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ABSTRACT 

During neurologic exams, clinicians perform manual assessments of various joints and rely 

on haptic experiential knowledge to diagnose underlying neurologic conditions. It is imperative to 

afford clinical learners more exposure to the haptic feeling of common abnormal behaviors. 

Traditionally, training is carried out on practice patients or even classmates, but outcomes are not 

always consistent and reliable. Alternatively, medical education training simulators could render 

accessible, safe, consistent, and scalable training environments.  

Although simulators have been widely adopted for surgical and anatomical procedures, 

there are no commercial task trainers for practicing neurologic examination techniques. Task 

trainers that can simulate multiple behaviors at various severity levels should integrate high-

fidelity force control capability into human-size limb mannequins. Considering the device shares 

many similar technical challenges to powered prosthetics and exoskeletons, we refer to this 

category of device as robotic task trainers. A few research prototypes have been proposed 

previously but none have been adopted publicly, possibly due to cost, maintenance, portability, or 

mechanical complexity issues.  

In this dissertation research, we used a series elastic actuator (SEA) design strategy to 

develop robotic task trainers that achieve a balance across cost, size, and performance. Two 

prototype task trainers were developed. The lower-extremity trainer mimics ankle clonus and deep 

tendon reflex. The upper-extremity trainer replicates upper-arm spasticity, lead-pipe rigidity, and 

cogwheel rigidity. We discussed their design, sensing, modeling, and control aspects. Validation 

tests (benchtop performance and clinical expert assessments) highlight that these devices can be 

viable training solutions for learners in healthcare professions.   
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CHAPTER 1  

INTRODUCTION 

1.1 Common Muscle Behaviors Seen in Neurologic Exams 

Abnormal muscle behaviors are important clinical manifestations of neurologic conditions 

[1–5]. For example, approximately 80% of cerebral palsy and multiple sclerosis patients have 

varying levels of muscle spasticity (an involuntary spend-dependent increase of muscle tone) [6]. 

During neurologic exams, clinicians usually perform manual assessments on patients, such as 

passive stretching of affected muscles and tapping the tendon, to elicit muscle responses [7]. These 

responses can be characterized by distinct muscle tone response patterns, given the difference in 

underlying pathological mechanisms.  

Spasticity, hyperactive deep tendon reflex, and clonus are associated with neurologic 

conditions that affect partial or entire descending motor pathways, such as cerebral palsy, spinal 

cord injury, stroke, multiple sclerosis [2]. These conditions cause upper motor neuron (UMN) 

syndrome, interrupting the inhibition signal of the spinal reflex, so that the resulting muscle 

behaviors are known to have stretch speed-dependent and abnormal increase in motor activity. 

Specifically, when being passively (i.e., muscle is reflexed) stretched, the spastic muscle is marked 

by an abrupt involuntary increase of muscle tone then followed by a drop of muscle tone, where 

the tone will increase with higher stretch velocity [4]. This unique muscle response is referred as 

“catch-release behavior” or “clasp-knife behavior” of spasticity. Hyperactive deep tendon reflex 

is commonly found in patients with spasticity. When their tendons (such as at knee or ankle) were 
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tapped briskly (i.e., rapidly stretching of the tendon and muscle unit) by a medical reflex hammer, 

an exaggerated tendon response will be observed [8]. Eventually, a clonus (mostly commonly seen 

at knee or ankle) is an involuntary rhythmic muscle contraction with a characteristic frequency 

between 5-8 Hz, which can be triggered by rapid lengthening of the extensor or plantarflexor 

muscle of the joint [9].  

On the other hand, tremor and rigidity (lead-pipe or cogwheel types) are found in patients 

with Parkinson’s disease and these parkinsonian muscle behaviors are not stretch speed-dependent 

[10]. The exact mechanism of Parkinson’s disease still remains unclear but relates to the loss of 

dopaminergic neurons in the substantia nigra [11]. Patients with lead-pipe rigidity exhibit a 

uniformly increased muscle tone throughout the range of motion (ROM) during passive stretch 

test [12], whereas those with cogwheel rigidity will experience similar involuntary muscle tone 

but switching on and off at around 6-9 Hz [13].  

1.2 Why Do We Need Medical Task Trainers? 

Clinicians need to rely on haptic experiential knowledge to diagnose the underlying 

neurologic conditions that are associated with the triggered abnormal muscle behavior [7]. 

Although more advanced non-invasive assessment techniques are emerging based on wearable 

position, force, electromyography sensors (such as [14,15]), manual physical assessment is still 

standard in the clinical setting. Therefore, it is imperative to afford new clinicians, healthcare 

learners, students, residents, or fellows more exposure to the haptic feeling of common abnormal 

behaviors during training and to practice their ability to trigger clinical manifestations of neurologic 

conditions and distinguish the severity of the condition [16–19].  
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Traditional clinical training of motor skill assessment is carried out on live subjects [20]. To 

train the students, instructors often bring in a small number of real practice patients who have stable 

chronic conditions or recruit “standardized patients” who are healthy individuals trained to portray 

a patient’s conditions1 [21] (Fig. 1.1, left). According to a survey from the Association of American 

Medical Colleges in 2011, almost 95 % of medical schools are using standardized patients in their 

curriculums [22]. Though this training method has been widely adopted, learners still suffer from 

a) incomplete training experience when no practice patients available to present or mimic rare 

clinical cases [23], b) a lack of practice opportunities due to the limited number of practice patients 

[24], and c) inconsistent training outcomes given the variability of the practice patients[25]. This 

training challenge calls for more accessible and consistent ways to provide training opportunities 

for learners that replace or reduce the need for practice patients and one promising approach is the 

deployment of medical education task trainers  (Fig. 1.1, right). 

 

In this dissertation, the terms “task trainers” and “training simulators” are used 

interchangeably. To understand what medical training simulators are, we refer to the generic 

 
1 The term “standardized patient” are defined differently (sometimes also refers to real patients with stable conditions) 

and used interchangeably with other terms such as “patient actor” or “simulated patient” in the literature [149]. In this 

dissertation, we refer both real patients and standardized patients as practice patients. 

Fig. 1.1: (Left) A conventional training scenario where an instructor demonstrates the assessment 

technique on a practice patient for the class. (Right) A simulator-based training scenario where an 

instructor demonstrates the technique to assess spasticity in the biceps on our previously developed task 

trainer [53,56]. 
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definition of simulation, which is “an imitation of some real thing, state of affairs, or process for 

the practice of skills, problem solving, and judgement” [21]. The idea of learning or training through 

simulators was initiated in the nonmedical fields such as aviation [26], aerospace [27], and driving 

[28] throughout the 20th century. One of the first attempts of deploying a training simulator in the 

medical field was “Harvey”, a cardiology patient simulator in 1968 [29]. Since then, the global 

medical simulation market size has grown to around USD $1.72 billion in 2020 [30], and the use 

of task training simulators has become an increasingly important part of the learning experience for 

medical student, residents, fellows, nursing staff, physical therapists,, and other healthcare 

professionals [20,31,32].  

Training simulators render easily accessible, safe, consistent, and scalable training 

environment for students, allowing learners to gain hands-on experience without the presence of 

human patients [20]. Conventionally, sometimes it is impossible for students to be trained on some 

rare complications simply because there is no suitable human practice patient available [33]. With 

the training simulators, the students will have immediate access to the training opportunities with a 

wide variety of clinical scenarios, rather than waiting for actual patients to present with the 

condition [34]. During the training process, although the current training technique referred as “see 

one, do one, teach one” is generally successful, there is still risk to the patient due to novice 

technique and mistakes. On the other hand, medical simulators allow trainees to practice and master 

the basic skills before engaging with a real patient [35]. Furthermore, the traditional instructor-

centric training style is difficult to scale to a larger cohort due to the instructor’s limited energy and 

availability, and also might deliver biased learning experiences given the instructor’s personal work 

habit and way of teaching. Therefore, wide-spread implementation of simulators could improve 

technique consistency and standardization across different institutions and different methods of 
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teaching, and establish a distributed (as opposed to centralized around the instructor), self-service 

type of training environment for the students, which releases the instructor from busy logistics and 

allows them to focus on teaching and influencing a larger audience of students [36]. Eventually, in 

the current context of the global COVID-19 pandemic since 2020, the awareness of social 

distancing and reduction in clinician-to-patient interaction further imposes difficulty on the 

traditional training methods which involve close, in-personal interaction and crowd gathering. In 

this case, the decentralized training nature of medical simulators becomes especially valuable and 

represents a promising alternative solution for clinician learners to continue practicing and honing 

their technique without close interaction with human patients, rendering a safe education 

environment for both trainees and patients [37]. 

1.3 Medical Task Trainers are Everywhere, but Why so 

Rare for Neurologic Exams? 

When speaking of task trainers or training simulators, for most people, it is easy to mentally 

picture those have been widely adopted in current medical education of surgical and anatomical 

procedures such as IV insertion, endoscopic procedure, and endovascular procedure [20]. These 

devices range from as simple as a passive mannequin arm covered with artificial skin [38], more 

sophisticated full-body articulated mannequin [39], as well as high-fidelity, full-procedure training 

station that incorporates visual, tactile, audio feedback [40] (Fig. 1.2).  
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From an engineering point of view, although significant amount of product development 

efforts were put into creating relatively realistic artificial skin and virtual reality environments 

(although still not perfect) [41], the main technical challenge solved through the development of 

these task trainers centered around kinematics-related problems [42], such as path planning for 

technique instruction [43] and user motion tracking for performance feedback [44]. On the other 

hand, these task trainers usually do not directly deal with the force control2 problem. For some 

training scenarios such as stitching, palpation, or endoscopy technique, the task trainer is required 

 
2 The term “force control” and “torque control” are often interchangeable in this dissertation, regardless of linear or 

rotary actuators. 

Fig. 1.2: Various commercially available medical task trainers for surgical and anatomical tasks. (A) A 

standalone mannequin arm for insertion procedure training [38]. (B) A full-body mannequin for nursing 

scenario training [39]. (C) Emergency care patient simulator for ultrasound imaging, for echocardiography 

training [40]. 

Fig. 1.3: Commercial haptic devices used together with task trainers to kinesthetic haptic feedback. (Left) 

Phantom Omni from 3D System [45]. (Right) Novint Falcon from Novint Technology, Inc [46]. 
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to render kinesthetic haptic feedback to the user to convey sensation information about the texture 

of and/or the interaction with the virtual environment (e.g., deforming, grasping, or sometimes 

damaging the virtual tissues). Typically in these cases, the task trainer would rely on using third-

party reliable haptic devices as such Phantom series (3D Systems) [45] and Novint Falcon (Novint 

Technology, Inc.) [46] (Fig. 1.3). In other words, the force control capability is provided via an 

external haptic device and not integrated in the mannequin. Although these task trainers for 

surgical and anatomical procedure training were proven to be very successful in kinematic-based 

procedure training scenarios and received increasing acceptance around the world [21], the 

existing design knowledge cannot be directly transferred to develop medical training simulators in 

neurology and physical therapy due to the lack of integrated force control capability, so new 

designs need to be proposed.  

To infer the underlying neurologic conditions from muscle tone or to manage patient 

condition, neurologic exams require the clinician to move the patient’s limb through the range of 

motion, which stretches the flexor and extensor muscles at the joint being examined. Based on the 

characteristics and severity of the elicited muscle tone, a diagnosis will be made. In order to 

replicate this assessment scenario, the task trainer design not only needs to have the appearance of 

a human limb with articulated joint(s) for students to perform the passive stretch test, but also 

should incorporate the functionality of creating kinesthetic haptic feedback at the joint(s) of 

interest to render the muscle behaviors (e.g., resistance, rhythmic contractions). Therefore, the task 

trainer shares similar operation and design principles as a haptic device [47]: (a) admit and measure 

the user’s input motion (e.g., moving the limb to stretch the muscle) or stimulus (e.g., tendon tap), 

(b) acts as an impedance source to compute corresponding muscle tone based on the internal 

simulation model, and (c) eventually delivers the simulated muscle tone back to the user. This 
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workflow requires the task trainer to either take a form of two adjacent human-sized mechanical 

limbs (in upper or lower body) that can be moved relative to each other by the user, with integrated 

force/torque control capability via active/passive actuators at the connecting joint, similar to an 

arm or leg prosthesis; or alternatively an exoskeleton-type emulator device that is worn by a 

healthy individual and modulates the joint torque to convert the wearer to a mock patient. 

Therefore, given these design requirements, the mechatronic design, sensing, and human-robot 

interaction control challenges for these task trainers are more aligned with those of prosthetics and 

exoskeletons, unlike traditional passive mannequin-based training simulators.  

1.4 Existing Research Task Trainers for Neurologic Exams 

Considering the additional technical challenge on force control needs to be addressed, the 

development of task trainers for neurology and physical therapy are far less mature compared to 

those discussed in the previous section. Only a few designs have been proposed in the past [48–

56]) (Fig. 1.4). Due to the inclusion of moving mechanisms and actuators, these devices look more 

like robots than traditional passive mannequins, so in this dissertation, we will refer these devices 

as robotic task trainers or robotic training simulators to highlight their robotic nature.  

These previous medical robotic task trainers can be categorized as prosthetics-type and 

exoskeleton-type configurations. The prosthetics-type configuration designs [48,49,52–54,56] 

usually took the form of human-sized artificial robotic limbs (lower extremity [54] or upper 

extremity [52]) with an actuated joint (active [48,49] or passive [53]) that mimic a patient’s joint 

affected by pathological muscle behaviors due to underlying neurologic conditions (Fig. 1.4, A-F). 

The exoskeleton-type configuration designs [51,55] operated similar to wearable exoskeletons. 

But rather than providing assistance to the wearer, these devices imposed resistive torque to the 
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wearer’s joint (knee [51] or ankle [55]) on top of the healthy muscle tone to convert a healthy 

individual and emulate a “mock patient” with certain abnormal muscle behavior (Fig. 1.4, G and 

H). 

A. Simulation of Target Behaviors  

Existing trainers mainly targeted mimicking common abnormal muscle behaviors 

frequently encountered by neurologists and physical therapists such as spasticity [48–56], rigidity 

(cogwheel and lead-pipe) [50–52,57], and clonus [54,55,58]. The simulated muscle behaviors were 

created through the modeling of the neuromuscular diseases, but in general, quantitative 

documentation of the kinematic and kinetic patterns of these abnormal muscle behaviors are lacking 

from the literature. Therefore, previous researchers have been working around this problem mainly 

via three approaches: a) first-hand clinical data collection [48], b) expert tuning [52], or c) a 

Fig. 1.4: Existing medical education task trainers using different actuation technologies for mimicking 

various abnormal muscle behaviors: (A) Motor-controlled bike brake for elbow spasticity [49]. (B) Direct-

drive motor and magnetorheological fluid (MRF) clutch to mimic ankle spasticity and clonus [54]. (C) 

Quasi direct-drive motor for elbow spasticity [48]. (D) Geared motor with MRF brake for elbow 

rigidity/spasticity [52]. (E) Geared motor and nonlinear springs for elbow spasticity/rigidity [50]. (F) 

Passive hydraulic damper and linkage for elbow spasticity [53,56]. Wearable exoskeleton with geared motor 

for (G) ankle clonus and spasticity [55] and (H) knee spasticity, rigidity, contracture, and ankylosis [51].   
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combination of them [54]. For example, Park et al. used a custom wearable measurement device to 

measure the kinematic and kinetic relationship of nine child subjects with cerebral palsy at the 

elbow joint and selected four subjects with characteristic spastic muscle tone profiles to 

mathematically model the elbow spasticity for the development of their arm task trainer [48]. On 

the other hand, Takhashi et al. invited two experienced physical therapists and asked one therapist 

to pretend to be a spasticity or rigidity patient by intentionally coactivating the muscle to create 

resistive muscle tone at the elbow, while the other therapist performed the passive stretch test on 

the first therapist. Motion capture markers and a load cell were utilized to measure the elbow joint 

angle and muscle tone during the assessment and these quantified data were later used to program 

their arm task trainer [52]. Eventually, Kikuchi et al. developed a leg task trainer to replicate ankle 

clonus and they determined the control parameters such as clonus oscillation frequency, muscle 

tone amplitude based on previous quantification studies in the literature as well as the fine-tuning 

by two experienced physical therapists [54]. Although these heuristic detours were reasonable and 

still very practical for simulator development, the lack of quantitative understanding of the 

abnormal muscle behaviors poses fundamental challenge for task trainer designers and prevents 

them from knowing the underlying neuromuscular mechanism behind these behaviors as well as 

developing mathematical models to simulate these behaviors. This grand challenge requires 

continuous collective efforts from engineering, neuroscience, physiology, clinical and medical 

communities in terms of recording, interpreting, and reporting quantitative observations. The 

development of task trainers with higher fidelity has to be built upon more fundamental 

understanding of the neuromuscular pathology.  

B. Actuation and Control Strategy 

Previous robotic task trainer designs adopted various actuation strategies, such as direct 
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drive [54], quasi-direct drive [48], magnetorheological fluid (MRF) brake/clutch [52,54], or 

electromechanical brake [49]; yet, there has been no consensus on the optimal actuation solution. 

In general, robotic designs based on direct and quasi-direct drive electric motors benefit from their 

transparent force control capability, so the force control algorithm can be greatly simplified thanks 

to the minimal unmodeled dynamics (e.g., stiction, viscous friction, hysteresis), low backlash, and 

high drivetrain stiffness [59]. Furthermore, if additional mechanical design considerations are given 

to reduce friction loss in the transmission and lower the inertia of the motor output link, the 

measured current (i) in the motor winding together with the motor torque constant (KT) could be 

used as a simple, reliable, and robust way to estimate motor output torque at the end effector, i.e., 

τoutput = KT i. This approximated end effector torque information based on current measurement in 

the motor winding enables open-loop torque control3 to achieve good torque accuracy without the 

use of an external force/torque (F/T) sensor [60], which is both very costly and fragile under 

collision. Finally, low reflected inertia4 that comes with low gear ratio significantly reduce the peak 

shock force at impact, reducing not only the risk of hurting the user, but also the risk of damaging 

the robot drivetrain upon unanticipated collisions. Given these advantages, direct and quasi-direct 

drive motors are widely used in dynamic mobile robots [60,61], haptic device [62], teleoperation 

[63], etc.  However, in order to implement this actuation strategy to the task trainer application, a 

few concerns need to be mentioned. Unlike the delicate haptic device operates at the fingertip level, 

to mimic severe spastic or rigid muscle, these task trainer’s continuous torque requirement could 

be more than 20 Nm. With no or low gear reduction, when outputting large torque frequently or 

 
3 Torque control is in the outer loop and current control in the inner loop. There is no external F/T sensor, 

so it is open-loop torque control. With the current sensor in the motor driver, it is closed-loop current control 

in the motor winding. 
4 Reflected inertia is also called apparent inertia and refers to the motor rotor inertia amplified by the square 

of the gear ratio (N), i.e., Ireflected=IrotorN
2. The reflected inertia can be perceived by manually turning the 

motor shaft to backdrive the motor. 
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over an extended period, the high operation current and heat dissipation issues of direct or quasi-

direct drive motors might compromise user safety during human-robot interaction. In addition, a 

low gear ratio will force the designers to use large motors, which might result in bulky and 

nonergonomic joint designs having an adverse effect on the appearance realism. Furthermore, the 

output link of the task trainer (e.g., the forearm and the foot) needs to match the anthropometric 

dimensions and contours, so it cannot be as primitive as a lightweight carbon fiber tube and will 

inevitably have non-negligible mass and inertia. Therefore, due to the gravitational and inertia 

effects of the output link, there would be torque discrepancy at the actuator output and at the end 

effector, which likely degrades the effectiveness of open-loop current control. Possibly for this 

reason, several previous task trainers that utilized direct drive [54] or quasi-direct drive [48] motors 

still deployed a F/T sensor in their end effectors to use feedback control to mask the link dynamics, 

resulting in much more expensive and less robust designs. 

Active brakes (e.g., electromechanical brakes or MRF brakes) represent another previously 

attempted actuation approach. The design concept of using brakes to render muscle resistance is 

natural and intuitive. An electromechanical brake design usually used an electric motor to generate 

a clamping force to produce a friction force on the surface of braking pads [64]. One example of 

this design concept is Grow et al.’s work where they used an electric motor to control the clamping 

timing and force of an off-the-shelf bike disc brake to mimic the muscle response of a spastic patient 

[49]. A magnetorheological fluid (MRF) brake is another promising option to generate a responsive 

and smooth haptic feeling. MRF is a smart material consisting of fine, magnetizable particles 

(typically ferrous particles) whose rheological properties (e.g., viscosity) can be modulated through 

the application of a magnetic field [65]. A MRF brake generates resistive braking torque through 

the viscous shear force between the MRF and the brake rotor. Fluid viscosity can be modulated 
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rapidly (time constant ~ 20 ms [54]) by actively changing the operation current (i.e., altering the 

magnetic field strength) [66]. However, there are a few obstacles preventing the MRF technology 

from being widely adopted. First of all, although several custom MRF brake research prototypes 

exist and it is a fast evolving research direction in the academia [67], the off-the-shelf choice of 

MRF products is quite limited. Most are mainly used in the automotive field such as active 

suspension and steering haptic feedback [68], so their sizes are often too bulky to be integrated in 

medical or robotic applications. Second, although these controllable brakes could modulate the 

resistance, they have to be used in parallel with powered actuators to mimic active symptoms (e.g., 

clonus, tremor). It is also a control challenge to precisely control the braking force (for both 

electromechanical and MRF brakes) to render the desired haptic feedback to the user due to the 

nonlinear and hysteresis effects in the brake system [69]. Therefore, previous task trainers operated 

either on closed-loop torque feedback control via a F/T sensor in the end effector (very costly) [70] 

or simply open-loop torque control by commanding the current in motor and MRF brake (inferior 

torque control fidelity) [24]. Regardless of all these limitations, as miniature MRF brakes become 

commercially available in the future, this technology potentially represents a very promising 

approach to render high resistance in a more smooth, robust, and safe fashion compared to using 

a highly-geared electric motor.  

C. Potential Approaches and Solutions 

To the author’s knowledge, currently none of these previous research prototype simulators 

discussed in this section were commercialized nor adopted by medical training institutions beyond 

those authors’ home institutions, possibly due to device complexity, maintenance, cost, or 

simulation fidelity. To address these practical limitations, in 2014-2018, our research group 

developed a passive (i.e., without active actuator and power supply) training simulator prototype to 
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mimic elbow biceps spasticity with purely mechanical mechanisms (Fig. 1.5) [53,56]. The spastic 

muscle tone was simulated using a custom hydraulic damper with selectable viscous effect. For 

different severity levels of spasticity, five pairs of orifices were fabricated on the piston head and 

only one pair was exposed, while the rest were blocked by a cover plate. By varying the orifice 

size in operation, different viscous effects could be selected based on the severity of the simulated 

patient. A Scotch-Yoke linkage system was used to convert the damper’s linear resistance to a 

rotary resistance at the elbow joint. The linkage system also determined at which joint angle the 

damper would start to engage, mimicking the spastic catch angle (i.e., muscle resistance only kicks 

in after a certain angular position) and replicated the catch-release behavior via a varying moment 

arm.  Due to the lack of quantitative data in the literature, the simulation aspects were designed 

iteratively driven by clinician feedback. Ideally, the development of a training simulator requires 

(a) establishing a database that documents the kinematic and kinetic data associated with patients 

at varied severity, and (b) building a mathematical model that relates the kinematic inputs with the 

spastic muscle kinetic response at varied severities. The current absence of both pose difficulty on 

systematically being able to design and tune a simulator towards realistic muscle behaviors. 

Therefore, Song et al. developed a wearable measurement device to mount on two adjacent limbs 

(one moving and the other stationary during the stretch test) (see Fig. 5.1 in Chapter 5) [71]. Both 

moving and stationary modules contained an inertial measurement unit to compute the joint 

kinematics, and the moving module also had a force sensor to measure the applied load by the 

assessor. Through our past [72] and ongoing efforts [73] (further discussed in Chapter 5) in clinical 

quantification studies, we are trying to obtain additional quantitative measures of spasticity and 

rigidity from more patients for future development and tuning of the simulator. 
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 This passive design approach has advantages and disadvantages. First, this simulator 

requires no external power to operate, so it can be easily transported and deployed in various 

locations in a training room. Second, the simulator is affordable and compact, consisting of only 

mechanical components (e.g., linkage, hydraulic device, etc.) without any expensive electrical 

parts (e.g., sensor, electric motor, hardware controller). This simulator requires no complex control 

scheme (simply open-loop mechanical response) and is inherently safe due to the passive nature 

of its actuator (i.e., hydraulic shock absorber), so there is no instability issue during human-robot 

interaction. On the other hand, with lack of real-time sensing and feedback control, our simulator 

is unable to generate complex muscle resistance profiles, unlike other active-controlled simulators 

(e.g., [24,48,50]). The simulator can only provide five distinct simulations to replicate specific 

severity levels (MAS 0-4), but it is not reprogrammable. In order to adjust simulation performance, 

new mechanical components would need to be designed, manufactured, tested, and assembled. 

Additionally, the specific simulator was designed solely to simulate biceps spasticity. To simulate 

Fig. 1.5: Passive hydraulic training simulator with three mechanical design features highlighted 

[53,56]. 
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a different neurologic condition such as rigidity, a new hardware system based on a completely 

different physical principle would need to be designed and little can be inherited from this 

prototype. In contrast, electromechanical designs could be easily reprogrammed to simulation 

different severity levels on the fly and other types of abnormal muscle behaviors without hardware 

changes (e.g., rigidity and clonus).  

Reviewing the pros and cons of previous active and passive design approaches, it is 

desirable to remove the F/T sensor from the active design to lower the device cost but to still 

maintain the high-fidelity force control capability to track complex muscle tone profiles. At the 

same time, we aimed to keep the intrinsic safety and compactness of the passive design. Therefore, 

the concept of a series elastic actuator was explored to develop a high-performance, cost-effective, 

and safe training simulator that is educationally useful and economically viable to be integrated into 

the curriculum of the training institutions.  

1.5 Review of Series Elastic Actuator 

The series elastic actuator (SEA) has been widely used in the robotics community, e.g., 

mobile robots [74,75], humanoids [76], quadruped robots [77], prosthetics [78], walking bipedal 

robots [79], industrial robots [80] (Fig. 1.6), but its use has been absent in the field of robotic 

medical task trainers. The concept of a SEA was first introduced in the 1990s-2000s via including 

series elasticity in the drivetrain to enhance force control capability of actuators with high torque 

density but also high impedance5 (e.g., hydraulic cylinders, highly-geared electric motors) [81,82]. 

“Stiffer is better” is the design philosophy for position control tasks [83], where the external force 

 
5 The impedance of an actuator is the additional force created at the output due to load motion and typically increases 

with the frequency of load motion [82], e.g., the seal friction in hydraulic actuators, or stiction and viscous friction in 

the gearbox of geared electric motors. 
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should result in minimal structural deformation and end-effector position deviation, therefore the 

use of high-impedance actuators is favored. In contrast, force control tasks emphasize force 

transparency, i.e., the actuator can actively deliver the accurate force/torque via the drivetrain to 

the environment, and at the same time, the actuator and drivetrain can be effortlessly backdriven 

by the interaction with environment. In other words, the actuator and drivetrain are transparent to 

the flow of force and will not hinder how force flows in both directions [84]. Therefore, low-

impedance actuators (e.g., direct- or quasi-direct drive motors, biological muscles) are ideal for 

force-controlled applications, where the force/torque output can be accurately regulated with 

simple feedforward control and the load motion disturbance would cause minimal resistive force 

in the actuation system. However, the lack of compact, low-impedance but high torque density 

actuators still remains as one of the major bottlenecks to robotics research. Until these ideal force-

source actuators (like biological muscles) become available, currently there are three main 

workarounds on actuation strategy to build highly dynamic, force-controlled robots to work in 

unstructured environments: a) hydraulic cylinders with servo valves (e.g., in Boston Dynamics 

Altas [85]), b) pancake torque motors with low gear ratio (e.g., in MIT Cheetah robots [59,86]), 

and c) series elastic actuators (e.g., ETH ANYmal [77]). 
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 SEA design features several hardware and control benefits. By intentionally placing a 

compliant element (usually a linear or torsional mechanical spring) in series with a high-impedance 

actuator, the stiffness of the drivetrain is significantly reduced (Fig. 1.7). Given the intuitive 

criteria proposed by Whitney for determining force control stability [87], 

0 < 𝑇𝐺𝐾 < 1       (1.1) 

where T is the sampling interval, G is the feedback controller gain, and K is the system interaction 

stiffness (including both the actuator and the environment). If the sampling interval remains 

constant, two straightforward, qualitative takeaways interpreted from (1.1) are that a) force control 

Fig. 1.6: Various well-known robots designed based on SEA strategy. (A) CMU snake robot [74]. (B) 

NASA Valkyrie humanoid robot [76]. (C) ETH Zurich ANYmal quadruped robot [77]. (D) MIT ankle 

prosthesis [78]. (E) Agility Robotics Cassie robot [79]. (E) Rethink Robotics Baxter robot [80]. 
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stability can be more easily satisfied if the actuator is interacting with a less stiff environment or 

the actuator itself is more compliant [88], and b) if K is decreased by reducing the actuator stiffness 

(i.e., SEA design), then the controller gain (G) can be further increased and still satisfy (1.1) 

[89,90]. Higher feedback controller gain will lead to more responsive tracking performance, less 

steady-state error, and better disturbance rejection. Therefore, a SEA achieves better force control 

fidelity and stability by essentially trading off physical system stiffness for higher feedback control 

gain in software. High feedback gain effectively addresses the unmodeled parasitic phenomenon 

(e.g., stiction, viscous friction) in the high-impedance actuators, which are typically very difficult 

to be removed using feedforward control. Furthermore, the deflection of the series elastic member 

(e.g., spring deflection) could be used to estimate the output force via Hooke’s Law so that there 

is no need for an expensive rigid load cell. For this reason, a SEA converts a force control problem 

into a position control problem by regulating the end position of the series spring. Thus, in order 

to achieve a desired force output, instead of precisely commanding the motor torque and delicately 

pre-compensating the gear train loss, we can simply focus on regulating the motor shaft position 

and output link position using encoder-based feedback [91]. Compared to force feedback control, 

position feedback control is much easier, more robust, and can be achieved with the use of low-

cost motors and drivetrain components. Finally, the series spring decouples the output link from 

the actuator, so that the reflected inertia of the actuator is physically isolated and only the link 

inertia is perceived by the user. As a result, the impedance of a SEA can be very small at low 

frequencies given the low reflected inertia and good backdrivability (achieved via high-gain 

feedback control). At collisions (i.e., high-frequency impact), the series spring will serve as a 

mechanical buffer between the actuator and the environment, so the high-frequency impedance of 

a SEA approaches the physical spring stiffness [81]. Therefore, the SEA strategy is a promising 
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option to develop low-impedance, high torque density, cost-effective, and compact actuators, 

which are ideally for force control tasks. 

 

Although the lowered drivetrain stiffness in a SEA brings above advantages, it also comes 

with drawbacks. First, the intentional introduction of a series elastic element will add additional 

compliance between the actuator (with transmission) and the output link (Fig. 1.7). For position 

feedback control, the controller has to reduce the feedback gain to avoid exciting the extra 

dynamics caused by the drivetrain compliance between the actuator and the output link position 

sensor, essentially compromising its tracking performance to ensure stability. This is known as 

non-collocated actuator and sensor configuration and will have a detrimental effect on feedback 

control performance, i.e., the increase of controller gain will easily cause the system to be unstable, 

meanwhile low gain results in sluggish system response [92]. Therefore, a design trade-off in SEA 

mechanisms involves sacrificing position control bandwidth and stability for better force control 

stability. Second, the lower drivetrain stiffness leads to a lower natural frequency of the mechanical 

system, which can be used to approximate the system open-loop bandwidth6 and ultimately limits 

the close-loop control bandwidth [59,93]. Thus, the lower control bandwidth is usually considered 

 
6 Bandwidth is defined to be the maximum frequency at which the output of a system will track an input sinusoid in 

a satisfactory manner. The bandwidth is the frequency at which the output is attenuated to a factor of 0.707 times the 

command [150]. 

Fig. 1.7: Conceptual schematic of a SEA based on an electric motor, adapted from [61]. 
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a downside of using a SEA. However, given the relatively low output bandwidth requirement of a 

manual technique task trainers in neurologic exams (i.e., < 8 Hz), this inherent drawback of SEAs 

would not be a limitation. Also in our application, since the output link is always held and moved 

by the user, the robotic task trainer only needs to render haptic feedback via force control, so the 

SEA’s inferior position control performance can also be avoided. By deploying a SEA system in 

our task trainers, a relatively high gear ratio allows a compact motor with reasonable operation 

current to be used, while ensuring sufficiently high torque density. A series spring serves as a 

compliant and cost-effective torque sensor that can accurately measure interaction joint torque 

between the user and robot. Thus, a SEA strategy is particularly suitable and practical for 

developing high-fidelity torque control and cost-effective robotic task trainers. 

1.6 Dissertation Outline 

In the first study (Chapter 2) 7, we present the design, modeling, control, and evaluation of 

an ankle-foot task trainer to replicate the behavior of ankle clonus. The foot-ankle assembly had 

two degrees of freedom and a realistic foot shroud. Haptic feedback force was generated from a 

series elastic actuator design with a cascaded PI feedback control architecture. Series spring 

stiffness was determined based on the dynamic modeling and control bandwidth requirement. 

Evaluation tests involved benchtop experiments and a validation study with experienced clinicians. 

 
7The majority of this chapter was published in [58]: Pei, Y., Han, T., Zallek, C.M., Liu, T., Yang, L. and 

Hsiao-Wecksler, E.T., 2021. Design and clinical validation of a robotic ankle-foot simulator with series 

elastic actuator for ankle clonus assessment training. IEEE Robotics and Automation Letters, 6(2), 

pp.3793-3800. https://doi.org/10.1109/LRA.2021.3065242. New contributions are some further clinical 

study details in Section 2.3B. 

https://doi.org/10.1109/LRA.2021.3065242
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In the second study (Chapter 3)8, we continued to utilize the SEA-based ankle-foot trainer’s 

torque control capability and expand its functionality to also simulate the deep tendon reflex 

response of the Achilles tendon when an external tap is given by the trainee, via incorporating a 

new artificial tendon structure and proposing a reflex response model. A series of simulation, 

benchtop, and clinical evaluations were conducted to validate our design. 

In the third study (Chapter 4), we used an existing SEA-based arm task trainer that had 

been constructed by our group [57]. This trainer was programmed to mimic three different 

common abnormal muscle behaviors, i.e., spasticity, lead-pipe rigidity, and cogwheel rigidity. 

Mathematical modeling of these behaviors was proposed and used to compute reference joint 

torque based on trainee’s input kinematics. A control scheme consisting of feedback, feedforward, 

and disturbance observer controller was designed and implemented to deliver the accurate torque 

feedback to the trainee. The arm trainer then was validated through benchtop and clinical 

evaluations. 

In a side data collection study (Chapter 5), we aimed to conduct a cross-sectional study 

targeting up to 110 test participants to build a quantitative database on measured elbow kinematic 

and kinetic behaviors, as well as muscle activation, in patients with spasticity, lead-pipe rigidity, 

and cogwheel rigidity across severities and healthy controls during passive stretch tests. However, 

data collection has been delayed due to the COVID-19 pandemic, and so far, we have collected 

data from ten spasticity patients. This currently available dataset will be used to verify sensor setup 

and experimental protocol, as well as to identify appropriate data analysis methods in order to 

 
8 Part of this chapter was published in [151]: Pei, Y., Zallek, C.M., and Hsiao-Wecksler, E.T., 2022. Control 

Design and Preliminary Evaluation of a Medical Education Simulator for Ankle Tendon Reflex Assessment 

Training, Proceedings of the 2022 Design of Medical Devices Conference. Minneapolis, MN, USA. April 

11–14, 2022. V001T06A007 (5 pages). ASME. https://doi.org/10.1115/DMD2022-1072. New 

contributions are the mechanical design details, as well as benchtop and clinical validation testing results. 

https://doi.org/10.1115/DMD2022-1072
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facilitate future test sessions and data processing. The preliminary data analysis provided a 

guideline for programming the spasticity behavior in our arm trainer discussed in Chapter 4. 

Chapter 6 summarizes the works presented in this dissertation, discusses lessons learned, 

and makes suggestions for future research directions. 
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CHAPTER 2 

DESIGN AND VALIDATION OF A ROBOTIC 

ANKLE-FOOT TASK TRAINER FOR ANKLE 

CLONUS ASSESSMENT 

Abstract 

To fulfill the need for reliable and consistent medical training of the neurologic 

examination technique to assess ankle clonus, a series elastic actuator (SEA) based haptic training 

simulator was proposed and developed. The simulator’s mechanism (a hybrid of belt and linkage 

drive) and controller (impedance control) were designed to render a realistic and safe training 

environment. Benchtop tests demonstrated that the prototype simulator was able to accurately 

estimate the interaction torque from the trainee (RMSE of 0.2 Nm) and closely track a chirp torque 

command up to 10 Hz (RMSE of < 0.22 Nm). The high-level impedance controller could switch 

between different clinically encountered states (i.e., no clonus, unsustained clonus, and sustained 

clonus) based on trainee’s assessment technique. The simulator was evaluated by a group of 17 

experienced physicians and physical therapists. Subjects were instructed to induce sustained 

clonus using their normal technique. The simulator was assessed in two common clinical positions 

(seated and supine). Subjects scored simulation realism on a variety of control features. To 

expedite controller design iteration, feedback from Day 1 was used to modify simulation 

parameters prior to testing on Day 2 with a new subject group. On average, all subjects could 

successfully trigger a sustained clonus response within 4-5 attempts in the first position and 2-3 in 
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the second. Feedback on the fidelity of simulation realism improved between Day 1 and Day 2. 

Results suggest that this SEA-based simulator could be a viable training tool for healthcare trainees 

learning to assess ankle clonus. 

2.1 Introduction 

A. Ankle Clonus 

Clonus is defined as involuntary and rhythmic muscle contractions caused by lesions in the 

upper motor neuron pathways [94–98]. Although clonus has been reported in  muscle groups at 

other joints, it is most commonly tested and observed at the ankle joint [99]. Ankle clonus can be 

elicited during a neurologic examination by rapidly dorsiflexing (DF) the ankle and maintaining a 

stretched state of the ankle plantarflexor muscles, as a result of sudden peripheral inputs activating 

the hyperactive stretch reflex [94,100–103]. Ankle clonus response is a rhythmic oscillation (or 

“beating”) of the foot against an external load with a characteristic frequency between 5-8 Hz 

[94,104].  

A patient is diagnosed with ankle clonus if the clinician is able to induce a “sustained 

clonus” response, i.e., five or more consecutive beats. Successful triggering of ankle clonus requires 

mastery of the following technique [7]: (a) correct positioning of the examining hand on the foot 

(i.e., evenly supporting on the plantar metatarsal area or grasping both lateral and medial aspects of 

the forefoot); (b) minimize ankle inversion (i.e., the foot should be in neutral or eversion); (c) 

provide a rapid dorsiflexion to trigger a stretch reflex (> 200 °/s); and (d) maintain constant applied 

torque on the dorsal surface of the forefoot (> 3 Nm). Current medical textbooks often only 

presented qualitative descriptions of this technique with the absence of numerical values, so the 

numbers in the parentheses were extracted by the authors from the few available clonus 

quantification studies or previous attempts on simulating ankle clonus [54,55,100,105,106]. These 
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numerical values were iterated based on clinical advice (Table 2.1). 

B. State of the Art in Training Simulators for Ankle Clonus 

As far as the authors were aware, only two devices exist that attempted to recreate ankle 

clonus for clinicians to train [54,55], and no commercially available product exists yet. Kikuchi et 

al.  developed an electromechanical leg-shaped device that used a DC direct-drive motor to 

generate oscillatory ankle motion to mimic clonus behavior [54]. The motor output torque was 

transmitted to the user through a magnetorheological fluid (MRF) clutch. The device would switch 

to the clonus state based on the user’s input stretch speed and sustained interaction torque. 

However, there were a few drawbacks for this design. It lacked a physiologically-accurate foot 

shape and the inversion/eversion degree of freedom (DOF) at ankle joint. The device was also 

mechanically complex due to the use of the MRF clutch. The clutch also introduced unwanted 

viscous friction torque and as a result the control algorithm had to compute real-time compensation 

and the device could not command a torque smaller than the viscous torque. Another novel 

exoskeleton device that created clonus-like behavior on healthy individuals was prototyped by 

Okumura et al. via a geared DC motor and cable-driven mechanism [55]. The device worn by 

healthy subjects converted them to mock patients by imposing external actuation force on the 

wearer’s ankle joint to simulate the clonus beats for learners to feel and train. However, several 

limitations were evident in this design. The force output was relatively small, i.e., 10-20 N. 

Furthermore, the force control performance was not reported, so it was unclear if the device 

operated in open-loop current control or used a force sensor for closed-loop feedback. The clinical 

realism of these two devices were either not established [55], or only examined by two clinicians 

with minimal result reporting [54]. 
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C. Project Overview 

In this chapter, we present the design and evaluation of a novel ankle clonus training 

simulator. Haptic feedback force was generated from a series elastic actuator design. The foot-

ankle assembly had two degrees of freedom (dorsiflexion-plantarflexion and inversion-eversion) 

and a realistic foot shroud. Evaluation tests involved benchtop performance experiments and a 

clinician validation study with experienced physicians and physical therapists. 

 

2.2 Methods 

A. Design Specifications 

 Our goal was to design a torque-controlled haptic device that rendered a realistic feeling of 

the muscle response of a patient with ankle clonus to trainees. Considering that an analytical 

Table 2.1: A summary of pre-programmed clonus parameters. Original column represents numerical 

design values initially extracted from the literature. Modified column lists the revised design values based 

on 9 experienced clinicians on Day 1 of clinical study [58].  

                  

                   

 orsiflexion speed threshold        s   15   s

Hand position panel engagement
Must touch plantar metatarsal 

head, or both medial and lateral 

Inversion eversion angle range     NA

                 

Sustaining torque threshold     Nm     Nm

                                  

 requency of ankle oscillation 5 Hz 6 Hz

Mean position of ankle oscillation 1  P   

Peak peak oscillation amplitude 8   (decaying)

 uration 6 s 1  s
 In our convention, dorsiflexion and inversion are negative .  ero angular position is

defined at the neutral position (shank perpendicular to foot).



28 

 

torque-angle profile of ankle clonus is lacking from the literature, the simulated ankle clonus 

behavior was defined empirically. Specifically, we quantified the ankle clonus assessment into (i) 

triggering factors, (ii) sustaining factors, and (iii) clonus simulation characteristic parameters 

(Table 2.1). This quantification of clonus was used to program the simulator’s high-level controller, 

which calculated the simulated clonus muscle tone based on the user’s input kinematics. The low-

level torque controller was designed to accurately execute the torque command from the high-level 

controller. In addition, this device should also provide a safe and low-noise training environment 

for medical instruction.  

B. Mechatronic Design and Modeling 

  The simulator has the appearance of a robotic lower leg, and its segment lengths and 3D-

printed shroud contour were designed based on the anthropometric data of a 50th percentile 

Caucasian male [107] (Fig. 2.1). To improve device portability (total weight < 7 kg) and reduce 

rotational inertia of the foot, most structural components were made of FR4 epoxy fiberglass for 

its high strength-to-weight ratio and the structural design was optimized via topology optimization 

for balanced stress distribution. The principal DOF was actuated (i.e., dorsiflexion-plantarflexion 

range of motion (DF/PF ROM): ± 30º). The auxiliary DOF was passive (inversion-eversion (I/E 

ROM): ± 10º), which was simulated by rotating the foot shroud relative to the underlying structural 

frame via a pair of inline spherical bearings in the fore and rear foot. The foot shroud geometry 

and dimensions were obtained from a    scanned prosthetic foot (US men’s size 1 ) and the foot’s 

inertial properties were matched with the real human foot [107]. The knee joint can be adjusted 

and locked easily into a seated or supine position (two common clinical examination poses) with 

a dowel pin. 
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The series elastic actuation strategy was chosen for its safe human-robot interaction, 

accurate force control, robustness, and relatively low cost (Fig. 2.1) [108]. The specifications of 

the simulator were derived from previous devices [54,55]. The actuation torque was exerted via a 

crank-slider mechanism based on a spring cage mounted in the foot frame (Fig. 2.1 and 2.2). The 

slider in the middle of the spring cage rode on four miniature linear rails with ball bearings. To 

ensure resistance during both dorsi- and plantarflexion, the slider was preloaded by a die spring 

(1804N193, McMaster, USA) on each side of the slider, which resulted in a total series spring 

stiffness of ~165 N mm. The simulator’s drivetrain was actuated by a 15 W brushless  C motor 

with an integrated two-stage planetary gearbox (~19:1) (M3508, DJI, China), followed by a single-

stage 3.2:1 timing belt drive (MR5, Misumi, Japan) and a 1:1 linkage drive. The belt drive was 

advantageous in quiet and multi-turn operation but if spanning over long distance, its intrinsic 

compliance will drop to the similar magnitude of the series springs and influence the effective 

system stiffness. Therefore, a custom linkage drive consisting of four thin fiberglass bars was 

Fig. 2.1: The ankle-foot training simulator with major actuation and sensing components highlighted, as 

well as two operation configurations [58].  
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combined with the belt drive to transmit actuation torque to the distal ankle joint, keeping the belt 

span distance minimal. As a result, this drivetrain could generate a peak ankle torque of 17 Nm, 

with an effective stiffness of ~5020 N/mm (an order of magnitude larger than the series spring 

stiffness, thus regarded as rigid).  

   A dynamic model of the simulator’s SEA system was developed to guide choice of series 

spring stiffness to achieve a torque control bandwidth that was sufficiently high to replicate clonus 

behavior (Fig. 2.2). The crank-slider mechanism used in this design had nonlinear kinematics. 

Fig. 2.2: Diagram of key parameters in the kinematic and dynamic model [58]. 

 

   
   

    
   
   

  

 

  

 

  
  

  

 

 

         

   
   
    

   
   
  

   
   
    

   
   
  

        

   

        

   

  

                      

  motor shaft position after gearbox     

  motor output torque after gearbox    

  motor reflected rotor inertia       .1 10  

  motor reflected viscous friction
     

   
7.9 10  

  1 moment of inertia of 1st pulley       .  10  

   moment of inertia of  nd pulley       .8 10  

  moment of inertia of the linkage disk       .  10  

  1 radius of 1st pulley  1.  10  

   radius of  nd pulley   .5 10  

               

 crank length   .9 10  

  vertical offset   .9 10  

  coupler length  6.  10  

 slider position   

  slider mass   8.1 10  

  total series spring stiffness    16 877
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However, given the crank rotation angle would be within only ± 2º during operation, the equation 

of motion was safely linearized around an equilibrium point of crank angle at 0º. In addition, 

considering that the reflected motor inertia dominated the system’s inertia, the model assumed the 

output end (i.e., simulator’s foot) to be fixed on the ground and only the  O  of motor-driven 

slider movement in the spring cage was modeled to investigate system’s natural frequency. Thus, 

with these two simplifications, the system dynamics were reduced to a 1-DOF linear oscillator 

(2.1). For a SEA, the large torque control bandwidth is limited by the open-loop system bandwidth, 

approximated by the system’s fundamental natural frequency. Using Eq. 1, the spring stiffness was 

selected such that the system had a fundamental natural frequency at ~16 Hz, allowing a torque 

control bandwidth up to ~2 times of the maximum clonus motion frequency). This safety factor in 

control bandwidth was designed to account for any unmodeled dynamics (e.g., bearing friction, 

spring intrinsic damping, belt compliance) that might slow down the system.  

   urthermore, an array of onboard sensing capabilities monitored trainee’s performance and 

provided real-time feedback (Fig. 2.1). Specifically, a linear encoder (AS5311, ams AG, Austria) 

mounted on the spring cage to measure spring deflection allowed calculation of the interaction 

force between the trainee and simulator, as part of the SEA strategy (without the need for expensive 

load cells). Two DOFs (DF/PF and I/E) of the simulator were sensed by two absolute rotary 

encoders (AMT22, CUI, USA; and AS5048, ams AG, Austria, respectively). These readings were 

used in the control logic to define whether the clonus would be triggered based on the trainee’s 

input motion (Table I). Eight force-sensitive resistors (FSRs) (Model 400 and Model 402, Interlink 

Electronics, USA) were integrated into the foot shroud around the metatarsal heads (plantar, 

medial and lateral aspects) as simple touch sensors to detect whether the trainee’s hand was 

 .   1�̈�𝑚+ . 79�̇�𝑚+ 1𝜃𝑚= τ  (2.1) 
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properly positioned on the forefoot (Table 2.1) [109]. With proper visualization means (e.g., a 

tablet or screen), data from this sensor array could also provide real-time performance feedback to 

the trainees for technique correction without the presence of an instructor. 

C. Control Strategy 

  The control system design of the simulator followed the classical control scheme for SEA-

based robots (Fig. 2.3) [90]. The low-level controller had a cascaded architecture (from innermost 

to outermost: current, velocity, and torque controls) and all loops updated at 1 kHz. The innermost 

control loop provided proportional-integral (PI) current feedback control and was regulated and 

executed by a motor controller (C620, DJI, China) with a pre-programmed current loop bandwidth 

of ~500Hz. Motor inertia compensation and current command were also implemented as 

feedforward current inputs. The middle PI velocity loop was added to provide a tight feedback 

loop around the motor to address backlash in the integrated gearbox. The velocity loop was tuned 

to achieve a bandwidth of ~50Hz, roughly 5 times faster than the desired outer torque loop (~10Hz) 

to guarantee the separation between servo control loops. Eventually, a proportional-derivative (PD) 

torque controller (essentially a position controller that modulated the spring deflection, given the 

SEA architecture) was implemented in the outermost loop that received torque output commands 

from the high-level controller.  

 The high-level controller was in the form of an impedance controller that produced a 

desired torque command (𝜏𝑑) and switched between clonus (2.2) and non-clonus (2.3) modes by 

evaluating if all clonus triggering criteria were satisfied (Table 2.1). Each mode was programmed 

via a desired reference motion trajectory and a set of impedance parameters (2.2). The estimated 

torque (𝜏) was calculated using the known series spring stiffness, crank position (using small-angle 

approximation), and spring deflection (Δ𝐿) directly measured by the linear encoder (2.4). 
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where 𝜃𝑐𝑙𝑜𝑛𝑢𝑠 and �̇�𝑐𝑙𝑜𝑛𝑢𝑠 are reference clonus oscillation ankle angle and angular velocity, while 

𝜃𝑡𝑟 and �̇�𝑡𝑟 are trainee’s input kinematics derived from the    P  rotary encoder. In clonus mode, 

the controller generated a sinusoidal reference angle trajectory with parameters defined in Table I, 

and the reference velocity was obtained by numerically differentiating the angle trajectory. In the 

non-clonus mode, the reference angle and angular velocity are 0, meaning that the equilibrium 

point was at neutral position and zero velocity. The impedance controller was a natural choice to 

control the ankle motion in the non-clonus mode, i.e., mimicking simplified ankle joint dynamics 

parametrized by linear stiffness (𝐾𝑃_𝑁𝐶) and damping (𝐾𝐷_𝑁𝐶). The use of an impedance controller 

also naturally extended to the clonus mode by defining an intensified interaction (due to 

hyperactive stretch reflex) between rhythmic clonus ankle motion and the trainee’s input effort. 

The 𝐾𝑃_𝐶 (1 Nm/°) and 𝐾𝐷_𝐶  (0.03 Nm/(°/s)) were the set of virtual stiffness and damping for the 

clonus mode; similarly, 𝐾𝑃_𝑁𝐶 (0.15 Nm/°) and 𝐾𝐷_𝑁𝐶 (0.01 Nm/(°/s)) for the non-clonus mode. 

These two sets of impedance parameters were obtained from [105,106] with slight increase in the 

damping ratio to improve stability. 

All sensor readings were accessed and packed by a lower-level microcontroller (Teeny 3.5, 

PJRC, USA) and then transmitted to the upper-level microcontroller (TI C2000, TMS28379D, 

Texas Instrument, USA) at 1.5 kHz. The control system was implemented on the upper-level 

𝜏𝑑 = 𝐾𝑃_𝐶(θ𝑐𝑙𝑜𝑛𝑢𝑠 −  θ𝑡𝑟)+𝐾𝐷_𝐶(�̇�𝑐𝑙𝑜𝑛𝑢𝑠 −  �̇�𝑡𝑟) (2.2) 

𝜏𝑑 = −𝐾𝑃_𝑁𝐶θ𝑡𝑟 − 𝐾𝐷_𝑁𝐶�̇�𝑡𝑟 (2.3) 

𝜏 = 𝑘𝑠𝑅
2 (

𝑅𝑃1
𝑅𝑃2

𝜃𝑚 − 𝜃𝑡𝑟) = 𝑘𝑠𝑅𝛥𝐿 
(2.4) 
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microcontroller and programmed using Simulink Embedded Coder (MATLAB 2019b, 

MathWorks, USA). 

 

D. Benchtop Evaluation 

  A series of benchtop experiments were conducted to evaluate the torque estimation 

capability of our SEA system, as well as the performance of the low- and high-level controllers. 

To examine the accuracy of the torque estimated by the SEA system, the motion of the simulator 

foot was constrained and a torque sensor (TQM301-45N, Omega Engineering Inc., USA) was 

attached to the ankle joint so that the output torque generated by the motor was measured by the 

torque sensor. Randomized loadings were exerted on the system by manually rotating the motor 

rotor, up to ±10 Nm. The estimated ankle torque derived from the deflection of the series springs 

(2.4) was then compared to the torque sensor reading. The root mean square error (RMSE) between 

the two signals was calculated to examine the effectiveness of torque estimation via the deflection 

of the series springs.  

Next, a low-level torque control test was performed to validate the torque control accuracy 

Fig.  . : Simulator’s control system diagram with inputs from involved parties (trainee, simulator, and 

instructor). Subscript d means desired signal [58]. 
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and bandwidth. With the controller described in Section 2.2C, the simulator was commanded to 

track a chirp torque command whose frequency swept from 0-10 Hz and amplitude varying 

between 2-6 Nm. The RMSE between the torque command and the spring-deflection estimated 

torque was calculated.  

 The next test was to evaluate the performance of the high-level controller. Three different 

scenarios were tested: a) no clonus (where the input was slow dorsiflexion), b) unsustained clonus 

(fast dorsiflexion but not maintaining torque), and c) sustained clonus (fast dorsiflexion and 

maintaining torque). The ankle angle reference trajectory was defined by the parameters in Table 

2.1 (column labeled Original). Clinically, a response behavior will be considered to be “sustained 

clonus” when at least 5 consecutive beats are observed. The researcher (YP) manually performed 

the clonus assessment technique on the simulator, following guidance from an expert clinician 

Fig. 2.4: Four subjects interacting with the simulator in two testing configurations that represented a patient 

in a seated or supine position [58].  
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(CMZ).  All signals were sampled at 1 kHz and filtered using a 4th-order Butterworth filter with a 

cut-off frequency of 50 Hz.  

E. Clinician Validation   

To establish simulation realism, we coordinated an expert clinician validation study in the 

Rehabilitation Center at the Zhejiang Hospital in Hangzhou, China and invited physicians and 

physical therapists (PT) to examine how well the prototype simulator could simulate typical ankle 

clonus behavior. The inclusion criteria were that subjects should have at least of 2 years of clonus 

assessment experience and perform at least 10 assessments per month. All recruited subjects had 

no prior experience with interacting with a robotic training simulator. The study was approved by 

the IRB at the University of Illinois at Urbana-Champaign and Medical Ethics Committee of 

Zhejiang Hospital. 

The study was conducted over two consecutive days. Data analyses were based on input 

from 9 subjects on Day 1 and 8 on Day 2. The test protocol was the same for both days. Each 

subject was asked to induce sustained clonus at least three times in each of the two configurations 

(seated and supine), using the usual assessment technique (Fig. 2.4). For 16 out of 17 subjects, the 

first tested configuration was seated position. The controller parameters were the same between 

the two configurations. For each test configuration (i.e., seated and supine), the number of attempts 

to the first successful sustained clonus triggering was recorded. To document subjective feedback 

on the simulator performance and user experience, each subject answered a post-test questionnaire 

on 12 items (Table 2.2). Subjects were asked to evaluate these simulation items on a five-point 

scale, where a score of   matching the word “about right” was considered as an ideal score, 

meaning the simulated behavior felt similar to their clinical experience. To expedite controller 

design iteration, feedback received on Day 1 about the realism of the simulator was used to revise 
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the clonus parameters, which were implemented in the simulator’s controller during  ay   testing 

(Table 2.1, column Modified; Fig 2.5). Therefore, questionnaire scores between Day 1 and Day 2 

were compared using two-sample, one-tailed t-tests with unequal variances (α =  . 5) to study any 

significant change in simulation realism features per clinicians’ feedback. In addition, all results 

were broken down into three subgroups based on job titles, i.e., all subjects, physicians only, PTs 

only. 

 

Table  . : Post test review questionnaire summary [58]. 
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2.3 Results 

A. Benchtop Evaluation Results 

The custom SEA system’s torque estimation and torque control capabilities were verified 

(Fig. 2.6-2.7). The torque estimated by the deflection of the series springs matched well with the 

torque sensor reading, where the average RMSE was 0.20 Nm (Fig. 2.6). The tuned controller was 

able to track a chirp torque signal up to 10 Hz without sign of motor saturation, with average 

RMSE < 0.22 Nm (Fig. 2.7). Noticeable torque errors were found at the peaks of the sine wave at 

low frequency (i.e., ~1-3 Hz) and disappeared at higher frequency (i.e., > 3Hz). This error might 

be caused by motor gearbox stiction, since this error decreased as the frequency increased (i.e., 

motor started mainly experiencing dynamic friction). The high-level impedance controller was 

Fig. 2.5: Simulated clonus behavior before and after the controller revisions. (Left) Participant 8 on Day 

1. (Right) Participant 17 on Day 2 [58].   
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able to simulate the behavior of a patient with clonus and to switch between clonus and non-clonus 

modes based on velocity and torque thresholds (Fig. 2.8). Specifically, clonus could not be 

triggered under low dorsiflexion velocity (Fig. 2.8, Left) and was not sustained when applied 

torque on the foot dropped below the torque threshold (Fig. 2.8, Middle). Only a combination of 

rapid dorsiflexion (i.e., > 200 °/s) and applied torque on the foot (i.e., > 3 Nm) induced a sustained 

clonus behavior (Fig. 2.8, Right). The experimental ankle angle profile obtained during sustained 

clonus case was qualitatively similar to a clinically-observed clonus behavior in terms of frequency 

and oscillation amplitude. 

 

Fig. 2.6: Torque estimation test – comparison of torque computed from deflection of series springs and 

measured by a torque sensor [58]. 
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Fig. 2.7: Torque control accuracy and bandwidth test – comparison of torque computed from deflection of 

series springs and desired torque based on frequency swept from 0-10Hz and peak-peak amplitude of 4Nm 

[58]. 
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Fig. 2.8: Three operation states of the simulator: (Left) no clonus triggered due to low DF stretch speed. 

(Middle) Unsustained clonus triggered but not continued due to lack of DF torque. (Right) Sustained clonus 

behavior [58]. 
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B. Clinician Validation Results 

The simulator was validated by 20 clinicians in two configurations with the attempt 

numbers and questionnaire responses recorded, and data analysis was based on 17 of 20 clinicians 

who have sufficient experience with clonus assessment given the inclusion criteria (Table 2.3). On 

average, all subjects could successfully trigger a sustained clonus response within 4-6 attempts in 

the first tested configuration and 2-3 in the second (Table 2.4). The decrease in the number of 

attempts in the second configuration suggested a learning effect. The number of attempts to first 

success also showed trends with participants’ backgrounds (Table 2.4). Participants with more 

years of assessment experience and more monthly assessments tended to require fewer attempts to 

success for both configurations, suggesting training and practice experience improve the efficiency 

of neurologic exam. On the other hand, no clear trend was observed in terms of the participants’ 

medical degrees. The number of trials for PTs were nearly double compared to the average number 

used by physicians in both configurations. One possible cause for this large difference may have 

been that physicians  had more experience assessing clonus as part of their job responsibilities, 

whereas PTs were used to trying to directly suppress clonus in patients, rather than assess/feel 

clonus, so there were extra adaptation and change of mindset required for PTs. 



42 

 

 

 

For each questionnaire item, the average score was calculated for each test day and by 

subgroup of physician or PT (Fig. 2.9). After the controller tuning/calibration, Day 2 subjects felt 

that simulated clonus behavior was generally "about right" in terms of realism and controller 

Table  . : Participant demographic background summary. In total    subjects were recruited and Subject 

5, 1 , and 19 were excluded due to lack of experience. 

Table  . : Number (mean  standard deviation) of trials to the first success for different subgroups.  
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revision moved the mean scores of questionnaire items closer to the ideal with reduced scoring 

variance. Additionally, the average scores for sustaining torque threshold and oscillation amplitude 

were significantly reduced, moving closer to 3. There was little difference in scores between seated 

and supine configurations. 

 

The assessment techniques of participants were grouped into either of two types (1 or 2) 

based on examining hand position within the supine or seated configurations (Fig. 2.10). Clinicians 

with Type 1 technique tended to only support the plantar surface of the foot to dorsiflex the ankle, 

whereas those with Type 2 technique would hold onto both plantar and dorsal surfaces of the foot 

to get a firm grasp. Each individual participant tended to use the same hand position (i.e., the same 

type) for both configurations. Since both Types 1 and 2 touched the plantar FSR sensors required 

in the simulator triggering criteria (Table 2.1), both techniques were considered to be effective. It 

was found that the assessment technique type had no clear trend with participant background, e.g., 

years of experience and monthly assessments. Therefore, this result implied that a clinician’s 

Fig. 2.9: Mean (standard deviation bars) of questionnaire scores for both days across three groups (i.e., 

all subjects, physicians only, and PTs only).  Red lines indicate the ideal score. Red triangles indicate 

the tuned item and its tuning direction after Day 1 feedback (Table 2.1). T-tests were only performed 

between All Day 1 and All Day 2 (α = 0.05) [58]. 
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technique tended not to vary with experience or proficiency and was likely adopted at their training 

institutions. The percentage of physicians used Type 1 technique was 50% vs. 42% among PTs, 

showing no standardized technique existed in either group.  

 

2.4 Discussion 

In this paper, a SEA-based ankle-foot simulator that replicated the behavior of a patient 

with ankle clonus and could be deployed in medical training programs as a robotic mock patient 

was proposed and developed. In the benchtop validations, the prototype simulator with the custom 

SEA system had very good estimated torque accuracy, torque control accuracy, and sufficient 

bandwidth for our application (i.e., 5-8 Hz of clonus oscillation) (Fig. 2.6-2.7). The use of a SEA 

resulted in a compact and cost-effective simulator design. The overall gear ratio of ~60:1 in the 

prototype simulator allowed a commercial-grade, small motor (DJI M3508 motor size of 4.2cm in 

diameter and 6.6cm in length; cost of $140, including a C620 motor controller) to be used and all 

 ig.  .1 : Examining hand position categories for seated and supine configurations. Seated 

configuration: (A) Type 1 ( ) Type  . Supine configuration: (C) Type 1 ( ) Type  .  
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components fitted within the human lower-leg geometry. Thanks to the economical actuation 

system, this simulator with good torque control fidelity was developed in a total BOM cost less 

than $500. Just the force/torque sensor alone used in the previous designs cost more than the 

overall cost of our device. Therefore, the SEA design not only demonstrated good torque control 

capability but also lowered the cost barrier for the training simulator to be adopted.  

To validate the realism of clonus simulation, 17 clinicians with experience doing clonus 

assessment evaluated the clinical performance of the prototype simulator. Feedback from the Day 

1 session with 9 clinicians was used to refine the controller behavior and then the modified 

controller was evaluated during the Day 2 session with 8 different clinicians (Table 2.1, Fig. 2.5). 

After revising the clonus controller parameters prior to the Day 2 session, the variance of scores 

decreased in all items except for mean ankle position, which stayed the same. Note that the large 

score variances on Day 1 (Fig. 2.9) may be partly due to the large variance in years of experience 

among Day 1 subjects (SD: 5.3 on Day 1 vs. SD: 2.7 on Day 2). Subjects on average demonstrated 

quick adaptation to the simulated clonus behavior and successfully triggered a sustain clonus on 

the simulator within a few trials using their usual technique. The small number of attempts to 

success implied that the simulator’s control logic (i.e., triggering and maintaining clonus) aligned 

with participants’ existing clinical knowledge and training. Physicians were found to be able to 

successfully trigger sustained clonus with fewer attempts than PTs. It is possible that this 

difference was due to physical therapists’ job habit mindset to suppress clonus in patients, rather 

than to induce and assess clonus like physicians. This additional adaptation for PTs might have 

caused them to take longer to succeed. Also, it was interesting to see there was no consistent 

manual technique across the subjects, i.e., both Type 1 and 2 technique were observed with roughly 

equal percentage. Both were considered as valid hand positions, given the current simulator control 
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logic. If in the future more clinical evidence suggests one of them would be more effective, the 

control logic could be adjusted (e.g., placing additional contact sensors on the dorsal surface of the 

foot) to drive the technique standardization via the proposed training simulator. 

Valuable feedback was received throughout the clinician validation study and several 

design limitations were recognized. Subjects commented that in the supine configuration, the 

patient’s leg will often be externally rotated at the hip with the knee flexed; however, our prototype 

lacked a thigh and hip joint. Furthermore, some level of randomized variation was suggested in 

the controller parameters to prepare the trainees with the unpredictable nature of clinical cases. 

Similarly, simulations of other common abnormal muscle behaviors at the ankle joint such as 

rigidity and spasticity (as selected) were suggested to increase training sophistication. Therefore, 

future work should involve enhancing the dexterity of the simulator to match the DOFs of the 

lower limb; and in order to maximize the potential of device hardware, more variations of 

simulation algorithm should be implemented.  

2.5 Conclusion 

The prototype ankle-foot SEA-based simulator was validated in both benchtop tests and 

clinician evaluation. The experimental results and clinical feedback were promising and suggested 

that this device could mimic a real patient by a) generating a simulated clonus behavior whose 

triggering and maintaining mechanism aligned with clinicians’ experience, and b) recreating a 

relatively realistic haptic response of affected muscles. However, the device still lacks the full 

dexterity of a human lower-extremity, which requires further design iterations. The use of a SEA 

system resulted in not only a high-performance research simulator, but also a cost-effective and 

compact design that could become viable to be widely deployed as a valuable training tool for 

learners.  
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CHAPTER 3 

DESIGN AND VALIDATION OF A ROBOTIC 

ANKLE-FOOT TASK TRAINER FOR ANKLE 

TENDON REFLEX ASSESSMENT 

Abstract 

Ankle (or Achilles) tendon reflex is commonly assessed in a neurologic examination. For 

a clinician trainee to master the correct assessment technique of ankle tendon reflex and to be able 

to distinguish among various reflex activity levels indicating health or abnormality, repetitive 

training and practice are necessary. We developed a robotic medical education training simulator 

that would generate a realistic reflex behavior depending on the simulated reflex activity level 

selected when given a tendon tap assessment. A reflex model was developed to estimate the ankle 

reflexive torque based on the input tap force. This reflex model prediction was validated in 

simulation and then implemented into our robotic simulator prototype. Benchtop results 

demonstrated that our simulator was able to accurately deliver the reflexive torque pattern required 

to simulate the clinical reflex response to the trainee. Nine experienced clinicians evaluated the 

device through a blind assessment test and a disclosed assessment test. Subjects were able to 

distinguish three intensity levels of tendon reflex with a good accuracy of 77 % on average. 

Subjects also demonstrated their assessment technique, which mostly aligned with the simulator 

hardware and control design. Clinical feedback were collected for future design iteration.  



48 

 

3.1 Introduction 

A. Overview of Ankle Tendon Reflex Assessment 

A reflex is an involuntary response to an external stimulus. Pathological changes in muscle 

stretch reflex behavior are often early indicators of neurologic diseases, so for this reason, the 

reflex evaluation is a regular and important neurologic exam procedure [7]. Among many types of 

reflexes, we focused on the deep tendon reflex ( T ) or muscle stretch reflex in this work. The 

 T  could be induced by application of a rapid stretch stimulus to the tendon of the muscles 

examined. Ankle (or Achilles) tendon reflex is one of the most commonly examined  T s and 

also often more difficult to elicit than the knee tendon reflex. A clinician will use a medical reflex 

hammer to tap the ankle tendon, in order to trigger the reflex and evaluate its intensity [8]. This 

tendon tap technique is widely used among therapists and physicians [7]. 

The goal of a tendon tap test is to evaluate if the tendon stretch reflex is healthy or affected 

by neurologic conditions [7]. After a proper tap applied by the examiner on the ankle tendon, the 

muscle stretch reflex response will be triggered and induce the contraction of the calf muscles, 

causing the foot to plantarflex. A normal tendon reflex usually generates a moderate plantarflexion. 

On the other hand, if the elicited plantarflexion is too weak or too strong (brisk), then hypo- or 

hyperreflexia (including sometimes even ankle clonus) is observed. Clinically, the reflex activity 

is graded using DTR levels [110] (Table 3.1).  DTR 4 usually associate with certain neurologic 

conditions (such as stroke [111]), while DTR 0 means reflex activity is absent and DTR 1 is often 

considered as weaker but healthy reflex. In the scope of this work, we aimed to focus on simulating 

only DTR levels 2, 3, and 4, since they are more frequently seen clinically. 
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Effective triggering of the ankle tendon reflex consists of three factors: a) proper stretching 

of the muscle before tapping via passive dorsiflexion of the ankle, b) a brisk and forceful tap with 

the hammer, and c) correct tap location on the tendon [7,8]. Clinically, the examiner will use one 

hand to support the plantar surface of the foot to maintain a proper tension on the tendon/muscle 

(Fig. 3.1, left). Then the examiner will use the other hand to apply an effective tap with the reflex 

hammer at the insertion of the Achilles tendon above the calcaneus.  

 

B. Project Overview 

In this project, we continued to utilize the SEA-based ankle-foot simulator’s torque control 

capability and expand its functionality to also simulate the ankle tendon reflex response when an 

Table 3.1: Clinical scale used to score different levels of reflex activity. Only DTR 2-4 are simulated in 

this work.  

  

Fig. 3.1: (Left) A sketch of tendon tap technique to assess Achilles tendon reflex, adapted from [7]. (Right) 

A tendon tap test on the ankle-foot simulator.  
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external tap is given by the trainee, via incorporating a new artificial tendon structure and 

proposing a reflex response model. A series of simulation, benchtop, and clinical evaluations were 

conducted to validate our design. 

3.2 Mechatronic Design 

A. Ankle-Foot Training Simulator Design Overview 

The training simulator for ankle clonus has the appearance of a robotic lower leg (Fig. 

3.2A), and its segment lengths and 3D-printed shroud contour were designed based on the 

anthropometric data of a 50th percentile Caucasian male [107]. The ankle joint is actuated, where 

the main dorsiflexion-plantarflexion (DF-PF) range of motion (ROM) is ± 30º and the auxiliary 

inversion-eversion (I-E) ROM is ± 10º. The foot shroud geometry and dimensions were obtained 

from a    scanned prosthetic foot (US men’s size 1 ).  

The series elastic actuation strategy was chosen for its safe human-robot interaction, 

accurate force control, robustness, and relatively low cost [82]. By deploying a SEA module in our 

simulator, a relatively high gear ratio would allow a compact motor with reasonable operation 

current (<13 A) to be used, and a pair of series springs (stiffness of ~165 N/mm) would serve as a 

compliant and inexpensive torque sensor that could accurately measure interaction joint torque 

between the user and robot.  

 urthermore, an array of onboard sensing capabilities monitored trainee’s performance and 

provided real-time feedback. Specifically, a linear encoder (AS5311, ams AG, Austria) measuring 

spring deflection allowed calculation of the interaction torque between the trainee and simulator. 

Two degrees of freedom (DOF) (i.e., DF/PF and I/E) of the ankle joint were sensed by two absolute 

rotary encoders (AMT22, CUI, USA; and AS5048, ams AG, Austria, respectively). Eight force-
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sensitive resistors (FSRs) (Model 400 and Model 402, Interlink Electronics, USA) were integrated 

into the foot shroud as simple touch sensors to detect whether the trainee’s hand was properly 

positioned on the forefoot. Considering the procedure of ankle tendon tap does not involve I/E 

DOF and focuses on the tap location (not on hand positioning on the foot), therefore the I/E angle 

encoder and FSRs were temporarily disabled in this study. 

B. Design of an Artificial Achilles Tendon Structure 

In order for the ankle-foot simulator to mimic the ankle tendon reflex response,  an artificial 

Achilles tendon structure was incorporated at the back of the shank shroud like the biological 

counterpart, allowing the trainees to tap on it to trigger the tendon reflex response (Fig. 3.2B-D). 

The design goal of this tendon structure was three-fold. First, the tendon should be able to sense the 

tap force applied by trainees so that this input signal would be sent to controller for generating the 

reflex response. Second, clinically, a triggering sweet spot exists along the Achilles tendon where 

it is most effective to elicit the reflex and our simulator needs to teach trainees to properly hit within 

this area. Thus, if trainees tap away from the sweet spot, the exerted tap force should be attenuated 

by the tendon structure and no reflex would be triggered. Furthermore, tapping on the artificial 

tendon structure should feel similar to a biological tendon. 
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These design considerations resulted in a multi-layer tendon design with a uni-axis 

compression load cell (1171-100N, Arizon Technology, China) (Fig. 3.2C). The tendon base 

structure was 3D printed using PLA material serving as a rigid foundation for the load cell to mount. 

Following the recommendation by the neurologist in the research team (CMZ), the load cell was 

mounted directly behind the ankle joint (i.e., the tendon triggering sweet spot). This sweet spot was 

designed to be a rectangle of 2 cm long along the longitudinal direction the tendon and 1 cm wide. 

To fit into the tight space of the tendon structure, a pancake-type (5 mm thick) compression load 

cell was utilized. The original sensing spot on this load cell was a circle of 2 mm in diameter. To 

cover the entire 2 cm × 1 cm area, a two-piece resin adaptor (a bracket and a panel) was fabricated 

and mounted on top of the load cell. The panel sitting on top of the load cell expanded the sensing 

area from the tiny circle to the entire 2 cm × 1 cm space. The bracket constrained the panel motion 

such that it could only move vertically. Resin was selected for low sliding friction and high 

manufacturing precision via stereolithography 3D printing. During practice, trainees might tap 

anywhere on the tendon structure, but only taps within the rectangular sweet spot would be 

 ig.  . : Overview of ankle foot training simulator design. (a) Original simulator designed only for clonus 

assessment training. The simulator was operated by clinicians at supine and seated configurations, adapted 

from [15]. (b) Addition of artificial tendon structure (highlighted in red). (c) The exploded view of the 

tendon design. (d) The simulator with the tendon structure at full plantarflexion and dorsiflexion.  
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registered as valid input triggering signals via the load cell. A soft silicone-molded tendon cover 

was installed as the outermost layer. The cover was designed to be relatively thin on top of the load 

cell (i.e., correct tap location) to improve force transmission and thick in other areas (i.e., wrong tap 

areas) to dampen the tap force propagating to the load cell and provide a compliant and elastic 

feeling upon impact. 

3.3 Tendon Reflex Response Quantification 

A. Quantification of Input Tap Force 

The development of this simulator started with understanding the clinically observed input 

tap force signal during ankle tendon assessments. Based on a human subject study on ankle reflex 

activity by Chung et al. [111], with a custom instrumented reflex hammer, the profile of the tap 

signal was observed to be similar to an impulse signal with a duration of ~15 ms. The force threshold 

that would evoke an ankle tendon reflex was measured to be 13.6 ± 4.3 N for stroke patients and 

19.1 ± 5.4 N for healthy controls. Given these results, we proposed an impulse signal with an 

amplitude of 13 N and a duration of 15 ms and used it as an input signal to validate if our proposed 

reflex model could generate torque profiles similar to those observed clinically. 

B. Quantification of Reflex Activity across DTR Levels 

Individuals with higher DTR levels will exhibit more exaggerated and brisker reflex 

behavior at the ankle given the same input tap force. According to the statistical results from 

subjects with various DTR levels [111], it was observed that the peak reflexive torque would 

increase with DTR level. In [111], this increasing trend was quantified by calculating the reflex 

gain (the ratio between peak measured reflexive torque and the peak tap force) across DTR levels 

(Table 3.2).  
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Clinically, DTR 4 will often be accompanied by a few beats of clonus [1]. Therefore, two 

beats of clonus were superimposed on the DTR 4 torque profile. The oscillatory frequency (6 Hz) 

and torque fluctuation amplitude (1.5~2 Nm) of the simulated clonus behavior were adapted from 

our previous study [58]. 

 

C. Estimation of Reflexive Torque Profile Shape 

A parametric method to the model reflex behavior was proposed by Mirbagheri et al. [112–

114]. In their works, a system identification approach was used to quantify the ankle dynamics and 

ankle position was controlled as a disturbance signal to the ankle. Therefore, in the original 

formulation, the input signal was position and then it went through a time derivative (to get 

velocity), a half-wave rectifier (to make negative values to zero), a 40 ms reflex loop delay, a reflex 

gain (unit of viscosity, converting velocity to torque), a first-order filter, and eventually second-

order reflex dynamics. This formulation is very inspiring, but does not exactly fit in our application, 

because our input signal is the tap force measurement rather than position. Thus, we used a different 

interpretation of the reflex gain (unit of length, converting force to torque), similar to the reflex gain 

definition in Chung et al. [111]. In addition, the time derivative and rectifier blocks associated with 

processing position signal were removed. As a result, our custom reflex model consisted of a 40 ms 

reflex loop delay, a reflex gain, a first-order filter, and second-order reflex dynamics, all connecting 

in series (Fig. 3.3A).  

Table 3.2: The mean and standard deviation of the reflex gains across DTR levels, extracted from [111] 

(n: number of subjects tested) [151].  
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In this reflex model, there are four parameters: reflex gain (𝐺), natural frequency (𝜔𝑛) and 

damping ratio (𝜁 ) of the reflex dynamics, and cut-off frequency of the first-order filter (𝑝 ). 

Specifically, the reflex gain determines the amplitude of the reflexive torque profile, while the other 

three parameters modulate the shape of the profile. By observing the real DTR 2 and 4 reflexive 

torque profiles reported in [111] (adapted in Fig. 3.7B), the durations of reflexive torque were almost 

the same (~600 ms, where rising for ~200 ms and decaying for ~400 ms) and the main difference 

was the amplitude (peak torque of ~2 Nm for DTR 2 and ~6 Nm for DTR 4). Therefore, in our 

design, the same values for the set of parameters 𝜔𝑛, 𝜁, and 𝑝 were used for all DTR levels and 

only 𝐺 was varied (Table 3.3). 

 

A model parameter study was conducted to investigate how each parameter affects the 

torque profile (Fig. 3.3B). The same tap force input (Fig. 3.3B1, described in Section 3.3A) was 

given and only one parameter varied in each scenario. 𝜁 was most straightforward and it determined 

whether the torque profile was under-, critically-, or over-damped. An underdamped value of 0.75 

was chosen to create a steeper decaying profile so that reflexive torque terminated at ~0.8 s (Fig. 

 ig.  . : (A) The reflex model proposed in this work. ( 1  ) A parameter study that demonstrates how 

each model parameter modulates the time domain shape of the reflexive torque profile. Solid lines 

corresponded to chosen values and dashed lines indicated effect of parameter variations. 
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3.3B2). Both 𝜔𝑛 and 𝑝 modulated the pole locations of first-order filter and second-order reflex 

dynamics, so smaller values led to a slower response (or stronger filtering effect). Specifically, 𝜔𝑛 

defined the general shape of the torque profile, while 𝑝 provided secondary shape adjustment (or 

filtering). 𝜔𝑛 was selected to be 9 rad/s in order to have a ~200 ms rising period and a ~400 ms 

decaying period (Fig. 3.3B3). Given 𝜔𝑛 = 9 rad/s, if  𝑝 was smaller than 9 rad/s, it introduced a 

dominating slow pole (Fig. 3.3B4 for 𝑝 = 2.5 and 5 rad/s), whereas if 𝑝 larger than 9 rad/s, the 

response was mainly determined by 𝜔𝑛 (i.e., a pair of slower complex poles) and increasing 𝑝 from 

15 to 60 rad/s only marginally speeded up the response (Fig. 3.3B4 for 𝑝 = 15, 30, and 60 rad/s). 

Therefore, 𝑝 was chosen to be 15 rad/s. In summary, this set of parameter values (𝜁 = 0.75, 𝜔𝑛 = 

15 rad/s, and 𝑝 = 9 rad/s) was chosen to modulate the simulated reflexive torque profile across DTR 

levels (Table 3.3). 

The remaining parameter, reflex gain (𝐺), was determined based on the relationship between 

reflex gain and DTR level in Table 3.2. Specifically, values of 𝐺 for DTR 2-4 matched the relative 

magnitude of the mean values in Table 3.2. The reflex gain for DTR 3 was 1.3 times larger than 

that of DTR 2, while the reflex gain for DTR 4 was 2.8 times larger than that of DTR 2. The baseline 

𝐺 at DTR 2 was selected as 6 to generate a peak reflexive torque of 2 Nm, and as a result, 𝐺 values 

for DTR 3 and 4 were calculated to be 8 and 16.5 using the scaling relationship.  

Table 3.3: Summary of our reflex model parameters for DTR 2-4 [151]. 
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During the development of reflex model, we started from Mirbagheri et al. [112–114] and 

further tried simplifying the model from 3rd order to 2nd order by removing the first-order filter. 

However, it was found that a 2nd order model could not provide such steep decay between 400 and 

600 ms in Fig. 3.7B. If using a smaller damping ratio (i.e., 𝜁<0.75) to accelerate the decay, 

underdamped oscillation would occur at the tail of the torque profile. The extra pole introduced by 

the first order filter provided additional adjustability (i.e., two control knobs 𝜔𝑛 and 𝑝) on the time-

domain shape of the profile and resulted in a smoother rising period as well as a steeper decay 

period, better matching the clinical observed profile. Similar first-order filter was also used in other 

studies such as [115]. 

D. Control Design 

The simulator was designed to mimic the ankle joint behavior of individuals with DTR 2-

4. When the trainee manipulates the simulator’s foot before tendon tap, the simulator should only 

exhibit inertial and gravitational effects (𝐼𝑓�̈� and 𝑚𝑓𝑔𝑙𝑐𝑜𝑠𝜃), and joint impedance (𝜏𝑖𝑚𝑝) (3.1). 

𝜏𝑖𝑚𝑝 is the output torque of the impedance controller and is defined by (3.2). When there is a valid 

tendon tap, he desired haptic behavior rendered to the trainee (𝜏𝑡𝑟𝑎𝑖𝑛𝑒𝑒_𝑑) should consist of three 

components: a) natural foot dynamics (i.e., foot inertia and gravity), b) ankle joint impedance 

(𝜏𝑖𝑚𝑝), and c) reflexive response upon tap (𝜏𝑟𝑒𝑓𝑙𝑒𝑥) (3.3).   

𝜏𝑡𝑟𝑎𝑖𝑛𝑒𝑒_𝑑 = 𝐼𝑓�̈� − 𝑚𝑓𝑔𝑙𝑐𝑜𝑠𝜃 + 𝜏𝑖𝑚𝑝(𝜃 �̇�)    (3.1) 

𝜏𝑖𝑚𝑝 = 𝐾𝑝(θ𝑒𝑞 − θ)−𝐾𝑑�̇�    (3.2) 

𝜏𝑡𝑟𝑎𝑖𝑛𝑒𝑒_𝑑 = 𝐼𝑓�̈� − 𝑚𝑓𝑔𝑙𝑐𝑜𝑠𝜃 + 𝜏𝑖𝑚𝑝(𝜃 �̇�) + 𝜏𝑟𝑒𝑓𝑙𝑒𝑥(𝐷𝑇𝑅)    (3.3) 
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In this equations, 𝐼𝑓 (0.035 kg.m2) and 𝑚𝑓 (1.06 kg) are foot inertia (about the ankle joint) 

and mass based on 50th percentile male data [107], and 𝜃 and its time derivatives are measured 

ankle joint kinematics. 𝐾𝑝 and 𝐾𝑑 are the simulated ankle stiffness and damping (18 Nm/rad and 

0.6 Nm/(rad/s), respectively), and θ𝑒𝑞 is the equilibrium ankle angle (17° in plantarflexion) [111]. 

When the trainee is ready to perform the tendon tap assessment, ankle joint angle and tap 

force signals will be monitored as triggering criteria. If the load cell embedded in the tendon 

structure detects a tendon tap with peak amplitude above 13 N and the ankle position is between 

neutral position (0°) and 10° dorsiflexion, a mock triggering signal (an impulse of 13 N with 15 

ms duration, i.e., the same input signal as in Fig. 3.3B1) will be sent to the reflex model to generate 

the reflexive torque (𝜏𝑟𝑒𝑓𝑙𝑒𝑥) for the specific DTR level being simulated. This mock signal was 

chosen over the real-time load cell signal because this low-cost load cell exhibited non-negligible 

ground noise even with filtering, which would cause unwanted chattering of the ankle if fed to the 

controller as an input signal. To ensure the consistency of each tendon tap trial, once all triggering 

criteria were satisfied, the same mock input signal would be sent. To reduce the noise in the load 

cell measurement, the load cell readings (i.e., ADC values) were low-pass filtered with a 4th order 

Butterworth filter with a cut-off frequency of 20 Hz in real-time. Considering the load cell reading 

amplitude (especially the high-frequency tap force signal) might be distorted due to filtering and 

potential damping effect of the silicone tendon cover, the ADC values of the load cell were 

calibrated using a research-grade force sensor. The calculated torque command in (3.1) or (3.3) 

was executed by a cascaded torque controller (from innermost to outermost: current, velocity, and 

torque controls, developed in [58]) and all signals were sampled at 1 kHz. 
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3.4 Evaluations 

A. Benchtop Evaluations 

In order to validate the hardware design, proposed reflex model, and torque tracking 

capability, a series of benchtop and simulation tests were conducted.  

Artificial Tendon Structure Force Sensing Evaluation 

The new artificial tendon structure was fabricated and its capability for detecting static and 

dynamic loads was evaluated via a static load validation test and a dynamic impact force 

calibration test before mounting on the simulator. A ground-truth force sensor (PASPORT PS-

2189, PASCO, USA) was mounted on a vertical linear rail test rig and the load cell was at the 

bottom (Fig. 3.4). In the static test, the force sensor would be initially in contact with the load cell 

and then different weights between 5 N and 25 N were placed on the force sensor to exert static 

loads on the load cell. In the dynamic test, the force sensor free-fell onto the load cell from different 

initial heights to mimic tap forces with different peak forces (approximately 15, 20, 25, 30, and 35 

N; 10 trials per height). In both tests, the load cell readings were compared to the readings from 

the gold standard force sensor. Furthermore in the dynamic test, the filtered ADC reading of the 

load cell was calibrated into force measurement using the force sensor as a benchmark. To replicate 

the impact between medical reflex hammer and the tendon structure, a commercial reflex 

hammer’s rubber hammer head was disassembled and attached to the metal testing probe of the 

force sensor. 
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Reflex Model Simulation Evaluation 

The proposed reflex model was tested in simulation (MATLAB 2020b, MathWorks Inc., 

Natick, MA) at different DTR levels when given an impulse force signal (amplitude of 13 N and 

duration of 15 ms). The resulting reflexive torque profiles were compared to literature data [111] 

(Fig. 3.7B). 

Control System Torque Tracking Evaluation 

After the tendon hardware and reflex model simulation were validated, the mechatronic 

and control systems were implemented on the simulator prototype and were tested with and 

without triggering the reflexive torque. First, the simulator’s foot was manually moved by hand 

 ig.  . : A test rig to validate and calibration the force sensing of the artificial tendon structure.  
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with increasing frequency (1~2.5 Hz) and no tap was given. In this case, only natural foot dynamics 

and joint impedance were rendered. Next, the ankle simulator’s foot was supported by hand near 

a neutral angle position and tendon taps were given to trigger reflex behavior at DTR 2-4. To 

validate torque control fidelity in both scenarios, the root mean square error (RMSE) between the 

torque command and measured torque was calculated. 

B. Clinical Evaluations 

In order to further validate the simulator’s realism, we coordinated an expert clinician 

validation study in the Rehabilitation Center at the Zhejiang Hospital in Hangzhou, China. We 

invited 10 clinicians (6 physicians and 4 physical therapists)to examine how well the prototype 

simulator could simulate the ankle tendon reflex behavior (Table 3.4 and Fig. 3.5). The only 

additional inclusion criteria for the study was subjects needed to have a medical related Bachelor 

degree or above with at least 5 years of ankle tendon tap assessment experience. One physician 

(Subject 5) was excluded from data analysis due to lack of experience. All subjects have given 

informed consents before test sessions. The study was approved by the IRB at the University of 

Illinois at Urbana-Champaign and Medical Ethics Committee of Zhejiang Hospital.  

The validation study consisted of a blind assessment test and a disclosed assessment test. 

In the blind assessment test, the simulator provided 9 simulations (3 simulation trials per DTR 

Table  . :  emographic summary of participating subjects. Subject 5 was removed due to lack of 

experience. 
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level, 3×3 = 9) in randomized sequence to each subject, who did not know the preset level. For 

each of the 9 trials, the subject was asked to assess the simulated DTR level using their typical 

tendon tap technique and made a judgement on reflex grading. The agreement between simulated 

level and subject’s judgement was reported as agreement percentage. In the disclosed test, the 

subject was told the DTR level being simulated and was asked to closely examine and provide 

feedback on the simulation aspects of each DTR level, as well as on the reflex triggering criteria. 

Subjects scored each simulation aspect using a five-point Likert scale where a score of 3 

represented simulated behavior aligned with subject’s experience, while a score of 1 or 5 suggested  

deviation (low or high, respectively) from the clinical observed behavior (Table 3.5). Also, 

subjects were asked to demonstrate their typical reflex triggering technique, and their triggering 

techniques were documented in terms of the ankle joint for properly stretching the plantarflexor 

muscle and tendon, tap location, hand positioning, and peak tap force. 

 

 ig.  .5: Clinicians evaluating the ankle tendon reflex using tendon tap technique. 
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3.5 Results 

A. Benchtop Validation 

The static load validation test results demonstrated good match between the load cell and 

the gold standard force sensor (Fig. 3.6A). A linear regression between load cell and force sensor 

resulted in a R2 value of 0.999 and a slope of 0.96 (a slope of 1 indicated perfect match), suggesting 

good static load detection capability. In the dynamic force calibration test, means and standard 

deviations (across 10 trials) of peak filtered ADC readings were calculated and were calibrated 

with averaged peak force sensor measurement under each force condition. These data exhibited a 

good linear fit with R2 value of 0.991 (Fig. 3.6B). This linear regression equation 

(force =  .56 A C  . 11) was used to convert the load cell’s ADC reading to actual tap force on 

the tendon structure. 

Table  .5:  ive point Likert scale questions during the disclosed assessment test. 
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The proposed reflex model, with the control parameters given in Table 3.3, generated 

simulated reflexive torques at DTR 2 and 4 (without clonus) very similar to clinically observed 

torque profiles reported in [111] (Fig. 3.7). We were unable to directly validate the shape of the 

torque profiles for DTR 3 and 4 (with clonus) due to lack of literature data, but the peak torque 

magnitude of DTR 3 matched the results in [111], and DTR 4 with clonus would be validated in 

the clinical study. 

 

Fig. 3.6:  esults of (A) static load validation and ( ) dynamic force calibration (error bars: standard 

deviations). 

  

 ig.  .7: (A) Simulation results of the reflex model at  T      [151]. ( ) Clinically observed response of 

 T    and   reported in Chung et al. [111] were adapted with permission and compared with the 

simulation.  
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After the new tendon structure and reflex model were validated, they were implemented 

on the simulator prototype where the control system was tested. The simulator demonstrated good 

torque tracking capability when mimicking foot dynamics, ankle impedance, and reflexive torque 

(Fig. 3.8 and 3.9). When no tendon tap was given, and as the motion frequency increased, the 

torque error slightly increased but remained low (RMSE 0.18 Nm) throughout the test (Fig. 3.8). 

Next, the simulator’s ankle was manually held at near neutral position to be ready for tendon tap. 

Since this position deviated from the equilibrium position of the impedance controller, a 

plantarflexion torque (roughly 2 Nm) was present at the beginning of each trial (Fig. 3.8, bottom). 

This torque was as expected and represented a combination of ankle muscle stretching and 

gravitational effect. With a tap at t = 0, a reflexive plantarflexor torque was commanded after an 

intentional 40 ms reflex loop delay, together with the baseline torque, forming the torque command. 

Across DTR 2-4, this torque command was tracked accurately by the simulator with a RMSE of 

0.17, 0.24, and 0.19 Nm, respectively (Fig. 3.9). Another observation was that the actual torque 

generation had a slight delay (~25 ms) compared to the torque command.  

 
 ig.  .8:  enchtop results of only simulated foot dynamics and joint impedance.  
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B. Clinical Validation 

Across nine of ten clinician subjects, during the blind assessment test, the overall 

agreement percentage between the simulated  T  levels and subjects’ judgements was 77% ± 18% 

(Table 3.6). DTR 4 had the highest agreement percentage (85%) as it was the most distinctive with 

the clonus behavior. DTR 3 was easily confused with DTR 2 due to subtle torque amplitude 

difference, explaining its lowest agreement percentage. In addition, most physical therapists noted 

that they would pay less attention to DTR 3 in their daily work environment, since usually they 

considered a DTR 3 reflex behavior as non-pathologic but just brisker than normal, requiring no 

rehabilitation need. If dividing the subjects into subgroups, physicians and therapists had similar 

subgroup agreement percentages, but the standard deviation was lower for physicians. 

 ig.  .9:  enchtop results with reflexive torque at  T   ,  , and   (tap force applied at t =  ) [151].  
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In the disclosed assessment test, subjects closely evaluated each aspect of the simulation 

and scores were in general close to 3 (i.e., appropriate design), suggesting that subjects thought 

that the simulated reflex behavior at DTR 2, 3, and 4 aligned with their clinical experience (Table 

3.7). For responsiveness at DTR 3, a score of 2.7 was given, so subjects expected the reflex 

behavior should occur faster. Torque amplitude at DTR 4 was scored at 3.3 meaning that the DTR 

4 torque might be higher than clinically observed behavior, but at the same time a standard 

deviation of 0.7 might suggest potential lack of consensus among subjects on this item. 

 

Table 3.6. Blind assessment test results in terms of agreement percentage. 

Table 3.7: Disclosed assessment test results across DTR 2-4. For amplitude, responsiveness, and duration, 

a score < 3 indicated too low/slow/short, and a score > 3 indicated too high/fast/long, respectively. 
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Subjects were asked to demonstrate the three triggering criteria for the ankle tendon reflex 

behavior and their technique was quantified (Table 3.8) and these observations mostly aligned with 

our predefined triggering criteria. On average, subjects first supported the foot at 3.6° in 

dorsiflexion to pre-stretch the plantarflexor muscle and then tapped on the tendon at 0.8 cm below 

the ankle joint, with a peak force of around 20 N.  Large variances were observed for each feature 

across subjects might indicate a lack of standardized technique and also suggest that the 

simulator’s triggering criteria should be more lenient that accept a wider range of ankle angles and 

tap locations as valid inputs. 

3.6 Discussion 

In this chapter, we presented our approach to develop a medical education training 

simulator that could replicate different levels of ankle reflex behavior during tendon tap 

assessments. An artificial tendon structure and a load cell were installed on the existing ankle-foot 

simulator from [58] for trainees to perform tendon tap practice. A reflex model was proposed to 

compute the corresponding reflexive torque at the ankle based on the input tap force. Preliminary 

simulation, benchtop, and clinical results (with 9 experienced physicians and therapists) are 

promising in that the reflex model could generate a realistic reflexive torque profile. This torque 

command and resulting overall haptic experience could be accurately delivered to the trainee via 

our ankle-foot simulator. 

Table 3.8: A comparison between experimentally recorded triggering criteria and predefined triggering 

criteria. Negative ankle angle of indicated a dorsiflexed position. Negative tap location suggested 

tapping below the ankle joint.  
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In Section 3.3D, we explained that, due to a relatively high baseline noise, the raw load 

cell signal had to be additionally filtered, calibrated, and taken threshold before feeding into the 

controller. Furthermore, during the clinical validation, when some subjects tapped on the tendon 

structure with a tilting angle, the load cell could not detect that off-axis tap force well (i.e., with 

shearing component) and failed to trigger a reflex response even at the correct tap location and 

with enough force. In that case, investigators had to remind subjects of hitting the tendon more 

carefully to exert vertical force. A more expensive or multi-axis load cell might save these 

engineering workarounds and clinical hints, but the device cost would significantly increase, so 

this was a design trade-off. One of the initial design goals for the simulator prototype was cost-

effective [58]. Therefore, throughout this project, we strived to keep the simulator affordable, so 

an inexpensive uni-axis compression load cell (~$150 including the sensor and signal conditioner) 

was used to detect the tendon tap force. However, based on the documented triggering technique 

during the clinical study, a scattered distribution of tap locations (centered around 0.8 cm below 

the ankle joint with a standard deviation of 1 cm along the ankle tendon) was observed even for 

experienced clinicians. Thus in future iteration, other possible design approaches that enable a 

larger detection area should be considered, such as building an instrumented reflex hammer (such 

as [116,117]) or covering the Achilles tendon area with a pressure sensor matrix. 

 or the simulator’s control system, while different reflexive torque profiles were 

implemented, one simplification we made was using the same set of impedance control parameters 

(stiffness and damping) and the same triggering force threshold (> 13 N) across DTR 2-4. However, 

clinically, individuals with DTR 2 and 3 reflex behaviors are usually healthy, while DTR 4 reflex 

is often observed in spastic patients. Therefore, to further improve the simulation sophistication, 

two different sets of impedance parameters and tap force threshold could be designed for healthy 
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and spastic individuals. It is known that a patient with ankle spasticity exhibits higher ankle muscle 

tone with increased stiffness and damping [114], and tendon reflex response could be triggered 

more easily with a lower tap force than a healthy individual [111]. During the clinical study, several 

subjects helped fine-tune the impedance parameters on the fly and they ended up with a stiffness 

of 0.05 Nm/rad for DTR 2 and 3 (healthy individuals) and 0.25 Nm/rad for DTR 4 (spastic patients), 

comparing to the original value of 0.15 Nm/rad. Two subjects also mentioned that nonlinear 

stiffness profile should be implemented (i.e., higher stiffness towards the end of ROM). Also, 

participating clinicians on average tapped the tendon with a peak force of 20 N, aligning with the 

reported force threshold for healthy individuals [111] (see Section 3.3A). Therefore, in the future, 

the triggering force threshold could be further set as ~20 N for DTR 2 and 3, and ~13 N for DTR 

4.  

Furthermore, we observed the delay of torque generation (~ 25 ms) using the current torque 

controller during the benchtop test. However, we were unsure how much a difference that this 

adjustment would make, so we decided to first obtain subject feedback on the responsiveness of 

the reflex behavior during the clinical study. And indeed subjects on average expected the reflex 

behavior to occur more responsively for DTR 2 and 3 (scores of 2.9 and 2.7, respectively). To 

compensate this issue, a naïve approach could be reducing the intentional reflex loop delay in our 

model from 40 ms to 15 ms. In the long term, feedforward control scheme should be incorporated 

into the low-level torque controller to improve the tracking performance.  

3.8  Conclusion 

In this chapter, we presented our design methodology and validation cycle for developing 

a robotic training simulator that could replicate ankle reflex behavior during tendon tap 

assessments. Benchtop and clinical validation results are promising for deploying a SEA-based 
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training simulator to medical education setting. In addition, the lack of standardized technique 

observed during the clinical study may further motivate the need of introducing robotic simulators 

that provide consistent and accessible training for future clinician learners. 
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CHAPTER 4 

UPPER-EXTREMITY ROBOTIC MEDICAL 

EDUCATION TASK TRAINER FOR SPASTICITY 

AND RIGIDITY ASSESSMENT 

Abstract 

 The goal of this study was to validate a series elastic actuator (SEA)-based robotic arm 

that can mimic three abnormal muscle behaviors due to upper motor nueron lesions, namely lead-

pipe rigidity, cogwheel rigidity, and spasticity for medical education training purposes. Key 

characteristics of each muscle behavior were first modeled mathematically based on clinically-

observed data across severity levels. A controller that incorporated feedback, feedforward, and 

disturbance observer schemes was implemented to deliver haptic target muscle resistive torques 

to the trainee during passive stretch assessments of the robotic arm. A series of benchtop tests 

across all behaviors and severity levels were conducted to validate the torque estimation accuracy 

of the custom SEA (RMSE: ~ 0.16 Nm) and the torque tracking performance of the controller 

(Error: < 2.8 %). A clinical validation study was performed with seven experienced clinicians to 

collect feedback on the task trainer’s simulation realism via a Classification Test (CT) and 

Disclosed Assessment Test (DAT). In the CT, subjects were able to classify different muscle 

behaviors with an accuracy > 87 % and could further distinguish severity level of each behavior 

satisfactorily. In the DAT, subjects generally agreed with the simulation realism and provided 

suggestions on misclassified conditions for future iteration. Overall, subjects scored 4.9 out of 5 
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for the potential usefulness of this device as a medical education tool for students to learn spasticity 

and rigidity assessments. 

4.1 Introduction 

A. Overview of Rigidity and Spasticity 

Spasticity and rigidity are common abnormal muscle behaviors [5] and are characterized 

by distinct resistive muscle tone characteristics when the the affected muscle is passively stretched 

(Fig. 4.1). Rigidity is often observed in patients with Parkinson’s disease, manifested as an 

increased muscle tone which is independent of the stretch speed [118]. There are two types of 

rigidity: a) lead-pipe rigidity (LR) which exhibits a uniformly elevated muscle resistance across 

the full range of motion and b) cogwheel rigidity (CR) which has an intermittent pattern of 

resistance with a frequency of 6-9 Hz [119]. Unlike rigidity, spasticity (SP) manifests as an 

increased muscle tone but with stretch speed dependency and is commonly observed in patients 

with neurologic conditions that cause upper motor neuron lesion (e.g., stroke, cerebral palsy, spinal 

cord injury). A typical spasticity resistance response is marked by an abrupt increase in the 

resistance called “catch” at a relatively consistent angle within the range of motion (ROM) and 

followed by a quick drop of resistance called “release” [120]. 

 

   

 
 
  
  
  
 
 
 

         

   

                  

   

                 

       

       

       

       

           

          

       

    

     

Fig. 4.1: Conceptual schematics comparing lead-pipe rigidity, cogwheel rigidity, and spasticity muscle 

tones during a passive stretch test (dashed green line: healthy muscle behavior). 
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B. Current Medical Training Methods and Challenges 

Clinical assessment of these behaviors is done by passively moving the joint at various 

speeds to stretch the affected muscle. Based on the resistance felt, the clinician will diagnose the 

type and severity level of the behavior. To classify different severity levels of spasticity or rigidity, 

the examiner relies on qualitative assessment tools such as clinical scales (e.g., Modified Ashworth 

Scale (MAS) shown in Table 5.1, or motor portion of the Unified Parkinson’s  isease  ating Scale 

(UPDRS) shown in Table 5.2, respectively). A score of 0 indicates the absence of 

spasticity/rigidity (i.e., healthy behavior), whereas higher and increasing scores indicate increasing 

severity of the spasticity/rigidity condition. Due to the qualitative and ambiguous nature of using 

these scales, clinical diagnosis often leads to subjective interpretations and introduces inter-rater 

reliability issues across different clinicians [121].  

  Given the subtlety and variation observed within and between different abnormal muscle 

behaviors, accurate diagnosis is built upon a good understanding of these behaviors and repetitive 

hands-on practice. However, for current clinical/medical learners, the training opportunity and 

consistency is often limited by the availability and small number of practice patients [52]. One 

promising approach to address this training challenge is the deployment of robotic  task trainers to 

provide realistic and easily accessible practice opportunities for future medical trainees [20].  

C. Review of Previous Robotic Task Trainers 

Only a few task trainer designs have been proposed in the past [48–56]. Trainers for clinical 

assessment usually take the form of human-sized artificial robotic limbs with an actuated haptic 

joint (e.g., active [48,49] or passive [53]) that mimic a patient’s joint affected by pathological 

muscle behaviors due to the underlying neurologic conditions. Existing trainers have mainly 

targeted mimicking common abnormal muscle behaviors such as spasticity [48–56], rigidity 
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(cogwheel and lead-pipe) [50–52,57], and clonus [54,55,58]. The simulated behaviors were created 

by modeling the neurologic diseases based on clinical data [48], clinical expert tuning [52], or a 

combination thereof [54]. However, in general, quantitative documentation of these abnormal 

kinematic and kinetic behaviors is lacking in the literature. In addition, a few studies have also 

evaluated the simulation realism of their proposed robotic trainers clinically by inviting a group of 

experienced clinicians and obtaining their subjective feedback on the task trainer performance. 

Such task trainers render a relatively realistic, consistent, and potentially scalable training 

environment for students, allowing learners to gain hands-on experience without the presence of 

real patients. However, to the best of the authors’ knowledge, none of the previous research 

prototype trainers were commercialized nor adopted by medical training institutions beyond the 

authors’ home institutions, possibly due to the device complexity, maintenance, or cost. 

In order to render the desired haptic feeling to the user, some previous designs simply relied 

on the actuator to perform open-loop torque control, which often suffers from friction loss in the 

drivetrain [51,55]. On the other hand, to achieve better torque tracking, others used closed-loop 

torque control via the torque feedback from a six-axis force/torque sensor at the end effector 

[48,54]. However, the downside was the high cost and mechanical frailty of the sensor. Even 

though the delivery of accurate interaction torque under imposed disturbance (i.e., user’s input 

motion) is a core challenge in the field of robotic task trainers, surprisingly there is a lack of 

discussion and reporting of the force/torque control scheme as well as the torque tracking 

performance in the literature, except for [122]. 

D. Review of Modeling and Control for Series Elastic Actuator (SEA) 

Several modeling and control strategies have been proposed for series elastic actuators 

(SEAs) and evolved over the years. A single SEA robotic joint consists of two degrees of freedom 
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(DOFs), the actuator side DOF and the link side DOF (sometimes referred as the load side DOF), 

decoupled by a series spring. Due to the difficulty in accurately modeling the environmental 

dynamics on the link side, most previous works have modeled their SEA designs as 1-DOF 

dynamic systems (or a 1-mass system) and only considered the dynamics on the actuator DOF, by 

assuming that the link side DOF is fixed. Only a few works explicitly explored the link motion 

and environmental dynamics by modeling both the SEA and its output link via a 2-DOF dynamic 

system (or a 2-mass system) [123,124]. Most force control schemes were designed based on a 1-

DOF dynamic model and considered the unknown environmental dynamics as a disturbance to 

reject. Popular controller choices included cascaded a PID controller [90,125], disturbance 

observer-based controller [123,126,127], adaptive controller [128], and acceleration-based 

controller [81,88]. Only a few model-based control schemes explicitly accounted for a 2-DOF 

system [123,129].  

E. Study Overview 

The goal of this study was to model three target abnormal muscle behaviors and design the 

control system for a previously developed SEA-based robotic arm trainer by our research group 

[57] to accurately deliver the appropriate muscle resistance response to the trainee (Fig. 4.2). A 

series of benchtop and clinical validation tests were conducted to verify the trainer’s control 

performance as well as clinical realism. 

4.2   Methods 

A. Arm Trainer Mechatronic Design Overview 

The robotic arm trainer used in this study is a 1-DOF kinesthetic haptic torque display 

device that resembles a human arm. The dimensions of the limb (upper arm, forearm, and hand) 

were matched with the anthropometric data of a 50th percentile Caucasian male [107]. The forearm 
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and hand (the moving segments) together have a mass of 0.91 kg and a moment of inertia of 0.046 

kg.m2 around the elbow joint, which are lower than those of a biological counterpart (1.57 kg and 

0.067 kg.m2). The ROM of the simulator was from 45º (fully flexed) to 150º (fully extended). 

More design details can be found in [57]. 

 

B. Mathematical Modeling and Parameter Determination of Lead-pipe rigidity, 

Cogwheel rigidity, and Spasticity  

In this study, three target behaviors for the arm task trainer were considered: lead-pipe 

rigidity (LR), cogwheel rigidity (CR), and spasticity (SP). The modeling of LR was inherited from 

[57], and the modeling of CR and SP are proposed in this work. In general, LR and CR are 

relatively simple to model, but it is more complex to model SP. This section describes how these 

behaviors were mathematically modeled at different severity levels and how their resulting 

Fig. 4.2: A mock interaction between the learner and the task trainer. 
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resistive muscle tones were calculated based on the user input kinematics (Fig. 4.3)9.  

 

Lead-pipe Rigidity (LR) 

In lead-pipe rigidity, once the clinician starts to move the patient’s arm, a uniformly 

elevated muscle resistance will appear throughout the ROM and the resistance level tends to 

increase with the UPDRS score (Table 4.2). To command this step response-like constant 

resistance, a smooth transition of the torque (𝜏𝑚𝑢𝑠𝑐𝑙𝑒) from zero torque to an elevated torque level 

(at the UPDRS score being simulated) was implemented using a hyperbolic tangent function [57] 

𝜏𝑚𝑢𝑠𝑐𝑙𝑒 = −𝜏𝑎𝑣𝑔𝑡𝑎𝑛ℎ (
�̇�𝐸

𝜔𝑡ℎ𝑟𝑒𝑠ℎ
)    (4.1) 

where elbow angular velocity is �̇�𝑒𝑙𝑏𝑜𝑤, the clinically-derived average muscle tone is  𝜏𝑎𝑣𝑔, and a 

threshold velocity constant is 𝜔𝑡ℎ𝑟𝑒𝑠ℎ. Note that 𝜔𝑡ℎ𝑟𝑒𝑠ℎ determines the velocity at which 𝜏𝑟𝑒𝑓 will 

approach to the desired value of 𝜏𝑎𝑣𝑔, which was set to be 66 °/s [57]. To extract 𝜏𝑎𝑣𝑔 for each 

 
9 Positive torque is a torque applied in the direction of elbow flexion (resisting extension motion) and vice 

versa. 

Fig. 4.3: Muscle kinematics and tone (torque) profiles for healthy, lead-pipe rigidity, cogwheel rigidity, and 

spasticity across severity levels given mathematical model and control parameters. These profiles were 

generated when a passive stretch test was performed on the task trainer arm. Only biceps spasticity results 

are shown. Triceps spasticity has similar profiles, and are omitted for clarity.  
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UPDRS score, we initially referred to the clinical data from [130] in the design phase [57] and the 

magnitudes of 𝜏𝑎𝑣𝑔were further iterated during a clinical validation study with a group of 11 

experienced clinicians [131]. Since gravity assists the stretch motion in extension, but resists it in 

flexion, the values were adjusted to be higher for extension to partially offset the effect of gravity 

(𝜏𝑎𝑣𝑔 = 1     0     Nm for flexion and 𝜏𝑎𝑣𝑔 =   0         Nm for extension for UPDRS 1 to 3, 

respectively).  

Cogwheel Rigidity (CR) 

To model cogwheel rigidity, the simulated muscle tone generated by the proposed LR 

model was turned on and off intermittently by a rectified sinusoidal function with a tremor 

frequency of 𝜔.   

𝜏𝑚𝑢𝑠𝑐𝑙𝑒 = −𝜏𝑎𝑣𝑔𝑡𝑎𝑛ℎ (
�̇�𝐸

𝜔𝑡ℎ𝑟𝑒𝑠ℎ
)|𝑠𝑖𝑛 (𝜔𝑡)|          (4.2) 

The tremor frequency 𝜔 for cogwheel rigidity has been reported to vary between 6-9 Hz in the 

literature [119], and we used 𝜔 = 6 Hz to model this behavior in our arm trainer. For practical 

implementation, an exponential moving average filter (with a forgetting factor10 of 0.75) was used 

to smooth the commanded signal.  

Spasticity (SP) 

We started with the spasticity model proposed in Park et al. [48] as the baseline model 

since it is one of the few published works that modeled SP mathematically. Park et al.’s piecewise 

model divided the SP resistance response into three phases: a) pre-catch, b) catch, and c) post-

catch, where a separate governing equation was used to model each phase (Fig. 4.4). For 

 
10 In recursive filters, a forgetting factor gives exponentially less weight to older samples [152]. 
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controlling the trainer, 𝜏𝑚𝑢𝑠𝑐𝑙𝑒 would be set to the following torque terms based on the phase. 

(1) Pre-catch phase 

The pre-catch muscle tone (𝜏𝑝𝑟𝑒) was modeled as a mildly damped feeling added to the 

arm dynamics. 

𝜏𝑝𝑟𝑒 = 𝑏𝑝𝑟𝑒�̇�𝐸      (4.3) 

where 𝑏𝑝𝑟𝑒 is the pre-catch damping coefficient and �̇�𝐸 is the joint angular velocity. This model 

implies that during the pre-catch phase, minimal abnormal muscle tone appears.   

The pre-catch phase will transit to the catch phase when the arm reached a certain joint 

angle called the catch angle (𝜃𝑐𝑎𝑡𝑐ℎ). 𝜃𝑐𝑎𝑡𝑐ℎ is specified in the real time based on the average joint 

angular velocity during the pre-catch phase. Note that SP is a stretch-velocity dependent behavior, 

so if the arm is moved very slowly (less than a certain threshold speed, 𝑣𝐿), 𝜃𝑐𝑎𝑡𝑐ℎ will be set as 

an unreachable angle and no catch will occur. Therefore, 𝜃𝑐𝑎𝑡𝑐ℎ was expressed as 

𝜃𝑐𝑎𝑡𝑐ℎ = {
no catch                   if �̇�𝑝𝑟𝑒_𝑎𝑣𝑔 < 𝑣𝐿

𝜃𝑐𝑎𝑡𝑐ℎ_𝑀𝐴𝑆                 if �̇�𝑝𝑟𝑒_𝑎𝑣𝑔  ≥ 𝑣𝐿
   (4.4) 

In this study, a constant catch angle for each MAS level was assumed for simplicity. �̇�𝑝𝑟𝑒_𝑎𝑣𝑔 is 

the average arm stretch speed during the pre-catch phase and 𝑣𝐿 =  0 °/s based on [48].  

(2) Catch phase 

The torque during the catch phase was expressed as 

𝜏𝑐𝑎𝑡𝑐ℎ = 𝜏𝑝𝑟𝑒_𝑒𝑛𝑑 + 𝐻�̇�𝑐𝑎𝑡𝑐ℎ_𝑖𝑛𝑖𝑡𝛿(𝑡)     (4.5) 

with 𝛿(𝑡) =  {
1                         𝑖𝑓 𝑡 − 𝑡𝑐𝑎𝑡𝑐ℎ_𝑖𝑛𝑖𝑡 < ∆𝑇𝑐𝑎𝑡𝑐ℎ
𝑄 (𝑄 < 1)        𝑖𝑓 𝑡 − 𝑡𝑐𝑎𝑡𝑐ℎ_𝑖𝑛𝑖𝑡 ≥ ∆𝑇𝑐𝑎𝑡𝑐ℎ
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where 𝜏𝑝𝑟𝑒_𝑒𝑛𝑑  is the torque at the end of the pre-catch phase, 𝐻  and Q are parameters that 

determine the catch amplitude (𝐻�̇�𝑐𝑎𝑡𝑐ℎ_𝑖𝑛𝑖𝑡) and release amplitude (𝐻�̇�𝑐𝑎𝑡𝑐ℎ_𝑖𝑛𝑖𝑡𝑄), respectively 

(Fig. 4.4) and vary across different MAS levels, �̇�𝑐𝑎𝑡𝑐ℎ_𝑖𝑛𝑖𝑡  is the elbow stretch speed at the 

beginning of the catch phase, 𝑡𝑐𝑎𝑡𝑐ℎ_𝑖𝑛𝑖𝑡 is the time when the catch phase initiates, and ∆𝑇𝑐𝑎𝑡𝑐ℎ 

represents the catch duration and is given by ∆𝑇𝑐𝑎𝑡𝑐ℎ =
𝐷

�̇�𝑝𝑟𝑒_𝑎𝑣𝑔
, where 𝐷  is a heuristically 

determined constant that specifies the catch duration. The model structure for this phase was 

adopted from Park et al., but the control parameters were retuned based on our clinical data 

(Chapter 5 and [130]). 

 

Fig. 4.4: A sample extension trial to illustrate different phases of biceps spasticity muscle tone profile and 

definitions of key simulation parameters. 
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(3) Post-catch phase 

The post-catch torque was modeled as the impedance with a virtual spring and a damper: 

𝜏𝑝𝑜𝑠𝑡−𝑐𝑎𝑡𝑐ℎ = 𝑘𝑝𝑜𝑠𝑡(𝜃𝐸 − 𝜃𝐸 𝑝𝑜𝑠𝑡𝑖𝑛𝑖𝑡)  + 𝑏𝑝𝑜𝑠𝑡�̇�𝐸  𝜏𝑐𝑎𝑡𝑐ℎ−𝑒𝑛𝑑 + 𝑘𝑅𝑂𝑀 (𝜃𝐸 − 𝜃𝑅𝑂𝑀) + 𝑏𝑅𝑂𝑀�̇�𝐸   

(4.6) 

where 𝑘𝑝𝑜𝑠𝑡 is the post-catch stiffness, 𝑏𝑝𝑜𝑠𝑡 is the post-catch damping coefficient, 𝜃𝐸 𝑝𝑜𝑠𝑡_𝑖𝑛𝑖𝑡 is 

the elbow angle at the beginning of the post-catch phase, 𝜃𝑅𝑂𝑀 is the elbow angle at the end of 

ROM for each MAS level (Table 4.1), and 𝜏𝑐𝑎𝑡𝑐ℎ−𝑒𝑛𝑑 is the torque at the end of the catch phase. 

𝜏𝑐𝑎𝑡𝑐ℎ−𝑒𝑛𝑑 was included as a torque continuity term between catch and post-catch phases. 

Furthermore, if the elbow angle exceeded the prescribed ROM, a software bumper was 

implemented in the controller as a very stiff impedance control to limit the ROM for each MAS 

score (i.e., 𝑘𝑅𝑂𝑀 =  .  Nm   and 𝑏𝑅𝑂𝑀 =  . 5 Nm   s). 

(4) Arm reset phase 

For a given practice condition, the arm trainer was configured to replicate spasticity in only 

one muscle group at a time (i.e., spasticity in only the biceps or only the triceps). Therefore, when 

the user was resetting the arm to the starting position for the next trial (most flexed or extended 

position, respectively), the muscle resistance was set to go exponentially to zero.  

𝜏𝑟𝑒𝑠𝑒𝑡 = 𝜏𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑒
−𝛽𝑡               (4.7) 

where 𝑡 is time, 𝜏𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 is the magnitude of the torque right before the user reverses the motion 

of the arm, and 𝛽 determines how fast the torque decays to zero (𝛽 = 120 s-1).  
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(5) Spasticity parameter determination 

Among three abnormal muscle behaviors, SP had the most complex model and the greatest 

number of control parameters. For each MAS level, Park et al. identified the spasticity parameters 

based on clinical data collected from four child spasticity subjects (one subject per each MAS 

level). However, due to the relatively small sample size and their underage subjects, we used 

spasticity parameters from two clinical studies datasets collected by our research group (Chapter 

5 and [130]) and compared with Park et al.’s original values.  

Song et al. tested 15 adult spasticity subjects (6 males, 9 females) in both elbow flexion 

and extension movements each for three trials and at four different speeds, i.e., slow (5-20 º/s), 

medium (20-80 º/s), fast (> 80 º/s), and the clinician’s preferred speed) [130]. Additionally, in an 

ongoing study described in Chapter 5, 10 adult spasticity subjects (7 males, 3 females) have been 

assessed while performing both elbow flexion and extension trials at two different speeds (slow (< 

30 °/s) and the clinician’s preferred speed).The inclusion/exclusion criteria for using the clinical 

data from both studies were: a) subjects with elbow contracture who had very high catch muscle 

tones were excluded from testing, b) trials without any catch or with very little catch were also 

excluded, and c) only the trials performed at the clinician’s preferred speed were used to determine 

the control parameters. 

To extract the muscle tone response, the torques due to forearm gravity and inertia were 

removed from the clinically-measured torque during post-processing. Combining the data from 

both studies and from both biceps and triceps, for each spasticity subject, all parameters were 

calculated and averaged across all valid trials. Finally, the calculated parameters were averaged 

for each MAS level, and the average and standard deviation of the calculated values were 

computed. Figure 4.4 is a sample extension trial of a MAS 2 spasticity subject at the clinician’s 
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preferred speed (from the study in Chapter 5) to illustrate our definitions of spasticity control 

parameters extracted from the clinical data. The catch angle was defined as the joint angle 

corresponding to the peak angular velocity (i.e., θcatch = 109 ° ± 13.1 °, 75.5° ± 8.7°, 82.1° ± 10.5°, 

76.8° ± 1.1 ° for MAS 1-4). To extract 𝐻, the catch amplitude was first calculated as the difference 

between the catch and pre-catch torques, which represents 𝐻�̇�𝑐𝑎𝑡𝑐ℎ𝑖𝑛𝑖𝑡 , and then was divided by 

the peak angular velocity (approximating �̇�𝑐𝑎𝑡𝑐ℎ𝑖𝑛𝑖𝑡) (i.e., H =1.73 ± 0.61, 1.67 ± 0.75, 2.49 ± 1.17, 

3.81 ± 1.58 Nm/°/s for MAS 1-4). 𝑄 was calculated by first taking the difference between the 

release torque and the pre-end torque, which equals to 𝑄 × (𝐻�̇�𝑐𝑎𝑡𝑐ℎ𝑖𝑛𝑖𝑡) and then, dividing it by 

𝐻�̇�𝑐𝑎𝑡𝑐ℎ𝑖𝑛𝑖𝑡 (i.e., Q =0.71 ± 0.08, 0.67 ± 0.12, 0.71 ± 0.02, 0.65 ± 0.23 for MAS 1-4).  

In parallel with extracting SP parameter from clinical datasets, two experienced clinicians 

(a physical therapist and a neurologist, both with 20+ years of experience) were invited and asked 

to perform extension trials at their preferred speed to provide expert tuning on SP parameters for 

each MAS score. They evaluated the simulated SP behaviors based on the  parameters from Park 

et al.’s study [48] and adjusted the parameters on the fly. The H values suggested by the clinicians 

were quite close to the values reported in Park et al.’s study, as well as the clinical values. (i.e., 

𝐻𝑐𝑙𝑖𝑛𝑖𝑐𝑖𝑎𝑛 = 1.5, 1.9, 2.8, 3.7 Nm/°/s and 𝐻𝑝𝑎𝑟𝑘 = 1.4, 2.0, 2.8, 3.8 Nm/°/s for MAS 1-4) and the Q 

values were smaller (i.e., 𝑄𝑐𝑙𝑖𝑛𝑖𝑐𝑖𝑎𝑛 = 0.075, 0.15, 0.4, 0.5 and 𝑄𝑝𝑎𝑟𝑘 = 0.15, 0.30, 0.6, 0.8 for 

MAS 1-4).  

Eventually, all three sources of information (i.e., clinical datasets, preliminary expert 

tuning, and original values from Park et al.) were considered to finalize the control parameters for 

spasticity simulation. Values of 𝐻 and catch angle were extracted heuristically considering the two 

datasets and clinician’s preliminary feedback. On the other hand, Q values from the clinical studies 
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were much higher compared to the values suggested by the clinicians for MAS 1 and 2 but were 

more similar for MAS 3 and 4. Note that the clinicians also indicated that for MAS 1 and 2, there 

should be a large release in torque after catch which implied that Q should be very small. Therefore, 

we adopted the Q values determined by the clinicians. For the ROM, clinicians mentioned that a 

full ROM should be observed except for MAS 4. Therefore, 𝜃𝑅𝑂𝑀 was set to be 150 º for MAS 1-

3 and 130 º for MAS 4. 𝑘𝑝𝑜𝑠𝑡 values were also tuned based on the input from the clinicians (zero 

for MAS 1 and 2 to render minimal resistance at the end of ROM). All control parameters were 

summarized in Table 4.1. 

 

C. System Modeling and Control Design 

The control system consisted of high-level and low-level control schemes (Fig. 4.5). To 

replicate the target abnormal muscle behavior and patient’s arm dynamics, the high-level controller 

calculated the desired reference interaction torque felt by the user (𝜏𝑢𝑠𝑒𝑟
𝑑 ): 

𝜏𝑢𝑠𝑒𝑟
𝑑 = 𝜏𝑚𝑢𝑠𝑐𝑙𝑒 + 𝜏𝑑𝑦𝑛      (4.8) 

where 𝜏𝑚𝑢𝑠𝑐𝑙𝑒is the simulated muscle tone for a selected behavior, and 𝜏𝑑𝑦𝑛 is the simulated torque 

due to the patient’s arm dynamics calculated based on the 5 th percentile human forearm inertia 

and gravity when driven by the user’s input motion. This desired torque command was then input 

Table 4.1. Summary of spasticity parameters. �̅�𝑐𝑎𝑡𝑐ℎ and H used by the trainer, based on data extracted 

from two clinical datasets (Chapter 5 and [130]) . Q, 𝜃𝑅𝑂𝑀  and 𝑘𝑝𝑜𝑠𝑡 were tuned by clinicians. D was 

adopted from Park et al. [48]. 

MAS 
𝜃𝑐𝑎𝑡𝑐ℎ 

(°) 
𝐻 

(𝑁𝑚/°/𝑠) 
𝑄 

𝜃𝑅𝑂𝑀 

(°) 
D 

𝑘𝑝𝑜𝑠𝑡  

(𝑁𝑚/°) 

1 110 1.8 0.075 150 60 0 

2 80 1.8 0.15 150 50 0 

3 80 3 0.4 150 30 0.05 

4 80 3.8 0.5 130 25 0.05 
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to the low-level control, which consisted of three controllers: a cascaded PI feedback controller 

(CFB), a model-based feedforward controller (CFF), and a disturbance observer (CDOB). This low-

level control was motivated by the needs of compensating for the mass and inertia mismatch 

between robotic and real patient’s forearms, as well as rejecting the external disturbance from user 

interaction. The actual interaction torque between the arm trainer and the user (𝜏𝑢𝑠𝑒𝑟 ) was 

estimated based on the torque measured by the series springs in the SEA with corrections using 

the knowledge of the robotic forearm mass and inertia properties (�̂�𝑢𝑠𝑒𝑟).  

 

Feedback controller 

The initial control design started with a cascaded PI feedback controller (innermost to 

outermost loop: current, velocity, and torque control) (Fig. 4.5, CFB), inherited from our previously 

developed ankle-foot robotic task trainer (Chapter 2 and [58]). There were two design 

considerations. First, the purpose of the extra middle velocity loop was to form a tight encoder-

based velocity feedback around the motor to fight against stiction and backlash in the motor and 

Fig. 4.5: (Top) Control system block diagram of the arm trainer and interaction with the human user. 

(Bottom) The details of the block diagram of each controller shown individually with corresponding inputs 

and outputs. FB: feedback, FF: feedforward, DOB: disturbance observer. Symbols are defined in the text. 
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its gearbox. This implementation was similar to [132,133], which is often referred as velocity-

sourced SEA control. Second, the reference motor velocity (�̇�𝑚
𝑑 ) was calculated by summing the 

measured motor velocity in the previous time step (�̇�𝑚_𝑝𝑟𝑒𝑣) with a desired change of velocity 

(∆�̇�𝑚
𝑑 ) obtained in the outer torque control loop based on the interaction torque error (𝜏𝑒 ). 

Essentially, the torque control loop only specified the change of motor velocity on top of the 

current velocity, rather than commanding a completely new velocity set point. This technique 

helped smooth out the reference velocity trajectory and also effectively reduced the effect of 

external link motion disturbance driven by the user, in the same spirit of “load motion 

compensation” suggested in [88,124]. However, given the nonnegligible mass and inertia 

difference between the robotic forearm and the human forearm, this controller alone was less 

effective compared to its original implementation on the ankle-foot trainer, so additional 

controllers were introduced. 

Feedforward controller 

To account for the mass and inertia discrepancy between the human arm and arm trainer, 

a 2-DOF dynamic model of the arm trainer was established to guide the design of the components 

in a feedforward control effort (Fig. 4.5, CFF  and Fig. 4.6). For clarity and without loss of 

generality, the drivetrain gear ratio was ignored in the model (but was implemented in the actual 

controller). Friction and damping at the motor gearbox and at the elbow joint were not modeled 

and assumed to be mostly removed by the feedback control. The equations of motion for the motor 

output torque (𝜏𝑚) and the user’s applied torque, i.e., also the user felt torque (𝜏𝑢𝑠𝑒𝑟) were derived 

as: 

𝜏𝑚 =  𝐼𝑚�̈�𝑚 + 𝑘𝑠(𝜃𝑚 − 𝜃𝐹)     (4.9) 

𝜏𝑢𝑠𝑒𝑟 = 𝐼𝑇�̈�𝐹 + 𝑘𝑠(𝜃𝐹 − 𝜃𝑚) + 𝑚𝑇𝑔𝑙𝑐𝑜𝑠𝜃𝐹            (4.10) 
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where 𝜃𝐹  and �̈�𝐹  are the forearm segment angle and acceleration, 𝜃𝑚  and �̈�𝑚 are the motor shaft 

angle and acceleration, 𝑘𝑠 is the series spring stiffness, 𝐼𝑚 is the reflected motor rotor inertia, 𝑚𝑇 

and 𝐼𝑇 are the mass and moment of inertia (around the elbow) of the task trainer’s forearm, and 𝑙 

is the distance between the elbow and forearm center of mass. By combining (4.9) and (4.10), the 

user felt torque was obtained as 

𝜏𝑢𝑠𝑒𝑟 = 𝐼𝑇�̈�𝐹 + 𝐼𝑚�̈�𝑚 − 𝜏𝑚 +𝑚𝑇𝑔𝑙𝑐𝑜𝑠𝜃𝐹        (4.11) 

 

 

 

The torque due to simulated arm dynamics was defined as 

𝜏𝑑𝑦𝑛 = 𝐼𝐻�̈�𝐹 +𝑚𝐻𝑔𝑙𝑐𝑜𝑠𝜃𝐹     (4.12) 

which consists of the torque due to the human forearm inertia (𝐼𝐻�̈�𝐹) and gravity (𝑚𝐻𝑔𝑙𝑐𝑜𝑠𝜃𝐹). 

𝐼𝐻 (0.071 kgm2) and 𝑚𝐻 (1.63 kg) values are 50th percentile human forearm moment of inertia and 

mass [108].  

Considering that the mass and inertia of the task trainer’s forearm were less than that of an 

actual human forearm, two positive constant terms were defined as 𝐼∆ = 𝐼𝐻 − 𝐼𝑇 and 𝑚∆ = 𝑚𝐻 −

Fig. 4.6: Free body diagrams of the robotic task trainer. 
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𝑚𝑇. Therefore, since the goal was to minimize the error between the user felt torque (𝜏𝑢𝑠𝑒𝑟) and 

the desired torque (𝜏𝑢𝑠𝑒𝑟
𝑑 ) to achieve a good torque tracking performance, by setting 𝜏𝑢𝑠𝑒𝑟 = 𝜏𝑢𝑠𝑒𝑟

𝑑 , 

the feedforward torque command to the motor was strategically chosen as  

𝜏𝑚_𝑓𝑓 = −𝐼∆�̈�𝐹 −𝑚∆𝑔𝑙𝑐𝑜𝑠𝜃𝐹 + 𝐼𝑚�̈�𝑚 − 𝜏𝑚𝑢𝑠𝑐𝑙𝑒.      (4.13) 

Equation 4.13 motivated the structure of the feedforward controller. The following signals 

were fed forward: reference muscle tone profile (𝜏𝑚𝑢𝑠𝑐𝑙𝑒), motor inertia compensation (𝐼𝑚�̈�𝑚), 

and the torques used to render the gravity and inertia difference between the task trainer and the 

real human arm. To implement this feedforward law practically, to calculate the motor inertia 

compensation, motor reference acceleration ( �̈�𝑚
𝑑 ) was used (instead of the actual motor 

acceleration �̈�𝑚) to obtain a smoother signal. In addition, 𝜃𝐹  was approximated by the absolute 

encoder reading on the actuator side and �̈�𝐹  was obtained via double differentiation of 𝜃𝐹 . In 

addition to these feedforward terms in (4.13), the spring torque in the previous time step (𝜏𝑠_𝑝𝑟𝑒𝑣) 

was also fed forward to maintain the current interaction torque similar to the use of �̇�𝑚_𝑝𝑟𝑒𝑣 

described above. This approach also minimized the feedback control effort to compress the spring 

[133]. Given the inevitable unmodeled dynamics and model mismatch, the residual torque error 

between 𝜏𝑢𝑠𝑒𝑟 and 𝜏𝑢𝑠𝑒𝑟_𝑑 will always exist and were dealt with by the feedback control. 𝜏𝑚_𝑓𝑓 

was then converted to feedforward current command (𝑖𝑓𝑓) through the motor torque constant (𝐾𝑡). 

Disturbance Observer 

A disturbance observer (DOB) is a simple and effective robust control scheme that has 

been widely used in industrial motion control [134]. Since the SEA converts the force control 

problem into a position control problem by using the motor torque to modulate the spring 
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deflection, DOB has become a popular technique for SEA control especially when there is a need 

to minimize the effect of internal and external disturbances [123,126,135,136].  

The implementation of a DOB involved specifying a nominal plant (𝑃𝑛) and a low-pass 

filter (𝑄𝐿𝑃) (Fig. 4.5, CDOB). Intuitively, a DOB compares the reference motor torque and the 

estimated motor torque, calculated using the series spring torque and the inverse nominal plant, 

and then compensates the difference due to various sources of disturbance. The low-pass filter 

determines up to which frequency the disturbance would be rejected and also makes 𝑃𝑛
−1𝑄𝐿𝑃 

realizable [134]. To obtain the nominal plant transfer function, a system identification process was 

conducted. The forearm was fixed in a 90° joint angle configuration and the motor was operated 

in a current-control mode given a chirp current signal with an amplitude of 1 A and frequency 

changing from 0.1 – 10 Hz. The torque estimated by the series spring was also recorded. The open-

loop plant (𝑃𝑜𝑙) was fitted (System Identification Toolbox v9.13, MATLAB 2022a) with a transfer 

function from the geared motor torque (𝑁𝜏𝑚, where N = 5) to spring torque (𝜏𝑠) with mechanical 

efficiency (𝜂 < 100 %). 

𝑃𝑜𝑙(s) =
𝜂𝜏𝑠(𝑠)

𝑁𝜏𝑚(𝑠)
=

𝜂

𝑁

𝑁𝜔𝑛
2

𝑠2+2𝜔𝑛𝜁𝑠+𝜔𝑛
2 =

312 5

𝑠2+9 945𝑠+366 4
     (4.14) 

From (4.14), the system identification results suggested an open-loop natural frequency (𝜔𝑛) of 

~3 Hz and an efficiency of ~85 %. To track a torque command up to 6 Hz (i.e., the case of CR), 

DOB in the inner loop was implemented to shape the existing plant into a faster plant to facilitate 

outer loop control [123,134]; thus, the nominal plant was selected to have a natural frequency of 

8 Hz (4.15).  

𝑃𝑛(s) =
2524

𝑠2+13𝑠+2524
               (4.15) 
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The low-pass filter was designed to be a second-order Butterworth filter with a cut-off frequency 

of 15 Hz, which was the highest cut-off frequency allowed by the trainer hardware. 

𝑄𝐿𝑃(𝑠) =
8883

𝑠2+133 3𝑠+8883
              (4.16) 

Interaction torque estimation 

One advantage of the SEA is the ability to use series spring deflection to estimate the 

interaction force or torque, instead of using an expensive external force/torque sensor. If 

rearranging (4.10), note that the torque estimated by the series spring (𝜏𝑠) did not directly measure 

the torque felt by the user, since it also contained gravitational and inertial torques of the trainer’s 

forearm (4.17). 

𝜏𝑠 = 𝑘𝑠(𝜃𝐹 − 𝜃𝑚) = 𝜏𝑢𝑠𝑒𝑟 − 𝐼𝑇�̈�𝐹 −𝑚𝑇𝑔𝑙𝑐𝑜𝑠𝜃𝐹        (4.17) 

�̂�𝑢𝑠𝑒𝑟 = 𝜏𝑠 + 𝐼𝑇�̈�𝐹 +𝑚𝑇𝑔𝑙𝑐𝑜𝑠𝜃𝐹     (4.18) 

As a result, instead of directly feeding the series spring torque back as the measured interaction 

torque, the estimated forearm’s gravitational and inertial torques were first compensated based on 

the series spring torque to calculate the estimated user felt torque (�̂�𝑢𝑠𝑒𝑟) as in (4.17) and then the 

error between �̂�𝑢𝑠𝑒𝑟 and 𝜏𝑢𝑠𝑒𝑟
𝑑  would be the input to the feedback controller (Fig. 4.7). 

Fig. 4.7:  iagram of SEA’s interaction torque estimation scheme. 
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D. Evaluation Protocol 

Benchtop Evaluations 

Torque estimation verification test 

Benchtop tests started with verifying the interaction torque estimated by the series spring. 

The actual user felt torque (𝜏𝑢𝑠𝑒𝑟) was measured by a shear force load cell (20 kg, CZL635, 

Phidgets Inc., Canada) installed between the trainer’s forearm and user (Fig. 4.8). Due to the 

presence of the load cell, the forearm shroud and hand were removed. To roughly match their mass 

and inertia, a weight of 2 lb (0.91 kg) was rigidly attached to the forearm. Based on (4.18), to 

compute the estimated user felt torque (�̂�𝑢𝑠𝑒𝑟), the mass and inertia of the task trainer’s forearm 

( T = 1. 1 kg, IT =  .    kg⋅m
 ) were obtained from the CAD model, and the spring torque (𝜏𝑠), 

forearm segment angle (𝜃𝐹) and acceleration (�̈�𝐹) were collected from onboard sensors. The test 

protocol involved manually moving the trainer’s forearm throughout the 150° ROM within 1 s for 

three trials (holding the handle tip with a fixed 27 cm moment arm). To evaluate the interaction 

torque estimation accuracy, the root mean squared error (RMSE) between �̂�𝑢𝑠𝑒𝑟  and 𝜏𝑢𝑠𝑒𝑟was 

calculated. Note that after this test, the load cell and the additional weight were removed, and the 

forearm shrouds and hand were reinstalled. 𝑚𝑇  and 𝐼𝑇  were rederived from CAD model 

accordingly, which were  .91 kg and  .  6 kg⋅m . 
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Torque tracking accuracy test 

The proposed control system was tested to evaluate its performance on delivering the 

desired interaction torque to the user (𝜏𝑢𝑠𝑒𝑟
𝑑 ). To understand the effectiveness of each controller, 

an ablation study was conducted to examine the tracking performance of four controller settings: 

a) feedback control only (CFB), b) both feedback and feedforward control (CFB + CFF), c) feedback 

control, feedforward control, and disturbance observer (CFB + CFF + CDOB), and d) same as case 

c but with higher feedback gain (CFB + CFF + CDOB with high gain). In case d, note that with the 

addition of the CFF and CDOB, the torque loop P gain in CFB could be further increased. For each 

setting, the investigator performed the passive stretch test by mimicking the standard clinical 

technique (moving the arm through the ROM within 1 s) on the arm trainer to assess the simulated 

behavior for three trials. This procedure was repeated for each behavior across severities (3 

UDPRS scores for LR, 3 UPDRS scores for CR, and 4 MAS scores for biceps and triceps SP, 

shown in Fig. 4.2). For each trial, to verify the torque tracking accuracy, the RMSE was calculated 

Fig. 4.8: Experimental setup for torque estimation verification test. 
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throughout the ROM (extension only for SP; both extension and flexion for LR and CR) and then 

averaged across three trials with standard error (SE) reported. Additionally, the percentage errors 

were calculated as 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑅𝑀𝑆𝐸

|𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑜𝑟𝑞𝑢𝑒|
× 1   %, where the maximum torque was extracted from the 

thick red curve (muscle tone + arm dynamics) in Fig. 4.3. 

Clinical Expert Evaluations 

Test protocol 

To validate the realism of the task trainer in mimicking the three behaviors, a validation 

evaluation was conducted to get feedback from clinical experts in spasticity and rigidity 

assessment. The study was approved by the Institutional Review Board at University of Illinois at 

Urbana-Champaign and informed consent was obtained from all subjects. The study was 

conducted in the Jump Simulation and Education Center in Peoria, IL with a total of seven subjects 

(Table 4.2).  

Before starting the study, written descriptions of UPDRS and MAS scores were provided 

to the subject. The clinical evaluation consisted of a Classification Test (CT) and a Disclosed 

Assessment Test (DAT). During the CT, the arm was configured to replicate all 15 different 

conditions (i.e., healthy, LR UPDRS 1-3, CR UPDRS 1-3, biceps SP MAS 1-4, and triceps SP 

Table 4.2: Subject demographic information 
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MAS 1-4), one trial per condition and in total 15 trials each in randomized sequence (using 

Random Module in Python 3.9). Without knowing the condition being simulated, the subject was 

asked to assess each trial to classify the behavior and evaluate its severity based on their prior 

clinical experience. They were instructed to always start the passive stretch test from the fully 

flexed joint position and to check both biceps and triceps conditions. 

During the DAT, the investigator walked the subject through all 15 simulated conditions 

(disclosed to the subject). The subject provided qualitative feedback on simulation realism of each 

replicated behavior, and attitude toward the potential of this device as a medical education task 

trainer by answering multiple five-point Likert questions (Table 4.3).  

 

Data analysis 

For the CT, the judgements from subjects were plotted against the trainer’s setup using a 

confusion matrix to determine if subjects could distinguish the behaviors (LR, CR, and SP). The 

classified percentage was calculated as 
# 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑟𝑖𝑎𝑙𝑠

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑎𝑙𝑠
× 100 % for each behavior. Any trend 

Simulation Realism Questions 

Behavior Assessment Metrics 

LR  resistance magnitude, range of motion 

CR cogwheel frequency, cogwheel magnitude 

SP (biceps + 

triceps) 

catch angle location, catch tone amplitude,  

release tone amplitude, post-catch tone amplitude, range of motion 

General Usefulness Questions  

As an educational tool for healthcare learners to practice rigidity and spasticity assessment techniques 

 

Table 4.3. DAT feedback questions. 5-point Likert scale for a) simulation realism: 1-too little, 3-about 

right, 5-too much; b) general usefulness: 1-strongly disagree, 3-neutral, 5-strongly agree.   
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of mismatch on behavior severity was noted to be justified later by DAT results. For the DAT, the 

mean and standard error were calculated for each simulation aspect.  

4.3 Results 

A. Benchtop Validation 

Torque estimation verification test 

Three trials were manually conducted (average peak speed of 166 ± 3.4°/s) and the RMSE 

between �̂�𝑢𝑠𝑒𝑟  and 𝜏𝑢𝑠𝑒𝑟  remained low (0.16 Nm) across three trials (Fig. 4.9). This result 

validated the interaction torque estimation based on spring torque (𝜏𝑠) and forearm mass and inertia 

(𝑚𝑇  𝐼𝑇) as in (4.18).  

 

Torque tracking accuracy test 

Four different controller settings, i.e., CFB  only, CFB + CFF , CFB + CFF + CDOB , and 

CFB + CFF + CDOB  (HG), were tested. As more controller blocks were involved, the tracking 

performance was significantly improved for all behaviors (Table 4.4 and Fig. 4.10). The 

incorporation of feedforward control significantly improved the tracking performance by 17-49 % 

Fig. 4.9: Torque estimation verification test results. 
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from the baseline feedback controller (i.e., CFB only). Furthermore, the addition of DOB further 

reduced the tracking error for SP and CR trials by 23-43 % compared to CFB + CFF. Eventually, 

with CFB + CFF + CDOB  (HG), the tracking performance was again improved by 16-36 % 

compared to CFB + CFF + CDOB . These results led us to use the CFB + CFF + CDOB  (HG) 

controller.

 

  Controller 

    FB FB+FF FB+FF+DOB FB+FF+DOB (HG) 

Spasticity    

(MAS) 

1 0.357 (0.011) 0.268 (0.004) 0.190 (0.013) 0.122 (0.007) 

2 0.336 (0.004) 0.263 (0.010) 0.188 (0.011) 0.122 (0.010) 

3 0.469 (0.019) 0.388 (0.010) 0.293 (0.005) 0.212 (0.004) 

4 0.662 (0.025) 0.410 (0.008) 0.314 (0.011) 0.236 (0.013) 

Lead-pipe 

Rigidity 

(UPDRS) 

1 0.135 (0.004) 0.098 (0.002) 0.084 (0.003) 0.069 (< 0.001) 

2 0.162 (0.005) 0.108 (0.004) 0.090 (0.001) 0.070 (< 0.001) 

3 0.156 (0.001) 0.106 (0.002) 0.103 (0.008) 0.087 (0.008) 

Cogwheel 

Rigidity 

(UPDRS) 

1 0.333 (0.023) 0.170 (0.009) 0.122 (0.001) 0.094 (0.002) 

2 0.293 (0.018) 0.237 (0.004) 0.163 (< 0.001) 0.111 (0.003) 

3 0.396 (0.018) 0.335 (0.031) 0.192 (0.006) 0.132 (0.004) 

Table 4.4: Torque tracking accuracy test results. Mean (SE) of RMSE for controller settings across 

behaviors (SP, LR, and CR) and severities (MAS and UPDRS). Unit: Nm. 
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B. Clinical Expert Validation 

Each subject went through a CT and a DAT during the clinical session. During the CT, it 

was noticed that Subjects 4 and 7 had different assessment patterns compared to others. 

Specifically, Subject 4 tended to make very quick assessments (i.e., often only performed a single 

passive stretch per trial and then made a judgment), while other subjects usually performed the 

stretch multiple times and took time to consider the simulated muscle tone behavior and severity. 

Subject 7 used a less standard technique, i.e., using one hand to casually move the trainer’s arm 

without stabilizing the elbow/upper arm with another hand. Based on these observations, these two 

subjects were marked as potential outliers in the data analysis, and we calculated the classified 

percentages in the CT with and without Subjects 4 and 7. On the other hand, during DAT when 

Fig. 4.10: Sample tracking results for typical SP, CR, and LR behaviors using the CFB + CFF + CDOB with 

high gain controller. 
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these two subjects carefully assessed the trainer same as other subjects, their feedback were 

consistent with the rest of the group, so their feedback were included in DAT data analysis (see 

Appendix A). 

Based on CT results, on average, subjects were able to distinguish three different behaviors 

with an accuracy of 87% (or 92% if excluding Subjects 4 and 7), suggesting that the simulated SP, 

LR, and CR behaviors were distinctive (Fig. 4.11). Note that 10 of 16 misclassified trials (e.g., the 

off-diagonal entries in the confusion matrix) were found due to Subject 4 (6 trials) and 7 (4 trials), 

and the remaining 6 were scattered across the other five subjects (see Appendix A for the confusion 

matrix of individual subjects). For rigidity, severity agreement was in general satisfactory. For 

Fig. 4.11: Classification Test results reported in a confusion matrix (values in the matrix were the frequency 

of judgement), with correctly classified percentages reported (values in parentheses are without Subjects 4 

and 7). Submatrices in red boxes indicated separate behaviors (LR, CR, Biceps-SP, Triceps-SP, and 

healthy). 
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spasticity, severity agreement matched with regular qualitative clinical assessment accuracy of 

interest, where mild (MAS 1 and 2) and severe (MAS 3 and 4) SP trials were mostly separated, 

and some trials were mixed within the severity group.  

 AT results suggested that in general subjects agreed with the trainer’s simulation (i.e., 

most aspects scored close to 3) (Fig. 4.12) and all subjects strongly agreed that the device was 

useful as an educational tool for healthcare trainees to learn spasticity and rigidity (scored 4.86 out 

of 5). A few responses that scored away from 3 were summarized and later used to explain 

discrepancies in Classification Test in Section 4.4B.  For LR, subjects reported that the resistance 

magnitude should be lower for UPDRS 1 and higher for UPDRS 3. For CR, subjects indicated that 

the cogwheel frequency was “about right” across levels, whereas the cogwheel magnitude was 

Fig. 4.12: DAT results on simulation aspects of LR, CR, and SP. A score of   was considered “about right” 

or “neutral”. Mean scores were reported for each aspect. Error bar: standard error.  
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higher than expected for UPDRS 1 and 2. On the other hand, for SP, subjects reported that the 

catch should occur earlier in the ROM for MAS 1 and 4. They also indicated that the catch tone 

should be lower for MAS 3. Furthermore, there should be more release for MAS 1 and MAS 3 and 

the post-catch tone should be lower for MAS 1, 3, and 4. 

4.4 Discussion 

A. Modeling, Control, and Benchtop Validation  

In summary, three abnormal muscle conditions at different severity levels and health 

normal condition (for a total of 15 conditions) were mathematically modeled, and their 

corresponding torque profiles were tracked by a proposed control system involving feedback, 

feedforward, and disturbance observer control on the SEA-based task trainer.  

We started with the feedback controller inherited from the ankle-foot trainer (Chapter 2 

and [58]), but since the mass and inertia of the trainer’s forearm were lower than an actual human 

forearm, we incorporated a model-based feedforward controller to compensate for the mismatch. 

In the context of our SEA, the force sensor is the series spring located between the elbow and 

forearm, so the mass and inertia of forearm mechanism and protective shrouds were considered as 

post-sensor mass and inertia. It is known that it is difficult to modulate the apparent post-sensor 

mass and inertia with feedback force control algorithms and such systems usually need to rely on 

feedforward control [137]. In the case of the ankle-foot trainer, the post-sensor mass and inertia 

were similar to that of a biological foot, so the feedforward control was not involved. Other than 

rendering the trainer’s forearm with a higher mass and inertia, the feedforward control also took 

over several tasks from the feedback control (such as compressing the spring and accelerating the 

motor), leaving the feedback control to only address the remaining torque error due to unmodeled 

dynamics. 
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This robotic task trainer is a typical application with force control accuracy requirement 

under external disturbance. The user’s input motion (i.e., moving the forearm to assess the muscle 

tone) represents the motion disturbance that constantly perturbs the end of the series spring 

connected to the forearm and this motion disturbance should be rejected in the perspective of the 

force control. In addition, as the user holds onto the trainer’s forearm, the mass and inertia of the 

user’s own arm is coupled with the robotic trainer’s dynamics, causing model variation that 

degrades the performance of model-based control schemes. Therefore, DOB was introduced in our 

control system, which is a simple and effective robust control scheme widely used in the industrial 

motion control [134]. We implemented the DOB with a nominal plant only considering the robotic 

trainer model (ignoring human interaction dynamics) to reduce the effect of internal and external 

disturbance from human interaction in the innermost current loop [123], in order to facilitate the 

design of cascaded feedback control (i.e., enable higher gains in the outer loop controllers). 

Overall, the proposed control system (CFB + CFF + CDOB  with high gain) was found 

effective in tracking all three behaviors (Table 4.2 and Fig. 4.9). Among the three behaviors, as 

expected, the LR profile was the simplest to track, resulting in the lowest RMSE (< 0.16 Nm even 

for just CFB only). On the other hand, SP and CR profiles were more complex and challenging due 

to an abruptly changing piecewise torque trajectory and high frequency oscillations, respectively, 

so their tracking errors were higher. Note that for all behaviors, although the amplitude of RMSE 

increased with MAS and UPDRS scores because of higher torque command amplitudes associated 

with higher severities, the error percentage remained about the same across severities (small error 

percentages, i.e., < 2.5 % for LR, < 2.8 % for CR, and < 2.3 % for SP).  
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B. Clinical Expert Validation 

Classification Test results suggested that subjects were able to distinguish three different 

behaviors with a good accuracy of 87 % (92 % without Subjects 4 and 7) (Fig. 4.9). Occasionally, 

subjects identified some SP trials as LR or CR. For MAS 1 (both biceps and triceps), the catch 

occurred later than expected in the ROM (Table 4.1) (scores of 3.7 and 3.3). Since the release 

behavior was barely felt as it was too late (scores of 2.5 and 2.7), subjects might consider LR 

occurring at the end of the ROM, thus rating the trial as mild LR (UPDRS 1 or 2). Similarly, for 

severe SP trials (i.e., MAS 3 and 4), the catch and post-catch resistance magnitudes were quite 

higher than expected (scores > 3). It was difficult to push the arm through the entire ROM and 

subjects might have felt a constant high resistance for a large portion of the ROM, therefore 

judging the trial as severe LR case (i.e., UPDRS 3). Additionally, Subjects 3 and 4 confused two 

of the SP trials with CR, where Subject 4 commented that the vibrations coming from the drivetrain 

could be the confusing factor (i.e., it felt similar to the tremor of CR), which might explain this 

misclassification.  

Some discrepancies were observed between their judgement and the actual simulated 

severity and DAT results might provide some explanations (Fig. 4.10). For LR, the resistance 

magnitude was scored 3.5 for UPDRS 1 and 2.3 for UPDRS 3, which could explain why subjects 

misinterpreted UPDRS 1 as higher levels, or UPDRS 3 as lower levels. For CR, subjects mentioned 

that the cogwheel magnitude should be lower for UPDRS 1 (a score of 3.7) which suggests why 

this severity was confused with UPDRS 2. For SP, subjects suggested more release and lower post-

catch tone amplitude should be implemented for MAS 1 which may explain why they misidentified 

MAS 1 as MAS 2 in some trials. They also indicated that the catch and post-catch tone amplitudes 
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were higher than their expectations for MAS 3 which may also explain why MAS 3 was confused 

with MAS 4.  

Three subjects also commented that clinically they would usually pay more attention to 

rating the patient based on severity groups such as mild (MAS 1 and 2) or severe (MAS 3 and 4) 

to determine the treatment plan, rather than identifying the exact MAS level within a severity group. 

Furthermore, during a normal assessment, clinical signs from other parts of the body (e.g., posture, 

hand positioning) usually also provide insights regarding the patient’s neurologic conditions, not 

solely the muscle tone. Therefore, our Classification Test was more difficult than during the 

clinician’s regular practice, in the sense that it required subjects to rate the exact severity level only 

based on muscle tone information. Even in this strict and challenging assessment scenario, it is 

quite promising to see that subjects were able to distinguish across behaviors and identify the 

severity group for each behavior. This observation suggests that the simulation provided by our 

task trainer captured the key characteristics of each behavior and the design of each severity level 

mostly aligned with the subjects’ previous experience. Furthermore, if the examiner used improper 

technique or did not closely feel the muscle tone with multiple trials, it was observed that assessing 

muscle tone was challenging even for experienced clinical experts (e.g., Subjects 4 and 7). This 

observation further motivated the significance of the robotic task trainers in improving the 

proficiency and standardization of the assessment technique for the trainee. Overall, subjects 

agreed that the device could be a useful medical education training tool for healthcare learners to 

practice both rigidity and spasticity assessment techniques and highly recommended this training 

approach to their students. 

C. Limitations and Future Work 

In retrospect, some control complexity could have been avoided if the control requirements 
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were comprehensively accounted in the mechanical design. For example, the task trainer was 

originally designed to only mimic LR (i.e., a slow-varying torque profile), and the system natural 

frequency (determined by the spring stiffness, gear ratio, etc.) was around 3 Hz, which posed 

difficulties to perform fast simulation tasks such as CR and SP. These faster tasks motivated us to 

use DOB with a faster nominal plant to suppress the open-loop system resonance.  

In this human-robot interaction scenario, the trainee’s dynamics (or more generally, 

environment dynamics) are coupled to the task trainer’s dynamics. It is known that force control 

performance varies with different environment dynamics [88].  Therefore, in this work, the 

environment dynamics was considered as a source of disturbance, and we attempted to reject it by 

a fixed-gain feedback controller and a DOB scheme. In the context of medical training, trainees 

with different body sizes (i.e., load mass), joint stiffness (i.e., load impedance) and techniques (i.e., 

load motion disturbance) represented different possible environment dynamics to interact with the 

task trainer. Therefore, a variable-gain controller might be more suitable for this application and 

potential controllers could be explored, e.g., adaptive control, gain-scheduling control, or 

optimization-based control (e.g., model predictive control).  

Furthermore, valuable feedback was received from the clinical validation study regarding 

the fine-tuning of the simulation aspects. As future steps, the device should be experimentally 

deployed and incorporated into the curriculum for healthcare students. 

4.5 Conclusion 

This chapter presented the modeling, control, and clinical validation pipeline of a robotic 

arm task trainer to mimic three abnormal muscle behaviors namely lead-pipe rigidity, cogwheel 

rigidity, and spasticity at varied severities. The SEA-based system together with the presented 

control system was validated to be able to deliver accurate torque control during user interaction. 
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Based on the clinical study results, this task trainer can be a clinically useful and cost-effective 

medical education tool to provide realistic and consistent practice opportunities for clinical 

learners to get proficient with rigidity and spasticity assessment techniques to reduce the need for 

human patients. 
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CHAPTER 5 

PRELIMINARY RESULTS OF CLINICAL 

QUANTIFICATION OF SPASTICITY AND 

RIGIDITY IN THE UPPER EXTREMITY 11  

Abstract 

 To systematically design task trainers to mimic abnormal muscle behaviors and severity 

levels, quantitative data describing kinematic and kinetic relationships of these behaviors are 

necessary. Currently, there is a lack of quantitative data in the literature to describe these 

relationships when using a passive stretch test to assess spasticity or rigidity (lead-pipe and 

cogwheel types). To assist with development of an upper-extremity task trainer for practicing the 

neurologic exam and to establish a large database on the upper arm muscle groups (biceps/triceps), 

we are conducting a cross-sectional study across individuals with spasticity or rigidity. This 

clinical data collection study is being conducted in China with a goal of documenting kinematic 

and kinetic data for different severity levels of spasticity and rigidity (lead-pipe and cogwheel 

types) and healthy control subjects. The target is to assess at least 10 individuals per behavior and 

severity level, for a total of 110 subjects. Given the COVID-19 pandemic in China, the study has 

been delayed and only a pilot group of 15 spasticity subjects have been tested. Data from 10 are 

 
11 A brief report of preliminary results from spasticity patients was presented in [73]: Pei, Y., Feng, Y., 

Song S.Y., Zallek, C.M., Liu, T., and Hsiao-Wecksler, E.T., 2022. Quantification of Elbow Spasticity 

(Preliminary Results), North American Congress on Biomechanics, Ottawa, Canada, August 21-25, 2022.  
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included in the analysis of this chapter. Among these subjects, elbow kinematics, clinician’s 

applied force and torque, and surface electromyography data were collected. An inverse dynamics 

procedure was performed to compute the elbow net joint torque. Clinical observations obtained 

through the progress of this study have been used to guide the choice of spasticity model 

parameters in Chapter 4 Section 4.2B. Through the pilot study, a few limitations of the current 

sensor setup have been identified, and potential solutions are proposed. 

5.1   Introduction 

Accurate clinical assessments of spasticity and rigidity are needed for effective patient 

diagnosis and management. These abnormal muscle behaviors arise from upper motor neuron or 

basal ganglia lesions observed with some neurologic conditions. Assessment involves a clinician 

passively stretching the patient’s muscles and assessing the resistance to movement. Clinical scales, 

e.g., the Modified Ashworth Scale (MAS) for spasticity [138] (Table 5.1) and the motor portion 

of the Unified Parkinson’s  isease  ating Scale (UP  S) for rigidity [139] (Table 5.2), are used 

to rate a patient’s severity level based on behaviors observed or felt by the clinician. The qualitative 

nature of these scales can result in poor consistency and low reliability.  

The establishment of a quantitative database containing kinematic, kinetic, and muscle 

activation patterns of abnormal muscle tone during clinical assessments can be useful for a board 

spectrum of audience. Quantitative measurements could improve assessment and clinicians can 

objectively track the severity of their patient’s impairment with an instrumented device. 

Furthermore, the database will provide quantitative evidence for neuropathologists and 

neuroscientists to understand the underlying neuromuscular mechanics of abnormal muscle tones. 

For engineers like us who want to develop medical education task trainers for neurologic 
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examination training, the kinematic and kinetic relationship of the pathologic muscles will guide 

the design of the simulated behaviors. 

The overarching goal is to recruit and test at least 110 participants of various muscle 

condition and severity for data collection purpose. Therefore, this study serves as a pilot study to 

this long-term goal and we aim to develop a robust and efficient clinical pipeline. This study 

presented the implementation of a feasible instrumented wearable sensor setup, the test protocol 

design, and potential data analysis approaches. A pilot group of 15 subjects (spasticity only) were 

recruited and tested with the proposed workflow. 

Table 5.1: Modified Ashworth Scale (MAS) for assessing spasticity [138]. 

Score Description 

0 (0)a No increase in muscle tone 

1 (1) 
Slight increase in muscle tone, manifested by a catch and release or by minimal resistance at 

the end of the range of motion when the affected part(s) is moved in flexion or extension 

1+ (2) 
Slight increase in muscle tone, manifested by a catch, followed by minimal resistance 

throughout the reminder (less than half) of the range of motion 

2 (3) 
More marked increase in muscle tone through most of the range of motion, but affected part 

is easily moved 

3 (4) Considerable increase in muscle tone, passive movement difficult 

4 (5) Affected part is rigid in flexion or extension 

a Numbers in parenthesis represent a variant of the Modified Ashworth Scale [15] and this convention 

was used throughout this dissertation. 
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Table 5.2: Motor section of the Unified Parkinson’s  isease  ating Scale (UP  S) for assessing 

rigidity [139]. 

Score Description 

0 No rigidity 

1 Slight or detectable rigidity only detected with activation maneuver 

2 
Mild to moderate rigidity detected without the activation maneuver, but full ROM is easily 

achieved. 

3 Marked rigidity detected without the activation maneuver; full ROM is achieved with effort. 

4 
Severe rigidity detected without the activation maneuver and full range of motion not 

achieved. 

5.2 Scope of Quantitative Database 

We seek to conduct a cross-sectional study targeting at least 110 test participants (Table 

5.3) to build a quantitative database on measured elbow kinematic and kinetic behaviors in patients 

with spasticity, lead-pipe rigidity, and cogwheel rigidity across severities and healthy controls 

during passive stretch tests. These four types of subject groups (18-80 yrs) will be recruited by 

clinicians at Zhejiang Hospital and Pudixin Rehabilitation Hospital in Hangzhou, China. IRB 

approval has been received from the University of Illinois at Urbana-Champaign and Zhejiang 

Hospital System.  

Table 5.3: Recruitment target for the quantitative database. 

 

The desire is to collect data from at least 10 individuals per behavior and severity level, which 

would result in needing only 110 test participants. The same severity level of rigidity (lead-pipe 

or cogwheel) is typically observed for both agonist and antagonist muscle groups; however, in 
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spasticity, agonist and antagonist muscle groups may present as different severity levels. Therefore 

if a spasticity patient presents with different severity levels in the agonist and antagonist muscle 

groups (biceps/triceps), then additional patients will be recruited to achieve 10 samples per 

condition and severity level. 

5.3 Instrumented Clinical Assessment Tools 

 A multi-sensor wearable instrumented setup was established (Fig 5.1, left). A custom 

device created by our group, the Position, Velocity, and Resistance Meter (PVRM) [72], consisted 

of two modules: moving (wrist) and main (upper arm). Each module contained a 6-axis IMU12 

(MPU 6050, InvenSense, USA). The moving module also included a 6-axis force/torque (F/T) 

sensor (M3703C, Sunrise Instruments, China). The compact design of the moving module allows 

clinicians to use their regular manual assessment technique (Fig 5.1, right). The PVRM records 

elbow joint angular position and velocity via the IMUs and the clinician’s applied load via the   T 

sensor. This IMU was selected because the absolute heading measurement was not required and 

also there would be no magnetic interference issue due to surrounding ferrous objects in the indoor 

 
12 A 6-axis IMUs only contains a 3-axis accelerometer and a 3-axis gyroscope, without a magnetometer. A 9-axis 

IMU will also have a 3-axis magnetometer to measure the magnetic field strength. 

Fig 5.1: (Left) Sensor placements of the P  M. ( ight) Clinician’s assessment technique with the 

instrumented setup.  
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environment. As opposed to using a uniaxial load cell, the 6-axis F/T sensor decouples 

measurements of all forces and torques applied by the clinician at the subject’s wrist. This way, 

only the force and torque components that generate torque around the elbow joint are considered 

in the calculation. Additionally, surface electromyography (sEMG) of the biceps and triceps were 

monitored by a wireless sEMG system (Kine, Kiso Inc., Iceland) to ensure that the subject was 

fully relaxed before the passive stretch, so that the effect of voluntary muscle contraction could be 

minimized. 

5.4 Test Protocol 

Before the passive stretch test, three maximum voluntary isometric contraction (MVIC) 

trials are performed for both the biceps and triceps, and sEMG data corresponding to MVIC trials 

are recorded (𝑉𝑀𝑉𝐶_𝑏𝑖 and 𝑉𝑀𝑉𝐶_𝑡𝑟𝑖).  

All subjects (regardless of conditions) will go through the same set of passive stretch tests 

with two different speeds. Each subject’s elbow is first passively moved in slow speed (i.e., peak 

speed < 30 º/s) for five extension-flexion cycles. Next, the elbow is moved using the clinician’s 

preferred fast speed for three trials per muscle group (i.e., biceps and triceps). Throughout this 

process, the tested arm should remain in the vertical plane (i.e., no shoulder abduction). The slow 

trials aim to document the baseline biomechanical muscle tone with minimal reflex activity, so 

that the neural component of muscle tone is expected to be small. The fast trials are used to elicit 

hyperactive stretch reflex to record the spastic muscle tone, providing a combination of 

biomechanical and neural components of muscle tone. After each fast stretch, the forearm is reset 

for next the fast stretch trial by slowly moving the forearm to the most flexed or extended position 

based on whether the biceps or triceps is being assessed. Kinematic data are sampled at 100 Hz. 

Applied forces and torques are sampled at 400 Hz.  sEMG signals are collected from biceps and 
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triceps muscles at 1600 Hz. The protocol and PVRM system were designed to align with the 

regular clinical assessment procedure and technique used, so that the quantified responses 

documented in this study also reflect the type of exam observations that clinicians normally 

encounter in their daily routines.  

5.5 Data Analysis 

Readings from IMUs and the F/T sensor are used to compute the elbow kinematics and 

calculate the net muscle torque at the elbow. Forearm and upper arm segment angles (𝜙𝑓  𝜙𝑢, 

respectively) are determined by the IMU orientations. The elbow joint angle (𝜃𝐸) will be calculated 

by the subtraction of segment inclination angles, i.e., 𝜃𝐸 = 𝜙𝑓−𝜙𝑢  (Fig. 5.2). Elbow angular 

velocity (�̇�𝐸) is obtained by the subtraction of gyroscopic readings from the two IMUs, i.e., �̇�𝐸 =

𝜔𝑓−𝜔𝑢. Torque about y-axis (𝜏𝑦) and force along z-axis (𝐹𝑧) are used to calculate the clinician’s 

applied torque (𝜏clinician) with 𝐿𝑓 recorded with a measuring tape before the passive stretch test (5.1). 

Fig 5.2: Definition of elbow joint kinematics and associated IMU readings. 𝜙𝑓  𝜔𝑓: forearm inclination 

angle and angular velocity. 𝜙𝑢 𝜔𝑢: upper arm inclination angle and angular velocity. 
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The moment equilibrium equation is derived with respect to elbow joint based on Fig 5.3 (5.2). 

Muscle resistive torque (𝜏muscle) is calculated by removing inertial and gravitational torques from 

𝜏𝑐𝑙𝑖𝑛𝑖𝑐𝑖𝑎𝑛 using inverse dynamics (5.3). In this equation, the forearm moment of inertia at elbow 

joint (𝐼𝑓 𝐸 ), the forearm mass (𝑚), and forearm COM location (𝐿𝑓_𝐶𝑂𝑀 ) are estimated using 

anthropometric table formulae [107] and forearm segment angle and angular acceleration (𝜙𝑓  �̈�𝑓) 

are measured by the wrist IMU. �̈�𝑓 is obtained by numerical differentiation of the filtered forearm 

IMU gyroscope data (𝜔𝑓). All data will be filtered by a 4th order Butterworth filter with cut-off 

frequency of 4 Hz for angular position, velocity, and acceleration signals, and 15 Hz for force and 

torque signals. 

 

+↻ ∑𝜏𝑎𝑝𝑝𝑙𝑖𝑒𝑑@𝑒𝑙𝑏𝑜𝑤 = 𝜏𝑐𝑙𝑖𝑛𝑖𝑐𝑖𝑎𝑛 = 𝜏𝑦_𝑎𝑝𝑝𝑙𝑖𝑒𝑑 + 𝐹𝑧_𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝐿𝑓 (5.1) 

Fig 4.3: Free body diagram of forearm and elbow for inverse dynamics calculation. 
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+↻ ∑𝜏𝑓𝑜𝑟𝑒𝑎𝑟𝑚@𝑒𝑙𝑏𝑜𝑤 = 𝐼𝑓 𝐸�̈�𝑓 = 𝜏𝑐𝑙𝑖𝑛𝑖𝑐𝑖𝑎𝑛 −𝑚𝑔𝐿𝑓𝐶𝑂𝑀𝑐𝑜𝑠𝜙𝑓 − 𝜏𝑚𝑢𝑠𝑐𝑙𝑒 (5.2) 

𝜏𝑚𝑢𝑠𝑐𝑙𝑒 = 𝜏𝑐𝑙𝑖𝑛𝑖𝑐𝑖𝑎𝑛 − 𝐼𝑓 𝐸�̈�𝑓 −𝑚𝑔𝐿𝑓_𝐶𝑂𝑀𝑐𝑜𝑠𝜙𝑓  (5.3) 

sEMG signals will be detrended, notch filtered (at 50 Hz), bandpass filtered (4th order 

Butterworth filter at 10-500 Hz), and rectified. If the resulting signals exceed 70% of MVIC 

voltage (i.e., 0.7𝑉𝑀𝑉𝐶_𝑏𝑖  or 0.7𝑉𝑀𝑉𝐶_𝑡𝑟𝑖 ) for 0.5 s, that trial will be considered as containing 

voluntary muscle contraction and therefore will be rejected. 

5.6 Preliminary Results and Discussion 

In this preliminary stage, 15 spasticity subjects have been assessed by three experienced 

clinicians (Table 5.3). Five subjects were excluded from the data analysis due to hardware 

technical problems and incorrect shoulder abduction placement (discussed in Section 5.7). This 

initial pilot study validated the sensor setup and test protocol. The recorded time history of muscle 

tone pattern remained consistent across trials (Fig. 5.4). No sign of loosening-up of muscle tone 

was observed after the specified number of passive stretch trials in the protocol (e.g., muscle tone 

did not reduce after repetitive stretches).  
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Two sample datasets from Subjects 5 (moderate spasticity) and 1 (very mild spasticity) are 

presented for demonstration (Fig. 5.4-5.6). Increased muscle tone was observed in the fast trials 

compared to slow trials (Fig. 5.4), demonstrating the speed-dependency of spasticity. The catch-

release behavior was elicited for Subject 5 with moderate spasticity (Fig. 4.4BC, yellow shaded 

areas), where there was an abrupt rise of the muscle tone followed by a decrease of the muscle 

tone. Furthermore, by examining the relationship between moment profiles and joint angle, 

regardless of patient severity, moments were similar in biceps and triceps during slow trials (i.e., 

tight hysteresis loop) (Fig 5.5A and 5.6A). Subject 5 with moderate spasticity had significantly 

elevated muscle tone during fast stretch of the affected muscle group (Fig. 5.5BC), compared to 

the muscle tone during the slow reset motion, which was similar to those observed during slow 

trials (Fig. 5.5A). For Subject 1 with very mild spasticity, during fast trials, although stretch speeds 

were different between extension and flexion, there was little muscle tone difference between two 

motion directions (Fig 5.6BC). In addition, the trend of 𝜏muscle was more consistent across severity 

Table 5.3: Subject demographic summary. MAS scores were assessed before testing. 
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levels (roughly positive slopes of moment vs. angle) (Fig 5.5 and 5.6), whereas 𝜏clinician (muscle 

tone sensed by the clinician) had the opposite trend (negative slopes) in Subject 1 with mild 

spasticity (Fig 5.6). This observation suggested that the inertia and gravitational effect of the 

patient’s forearm might distort the clinician’s feeling of elbow muscle resistance when spastic 

muscle tone is less dominating; thus, highlighting the difficulty of clinically diagnosing mild 

spasticity at an early stage [140]. Based on these basic plots (Fig. 5.4-5.6), more advanced 

parameters, such as catch amplitude, release amplitude, catch angle location, were derived to 

model the spasticity behaviors at different severity levels (presented in Chapter 4 Section 4.2B). 

 

 

Fig. 5.4: A sample dataset from Subject 5 (biceps MAS 2 and triceps MAS 2). Time-series of kinematics 

and moment profiles during (A) slow extension-flexion cycles, fast stretch of (B) biceps and (C) triceps. 

Yellow shaded areas indicated the time window for fast passive stretch. 
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5.7 Potential Problems and Possible Solutions 

At this stage, the pilot dataset was weighted on mild spasticity cases and there is a lack of 

data for severe spasticity conditions. Due to the COVID Omicron wave in major cities in China, 

hospital access is strictly restricted, and our data collection has slowed down. This situation delays 

the study progress and makes it more difficult for patient recruitment. Due to this delay, two 

participating Zhejiang University undergraduate researchers who are previously responsible for 

Fig. 5.5 A sample dataset from Subject 5 (biceps MAS 2 and triceps MAS 2). Moment profiles versus 

elbow joint angle during (A) slow extension-flexion cycles, (B) fast stretch of biceps, and (C) fast stretch 

of triceps. 

Fig. 5.6 A sample dataset from Subject 1 (biceps MAS 0 and triceps MAS 1). Moment profiles versus 

elbow joint angle during slow extension-flexion cycles, fast stretch of biceps, and fast stretch of triceps.  
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on-site data collection graduated in the summer of 2022. The responsibility for data collection has 

been transferred to other grad students in Prof. Liu’s lab. New recruited researchers will need 

training and will have a learning curve. Finally, severe spasticity patients (MAS 3 and 4) are rare 

in general and rigidity patients (usually due to Parkinson’s diseases) are usually absent from 

rehabilitation centers, so it will be difficult and time-consuming to recruit these subjects. Given 

the available dataset of ten spasticity subjects and convenience of recruitment, future analysis and 

recruitment could prioritize the spasticity group. For this incremental milestone, the ideal sample 

size will be around 28-40 per muscle group (7~10 samples per MAS level, for MAS 1, 2, 3, 4). In 

the future, additional study centers might be explored for the recruitment of rigidity patients. 

Through the pilot study, a few clinical observations suggested a more robust joint angle 

calculation scheme would be necessary. Due to the increased involuntary muscle tone associated 

with the abnormal muscle behaviors, some patients developed muscle atrophy in their upper-

extremities given a prolonged period of lack of exercise [141,142]. As an added consequence of 

muscle atrophy, there was excessive skin movement affecting the attachment of the sensor module. 

Furthermore, due to the pathological body posture, a few patients could not reach the desired 

testing posture (i.e., keeping the limb motion in the vertical plane) because of the lack of flexibility 

in their shoulder joints. Therefore,  these subjects had to be tested with nonzero shoulder abduction 

angles. Two potential problems related to IMU measurement were identified : a) sensor 

misalignment (especially the upper arm module) and b) joint angle calculation in the presence of 

nonzero shoulder abduction angle (Fig. 5.7). These problems will degrade the fidelity of the joint 

angle calculation based on segment inclination angles, because the assumption that limb motion 

stays in the vertical plane is violated. In order to account for these clinical cases, more robust joint 

angle calculation methods such as the one proposed by Seel et al. [143] should be explored. The 
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algorithm proposed by Seel and colleagues was tailored for biomechanics application of using 6-

axis IMU (only gyroscope and accelerometer, no magnetometer) to measure human joint angles. 

It first involves a self-alignment procedure of the joint axis with respect to local sensor frames to 

compensate any misalignment issue and then calculates the joint angle using any sensor fusion 

method (in their case, a complementary filter) in the aligned frame. This alignment procedure 

would account for sensor misalignment relative to the elbow joint. Also, since the IMU readings 

would be mapped into the local aligned frame regardless of the orientation of the limb in the global 

frame, a nonzero shoulder abduction angle would be allowed during data collection. 

 

5.8 Future Work 

 A pilot dataset was collected from the first cohort of spasticity subjects. Some preliminary 

data analysis approaches were explored and at the same time, in order to facilitate future larger-

scale data collection, a potential improvement to the IMU-based joint angle calculation was 

  bj       

Fig. 5.7: An example photo from Subject 13 where there existed some misalignment for the upper arm 

IMU module as well as non-negligible shoulder abduction angle.  
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identified and proposed to improve the robustness and efficiency of the clinical study.  

 Currently, as we are waiting for the data collection to resume, we are working on validating 

the algorithm from Seel et al. in our PVRM hardware. Compared to the high-end Xsens IMUs (> 

$ 500) used in their studies [143,144], we hope to implement this approach on our low-cost 

InvenSense MPU 6050 IMUs (~$ 5 each). Two test scenarios have been set up for a benchtop 

validation.  

First, a motorized testbed setup proposed in [145] was adopted and modified (Fig. 5.8). 

This testbed consists of a stepper motor (with an optical encoder on the shaft), a lever arm, and 

two IMUs. The stationary IMU is mounted on the motor bracket and the moving IMU is attached 

to the end of the lever arm. The lever arm between two IMUs represents the human forearm and 

the angle of blue motor mount could be adjusted to represent different shoulder abduction angles. 

The joint angle calculation based on IMU readings will be validated again the ground-truth motor 

shaft encoder. IMU 2 and the moment arm will be driven by the stepper motor at slow (< 30 °/s), 

medium (100 °/s), and fast speed (200 °/s) at various motor mount angles to mimic shoulder 

abduction angles at 0 (no abduction), 30, 60°.  

Second, the benchtop validation will be carried out in a less structured environment, i.e., 

the 3D-printed housings representing the main and moving modules of the PVRM will be mounted 

on a human subject in a motion capture space. The IMU-based joint angle estimation will be 

compared with another ground-truth motion capture system (Fig. 4.9). Eight motion markers will 

be placed on the shoulder, elbow, wrists, and 3D-printed housings. The motion capture system will 

provide an estimate of elbow joint angle, which is used to validate the IMU results. Approximately 

six healthy subjects (three males and three females) will be recruited to participate in the study. 

This PVRM-like IMU setup will be attached to the dominant arm of the subject and then the subject 
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will be asked to voluntarily move the forearm through the ROM at slow (< 30 °/s), medium 

(100 °/s), and fast speed (200 °/s) at shoulder abduction angles at 0 (no abduction), 30, 60°, similar 

to the first test. Once the IMU algorithm is validated via these benchtop tests, we will use it to 

process previously collected data where we noticed any IMU misalignment or significant shoulder 

abduction. 

 

Fig. 4.8: A stepper-motor testbed to validate the joint angle calculation based on IMU measurement 

against motor shaft encoder reading. The angle of the motor mount can be adjusted to represent different 

shoulder abduction angle. 
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5.9 Conclusion  

In this chapter, we presented an ongoing clinical data collection study conducted in China 

with a goal of documenting kinematic and kinetic data for different severity levels of spasticity 

and rigidity (lead-pipe and cogwheel types) and healthy control subjects. The pilot study recruited 

and tested 15 spasticity subjects. Among these subjects, elbow kinematics, clinician’s applied force 

and torque, and sEMG data were collected and an inverse dynamics procedure was performed to 

compute the elbow net joint torque in the post-processing. A few limitations of the current sensor 

setup have been identified and potential solutions are proposed. Future steps involves validating 

the robust IMU algorithm in the lab environment and then deploying to the clinical setting to 

facilitate the large-scale data collection in the next phase. 

  

Fig. 4.9: The motion capture marker setup for the benchtop validation. Motion capture markers will be 

attached on 3D printed housings representing the main and moving modules of the PVRM as well as the 

human subject. 
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CHAPTER 6 

CONCLUSIONS 

 

In contrast to the wide deployment of medical training simulators for surgical or anatomical 

tasks, currently there are no commercially available robotic training simulators for neurologic 

exams. Although there exist commercial solutions for kinematic-based training simulators and 

standalone haptic devices, a custom solution integrating force control capability into a robotic 

human-size mannequin for practicing neurological exams technique is still far from maturity. 

Therefore, so far this type of device remains in the proof-of-concept stage and the ideal actuation, 

sensing, and control solutions are yet to be identified in the academia. A few research prototypes 

have been proposed in the past [48–56], but none was deployed beyond their developers’ own 

institutions possibly due to cost, maintenance, portability, or mechanical complexity issues. To 

deliver cost-effective and safe task trainers with high-fidelity force control capability, we selected 

the SEA design strategy and developed two electromechanical training simulators for mimicking 

common abnormal muscle behaviors in both lower (Chapters 2 and 3) and upper extremities ([57] 

and Chapter 4). Through benchtop performance and clinical feedback, these devices have the 

potential to be transformed into feasible commercial training solutions for clinical learners in the 

fields of neurology, physical therapy, occupational therapy, etc.  

6.1 Contributions and Connections 

In this dissertation, design-validation frameworks for these robotic medical training 

simulators were presented. Chapter 1 reviewed previous designs of either active or passive training 

simulators, summarized the common actuation, sensing, modeling, and control approaches, and 

discussed their pros and cons. The advantages and disadvantages of the SEA strategy were 
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reviewed, and we reasoned why SEA could be a promising choice to achieve a balance across cost, 

performance, and safety, which have not been possible in the past designs. 

In Chapter 2, we described our efforts on creating a novel SEA-based ankle-foot training 

simulator for replicating ankle clonus. To explore the design guideline and performance envelope 

of the SEA strategy for the ankle clonus simulation (potentially also for other common behaviors 

yet to be implemented), in this study, we emphasized the mechatronic design and system modeling 

of the actuation system. The device was validated in both benchtop tests and clinical evaluation. 

The experimental results and clinical feedback were promising and suggested that this device could 

mimic a real patient by a) generating a simulated clonus behavior whose triggering and 

maintaining mechanism aligned with clinicians’ experience, and b) recreating a relatively realistic 

haptic response of affected muscles. The use of a SEA system resulted in not only a high-

performance research simulator, but also a cost-effective and compact design that could become 

viable to be widely deployed as a valuable training tool for learners. In this study, the control 

problem associated with mimicking ankle clonus was essentially an indirect force control problem 

(i.e., via impedance control), since the replication of oscillatory clonus motion was of more 

importance compared to the accuracy of the haptic feedback force. Therefore, we only 

implemented a basic cascaded feedback control scheme in the low-level torque control to track an 

oscillatory ankle motion reference via the high-level impedance control. No gravity or inertial 

effect of the foot were rendered. 

Inheriting the ankle-foot simulator platform developed in Chapter 2, we made minor 

hardware changes (i.e., adding an artificial tendon structure and a load cell) and then focused on 

the systematic model-based simulation of an abnormal muscle behavior (i.e., ankle tendon reflex) 

in Chapter 3. We presented our design methodology to enable trainees to practice tendon tap 
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technique on a robotic training simulator. The entire flow of tendon tap assessment (i.e., input tap 

force, reflex response model, and the ankle haptic response) was quantified for modeling and 

control purposes. Benchtop and clinical validation results were promising for deploying the SEA-

based simulator to mimic ankle tendon reflex assessment training. This study also represented a 

case study that demonstrated how the existing hardware of the ankle-foot simulator could be easily 

expanded and reprogramed to mimic a different abnormal muscle behavior. Compared to ankle 

clonus simulation, the control task for replicating ankle tendon reflex became a direct force control 

problem. Even though the same low-level torque control was used as in Chapter 2, more 

considerations were put into the design of the high-level control command, which accounted for 

the gravitational and inertial of the foot, the stiffness and damping of the ankle joint, as well as the 

reflexive torque triggered by the tendon tap. Note that although the torque tracking accuracy in 

this study was satisfactory (with some undesired delay in Fig. 3.9), this performance was only 

achieved when there was minimal external motion disturbance (i.e., the trainee supports the foot 

statically and tap on a sensor on the ankle tendon structure). As we moved to replicate abnormal 

muscle behaviors in the upper extremity, we would face a direct force control problem with strong 

motion disturbance from the trainee, i.e., rendering forearm dynamics and muscle resistance during 

rapid passive stretch tests. Therefore, we started to realize that a low-level torque controller with 

only feedback scheme might not be sufficient and thus explored other control architectures in 

Chapter 4. 

In Chapter 4, we presented the modeling, control, and clinical validation pipeline of a 

robotic arm training simulator to mimic three abnormal muscle behaviors namely lead-pipe rigidity, 

cogwheel rigidity, and spasticity at various severities. The SEA-based actuation system together 

with the proposed control system, i.e., consisting of feedback, feedforward, and disturbance 
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observer (DOB) controllers, was validated to be able to deliver accurate torque control during user 

interaction. Based on the clinical study results, this training simulator can be a clinically useful 

and cost-effective medical education tool to provide realistic and consistent practice opportunities 

for clinical learners to get proficient with rigidity and spasticity assessment techniques to reduce 

the need for human patients. This study represented the most difficult force control task so far 

because the device needed to track complex torque profiles, especially for spasticity (i.e., 

piecewise torque patterns with rapid changes), under strong motion disturbance as the trainees 

quickly moved through the ROM within one second. Therefore, additional model-based 

feedforward and DOB controllers were used to augment the original model-free feedback control, 

where the external trainee’s motion was regarded as a disturbance source to be rejected. The 

control ablation test shown that feedforward and DOB controller significantly improved the 

tracking performance. Eventually, on our low-cost hardware (BOM cost < $ 2000), a high-fidelity 

torque control (torque error < 0.1 Nm) was achieved across simulated behaviors and severities 

under external disturbance. 

Chapter 5 described our ongoing efforts to collect clinical data from a large group of 

spasticity and rigidity patients in parallel with the development of the robotic training simulators. 

Currently a pilot group of 15 spasticity patients have been tested. Using data from 10 subjects, we 

identified several improvements to the test protocol and sensor data analysis. The resulting dataset 

has been used to guide the choice of spasticity simulation parameters as we started to work on 

abnormal muscle behaviors at the elbow joint in Chapter 4.  
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6.2 Limitations and Future Work 

Throughout the mechatronic, sensing, control development of two robotic training 

simulators, although the SEA-based robotic training simulators not only successfully achieved our 

initial engineering targets (e.g., cost-effectiveness, good force control capability) but also received 

very positive feedback from its clinical users, there are still several limitations associated with the 

current designs, and we hope this discussion could lay out potential future research directions. 

Regarding the simulator mechatronic system design, comments from the clinical studies 

have suggested that ultimately the dexterity of the simulator should match the DOFs of the upper 

and lower extremities. For example, although we implemented a 2-DOF ankle joint (dorsiflexion-

plantarflexion (DF-PF): active; inversion-eversion (I-E): passive) on the ankle-foot simulator, it 

will be also helpful to include knee and hip DOFs, since the assessment in supine configuration 

involves the coordinated movement of the entire leg (e.g., hip external rotation). Similarly, for the 

arm simulator, on top of the actuated elbow joint, a passive wrist joint was implemented via a ball 

socket design with adjustable friction. However, some clinical subjects expected more 

sophisticated haptic torque feedback at the wrist to mimic useful clinical signs found in other parts 

of the body (e.g., Parkinson’s disease patient might develop lead-pipe or cogwheel rigidity at the 

wrist). In addition, currently both simulators only have one actuated DOF (ankle and elbow). 

Having multiple actuated DOFs on a single simulator could further enhance the hardware cost-

efficiency and usefulness. This way the trainees could practice assessment techniques for multiple 

the joints in the upper or lower extremity without needing to switch back and forth between 

different simulators, and they could also practice the assessment that requires the coordination of 

multiple joints. Given the compact SEA-based actuation system, it should be relatively 
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straightforward to install additional custom SEAs at those large joints such as hip and knee and 

still keep all the components (e.g., transmission, spring cage) within the realistic arm or leg shrouds. 

However, for smaller joints with high DOFs such as wrist, ankle, and fingers, the design will be 

significantly more difficult. One potential solution could be utilizing SEAs at the large joints, but 

using miniature active brakes (such as an MRF brake) in the smaller joints without any 

transmission, or a combination of the two for a multi-DOF joint (e.g., at the ankle, a SEA for DF-

PF and a MRF for I-E), similar to [146]. Essentially, deploying the SEA at the joint where active 

behaviors need to be produced (e.g., tremor, clonus, reflex response) and using the active brake 

where only passive resistance is observed (still can generate programable, complex resistance 

profiles). Considering that a few of the clinical expert subjects complained about the gear-meshing 

feeling and drivetrain vibration, another benefit of this approach is that a MRF brake could 

generate smoother resistance to better mimic human muscle tone compared to geared electric 

motors.  

Regarding the choice of transmission and mechanical design details, a few lessons were 

learned. Except for the noise, vibration, and backlash, another reason why gear transmission is not 

ideal for the training simulator application is that high output torque would always occur on a few 

specific gear teeth regardless of the gear ratio (hunting or non-hunting). For example, if the catch 

angle is fixed in spasticity simulation, each time the high spastic catch torque would transmit 

through the same pair of gear teeth. Over time with repetitive practice trials from the trainees, these 

high torque-bearing teeth would be susceptible to premature failure though the rest of the gear 

teeth are well within their life span. A planetary-type gear transmission might be able to handle 

this issue since there are multiple gear teeth sustaining the load simultaneously (i.e., same as the 

number of planet gears). Alternatively, the belt drive used in the ankle-foot simulator might 
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distribute the output torque loading more uniformly and even out the wear on the drivetrain. 

However, the downside of using a belt drive in a SEA is that the intrinsic compliance of the belt 

would inevitably affect the overall effective stiffness of the drivetrain, since the belt is connected 

in series with the SEA, which further reduces the system control bandwidth. The stiffness of the 

linkage drive in the ankle-foot simulator is another concern. This drive consisted of four slender 

links (first fabricated with aluminum, and later changed to fiberglass) (Fig. 2.1). The buckling risk 

associated with the slender design (even though the components were designed with a safety factor 

considering the Euler’s critical buckling load) and low material Young’s modulus (~70 GPa for 

aluminum vs. ~17 GPa for fiberglass) might be another source of system compliance. A ball-screw 

drive might be a better alternative solution given its high stiffness, low backlash, high efficiency, 

and high load transmission capability in a compact form factor. However, it might be more 

expensive compared to other drivetrain solutions, so the design trade-off should be considered.  

Eventually, in retrospect, although many design considerations were accounted for in the spring 

cage design, when selecting the spring constant and specifying the deformation length, the shear 

stress on the spring coils should be analyzed and ideally needs to be kept below the endurance 

limit of the steel (approximately half of the yield strength) to avoid fatigue failure. Fortunately, we 

had a preload on the springs to ensure they were always in compression even at the largest 

deformation, which mitigated the cyclic loading condition, but this would worth considering in the 

future design. 

For the control aspect, even though the control system proposed in Chapter 5 delivered 

very good control accuracy (torque error < 3 %), in this human-robot interaction scenario, 

depending on the body size, body posture, and technique of the trainee who operates the device 

(representing variable environmental dynamics), the force control scheme presented in Chapter 5 
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potentially might still have degraded performance. Therefore, more advanced variable-gain 

controllers might worth considering in the future. Furthermore, it might be interesting to run the 

benchtop control test with different investigators and observe if the tracking accuracy would vary 

with the investigator. This could lead a future research direction for force control in the human-

robot interaction scenario and these simulators could be useful testbeds to evaluate the proposed 

algorithms. Force control that explicitly accounts for environmental dynamics is an open research 

topic and will have significance not only for SEAs [88], but also for a much boarder community, 

such as legged robots [124], powered exoskeletons [147], humanoids [76], etc.  

Eventually, as these robotic training simulators are developed and validated in benchtop 

and clinical evaluations, the next phase of this research should shift its emphasis to the training 

effectiveness of robot-aided teaching for learning neurologic exam assessment technique. Potential 

comparison studies could be conducted to have different cohorts of students exposed to different 

training methods (practice patients vs. robotic training simulators) and evaluate their learning 

outcome as well as subjective feedback, similar to previous studies such as [148].  

Furthermore, the trainees are not only limited to medical/clinical students, residents, and 

fellows, but instead potentially a much boarder audience might benefit from this technology. For 

example, these simulators could be used as a patient education tool to improve the treatment 

compliance and willingness. The device could present a spectrum of the severity level given an 

abnormal muscle behavior and demonstrate to the patients how their muscle tone would worsen if 

no proper intervention or management plans were implemented.  

In addition, the spasticity replication at various MAS levels could be used to demonstrate 

the effect of Botox injection (also the effect of dosage). Practitioners who frequently need to assign 

Botox injection could get a haptic feeling of how much the spastic muscle would loosen up given 
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the specific dosage of an injection. Of course, in order to program the correlation between the 

decrease of muscle tone and the Botox dosage, a separate clinical quantification study would be 

required unless there are sufficient clinically-observed data exist in the literature. Eventually, the 

sale representatives from pharmaceutical companies, especially the ones who come from 

nonmedical background, could have a first-hand haptic knowledge of the pathological muscle 

behaviors through these devices, rather than learning through text-only training materials. This 

exposure could enhance their understanding towards the products they are advocating as well as 

their customer’s needs.  

All of these potential and interesting use cases were inspired via the interaction with 

industry representatives during public demonstrations of these devices, so future collaborations 

with industry might help to find their unique positioning in the market and transform the 

engineering prototypes into feasible and useful commercial products. 
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APPENDIX A: SUPPLEMENTARY CLINICAL 

RESULTS FOR CHAPTER 4 

 

This appendix presents the recorded results and feedback for each individual subject who 

participated in the clinical study in Chapter 4.  

 

 Fig. A1: Classification Test results of seven clinical subjects presented in confusion matrices.  
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Table A1: Disclosed Assessment Test results (mean and standard error) of seven clinical subjects 

for healthy, lead-pipe rigidity and cogwheel rigidity.  
  

 Subject 
  

 

Severity Level Simulation Aspect 1 2 3 4 5 6 7 Mean SE 

Healthy / 
Resistance Magnitude 3 3 3 4 3 3 4 3.29 0.18 

Range of Motion 3 2 2 3 3 3 3 2.71 0.18 

LR 

1 
Resistance Magnitude 3 3 3 4 4 4 4 3.57 0.20 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

2 
Resistance Magnitude 3 3 3 3 2 4 4 3.14 0.26 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

3 
Resistance Magnitude 2 3 2 3 1 3 3 2.43 0.30 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

CR 

1 
Cogwheel Frequency 3 3 3 3 3 3 3 3.00 0.00 

Cogwheel Magnitude 4 4 3 3 4 4 3 3.57 0.20 

2 
Cogwheel Frequency 3 3 3 3 3 3 3 3.00 0.00 

Cogwheel Magnitude 3 3 3 3 3 4 4 3.29 0.18 

3 
Cogwheel Frequency 3 3 3 3 3 3 3 3.00 0.00 

Cogwheel Magnitude 3 3 3 3 3 3 4 3.14 0.14 
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Table A2: Disclosed Assessment Test results (mean and standard error) of seven clinical subjects 

for biceps spasticity.  
  

 Subject 
  

 

Severity Level Simulation Aspect 1 2 3 4 5 6 7 Mean SE 

SP-B 

1 

Catch Angle Location 3 4 4 3 4 4 4 3.71 0.18 

Catch Tone Amplitude 3 3 3 3 3 2 3 2.86 0.14 

Release Tone Amplitude 3 3 2 3 3 1 3 2.57 0.30 

Post-Catch Tone Amplitude 3 3 4 3 3 3 3 3.14 0.14 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

2 

Catch Angle Location 3 3 3 3 3 3 3 3.00 0.00 

Catch Tone Amplitude 3 3 2 3 3 3 3 2.86 0.14 

Release Tone Amplitude 3 3 3 3 3 3 3 3.00 0.00 

Post-Catch Tone Amplitude 3 3 3 3 3 3 3 3.00 0.00 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

3 

Catch Angle Location 3 3 3 3 3 3 3 3.00 0.00 

Catch Tone Amplitude 3 3 3 4 3 3 4 3.29 0.18 

Release Tone Amplitude 3 3 2 3 3 2 3 2.71 0.18 

Post-Catch Tone Amplitude 3 3 4 3 3 4 3 3.29 0.18 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

4 

Catch Angle Location 3 3 4 3 3 3 3 3.14 0.14 

Catch Tone Amplitude 3 3 3 3 2 5 4 3.29 0.36 

Release Tone Amplitude 3 3 2 3 3 3 3 2.86 0.14 

Post-Catch Tone Amplitude 3 3 4 3 3 4 3 3.29 0.18 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 
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Table A3: Disclosed Assessment Test results (mean and standard error) of seven clinical subjects 

for triceps spasticity.  
  

 Subject 
  

 Severity Level Simulation Aspect 1 2 3 4 5 6 7 Mean SE 

SP-T 

1 

Catch Angle Location 3 4 4 3 3 3 3 3.29 0.18 

Catch Tone Amplitude 3 3 3 3 3 3 3 3.00 0.00 

Release Tone Amplitude 3 3 2 3 3 2 3 2.71 0.18 

Post-Catch Tone Amplitude 4 3 4 3 4 3 3 3.43 0.20 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

2 

Catch Angle Location 3 3 3 3 3 3 3 3.00 0.00 

Catch Tone Amplitude 3 3 3 4 3 3 4 3.29 0.18 

Release Tone Amplitude 3 3 2 3 3 3 3 2.86 0.14 

Post-Catch Tone Amplitude 3 3 4 3 3 3 3 3.14 0.14 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

3 

Catch Angle Location 3 3 3 3 3 3 3 3.00 0.00 

Catch Tone Amplitude 3 3 3 5 3 3 4 3.43 0.30 

Release Tone Amplitude 3 3 2 3 2 2 3 2.57 0.20 

Post-Catch Tone Amplitude 4 3 5 3 4 4 3 3.71 0.29 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

4 

Catch Angle Location 3 3 3 3 4 3 3 3.14 0.14 

Catch Tone Amplitude 3 3 3 3 3 3 4 3.14 0.14 

Release Tone Amplitude 3 3 2 3 3 3 3 2.86 0.14 

Post-Catch Tone Amplitude 4 3 4 3 3 5 3 3.57 0.30 

Range of Motion 3 3 3 3 3 3 3 3.00 0.00 

 


