM

requests are made to the relevant server processes and all responses need to be received

before transitioning to the next state. The overall wrangle task is depicted in Figure 3.4.

The footprint is constructed by first requesting the base vertex data. Once received, the

entire extended footprint is gathered by requesting — in order — the incident chambers, link

37

Start:

Minima Vertex
ID

Wait for message

Response received
responses

Figure 3.4: Flowchart depicting wrangle task. For each state, data is requested from server
processes and all responses need to be received before transitioning to the new state. Based
on the state of the holds and locks on the footprint vertices, the footprint construction can
either succeed or fail.

38

vertices, extended chambers and extended vertices in a similar fashion. For each vertex thus

processed, we test its block status cf. Algorithm 5 and return the result to the requesting

wrangler. If all vertices in the footprint are not blocked, we proceed with the footprint

construction by requesting all the vertices to be locked. We check the block status of all the

vertices in the extended footprint even if we encounter a previously blocked vertex to ensure

we correctly set the priority on all footprint vertices. Since some non-negligible time has

passed since initially checking the locks when performing the block test, we must ensure that

all vertices can be successfully locked. If any vertex is locked before the native footprint can

acquire them, we must unlock all the vertices we have successfully acquired to ensure a failed

footprint resets the lock state.

Store Task

The store task performs the store of the footprint after a solve by scattering the updated

front entities — along with the computed solution stored on these entities — to the relevant

server processes, as depicted in Figure 3.5. The store involves up to four operations for front

entities, if applicable, performed in the following order: erase, insert, update and unlock.

Besides the insert operation, none of the store operations require a response from the server

process and the store state can be transitioned as soon as the requests are made. Insert

operations are different since the server onto which to perform the insert is a non-trivial

choice. In order to balance the number of requests made to each server process, we strive

to maintain close to equal number of front entities on each server. The choice of server is

made in accordance to a data-balancing scheme — detailed in Section 3.3.7 — to achieve

this goal. Once the server is selected, the ID of the inserted entity can only be generated by

that server based on the generation algorithm (see Algorithm 12 for details). The global ID

thus generated by the remote server is then used to update the local ID of the entity to be

inserted as well as the connectivity of front entities in the footprint. Finally, once all local

IDs have been replaced with global ones, we send all impacted front entities to the respective

server to update. As part of the update operation, each vertex that is a new local minima,

identified as outlined in Section 3.3.4, is added to the minima vertex heap of the favorable

wrangler process determined using the load-balancing algorithms presented in Section 3.3.7.

The final stage of the store task is to reset the locks and holds on the footprints to allow

further progress to be made over this updated footprint.

39

Request Erase

Request Insert

Update Inserted
Global IDs

Request Unlock

Request Update

Entities to insert?

Y

N

Wait for message
responses

Response received

Store Complete

Start:

Footprint To
Store

Figure 3.5: Flowchart depicting store task. For each state, the updated front entities of the
solved footprint are scattered to the relevant server process to update the distributed front
mesh data structure.

3.3.4 Choosing Local Minima Vertices in Parallel

An integral part of the cSDG solution algorithm is determining and updating local time-

minimum vertices on the front since we only construct patches over such vertices to ensure

progress can be made to subsequent patches. A naive, but valid, strategy of updating

local minima is to maintain a time-ordered min-heap of all local minima on the front

that is periodically replenished by scanning all front vertices. Aside from the need for a

synchronization step that would be prohibitively costly in parallel, this approach would not

work in the distributed case where the front data is partitioned among server processes.

For the distributed-parallel code we introduce the concept of earlier vertex counter defined

40

as follows:

Definition 3.7 (Earlier vertex counter). Given the local front τ in the neighborhood of a

front vertex p, the earlier vertex counter E , is an integer-valued member of p defined as

Ep =
∑

q∈Lk(p)

[τ(p) > τ(q)] , (3.6)

where [·] is the Iverson bracket operator. In other words, E indicates the number of link

vertices (cf. Equation (3.4)) that are strictly earlier in time than vertex p.

In this way, each front vertex has a count of link vertices that are earlier in time and an

equivalent condition to Definition 3.3 for a local time-minimum vertex becomes:

Definition 3.8 (Local minimum vertex). A local time-minimum vertex, vmin, of the front τ

is a vertex that satisfies the following:

vmin = {p ∈ τ | Ep = 0}. (3.7)

Since we construct the extended footprint in process-private memory before each patch

solve, the link vertices to the footprint base vertex can be accessed to update E using the

above definitions.

Let τi denote the front after the ith step of the Tent Pitcher algorithm. For the initial

front τ0, all vertices are local time-minima since they satisfy Definition 3.8. After the first

patch has been pitched and the front has been updated to τ1, the earlier vertex counter of

the base vertex needs to be incremented by the number of link vertices. This vertex will

become a new local minima only when all the link vertices are pitched equal to, or past its

updated time coordinate.

For an arbitrary front τi, a pitch over a front vertex may cause the earlier vertex counters

for any subset of the link vertices to change, as depicted for the case of a 1D × time front in

Figure 3.6. In fact, we end up with three distinct cases to consider, independent of dimension.

The first is when the updated time coordinates of the base vertex is still earlier than any

link vertex (Fig. 3.6(a)). None of the earlier vertex counters are updated for this case. The

next case is when the base vertex is updated to be co-equal to a subset of link vertices (Fig.

3.6(b)). Here, only the link vertex that is co-equal to the updated base vertex has its earlier

vertex counter decremented by one. Finally, if the base vertex is pitched past a subset of link

vertices (Fig. 3.6(c)), the earlier neighbor counter for the base is incremented by one and

decremented by one for each such link vertex. This procedure is generalized in Algorithm 9.

41

Algorithm 9 Pseudo-code to update earlier vertex counter after a pitch operation

INPUT: v - Front vertex corresponding to tent-pole top; t base - Time coordinate of
tent-pole base vertex; t - Time coordinate of tent-pole top vertex; ev ctr - Earlier vertex
counter of vertex
OUTPUT: ev ctr - Earlier vertex counter of vertex

Ensure: ev ctr = 0
1: procedure Update Earlier Vertex Counter(v, t base, t, ev ctr)
2: for unique front vertices nbr v incindent on v do
3: t nbr ← nbr v.get time coordinate()

4: ev ctr nbr ← nbr v.get earlier vertex counter()

5: if t ≤ t nbr then
6: if t = t nbr then ▷ v and nbr v are co-equal
7: ev ctr nbr ← ev ctr nbr - 1
8: if ev ctr nbr = 0 then
9: Mark nbr v as a new local minima
10: end if
11: end if
12: else ▷ v is pitched past nbr v

13: ev ctr ← ev ctr + 1
14: if t base < t nbr then ▷ Original position of v was earlier than nbr v

15: ev ctr nbr ← ev ctr nbr - 1
16: if ev ctr nbr = 0 then
17: Mark nbr v as a new local minima
18: end if
19: end if
20: end if
21: end for
22: if ev ctr = 0 then ▷ v is still a local minimum after the pitch op
23: Mark v as a new local minima
24: end if
25: end procedure

42

(a) Tent-pole top time-
coordinate is less than any
neighbor. No change in any
earlier vertex counters, see
Algorithm 9, Line 5

(b) Tent-pole top time-
coordinate is equal to
neighbor. Decrement this
neighbor’s earlier vertex
counter, see Algorithm 9,
Line 6

(c) Tent-pole top time-
coordinate is greater than
neighbor. Decrement neigh-
bor’s earlier vertex counter
and increment tent-pole’s
counter, see Algorithm 9,
Line 14

Figure 3.6: Two successive 1D × time fronts, ABC and A′BC, formed after a pitch over
tent-pole base vertex A, depicting updates for earlier vertex counter. Earlier vertex counters
for each vertex before and after tent-pitch are presented for each vertex with →.

Besides a pitch operation, adaptive operations such as refinement, coarsening or edge-flips

can also change the earlier vertex counters of vertices in the updated footprint. For these

cases, it is sufficient to develop heuristics for each adaptive operation that compares vertex

time-coordinates before and after the adaptive operation to determine the updates to the

earlier vertex counters. During the store stage if any vertex has its earlier vertex counter

decremented to zero during the course of the pitch or refinement operations, it is marked as

a new local minima and is added to the minima vertex heap of the relevant wrangler process.

It is important to reiterate that these algorithms update data in process-private memory

already gathered as part of footprint construction. Updates to the earlier vertex counters

reflect only changes local to the native footprint and are safe-guarded from changes outside

the footprint by the vertex locks. Additionally, this algorithm allows local minima vertices to

be identified and updated at the granularity of a patch; exactly the same as all the other

parallel operations described in this chapter.

3.3.5 Wrangler time-heap management

When we encounter collisions from another process while locking a footprint, we need to defer

the pitch about the current minimum vertex and choose another from the native process’ local

MVH. Since we expect some non-negligible time to elapse before the current minimum vertex

becomes pitchable, we need to penalize the current vertex when choosing the next vertex.

This prevents unproductive re-checking of blocked vertices before they become unlocked.

43

Only once a minimum vertex becomes a pitchable vertex can we build a patch over it.

To this end, the wrangler processes has two time min-heaps, the MVH and the PVH (see

Table 3.2) as data members. The MVH stores the time ordered list of local time-minimum

vertices that are partitioned on each wrangler. Any minima vertex over which footprint

construction fails due to conflicting holds or locks are placed in the PVH. We use one of three

criteria to move vertices from the PVH to MVH:

1. We successfully pitch over a vertex from the MVH,

2. We reach the capacity of the PVH,

3. The MVH becomes empty.

These criteria ensure that a non-negligible amount of time passes before a vertex is reinserted

into the MVH. When any criteria is satisfied, we move all the vertices in the PVH onto

the MVH as the state of holds and locks on the front can be expected to be changed. The

capacity of the PVH should be a small integer greater than 1 so that failed vertices do not

spend unnecessarily long in an inactive state. Algorithm 10 depicts the pseudo-code for

choosing the next local minima vertex which is executed by the wrangler process at the start

of footprint construction. Task-stealing — where wranglers can request additional minima

vertices from over-loaded wranglers — can be implemented here if both the MVH and PVH

are empty.

A well-known method to deal with collisions, the Binary Exponential Backoff algorithm

[55], was also considered for this purpose. The BEB algorithm is commonly used for managing

collisions in network traffic. In this method, once a minima vertex fails to pitch, we place

it onto the PVH with a sleep interval determined by the BEB model. An exponentially

increasing amount of sleep time is added after each successive collision until a maximum cap

and the vertex is not considered until this time has elapsed. In practice, we find that the

simple criteria proposed initially is sufficient to minimize unproductive re-checking of blocked

vertices and the increased complication of the BEB model is unnecessary.

3.3.6 Data Partitioning Methods

In general, the ideal partitioning scheme should achieve the following — often competing —

goals [34]:

1. Assign equal number of data entities on each subdomain,

2. Minimize communication costs between subdomains,

44

Algorithm 10 Choosing local time-minimum vertices from time heaps

INPUT: successful pitch - Indicates the previously popped vertex has been successfully
pitched
OUTPUT: minima vert id - ID of local minima vertex over which to construct patch

1: procedure Get Minima Vertex(successful pitch)
2: if pending vertex heap.size() > maximum PVH size OR successful pitch then
3: Flush contents of pending vertex heap into minima vertex heap

4: minima vert id ← minima vertex heap.pop()

5: else if minima vertex heap.empty() then
6: if !pending vertex heap.empty() then
7: Flush contents of pending vertex heap into minima vertex heap

8: minima vert id ← minima vertex heap.pop()

9: else ▷ Task stealing
10: Request pitchable vertices from remote wrangler ranks
11: minima vert id ← NULL

12: end if
13: else
14: minima vert id ← minima vertex heap.pop()

15: end if
16: end procedure

3. Operate in parallel on already distributed data,

4. Re-balancing elements within subdomains after adaptive operations must be asyn-

chronous and quick,

5. Re-balancing must be incremental i.e., small changes in workload produce only small

changes in the decomposition,

6. Operate on the same granularity as other parallel operations.

Traditional finite element schemes favour minimizing computation costs between subdo-

mains since the exchanges of solution data for adjacent objects that are assigned to different

subdomains, or “ghost elements”, are required during computation. For adaptive simulations,

the cost of re-computing the subdomains to balance computational load is often significant.

Most partitioning schemes utilize spatial coherence to minimize communication costs and

any dynamic partitioning schemes respect this coherence.

Round-robin data partitioning

A traditional dynamic partitioning — as highlighted earlier in this dissertation, and when

used in past attempts at developing parallel cSDG architectures (see Section 3.1.1) — is

45

found to be ineffective due to the highly dynamic, fine-grained cSDG adaptive meshing.

We therefore rely on a simple round-robin partitioning scheme where each front entity is

assigned to the a server process using its unique, global ID. Given the front mesh, τi, at

an arbitrary state of the solution algorithm and N server processes, we partition the front

onto each server to form the distributed front mesh, τni , where n = 1 . . . N , as is outlined in

Algorithm 11. The server process onto which a front entity is mapped can be determined

simply based on the global ID of the front entity. For the initial decomposition, τn0 , we

simply assign an entity from the initial front mesh to a server if the rank of the server is

equal to dest rank determined by the round-robin mapping. When a new front entity is

to be locally inserted onto a server process, the global ID can simply be generated locally

using Algorithm 12 without the need for global communication or synchronization. In this

way, dynamic re-partitioning occurs every time a new front entity is generated and is at the

same granularity as the other parallel operations of our algorithm. It is evident that the

round-robin partitioning scheme satisfies all but the second point in the goals for an ideal

scheme discussed at the start of this section.

Algorithm 11 Pseudo-code to determine destination index for data items in round-robin
scheme
INPUT: gid - Global ID of data element, total procs - Total number of server processes
over which to distribute data elements
OUTPUT: dest index - The index of the owning process

1: procedure Determine Round-robin Index(gid, total procs)
2: dest index ← MOD(gid, total procs)
3: end procedure

Algorithm 12 Pseudo-codes to generate a global index for a new local data element

INPUT: num allocated - Count of local data elements currently assigned to the process,
total procs - Total number of server processes over which to distribute data elements,
local index - The index of the local process among the total number of processes
OUTPUT: gid - Global ID of data element

1: procedure Generate Global ID(num allocated, total procs, local index)
2: num allocated ← num allocated + 1
3: gid ← local index + num allocated × total procs

4: end procedure

While this scheme sacrifices spatial coherence, it does allow us to devise powerful load

and data balancing schemes, presented in Section 3.3.7. The drawback of the round-robin

partition scheme is the large latency in gathering the required front entities from the respective

server processes. Given the patch-by-patch nature of the cSDG solution scheme however, the

46

amount of data required to be communicated is greatly reduced when compared to other

numerical methods. Additionally, since all communication is performed by the server and

wrangler processes, the solvers are shielded from the latency as long as the solve queues do

not empty. Effectively, the asynchronous nature of the cSDG method allows us to overlap

communications with computation. In this way the communication latency — which is

usually a major bottleneck in scalable parallel computations — is entirely eliminated. We

examine the validity of this statement in numerical studies performed in Section 3.5.

3.3.7 Probabilistic data and load balancing

There are only two distributed data structures in our architecture: one is the distributed front

mesh held by server processes; the other is a comprehensive list of local time-minimum vertices

of the front held by wrangler processes in the MVHs. Maintaining an even balance of these

data members across the distributed system is essential for parallel scalability. A requirement

for any balancing scheme is the capability of keeping up with the highly dynamic mesh

adaptivity implemented by the cSDG method while minimizing communication costs needed

to achieve the balance. In this section, we present scalable and cost-effective asynchronous

probabilistic algorithms for both data and load balancing that operate at the granularity of

individual patches.

Data balancing schemes

Our goal for balancing front data is for all server processes to hold roughly the same numbers

of front vertices and front chambers at all times throughout the course of a simulation. Having

abandoned the need for preserving spatial coherence in our partitioning strategy, wranglers

can freely assign new vertices and chambers to any server in the distributed system. Our

data balancing requirement then reduces to a Balls-into-Bins problem, specifically, a heavily

loaded case of Balanced Allocations as presented by Berenbrink et al. [56]. We implement a

simple scheme in which, for each insertion of a new front item, a wrangler checks the number

of items of the same type stored by a small random sample of servers and assigns the new

item to the least loaded server in that group. Theory presented in Section 3.5.5 predicts that

algorithms of this sort attain even distributions with high probability. In practice, we find

that this simple scheme performs extremely well. To reduce latency in querying sizes from

servers, we utilize one-sided Remote Directory Memory Access (RDMA) MPI calls where the

requesting process can directly access the required data on the remote server without active

participation of the server. Algorithm 13 outlines the procedure for selecting an appropriate

server rank on which to perform an insert operation.

47

Algorithm 13 Pseudo-code for data balancing

INPUT: n - Number of server ranks; d - Number of random ranks to probe
OUTPUT: dest rank - Server rank on which to perform insert

1: procedure Data Balance(n, d)
2: min size ← INT MAX ▷ Initialize to a large positive integer
3: tie break ← 0.0
4: dest rank ← -1

5: loop over d samples
6: rand rank ← random integer sample over (0, n)

7: size ← size of front container on server rank rand rank

8: temp ← random double over (0, 1) ▷ Used to resolve ties
9: if size < min size then ▷ Identify rank with smallest size
10: tie break ← temp

11: dest rank ← rand rank

12: min size ← size

13: else if size = min size then
14: if tie break > temp then ▷ For ties, use a random value to resolve
15: tie break ← temp

16: dest rank ← rand rank

17: min size ← size

18: end if
19: end if
20: end loop
21: end procedure

Load balancing schemes

Since we only build patches over front vertices that are local minima in time, the MVHs

collectively contain all current front vertices that can serve as base vertices in new footprints.

Thus, pushing a new time-minimum vertex onto a wrangler’s MVH effectively assigns

additional computational load to that wrangler’s paired solver. We develop a similar scheme

for balancing computational load, outlined in Algorithm 14, but with a different criterion

for defining load balance. Rather than assign equal numbers of patches to the solver tasks,

our goal is for each solver to maintain equal, or close to equal, progress toward advancing all

of the vertices in its MVH beyond the simulation’s terminal time. This criterion gracefully

balances load across patches with wide differences in computational costs, such as different

number of cells, polynomial orders and non-linear physics models. In this case, progress is

measured by the earliest time associated with any vertex in a wrangler’s MVH. Wranglers

with smaller earliest times lag behind others with larger times. Whenever a wrangler detects

a new time-minimum vertex in an updated footprint (see Section 3.3.4), it checks the earliest

MVH times of a small random sample of wranglers using RMDA MPI calls and assigns

48

the new time-minimum vertex to the wrangler in the sample with the largest earliest time.

This slows the leaders, allowing the laggards a chance to catch up. A further benefit of this

approach is that it prevents the implicit locking (as described in Section 3.3.1) by maintaining

a “flat” front mesh. Although this scheme falls outside the structure of standard balls into

bins problems, it nonetheless performs extremely well in practice.

Algorithm 14 Pseudo-code for load balancing

INPUT: n - Number of wrangler ranks; d - Number of random ranks to probe
OUTPUT: dest rank - Wrangler rank on which to perform insert

1: procedure Load Balance(n, d)
2: max time ← -DBL MAX ▷ Initialize to a large negative double
3: min size ← INT MAX ▷ Initialize to a large positive integer
4: dest rank ← -1

5: loop over d samples
6: rand rank ← random integer sample over (0, n)

7: time ← earliest minima in time-heap on wrangler rank rand rank

8: size ← size of time-heap on wrangler rank rand rank

9: if size = 0 then ▷ Trivial case
10: dest rank ← rand rank

11: else
12: if time > max time then ▷ Identify rank with largest time
13: max time ← time

14: dest rank ← rand rank

15: min size ← size

16: else if time = max time then
17: if size < min size then ▷ For tie-break, identify rank with smallest size
18: max time ← time

19: dest rank ← rand rank

20: min size ← size

21: end if
22: end if
23: end if
24: end loop
25: end procedure

3.3.8 Scalable Termination of Distributed cSDG Simulations

The termination of the cSDG simulation is non-trivial for the distributed-parallel case since all

parallel processes are asynchronous and have no inherent synchronization stage. We terminate

the simulation when all front vertices in each server are pitched past a final simulation time,

tf . Our goal is to shut down the distributed solution when, or soon after, all front vertex

49

times reach, or exceed, tf . To this end, we define an active vertex as follows:

Definition 3.9 (Active front vertex). A vertex v of the front τ is active if:

τ(v) < tf . (3.8)

The server’s active size is the number of active vertices it contains. Similarly, the node’s

active size is the total number of active vertices across all servers on the node and the system

active size is the total number of active vertices across the entire distributed system.

We say that a process is steady if the active size on that process remains unchanged over

some interval of time, I. The number of active vertices can change due to server operations

that impact the state of its local data — specifically during vertex insertion, deletion or

spacetime-coordinate update. For a distributed system that comprises n distributed nodes,

each with m server processes, our distributed termination algorithm designates a system-wide

control process, and additional n control process corresponding to the n nodes. The node

control process stores the steady status of its node and its active size. The system control

process likewise store the steady status of the entire system and the system active size. The

simulation is ready to terminate if the system is steady and the system active size is zero.

The termination algorithm is constructed hierarchically to ultimately update the system

steady state and active size. During initialization, all node and system control processes

are set as steady and the node and system active sizes are set to include all initial mesh

vertices. During the simulation, each server process performs the logic outlined in Algorithm

15 whenever a vertex operation occurs that changes the state of its local data structure

(see Algorithm 1). Based on the type of operation performed the server process atomically

updates the shared value of node active size stored on the node control process and marks the

node as unsteady, indicating at least one server on the node has updated the node active size.

Interprocess communication mechanisms is used for efficient communication within the node.

Each node control process periodically checks the steady status of the node with some fixed

interval, In. During each check, if the node is steady, the node active size is communicated

to the system control process. Otherwise, the system is marked as unsteady to indicate that

at least one node is still unsteady. Finally, the system control process periodically checks

the steady status of the entire system with an interval Is (where Is > In) to determine if

the simulation is ready to terminate. Communication between the node and system control

processes utilize MPI RDMA communications to reduce latency. When the termination

criteria are met, the termination variables in the server, wrangler and solver drivers (see

Algorithms 1 - 3) are updated to allow for finalization and shut-down. The respective

pseudo-code to check and update the termination quantities are presented in Algorithms 16

50

Algorithm 15 Pseudo-code to update termination quantities on server processes

INPUT: op - Operation type performed by server processes on vertex v

OUTPUT: node active size - Number of active vertices on node; node steady - Steady
status of node

1: procedure Update Termination Quantities Server(op)
2: if op = insert vertex then
3: node active size ← node active size + 1
4: node steady ← false ▷ Mark node unsteady due to vertex operation
5: else if op = delete vertex then
6: node active size ← node active size - 1
7: node steady ← false
8: else if op = update vertex then
9: t ← v.get time coordinate()

10: if t ≥ final simulation time, tf then
11: node active size ← node active size - 1
12: node steady ← false
13: end if
14: end if
15: end procedure

Algorithm 16 Pseudo-code to update termination quantities on node control processes

INPUT: node steady - steady status of node; node active size - Number of active vertices
on node
OUTPUT: system steady - steady status of distributed system; active size - list of
active vertices per node, maintained on system control process

1: procedure Update Termination Quantities Node(node steady,
node active size)

2: if node steady = false then
3: Set system steady ← false via MPI RDMA on system control process
4: else ▷ Node is steady
5: n ← get node id()

6: Set active size[n] ← node active size via MPI RDMA on system control
process

7: end if
8: node steady ← true ▷ Reset for next call
9: end procedure

51

and 17 for the node and system control processes.

Algorithm 17 Pseudo-code to update termination quantities on system control process

INPUT: system steady - steady status of distributed system; active size - list of active
vertices per node, maintained on system control process

1: procedure Update Termination Quantities System(system steady,
active size)

2: for each node n do
3: system active size ← system active size + active size[n]

4: end for
5: if system steady = true AND system active size = 0 then
6: Broadcast end cond ← true to all processes, see Algorithms 1 - 3,
7: Finalize and shut-down
8: end if
9: system steady ← true ▷ Reset for next call
10: end procedure

3.4 Experimental Set-up

In this section we describe the overall experimental set-up used for the development and

benchmarking of the parallel–adaptive code.

3.4.1 Computing Platform

Scaling studies are performed on the Hardware Accelerated Learning (HAL) cluster [57]

housed in the Innovative Systems Lab (ISL) at the National Center for Supercomputing

Applications (NCSA). The cluster has 16 IBM 8335-GTH AC922 compute nodes, each with

two 20-core CPUs based on the IBM Power9TM architecture operating at a base frequency

of 2.4 GHz for a total of 40 cores per node and 640 total cores. The Power 9 architecture

supports 4-way simultaneous multi-threading (SMT). Each node contains a total of 256GB of

physical random access memory (RAM). Internode communication is achieved by high-speed

InfiniBand (IB) adapters.

3.4.2 Test Problem

The test problem considered is a rectangular domain with a preexisting crack as presented in

Figure 3.7. Using symmetry we consider only the top-right region of the domain. Uniform

mode 1 loading is applied to the top and bottom surfaces of the domain in the form of a

step-function at time zero. The initial front mesh is produced by triangulating the domain,

52

producing a structured gird of approximately 500 elements. The simulation is run for a fixed

number of spacetime patch solves across all solver processes to ensure that the unit of work is

constant across all runs. Quadratic (p = 2) interpolating functions are used for the solution

fields, unless otherwise mentioned.

Figure 3.7: Schematic of test problem used to verify and benchmark the parallel scalability of
the method. Shaded quadrant is explicitly considered with a predefined crack loaded under
mode 1 uniform loading.

3.4.3 Simulation Cost

The implemented method is verified using the one-field elastodynamics equations (cf. Section

2.3) for the case of two spatial dimensions × time. The degrees of freedom per spacetime

element n can be determined as

n = 3
(p+ d)!

p!d!
, (3.9)

where p is the polynomial order of the function interpolating the solution field and d is the

total dimensions of the problem (d = 3 for two spatial dimensions). The factor 3 is to account

for the three components of a single vector field. Since solutions are usually computed over

patches of elements, we have the total number of degrees of freedom per patch as

N = Kn, (3.10)

where K is the number of elements per patch. Generally, K is a function of the degree of a

vertex in the front. We therefore find that the complexity is linear in the number of degrees

of freedom per patch.

53

3.4.4 Strong versus Weak Scaling Efficiency

Parallel scalability is an indication of how efficiently any parallel code takes advantage of

increasing number of parallel processing elements, or cores in this case. This can be measured

by the strong scaling efficiency and is defined as

εs =
T1

N × TN

× 100%, (3.11)

where T1 is the time needed to complete a task using 1 processing element and TN is the

time needed to complete the same task using N processing elements. For strong scaling, the

problem size stays fixed. For a perfectly scaling problem, εs is 100 %. In general, it is hard

to get good scaling for large number of cores as the communication and data-access costs

increase in proportion to the number of cores.

For a large distributed system, weak scaling efficiency is typically used to measure parallel

performance. Unlike the case of strong scaling efficiency, the problem size is scaled along

with the number of parallel processing elements when computing the weak scaling efficiency.

This results in near-constant work for each parallel core added. Weak scaling efficiency is

defined as:

εw =
T1

TN

× 100%, (3.12)

where T1 is defined as above and TN is the time needed to complete N of the same tasks

using N processing elements. For εw = 100% we would solve a problem N times larger using

N parallel processing elements in the same time it would take to solve the original problem

in serial.

Before we can measure the scaling efficiency of our program, the definition of the baseline

or serial performance, T1 must be discussed. Since we use three distinct and asynchronous

processes (the wrangler, server and solver) in the parallel–adaptive code there is some

ambiguity when defining the baseline configuration. One option is to run all processes on a

single thread and sequentially make progress over each state machine. The other option is to

define the baseline configuration as a single solver process, along with one server and one

wrangler processes running asynchronously on multiple threads. In this way, by increasing the

number of solver processes, we are effectively adding additional parallel processing elements

as long as the supporting wrangler and server processes are sufficient to supply footprints to

the added solvers. For the results presented here, we use the second option as we argue that

limiting the processes to a single thread would unfairly hinder the baseline case. Therefore,

we redefine T1 as the time needed to complete a task using 1 solver process and TN as the time

needed to complete the task using N solver processes. In order to compute weak efficiency

54

in the cSDG code, we simply duplicate the initial front mesh of the problem described in

Section 3.4.2 for each distributed node in the simulation. In this fashion, the number of front

vertices — over which wranglers can construct footprints to provide work for the solvers —

are scaled along with the added solver processes.

3.4.5 Data Collection Window for an Adaptive Code

The adaptive code has periods — especially when the simulation has just been launched

on a coarse initial mesh, and at the end of the simulation when the number of active front

vertices (cf. Section 3.3.8) are shrinking — where the overall number of pitchable vertices are

much smaller than other stages of the simulation. In order to accurately measure scaling

in the adaptive code, we need to define a robust metric that is insensitive to stages where

the available number of pitchable vertices (or “work” in the general sense) fluctuates due to

adaptive operations. To this end, we define a data collection window based on the wall-clock

simulation time during which we can expect the number of pitchable vertices on the front to

be sufficient for all, or a large proportion of, solvers to be kept busy. In other words, we need

to ensure that there are close to zero solve-queue stalls during data collection. To trigger

the start of the data collection window the following criteria is periodically tested on each

wrangler process:

1. Is the size of the wrangler MVH greater than some fixed number, α?

2. Has the solver process paired to the wrangler solved more than some fixed number of

patches, β?

3. Is the solve queue full?

Once these criteria are met on a particular wrangler, we communicate this to a global

monitoring process that is in charge of starting the data collection window across the entire

distributed system when all wranglers report the same. To trigger the end of the data

collection window we take a simpler approach where we mark each wrangler as having

completed collection of data once a fixed number of patches, γ, have been solved by its paired

solver. The choice of the integer parameters α, β and γ used to start and stop the collection

window are problem-dependent and must be tuned carefully to ensure that once collection

has started, there are close to zero solve queue stalls.

55

3.5 Numerical Results and Optimizations

This section presents numerical results for the scaling of the distributed parallel–adaptive

cSDG method. We benchmark the code as outlined in the preceding section. We present

various optimizations and numerical results for the parallel–adaptive code to obtain optimal

scaling efficiency. Some of these optimizations are machine dependent and may need to be

carefully tuned to yield optimal results for each system architecture.

3.5.1 Process Distribution and Affinity Mapping

The most important consideration for the scalability of the parallel–adaptive code are solve

queue stalls — periods where solver processes are idle due to lack of work from the upstream

wrangler. Since the solvers are designed to be embarrassingly parallel, they are capable of

continuously performing useful work as long their solve queue contains a new task every

time one is completed. The increase in latency due to the spatially incoherent round-robin

distribution scheme can only be hidden when there are no solve queue stalls.

The focus then shifts to the upstream wrangler (and by extension, server) processes which

are responsible for feeding the solver with footprints. We need to ensure that wranglers are

gathering front entities and constructing footprints at a rate equal to or greater than the

rate at which they are consumed by the solvers. Additionally, servers need to respond to

requests from wranglers at a satisfactory rate.

Determining an optimal process distribution

We can consider the three process types in two categories: those that perform useful compu-

tations, namely the solver process and those that handle the traversal and maintenance of

the distributed front, namely the wrangler and solver processes. Given a distributed system

with fixed computational resources, we need to determine a viable distribution of these two

categories of processes for greatest parallel performance. One distribution of processes would

be to devote nearly all system resources for the former category and minimize resources for

the latter thus devoting the majority of the system to useful number-crunching. However

such a distribution would be unfeasible due to solve queue stalls stemming from a lack of

resources on the upstream wrangler and server processes. Thus, the optimal distribution

of processes would aim to minimize the proportion of system resources used for wrangler

and server processes such that the solver processes experience no solve queue stalls. In this

way, the latency of the partitioning scheme is entirely hidden from the solvers, one of two

requirements for near-perfect scalability identified in Section 3.2.2.

56

Process affinity mapping

Affinity mapping is the explicit binding of execution processes to specific hardware resources.

This may be on the granularity of individual cores or even hardware threads. By default,

processes are not tied to a particular resource but rather, the available resources are divided

in some way by the scheduler. This is usually done in a way that ensures fairness among

the current tasks such that no task will be denied access to system resources for extended

periods of time. The scheduler “swaps” the currently executing task for another at regular

intervals. This is done at some expense as the state of the currently executed task must

be saved and the new task must be loaded. The fast cache memory may be evacuated to

make space for the new task and data may need to be fetched from the slower main memory

at greater frequency due to thread swapping. This phenomenon is exacerbated when the

hardware resources are not sufficient for the number of tasks. Thread affinity mapping is

used to override the default scheduler when the performance properties of the program are

well known. By doing so, each execution thread is granted exclusive ownership of hardware

resources, improving performance.

Another feature of modern-day multi-threaded processors is the non-uniform memory

access (NUMA) architecture where memory is physically distributed but logically shared

within a node. Due to this distribution, memory access time depends on the location of

memory relative to the processor. The affinity mapping should take into account the NUMA

architecture of the system and store data in such a way that the memory access times are

minimized.

We employ affinity mapping for all process types to improve the performance of the

parallel–adaptive code. The server and wrangler processes are light-weight when compared to

the solver process. Additionally, due to the latency in communication across the distributed

network, we expect periods when server and wrangler processes are in an idle state while

awaiting the response of a message. Based on this usage pattern, we choose to map multiple

servers and wranglers onto the same physical core to take advantage of SMT available on

all modern processors. When one process enters an idle state, other processes mapped to

the same core can be swapped in to utilize the core’s resources. On the other hand, the

solver processes are expected to be constantly busy with computations for the entirety of the

simulation. We therefore map only one solver process per physical core to ensure that all

resources on that core are available to the solver.

57

A viable distribution and affinity map for the HAL cluster

We aim to determine a viable distribution of processes along with an optimal affinity map

on the HAL system such that we have zero queue stalls and have an acceptable patch solve

rate. At the moment, this tuning is performed iteratively through a process of trial and

error until we satisfy the above goals. In the future, an auto-tuning step could be devised to

automatically determine a viable distribution for when exploring a new system architecture.

A NUMA node on the HAL cluster consists of 20 CPU cores, each supporting up to 4-way

SMT. We experiment with a number of different process distributions and affinity maps

while closely monitoring the queue stalls and patch solve rate. Affinity mapping is achieved

using the Portable Hardware Locality (hwloc) utility [58] which provides a light-weight and

portable way to identify hardware topology and bind processes to CPU and memory regions.

We define the percentage of solver stalls as the percentage of times a solver process encounters

an empty solve queue over the total number of times the solver tries to grab a task from the

solve queue. We tally only the first occurrence of a stall to avoid counting many unsuccessful

re-checks of the queue in a small interval. The results for our tuning on the HAL system

are presented in Table 3.4. Since we pair wrangler and solver processes through the solve

and store queues in our current architecture, the number of these process are equal. The

tuning runs were performed on a single node and we monitor average statistics over all solver

processes. The patch solve rate is determined as the total number of patches solved over the

entire node during the timing window.

Table 3.4: Tuning results for different process distribution and affinity mapping configurations
over 1 NUMA domain on the HAL cluster. Experiments were performed for p = 2 and two
spatial dimensions.

Configuration
% of Solver Stalls

Overall patch
solve rate (pathes/s)Num. solvers Num. servers Affinity Mapping

20 2 None 21.2 172
18 2 None 15.6 212

18 2
Servers and wranglers mapped

to one core each; solvers
mapped over remaining cores

10.1 249

18 4 Same as above 2.1 316
18 8 Same as above 0 387

16 8
Servers and wranglers mapped
over two cores each; solvers
mapped over remaining cores

0 336

The results indicate that a viable configuration is one with 8 server processes, along

with 18 solver and wrangler processes which results in zero queue stalls and the greatest

patch solve rate. Any more solvers causes excessive queue stalls due to lack of resources for

58

the wrangler and server processes. We also find that the optimal mapping scheme involves

pinning all server processes onto a single dedicated “server core” and all wranglers onto a

dedicated “wrangler core”. As discussed above, these processes are comparatively light-weight

and can tolerate being swapped-out during idle states. The 4-way SMT available on HAL

allows us to isolate all server and wrangler processes onto just two physical cores and map

one solver process onto each of the remaining physical cores. Thus, the final configuration

allows for 90% of total system resources to be dedicated to perform the useful computations.

Distributing the wrangler and server processes over more physical cores yields no benefits

since the production of footprints was sufficient in the previous configuration. It is important

to note that this distribution and mapping configuration is dependent on polynomial order

and dimension of the underlying problem since these would greatly affect the consumption of

footprints by the solver processes.

3.5.2 Inter-node Communication Pattern and Impact on Solvers

The ability to manage both load and data while keeping up with fine grained adaptive

operations is a major feature of the parallel–adaptive code. As previously discussed, by

abandoning the DDM we utilize a round-robin partitioning scheme that is not aware of spatial

coherence. This means that the communication costs are necessarily larger when gathering

and scattering front data. In this section, we examine the communication pattern between

the server and wrangler processes and investigate its impact on code performance.

Estimated internode communication

Given a distributed front partitioned using the round-robin scheme outlined in Section 3.3.6,

we can expect that for each piece of data required to be gathered/scattered, there is a

probability of p = (N − 1)/N that the data resides on another node, where N is the total

number of distributed nodes in the system. Thus, for very large systems, we expect p→ 1.

Figure 3.8a depicts this estimated internode communication where the asymptotic behavior

is clearly seen.

Solver memory stalls

When benchmarking the code as described, we find that the solver processes experience

memory stalls that increase as we increase the number of overall solver processes. Memory

stalls are events during which a process is stalled and unable to do useful work waiting for a

memory access. This commonly occurs due to a slow access to main memory for needed data.

In practice, these are measured as percentage of total CPU clock cycles spent in a stalled

59

1 20 40 80 120

Number of Nodes

0

20

40

60

80

100

In
te

rn
o

d
e

 C
o

m
m

u
n

ic
a

ti
o

n
 (

%
)

Estimated Internode Communication

(a)

2 4 6 8

Number of Nodes

0.8

0.9

1

1.1

1.2

S
o

lv
e

r
M

e
m

o
ry

 S
ta

lls
 (

%
 c

y
c
le

s
)

Multi-node Memory Performance

(b)

Figure 3.8: Effect of inter-node communication pattern on memory stalls experienced by
solver processes. (a) Semi-log plot of the estimated internode communication as a function
of the number of distributed nodes for the round-robin partitioning scheme; (b) Percentage
of total cycles stalled due to memory accesses by the solver processes as a function of the
number of distributed nodes.

60

state. We use the TAU profiler [59] to measure various performance metrics related to the

execution of the parallel code. To measure the percentage of cycles stalled, we utilize TAU

API calls to monitor one representative solver process during the simulation, yielding the

plot as presented in Figure 3.8b.

Since the solver processes are designed to be embarrassingly-parallel and do not rely on

data generated from other processes during the solution stage, we expect the percentage of

stalls for the solver to be close to constant. However, this is clearly not the case as evidenced

by Fig. 3.8b where memory stalls increase as we increase the number of distributed nodes.

In fact, the overall increase in the percentage of cycles stalled follows a similar trend to that

of the estimated inter-node communication cf. Fig. 3.8a. This finding — along with the fact

that the major additional cost of adding more nodes is in the additional overhead of the MPI

sub-system to process messages — leads us to consider optimizations to isolate the solver

process from the interference of the MPI processes presented in Section 3.5.3.

Buffered MPI Communications

To further reduce memory stalls experienced by the solver, we investigate utilizing the buffered

version of the MPI non-blocking send command, MPI Ibsend, wherein the user specifies a

buffer from which MPI copies the data to send. By explicitly defining the buffer in the

user code instead of defaulting this choice to the MPI implementation, we achieve a modest

reduction in memory stalls as depicted in Figure 3.9.

2 4 6 8

Number of Nodes

0.6

0.7

0.8

0.9

1

1.1

1.2

S
o

lv
e

r
M

e
m

o
ry

 S
ta

lls
 (

%
 c

y
c
le

s
)

Multi-node Memory Performance

Standard Mode

Buffered Mode

Figure 3.9: Percentage of total cycles stalled due to memory accesses for the buffered and
standard MPI send commands.

61

3.5.3 Solver Process Isolation

As discussed in Section 3.5.1, as long as we have identified a distribution of processes that

generate zero solve queue stalls, we should expect near-perfect parallel scaling. However,

in practice, we find that this is far from the case. We plot, as a baseline, the weak scaling

efficiency of the code with the optimizations presented thus far in Figure 3.10. We find that

even though there are no solve queue stalls across the distributed system during the data

collection window (cf. Section 3.4.5), we see a drop to ∼ 50% weak scaling efficiency at 16

distributed nodes.

2 4 6 8 10 12 14 16
Number of Nodes

50

60

70

80

90

100

S
c
a

lin
g

 E
ff

ic
ie

n
c
y
 (

%
)

Multi-Node Weak Scaling

Figure 3.10: Weak scaling efficiency of distributed–parallel code without optimizations to
isolate solver processes.

Solver isolation through process spawning

We hypothesize one of the main causes of this drop in scaling efficiency to be the increasing

number of memory stalls in solver processes due to the lack of isolation from the MPI

sub-system identified in the preceding section. When the paired wrangler performs any

MPI-related task, we hypothesize that these operations effect the memory performance of the

solvers. This effect is exacerbated when we increase the percentage of internode messages by

adding additional nodes. In an effort to completely isolate the solver processes, which do not

have any need to communicate over the distributed system, we spawn the solvers as completely

independent process rather than independent threads running alongside wrangler processes

as considered thus far. Communication between the now distinct wrangler and solver process

must now utilize interprocess mechanisms since each process no longer shares a common

62

memory address space. We use the Boost C++ interprocess library to accomplish this with

minimal additional implementation effort. This library utilizes system shared memory, which

is typically the fastest form of interprocess communication, to provide an area of memory that

is shared between processes. Specifically, we utilize the Boost single-producer/single-consumer

(SPSC) queue data structure to implement interprocess versions of the solve and store queues

(which, by design, are the only places where solvers and wranglers exchange data). The SPSC

queue is a FIFO queue where push and pop operations are entirely lock and wait free under

the constraint of only a single consumer and single producer of data to and from the queue.

By separating the wrangler and solver processes, we see a substantial reduction in percentage

of stalled cycles as plotted in Figure 3.11 and a modest improvement in the weak scaling

efficiency.

2 4 6 8

Number of Nodes

0

0.2

0.4

0.6

0.8

1

1.2

S
o

lv
e

r
M

e
m

o
ry

 S
ta

lls
 (

%
 c

y
c
le

s
)

Multi-node Memory Performance

Isolated Solver

Baseline Solver

Figure 3.11: Percentage of total cycles stalled due to memory accesses for the baseline and
isolated solver configurations.

3.5.4 Avoiding Dynamic Memory Allocations

Another significant source of loss of scaling efficiency is during dynamic memory allocations

where multiple parallel processors are dynamically allocating and de-allocating memory (using

malloc and free commands in C++) during the lifetime of the simulation. These operations

utilize the system heap memory 3 which is a resource shared between multiple processes. In

order to achieve thread-safety, the heap is synchronized with a mutex which must be acquired

3The heap is the portion of physical memory where dynamically allocated memory resides. Heap memory
is allocated explicitly and will be accessible until it is explicitly freed.

63

before a process can allocate dynamic memory. Contention to access the global heap adds an

expensive overhead in parallel programs as processes spend a great deal time waiting on the

mutex, rather than doing useful work. Additionally, dynamic memory allocations lead to

further issues such as false sharing, where multiple processes share data in the same cache

line causing poor memory performance, and blowup, where allocated memory has a tendency

to become unbounded for certain patterns of operations.

These issues motivate the removal of all forms of dynamic memory allocation in the

parallel code where possible, instead utilizing pre-allocated and pre-sized data structures

created at code initialization that infrequently need to be resized during computation. We

utilize three strategies to reduce dynamic memory allocations in our baseline code:

The first involves the creation of a templated, pre-allocated vector-like container called a

pooled vector. Each pooled vector is pre-allocated using a generously chosen initial size with

default values for the stored data. Augmenting the vector is a list of free indices marking

the entries of the vector that are available for use in storage. When we insert a new entry

onto the vector we choose a free index and over-write the currently stored data at that index.

The index is then removed from the free index list. Conversely, when we choose to delete

an existing entity, we simply add the index back to the list of free indices. If all indices are

consumed, we are forced to dynamically allocate new objects to accommodate additional

insert requests. We choose to double the size of the pooled vector each time we perform

such a resize to avoid multiple successive memory allocations. This container is used to store

the data elements for the distributed front, the MPI buffer and message objects, as well as

footprint and patch data structures on the wranglers and server processes.

The second strategy is to use the Boost C++ pool allocator library. This library creates

a large pool of shared memory in physical memory at initialization and partitions it into

many smaller segments with the same size. Each time the user code requests a new object to

be created using a malloc-style command, the library accesses the next free segment and

assigns memory from that segment. The segment is then marked as used. When the memory

segment is no longer required, the library releases the segment back into the pool. The pooled

allocator is especially efficient during the allocation and deallocation of many small objects.

We utilize pool allocators for the storage of the many intermediate vectors and matrices

formed during the finite element assembly and solution stage on solver processes.

Finally, the third strategy utilizes the hoard memory allocator library [60], a fast, scalable

memory allocator that is designed to address the aforementioned issues with dynamic memory

allocations. This run-time library automatically replaces any remaining calls to malloc and

free in the baseline code with optimized versions that are lock-free and address the issues of

false-sharing and blowup.

64

0 10 20 30
Number of Solver Cores

90

92

94

96

98

100

S
c
a

lin
g

 E
ff

ic
ie

n
c
y
 (

%
)

Single-node Strong Scaling

Original

Memory Pooling

(a)

2 4 6 8 10 12

Number of Nodes

40

50

60

70

80

90

100

S
c
a

lin
g

 E
ff

ic
ie

n
c
y
 (

%
)

Multi-node Weak Scaling

Original

Memory Pooling

(b)

Figure 3.12: Scaling studies illustrating the improvements when utilizing memory pooling
strategies. (a) Strong scaling efficiency for a single node; (b) weak scaling efficiency for up to
12 distributed nodes.

65

These strategies are used extensively in the parallel–adaptive code to eliminate dynamic

memory allocations where possible. We present the results as compared to the baseline

code in Figure 3.12 for both the cases of strong and weak scaling efficiency. We achieve an

impressive improvement of ∼ 25% weak scaling efficiency just from treating the dynamic

memory allocations in the baseline code.

3.5.5 Parameter selection for Balancing Algorithms

An integral part of the distributed architecture is the round-robin partitioning scheme and

the resulting ability to balance both load and data at the same granularity as the patch

solves. Here we examine and determine optimal parameters for the balls-into-bins algorithm

outlined in Section 3.3.7.

Suppose we have n processes (or bins) onto which we need to place m finite number of

pieces of data. The processes can communicate to each other with some non-negligible cost.

Our goal is to ensure that each of the n processes maintain equal, or close to equal, number

of data items while minimizing the communication costs required to maintain this balance.

The problem can be cast into the well known Greedy(d) randomized algorithm [61] for load

balancing. When tasked to insert a new ball into the n bins, the algorithm chooses d ≥ 2

random bins for each ball and inserts the ball into the bin with the least load, or number of

data items. The m balls are inserted sequentially in this fashion by performing d samples at

each stage. If several bins have the same maximum load, the ball is arbitrarily placed into

one of them. The question then becomes — what is the smallest value of d such that the

difference between the maximum load over all bins and the average number of balls per bin

(i.e., m/n) is minimized. For the heavily loaded case where m≫ n, we have the following

useful result:

Theorem 3.1 (Heavy Loaded Greedy(d) [56]). If m balls are allocated into n bins using

Greedy(d) with d ≥ 2 such that m≫ n, then with high probability the largest number of

balls in any bin is at most
m

n
+

ln ln n

ln d
+O(1). (3.13)

This theorem can be used to choose a value for the parameter d that gives us an acceptably

small deviations from the mean number of balls in any bin. Suppose we wish to make the

deviation a constant, i.e., for some constant integer k ≥ 1 we require:

ln ln n

ln d
≤ k ⇒ n ≤ exp(dk).

Thus, from Theorem 3.1, we have with high probability that the largest number of balls

66

in any bin is at most
m

n
+ k +O(1) =

m

n
+O(1)

as long as the number of bins satisfies n ≤ exp(dk).

For example, if we set k = 3 and d = 2 we find that for n ≤ exp(dk) ≈ 8000 bins with

high probability we will find that the bin with the maximum load will be at most a fixed

constant k more than the mean number of balls per bin. Setting the number of random

samples instead to d = 4, we find that n ≈ 1035. This simple analysis implies even for very

large number of bins we can choose d as small as 2 and guarantee with high probability the

maximum deviation from the mean number of balls per bin is limited to a fixed constant.

0 5 10

Total Patches 10
4

0

50

100

150

200

250

300

M
a
x
.
h
e
ig

h
t
a
b
o
v
e
 a

v
g
.

Effect of number of random samples

d = 10

d = 5

d = 2

Figure 3.13: Maximum height over average number of balls per bin versus total number of
patches solved for varying values of random samples, d, used in the Greedy(d) algorithm.
Starting with an unfair initial distribution of 300 balls into just one of 36 total bins, the
balancing algorithm works to reduce the maximum height over multiple iterations (or patch
solves in the case of the cSDG method).

To verify the performance of the Greedy(d) algorithm in practice, we first define the

maximum height above average as the difference between the maximum load over the entire

distributed system and the average number of balls per bin. We then set-up a contrived

example where initially all balls are placed in just one bin. We then allow the balancing

67

algorithm to work to balance the balls across the bins as new balls are added, for different

values of d. We plot the maximum height above average over multiple iterations (or patch

solves in the case of the cSDG method) in Figure 3.13 for d = 2, 5, and 10. We find that the

Greedy(d) algorithm aggressively reduces the initial imbalance over multiple iterations and

is capable of restoring balance even in this contrived case. For our scaling studies in this

section, we set d = 5 as this is more than sufficient to maintain load and data balance as

demonstrated in this section.

3.5.6 Scaling Results for the Parallel–adaptive Architecture

Based on all the optimizations presented thus far, we benchmark the parallel–adaptive code to

determine its scalability. We report both the strong and weak scaling efficiency as computed in

Section 3.4.4. The data collection window is started in line with Section 3.4.5 and terminated

once each solver has completed 10, 000 patch solves. We ensure that there are no solve

queue stalls for the entire data collection window. The scaling tests were performed on the

two-dimensional elastodynamics problem with polynomial order p = 2.

We first present the strong scaling efficiency of the code for up to 36 solver cores in

Figure 3.14(a) where we find that the efficiency is ∼ 97% for the fully loaded node. For the

weak scaling efficiency presented in Figure 3.14(b) we see that the optimizations improved

performance to ∼ 92% for the fully loaded distributed system. Additionally, we find that the

degradation in weak scaling efficiency is leveling off much faster for the optimized case, which

is a promising result when applying the code to a larger system. Addressing the drop in

scaling efficiency remaining in the optimized code remains an open issue. We have identified

additional data-structures in the solver code where dynamic memory allocations still occur

and have not been treated by memory pooling strategies. As seen in Section 3.5.4, elimination

of such dynamic memory allocations yields considerable improvement to scaling efficiency.

Additionally, memory and cache performance tends to degrade as additional parallel processes

are added to the distributed system. A more extensive study of cache performance has

the potential to greatly improve parallel performance. Finally, we identify CPU shielding

techniques as a possible way to completely isolate the solvers from background system and

MPI processes. Nevertheless, these results represent the first time the fully adaptive cSDG

code is demonstrated to scale favorably over a large distributed cluster.

68

0 4 8 12 16 20 24 28 32 36
Number of Solver Cores

96

97

98

99

100

S
c
a
lin

g
 E

ff
ic

ie
n
c
y
 (

%
)

Single-node Strong Scaling

(a)

2 4 6 8 10 12 14 16
Number of Nodes

50

60

70

80

90

100

S
c
a
lin

g
 E

ff
ic

ie
n
c
y
 (

%
)

Multi-Node Weak Scaling

Optimized

Baseline

(b)

Figure 3.14: Scaling studies illustrating the performance of the parallel–adaptive code. (a)
Strong scaling efficiency for a single node; (b) weak scaling efficiency for up to 16 distributed
nodes comparing the differences between the baseline solver (cf. Fig. 3.10) and the optimized
architecture.

69

3.6 Chapter Summary

In this chapter we have described the overall task-based parallel–adaptive cSDG architec-

ture and highlighted its scalability on a large distributed cluster. This is the first truly

parallel–adaptive adaptation of the method capable of maintaining load and data balance

across a distributed system, leading to substantial speed-up over the previous attempts.

The architecture comprises three asynchronous processes: the footprint wrangler clients,

distributed front servers and embarrassingly parallel patch solvers. The wrangler clients

perform gather/scatter operations related to the distributed front mesh and prepare foot-

prints that are then used to generate and solve patches by the solver processes. Front mesh

server processes store, update, and respond to requests for the distributed front mesh data

structure from wranglers via the MPI framework. The final architecture is asynchronous,

latency-tolerant, and virtually lock and barrier free. In order to realize this, we developed

many novel distributed algorithms that share the same granularity as patch construction and

solution operations. Key to this is the round-robin front partitioning scheme that forgoes the

spatial coherence of the traditional DDM. Instead, we detail probabilistic balancing schemes

that allowed us to dynamically balance load and data across the distributed system at a

rate on par with the highly dynamic mesh adaptive schemes. We further described the other

algorithms implemented for scalability and correctness of the distributed code such as the

lock and hold, earlier vertex counter and scalable termination algorithms. Finally, various

optimizations are explored to ensure the scalability of the code when tested on the NCSA’s

HAL cluster. This involved determining a viable distribution of the aforementioned process

types and their affinity map on the distributed cluster. Additionally, the isolation of the

solver processes by removing unnecessary dynamic memory allocations and spawning the

solver as separate processes from their paired wrangler yielded large improvements to parallel

scalability.

70

Chapter 4

Spacetime Method for Direct

Numerical Simulation of Multiscale

Earthquake Dynamics

4.1 Introduction

Earthquakes are multiscale phenomena in both space and time. A single seismic event

with millimeter-scale rupture process zones can extend over fault systems that are hundreds

of kilometers in length [62, 63]. This implies a maximum-to-minimum ratio of physical

length scales on the order of 108. Supershear ruptures can generate even more extreme

ratios. Typical wave speeds and rupture-tip velocities combine with these length scales to

generate similarly extreme temporal-scale ratios. Despite recent advances in high-performance

computing technology, state-of-the art seismic codes are still unable to bridge the physically

relevant ranges of spatio-temporal scales.

Most seismic codes use synchronous, time-marching solvers that impose uniform time-step

sizes controlled by worst-case conditions, either globally or by region. Igel et al. [64] and

Poursartip, Fathi, & Tassoulas [65] review high-performance synchronous seismic codes. Most

of these are non-adaptive and rely on domain truncation or static graded meshes to reduce

computational expense; cf. [66, 67, 68, 69]. Seismic models that support adaptive mesh

refinement, such as [70, 71], are less common and refinement is only allowed after completion

of one or more time steps. Despite the promise of higher-order accuracy, the use of high-order

basis functions in finite element models typically reduces computational efficiency. Therefore,

most seismic codes adopt low-order spatial discretizations, resulting in lower-order accuracy,

and do not support p and hp-adaptive solution schemes.

71

These limitations make it difficult to resolve the full range of physically relevant length

and time scales, and in the case of adaptive codes, to deliver the level of dynamic remeshing

required to capture fast-moving wave fronts and rupture-tip process zones. This commonly

forces seismic analysts to adopt unrealistic values of physical parameters or to accept under-

resolved solutions, either of which undermines the reliability of simulation results.

Local time stepping (LTS) schemes [72, 73] allow time-step sizes to vary across the

computational domain, with smaller time-steps in regions with greater mesh refinement or

higher wave speeds. LTS methods improve computational efficiency relative to methods with

globally uniform time-step sizes.

Unstructured discretizations, such as the discontinuous Galerkin (DG) method, allow

for h-adaptive non-conforming meshes which offers the power to resolve complex fault

geometries and greatly simplifies mesh generation for geophysical problems. Moreover, it

greatly facilitates dynamic solution adaptivity, for example to track propagating wavefronts

or earthquake rupture dynamics. DG schemes have been utilized extensively in the literature

[74, 75, 76, 77, 78] due to these benefits.

In this chapter, we propose the cSDG method [1, 20] as a powerful solution scheme

for extreme multiscale problems in seismology. The cSDG method features unconditional

stability, conservation of linear and and angular momentum over every spacetime cell, linear

computational complexity, and support for arbitrarily high-order elements. However, its

most compelling feature is the asynchronous solution scheme that closely couples adaptive,

unstructured spacetime mesh generation with localized spacetime discontinuous Galerkin

solutions. In contrast to synchronous time marching, this structure enables nonuniform,

asynchronous time advancement as well as an extremely dynamic form of spacetime adaptive

mesh refinement. Additionally, the cSDG formulation supports arbitrarily high-order basis

functions that admit discontinuities across all spacetime inter-element boundaries where

weakly-enforced Riemann jump conditions preserve the governing system’s characteristic

structure. We use specialized Riemann solutions for separation, contact–stick, and frictional

sliding to model fault physics. These features combine to deliver high-resolution cSDG

solutions capable of capturing the fine details of multiscale earthquake-rupture physics.

4.2 Continuum Formulation

4.2.1 Spatial and Spacetime Analysis Domains

Consider an open spatial domain ω ⊂ Ed with exterior boundary, ∂ω, and an embedded fault

network, γ : γ ∩ ω = ∅. We seek a solution on the spacetime domain, Ω := ω × I ⊂ Ed × R,

72

Figure 4.1: Spatial domain, ω ⊂ E2, with embedded fault, γ, and spacetime analysis domain,
Ω, with fault trajectory, Γ.

in which I := (0, T) where 0 and T are the initial and terminal times for the simulation. The

system of oriented d-manifolds, Γ := γ × I ⊂ Ed × R, is called the fault trajectory. Figure

4.1 depicts the two-dimensional spatial domains, ω and γ, and the corresponding spacetime

domains, Ω and Γ. We use + and − superscripts to label the fault-face trajectories coincident

with Γ, such that Γ+ has the same orientation as Γ.1

We partition the boundary of Ω as ∂Ω = ∂ΩI ∪ ∂ΩB ∪ ∂ΩΓ ∪ ∂ΩT in which ∂ΩI, ∂ΩB,

and ∂ΩΓ are open segments of ∂Ω on which initial, boundary, and fault-physics conditions

are enforced while no conditions are enforced on the terminal boundary, ∂ΩT. We further

partition ∂ΩB as ∂ΩB = ∂ΩD ∪ ∂ΩN in which ∂ΩD and ∂ΩN are the parts of ∂ΩB on which

Dirichlet and Neumann boundary conditions are enforced. Similarly, ∂ΩΓ comprises both

sides of the oriented fault manifolds in Γ, and we write ∂ΩΓ = ∂ΩΓ+ ∪ ∂ΩΓ− to distinguish

the positive and negative faces of the fault network.

The governing equations and initial-boundary conditions and their discrete treatment in

the cSDG approximation are, for the most part, identical to the development in Chapter 2.

The only exception is the jump conditions on the fault trajectory, ∂ΩΓ, which are developed

below. Given that γ is a material interface, the fault trajectory Γ is restricted to a subset

of spacetime orientations where the formulation of jump conditions does not require the

machinery of differential forms and exterior calculus. Accordingly, we use direct tensor

1This convention agrees with the labeling used in [2], but is opposite to the labeling convention in [3].
This leads to a sign difference in the jump operator, [[·]], introduced in 4.2.2 below. However, the formulations
in the two papers are equivalent.

73

notation to formulate jump conditions across the fault trajectory below.

4.2.2 Jump Conditions Across Fault Trajectories

Discontinuities in solution fields may arise at physical interfaces, including faults, and across

characteristic surfaces in the presence of weak shocks. They also arise in discontinuous

Galerkin models due to weak enforcement of initial/boundary and inter-element continuity

conditions. In these cases, the differential operators in the governing System (2.2) acquire

jump parts that must be included in a complete representation of the system.

Miller et al. [20] use exterior calculus and differential forms to derive jump conditions for

linear elastodynamics in d ∈ {1, 2, 3} spatial dimensions across d-manifolds with arbitrary

orientation in Ed × R. Three classes of orientation-dependent jump conditions emerge: those

involving linear combinations of [[S]] and [[p]], those involving linear combinations of [[E]] and

[[v]], and those involving [[u]] in which [[·]] denotes the jump of the enclosed quantity across a

given jump manifold.

The machinery of differential forms and exterior calculus is required to obtain objective

formulations of the elastodynamic jump conditions across d-manifolds with arbitrary spacetime

orientations. In particular, the lack of an inner-product on Ed × R precludes an objective

definition of vectors normal to general spacetime d-manifolds. However, it is possible to

formulate the cSDG seismic rupture model using standard tensor notation if we limit our

attention to jump conditions across the fault trajectory Γ. We follow this approach from

here on in this chapter to develop the cSDG rupture model. The results are compatible with

the more general differential forms formulation presented in Section 2.4. We implemented

the cSDG rupture model in a code based on that framework and used it to generate the

numerical results presented in Section 4.4.

A fault trajectory, Γ, is comprised exclusively of material-interface trajectories; i.e.,

d-manifolds on which (1) the purely spatial component of the differential, dΓ, vanishes, and

(2) there exists a purely spatial normal vector, n ∈ Ed, consistent with the orientation of Γ —

both almost everywhere on Γ. Applying these special properties to the three-field formulation

in [20], we find that the jump condition components involving [[u]], [[E]], and [[p]] are inactive

on Γ, and the jump conditions simplify to(
⋆

S− S±
)
(n) = 0 (4.1a)(

⋆
v − v

)±
= 0 (4.1b)

in which a superscript or subscript ± denotes a trace on the + or − side of Γ, and a superposed

74

⋆ denotes a Riemann value on Γ. Thus, System (4.1) presents four distinct jump conditions

relative to Riemann values, two for each side of the fault.

We assume zero external forces acting on Γ, so that the + and − sides of the fault share

common Riemann values for the normal stress component,
⋆

S(n). Thus, we write
⋆

S in (4.1a)

without further decoration. The velocity Riemann values on the + and − sides can be distinct

due to possible non-vanishing slip and separation rates across the fault, so we retain the ±
decoration on

⋆
v in (4.1b). In the single-field displacement formulation used in this work, we

rewrite system (4.1) as modified jump conditions on Γ,(
⋆

S− [C(sym(∇u)]±
)
(n) = 0 (4.2a)(

⋆
v − u̇

)±
= 0 (4.2b)

4.2.3 Dynamic Fault Response Model

The dynamic fault response on Γ is described in terms of a friction model with three

contact modes : contact–stick, contact–slip, and separation. After introducing a local spatial

coordinate frame on Γ in part 4.2.3, we formulate a slip-weakening friction model in 4.2.3 and

summarize Riemann solutions by Abedi and Haber [2] for the complete set of contact modes

in part 4.2.3. In contrast to quasi-static models, the dynamic jump conditions generated

by the Riemann solutions in system (2.7) are consistent with the characteristic structure

of elastodynamic hyperbolic systems. Abedi and Haber demonstrate that enforcing jump

conditions relative to Riemann fluxes on both sides of a contact-interface trajectory improves

accuracy and mitigates spurious numerical oscillations induced by impact events, sudden

separation-to-contact transitions, and other sources of sharp wave fronts.

Local spatial coordinate frame and component representations

We establish a local Cartesian coordinate frame on Γ in Ed with local orthonormal vector

and covector bases, ei and ei for i ∈ Nd := {N+ : i ≤ d}, such that e1 coincides with the local

unit normal vector, n, to Γ. The remaining basis vectors, ei for i ∈ Nd \ 1, span the local

tangent space of Γ. We assign the labels, ‘+’, to the fault-face trajectory whose outward

normal, n+, coincides with n and ‘−’ to the fault-face trajectory whose outward normal, n−,

coincides with −n.

75

We express kinematic quantities in component form with respect to the vector basis as,2

u = uiei (4.3a)

v = viei (4.3b)

E = Eijei ⊗ ej (4.3c)

and force-like quantities with respect to the covector basis as

p = pie
i (4.4a)

S = Sije
i ⊗ ej (4.4b)

The component forms of the jump conditions on Γ in the local frame, system (4.1), reduce

to (
⋆

S1i − S±
1i

)
ei = 0 ⇔

⋆

S1i − S±
1i = 0 (4.5a)(

⋆
v
i

± − vi±

)
ei = 0 ⇔ ⋆

v
i

± − vi± = 0 (4.5b)

for i ∈ Nd. Similar results hold for the three-field and one-field jump conditions, system (2.7).

Separation, slip, and slip-weakening friction model

We define a jump operator across Γ, [[·]], such that [[f]] := f−−f+ (or f−−f+). We decompose

the displacement jump across Γ into normal and tangential parts,

[[u]] = δ̂e1 + δeδ (4.6)

in which δ̂, δ, and eδ are, respectively, the normal separation across Γ, the slip magnitude,

and the unit vector in the direction of slip given by

δ̂ := [[u1]] (4.7a)

δ :=

∣∣∣∣∣∣
∑

i∈Nd\1

[[ui]]ei

∣∣∣∣∣∣ (4.7b)

eδ :=
1

δ

∑
i∈Nd\1

[[ui]]ei (4.7c)

2Abedi, Haber, & Petracovici [1] and Miller et al. [20] defined kinematic and force-like quantities with
respect to the covector and vector bases, respectively. We reverse that convention from here on to better
conform with common practice.

76

The slip-rate magnitude and direction are given by

δ̇ :=

∣∣∣∣∣∣
∑

i∈Nd\1

[[vi]]ei

∣∣∣∣∣∣ (4.8a)

ev :=
1

δ̇

∑
i∈Nd\1

g
(
[[vj]]ej

)
⇔ evi =

0 i = 1

δij
[[vj]]

δ̇
i ∈ Nd \ 1

(4.8b)

We decompose the Riemann surface traction vector,
⋆
s :=

⋆

S1ie
i, into normal and tangential

components
⋆
s
±
= ±

[
−σe1 + τeτ

]
(4.9)

in which σ, τ , and eτ are, respectively, the normal compression component of surface traction

vector, the magnitude of the friction vector, and the unit vector in the direction of the friction

vector.

σ := −
⋆

S11 (4.10a)

τ :=

∣∣∣∣∣∣
∑

i∈Nd\1

⋆

S1ie
i

∣∣∣∣∣∣ (4.10b)

eτ :=
1

τ

∑
i∈Nd\1

⋆

S1ie
i ⇔ eτi =

0 i = 1
⋆
S1i

τ
i ∈ Nd \ 1

(4.10c)

From here on we adopt an isotropic, bilinear slip-weakening friction model [79],

τ ≤ k(δ) ⟨σ⟩+ (4.11a)

k(δ) :=

ks − δ
δc
(ks − kd) 0 ≤ δ < δc

kd δ ≥ δc
(4.11b)

in which ks and kd are the static and dynamic coefficients of friction, δc is the slip length

scale, and ⟨·⟩+ denotes the positive Macaulay bracket. Although somewhat rudimentary,

bilinear slip-weakening models are commonly used to model rupture in geological materials,

as in the benchmark verification problems in Section 4.4.

77

Riemann solutions for dynamic contact modes on fault trajectories

This section summarizes Riemann solutions for
⋆

S1i and
(

⋆
v
i)±

for each dynamic contact

mode, as derived in [2, 3]. For simplicity, we assume isotropic elastic response, but allow

for distinct bulk material properties — specifically Lamé parameters, λ± and µ±, and mass

density, ρ± — on opposite sides of the fault. We obtain local impedance components,

Z±
i =

(cdρ)
± i = 1

(csρ)
± i ∈ Nd \ 1

(4.12)

in which the local dilatational and shear wave speeds are, respectively,

c±d =

√
λ± + 2µ±

ρ±
, c±s =

√
µ±

ρ±
(4.13)

Contact–stick mode: The Riemann solutions for this mode are identical to those for a perfectly

bonded interface and require zero separation (δ̂ = 0) and velocity continuity across Γ

([[
⋆
v]] = 0⇔ ⋆

v
+
=

⋆
v
−
=:

⋆
v). Moreover, the Riemann solution,

⋆

S1i =
S+
1iZ

−
i + S−

1iZ
+
i

Z−
i + Z+

i

+
Z−

i Z
+
i

Z−
i + Z+

i

[[vi]] =: Ŝ1i (4.14a)

⋆
v
i
=

S−
1i − S+

1i

Z−
i + Z+

i

+
vi+Z

+
i + vi−Z

−
i

Z−
i + Z+

i

=: v̂i (4.14b)

in which i ∈ Nd and there are no sums on i, must satisfy σ ≥ 0 and the friction inequality,

eq. (4.11a).

Contact–slip mode: This mode requires zero separation (δ̂ = 0⇒ [[v1]] = 0), so the normal

components of the contact–slip Riemann solution,
⋆

S11 and
⋆
v
1
, are the same as in contact–

stick mode. The tangential velocity components may be discontinuous across the fault to

accommodate non-zero slip rates, while the tangential Riemann stress components must

satisfy eq. (4.11a) by equality. The Riemann solution, which must also satisfy σ ≥ 0 to

78

maintain contact, is given by

⋆

S1i =

Ŝ11 i = 1

k(δ) ⟨σ⟩+ eτi i ∈ Nd \ 1
(4.15a)

⋆
v
i

± =

v̂1 i = 1

vi± ± δij
⋆
S1j−S±

1j

Z±
i

i ∈ Nd \ 1
(4.15b)

in which Ŝ11 and v̂1 are defined in (4.14),
⋆

S1j in (4.15b) is defined in the second branch of

(4.15a), and there are no sums on i.

System 4.15 follows a novel formulation of the contact–slip Riemann solution introduced in

[2] In combination with the jump conditions (4.1), this formulation offers several advantages

relative to previous formulations that significantly simplify its numerical implementation:

1. It enforces equal normal velocities on both fault faces to preserve contact without

resorting to Lagrange multiplier or other constraint-enforcement techniques.

2. It avoids nonlinear coupling between the tangential parts of the Riemann solutions for

stress and velocity that requires iterative solution strategies in previous formulations.

3. It substitutes the continuous direction covector, eτ , for the discontinuous covector, ev,

in the frictional part of the Riemann stress solution in (4.15a).3

Separation mode: Velocity is fully discontinuous across the fault trajectory in this mode, and

the normal part of the Riemann stress is determined by prescribed, self-equilibrating traction

vectors, s̄±, that act on the fault-face trajectories such that s̄ := s̄+ = −s̄−. The Riemann

solution for separation mode is:

⋆

S1i = s̄i (4.16a)

⋆
v
i

± = vi± ±
s̄i − S±

1i

Z±
i

(4.16b)

in which there are no sums on i ∈ Nd.

3The covector ev is discontinuous at contact–stick to contact–slip transitions where [[v]] = 0, and this
significantly complicates previous numerical implementations. However, this simplifying substitution is only
valid for isotropic friction models.

79

4.3 The cSDG Rupture Model

4.3.1 Formulation

We restrict our attention to numerical aspects of the dynamic rupture model within the

cSDG framework. The interested reader can find coverage of other aspects of the numerical

formulations for the 1-field and 3-field cSDG models for linear elastodynamics with contact

in [1, 20, 2].

We decompose the overall solution into static and dynamic parts. The time-invariant

static part corresponds to an initial equilibrium stress field acting on the system at rest with

vanishing deformation, while the dynamic part includes the complete kinematic response.

Following common practice, we prescribe a system of self-equilibrating static tractions acting

on the fault network leaving the corresponding static stress field undefined. The static

tractions, in combination with the slip-weakening friction model, are sufficient to drive the

dynamic response which we compute with the adaptive cSDG method. We compute total

fault tractions for use in the slip-weakening model by superposing the prescribed static and

computed dynamic tractions; cf. eq. (4.11a).

We introduce a smooth regularization of the bilinear slip-weakening model, eq. (4.11b),

using Hermite interpolations and a regularization parameter, ϵ ∈ [0, 0.5], to facilitate conver-

gence of Newton-Raphson iterations within our numerical procedure. Defining regularization

zones with half-widths, ϵδc, centered at δ = 0 and δ = δc while enforcing zero slope at δ = 0

and δ = δ3, we obtain

k(δ) =

k̆(δ) 0 < δ < δ1

ks − δ
δc
(ks − kd) δ1 ≤ δ < δ2

k̃(δ) δ2 ≤ δ < δ3

kd δ ≥ δ3

(4.17a)

k̆(δ) := ks(2δ̆
3 − 3δ̆2 + 1) + (ks +mδ1)(−2δ̆3 + 3δ̆2)

+mδ1(δ̆
3 − δ̆2)

(4.17b)

k̃(δ) := (ks +mδ2)(2δ̃
3 − 3δ̃2 + 1)

+m(δ3 − δ2)(δ̃
3 − 2δ̃2 + δ̃) + kd(−2δ̃3 + 3δ̃2)

(4.17c)

in which δ1 := ϵδc, δ2 := (1− ϵ)δc, δ3 := (1+ ϵ)δc, m := (kd−ks)/δc, and we define normalized

slip functions, δ̆(δ) := δ/δ1 and δ̃(δ) := (δ − δ2)/(δ3 − δ2).
4 Figure 4.2 illustrates convergence

4We suppress the dependence of δ̆ and δ̃ on δ to simplify the expressions in (4.17b) and (4.17c).

80

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

F
ri
c
ti
o

n
 c

o
e

ff
ic

ie
n

t

Exact

 = 0.35

 = 0.1

Figure 4.2: Convergence of regularized bilinear slip-weakening model as the regularization
parameter, ϵ, tends to 0 for ks = 0.677, kd = 0.525, and δc = 0.4.

of the regularized slip-weakening model to eq. (4.11b) as ϵ→ 0. We use a smaller value of

the regularization parameter, ϵ = 0.025, in the numerical examples in Section 4.4 for which

the difference between the exact and regularized slip-weakening relations would be barely

visible in the figure.

4.3.2 Implementation on Causal Spacetime Meshes

This subsection describes the cSDG method’s advancing-front spacetime meshing procedure

with specializations for modeling earthquake ruptures in greater detail. We seek an un-

structured discretization of Ω with a set of spacetime simplex elements, {Qα}, grouped into

patches. The facets of each patch must be causal, as defined is Section 2.2.1. This causality

constraint ensures that information travels in only one direction across each patch facet,

either inflow or outflow, and implies an asymmetric dependency graph between patch-wise

solutions consistent with the causality principle of physics and the characteristic structure

of hyperbolic systems. A spacetime mesh whose patches satisfy the causality constraint is

called a causal mesh.

In combination with spacetime discontinuous Galerkin discretizations of the solution

fields, causal meshes generate partial orderings of patches through which a locally implicit,

unconditionally stable problem can be constructed on each patch whose solution depends

only on prescribed initial/boundary data and solutions on adjacent previously-solved patches;

cf. [1, 20]. This structure leads to linear complexity in the number of spacetime patches.

81

(a)

(b)

Figure 4.3: (a) Triangulation of initial front at time t = 0 and, (b), triangulation of fault
trajectory, Γ, induced by tetrahedral mesh on Ω.

82

(a)

(b)

Figure 4.4: Early-stage tent pitching and triangulation of fault trajectory: (a) Early front
configuration after two tent-pitching operations create patches that contain tetrahedral
spacetime elements and, in one case, a pair of triangular spacetime cells on the fault trajectory;
(b) Facets of adjacent tetrahedral spacetime elements, Q±

α , generate a triangular spacetime
cell, Γα, on the fault trajectory as part of a conforming triangulation of Γ.

83

Moreover, discrete cSDG solutions balance linear and angular momentum over each spacetime

element to within machine precision.

We use the adaptive Tent Pitcher method to construct causal spacetime meshes by

advancing through Ω a space-like front mesh in which each vertex carries an independent

time coordinate, as shown in Fig. 4.3a for a two-dimensional problem. Given an initial front

mesh, i.e., a spatial triangulation of ω at t = 0, Tent Pitcher constructs a spacetime mesh on

Ω, one patch at a time. The basic tent pitching operation advances a vertex in time subject

to the causality constraint to define a new front configuration. We mesh the spacetime region

between the previous and new fronts with simplex elements to form a new patch, immediately

solve the localized patch problem5, and update the current front to include the patch’s outflow

facets in its new configuration. This process repeats until every front vertex passes the final

time of the simulation and patch-wise solutions cover Ω. Figure 4.4a depicts the updated

front configuration and two patches comprised of tetrahedral spacetime elements after two

tent-pitching operations.

In contrast to conventional time-marching schemes in which the solution advances syn-

chronously via globally-uniform time steps, cSDG solutions advance locally and asynchronously

at a much finer granularity. While synchronous time-step sizes are limited by global worst-case

accuracy or stability constraints, the durations of individual cSDG patches are limited by

local causality constraints and local accuracy considerations.6

The Tent Pitcher meshing process generates a simplicial mesh on Γ that conforms with

the spacetime mesh on Ω. That is, each simplex on Γ coincides with facets of adjacent simplex

elements, Q+
α and Q−

α , on Ω, as shown in Fig. 4.4b. Thus, patches that straddle the fault

trajectory cover Γ with simplex cells as the solution progresses. This provides a convenient

computational framework for coupling fault rupture models with the bulk dynamic response.

4.3.3 Adaptive Spacetime Meshing

A new approach to dynamic adaptive meshing

Adaptive remeshing operations in synchronous schemes are expensive global operations that

typically execute once every N ≥ 1 time steps. In contrast, cSDG solvers support inexpensive

local adaptive operations that execute at the same patch-level granularity as the localized

spacetime-meshing and patch-solution operations. Thus, the number of potential adaptive

operations per layer of patches is roughly equal to the number of vertices in the current front.

5Inter-element facets within a patch are generally not space-like, so the element-wise solutions within each
patch are coupled and must be solved simultaneously as a patch-wise localized problem.

6Localized patch problems are implicit and unconditionally stable, so patch durations are not limited by
stability constraints.

84

These properties equip cSDG solvers with a highly dynamic and efficient form of adaptive

spacetime meshing capable of capturing fast-moving wave fronts and rupture tips, spanning

wide ranges of spatio-temporal scales in multi-scale simulations, and continually improving

mesh quality as a solution progresses.

Dynamic adaptive remeshing for transient problems is typically implemented between

synchronous time steps and requires a projection of the solution from the old mesh onto the

new mesh — an operation that generally limits transient solutions to first-order accuracy.

The cSDG solver implements adaptive edge-flip, coarsening, and mesh-smoothing operations

as special spacetime patches whose inflow and outflow faces conform, respectively, to the old

and new front meshes. Adaptive cSDG mesh refinement is a local operation that involves

discarding patch solutions that fail their error-indicator checks, local refinement of the

previous front mesh, and restarting the spacetime meshing/solution process. No solution

projections are required, so cSDG adaptive meshing procedures preserve the full order of

accuracy of high-order discontinuous Galerkin models. Detailed descriptions of cSDG adaptive

meshing procedures appear in [18] and [15], including an adaptive error indicator that controls

numerical dissipation error in the bulk elastodynamic response.

Adaptive error indicators for the fault rupture model

We augment the bulk dissipation error indicator with specialized error indicators for controlling

the accuracy of the cSDG rupture response model. These indicators measure discrepancies

between errors in separation rate, slip rate, normal stress, and shear stress between Riemann

values and traces of the bulk solution from both sides of the fault trajectory, Γ. We define

the following scalar jump operators for velocity

[[vn]]⋆± :=
∣∣∣(⋆
v
1
− v1±

)
e1

∣∣∣ (4.18a)

[[vt]]⋆± :=

∣∣∣∣∣∣
∑

i∈Nd\1

(
⋆
v
i
− vi±

)
ei

∣∣∣∣∣∣ (4.18b)

and require ∀ Γα ∈ Γ that ∥∥[[vn]]⋆±
∥∥
l∞(Γα)

∆tα

d̄
< κn

v ≪ 1 (4.19a)∥∥[[vt]]⋆±
∥∥
l∞(Γα)

∆tα

δc
< κt

v ≪ 1 (4.19b)

in which the l∞(Γα)-norm is taken over all quadrature points on Γα that are either in pure

contact mode or transitioning from separation to contact, ∆tα is the duration of Γα, d̄ is the

85

upper limit of the separation regularization zone in which the lower limit is d = 0, δc is the

slip-weakening distance, while κn
v and κt

v are user-selected error tolerances for controlling

velocity-related mismatch between Riemann values and traces of the bulk cSDG solution on

the fault.

We apply a similar approach to the normal and tangential components of the surface

stress error. That is, we define

[[Sn]]
±
⋆ :=

∣∣∣∣(⋆

S11 − S±
11

)
e1
∣∣∣∣ (4.20a)

[[St]]
±
⋆ :=

∣∣∣∣∣∣
∑

i∈Nd\1

(
⋆

S1i − S±
1i

)
ei

∣∣∣∣∣∣ (4.20b)

and require ∀ Γα ∈ Γ that
∥[[Sn]]

±
⋆ ∥l∞(Γα)

σ̄
< κS

n ≪ 1 (4.21a)

∥[[St]]
±
⋆ ∥l∞(Γα)

τ̄
< κS

t ≪ 1 (4.21b)

in which σ̄ is the initial compression acting across the fault, τ̄ is the shear strength associated

with σ̄, while κS
n and κS

t are user-selected error tolerances for controlling stress-related

mismatch at the fault.

4.4 Numerical Verification, High-Resolution Capabili-

ties, and Contact–Separation Model

In this section, we verify the cSDG dynamic rupture/contact model and demonstrate its high-

order modeling and multi-scale adaptive meshing capabilities with a pair of two-dimensional

Southern California Earthquake Center (SCEC) benchmark problems [80]. We compare

cSDG results to solutions obtained with selected state-of-the-art methods, as posted in the

SCEC repository or published in the recent literature. In contrast to most other methods,

Miller et al. [20] showed that cSDG models gain computational efficiency — in addition to

higher-order accuracy — with increasing polynomial order of the spacetime basis functions.

We use the 1-field formulation with twelfth-order spacetime polynomial basis functions to

generate the cSDG solutions in all numerical examples in this subsection.

86

4.4.1 SCEC TPV205-2D Benchmark

Problem description

This problem involves a vertical strike-slip fault of length Lf centered in a domain of width

L comprised of homogeneous rock modelled as an isotropic, linear-elastic solid under plane

strain conditions, as depicted in Fig. 4.5a. Wave speeds, cd and cs, and mass density, ρ,

determine the rock’s mechanical properties. The regularized bilinear slip-weakening model

of Section 4.3.1 — with slip-weakening distance, δc, and static and dynamic coefficients of

friction, ks and kd — determine the fault’s frictional response. The rock is assumed to have

sufficient strength to preclude rupture beyond the initial fault configuration.

Uniform static normal compressive tractions of magnitude σ0 act across the fault for its

entire length. Due to the symmetry of the analysis domain and the anti-symmetry of the

shear tractions about the x1-axis, the dynamic normal tractions vanish everywhere on the

fault at all times. Therefore, the total normal tractions, σ = σ0, are invariant in space and

time, as are the static and dynamic shear resistances: τ = ksσ
0 and τ̃ = kdσ

0. The piece-wise

constant distribution of right-lateral, static shear tractions, τ 0, depicted in Figure 4.5b drives

the dynamic rupture process. A background static shear intensity, τ 0b , holds over most of

the fault with the exception of three 3km-wide zones. The left and right zones, centered at

x1 = −7.5km and x1 = 7.5km, carry static shear tractions, τ 0l and τ 0r . A nucleation zone

centered at x1 = 0km carries static shear tractions, τ 0n , that slightly exceed τ . This condition

initiates instantaneous rupture across the entire nucleation zone at time t = 0. Numerical

values for all model parameters appear in Table 4.1.

Figure 4.6a depicts the initial front mesh generated for the TPV205-2D problem. We

specify a coarse initial front mesh comprised of 38 vertices and 66 elements in which seven

edges, cf. Fig. 4.6b, represent the seven segments of piecewise-constant static shear traction

values, τ 0, along the fault. We depend on the cSDG method’s powerful dynamic adaptive

meshing capabilities to automatically provide sufficient mesh refinement to capture traveling

wavefronts and the fine details of rupture nucleation and propagation — down to the smallest

relevant spatial and temporal scales, including those associated with rupture-process zones

and even solution features generated by nonlinear response within process zones (cf. part 4.4.2

below). This relieves the user of the substantial burden of manually generating graded meshes

and boosts computational efficiency well above what can be attained in seismic codes with

non-adaptive graded meshes or, in very few cases, traditional adaptive meshing techniques.

87

Lf

L

x1
x2

(a)

-15 -10 -5 0 5 10 15

x
1
 (km)

60

65

70

75

80

85

S
h

e
a

r
S

tr
e

s
s
 (

M
P

a
)

(b)

Figure 4.5: TPV205-2D problem description: (a) Schematic of spatial domain with central
fault; (b) Distributions of static shear traction, τ 0, and time-invariant static shear strength,
τ , along the fault.

Table 4.1: TPV205-2D model parameters

Parameter Symbol Value
Domain width (km) L 100
Fault length (km) Lf 30
Dilatational wave speed (m/s) cd 6000
Shear wave speed (m/s) cs 3464
Mass density (kg/m3) ρ 2670
Slip-weakening distance (m) δc 0.4
Static coefficient of friction ks 0.677
Dynamic coefficient of friction kd 0.525
Slip-weakening regularization parameter ϵ 0.025
Uniform static compressive traction (MPa) σ0 120
Background static shear traction (MPa) τ 0b 70.0
Static shear traction (left zone) (MPa) τ 0l 78.0
Static shear traction (right zone) (MPa) τ 0r 62.0
Static shear traction (nucleation zone) (MPa) τ 0n 81.6
Invariant static shear strength (MPa) τ 81.24
Invariant dynamic shear resistance (MPa) τ̃ 63.0
Normal velocity error tolerance κn

v 1× 10−6

Tangential velocity error tolerance κt
v 1× 10−6

Normal stress error tolerance κS
n 1× 10−8

Tangential stress error tolerance κS
t 1× 10−8

88

(a) (b)

Figure 4.6: Initial front mesh for TPV205-2D at t = 0. (a) Overall mesh covering a
100km× 100km spatial domain with 38 vertices and 66 elements; (b) Detail of fault-region
mesh in which the seven highlighted edges correspond to the seven segments of piecewise-
constant static shear traction, τ 0, along the fault.

Verification of cSDG seismic rupture model

We verify the proposed rupture model by comparing cSDG results to solutions posted in

the SCEC Benchmark Database [80] obtained with the hybrid finite element and spectral

boundary integral (SBI) model of Ma et al. [69] and the high-order-accurate finite difference

model, FDMAP, by Kozdon, Dunham, and Nordström [81]. From here on, we refer to these

models, respectively, as the Hybrid and FDMAP models. The Hybrid model couples a high-

resolution finite element discretization of the fault region with an SBI discretization at the

domain boundary. A consistent exchange of displacement and boundary-traction components

defines the coupling between the models. The FDMAP method uses summation-by-parts

finite difference operators and coordinate mappings of multi-block mehes to model large fault

systems with irregular geometries. Coupling conditions between mesh blocks that support

bi-material interfaces provides FDMAP with a robust model for material heterogeneity.

Figure 4.7 compares snapshots of slip and slip rate distributions along the fault for the

cSDG and Hybrid models. Figure 4.8 compares histories of slip and slip rate at selected

station points along the fault located at ±4.5km and ±7.5km from the fault’s center. The

cSDG model accurately captures rupture nucleation, propagation and arrest. There are no

visible differences between the cSDG and Hybrid results for slip. Although there is generally

good agreement between the slip-rate solutions, we do observe some local differences. We

attribute these to spurious oscillations and over/under-shoot in the Hybrid solution, as

explained below.

89

-15 -10 -5 0 5 10

x
1
 (km)

0

1

2

3

4

S
lip

 (
m

)

cSDG

Hybrid

t = 2s

t = 3s

t = 1s

t = 5s

t = 4s

(a)

-15 -10 -5 0 5 10

x
1
 (km)

0

2

4

6

8

S
lip

 R
a
te

 (
m

/s
)

cSDG

Hybrid

t = 1s

t = 2s

t = 3s

t = 4s

t = 5s

(b)

Figure 4.7: Slip and slip-rate distributions for TPV205-2D along the fault at 1s intervals for
cSDG and Hybrid models.

90

0 1 2 3 4 5

t (s)

0

1

2

3

4

S
lip

 (
m

)

Slip - Strike 4.5km

SDG

Hybrid

0 1 2 3 4 5

t (s)

-2

0

2

4

6

S
lip

 R
a

te
 (

m
/s

)

Slip Rate - Strike 4.5km

SDG

Hybrid

0 1 2 3 4 5

t (s)

-2

0

2

4

6

S
lip

 (
m

)

Slip - Strike -4.5km

SDG

Hybrid

0 1 2 3 4 5

t (s)

-1

0

1

2

3

4

5

S
lip

 R
a

te
 (

m
/s

)

Slip Rate - Strike -4.5km

SDG

Hybrid

0 1 2 3 4 5
t (s)

-1

0

1

2

3

4

5

6

S
lip

 (
m

)

Slip - Strike -7.5km

SDG

Hybrid

0 1 2 3 4 5
t (s)

-1

0

1

2

3

4

5

6

S
lip

 R
a

te
 (

m
/s

)

Slip Rate - Strike -7.5km

SDG

Hybrid

0 1 2 3 4 5

t (s)

-0.5

0

0.5

1

1.5

2

2.5

3

S
lip

(m
)

Slip - Strike 7.5km

SDG

Hybrid

0 1 2 3 4 5

t (s)

-0.5

0

0.5

1

1.5

2

2.5

S
lip

 R
a

te
 (

m
/s

)

Slip Rate - Strike 7.5km

SDG

Hybrid

Figure 4.8: Slip and slip-rate histories for TPV205-2D at x1 = ±4.5km and x1 = ±7.5km by
cSDG and Hybrid models.

91

-10 0 10

65

70

75

t = 0 s

-10 0 10

65

70

75

80

t = 0.67 s

-10 0 10

65

70

75

80

S
h
e
a
r

S
tr

e
s
s
 (

M
P

a
) t = 1.34 s

-10 0 10

65

70

75

80

t = 2.01 s

-10 0 10

x (km)

65

70

75

80

t = 2.68 s

-10 0 10

x (km)

65

70

75

80

t = 3.35 s

SDG

Hybrid

Figure 4.9: Shear Stress distributions for TPV205-2D along the fault for cSDG and Hybrid
models.

92

High-resolution modeling capabilities

Under-resolved rupture simulations can mask high-frequency features and frustrate reliable

evaluation of critical quantities of interest, such as slip rate and material acceleration.

Unfortunately, factors such as overly coarse spatiotemporal discretization and filtration of

spurious numerical oscillations commonly limit resolution in dynamic rupture simulations.

Since higher resolution models generally incur greater computational expense, achieving high

computational efficiency is an especially important concern in rupture modeling. We next

compare the high-resolution performance of the Hybrid, FDMAP, and cSDG methods, each

of which follows distinct strategies for boosting computational efficiency.

The Hybrid method couples a spectral boundary integral model of far-field response with

a low-order, conforming finite element model that captures near-field response in a small

region containing the faults. A consistent exchange of displacement and boundary-traction

components defines the coupling between the models. The limited extent of the refined

finite element mesh reduces computational expense. However, even with these savings, cost

considerations still limit the near-field model’s resolution, and Rayleigh damping is required

to control spurious grid-scale oscillations.

FDMAP models combine arbitrarily high-order summation-by-parts (SBP) finite difference

operators on multi-block meshes with fourth-order Runge-Kutta integrators in time to achieve

up to fourth-order accuracy in a discrete SBP energy norm. Block-wise coordinate mappings

and inter-block coupling conditions with support for bi-material interfaces provide robust

modeling of material heterogeneity and fault networks with irregular geometry. However,

overly strong coordinate transformations can compromise the stability of conservative SBP

operators7, so FDMAP uses non-conservative operators to ensure energy stability. The

FDMAP coupling conditions preserve characteristic structure between blocks for bonded

interfaces as well as contact–slip and contact–stick conditions across faults, so all fault contact

modes are covered except separation. Although structure-preserving conditions are not

enforced within blocks, the method’s high-order accuracy contributes to its high-resolution

modeling capabilities.

Multiple features of cSDG models combine to support high-resolution, multi-scale seismic

simulations. For example, discontinuous Galerkin basis functions combined with causal

spacetime meshing localize the asynchronous solution process to a partial ordering of implicit,

unconditionally-stable, patch-wise problems with linear computational complexity in the

number of patches and machine-precision conservation of linear and angular momentum over

every spacetime element. The cSDG jump conditions preserve characteristic structure across

7See [81] for the case of models with uniform elastic coefficients.

93

2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

t (s)

0

0.5

1

1.5

2

S
lip

 R
a
te

 (
m

/s
)

Slip Rate at Strike 7.5km

Hybrid

FDMAP

cSDG

Figure 4.10: Slip-rate histories for TPV205-2D at x1 = 7.5km by Hybrid, FDMAP, and cSDG
models.

all spacetime inter-element boundaries, thereby eliminating spurious oscillations without

resorting to filtering or artificial damping.8

Most other methods use some form of explicit time integration with stability constraints

that impose restrictions on time-step size that grow increasingly severe with increasing

polynomial order. cSDG models are not subject to stability constraints. Instead, the

causality constraint acts locally and independently of polynomial order to limit the duration

of individual patches. As a result, and in contrast to most other models, cSDG convergence

rates and computational efficiency both improve with increasing polynomial order. Moreover,

fine-grained and localized h-adaptive cSDG meshing procedures enable dynamic evolution of

strongly-graded spacetime meshes capable of capturing fast-moving wavefronts and dynamic

rupture propagation. This further boosts computational efficiency to enable models that

bridge wider ranges of length and time scales.

Figure 4.10 compares the accuracy and resolution of slip-rate histories from the Hybrid,

FDMAP, and cSDG solutions during a brief time interval in which the rupture tip passes the

on-fault station point at x1 = 7.5km. Spurious oscillations are evident in both the Hybrid and

FDMAP solutions. The smaller amplitude and higher frequency of the FDMAP oscillations

8This statement is valid for the class of problems and the formulation considered in this work. Although
models based on the present cSDG formulation are always conservative and unconditionally stable, they may
generate Gibbs artifacts in problems where the exact solution contains weak shocks. However in these cases,
the Gibbs artifacts are local and do not lead to global ringing as in many other methods.

94

reflect the more refined mesh used in that model. Although the oscillations cause relatively

small slip-rate errors, the local deviations in slope, associated with differences in material

acceleration across the fault, are significant in both models. In contrast, there is no evidence

of spurious oscillations in the undamped and unfiltered cSDG solution.

Now consider the peak value of shear stress along the main fault as a function of time.

The theoretical model predicts that as a rupture extends beyond the current rupture tip,

the shear stress must reach and cannot excede the static strength, τ , as determined by

the slip-weakening model. In practice, however, we find that this peak shear-stress value

oscillates over the course of the simulation, as depicted in Figure 4.11 for the Hybrid and

cSDG methods. Due to its high-resolution capabilities, the cSDG model’s stress peaks are,

overall, closer to the theoretical static strength value.

0 1 2 3 4 5

t (s)

78.5

79

79.5

80

80.5

81

81.5

S
h
e
a
r

S
tr

e
s
s
 (

M
P

a
)

Hybrid

cSDG

Strength

Figure 4.11: Time history of peak value of shear stress along the main fault for the Hybrid
(×) and cSDG (◦) methods. The value of static strength, τ , is plotted as a horizontal solid
line.

If we set aside the oscillations in the Hybrid and FDMAP solutions, we observe similarities

and some differences between the three slip-rate histories in Fig. 4.10. All three solutions

attain about the same peak slip-rate at about the same time, and the Hybrid and FDMAP

95

solutions are in close agreement overall. However, the cSDG solution predicts earlier rupture

arrival at the station point and resolves higher-frequency features with more local extrema

than the others. There are also significant differences in the slip rate and “slip acceleration”

— for example, in the interval, 2.7s < t < 2.9s. The cSDG model’s higher resolution is to be

expected given its high polynomial order and stronger adaptive refinement compared with

the other two methods.

Figure 4.12 presents a sequence of visualizations of the cSDG solution for TPV205-2D in

which velocity magnitude is mapped to a synthetic height field to reveal wave structure and

the dynamic part of strain energy density9 is mapped to color, ranging from dark blue for

zero energy density to red for peak values. The images in subfigures (a-b) depict the early

stages of rupture propagation beyond the nucleation zone during which both tips accelerate

and intensify. In subfigure (c), the left rupture tip intensifies and accelerates as it traverses

the left zone of higher initial shear stress while the right tip weakens and decelerates as

it crosses the right zone of lower initial shear stress. In subfigure (d), the left rupture tip

exits the zone of increased initial stress carrying a more complex field while the right tip

continues its slower transit of the reduced-stress heterogeneity. Subfigures (e,f) capture

rupture arrest and reflection of the rupture-tip wave field at the left end of the fault while

the right rupture tip accelerates toward the right end with a strengthening field. The cSDG

model’s high-order approximation and powerful adaptive meshing capabilities ensure that

complex rupture dynamics and wave patterns are well resolved throughout the simulation.

4.4.2 Zero-Gap Variant of SCEC TPV14-2D Benchmark

Problem description

The TPV14-2D benchmark involves two vertical strike-slip faults, a main fault and a branch

fault separated from the main fault by a vertical gap. A number of solutions are available

in the SCEC repository for this non-intersecting configuration [80]. Here we focus on the

zero-gap variant of TPV14-2D, previously analyzed by Pelties et al. [78] using the Arbitrary

Derivative Discontinuous Gelerkin (ADER-DG) method, in which the main and branch faults

intersect at an angle of 30◦ as depicted in Fig. 4.13a. The fault dimensions and other model

parameters appear in Table 4.2, most of which are defined similarly to the parameters for

TPV205-2D.

Due to the asymmetrical configuration and loading, the dynamic component of the

normal traction field no longer vanishes, so the total normal-traction distribution varies

9We cannot visualize the total strain-energy-density field because the static initial strain field is unavailable
in this model.

96

(a) t = 0.1s (b) t = 1s

(c) t = 2s (d) t = 3s

(e) t = 4s (f) t = 5s

Figure 4.12: Visualization sequence for cSDG simulation of TPV205-2D with velocity magni-
tude and dynamic part of strain-energy density mapped, respectively, to height and color.

97

L

(a)

-15 -10 -5 0 5 10

x
1
 (km)

65

70

75

80

85

S
h

e
a

r
S

tr
e

s
s
 (

M
P

a
)

(b)

Figure 4.13: Zero-gap variant of TPV14-2D. (a): Schematic of main and branch faults
intersecting at 30◦ angle. (b): Distributions along the main fault of right-lateral static
component of shear traction, τ 0, and static shear strength, τ 0s , at time t = 0.

with time. Accordingly, we write the static and dynamic shear resistances as τ(t) = ksσ(t)

and τ̃(t) = kdσ(t) in which σ(t) satisfies σ(0) = σ0. Thus, the initial static shear strength

is τ 0s = ksσ
0. The background value of right-lateral static shear tractions, τ 0 = τ 0b , holds

everywhere on the fault system except in a 3m-wide nucleation zone, centered at x1 = −8m
on the main fault, within which τ 0 = τ 0n . As indicated in Fig. 4.13b, τ 0n , slightly exceeds τ 0s ,

leading to instantaneous rupture across the nucleation zone at t = 0.

Verification and High-resolution modeling capabilities

We verify our method against the Aribtrary high-order discontinuous Galerkin (ADER-DG)

method [78] – one of the few methods that is able to simulate the case without a gap at the

fault junction point.

Figure 4.15 shows the slip and slip rate comparison at ±2.0km along-strike from the

junction on the main fault and 2km along strike from the junction on the branch fault. Again

we see that our method accurately captures all stages of rupture propagation along both the

main and branch faults.

The cSDG method is able to simulate the TPV14-2D fault geometry, both with and

without a 100m vertical gap between the main and branch faults at their junction point. We

compare the slip, slip-rate, and shear stress solutions for the two cases in Figure 4.16 for a

station point at 2km along-strike on the While the overall response is comparable for the two

cases, the branch rupture is delayed and slightly diminished in the with-gap case in which

the rupture-tip waves must traverse the gap before impinging on the branch fault.

98

Table 4.2: TPV14-2D model parameters

Parameter Symbol Value
Domain width (km) L 100
Main-fault length (km) Lf 28
Branch-fault length (km) Lb 12
Dilatational wave speed (m/s) cd 6000
Shear wave speed (m/s) cs 3464
Mass density (kg/m3) ρ 2670
Slip-weakening distance (m) δs 0.4
Static coefficient of friction ks 0.677
Dynamic coefficient of friction kd 0.525
Slip-weakening regularization parameter ϵ 0.025
Uniform static compressive traction (MPa) σ0 120
Initial static shear strength (MPa) τ 0s 81.24
Background static shear traction (MPa) τ 0b 70.0
Static shear traction in nucleation zone (MPa) τ 0n 81.6
Normal velocity error tolerance κn

v 1× 10−6

Tangential velocity error tolerance κt
v 1× 10−6

Normal stress error tolerance κS
n 1× 10−8

Tangential stress error tolerance κS
t 1× 10−8

(a) (b)

Figure 4.14: Initial front mesh for zero-gap version of TPV14-2D. (a) Overall mesh covering
a 100km× 100km spatial domain with 32 vertices and 54 elements; (b) Detail of fault region.

99

0 1 2 3 4 5 6

t (s)

0

2

4

6

S
lip

 (
m

)

cSDG

ADER-DG

(a) Main-fault slip at x1 = −2km

0 1 2 3 4 5 6

t (s)

0

2

4

6

S
lip

 R
a

te
 (

m
/s

) cSDG

ADER-DG

(b) Main-fault slip rate at x1 = −2km

0 1 2 3 4 5 6

t (s)

0

1

2

3

4

S
lip

 (
m

)

cSDG

ADER-DG

(c) Main-fault slip at x1 = 2km

0 1 2 3 4 5 6

t (s)

0

2

4

6

S
lip

 R
a

te
 (

m
/s

) cSDG

ADER-DG

(d) Main-fault slip rate at x1 = 2km

0 1 2 3 4 5 6

t (s)

0

0.5

1

1.5

2

S
lip

 (
m

)

cSDG

ADER-DG

(e) Branch-fault slip, 2km from junction

0 1 2 3 4 5 6

t (s)

0

2

4

6

S
lip

 R
a

te
 (

m
/s

) cSDG

ADER-DG

(f) Branch-fault slip rate, 2km from junction

Figure 4.15: Slip and slip-rate histories for zero-gap variant of TPV14-2D at station points
on main and branch faults by cSDG and ADER-DG methods.

100

0 1 2 3 4 5 6

t (s)

-1

0

1

2

S
lip

 (
m

)

100m Gap

Without Gap

(a)

0 1 2 3 4 5 6

t (s)

-2

0

2

4

6

S
lip

 R
a
te

 (
m

/s
)

100m Gap

Without Gap

(b)

0 1 2 3 4 5 6

t (s)

50

60

70

80

S
h
e
a
r

S
tr

e
s
s
 (

M
P

a
)

100m Gap

Without Gap

(c)

Figure 4.16: Comparison of TPV14-2D response with and without a 100m gap at the junction
point. Plots of (a): slip, (b): slip rate, and (c): shear stress - recorded at a station point
along the branch fault at 2km from the branch point.

101

The powerful fine-grained adaptivity inherent to our method is particularly well suited for

branching fault systems such in the TPV14-2D benchmark. A direct advantage is that the

computational cost for our simulations are directly focused in regions where it is needed. This

produces computationally efficient meshes that allow for higher resolution and inclusion of

intricate fault systems. While we have the capability to perform both h− and p−refinement

simultaneously on a patch level (since we allow for discontinuities across spacetime facets) we

focus on the former for this work. The adaptive mesh refinement and coarsening used in our

method is described briefly here, with a more complete description found in [18] and [15].

Adaptive operations are performed directly on the triangulation of the current front mesh. A

local error indicator is computed for each element of a patch once it is solved and compared

to a user-defined target value. If the error indicator on any element is too high compared to

its target value, the patch is discarded and the element is marked for refinement. The facets

of the current front that correspond to the marked elements are then refined. Compared to

traditional global re-meshing scheme, the cSDG method only requires only the solution over

the discarded element to be recomputed while all previously solved patches are unaffected

due to causal structure of the spacetime mesh. On the other hand, if the error indicator in a

given element is too small compared to the target value, the element is marked as coarsenable

and the facets of the front are coarsened locally by undoing a single edge bisection. If none of

the elements in a patch are marked for further adaptivity, the patch solution is stored and the

local front is advanced. These refinement and coarsening operations produce nonconforming

spacetime meshes which can be naturally accommodated by the discontinuous basis utilized

in the cSDG formulation. This circumvents the need to project solution quantities between

refinement steps - a source of numerical error and algorithmic complexity that impacts many

other adaptive algorithms.

We consider the front mesh evolution for the TPV14-2D benchmark problem, presented

in Figure 4.17, to illustrate the capabilities of the adaptive scheme. The front is a spacetime

terrain with non-uniform time coordinates which is plotted here as a projection onto the

xy−plane. Starting from the coarse initial mesh (cf. Figure 4.13c) with only 32 vertices, as

the rupture propagates along the main fault, the adaptive algorithm concentrates refinement

to regions around the rupture tips. Away from the rupture tips the mesh is rapidly coarsened.

Figure 4.17b represents the front when rupture reaches the branch fault leading to intense

refinement concentrated in the region of the junction point. Using a non-adaptive mesh of

even 1m over the entire domain would require a prohibitively large number of elements. For

the results presented in this paper, we routinely achieve meshes with element diameters under

0.1m within the rupture tip processes zone, giving an impressive maximum-to-minimum

element ratio of roughly 106.

102

(a) t ≈ 0.1s

(b) t ≈ 2.5s

Figure 4.17: Spatial projections of front mesh details near the fault branch-point at two
stages of the TPV14-2D simulation. The adaptive refinement scheme generates strongly
graded front meshes - refining elements close to the rupture tips and coarsening ones further
away.

Figure 4.18 presents a sequence of visualizations of the dynamic part of the cSDG solution

where, as before, the velocity magnitude and strain energy density are mapped to the height

and color fields respectively. The visualization depicts the acceleration of the initial rupture

along the main fault (Figs. 4.18a-b) as indicated by the growing height field of the rupture

tip regions. Immediately after reaching the branch point, the rupture tip decelerates and

nucleates slip on the branch fault due to its favorable orientation (Figs. 4.18c-d).

Separation near the fault junction

Since the cSDG code is able to accurately model the triple-junction condition at the branch

point, we are able to explicitly model the three regions around the branch as distinct domains.

Based on the kinematic constraints and loading at the junction for the zero-gap case of

TPV14-2D, we observe the following. When we apply right-lateral rupture along the fault

system, we expect the bottom-right region of the branch to slip away from the junction and

the bottom-left region to slip towards it. Thus, in order to have non-zero branch-fault slip

103

(a) t = 0.5s (b) t = 2s

(c) t = 3s (d) t = 5s

Figure 4.18: Visualization sequence for cSDG solution of zero-gap TPV14-2D problem with
the velocity magnitude and the dynamic part of strain-energy density mapped, respectively,
to height and color.

at the junction, we must have local vertical separation on the main fault. Otherwise, the

branch-fault slip must vanish at the junction point. We measure this separation for the

TPV14-2D simulation, presented in Figure 4.19 where we find that separation accumulates

as the rupture crosses the junction region.

Discovery of dipole-like feature at the fault junction

We were able to further push our adaptive capabilities to extreme levels of resolution to study

fault dynamics in the vicinity of the junction point for the case of zero gap. Although our

simulations revealed significant additional high-frequency detail, they agree with previous

results that showed zero slip on the branch fault at the junction point, a kinematic consequence

of zero separation on the main fault at the junction point. However, we observed a dipole-like

feature in the main-fault normal stress as depicted in 4.20a; a feature that previous solutions

are far too coarse to resolve. Combining tight adaptive tolerances to generate extreme

spacetime mesh refinement and high-order spacetime bases (p = 12), we are able to achieve

maximum resolutions in the 1− 10mm range in the area of interest. The resolution is defined

here as the distance between the junction point and the closest quadrature point in the

surrounding elements. This is clearly observed in Figure 4.20b where we find the peak value

104

0 1 2 3 4
time (s)

0

1

2

3

4

5

V
e
rt

ic
a
l
S

e
p
a
ra

ti
o
n
 (

m
m

)

Vertical Separation, Strike 0km

Figure 4.19: Vertical separation measured at the branch point for TPV14-2D between the
two sides of the main fault.

of the normal stress nearly overcomes the ambient compression of σ0 = 120MPa.

Modest modifications of the model parameters led to solutions in which the dipole

overcomes the ambient compression to produce a zone of separation on the main fault that

permits significant non-zero slip on the branch fault at the junction fault. To our knowledge,

this is the first description and simulation of this alternative mechanism of main–fault/branch-

fault interaction. We note that accurate resolution of the peak dynamic normal stress due to

the dipole-like response requires spatial resolution at scales much smaller than the scale of

the rupture process zone which, in turn, is much smaller than the smallest scales resolved by

most seismic rupture simulations.

4.4.3 Modeling Off-fault Damage

Problem description

Many faults suffer off-fault damage in the form of complex networks of smaller-scale faults

due to previous earthquakes. The experiments by Biegel, Sammis and Rosakis [82] in

fracture-damaged Homalite suggest off-fault damage can significantly slow rupture speeds as

compared to an undamaged fault system. The experimental sample used in the experiments

are presented in Figure 4.21(a) where the damaged region extends on either side of the

main fault. Many numerical codes model the damaged zone by smearing out the network

of small-scale faults with a homogenized region with different material properties than that

of the bulk material [83, 84]. Given the adaptive capabilities of the cSDG method, we are

able to directly capture the side faults, depicted in Figure 4.21(b). We model the side faults

105

-10 -5 0 5 10
Position (km)

-50

0

50

N
o
rm

a
l
S

tr
e
s
s
 (

M
P

a
)

(a)

10
-2

10
-1

10
0

Resolution (m)

60

80

100

N
o
rm

a
l
S

tr
e
s
s
 (

M
P

a
)

(b)

Figure 4.20: (a): Normal dynamic stress profile along the main fault for TPV14-2D depicting
the presence of a stress-dipole at the junction point. (b): Increase in peak normal dynamic
stress at the junction point with reduction in element resolution close to the junction point.

as discrete, non-overlapping segments with random orientation with an average length of

300m in a damaged region measuring 15km× 2km. We utilize symmetry across the y-axis to

simplify the mesh generation.

Parallel set-up

Due to the inclusion of smaller-scale fault systems, this model exacerbates the multi-scale issue

inherent to modeling seismic problems. The problem serves as an excellent demonstration of

the potential speed-ups offered by our parallel–adaptive cSDG code described in Chapter

3. We utilize the simpler Xu and Needleman traction separation relationship implemented

for the cSDG method [85] due to certain constraints on the parallel code at the time. The

problem is run on 2 compute nodes on the HAL cluster, each utilizing 40 CPU cores. The

final run-time for the simulation was approximately 6 hours, whereas a typical serial run with

similar parameters would take upwards of 2 weeks.

106

(a)

(b)

Figure 4.21: Off-fault damage model adapted from experiments by [82]. (a) Network of
fracture-damaged side faults in Homalite with a half-width w = 0.5cm; (b) Initial front mesh
generated to model off-fault damage with a random distribution of small-scale side faults.

Visualization

Figure 4.22 presents a time sequence of visualizations of the dynamic part of the cSDG

solution field. As before, the velocity magnitude is mapped to the height field and the strain

energy density is mapped to the color field. After the initial nucleation of the rupture (Figure

4.22a), the resulting stress waves interact with the side-faults, activating and generating

reflections along them (Figs. 4.22b-d). The multiple interacting wave fronts are all well

resolved due to the adaptive meshing of the cSDG method. As the rupture moves past

the damaged region, side faults with favorable orientations are activated (indicated by the

presence of discolored artifacts) which causes slowing of the rupture along the main fault, as

predicted by the experimental results (Fig. 4.22e-f).

107

(a) t = 0.1s (b) t = 0.5s

(c) t = 1s (d) t = 1.5s

(e) t = 2s (f) t = 2.5s

Figure 4.22: Top-view visualization sequence of elastic response for the randomly oriented
fault network by cSDG method. Strain energy density and velocity magnitude are mapped,
respectively, to color and height fields.

108

4.5 Chapter Summary

We extended the cSDG method to model multi-scale earthquake rupture problems. The

unstructured and non-conforming mesh discretizations enabled by the cSDG method enables

us to capture the fine details of earthquake rupture dynamics. We combined a dynamic contact

model and a slip-weakening friction model with the cSDG model for linear elastodynamics to

build the dynamic rupture model for fault dynamics that is unconditionally stable, conservative

of linear and angular momentum to machine precision over every spacetime cell, and linear

in computational complexity. These features have been leveraged to perform numerical

verification against various benchmark problems in the SCEC database where we find that

the cSDG rupture model yields solutions that are free of oscillations and capable of resolving

features, such as stress dipoles and separation zones at branch-fault intersections, that would

be prohibitively expensive with other non-adaptive methods. Finally, we demonstrated

the potential power of parallel–adaptive cSDG implementations in a problem where we

model off-fault damage explicitly as a network of small-scale faults in lieu of an elastoplastic

smeared-damage models.

109

Chapter 5

Conclusions and Continuing Research

5.1 Conclusions

The causal Spacetime Discontinuous Galerkin method for hyperbolic systems has been

extensively developed, primarily in serial form and in problems cast in two spatial dimension

and time. Its fundamental features, element-wise basis functions and unstructured spacetime

meshes that conform to the target system’s characteristic structure, support asynchronous

advancing-front solution schemes in which adaptive spacetime meshing and implicit finite

element solution operations localize to the same patch-wise granularity. This property

supports highly dynamic h-adaptive cSDG solvers with unconditional stability and linear

computational complexity in the number of spacetime patches. Individual patch durations are

determined by the causality constraint according to the local wave speeds and mesh geometry.

Hence, in contrast to explicit methods in which the limiting stable time-step size decreases

with increasing polynomial order, allowable patch durations are independent of polynomial

order. Moreover, the causality constraint allows cSDG solutions to advance asynchronously

without extrapolating solutions on lagging adjacent elements, as is required in asynchronous

Local Time Stepping schemes. cSDG jump conditions, defined relative to Riemann solutions,

maintain the system’s characteristic structure across inter-element boundaries. Weak cSDG

solutions satisfy conservation/balance laws to within machine precision over every spacetime

element, and there is no need for filtering or artificial dissipation to suppress spurious grid-scale

oscillations.

This unique feature set qualifies the cSDG method as an attractive candidate for new

science and engineering applications and for advancing the state of the art in high-performance

hyperbolic solvers. Accordingly, the original contributions of the research reported in this

document are grouped under two topics: the first scalable framework for implementing

parallel–adaptive cSDG solvers on distributed platforms and a new application of cSDG

110

technology to multi-scale models of seismic rupture dynamics, as described in Chapters 3

and 4 and summarized below.

The design of effective parallel–adaptive hyperbolic solvers suitable for implementation on

large-scale computing platforms with distributed architectures and GPU accelerators is an

area of active research that presents multiple challenging problems. First, a highly dynamic

form of adaptive modeling is required to capture traveling wavefronts as well as, for example,

dynamically propagating cracks and ruptures. Dynamic cSDG h-adaptive meshing easily

meets this requirement, but conventional methods for load and data balancing can not keep

up. In particular, it is difficult or impossible to recompute traditional domain decompositions

fast enough and often enough to keep up with cSDG h-adaptive meshing. Chapter 3 presents

a scalable, distributed parallel–adaptive framework for the cSDG method that is asynchronous

and virtually barrier and lock-free. We freely assign front-mesh data — our only global data

structure — to distributed server processes and freely assign asynchronous patch-solution

tasks to solver processes, both without regard to spatial coherence. In effect, we sacrifice data

locality for the freedom to develop more effective schemes for load and data balancing, such

as the break-through probabilistic balancing schemes that are criical to ParaView’s scaling

performance.

The new framework implements a task-based model of asynchronous parallel execution

wherein an MPI-based server-client subsystem manages the distributed front-mesh data and

feeds fragments of the front-mesh to asynchronous processes that perform spacetime patch

construction, finite element patch solution, adaptive mesh refinement, as well as data and

load balancing as embarrassingly parallel operations in local memory at a common patch-level

granularity. We demonstrated that standard latency-hiding techniques in the server-client

subsystem are sufficient to overcome the increased communication costs due to loss of data

locality. The resulting parallel–adaptive cSDG code achieved excellent scaling efficiency on a

distributed cluster.

Chapter 4 presents an application of the h-adaptive cSDG method to direct numerical

simulation of multi-scale earthquake dynamics. We combine a dynamic contact model and

a slip-weakening friction model with a cSDG implementation of linear elastodynamics to

consruct a rupture dynamics model that is unconditionally stable, conservative of linear and

angular momentum over every spacetime cell, and linear in computational complexity. The

cSDG method’s unstructured and non-conforming adaptive spacetime meshes capture fine

details of earthquake rupture dynamics. Numerical studies using SCEC benchmark problems

verify that the cSDG rupture model generates solutions that are free of spurious oscillations

and capable of resolving extremely small-scale features that would be prohibitively expensive

for non-adaptive methods to resolve. One study led to the discovery of a dipole-like feature

111

that can cause separation at branch-fault/main-fault junctions. Finally, we demonstrated

the potential power of parallel–adaptive cSDG implementations in a problem where we

model off-fault damage explicitly as a network of small-scale faults in lieu of an elastoplastic

smeared-damage models.

5.2 Continuing Research

Although algorithms for non-adaptive causal meshing in three spatial dimensions and time

are available, robust algorithms for adaptive causal meshing in three-dimensions and time

have been elusive. Thus, cSDG models have been limited to one and two spatial dimensions —

a significant restriction in many science and engineering applications. A recent breakthrough

at Illinois [86] has produced the first dimension-independent algorithms for adaptive causal

meshing in arbitrary spatial dimensions. The parallel–adaptive framework described in

this dissertation and causal adaptive meshing in up to three spatial dimensions have been

combined in a new cSDG code called ParaSDG. This represents a significant milestone in

the development of cSDG technology and opens up a broader range of applications. For

example, ParaSDG will allow us to run the full suite of three-dimensional SCEC benchmarks

as well as other popular problems in the seismic community [65], and we are considering new

applications involving tribology and general relativity in astrophysics.

Planned enhancements of the ParaSDG framework include the use of Trefftz basis functions

to eliminate integrals over spacetime element interiors, incorporation of gpus within the parallel

framework, hp-adaptive models, and an improved variational formulation for elastodynamics.

We have ported ParaSDG to the new Delta cluster at the National Center for Supercomputing

Applications. Delta provides a significantly larger system on which to benchmark and tune

ParaSDG’s scalability. A number of optimizations are planned to address known issues and

enhance ParaSDG’s baseline performance and scalability. For example, we have identified

contention for shared-memory locks between MPI system processes and cSDG solver processes

requesting dynamic memory allocations as the major cause of less-than-ideal scaling in our

parallel–adaptive codes. We have mitigated this problem to some extent, but we believe that

it’s possible to eliminate all dynamic memory allocation requests after a solver process is

initialized, and we expect this to bring ParaSDG much closer to ideal scaling.

112

References

[1] Reza Abedi, Robert B Haber, and Boris Petracovici. “A spacetime discontinuous

Galerkin method for elastodynamics with element-level balance of linear momentum”.

In: Comput. Methods Appl. Mech. Eng. 195.25-28 (2006), pp. 3247–3273.

[2] Reza Abedi and Robert B. Haber. “Riemann solutions and spacetime

discontinuous Galerkin method for linear elastodynamic contact”. In:

Comput. Methods Appl. Mech. Eng. 270 (2014), pp. 150–177. issn: 00457825.

[3] Reza Abedi and Robert B Haber. “Spacetime simulation of dy-

namic fracture with crack closure and frictional sliding”. In:

Advanced Modeling and Simulation in Engineering Sciences 5.1 (2018), pp. 1–

22.

[4] Leslie G Valiant. “A bridging model for parallel computation”. In: Comm. of ACM

33.8 (1990), pp. 103–111.

[5] Gregory A Lyzenga, Arthur Raefsky, and Bradford H Hager. “Finite elements and the

method of conjugate gradients on a concurrent processor”. In: (1984).

[6] James G Malone. “Automated mesh decomposition and concurrent fi-

nite element analysis for hypercube multiprocessor computers”. In:

Computer methods in applied mechanics and engineering 70.1 (1988), pp. 27–

58.

[7] William H Reed and Thomas R Hill. “Triangular mesh methods for the neutron

transport equation”. In: (1973).

[8] Bernardo Cockburn, George E Karniadakis, and Chi-Wang Shu. “The development of

discontinuous Galerkin methods”. In: Discontinuous Galerkin Methods. Springer, 2000,

pp. 3–50.

113

[9] Thomas JR Hughes and Gregory M Hulbert. “Space-time finite ele-

ment methods for elastodynamics: formulations and error estimates”. In:

Computer methods in applied mechanics and engineering 66.3 (1988), pp. 339–

363.

[10] Nils-Erik Wiberg, Lingfu Zeng, and Xiangdong Li. “Error estimation and adaptivity in

elastodynamics”. In: Computer Methods in Applied Mechanics and Engineering 101.1-

3 (1992), pp. 369–395.

[11] Xiang Dong Li and N-E Wiberg. “Structural dynamic analy-

sis by a time-discontinuous Galerkin finite element method”. In:

International Journal for Numerical Methods in Engineering 39.12 (1996), pp. 2131–

2152.

[12] Gerard R Richter. “An explicit finite element method for the wave equation”. In:

Applied Numerical Mathematics 16.1-2 (1994), pp. 65–80.

[13] Lin Yin et al. “A space-time discontinuous Galerkin method for elastodynamic analysis”.

In: Discontinuous Galerkin Methods. Springer, 2000, pp. 459–464.

[14] Reza Abedi et al. “Adaptive discontinuous galerkin method

for elastodynamics on unstructured spacetime grids”. In:

Proc. XXI International Congress of Theoretical and Applied Mechanics (ICTAM).

2004.

[15] Reza Abedi et al. “An h-adaptive spacetime-discontinuous Galerkin method for lin-

ear elastodynamics”. In: European Journal of Computational Mechanics 15.6 (2006),

pp. 619–642.

[16] J. Erickson et al. “Building spacetime meshes over arbitrary spatial domains”. In:

Engineering with Computers 20.4 (2005), pp. 342–353.

[17] A. Üngör and A. Sheffer. “Pitching tents in space-time: Mesh generation for discontinu-

ous Galerkin method”. In: International Journal of Foundations of Computer Science

13.2 (2002), pp. 201–221.

[18] Reza Abedi et al. “Spacetime meshing with adaptive refinement and coarsening”. In:

Proc. Annu. Symp. Comput. Geom. ACM. 2004, pp. 300–309.

[19] Reza Abedi, Boris Petracovici, and Robert B Haber. “A space–time discontinuous

Galerkin method for linearized elastodynamics with element-wise momentum bal-

ance”. In: Computer Methods in Applied Mechanics and Engineering 195.25-28 (2006),

pp. 3247–3273.

114

[20] S. T. Miller et al. “Multi-field spacetime discontinuous Galerkin methods for linearized

elastodynamics”. In: Computer Methods in Applied Mechanics and Engineering 199

(2009), pp. 34–47.

[21] Reza Abedi et al. “An adaptive spacetime discontinuous Galerkin

method for cohesive models of elastodynamic fracture”. In:

International journal for numerical methods in engineering 81.10 (2010), pp. 1207–

1241.

[22] Reza Abedi and Philip L Clarke. “A computational approach to model dynamic contact

and fracture mode transitions in rock”. In: Computers and Geotechnics 109 (2019),

pp. 248–271.

[23] Omid Omidi, Reza Abedi, and Saeid Enayatpour. “An adaptive meshing approach to

capture hydraulic fracturing”. In: 49th US Rock Mechanics/Geomechanics Symposium.

OnePetro. 2015.

[24] Philip L Clarke and Reza Abedi. “Modeling the connectivity and in-

tersection of hydraulically loaded cracks with in situ fractures in rock”.

In: International journal for numerical and analytical methods in geomechanics 42.14

(2018), pp. 1592–1623.

[25] Raj Kumar Pal et al. “Adaptive spacetime discontinuous Galerkin method

for hyperbolic advection–diffusion with a non-negativity constraint”. In:

International Journal for Numerical Methods in Engineering 105.13 (2016), pp. 963–

989.

[26] Philip Clarke et al. “Space-angle discontinuous Galerkin

method for plane-parallel radiative transfer equation”. In:

Journal of Quantitative Spectroscopy and Radiative Transfer 233 (2019), pp. 87–

98.

[27] Reza Abedi and Saba Mudaliar. “An asynchronous spacetime discontinu-

ous Galerkin finite element method for time domain electromagnetics”. In:

Journal of Computational Physics 351 (2017), pp. 121–144.

[28] Kenneth Eriksson, Claes Johnson, and Anders Logg. “Explicit time-stepping for stiff

ODEs”. In: SIAM Journal on Scientific Computing 25.4 (2004), pp. 1142–1157.

[29] R. Abedi and R. Haber. “Riemann solutions and spacetime discontinuous Galerkin

method for linear elastodynamic contact”. In: Comput. Methods Appl. Mech. Engrg.

270 (2014), pp. 150–177.

115

[30] Shripad Vidyadhar Thite. “Spacetime meshing for discontinuous Galerkin methods”.

PhD thesis. University of Illinois at Urbana-Champaign, 2005.

[31] R. Abedi et al. “Spacetime meshing with adaptive refinement and coarsening”. In:

Proceedings of the Annual Symposium on Computational Geometry (2004), pp. 300–

309.

[32] S. Thite. “Adaptive spacetime meshing for discontinuous Galerkin methods”. In:

Computational Geometry: Theory and Applications 42.1 (2009), pp. 20–44.

[33] Amit Madhukar. “Asynchronous parallel solver for hyperbolic problems via the Space-

time Discontinuous Galerkin method”. MA thesis. University of Illinois at Urbana-

Champaign, 2016.

[34] James D Teresco, Karen D Devine, and Joseph E Flaherty. “Partitioning and

dynamic load balancing for the numerical solution of partial differential equa-

tions”. In: Numerical solution of partial differential equations on parallel computers.

Springer, 2006, pp. 55–88.

[35] Jianjun Chen et al. “Scalable generation of large-scale unstructured meshes by a novel

domain decomposition approach”. In: Advances in Engineering Software 121 (2018),

pp. 131–146.

[36] J.G. Malone. “Automated mesh decomposition and concurrent fi-

nite element analysis for hypercube multiprocessor computers”. In:

Computer Methods in Applied Mechanics and Engineering 70.1 (1988), pp. 27–

58.

[37] J.-C. Luo and M.B. Friedman. “A parallel computational model for the

finite element method on a memory-sharing multiprocessor computer”. In:

Computer Methods in Applied Mechanics and Engineering 84.2 (1990), pp. 193–209.

[38] D. Goehlich, L. Komzsik, and R.E. Fulton. “Application of a parallel equation solver

to static fem problems”. In: Computers and Structures 31.2 (1989), pp. 121–129.

[39] G. Karypis and V. Kumar. “A fast and high quality multilevel scheme for partitioning

irregular graphs”. In: SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–392.

[40] K.T. Danielson et al. “Parallel computation of meshless methods for explicit dynamic

analysis”. In: International Journal for Numerical Methods in Engineering 47.7 (2000),

pp. 1323–1341.

116

[41] C. Farhat and F. X. Roux. “A method of finite element tear-

ing and interconnecting and its parallel solution algorithm”. In:

International Journal for Numerical Methods in Engineering 32.6 (1991), pp. 1205–

1227.

[42] C. Farhat et al. “FETI-DP: A dual-primal unified FETI method

part I: A faster alternative to the two-level FETI method”. In:

International Journal for Numerical Methods in Engineering 50.7 (2001), pp. 1523–

1544.

[43] B. Cockburn and C.-W. Shu. “The Runge-Kutta Discontinuous Galerkin

Method for Conservation Laws V: Multidimensional Systems”. In:

Journal of Computational Physics 141.2 (1998), pp. 199–224.

[44] F. Bassi and S. Rebay. “High-order accurate discontinuous finite element solution of the

2D Euler equations”. In: Journal of Computational Physics 138.2 (1997), pp. 251–285.

[45] H.L. Atkins and C.-W. Shu. “Quadrature-free implementation of discontinuous Galerkin

method for hyperbolic equations”. In: AIAA Journal 36.5 (1998), pp. 775–782.

[46] Y. Xia et al. “A set of parallel, implicit methods for a reconstructed discontinuous

Galerkin method for compressible flows on 3D hybrid grids”. In: Computers and Fluids

98 (2014), pp. 134–151.

[47] H. Luo et al. “A parallel, reconstructed discontinuous galerkin method for the com-

pressible flows on arbitrary grids”. In: Communications in Computational Physics 9.2

(2011), pp. 363–389.

[48] Karen D Devine et al. “A massively parallel adaptive fi-

nite element method with dynamic load balancing”. In:

Proceedings of the 1993 ACM/IEEE conference on Supercomputing. 1993, pp. 2–

11.

[49] Joseph E Flaherty et al. “Distributed octree data structures and local refine-

ment method for the parallel solution of three-dimensional conservation laws”. In:

Grid Generation and Adaptive Algorithms. Springer, 1999, pp. 113–134.

[50] Yidong Xia et al. “A set of parallel, implicit methods for a reconstructed discontinuous

Galerkin method for compressible flows on 3D hybrid grids”. In: Computers & Fluids

98 (2014), pp. 134–151.

[51] L Prince Raj et al. “A super-parallel mixed explicit discontinuous Galerkin method

for the second-order Boltzmann-based constitutive models of rarefied and microscale

gases”. In: Computers & Fluids 157 (2017), pp. 146–163.

117

[52] Nico Krais et al. “FLEXI: A high order discontinuous Galerkin framework for hyperbolic–

parabolic conservation laws”. In: Computers & Mathematics with Applications 81

(2021), pp. 186–219.

[53] Laxmikant V Kale and Sanjeev Krishnan. “Charm++: Parallel programming with

message-driven objects”. In: Parallel programming using C+ 1 (1996), pp. 175–213.

[54] Kartik Marwah. “Numerical simulation of fragmentation and spalling and parallelization

of a spacetime finite element code”. MA thesis. University of Illinois at Urbana-

Champaign, 2014.

[55] Robert M Metcalfe and David R Boggs. “Ethernet: Distributed packet switching for

local computer networks”. In: Communications of the ACM 19.7 (1976), pp. 395–404.

[56] Petra Berenbrink et al. “Balanced allocations: The heavily loaded case”. In:

SIAM J. Comp. 35.6 (2006), pp. 1350–1385.

[57] Volodymyr Kindratenko et al. “Hal: Computer system for scalable deep learning”. In:

Practice and Experience in Advanced Research Computing. 2020, pp. 41–48.

[58] François Broquedis et al. “hwloc: A generic framework

for managing hardware affinities in HPC applications”. In:

18th Euromicro Conference on Parallel, Distributed and Network-based Processing.

IEEE. 2010, pp. 180–186.

[59] Sameer S Shende and Allen D Malony. “The TAU parallel performance system”. In:

The International Journal of High Performance Computing Applications 20.2 (2006),

pp. 287–311.

[60] Emery D Berger et al. “Hoard: A scalable memory allocator for multithreaded applica-

tions”. In: ACM Sigplan Notices 35.11 (2000), pp. 117–128.

[61] Yossi Azar et al. “Balanced allocations”. In: Proc. ACM symposium theory of computing.

1994, pp. 593–602.

[62] Frederick M Chester and Judith S Chester. “Ultracataclasite structure and friction

processes of the Punchbowl fault, San Andreas system, California”. In: Tectonophysics

295.1-2 (1998), pp. 199–221.

[63] DR Faulkner et al. “A review of recent developments concerning the structure, mechanics

and fluid flow properties of fault zones”. In: Journal of Structural Geology 32.11 (2010),

pp. 1557–1575.

[64] H Igel et al. “Simulation of seismic wave propagation in media with complex geometries”.

In: AGU Fall Meeting Abstracts. Vol. 2011. 2011, S21B–2173.

118

[65] Babak Poursartip, Arash Fathi, and John L Tassoulas. “Large-scale simulation of

seismic wave motion: A review”. In: Soil Dynamics and Earthquake Engineering 129

(2020), p. 105909.

[66] Daniel Peter et al. “Forward and adjoint simulations of seismic wave propagation on

fully unstructured hexahedral meshes”. In: Geophysical Journal International 186.2

(2011), pp. 721–739.

[67] Alexander Heinecke et al. “Petascale high order dynamic rup-

ture earthquake simulations on heterogeneous supercomputers”. In:

Proc. Int. Conference for High Performance Computing. IEEE. 2014, pp. 3–14.

[68] Carsten Uphoff et al. “Extreme scale multi-physics simulations

of the tsunamigenic 2004 sumatra megathrust earthquake”. In:

Proc. Int. Conference for High Performance Computing. 2017, pp. 1–16.

[69] Xiao Ma et al. “A hybrid finite element-spectral boundary integral ap-

proach: Applications to dynamic rupture modeling in unbounded domains”. In:

Int. J. Numer. Anal. Methods Geomech. 43.1 (2019), pp. 317–338. issn: 10969853.

[70] Carsten Burstedde et al. “ALPS: A framework for parallel adaptive PDE solution”. In:

Journal of Physics: Conference Series. Vol. 180. IOP Publishing. 2009, p. 012009.

[71] Martin Kronbichler, Timo Heister, and Wolfgang Bangerth. “High accu-

racy mantle convection simulation through modern numerical methods”. In:

Geophysical Journal International 191.1 (2012), pp. 12–29.

[72] Michael Dumbser, Martin Käser, and Eleuterio F Toro. “An arbitrary high-order

Discontinuous Galerkin method for elastic waves on unstructured meshes-V. Local

time stepping and p-adaptivity”. In: Geophysical Journal International 171.2 (2007),

pp. 695–717.

[73] Alexander Breuer, Alexander Heinecke, and Michael Bader. “Petas-

cale local time stepping for the ADER-DG finite element method”. In:

2016 IEEE international parallel and distributed processing symposium (IPDPS).

IEEE. 2016, pp. 854–863.

[74] M Benjemaa et al. “Dynamic non-planar crack rupture by a finite volume method”. In:

Geophysical Journal International 171.1 (2007), pp. 271–285.

[75] Josep de la Puente, J-P Ampuero, and Martin Käser. “Dynamic rupture mod-

eling on unstructured meshes using a discontinuous Galerkin method”. In:

Journal of Geophysical Research: Solid Earth 114.B10 (2009).

119

[76] Josué Tago et al. “A 3D hp-adaptive discontinuous Galerkin method for modeling earth-

quake dynamics”. In: Journal of Geophysical Research: Solid Earth 117.B9 (2012).

[77] Christian Pelties et al. “Three-dimensional dynamic rupture simulation with a

high-order discontinuous Galerkin method on unstructured tetrahedral meshes”. In:

Journal of Geophysical Research: Solid Earth 117.B2 (2012).

[78] Christian Pelties, A-A Gabriel, and J-P Ampuero. “Verification of an ADER-DG

method for complex dynamic rupture problems”. In: Geoscientific Model Development

7.3 (2014), pp. 847–866.

[79] Yoshiaki Ida. “Cohesive force across the tip of a longitudinal-shear crack and Griffith’s

specific surface energy”. In: Journal of Geophysical Research 77.20 (1972), pp. 3796–

3805.

[80] Ruth A Harris et al. “The SCEC/USGS dynamic earthquake rupture code verification

exercise”. In: Seismological Research Letters 80.1 (2009), pp. 119–126.

[81] Jeremy E Kozdon, Eric M Dunham, and Jan Nordström. “Simulation of dynamic

earthquake ruptures in complex geometries using high-order finite difference methods”.

In: Journal of Scientific Computing 55.1 (2013), pp. 92–124.

[82] Ronald L Biegel, Charles G Sammis, and Ares J Rosakis. “An experimental

study of the effect of off-fault damage on the velocity of a slip pulse”. In:

Journal of Geophysical Research: Solid Earth 113.B4 (2008).

[83] Yihe Huang and Jean-Paul Ampuero. “Pulse-like ruptures induced by low-velocity fault

zones”. In: Journal of Geophysical Research: Solid Earth 116.B12 (2011).

[84] Yaron Finzi and Sebastian Langer. “Predicting rupture arrests, rupture jumps and cas-

cading earthquakes”. In: Journal of Geophysical Research: Solid Earth 117.B12 (2012).

[85] Reza Abedi. “Spacetime damage-based cohesive model for elastodynamic fracture with

dynamic contact”. PhD thesis. University of Illinois at Urbana-Champaign, 2010.

[86] Christian Howard. “Spacetime meshing of stratified spaces for spacetime discontinuous

galerkin methods in arbitrary spatial dimensions”. MA thesis. University of Illinois at

Urbana-Champaign, 2019.

120

Appendix A

Wrangler State Machines

We present the pseudo-code for the wrangle and store FSMs as described in Section 3.3.3.

A.1 Wrangle finite state-machine

Algorithm 18 Wrangle finite state-machine

INPUT: v - Base footprint vertex
STATE: s - Current state of wrangler; holds successful: overall blocked status of footprint;
lock successful: overall lock status of footprint

1: procedure Wrangle State Machine(v)
2: switch s do
3: case start :
4: lock successful ← true

5: holds successful ← true

6: Request center vertex v

7: If all requests complete: s ← getCenterVertex

8: end case

9: case getCenterVertex :
10: Load center vertex v

11: holds successful ← holds successful AND !v.is blocked()

12: for chambers inc c incident to v do
13: Request incident chamber inc c

14: end for
15: If all requests completed: s ← getIncidentChambers

16: end case
▷ continued

121

17: case getIncidentChambers :
18: Load incident chambers inc c

19: for vertices link v of chamber inc c do
20: Request link vertices link v ▷ Link vertices are those other than base

vertex v

21: end for
22: If all requests completed: s ← getLinkVertices

23: end case

24: case getLinkVertices :
25: Load link vertices link v

26: holds successful ← holds successful AND !link v.is blocked()

27: for chambers ext c incident to link v do
28: Request extended chamber ext c ▷ Extended chambers are those that

share an edge
▷ with incident chambers inc c

29: end for
30: If all requests completed: s ← getExtendedChambers

31: end case

32: case getExtendedChambers :
33: Load extended chambers ext c

34: for vertices ext v of chamber ext c do
35: Request extended vertices ext v ▷ Extended vertices ones not considered

before
36: end for
37: If all requests completed: s ← getExtendedVertices

38: end case

39: case getExtendedVertices :
40: Load extended vertices ext v

41: holds successful ← holds successful AND !ext v.is blocked()

42: if holds successful then ▷ All holds successfully acquired
43: for all vertices fp v in footprint do
44: Request to lock fp v

45: end for
46: If all requests completed: s ← loadLockResults

47: else
48: lock successful ← false

49: s ← Complete

50: end if
51: end case

▷ continued

122

52: case loadLockResults :
53: Load lock results
54: for all vertices fp v do
55: lock successful ← lock successful AND fp v.successful locked()

56: if fp v.successful locked() then ▷ successfully acquired vertex lock on
remote server

57: Add vertex to locked vert list

58: end if
59: end for
60: if lock successful then
61: s ← Complete

62: lock successful ← true

63: else ▷ Failed to acquire all locks, release ones that were acquired
64: for locked vertices l v in locked vert list do
65: Request unlock for vertex l v

66: end for
67: If all requests completed: s ← Complete

68: lock successful ← false

69: end if
70: end case
71: end switch
72: end procedure

A.2 Store finite state-machine

Algorithm 19 Store finite state-machine

INPUT: fp - Footprint to be stored
STATE: s - Current state of storer

1: procedure Store State Machine(fp)
2: switch s do
3: case start :
4: s ← Erase

5: end case
▷ continued

123

6: case Erase :
7: for all chambers erase c marked for erase in fp do
8: Request erase of erase c

9: end for
10: for all vertices erase v marked for erase in fp do
11: Request erase of erase v

12: end for
13: s ← Insert

14: end case

15: case Insert :
16: for all chambers ins c marked for insert in fp do
17: Determine server rank sr to perform insert, see Algorithm 13
18: Request insert of ins c on sr and await response for inserted global ID
19: end for
20: for all vertices ins v marked for insert in fp do
21: Determine server rank sr to perform insert, see Algorithm 13
22: Request insert of ins v on sr and await response for inserted global ID
23: end for
24: If all responses received: s ← UpdateIds

25: end case

26: case UpdateIds :
27: Load ID responses
28: for all chambers ins c marked for insert in fp do
29: Update local ID of ins c with received global ID
30: Mark ins c for update
31: end for
32: for all vertices ins v marked for insert in fp do
33: Update local ID of ins v with received global ID
34: Mark ins v for update
35: end for
36: s ← Update

37: end case
38: case Update :
39: for all chambers upd c marked for update in fp do
40: Request update of upd c

41: end for
▷ continued

124

42: for all vertices upd v marked for update in fp do
43: Request update of upd v

44: if upd v a is local minima then
45: Determine wrangler rank w to perform insert of minima, see Algorithm

14
46: Request insert of minima on rank w

47: end if
48: end for
49: s ← Unlock

50: end case

51: case Unlock :
52: for all vertices unl v marked for unlock in fp do
53: Request unlock of unl v

54: end for
55: s ← Complete

56: end case
57: end switch
58: end procedure

125

	Introduction
	The Causal Spacetime Discontinuous Galerkin (cSDG) Method
	Introduction
	Spacetime Meshing
	Causality and the Progress Constraint
	Advancing Front Spacetime Meshing

	Formulation of the Causal Spacetime Discontinuous Galerkin Method for Linear Elastodynamics
	Spatial and Spacetime Analysis Domains
	Governing Equations and Initial/Boundary Conditions

	Patchwise cSDG Discretization
	Formulation of Linear Elastodynamics Using Differential Forms and Exterior Calculus on Manifolds
	Patch-wise cSDG Approximation on a Broken Sobolev Space

	Chapter Summary

	A Distributed Framework for Parallel–Adaptive Implementations of the cSDG Method
	Introduction
	Previous Work

	Distributed Parallel cSDG Architecture
	Terminology and Notation
	Distributed Front Mesh
	Footprint and Extended Footprint
	Local Time-minimum Vertex
	Pitchable Front Vertex

	Overall Architecture
	Distributed Front Servers
	Footprint Wrangler Clients
	Embarrassingly Parallel Patch Solver

	Distributed Algorithms
	Lock and Hold Management
	Abstract Parallel Driver
	Wrangler finite-state machines
	Wrangle Task
	Store Task

	Choosing Local Minima Vertices in Parallel
	Wrangler time-heap management
	Data Partitioning Methods
	Round-robin data partitioning

	Probabilistic data and load balancing
	Data balancing schemes
	Load balancing schemes

	Scalable Termination of Distributed cSDG Simulations

	Experimental Set-up
	Computing Platform
	Test Problem
	Simulation Cost
	Strong versus Weak Scaling Efficiency
	Data Collection Window for an Adaptive Code

	Numerical Results and Optimizations
	Process Distribution and Affinity Mapping
	Determining an optimal process distribution
	Process affinity mapping
	A viable distribution and affinity map for the HAL cluster

	Inter-node Communication Pattern and Impact on Solvers
	Estimated internode communication
	Solver memory stalls
	Buffered MPI Communications

	Solver Process Isolation
	Solver isolation through process spawning

	Avoiding Dynamic Memory Allocations
	Parameter selection for Balancing Algorithms
	Scaling Results for the Parallel–adaptive Architecture

	Chapter Summary

	Spacetime Method for Direct Numerical Simulation of Multiscale Earthquake Dynamics
	Introduction
	Continuum Formulation
	Spatial and Spacetime Analysis Domains
	Jump Conditions Across Fault Trajectories
	Dynamic Fault Response Model
	Local spatial coordinate frame and component representations
	Separation, slip, and slip-weakening friction model
	Riemann solutions for dynamic contact modes on fault trajectories

	The cSDG Rupture Model
	Formulation
	Implementation on Causal Spacetime Meshes
	Adaptive Spacetime Meshing
	A new approach to dynamic adaptive meshing
	Adaptive error indicators for the fault rupture model

	Numerical Verification, High-Resolution Capabilities, and Contact–Separation Model
	SCEC TPV205-2D Benchmark
	Problem description
	Verification of cSDG seismic rupture model
	High-resolution modeling capabilities

	Zero-Gap Variant of SCEC TPV14-2D Benchmark
	Problem description
	Verification and High-resolution modeling capabilities
	Separation near the fault junction
	Discovery of dipole-like feature at the fault junction

	Modeling Off-fault Damage
	Problem description
	Parallel set-up
	Visualization

	Chapter Summary

	Conclusions and Continuing Research
	Conclusions
	Continuing Research

	References
	Wrangler State Machines
	Wrangle finite state-machine
	Store finite state-machine

