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ABSTRACT

Text mining is promising for advancing human knowledge in many fields, given the rapidly

growing volume of text data (e.g., news reports, scientific articles, and medical notes) we are

seeing nowadays. Recently, there has been a growing interest in bringing text mining to sci-

entific discovery in various domains, such as mining the biomedical literature and electronic

health record for health care and biomedicine, mining the chemistry literature for molecular

discovery and synthetic strategy designing, and mining the agriculture literature for agricul-

tural resilience, management, and sustainability. We envision tremendous opportunities in

this emerging area of advanced text mining for scientific discovery.

This thesis focuses on developing effective and scalable text mining algorithms and systems

to enable and accelerate scientific discovery. We primarily focus on two research directions:

(1) scientific information extraction with weak supervisions, and (2) scientific knowledge

discovery applications.

• Scientific Information Extraction with Weak Supervisions: With the growing

volume of text data and the breadth of information, it is inefficient or nearly impossible

for humans to manually find, integrate, and digest useful information. A major challenge

is to develop methods that automatically understand massive unstructured text data.

To address this challenge, we have developed methods that extract information from

text with minimal human supervision. We have contributed a series of algorithms and

systems under three weak supervision scenarios: (1) pattern-enhanced weak supervision for

scientific information extraction, (2) ontology-guided distant supervision for fine-grained

information extraction, and (3) cross-modal supervision between text and graph.

• Scientific Knowledge Discovery in Real World: With the advanced text mining

methods developed, we future study how to enable and accelerate real-world knowledge

discovery. We have been collaborating with experts in various science domains (e.g.,

biomedicine, chemistry, and health) to achieve this goal. Through the collaborations,

we have developed algorithms and systems for two real-world applications: (1) scientific

textual evidence discovery and (2) scientific topic contrasting.

Our research benefits from and fosters collaborations with experts in various research

areas within and beyond computer science from various institutions, including hospitals

(UC Davis Medical Center), government (National Institute of Health and Army Research

Lab), industry (IBM and Eli Lilly), and academics from other universities (Stanford, UCLA,
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UC Davis, UCSD, USC, Purdue, and Iowa State University). Our algorithms and systems

can be generally used for any science domain where a knowledge discovery from massive text

data is needed. Two examples in the health and chemistry domains are discussed below.

• Clinical Domain: We have developed text mining methods to find proteins that are

specifically associated with six main categories of heart diseases. Our top-ranked proteins

match the knowledge of the clinical researchers very well. Some of our discovered proteins

are currently under experimental validation by clinical researchers at the UC Davis Medical

Center. This collaboration has a high potential to unveil novel therapeutic targets in

patients and repurpose drugs already used in the clinic.

• Chemistry Domain: We have also developed text mining methods to support an intel-

ligent molecule discovery process in organic chemistry. We have been collaborating with

the researchers in the Chemistry Department at UIUC, finding the most representative

catalysts and reaction conditions by comparing different organic reaction types. This

collaboration leads to AI-driven systems for automatic chemical/material synthesis plan

generation and optimization.

In summary, we tackle a series of technical challenges for automatically extracting a wide

range of information from unstructured scientific text. We further address open scientific

problems, such as clinical drug discovery and chemical and biological molecule design, based

on the rich information we automatically extracted from the scientific text. However, there

remain grand challenges for scientific text mining, such as a lack of specialized domain

knowledge in a natural language context, multi-modal representations of scientific knowledge,

and complex conditions associated with scientific information. In the future, we plan to

tackle the above challenges by developing knowledge-enhanced, multi-modal, and condition-

aware text mining approaches for scientific discovery.
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CHAPTER 1: INTRODUCTION

1.1 OVERVIEW

Text mining is promising for advancing human knowledge in many fields, given the rapidly

growing volume of text data (e.g., news reports, scientific articles, and medical notes) we

are seeing nowadays. Recently, there has been a growing interest in bringing text mining to

scientific discovery in various domains, such as mining the biomedical literature and elec-

tronic health record for health care and biomedicine, mining the chemistry literature for

molecular discovery and synthetic strategy designing, and mining the agriculture literature

for agricultural resilience, management, and sustainability. For example, materials scientists

have demonstrated that unsupervised word embeddings capture complex materials science

concepts without explicit chemical knowledge and recommend materials for functional ap-

plications several years before their discovery [1]. We envision tremendous opportunities in

this emerging area of advanced text mining for scientific discovery.

Challenges There are several unique challenges for scientific text mining. First, there lack

human annotations for various science domains (e.g., chemistry and geoscience), especially

fine-grained science domains (e.g., organic or inorganic chemistry). Recently, deep learning

methods have set up state-of-the-art performance on various text mining tasks. However,

deep learning methods rely on massive human-annotated data for model training, which is

hard to acquire in science domains due to the limited time and labor of the scientists. We

have developed effective text mining methods with minimal human supervision that can

be easily applied to various science domains. Second, scientific knowledge usually resides

in multiple modalities. For example, chemical compounds can be described with both text

descriptions and molecule graphs. It is challenging to learn a scientific entity representation

with multi-modal information. On the other hand, we see this multi-modal representation as

an opportunity since the information in one modality may benefit the tasks in other modal-

ities. We have developed effective chemistry text classification methods with supervision

from molecule graph matching. Last, the sentences in scientific writing are usually long with

complex structures. We have developed text mining methods that specifically deal with the

wide-window relation extraction in scientific literature where the two related entities are far

apart from each other in the sentence.

This thesis focuses on developing effective and scalable text mining algorithms and systems
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Figure 1.1: This thesis focuses on automatically understanding massive text data to enable
and accelerate scientific discovery.

to enable and accelerate scientific discovery (Figure 1.1). Our research has primarily focused

on two directions: (1) scientific information extraction with weak supervisions (see Chapters

2, 3, 4) and (2) scientific knowledge discovery in real world (see Chapters 5, 6). The overview

and contributions of each research direction are described below.

1.2 SCIENTIFIC INFORMATION EXTRACTION WITH WEAK SUPERVISIONS

With the growing volume of text data and the breadth of information, it is inefficient or

nearly impossible for humans to manually find, integrate, and digest useful information. A

major challenge is to develop methods that automatically understand massive unstructured

text data. To address this challenge, we have developed methods that extract information

from text with minimal human supervision. We have contributed a series of algorithms

and systems under three weak supervision scenarios: (1) pattern-enhanced weak supervision

for scientific information extraction, (2) ontology-guided distant supervision for fine-grained

information extraction, and (3) cross-modal supervision between text and graph.

1.2.1 Pattern-Enhanced Weak Supervision for Scientific Information Extraction

Named Entity Recognition (NER) aims to locate and classify entity mentions (e.g., “United

States”) from text into pre-defined categories (e.g., ”countries”). Scientific literature anal-

ysis needs dozens to hundreds of distinct, fine-grained entity types (e.g., more than 100

biomedical entity types in the Unified Medical Language System [UMLS] database), making

consistent and accurate annotation difficult even for crowds of domain experts. However,
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domain-specific ontologies and knowledge bases (KBs) can be easily accessed, constructed,

or integrated, making distant supervision realistic for fine-grained scientific NER tasks. For

distant supervision, training labels are automatically generated by matching the mentions

in text with the concepts in the KBs. A major challenge of distant supervision is the limited

coverage of the dictionaries from the KBs, leading to false-negative errors during the distant

training label creation.

To tackle the challenge of incomplete dictionaries for distant label generation, we propose

several distantly supervised NER methods [2, 3, 4, 5, 6, 7] that effectively deal with noisy

distant supervision. One example is PeNNER [2], a BioNER method that relies on massive

corpora and unsupervised pattern mining for nested named entity boundary correction.

PeNNER takes massive corpora as input, with entities pre-tagged by any flat NER tool. We

first perform automatic meta-pattern extraction and take the extracted meta-patterns as

candidate outer entity patterns. Then we select two patterns for each entity type as a seed

pattern set and perform automatic pattern set expansion. Note that in this step, we only

need very weak supervision (two user-specified seed patterns instead of a large human-

annotated training dataset). The top-ranked meta-patterns in each expanded pattern set

are considered correct outer entity patterns for the corresponding entity type. These outer

entity patterns are used to correct the boundaries and types of their matched entities in

the input corpus. This weakly-supervised pattern method also gives us the advantage to

discover new entity types that are not pre-tagged in the input corpus.

Contributions 1.1:

• Problem: We study the problem of biomedical named entity recognition with various weak

supervision signals (e.g., distant supervision from knowledge bases and weak supervision

from seed textual patterns) without requiring human effort for training data annotation.

• Methodology : We develop an effective, weakly-superivsed method, PeNNER, for nested

biomedical named entity recognition. PeNNER relies on massive corpora and unsupervised

pattern mining for nested named entity boundary correction.

• Effectiveness : PeNNER outperforms the state-of-the-art supervised biomedical NER meth-

ods (e.g., PubTator [8]) while requiring no human supervision. Moreover, PeNNER is also

able to accurately extract new types (e.g., biological process and treatment) that are not

originally annotated by PubTator in the input corpus.

Impact 1.1:
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• Our distantly supervised BioNER methods are future extended into a biomedical named

entity annotation system, CORD-NER [6], that automatically annotates 75 fine-grained

biomedical entity types in the COVID-19 literature.

• CORD-NER has also been used for downstream applications such as COVID-KG [9]:

COVID-19 knowledge graph construction and drug repurposing report generation.

• Our distantly supervised BioNER methods have been taught in a graduate class at Uni-

versity of Illinois at Urbana-Champaign and presented in conference tutorials at IEEE-

BigData [10], WWW [11] and SIGKDD [12].

1.2.2 Ontology-Guided Distant Supervision for Fine-Grained Information Extraction

In the chemistry domain, it is important to recognize chemistry entities of diverse and fine-

grained types (e.g., “inorganic phophorus compounds”, “coupling reactions” and “catalysts”)

to provide a wide range of information for scientific discovery. Similar to the biomedical do-

main, we leverage domain-specific ontologies and KBs as distant supervision to develop effec-

tive methods for fine-grained chemistry NER. In addition to the aforementioned incomplete

dictionary problem, the chemistry domain faces another great challenge of noisy annotation

where a mention can be erroneously matched due to the potential matching of multiple entity

types in the KBs. Previous distantly supervised NER studies largely ignore the noisy an-

notation problem by simply discarding those multi-labels during the KB-matching process.

However, the noisy labels cannot be simply ignored for the chemistry entities because they

consist of a large portion of distant training labels. We observe that more than 60% of the

entities in the chemistry corpus have multiple labels during KB-matching in the chemistry

knowledge bases.

We propose ChemNER [7], an ontology-guided, distantly-supervised NER method for

fine-grained chemistry NER. Taking an input corpus, a chemistry type ontology, and associ-

ated entity dictionaries collected from the KBs, we propose a flexible KB-matching method

with TF-IDF-based majority voting to resolve the incomplete annotation problem. Then

we propose an ontology-guided multi-type disambiguation method to resolve the noisy an-

notation problem. Taking the output from the above two steps as distant supervision, we

further train a sequence labeling model to cover additional entities. ChemNER significantly

improves the distant label generation for the subsequent NER model training. We also pro-

vide an expert-labeled, chemistry NER dataset with 62 fine-grained chemistry types (e.g.,

chemical compounds and chemical reactions).
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Contributions 1.2:

• Problem: We study the problem of fine-grained chemistry named entity recognition with

distant supervision from domain-specific knowledge bases and ontologies.

• Methodology : We develop an ontology-guided, distantly-superivsed method, ChemNER,

for fine-grained chemistry named entity recognition. ChemNER leverages the chemistry

type ontology structure to provide a global topic constraint for context-aware multi-type

disambiguation.

• Effectiveness : ChemNER is highly effective, substantially outperforming the state-of-the-

art supervised NER methods (i.e., RoBERTa [13] and ChemBERTa [14]), improving the

F1 score from 0.2 to 0.45.

Impact 1.2:

• We are further developing a chemistry reaction tracker system, ReactionTracker, that uses

ChemNER and information retrieval methods to track chemistry research publications re-

lated to user-specified organic chemical reactions. We expect this ReactionTracker system

will significantly benefit the query-based tracking of scientific publications.

• ChemNER has further been used in AI-driven systems for automatic chemical/material

synthesis plan generation and optimization to support an intelligent molecule discovery.

• ChemNER has been taught in a graduate class at University of Illinois at Urbana-Champaign

and presented in conference tutorials at IEEE-BigData [10], WWW [11] and SIGKDD [12].

1.2.3 Cross-Modal Supervision Between Text and Graph

Scientific knowledge can be described on various levels of abstractions: from high-level

categorical concepts to low-level concrete entities. For example, the Csp3-Csp3 Suzuki cross-

coupling reaction is defined by chemists as a process involving a pair of high-level reactant

groups (i.e., the M-side reactant group “primary alkyl boronate” and the X-side reactant

group “primary alkyl halide”). While in the chemistry literature, this chemical reaction

can also be described as a process involving two low-level concrete chemical entities (e.g.,

“1-bromododecane” and “B-n-octyl-9-BBN”). This gap between high-level and low-level

abstractions of scientific knowledge is a common phenomenon in various domains such as

biology, chemistry, and physics.
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In the general domain, recent work has been done on classifying entities in the text into

human-given categories without human annotation. However, in the chemistry domain, the

task of reactant entity classification requires more effective methods that take two special

characteristics of the chemical molecules into consideration. The first characteristic is that

each chemical molecule can be represented in two modalities : a chemical name in the text

and a molecule structure in the graph. Thus a large amount of high-quality training data for

chemical name classification can be automatically created with cross-modal supervision of

molecular structure matching. The second characteristic is that there is a knowledge-aware

subword correlation between the chemical names to be classified and that of the reactant

groups as class labels. Thus the interaction between the subwords (e.g., wordpieces in

the pre-trained language models) in the chemical names and reactant groups is the most

prominent feature of training a reactant entity classification model.

We propose ReactClass [15], a highly effective reactant entity classification method with-

out requiring human effort for training data annotation. ReactClass is designed to take

two special characteristics, multi-modal representation and knowledge-aware subword cor-

relation, of the chemical molecules into consideration. First, we propose to use cross-modal

supervision to automatically create the training data for chemical name classification in the

text via molecular structure matching in the graph. Second, we propose to train a classifier

based on the knowledge-aware subword cross-attention map between each chemical name

and its corresponding reaction group.

Contributions 1.3:

• Problem: We study the problem of reactant entity classification method without requiring

human effort for training data annotation.

• Methodology : We develop a highly effective reactant entity classification method, React-

Class, without requiring human effort for training data annotation. ReactClass is designed

to take two special characteristics, multi-modal representation and knowledge-aware sub-

word correlation, of the chemical molecules into consideration.

• Effectiveness : ReactClass is highly effective, achieving state-of-the-art performance in clas-

sifying the chemical names into human-defined reactant groups without requiring human

effort for training data annotation.

Impact 1.3:
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• ReactClass has also been incorporated into the ReactionTracker system for a smart query

expansion to enhance the chemical reaction literature tracking.

• ReactClass has further been used in AI-driven systems for automatic chemical/material

synthesis plan generation and optimization to support an intelligent molecule discovery.

• ReactClass has been taught in a graduate class at University of Illinois at Urbana-

Champaign and presented in conference tutorials at IEEE-BigData [10], WWW [11] and

SIGKDD [12].

1.3 SCIENTIFIC KNOWLEDGE DISCOVERY IN REAL WORLD

With the advanced text mining methods developed, we future study how to enable and ac-

celerate real-world knowledge discovery. We have been collaborating with experts in various

science domains (e.g., biomedicine, chemistry, and health) to achieve this goal. Through the

collaborations, we have developed algorithms and systems for two real-world applications:

(1) scientific textual evidence discovery and (2) scientific topic contrasting.

1.3.1 Scientific Textual Evidence Discovery

Scientific textual evidence discovery aims to automatically retrieve evidence sentences

given a user-input query. Scientists need textual evidence mining to validate and priori-

tize the scientific hypotheses before expensive experimental validation. Textual evidence

discovery is an important but underexplored problem in scientific text mining. Traditional

literature search engines (e.g., PubMed for biomedical sciences) are designed for document

retrieval and do not allow direct retrieval of specific statements. Some of these statements

may serve as textual evidence that is key to hypothesis generation and new finding validation.

We have developed a web-based system, EvidenceMiner1 [16, 17], which incorporates the

fine-grained named entity and open relation information to discover textual evidence. Ev-

idenceMiner works on CORD-19 [18], the COVID-19 Open Research Dataset. EvidenceM-

iner takes a researcher’s query (e.g., ”UV, kill, Sars-Cov-2”) and returns a ranked list of

sentences containing the compelling evidence as well as their associated research articles.

EvidenceMiner has the following distinctive features: (1) it allows users to query a natural

language statement or an inquired relationship at the meta-symbol level (e.g., CHEMICAL

and PROTEIN) and automatically retrieves textual evidence from a background corpora of

1https://evidenceminer.com/
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COVID-19; (2) it has been constructed in a completely automated way without requiring any

human effort for training data annotation; (3) it achieves the best performance compared

with baseline methods such as LitSense [19].

Contributions 1.4:

• Problem: We study the problem of textual evidence discovery from scientific literature.

• Methodology : We develop a web-based system, EvidenceMiner, which incorporates the

fine-grained named entity and open relation information to discover textual evidence.

• Effectiveness : EvidenceMiner achieves the best performance compared with baseline meth-

ods such as LitSense [19].

Impact 1.4:

• EvidenceMiner has users (including biomedical and clinical researchers) from various uni-

versities and institutions. For example, Dr. David Liem (UC Davis Medical School) used

EvidenceMiner to test scientific hypotheses for the relationship between cardiovascular

diseases and COVID-19. Dr. Clare Voss (Army Research Lab) used EvidenceMiner to

test scientific hypotheses related to the UV inactivation of COVID-19.

• We are further extending EvidenceMiner to other scientific domains such as chemistry and

material science.

1.3.2 Scientific Topic Contrasting

Scientific topic contrasting aims to find representative and contrasting knowledge (e.g.,

entities or relationships) across multiple topics from the scientific literature. For example,

clinical researchers want to develop drugs that can precisely treat six main categories of heart

diseases. To find the most representative proteins for each category of heart diseases for drug

development, researchers often look into biomedical literature for distinctive associations

between proteins and heart diseases before expensive experimental validation. This function

is badly needed in scientific research but is under-explored in current literature search and

analysis systems.

We have developed a web-based system, SciContrast2, for scientific topic contrasting based

on life science literature. SciContrast enables scientists to select a set of topics of interest,

2https://scicontrast.firebaseapp.com/
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contrasts the representative knowledge across multiple topics, and provides concrete sen-

tences from literature to support such evidence. SciContrast provides a focused list of prior-

itized candidates (e.g., proteins for each heart disease) for scientists to explore to save time

and expensive experimental efforts. SciContrast has the following distinctive features: (1)

it addresses the open problem of scientific topic contrasting from biomedical literature; (2)

it automatically extracts rich fine-grained knowledge (entity and relation information) from

the background corpora; (3) it summarizes the most representative knowledge for each user-

given topic using comparative text analysis; and (4) it further provides concrete evidence

sentences to support the representative knowledge discovery.

Contributions 1.5:

• Problem: We study the problem of scientific topic contrasting in the scientific literature.

• Methodology : We develop a web-based system, SciContrast, for scientific topic contrasting

in the biomedical literature. SciContrast summarizes and contrasts the most representa-

tive knowledge for each user-input topic as well as providing concrete evidence sentences

supporting this representative knowledge discovery from the scientific literature.

• Effectiveness : SciContrast achieves the best performance compared with baseline methods

such as BioBERT [20].

Impact 1.5:

• We have been collaborating with UC Davis Medical School to identify cardiovascular

proteins specifically associated with six sub-categories of heart diseases [21]. This collab-

oration enables a precision medicine approach to find new forms of treatment for patients

with preserved ejection fraction (HFpEF). Our collaboration shows the real-world impact

of text mining on medical knowledge discovery.

• We are future extending the SciContrast to a multi-omics data mining platform involving

scientific literature, electronic health record, and genomic data analysis. We expect this

platform will benefit the precision medicine development in various diseases.

1.4 OVERALL IMPACT

Our research benefits from and fosters collaborations with experts in various research

areas within and beyond computer science from various institutions, including hospitals
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(UC Davis Medical Center), government (National Institute of Health and Army Research

Lab), industry (IBM and Eli Lilly), and academics from other universities (Stanford, UCLA,

UC Davis, UCSD, USC, Purdue, and Iowa State University). Our algorithms and systems

can be generally used for any science domain where a knowledge discovery from massive text

data is needed. In summary, our work has been used in the following settings:

• Used in real world:

– Clinical Domain: Our text mining methods have been used to find proteins that

are specifically associated with six main categories of heart diseases. Our top-ranked

proteins match the knowledge of the clinical researchers very well. Some of our dis-

covered proteins are currently under experimental validation by clinical researchers at

the UC Davis Medical School. This collaboration has a high potential to unveil novel

therapeutic targets in patients and repurpose drugs already used in the clinic.

– Chemistry Domain: Our text mining methods have been used to support an intelli-

gent molecule discovery process in organic chemistry. We have been collaborating with

the researchers in the Chemistry Department at UIUC, finding the most representative

catalysts and reaction conditions by comparing different organic reaction types. This

collaboration leads to AI-driven systems for automatic chemical/material synthesis plan

generation and optimization.

• Taught in classes and conference tutorials: Our methods on pattern-enhanced

weakly-supervised NER (PeNNER), ontology-guided distantly-supervised NER (Chem-

NER), and cross-modal supervision between text and graph (ReactClass) are being taught

in graduate courses, e.g., University of Illinois at Urbana-Champaign (CS 512), and are

introduced as major parts of the conference tutorial in top data mining and database

conferences such as SIGKDD, WWW, and IEEE-BigData.

• Awards: This thesis work has been awarded YEE fellowship from 2020 to 2021 from

the University of Illinois at Urbana-Champaign. It has also impacted an application on

COVID-19 knowledge graph construction [9] that has been awarded the Best Demo Paper

Award in 2021 from NAACL.

Next, we will discuss how to automatically extract a wide range of fine-grained infor-

mation from unstructured scientific text. We will further discuss how to address real-world

scientific discovery problems, such as scientific textual evidence discovery and scientific topic

contrasting, based on the rich information we automatically extracted from scientific text.

10



CHAPTER 2: PATTERN-ENHANCED WEAK SUPERVISION FOR
NESTED BIOMEDICAL NAMED ENTITY RECOGNITION

2.1 INTRODUCTION

Biomedical named entity recognition (BioNER) aims to identify text spans associated

with proper names and classify them into a set of semantic classes (e.g., genes, proteins,

chemicals, and diseases). BioNER is a fundamental step in the biomedical information

extraction pipeline. It facilitates downstream tasks such as relation extraction [22, 23] and

knowledge base construction [24, 25, 26, 27].

The common way to approach BioNER is to formulate the task as a sequence labeling

problem. Machine learning methods have been proposed for BioNER, from feature-based

[28, 29] to neural network methods [3, 30, 31]. However, those flat BioNER methods are

unable to handle nested named entities. Figure 2.1 shows an example of the nested naming

structure: a chemical entity (i.e., “alanine”) is nested within a protein entity (i.e., “ala-

nine aminotransferase”). The state-of-the-art flat BioNER system, PubTator [8], recognizes

“alanine” as a chemical but misses “alanine aminotransferase” as a protein.

Nested named entities, especially the outermost entities, are important in the BioNER

tasks for two reasons. First, nested named entities are common in biomedical literature. For

example, 17% of the entities in the GENIA [32] dataset are embedded within another entity.

Second, downstream tasks require the BioNER methods to detect the outermost entities as

the first step. Failing to recognize the outermost entities may introduce errors to subsequent

tasks such as relation extraction and knowledge base construction.

Machine learning methods have been proposed for nested NER [33, 34, 35, 36, 37, 38].

However, those methods are fully supervised, requiring human effort for feature engineering

or training data annotations. Feature-based methods [33, 34, 35, 36] rely on handcrafted

features carefully designed for each entity type. Neural network methods [37, 38] save efforts

for feature engineering, but still require a large amount of human-annotated training data.

Therefore, these methods cannot be easily adapted to new entity types. In GENIA, a

benchmark dataset for nested BioNER, five types of biomedical entities (i.e., gene/protein,

DNA, RNA, cell type, and cell line) are annotated. Despite the success of the supervised

nested NER methods on the GENIA dataset, it remains unknown whether those methods

perform well at detecting nested naming structures for other important types of biomedical

entities such as chemicals and diseases.

In this chapter, we propose PeNNER, a BioNER method that relies on massive corpora

and unsupervised pattern mining for nested named entity boundary correction. PeNNER
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…… although each of the agents alone caused only slight increase in the 
[[alanine]CHEMICAL aminotransferase]PROTEIN activity.

Figure 2.1: An example of biomedical named entities with nested naming structure from
PubMed (PMID: 10190572).

takes massive corpora as input, with entities pre-tagged by any flat NER tool. We first

perform automatic meta-pattern extraction and take the extracted meta-patterns as can-

didate outer entity patterns. Then we select two patterns for each entity type as a seed

pattern set and perform automatic pattern set expansion. Note that in this step, we only

need very weak supervision (two user-specified seed patterns instead of a large human-

annotated training dataset). The top-ranked meta-patterns in each expanded pattern set

are considered correct outer entity patterns for the corresponding entity type. These outer

entity patterns are used to correct the boundaries and types of their matched entities in

the input corpus. Compared with previous BioNER methods, PeNNER greatly enhances

nested named entity boundary correction without any human effort for feature engineering

or training data annotation. Moreover, our pattern set expansion approach gives us the

advantage to discover new entity types that are not pre-tagged in the input corpus. We

compare PeNNER with the state-of-the-art BioNER system, PubTator, and observed sig-

nificant improvement in recognizing the outer entities for four types: gene, chemical, disease,

and species. PeNNER is also able to accurately extract new types (e.g., biological process

and treatment) that are not originally annotated by PubTator in the input corpus.

2.2 THE PENNER FRAMEWORK

The PeNNER framework is shown in Figure 2.2. The first step is an initial round of entity

tagging. Taking an input corpus, we first use PubTator to tag biomedical entities of four

types: genes, chemicals, diseases, and species. Then we replace the tagged biomedical entities

with their types from PubTator. The second step is meta-pattern extraction. We extract

quality sequential patterns containing entity type tokens as meta-patterns [39]. From our

perspective, a quality meta-pattern is assumed to be frequent, informative, and complete.

For example, in Figure 2.2, the green box shows some extracted quality meta-patterns.

The third step is pattern expansion. For each entity type to be recognized, we take two

user-specified seed patterns as weak supervision and expand the pattern set iteratively. At

each round of expansion, we select the meta-patterns sharing the most context similarity

with the seed patterns and add them to the seed patterns of the corresponding type. For

example, in Figure 2.2, the weak supervision for the GENE type includes two seed patterns:
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ID Sentence

1
TERT encodes the reverse transcriptase subunit of 
human telomerase.

2
The FGFR-2 receptor is a membrane-spanning tyrosine 
kinase.

3
Each of the agents alone caused only slight increase in 
the alanine aminotransferase activity.

… …

ID Sentence

1
GENE_TERT encodes the reverse transcriptase subunit 
of SPECIES_human telomerase.

2
The GENE_FGFR-2 receptor is a membrane-spanning 
CHEMICAL_tyrosine kinase.

3
Each of the agents alone caused only slight increase in 
the CHEMICAL_alanine aminotransferase activity.

… …

Flat Entity Recognition

Meta-Pattern
SPECIES telomerase
CHEMICAL kinase

CHEMICAL aminotransferase
GENE level

male SPECIES
several DISEASE

…

Meta-Pattern ExtractionInput Corpus

GENE
GENE peroxidase

GENE upregulation
GENE downregulation

CHEMICAL
GENE agonist

Seed Sets

GENE
GENE peroxidase

SPECIES telomerase
CHEMICAL kinase

Round 1

CHEMICAL
GENE agonist

GENE antagonist

GENE upregulation
GENE downregulation

GENE expression

GENE
GENE peroxidase

SPECIES telomerase
CHEMICAL kinase

CHEMICAL aminotransferase
CHEMICAL hydrolase

Round 2

…

…

…

…

…

…

Context InformationWeak Supervision

Pattern Expansion

ID Sentence

1
TERT encodes the reverse transcriptase subunit of 
GENE_human_telomerase.

2
The FGFR-2 receptor is a membrane-spanning 
GENE_tyrosine_kinase.

3
Each of the agents alone caused only slight increase in 
the GENE_alanine_aminotransferase activity.

… …

Nested Entity Recognition

Figure 2.2: Framework overview of PeNNER.

“GENE” and “GENE peroxidase”. During the first round of pattern expansion, “SPECIES

telomerase” and “CHEMICAL kinase” are considered to be similar to the seed patterns of

the GENE type. So we add the above two patterns to the pattern set of the GENE type

for future expansions. After we finished expanding the pattern sets for each entity type, we

take the final expanded pattern sets and match the patterns to concrete entity mentions in

the input corpus. Those matched entity mentions are considered as the outer entities and

their boundaries and types are corrected by their matched patterns. We discuss the two key

components of PeNNER, meta-pattern extraction and pattern expansion, in detail below.

2.2.1 Meta-Pattern Extraction

Candidate Meta-Pattern Extraction Taking an input corpus pre-tagged with any flat

NER tool, we first replace the tagged entity mentions with their type names. After the

replacement, the corpus will be a sequence as a mixture of word tokens and entity-type

tokens. Then we conduct frequent sequential pattern mining [40] to extract a big pool of

candidate meta-patterns. A meta-pattern is a sub-sequence of the corpus containing at least

one entity-type token. For example, “human telomerase” and “mouse telomerase” are two

sub-sequences of the original corpus. While they can be represented by the same meta-

pattern “SPECIES telomerase” after replacing “human” and “mouse” with their entity-type

token “SPECIES”.
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The high doses        of        CHEMICAL        appear        useful        for        the treatment        of        patients  with        DISEASE.

NOUN ADP PROPN VERB ADJ        ADP             NOUN ADP NOUN ADP PROPN

nsubj

prep pobj

prep

prep preppobj pobj pobjoprd

Figure 2.3: An example sentence with dependency parsing tree using SpaCy.

Meta-pattern extraction is important for nested NER for two reasons. First, the nested

naming structure is more of a pattern-level phenomenon than an instance-level phenomenon.

For example, the meta-pattern “SPECIES telomerase” indicates a nested protein entity no

matter whether we are talking about humans or mice as the SPECIES instance. Second, a

meta-pattern has aggregated context information of all of its instances, which helps us learn

its semantics in a more accurate way.

Quality Meta-Pattern Selection After extracting the big pool of candidate meta-

patterns, we further conduct quality meta-pattern selection to remove noisy patterns be-

fore the next step of pattern expansion. Quality meta-pattern selection has been studied in

MetaPAD [39], TruePIE [41], and BioOpenIE [42]. They propose a set of statistical features

(e.g., pattern frequency, IDF score, and co-occurrence) to train a classifier that estimates

the quality of the candidate meta-patterns. However, previous methods do not consider

a semantic analysis of the meta-patterns based on the sentence structures. In biomedical

literature, sentences are usually long with formal language styles. We propose a quality

meta-pattern selection method incorporating dependency parsing [43] to utilize the sentence

structure features.

We use SpaCy3 for dependency parsing. The output parsing tree has a set of directed

syntactic relations between the words in a sentence. Figure 2.3 shows an example of a

sentence parsing tree. The root of the tree is the verb “appear”. It is connected to “The

high doses” via a subject relation (nsubj) and to “for” via a preposition relation (prep).

According to the parsing tree structures as well as the corpus statistics, we propose the

following four criteria to select quality meta-patterns:

• Frequency: A quality meta-pattern should occur frequently. In PeNNER, we require

each meta-pattern candidate to appear more than 10 times in the corpus.

• Informativeness: A quality meta-pattern should either be a single entity type (e.g.,

“DISEASE”) or a phrase with one entity type and at least one non-stop-word (e.g., “pa-

3https://spacy.io/

14



tients with DISEASE”). Since we focus on the NER task, meta-patterns with two or more

entity mentions (e.g., “CHEMICAL induces DISEASE”) will not be considered, but they

will be useful in other tasks such as relation extraction.

• Syntactic Completeness: For a quality meta-pattern, all of its tokens in the parsing

tree should form a connected subgraph. For example, in Figure 2.3, “CHEMICAL appear

useful” is not complete since “CHEMICAL” and “appear” are separated by other nodes.

In contrast, “patients with DISEASE” is complete.

• Semantic Completeness: Since we focus on the NER task, the extracted pattern should

form a complete noun phrase. For example, in Figure 2.3, “of CHEMICAL” is syntactic

complete but is not a complete noun phrase. To reduce the noise of incomplete noun

phrases, we divide the whole parsing tree into chunks. Starting from the root, we itera-

tively cut the tree at nouns (i.e., nodes with tags NOUN or PROPN). The noun serves as the

leaf of the current chunk as well as the root of the next chunk. For example, in Figure 2.3,

the sentence is divided into four chunks: “the high doses appear useful for the treatment”,

“the high doses of CHEMICAL”, “treatment of patients”, and “patients with DISEASE”.

We require a semantic complete pattern to be a complete chunk in the sentence.

Specifically, for quality meta-pattern selection, we first select all the meta-patterns satis-

fying our frequency threshold. Then we check each of them by informativeness, syntactic

completeness, and semantic completeness. We remove the meta-patterns that do not meet

any of the above criteria from our candidate meta-pattern pool.

2.2.2 Pattern Expansion

Pattern Set Expansion Taking the quality meta-patterns as candidates, we further ex-

pand the quality patterns into the pattern sets for each entity type we want to recognize. To

get rid of the reliance on the entity-type-dependent training corpus, this pattern expansion

step needs to be done under very weak supervision. Here we adopt the SetExpan frame-

work [44]. SetExpan takes several user-provided seed patterns for each entity type (e.g.,

“GENE” and “CHEMICAL peroxidase” for the GENE type) and expand the seed patterns

with other patterns (e.g., “CHEMICAL aminotransferase”, “CHEMICAL hydrolase”, and

“SPECIES telomerase”) belonging to the same entity type. We assume patterns sharing the

most context similarities are likely belonging to the same entity type. Specifically, we utilize

skip-grams as the context features for similarity calculation.

Formally, given a candidate pattern p, one of its skip-grams is “w−1 w1” where w−1 and

w1 are two context words and p is replaced with a placeholder. For example, in the sentence
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“This effect exhibits CHEMICAL peroxidase activity in SPECIES hepatocytes”, one skip-

gram of the pattern “CHEMICAL peroxidase” is “exhibits activity”. We can also enlarge

the context window size to extract longer skip-grams (e.g., “w−2w−1 w1w2w3”). In our

experiments, the maximum context window size is 4. Note that word embedding methods

such as Word2Vec [45] also use skip-gram information. One advantage of SetExpan over

Word2Vec is that they impose strong positional constraints by using concrete skip-grams.

SetExpan defines the similarity between each pair of pattern p and its context feature c

using the TF-IDF transformation [46]:

fp,c = log(1 + Xp,c)(log |P | − log
∑
p′∈P

Xp′,c), (2.1)

where P is the set of candidate patterns and Xp,c is the raw co-occurrence count between p

and c in our input corpus. Empirically, SetExpan shows that such weight scaling outper-

forms other alternatives such as point-wise mutual information (PMI) and BM25. Then the

similarity between two patterns p1 and p2 under feature set F is defined as

sim(p1, p2|F ) =

∑
c∈F min(fp1,c, fp2,c)∑
c∈F max(fp1,c, fp2,c)

. (2.2)

Given the seed pattern set S, we first score each skip-gram feature c based on its accu-

mulated similarity with the seed patterns in S (i.e.,
∑

p∈S fp,c). Then M features with the

highest scores will be selected, from which we sample N subsets Fi (i = 1, 2, ..., N). Each of

the subsets contains M0 (M0 < M) features. The score of each pattern p in feature set Fi is

score(p|Fi) =
1

|S|
∑
p′∈S

sim(p, p′|Fi). (2.3)

Therefore, for Fi, we can obtain a ranking list of patterns according to their score(·|Fi).

Suppose the rank of p in feature set Fi is rp,i, we calculate the mean reciprocal rank of p as

MRR(p) =
1

N

N∑
i=1

1

rp,i
. (2.4)

Finally, the patterns with MRR higher than a threshold MRRthrs will be added into the

seed set for the next iteration.

Multi-Set Co-Expansion In practice, we need to recognize entities of different types

simultaneously. For example, we may expand patterns representing genes and chemicals
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Algorithm 2.1: MultiSetExpan(S1, ..., SQ,MRRthrs)

Data: M seed sets S1, ..., SQ representing Q different entity types
Result: Q expanded sets S1, ..., SQ

while ∃Sk not converged do
for i = 1 to Q do

Sample N context feature sets F1, ..., FN

for p ∈ P \ Si do
Calculate MRR(p) for each p
if MRR(p) ≥MRRthrs and p /∈ ∪j ̸=iSj then

Si ← Si ∪ {p}
end

end
if nothing added into Si in this round then

Mark Si as converged
end

end

end

Table 2.1: Basic statistics of the biomedical literature corpus.

Abstracts Sentences
Entity Mentions

GENE CHEMICAL DISEASE SPECIES

28007 302736 215704 314134 129931 86697

at the same time using two seed pattern sets. In our problem setting, the entity types are

assumed to be mutually exclusive (e.g., a disease entity/pattern can hardly be a chemical as

well). This property enables different semantic sets to give hints to each other. Therefore,

we extend SetExpan to the MultiSetExpan framework, shown in Algorithm 2.1. Given

Q seed sets S1, S2, ..., SQ of different types, MultiSetExpan expands patterns for each Si

by turns. If a pattern has already been included in other pattern sets, no matter how large

its MRR is, we will not put it in Si. In our experiments, we find this multi-set co-expansion

strategy highly effective in avoiding interference among different seed pattern sets.

2.3 EXPERIMENTS

We aim to answer three questions in the Experiments section. First, at the pattern level,

how does PeNNER perform in the meta-pattern expansion? Second, at the instance level,

how does PeNNER perform in nested named entity recognition? Third, after the pattern

enhancement, what are the improvements of PeNNER over PubTator?
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Table 2.2: Pattern expansion results of Embedding on Gene, Chemical, Disease and Species
entities. Grey patterns are judged as incorrect.

Seed {GENE, GENE
peroxidase}

{CHEMICAL, GENE
agonist}

{DISEASE, cellular
DISEASE}

{SPECIES, female
SPECIES}

1 unassigned : GENE CHEMICAL receptor
modulator ( serm )

DISEASE vera fischer SPECIES

2 CHEMICAL
phosphatase

antagonist of
CHEMICAL

potential for DISEASE SPECIES and adult

3 ( CHEMICAL ) release offspring of SPECIES GENE translocation exposure to CHEMICAL
or

4 SPECIES cardiomyocyte CHEMICAL oxidase ( SPECIES and adult SPECIES in vivo
5 potential against

DISEASE
DISEASE

chemopreventive agent
growth and DISEASE CHEMICAL protect

6 GENE inducer GENE receptor activity a common DISEASE CHEMICAL interfere
7 effect and mechanism of

CHEMICAL
antagonist (

CHEMICAL )
rare DISEASE a cohort of SPECIES

8 inducer of GENE CHEMICAL blocker detection of DISEASE SPECIES albino
9 ( GENE ) antagonist CHEMICAL substituent DISEASE as well as CHEMICAL exposure ,
10 GENE level and CHEMICAL vapor progression and

DISEASE
the detrimental effect of

CHEMICAL

Table 2.3: Pattern expansion results of SetExpan on Gene, Chemical, Disease and Species
entities. Grey patterns are judged as incorrect.

Seed {GENE, GENE
peroxidase}

{CHEMICAL, GENE
agonist}

{DISEASE, cellular
DISEASE}

{SPECIES, female
SPECIES}

1 SPECIES telomerase GENE hepatic DISEASE male SPECIES
2 CHEMICAL DISEASE

chemopreventive agent
degradation of GENE DISEASE

3 DISEASE DISEASE dermal DISEASE CHEMICAL
4 CHEMICAL

acetyltransferase
CHEMICAL chelation clinical DISEASE DISEASE cell

5 CHEMICAL
aminotransferase

SPECIES GENE phosphorylation GENE

6 SPECIES GENE antagonist - SPECIES cell
7 CHEMICAL hydrolase DISEASE cell - pregnant SPECIES
8 GENE kinase underlying mechanism of

CHEMICAL
- adult SPECIES

9 CHEMICAL kinase CHEMICAL exclusion - CHEMICAL channel
10 CHEMICAL influx 10 m CHEMICAL - DISEASE cell line

2.3.1 Datasets

PeNNER is a general nested named entity boundary correction method that can be

applied to any domain. In this study, we evaluate the performance of PeNNER and sev-

eral baseline methods on a biomedical literature corpus. The corpus is constructed from

the Comparative Toxicogenomics Database (CTD) [47] that contains a large set of human-

curated biomedical entities. Two entities, together with their relation, form a tuple in CTD.

We randomly sample 248,064 tuples and extract all the PubMed abstracts associated with

these tuples. Table 2.1 shows some basic statistics of our biomedical literature corpus.

2.3.2 Baselines

We demonstrate the effectiveness of PeNNER against two baseline methods:
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Table 2.4: Pattern expansion results of PeNNER on Gene, Chemical, Disease and Species
entities. Grey patterns are judged as incorrect.

Seed {GENE, GENE
peroxidase}

{CHEMICAL, GENE
agonist}

{DISEASE, cellular
DISEASE}

{SPECIES, female
SPECIES}

1 SPECIES telomerase DISEASE
chemopreventive agent

hepatic DISEASE male SPECIES

2 CHEMICAL
aminotransferase

CHEMICAL chelation degradation of GENE DISEASE cell

3 GENE promoter GENE antagonist dermal DISEASE pregnant SPECIES
4 CHEMICAL hydrolase - clinical DISEASE adult SPECIES
5 CHEMICAL oxidase - GENE phosphorylation SPECIES hepatocyte
6 CHEMICAL

acetyltransferase
- - SPECIES embryo

7 GENE kinase - - normal SPECIES
8 CHEMICAL kinase - - juvenile SPECIES
9 CHEMICAL peroxidase - - adult male SPECIES
10 CHEMICAL dismutase - - f334 SPECIES

• Embedding [45] adopts Word2Vec to learn the representation vector of each meta-pattern

by viewing it as a single token in the corpus. Given the seed patterns, the expanded

patterns are ranked by the sum of distances away from the seed patterns and the top-10

expanded patterns are returned as the results.

• SetExpan [44] is an ablation of the PeNNER framework, where the seed pattern sets of

each entity type are expanded one at a time instead of simultaneously.

For SetExpan and PeNNER, we set M,M0, N to be 200, 120, and 10, respectively. If

the final expanded pattern has more than 10 patterns, we only take the top-10 expanded

patterns as the results.

2.3.3 Extracting New Meta-Patterns

We first look at the meta-pattern expansion results. During the initial entity tagging step,

we use PubTator to recognize five biomedical entity types: gene/protein, chemical, disease,

species, and SNP. We ignore the SNP type in PeNNER because the SNP entities are sparse

in our input corpus. For each of the four entity types, we take two seed patterns to see

whether PeNNER can find new nested naming structures of the same type. The results are

shown in Tables 2.2, 2.3, and 2.4.

At the pattern level, PeNNER consistently achieves better performance than the two

baselines. Patterns extracted by Embedding are noisy, and some of them are even syntac-

tically wrong. This is because Embedding only considers semantic similarity while ignoring

frequency. For patterns that are not so frequent, their context in the corpus is limited, so

the quality of their representations learned by Word2Vec may not be good. In contrast,
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PeNNER cares about both semantics and frequency. If the extracted patterns appear very

often in the corpus, we have a good reason to trust the quality of its context information.

SetExpan does not exploit the mutual exclusiveness of different seed sets. As we can see,

“CHEMICAL” and “DISEASE”, as entity types, are far more frequent than other quality

meta-patterns in the corpus. Although they may not be semantically similar to “GENE”,

they will be ranked high if frequency and semantics are considered comprehensively. As a

result, “CHEMICAL” and “DISEASE” will be expanded into the gene set after the first

round. This may cause severe semantic drift problems since other disease- or chemical-

related patterns may be excluded in the next few rounds. In contrast, PeNNER never

considers “CHEMICAL” or “DISEASE” as candidates for the gene set under the multi-set

co-expansion mechanism since the “CHEMICAL” and “DISEASE” patterns have already

appeared in the chemical and disease seed sets, respectively. We discuss the four entity types

with their expanded pattern sets by PeNNER in detail below.

• GENE: PeNNER discovered ten gene/protein meta-patterns that are all correct. One

interesting observation is that most of the expanded meta-patterns for the gene type

belong to the same fine-grained gene type: enzymes. This fine-grained type enzyme

is also the type of the seed meta-pattern “GENE peroxidase” in the gene pattern set.

Generally speaking, if entities appear in the same meta-pattern set, they are likely to

be similar to each other or belong to the same fine-grained entity type. For example, the

chemical instances of the meta-pattern “CHEMICAL aminotransferase” include “alanine”,

“aspartate”, “tyrosine”, and “ornithine”. All four chemicals above belong to the same

fine-grained chemical type: amino acids.

• CHEMICAL: PeNNER discovers three chemical meta-patterns, among which “GENE

antagonist” is the counterpart of “GENE agonist” in the seed pattern set. The chemical

instances of the meta-pattern “CHEMICAL chelation” include “iron”, “copper”, “zinc”,

and “EDTA”. We observe that “CHEMICAL chelation” as a whole entity is more complete

than its partial CHEMICAL entity since metal ions and their chelations are different types

of chemicals.

• DISEASE: PeNNER discovered five disease meta-patterns, among which three are cor-

rect and the other two are biological processes. One correct example meta-pattern is

“hepatic DISEASE”. The disease instances of the meta-pattern “hepatic DISEASE” in-

clude “fibrosis”, “inflammation”, “tumor”, and “toxicity”. Similarly, we observe that

“hepatic fibrosis” is a more complete entity than the partial entity “fibrosis”. PubTator

also recognizes “liver fibrosis” or “liver inflammation” as a complete entity (see abstracts
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Table 2.5: NDCG@10 of different methods on the four types.

Method GENE CHEMICAL DISEASE SPECIES

Embedding 0.139 0.580 0.073 0.315
SetExpan 0.602 0.312 0.754 0.417

PeNNER 1.000 1.000 0.754 0.776

Table 2.6: Number of instances extracted by different methods on the four entity types.

Method GENE CHEMICAL DISEASE SPECIES

Embedding 79 139 61 45
SetExpan 1734 458 184 2211

PeNNER 5254 458 184 3212

with PMIDs 30079841 and 23813842 as two examples). So our expanded pattern “hepatic

DISEASE” for diseases is consistent with the entity recognition principle from PubTator.

• SPECIES: PeNNER discovered ten species meta-patterns, among which eight are cor-

rect and the other two are cell types. Our expanded meta-patterns incorporate certain

attributes (e.g., “male”) to the species entities that are beneficial to downstream knowl-

edge extraction tasks. For example, one sentence is “Amphetamine and cocaine decreased

susceptibility to myoclonus in young mice and increased susceptibility in mature mice”. If

the BioNER methods ignore “young” and “mature”, the facts extracted from this sentence

will be inaccurate and even controversial each other. PeNNER successfully recognized

“young mice” and “mature mice” as whole entities, which benefits downstream tasks such

as relation extraction from the above sentence.

2.3.4 Recognizing Nested Entities

Taking the expanded meta-patterns for each entity type, we match the meta-patterns to

concrete entity mentions in the input corpus. Those matched entity mentions are considered

as the outer entities and their boundaries and types are corrected by their matched patterns.

Tables 2.5 and 2.6 show the performance of PeNNER in nested NER. Since the expanded

meta-patterns form a ranked list, we use normalized discounted cumulative gain (nDCG) [48]

to evaluate the rank-aware precision. Besides precision, we also show the number of correct

instances extracted by each method on the four entity types. This can be regarded as the

instance-level “recall” of nested NER.

From Tables 2.5 and 2.6, we observe that PeNNER consistently outperforms the baselines

both in precision and recall. For the genes and chemicals, all the instances extracted by
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Table 2.7: Pattern expansion results of PeNNER for Biological Process and Treatment
entities. Grey patterns are judged as incorrect.

Seed {GENE upregulation,
GENE downregulation}

{CHEMICAL injection,
CHEMICAL inhalation}

1 GENE expression CHEMICAL treatment
2 GENE phosphorylation CHEMICAL administration
3 the development of DISEASE CHEMICAL exposure
4 GENE induction treatment with CHEMICAL
5 CHEMICAL action exposure to CHEMICAL
6 identification of GENE administration of CHEMICAL
7 GENE suppression pretreatment with CHEMICAL
8 DISEASE reduction CHEMICAL pretreatment
9 CHEMICAL production -
10 GENE activity -

PeNNER are correct. We observe that PeNNER extracted 5,254 nested gene entities

from 28,007 PubMed abstracts (i.e., on average, one nested GENE entity in every 5.33

abstracts). It further confirms our motivation that the nested named entities are common

in biomedical literature.

2.3.5 Finding New Types of Entities

We further demonstrate an advantage of PeNNER over the fully-supervised methods:

finding new types of entities. If one entity type has not been included in the training set,

it would be extremely difficult for the supervised methods to recognize entities of this type.

In biomedical literature, biomedical processes [49] and treatment entities [50] attract great

attention. For example, detecting biological process patterns such as “GENE expression”

and “GENE phosphorylation” are useful in connecting gene/protein-disease-drug in the con-

text of gene-variant [51] and protein modification (PTM) [52]. However, these two types,

biological process and treatment, are not commonly annotated in the BioNER dataset and

have not been included in PubTator. Under this setting, PeNNER shows its power. Similar

to the meta-pattern expansion process for the known entity types, we take only two seed

meta-patterns for each new entity type. Table 2.7 shows the pattern expansion results on

the two new types: biological process and treatment.

• Biological Process: Taking “GENE upregulation” and “GENE downregulation” as the

seed meta-patterns, PeNNER discovered ten additional meta-patterns from the corpus,

among which eight are correct. Similar to the seed meta-patterns, most of the extracted

biological process patterns are describing the activities of genes.

• Treatment: Taking “CHEMICAL injection” and “CHEMICAL inhalation” as the seed

meta-patterns, discovered eight additional meta-patterns from the corpus, among which
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six are correct. One interesting mistake PeNNER makes here is about an ambiguous

pattern “CHEMICAL exposure”. In fact, the pattern “CHEMICAL exposure” indicates

different types with different fine-grained chemical types embedded in this pattern. For

example, if the chemical is a drug (e.g., “resveratrol”, “simvastatin”, or “quercetin”),

the pattern “CHEMICAL exposure” indicates a treatment entity. On the other hand, if

the chemical is a toxic chemical (e.g., mercury, lead, and hydrofluoric acid), the pattern

“CHEMICAL exposure” indicates a symptom entity. This observation motivates us to

study more fine-grained entity typing as the first step for meta-pattern disambiguation.

2.3.6 Case Study

To further demonstrate the improvements of PeNNER over PubTator, we compare the

annotation results on several sentences by PeNNER and PubTator in Table 6.5. In the

first two sentences, PubTator can only do flat NER, while PeNNER successfully detects

CHEMICAL-GENE and GENE-CHEMICAL nested naming structures. We also observe

that recognizing more complete entities benefits downstream applications such as relation

extraction. For example, in the second sentence, the inhibition relation happens between

“MCP-1” and “Erk1/2 antagonist” instead of its partial entity “Erk1/2”. Failing to recognize

the whole entity “Erk1/2 antagonist” will lead to an opposite relation with the original

sentence because “antagonist” means a suppressor of the protein “Erk1/2”. In the third

and fourth sentences, PeNNER recognizes entities of the new types: biological process and

treatment. Similarly, the GENE-PROCESS nested naming structure leads to an accurate

relation extraction because it is “STAT1 phosphorylation” instead of “STAT1” that is being

up-regulated in the third sentence.

Despite the impressive results of PeNNER, there is still room for future improvements.

For example, the meta-patterns can be utilized in a more general way. PeNNER mainly

uses meta-patterns with only one entity type token to deal with the nested naming struc-

tures. However, meta-patterns with two or more type tokens may also be useful. We still

take the sentences in Table 6.5 as examples. In the first sentence, the abbreviations of the

genes (i.e., “SOD” and “Ala-AT”) are not recognized. In fact, we do extract a quality meta-

pattern “GENE ( GENE )”. If we already know that the entity outside of the brackets is a

gene/protein, we may infer that the inside one is a gene/protein as well. In the third sen-

tence, “STAT3 and STAT5 phosphorylation” is suppressed. However, we only find “STAT5

phosphorylation” and leave “STAT3” alone. It is possible to utilize meta-patterns such as

“GENE and GENE phosphorylation” to find a more complete nested naming structure.
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Table 2.8: Case study of the NER results. Differences of PubTator and PeNNER results
are marked in bold. In contrast with PubTator, PeNNER is able to detect nested entity
structures as well as new types of entities.

PMID: 15820610

PubTator The aim of the present study was to determine the effect of HRT on the ac-
tivities of an antioxidant enzyme [superoxide]CHEMICAL dismutase (SOD) and
aminotransferases like [alanine]CHEMICAL aminotransferase (Ala-AT) and [as-
partate]CHEMICAL aminotransferase in different age groups ...

PeNNER The aim of the present study was to determine the effect of HRT on the activities
of an antioxidant enzyme [[superoxide]CHEMICAL dismutase]GENE (SOD) and
aminotransferases like [[alanine]CHEMICAL aminotransferase]GENE (Ala-AT)
and [[aspartate]CHEMICAL aminotransferase]GENE in different age groups ...

PMID: 10919993

PubTator Mitogen-activated protein (MAP) kinase [Erk1/2]GENE antagonist mainly in-
hibited the release of [MCP-1]GENE, whereas MAP kinase [p38]GENE antagonist
mainly suppressed the release of [IL-8]GENE and [RANTES]GENE.

PeNNER Mitogen-activated protein (MAP) kinase [[Erk1/2]GENE antagonist]CHEMICAL

mainly inhibited the release of [MCP-1]GENE, whereas MAP kinase [[p38]GENE

antagonist]CHEMICAL mainly suppressed the release of [IL-8]GENE and
[RANTES]GENE.

PMID: 21266192

PubTator ... it suppressed [STAT3]GENE and [STAT5]GENE phosphorylation in HS-578T
cells, whereas it up-regulated [STAT1]GENE phosphorylation and down-regulated
[STAT5]GENE phosphorylation in MCF-7 cells.

PeNNER ... it suppressed [STAT3]GENE and [[STAT5]GENE phosphorylation]PROCESS

in HS-578T cells, whereas it up-regulated [[STAT1]GENE phosphoryla-
tion]PROCESS and down-regulated [[STAT5]GENE phosphorylation]PROCESS in
MCF-7 cells.

PMID: 10498651

PubTator [COL1A2]GENE expression was decreased by [vitamin E]CHEMICAL treatment
or transfection with [manganese superoxide]CHEMICAL dismutase, and was
further increased after treatment with [L-buthionine sulfoximine]CHEMICAL

...
PeNNER [[COL1A2]GENE expression]PROCESS was decreased by [[vitamin E]CHEMICAL

treatment]TREATMENT or transfection with [[manganese superox-
ide]CHEMICAL dismutase]GENE, and was further increased after [treatment
with [L-buthionine sulfoximine]CHEMICAL]TREATMENT ...

2.4 RELATED WORK

Several methods have been proposed for flat NER. Early supervised methods are based

on hidden markov models (HMMs) [53] or conditional random fields (CRFs) [54]. Recently,

recurrent neural networks (RNNs) have been widely applied to several sequence labeling

tasks. Lample et al. [55] proposed neural models based on long short-term memory networks
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(LSTMs) for flat named entity recognition and achieved state-of-the-art performance.

There are fewer approaches address the problem of nested entities. Alex et al. [33]

presented several techniques based on CRFs for nested NER in the GENIA dataset. They

obtained their best results from a cascaded approach, where they applied CRFs in a specific

order on the entity types, such that each CRF utilizes the output derived from previous

CRFs. However, their approach could not identify nested entities of the same type. Finkel

and Manning [34] proposed a CRF-based constituency parser for nested named entities such

that each named entity is a constituent in the parse tree. Their model achieved state-of-the-

art results on the GENIA dataset. However, the time complexity of their model is O(n3),

where n is the number of tokens in the sentence, making inference slow. Lu and Roth [35]

further proposed a linear time directed hypergraph-based model.

While most previous efforts for nested entity recognition were limited to named entities,

Lu and Roth [35] addressed the problem of nested entity mention detection where mentions

can either be named, nominal or pronominal. Their hypergraph-based approach is able to

represent the potentially exponentially many combinations of nested mentions of different

types. They adopted a CRF-like log-linear approach to learn these mention hypergraphs

and employed several hand-crafted features defined over the input sentence and the output

hypergraph structure. Recently, Muis and Lu [36] introduced the notion of mention separa-

tors for nested entity mention detection. In contrast to the hypergraph representation that

Lu and Roth [35] adopt, they learn a multigraph representation and are able to perform

exact inference on their structure. It is an interesting orthogonal approach for nested entity

mention detection.

Neural network models for nested NER are recently proposed as extensions to the state-

of-the-art RNN-based models for flat NER. Katiyar and Cardie [37] proposed to learn a

hypergraph representation for nested entities using features extracted from a recurrent neural

network. Ju et al. [38] proposed to dynamically stack flat NER layers and recognize outer

entities with additional information from their inner entities. The neural network models

save human effort for feature generation. However, they require a large amount of training

data and are not easily adapted to new entity types.

2.5 SUMMARY

In this chapter, we proposed a framework PeNNER that automatically discovers nested

naming structures in biomedical literature. Taking a corpus pre-tagged by any existing

flat NER tool, PeNNER extracts quality meta-patterns in an unsupervised way and finds

meta-patterns associated with each entity type under very weak supervision. Experiments
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demonstrate that PeNNER outperforms the baselines by a large margin in finding quality

meta-patterns and nested named entities. In addition, PeNNER is also able to find new

types of entities with just two user-specified seed patterns. Case studies demonstrate that

the PeNNER largely improves the annotation results by PubTator. One interesting mis-

take PeNNER currently makes is about ambiguous patterns (e.g., “CHEMICAL exposure”

can indicate treatment or symptom depending on whether the chemical is a drug or toxic

chemical). This observation motivates us to study fine-grained named entity recognition as

the first step to benefit meta-pattern disambiguation. In the next chapter, we will introduce

a method for fine-grained chemistry named entity recognition under distant supervision.
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CHAPTER 3: ONTOLOGY-GUIDED DISTANT SUPERVISION FOR
FINE-GRAINED CHEMISTRY NAMED ENTITY RECOGNITION

3.1 INTRODUCTION

Named entity recognition (NER) is a fundamental step in scientific literature analysis to

build AI-driven systems for molecular discovery, synthetic strategy designing, and manu-

facturing [24, 25, 26, 27, 56]. The NER task aims to locate and classify entity mentions

(e.g., “Suzuki-Miyaura cross-coupling reactions”) from unstructured text into pre-defined

categories (e.g., “coupling reactions”). In the chemistry domain, previous NER studies are

mostly focused on one coarse-grained entity type (i.e., chemicals) [29, 57, 58] and rely on large

amounts of manually-annotated data for training deep learning models [3, 13, 55, 59, 60, 61].

In real-world applications, it is important to recognize chemistry entities on diverse and

fine-grained types (e.g., “inorganic phophorus compounds”, “coupling reactions” and “cat-

alysts”) to provide a wide range of information for scientific discovery. It will need dozens

to hundreds of distinct types, making consistent and accurate annotation difficult even for

domain experts. On the other hand, the domain-specific ontologies and knowledge bases

(KBs) can be easily accessed, constructed, or integrated, which makes distant supervision

realistic for fine-grained chemistry NER.

Still, challenges exist for correctly recognizing the entity boundaries and accurately typ-

ing entities with distant supervision. In distant supervision, training labels are generated

by matching the mentions in a document with the concepts in the knowledge bases (KBs).

However, this kind of KB-matching suffers from two major challenges: (1) incomplete anno-

tation where a mention in a document can be matched only partially or missed completely

due to an incomplete coverage of the KBs (Figure 3.1(a)), and (2) noisy annotation where

a mention can be erroneously matched due to the potential matching of multiple entity

types in the KBs (Figure 3.1(b)). Due to the complex name structures (e.g., nested naming

structures and long chemical formulas) of chemical entities, these challenges lead to severe

low-precision and low-recall for fine-grained chemistry NER with distant supervision.

Several studies have attempted to address the incomplete annotation problem in distantly-

supervised NER. For example, AutoNER [62] introduces an “unknown” type that can be

skipped during training to reduce the effect of false negative labeling with distant super-

vision. BOND [63] leverages the power of pre-trained language models and a self-training

approach to iteratively incorporate more training labels and improve the NER performance.

However, previous methods assume a high precision and reasonable coverage of KB-matching

for distant label generation. For example, the KB-matching on the CoNLL03 dataset [63]
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With these chiral nucleophiles, Suzuki-Miyaura cross-coupling reactions were 
carried out with various aryl- and hetaryl chlorides in good to excellent yields.

INORGANIC PHOSPHORUS COMPOUNDS COUPLING REACTIONS

CHLORIDES

CHLORIDES

The boronic acids are predominantly aryl with only four vinyl boronic acids 
being used in the library.

OXOACIDS OXOACIDS

REACTIVE_INTERMEDIATES, CHLORIDES

(a) Incomplete Annotation

With these chiral nucleophiles, Suzuki-Miyaura cross-coupling reactions were 
carried out with various aryl- and hetaryl chlorides in good to excellent yields.

INORGANIC PHOSPHORUS COMPOUNDS COUPLING REACTIONS

CHLORIDES

CHLORIDES

Although it was necessary to employ a stoichiometric quantity of palladium , 
it is noteworthy that the cross-coupling proceeded in the presence of a wide 
array of functional groups. COUPLING REACTIONS

CATALYSTS, TRANSITION METALS

FUNCTIONAL GROUPS

(b) Noisy Annotation

Figure 3.1: Two major challenges of distant supervision for fine-grained chemistry NER:
incomplete annotation and noisy annotation. The KB-matching labels are marked in red
and the true labels are marked in blue.

reported over 80% on precision and over 60% on recall. These methods do not work well with

fine-grained chemistry NER that has severe low precision and low recall with KB-matching.

Previous studies also largely ignore the noisy annotation problem by simply discarding those

multi-labels during the KB-matching process [63]. However, the noisy labels cannot be sim-

ply ignored for the chemistry entities because they consist of a large portion of distant

training labels. We observe that more than 60% of the entities have multiple labels during

KB-matching in the chemistry domain.

In this chapter, we propose ChemNER, an ontology-guided, distantly-supervised NER

method for fine-grained chemistry NER. Taking an input corpus, a chemistry type ontology,

and associated entity dictionaries collected from the KBs, we develop a flexible KB-matching

method with TF-IDF-based majority voting to resolve the incomplete annotation problem.

Then we develop an ontology-guided multi-type disambiguation method to resolve the noisy

annotation problem. Taking the output from the above two steps as distant supervision, we

further train a sequence labeling model to cover additional entities. ChemNER significantly

improves the distant label generation for the subsequent NER model training. We also

provide an expert-labeled, chemistry NER dataset with 62 fine-grained chemistry types (e.g.,

chemical compounds and chemical reactions). Experimental results show that ChemNER

is highly effective, achieving substantially better performance (with .25 absolute F1 score

improvement) compared with the state-of-the-art NER methods.
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Knowledge Bases

S1: [Methyl-14C]S-dThd was synthesized by rapid methylation of ...
S2: ... Suzuki-Miyaura cross-coupling reactions were carried out …
S3: Although it was necessary to employ a stoichiometric quantity 
of palladium , it is noteworthy that the cross-coupling proceeded in 
the presence of a wide array of functional groups.
S4: … can undergo a transmetalation with either BBA or the rapidly 
forming boronic acid …

Entity Span Detection

Flexible KB-Matching

S1: [Methyl-14C]S-dThd was synthesized by rapid methylation of ...

S2: ..., Suzuki-Miyaura cross-coupling reactions were carried out ...

TF-IDF
Scores

ORGANIC 

COMPOUNDS

ORGANIC 

POLYMERS
Biomolecules …

methyl 0.0177 0.0139 0.0010 …
thd 0.0256 0.0115 0.0417

ORGANIC COMPOUNDS, ORGANIC POLYMERS

Ontology-guided Multi-type Disambiguation

S3: Although it was necessary to employ a stoichiometric quantity of palladium , 
it is noteworthy that the cross-coupling proceeded in the presence of a wide 
array of functional groups.

CHEMICAL 
REACTIONS

CATALYSTS
TRANSITION 

METALS

…

Sequence Labeling Models 
BiLSMT-CRF, RoBERTa, ChemBERTa, …

S4: … can undergo a transmetalation with either BBA or the rapidly 
forming boronic acid …

…
Candidate Types Freq.

CATALYSTS 18,707

TRANSITION_METALS 9,618

Context Type

CHEMICAL 
ELEMENTS

Candidate Types

…

…

CATALYSTS, TRANSITION METALS

FUNCTIONAL GROUPS

CATALYSIS
ORGANIC

REACTIONS

… …
COUPLING
REACTIONS

CHEMISTRY

COUPLING REACTIONS

ORGANIC REACTIONS

OXOACIDS

??? [NOT IN KB] => OXOACIDS

“either ... or …” pattern learned by Sequence Labeling Model

ORGANOMETALLIC CHEMISTRY 

Input Corpus

COUPLING REACTIONS

Figure 3.2: The overall framework of ChemNER. It includes a distant label generation (en-
tity span detection, flexible KB-matching, and ontology-guided multi-type disambiguation)
and a sequence labeling model training.

3.2 THE CHEMNER FRAMEWORK

The ChemNER framework is shown in Figure 6.1. It includes distant label generation

(entity span detection, flexible KB-matching, and ontology-guided multi-type disambigua-

tion) and sequence labeling model training.

3.2.1 Data Preparation

The input to ChemNER includes two parts: (1) a chemistry literature corpus, and (2) a

fine-grained chemistry type ontology and associated entity dictionaries for each type.

Corpus Collection For this study, we collected a chemistry literature corpus from Pub-

Chem4. This corpus contains 4,608 papers, among which 319 papers have the full-text and

all have the title and abstract. There are 71,406 sentences in this corpus.

Type Ontology and Dictionary Collection We collected a fine-grained chemistry type

ontology from Wikipedia categories rooted under the Chemistry category5. We treat the

Wikipedia category pages as types and the titles of the pages associated with each category

as the entity dictionary for each type. We further remove irrelevant types and merge some

4https://pubchem.ncbi.nlm.nih.gov/
5https://en.wikipedia.org/wiki/Category:Chemistry
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Figure 3.3: Illustration of the chemistry type ontology construction and dictionary collection.

fine-grained types to their coarse-grained parent types based on their term frequencies in the

corpus. We also expand the entity dictionaries with synonyms collected from the PubChem

knowledge base. Finally, we obtained a fine-grained chemistry entity type ontology with 62

types and its associated dictionaries with 10,551 entities. Figure 3.3 shows a subset of our

chemistry type ontology.

3.2.2 Flexible KB-Matching

Taking the input corpus, chemistry type ontology, and associated entity dictionaries col-

lected from the KBs, we first develop a flexible KB-matching method to resolve the incom-

plete annotation problem. Chemistry entities usually have complex naming structures, such

as nested naming structures (e.g., “aryl chloride” where “aryl” is a FUCNTIONAL GROUP,

“chloride” is a HALIDE, but altogether is an ORGANOHALIDE) and long chemical formu-

las (e.g., “Methyl 3’-(((Trifluoromethyl)sulfonyl)oxy)-[1,1’-biphenyl]-4-carboxylate”). As a

result, the chemical names are quite flexible and cannot be fully covered by the KBs. Sim-

ple KB-matching used in previous distantly-supervised NER methods [62, 63] cannot match

those complex chemistry entities that do not exist in the KBs, which leads to a severe low

precision and low recall for labeling the fine-grained chemistry entities.

We propose to first conduct entity span detection with chemistry phrase chunking tools
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followed by a flexible KB-matching to resolve the incomplete KB-matching problem. We use

two phrase chunking tools, ChemDataExtractor [64] and Genia Tagger [65], to generate

candidate entity spans in the input corpus (e.g., in Figure 6.1 sentence S2, the phrase

chunking tools find “Suzuki-Miyaura cross-coupling reactions” as a candidate entity span.)

Based on the detected candidate entity spans, we develop a flexible KB-matching method

with TF-IDF-based majority voting to resolve the incomplete annotation problem.

The flexible KB-matching method can match long and complex chemistry entities (e.g.,

chemical compounds) that do not exist in the KBs. Specifically, we label each candidate

entity span by letting each word token in the entity span vote for several entity types

that are most likely to involve this word token. For example, in Figure 6.1 sentence S1,

“[Methyl-14C]S-Thd”, which is short for “4’-[methyl-14C]thiothymidine” according to the

original document, is an author-defined abbreviation that cannot be covered by the existing

KBs. However, since “Methyl-” is a common functional group that is usually the prefix of

the organic compounds, this word token in “[Methyl-14C]S-Thd” helps vote for the types

“ORGANIC COMPOUNDS” and “ORGANIC POLYMERS”. Another example is sentence

S2, where three (“suzuki”, “coupling”, “reaction”) out of the five word tokens in “Suzuki-

Miyaura cross-coupling reactions” help vote for the type “COUPLING REACTIONS”.

Formally, let e = [w1, w2, . . . , wn], wi ∈ V , where e denotes each candidate entity span, wi

each word token in the entity span, and V the vocabulary. Let T denote the set of fine-

grained types and Dt the dictionary of entities for type t ∈ T . The TF-IDF score of each

word token w for each entity type t ∈ T is calculated as follows:

TF -IDF (w, t) = TF (w, t) ∗ IDF (w, t), (3.1)

TF (w, t) =
f(w,Dt)∑

w′∈V f(w′, Dt)
, (3.2)

IDF (w, t) = log

(
|T |

|{t | t ∈ T , w ∈ Dt}|

)
, (3.3)

where f(w,Dt) denotes the frequency of the word token w appearing in the dictionary Dt.

We set a minimum TF-IDF threshold θ = 0.02 to eliminate the common words from voting

for the entity types. Then we let each word token vote for several entity types that has the

highest TF-IDF scores above the mininum TF-IDF threshold and generate the distant labels

by taking the majority voting. Note that this step can generate multi-type labels for the

candidate entity spans due to ties in the majority voting. We resolve this problem with an

ontology-guided multi-type disambiguation method as the next step.
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3.2.3 Ontology-Guided Multi-Type Disambiguation

Based on the output of flexible KB-matching and the chemistry type ontology structure,

we develop an ontology-guided multi-type disambiguation method to resolve the noisy an-

notation problem. An intuition of multi-type disambiguation is that the entities in the

same sentence, paragraph or document usually follow a focused topic. For example, if a

sentence is talking about organic chemistry, the entities in this sentence are more likely to

have types related to organic chemistry. Following this intuition and the chemistry type

ontology structure (Section 3.2.1), we draw two insights for an automated multi-type dis-

ambiguation: (1) the entity types in one sentence are usually confined to one big branch

on the chemistry type ontology (e.g., organic or inorganic chemistry), and (2) the type of

an entity under local context should be close to the types of the surrounding entities in the

same sentence on the chemistry type ontology. For example, in Figure 6.1, sentence S3 con-

tains one entity “palladium” that has two candidate types: “CATALYSTS” that falls under

“CHEMICAL REACTIONS” and “TRANSITION METALS” that falls under “CHEMICAL

ELEMENTS”. By looking at its surrounding entities (e.g., “cross-coupling”), we see that

the surrounding entity types (e.g., “COUPLING REACTIONS” for “cross-coupling”) fall

under the “ORGANIC REACTIONS” branch, which is also under the larger “CHEMICAL

REACTIONS” branch, on the type ontology. So the sentence S3 is likely talking about

chemical reaction and “palladium” is more suitable to have a type “CATALYSTS” instead

of “TRANSITION METALS” based on the local context.

Formally, let s = [e1, e2, . . . , en], where s denotes a sentence and ei ith entity mention in

it that has been assigned an initial label set Tei = {t1ei , . . . , t
m
ei
} with flexible KB-matching.

For an entity ei with multiple candidate types (|Tei | > 1) to be resolved, we calculate the

inverse distance between this candidate type and the distribution of the surrounding types

on the type ontology. The disambiguation score for each candidate type Sd(t
j
ei

) is defined as

Sd(t
j
ei

) =

∑
k∈[1..n],k ̸=i,|Tek

|=1 dep(lca(tek , t
j
ei

))

n ∗ dep(tjei)
, (3.4)

where lca(·, ·) denotes the lowest common ancestor of two types on the type ontology and

dep(·) denotes the depth of the type on the type ontology. A larger Sd(t
j
ei

) ∈ (0, 1) indicates

that the candidate type tjei is more likely to be the correct type of entity ei in sentence s.

If the surrounding types in the sentence still draw ties for the candidate type resolution, we

could further enlarge the scope to a few surrounding sentences, the paragraph, the document

or the corpus. We introduce a corpus-level global popularity score for each type based on

our experimental observations. As shown in Figure 6.1, we calculate the frequency of each
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type in our initially labeled corpus with flexible KB-matching. “CATALYSTS” is globally

more popular with a frequency of 18,707 compared to “TRANSITION METALS” with a

frequency of 9,618. The global popularity score for each candidate type Sg(t
j
ei

) is defined as

Sg(t
j
ei

) =
fc(tei)∑
t′∈T fc(t′)

, (3.5)

where fc(·) denotes the frequency of the type in the flexible KB-matched corpus. Sg(t
j
ei

) ∈
(0, 1] and a larger score indicates that the candidate type tjei is more likely to be the correct

type for the entity ei globally in the corpus.

The final score S(tjei) of the candidate type tjei is a combination of the local disambiguation

score Sd(t
j
ei

) and the global popularity score Sg(t
j
ei

):

S(tjei) = Sd(t
j
ei

) ∗ Sg(t
j
ei

) ∈ (0, 1). (3.6)

We choose the type tjei for the entity ei that has a highest score S(tjei) for multi-type disam-

biguation.

3.2.4 Sequence Labeling Models

The flexible KB-matching and multi-type disambiguation still rely on the signals from the

KBs and ontologies, which cannot cover all the new entities in the corpus. Taken the output

from the above two steps as distant supervision, we further train a sequence labeling model

to solve the sparsity labeling problem. For example, in Figure 6.1 sentence 4, “BBA” is a

new entity that cannot be labeled by flexible KB-matching since there is no obvious token-

level signals. However, there is a “boronic acid” entity with the type “OXOACIDS” in its

surrounding context. The sequence labeling models will be able to capture those context

patterns such as “either ... or ...” that usually connect entities with similar types. Thus

they are likely to recognize “BBA” with the type “OXOACIDS”.

Based on the distant labels generated by the flexible KB-matching and multi-type disam-

biguation, we train a sequence labeling model (e.g., RoBERTa, ChemBERTa) without any

constraints on the type of model to use. The loss function is defined as:

l =θ

n∑
i

loss(hθ(xi), y), (3.7)

where hθ(·) is the output of the sequence labeling model and y is our generated distant label.

This is equivalent to minimizing the cross-entropy error between the outputs of the sequence
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labeling model and our generated distant labels.

3.3 EXPERIMENTS

3.3.1 Dataset

We provide a chemistry NER dataset covering 62 fine-grained chemistry types such as

chemical compounds and chemical reactions. This dataset can be used to benchmark dis-

tantly supervised NER methods for the fine-grained chemistry NER task. The input for

training includes two parts: (1) a chemistry literature corpus with 69,806 unlabeled sen-

tences, and (2) a chemistry type ontology with 62 fine-grained chemistry types and associ-

ated entity dictionaries for each type (Section 3.2.1). The test set contains 1,600 expert-

annotated sentences on the fine-grained chemistry types. We use this test set to compare the

performance of different NER methods in our experiments. We report the entity-level micro-

precision, micro-recall, and micro-F1 scores6 of each NER method on the human-annotated

test set. We have released all of our data and code for future studies, including the chem-

istry literature corpus, fine-grained entity type ontology and associated dictionaries collected

from Wikipedia-Chemistry, manually-annotated test set for NER performance evaluation,

and the code of ChemNER.

Corpus Collection We collected a corpus for Suzuki Coupling reactions in the chemistry

domain. Suzuki coupling is an important reaction for carbon–carbon bond formation in

organic chemistry. Recent studies have focused on the Suzuki coupling reactions to build

AI-driven systems for molecular discovery, synthetic strategy designing, and manufacturing.

This corpus contains 4,608 papers that are retrieved from PubChem7 with the query “Suzuki

Coupling”, among which 319 papers have the full-text and all have the title and abstract.

There are in total 71,406 sentences in this corpus.

Dictionary Collection We collected a fine-grained chemistry entity type ontology from

Wikipedia by treating category pages as types and the titles of the pages associated with each

category as the entities for each type. We first conducted a depth-first search (DFS) starting

from the Chemistry category8 and found that the search did not stop when one million

categories had been visited, and it often happened that a category relevant to Chemistry

6https://github.com/chakki-works/seqeval
7https://pubchem.ncbi.nlm.nih.gov/
8https://en.wikipedia.org/wiki/Category:Chemistry
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has irrelevant children. Therefore, we decide to use a technical term list to filter out irrelevant

categories. We collected a spell-checker dictionary [66] with over 104,000 technical chemistry

terms and dropped a category from the search if less than 20% of one-grams in its name and

the names of all its direct children were covered by the dictionary. The threshold of 20%

was selected empirically. After this step, we obtained a fine-grained chemistry entity type

ontology with 3,775 types and 101,415 entities. We future tailor the entity type ontology

and their associated entities by removing some irrelevant types and merging some fine-

grained types to their coarse-grained parent types based on their frequencies in our chemistry

literature corpus. We also expand the entity dictionaries with synonyms collected from the

PubChem knowledge base. Finally, we obtained a fine-grained chemistry entity type ontology

with 62 types and 10,551 entities.

Test Set Annotation We randomly select 1,600 sentences from the corpus and ask three

domain experts to annotate each sentence as our test sets. We leave the remaining sentences

(69,806 sentences in the corpus) as the training set for distant supervision. We provide the

annotators with an auto-complete drop-down menu consisting of our entity type vocabulary.

Each pair of annotators reach a substantial agreement with a Fleiss’s κ of 0.72. The conflicts

among annotators are resolved by another senior domain expert in the final test set.

3.3.2 Baselines

We compare the performance of ChemNER with several groups of baseline methods.

• KB-Matching: This baseline is a simple string matching as [67]. It is a greedy search

algorithm that walks through a sentence trying to find the longest strings that match the

entities in the dictionaries. For the strings matched with multiple types, we simply discard

those multi-labels as [63].

• KB-Matching (freq): This baseline is a simple improvement of KB-Matching. For the

strings matched with multiple types, we choose the type that has the highest frequency

in the corpus.

• BiLSTM-CRF: This baseline is the BiLSTM-CRF model [60] that takes the results of

KB-Matching (freq) as distant supervision.

• AutoNER: This baseline is the AutoNER model [62] that directly takes the raw corpus

and the dictionaries as the input. It has a built-in KB-matching algorithm that maximizes

the total number of matched tokens on each sentence to generate distant supervision. For
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the strings matched with multiple types, it assigns equal probabilities to each candidate

type during training.

• RoBERTa: This baseline is the RoBERTa model [13] that takes the results of KB-

Matching (freq) as distant supervision.

• ChemBERTa: This baseline is the ChemBERTa model [14] that takes the results of KB-

Matching (freq) as distant supervision. The ChemBERTa language model is pre-trained

on the SMILE strings of the chemical molecule structures instead of the chemistry corpus.

To our knowledge, there is no domain-specific pre-trained language model on the chemistry

corpus.

• BOND: This baseline is the BOND model [63] that takes the results of KB-Matching

(freq) as distant supervision. The original distant supervision is our KB-Matching baseline

according to the BOND paper. Here we use the improved KB-Matching (freq) baseline to

give the BOND baseline an improved performance.

• ChemNERF: This is an ablation model of ChemNER with the flexible KB-Matching

only. For the strings matched with multiple types, we simply discard those multi-labels.

• ChemNERFM: This is an ablation model of ChemNER with the flexible KB-Matching

and the ontology-guided multi-type resolution.

• ChemNERBiLSTM-CRF: This is a variation of ChemNER that takes the results of

ChemNERFM as distant supervision and trains a BiLSTM-CRF model for the final pre-

diction.

• ChemNERRoBERTa: This is a variation of ChemNER that takes the results of ChemNERFM

as distant supervision and trains a RoBERTa model for the final prediction. It is also the

full model of ChemNER that achieves the best performance.

• ChemNERChemBERTa: This is a variation of ChemNER that takes the results of

ChemNERFM as distant supervision and trains a ChemBERTa model for the final pre-

diction.

• ChemNERBOND: This is a variation of ChemNER that takes the results of ChemNERFM

as distant supervision and trains a BOND model for the final prediction.
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Table 3.1: Runtime and Number of Parameters

Method Ave. Runtime # of Parameters

BiLSTM-CRF 6h 2M
AutoNER 20h 8M
RoBERTa 4h 110M

ChemBERTa 3h 110M
BOND 8h 110M

3.3.3 Parameter Settings

Runtime with Parameters We compared all sequence model we adopted during exper-

iments. Our models are trained on a single NVIDIA Titan Xp (12GB) GPU. The details

about the average runtime and the number of parameters are given in Table 3.1. All training

hyperparameters follow their original implementation.

• BiLSTM-CRF: We used the code base of BiLSTM-CRF9. The hyperparameters are set

to default values. We trained the BiLSTM-CRF on Suzuki Coupling data with 10 epoches

with learning rate as 0.001, hidden dimension as 256, drop rate as 0.5 and use word

embedding with dimension of 256.

• AutoNER: We adopted the code base from AutoNER’s original implementation10. The

hyperparameters are set to default values. We trained AutoNER model on Suzuki Cou-

pling data with 50 epoches and learning rate as 0.05, hidden dimension as 300, drop rate

as 0.5 and use pretrained word embedding with dimension of 200.

• RoBERTa: We use the HuggingFace 11 Transformers Python Interface to train the

RoBERTa model on the Suzuki Coupling data using the roberta-base model with 10 epochs

and a batch size of 32. The other hyperparameters are set as default.

• ChemBERTa: For ChemBERTa also, we use the HuggingFace Transformers to train the

BERT model on the Suzuki Coupling data using the seyonec/ChemBERTa-zinc-base-v1

model with 10 epochs and a batch size of 32. The other hyperparameters are set as default.

• BOND: To train our Suzuki Coupling data using BOND, we use their publicly available

code12 that also uses the HuggingFace Transformers roberta-base model as the base model

for training. We train the model for 20 epochs with a learning rate of 2e-5. The other

hyperparameters are set as default.

9https://github.com/Gxzzz/BiLSTM-CRF
10https://github.com/shangjingbo1226/AutoNER
11https://github.com/huggingface/transformers
12https://github.com/cliang1453/BOND
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Table 3.2: Overall results (%) on the test set.

Method Precision Recall F1

KB-Matching 32.26 4.95 8.58
KB-Matching (freq) 20.51 11.88 15.05

BiLSTM-CRF 21.88 10.40 14.09
AutoNER 20.51 3.96 6.64
RoBERTa 23.55 17.74 20.24

ChemBERTa 17.54 12.28 14.45
BOND 18.84 12.87 15.29

ChemNER 69.47 34.34 45.96

Table 3.3: Results (%) of ChemNER ablation models.

Method Precision Recall F1

ChemNER 69.47 34.34 45.96

ChemNERF 74.76 29.06 41.85
ChemNERFM 71.90 32.83 45.08

ChemNERBiLSTM-CRF 48.65 17.82 26.09
ChemNERRoBERTa 69.47 34.34 45.96

ChemNERChemBERTa 58.78 29.06 38.89
ChemNERBOND 52.21 26.79 35.41

3.3.4 Overall Performance

Table 3.2 shows the overall results on the test set of our fine-grained chemistry NER

dataset. ChemNER achieves .25 absolute F1 score improvement over the best performing

baseline model RoBERTa. As we have discussed, the KB-Matching method suffers from

severe low precision (32%) and low recall (5%) for labeling the fine-grained chemistry entities,

which greatly limits the performance of the baseline NER methods that use KB-Matching

for distant supervision.

3.3.5 Ablation Study

Table 3.3 shows the results of ablation studies on the test set of our fine-grained chemistry

NER dataset. We compared our ChemNER full model with several ablations and variations.

Our ablation model ChemNERF significantly improves the precision and recall over KB-

matching and ChemNERFM further improves the recall. These two ablations show the

effectiveness of our proposed methods, flexible KB-matching and ontology-guided multi-type

resolution, for fine-grained chemistry NER under distant supervision. The four full model

variations further shows that RoBERTa is the best sequence labeling model that takes the

output of ChemNERFM as distant supervision.
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Table 3.4: Results (%) with different minimum TF-IDF threshold θ for the flexible KB-
Matching.

ChemNERF Precision Recall F1

θ = 0.005 66.67 24.15 35.46
θ = 0.02 74.76 29.06 41.85
θ = 0.05 71.19 28.81 41.43

Table 3.5: Results (%) with different enlarged scopes for the ontology-guided multi-type
resolution.

ChemNERFM Precision Recall F1

Sentence Only 73.64 30.57 43.20
Sentence+Document 74.04 29.06 41.73
Sentence+Corpus 71.90 32.83 45.08

Sentence+Document+Corpus 70.83 32.07 44.15

3.3.6 Parameter Study

Table 3.4 shows the effect of different mininum TF-IDF threshold θ on the performance

of ChemNERF. This threshold θ is used to eliminate common word tokens from voting for

the candidate entity types during the flexible KB-Matching. We observe that θ = 0.02 gives

the best performance of of ChemNERF.

Table 3.5 shows the effect of different enlarged scopes on the performance of ChemNERFM.

This enlarged scope is used to control the performance of ontology-guided multi-type dis-

ambiguation. We observe that when the context types in one sentence still draw ties for

multi-type disambiguation, it is more effective to directly go to the corpus-level to look

at the popularity scores for each type instead of extending the ontology-guided multi-type

disambiguation mechanism to the document level.

3.3.7 Case Study

Table 3.6 shows some example sentences from our test set. We compare the prediction

results of ChemNER with two baseline methods: KB-Matching and RoBERTa. We also

show the prediction results of our ablation models, ChemNERF and ChemNERFM, to

demonstrate the contribution of each component and how the ChemNER full model achieves

the best performance step by step.

KB-Matching can only match entities that exactly appear in the KB dictionaries, which

often leads to incomplete or missing annotations. Based on the results of KB-Matching,

RoBERTa learns to give one context-specific label for each entity. For example, in Sentence
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Table 3.6: Examples showing how ChemNER improves the fine-grained chemistry NER
performance. The ground truth labels and correct model predictions are in blue and the
wrong model predictions are in red. The correct labels are in italics.

Sentence # 1
... two aryl chlorides ORGANOHALIDES can be coupled to one another without
the isolation of the intermediate boronic acid OXOACIDS ...

KB-
Matching

... two aryl AROMATIC COMPOUNDS, SUBSTITUENTS, FUNCTIONAL GROUPS chlo-
rides CHLORIDES can be coupled to one another without the isolation of the
intermediate boronic acid OXOACIDS ...

RoBERTa
... two aryl FUNCTIONAL GROUPS chlorides CHLORIDES can be coupled to one
another without the isolation of the intermediate boronic acid OXOACIDS ...

ChemNERF
... two aryl chlorides CHLORIDES, ORGANOHALIDES can be coupled to one
another without the isolation of the intermediate boronic acid OXOACIDS ...

ChemNERFM
... two aryl chlorides CHLORIDES can be coupled to one another without the
isolation of the intermediate boronic acid OXOACIDS ...

ChemNER
... two aryl chlorides ORGANOHALIDES can be coupled to one another without
the isolation of the intermediate boronic acid OXOACIDS ...

Sentence # 2
The total synthesis of narciclasine ALKALOIDS is accomplished by the late-
stage, amide-directed C–H hydroxylation ORGANIC REDOX REACTIONS ...

KB-
Matching

The total synthesis of narciclasine FREE RADICALS, ALKALOIDS, BIOMOLECULES

is accomplished by the late-stage, amide-directed C–H hydroxyla-
tion ORGANIC REDOX REACTIONS ...

RoBERTa
The total synthesis of narciclasine BIOMOLECULES is accomplished by the
late-stage, amide-directed C–H hydroxylation ORGANIC REDOX REACTIONS

...

ChemNERF

The total synthesis of narciclasine ALKALOIDS, BIOMOLECULES is ac-
complished by the late-stage, amide-directed C–H hydroxyla-
tion ORGANIC REDOX REACTIONS ...

ChemNERFM
The total synthesis of narciclasine ALKALOIDS is accomplished by the late-
stage, amide-directed C–H hydroxylation ORGANIC REDOX REACTIONS ...

ChemNER
The total synthesis of narciclasine ALKALOIDS is accomplished by the late-
stage, amide-directed C–H hydroxylation ORGANIC REDOX REACTIONS ...

# 1, KB-Matching failed to recognize “aryl chlorides” as a whole unit, yet it does match

“aryl” to three types (i.e., “AROMATIC COMPOUNDS”, “SUBSTITUENTS’, and “FUNC-

TIONAL GROUPS”). RoBERTa learns the best label (i.e., “FUNCTIONAL GROUPS”)

for the multi-type entity (i.e., “aryl”) based on the context. Although “FUNCTIONAL

GROUPS” is indeed the best type for “aryl” if we look at the word individually, RoBERTa

still achieves imperfect performance due to the incomplete boundaries inherited from KB-

Matching.

With flexible KB-Matching, ChemNERF detects the complete boundaries and assigns

much more suitable types in most cases. Based on the results of ChemNERF, using

ontology-guided multi-type resolution, ChemNERFM determines the context-specific label
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that fits the best. For example, in Sentence # 2, ChemNERF matches “narciclasine” to two

types (i.e., “ALKALOIDS” and “ BIOMOLECULES”). Here “ALKALOIDS” is a more suit-

able type and can be detected by ChemNERFM because “ALKALOIDS” and the context

type “ORGANIC REDOX REACTIONS” are both under the ontology branch “ORGANIC

CHEMISTRY”. However, there are also a few cases that the ontology-guided multi-type

resolutions are imperfect. For example, in Sentence # 1, ChemNERFM choose the type

“CHLORIDES” over “ORGANOHALIDES” for “aryl chlorides” because “CHLORIDES”

and the context type “OXOACIDS” are both under the ontology branch “INORGANIC

COMPOUNDS”, whereas the ground truth label is just the opposite. This issue could further

be resolved by the sequence labeling model trained on top of ChemNERFM. For example, in

Sentence # 1, ChemNER finally chooses “ORGANOHALIDES” over “OXOACIDS” instead

probably because the sequence labeling model captures the pattern on the co-occurrence of

“ORGANOHALIDES” and “OXOACIDS”. Interestingly, from the perspective of chemistry,

organohalides and organoboron species (a sector of oxoacids) are the exact two couplers of

the Suzuki Coupling reaction.

3.4 RELATED WORK

Distantly-Supervised NER Aiming to reduce expensive manual annotation, distant

supervision has been used to generate training labels automatically by utilizing the entity

information from existing KBs. The major research efforts lie in dealing with the incomplete

annotation problem caused by an incomplete coverage of the KBs [4, 5, 6, 62, 63, 67].

AutoNER [62] proposes a “tie-or-break” tagging scheme to leverage distant supervision

from entity dictionaries. Compared with the traditional “BIOES” tagging scheme, the “tie-

or-break” tagging scheme introduces an “unknown” type that can be skipped during train-

ing to reduce the effect of false negative labeling brought by the incomplete KB-matching.

However, AutoPhrase often misses low-frequency phrases for the “unknown” entity gen-

eration using a phrase mining method AutoPhrase [68]. Positive and unlabeled learning

(PU-learning) is used in distantly-supervised NER to provide an unbiased and consistent

estimator of the objective function [67]. However, there are two limitations in using PU-

learning for distantly-supervised NER. First, PU-learning uses the prior distribution for each

entity type, a parameter that is estimated from an existing human-annotated test set that is

not always available for new entity types. Second, the performance of PU-learning is highly

sensitive to the class-imbalance rate for each entity type, a parameter that is heuristically

determined. It is difficult to apply PU-learning to distantly-supervised NER tasks on new en-

tity types in new domains due to the above two limitations. BOND [63] leverages the power
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of pre-trained language models (e.g., BERT and RoBERTa) and a self-training approach to

iteratively incorporate more training labels and improve the NER performance. However,

they do not work well with fine-grained chemistry entities that have a severe low-precision

and low-recall problem with KB-matching. They also largely ignore the noisy annotation

problem by simply discarding those multi-labels during the KB-matching process.

Other Related Tasks One similar task to fine-grained NER is entity linking [69, 70, 71,

72] that maps a candidate entity in the text to a concept identifier in the knowledge bases.

However, entity linking cannot deal with new entities that do not exist in the background

knowledge bases. Another similar task is fine-grained entity typing (FET) [73, 74, 75, 76,

77, 78] that has been extensively studied in the general domain. FET aims at classifying an

entity mention into a wide range of entity types by disambiguating the pre-identified entity

mentions into a set of candidate entity types. It is formulated as a multi-class, multi-label

classification problem and does not assume type exclusiveness. The fine-grained NER task

targets both entity boundary detection and entity type recognition and assumes each entity

to be tagged with only one type in a given context.

3.5 SUMMARY

In this chapter, we proposed ChemNER, an ontology-guided, distantly-supervised method

for fine-grained chemistry NER. It leverages the chemistry type ontology structure to gen-

erate distant labels with methods of flexible KB-matching and ontology-guided multi-type

disambiguation. We also provide an expert labeled, chemistry NER dataset with 62 fine-

grained chemistry types (e.g., chemical compounds and chemical reactions). Experimental

results show that ChemNER is highly effective, outperforming substantially the state-of-the-

art NER methods on fine-grained chemistry NER. Although achieving great performance,

there is still large room for improvement of ChemNER. In the future, we plan to further re-

fine and enrich the type ontology and incorporate more information in the dictionaries (e.g.,

chemical structures in the KBs) for a better NER performance. We also plan to apply our

fine-grained NER method to other scientific domains such as biomedicine and geoscience.
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CHAPTER 4: CROSS-MODAL SUPERVISION FOR CHEMICAL
REACTANT ENTITY CLASSIFICATION

4.1 INTRODUCTION

Scientific knowledge can be described on various levels of abstractions: from high-level

categorical concepts to low-level concrete entities. For example, in Figure 4.1, the Csp3-

Csp3 Suzuki cross-coupling reaction is defined by chemists as a process involving a pair of

high-level reactant groups (i.e., the M-side reactant group “primary alkyl boronate” and

the X-side reactant group “primary alkyl halide”). While in the chemistry literature, this

chemical reaction can also be described as a process involving two low-level concrete chemical

entities (e.g., “1-bromododecane” and “B-n-octyl-9-BBN”). This gap between high-level and

low-level abstractions of scientific knowledge is a common phenomenon in various domains

such as biology, chemistry, and physics.

In the general domain, recent work has been done on classifying entities in the text into

human-given categories without human annotation [79, 80, 81, 82, 83]. However, in the

chemistry domain, the task of reactant entity classification requires more effective methods

that take two special characteristics of the chemical molecules into consideration. The first

characteristic is that each chemical molecule can be represented in two modalities: a chemical

name in the text and a molecule structure in the graph. Thus a large amount of high-quality

training data for chemical name classification can be automatically created with cross-modal

supervision of molecular structure matching. The second characteristic is that there is a

knowledge-aware subword correlation between the chemical names to be classified and that

of the reactant groups as class labels. Thus the interaction between the subwords (e.g.,

wordpieces in the pre-trained language models) in the chemical names and reactant groups

is the most prominent feature of training a reactant entity classification model.

In this chapter, we propose ReactClass, a highly effective reactant entity classifica-

tion method without requiring human effort for training data annotation. For example, in

Figure 4.1, ReactClass automatically classifies “1-bromododecane” into “primary alkyl

halide” and “B-n-octyl-9-BBN” into “primary alkyl boronate”, respectively. ReactClass

benefits various downstream applications, such as chemistry knowledge base completion [84],

chemistry information retrieval [85, 86, 87], and prediction of chemical reactions, products,

and properties [88, 89, 90, 91]. Specifically, ReactClass is designed to take the two spe-

cial characteristics of the chemical molecules into consideration. First, we propose to use

cross-modal supervision to automatically create the training data for chemical name clas-

sification in the text via molecular structure matching in the graph. Specifically, we first
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Csp3-Csp3 Suzuki Cross-Coupling 
Reaction

Reaction Groups

Chemical Names

Scientific 
Literature

Chemistry
Knowledge

We chose to examine the 
unprecedented Suzuki cross-coupling of 
an alkyl bromide that contains beta
hydrogens (1-bromododecane) with an 
alkylborane (B-n-octyl-9-BBN). 

ReactClass

M: Primary Alkyl Boronate
X: Primary Alkyl Halide

Figure 4.1: ReactClass automatically classifies the concrete chemical entities in the text
into the high-level reactant groups defined by the chemical scientists.

convert both the chemical entities and the reactant groups into graph representations and

then conduct a subgraph matching. By definition from chemistry knowledge, the training

data for each reactant group can be automatically created by finding the chemical names

with the graph representations that match the graph representation of the reactant group.

Second, we propose to train a classifier based on the subword cross-attention map between

each chemical name and its corresponding reaction group. Specifically, we first construct the

subword cross-attention map between each chemical name and its corresponding reactant

group using their subword embeddings generated from a Transformer-based neural language

model. Then we take this 2-D subword cross-attention map as the input feature and encode

it with a Convolutional Neural Network (CNN), transforming the text classification task

into an image classification task. ReactClass is highly effective, achieving state-of-the-art

performance on classifying the chemical names into human-defined reactant groups without

requiring human effort for training data annotation.

4.2 THE REACTCLASS FRAMEWORK

The framework of ReactClass consists of two steps: (1) cross-modal supervision of

molecule structure matching (Figure 4.2), and (2) subword cross-attention-guided chemical

name classification (Figure 4.3). Specifically, ReactClass is designed to take the two

special characteristics of the chemical molecules into consideration. First, we propose to

use cross-modal supervision to automatically create the training data for chemical name

classification in the text via molecular structure matching in the graph. Second, we propose

to train a classifier based on the subword cross-attention map between each chemical name

and the corresponding reactant group.
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CC(C)(C)OC(=O)NC1=C(C=C(Br)C=C1)N(=O)=O

X = Br, I, Cl

Aryl Halide

tert-butyl (4-bromo-2-nitrophenyl) carbamate

Subgraph 
Matching

Reactant Group

Chemical Name

SMILES String

Figure 4.2: Illustration of cross-modal supervision of molecular structure matching.

Figure 4.3: Illustration of subword cross-attention-guided name classification.

4.2.1 Cross-Modal Supervision of Molecular Structure Matching

In this section, we describe the detailed method of automatically creating the training

data for chemical name classification in the text with cross-modal supervision of molecular

structure matching in the graph. Specifically, we first convert both the chemical entities

and the reactant groups into graph representations and then conduct a subgraph matching.

By definition in chemistry knowledge, the training data for each reactant group can be

automatically created by finding the chemical names with graph representations that match

the graph representation of the reactant group.

To convert the chemical names into their graph representations, we first collect a large

number of candidate chemical names [e.g., “tert-butyl (4-bromo-2-nitrophenyl) carbamate”
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in Figure 4.2] from both the chemical reaction knowledge base (Reaxys13 [92]) and the chem-

ical named entity recognition (ChemNER [7]) results in the chemistry literature. Then we

convert the chemical names into their corresponding SMILES strings [e.g., “CC(C)(C)OC

(=O)NC1=C(C=C(Br)C=C1)N(=O)=O” in Figure 4.2], a character-based sequence rep-

resentation of the chemical molecules. This chemical name to SMILES string conversion

is automatically done by linking the chemical names to a chemistry knowledge base (Pub-

Chem14 [93]) where we can directly find their corresponding SMILES strings. Finally, the

SMILE strings can be converted into molecular structures for the next step of subgraph

matching, using an open-source cheminformatics software RDKit15.

To convert the human-defined reactant groups into their graph representations, we first get

the ten reactant groups (e.g., “Aryl Halide” in Figure 4.2) for Suzuki cross-coupling reactions

from chemists. The reactant groups cannot be directly converted into molecular structures

by knowledge base linking because the reactant groups do not correspond to any specific

chemical molecules. However, a reactant group can be converted into a subgraph regular

expression. For example, in Figure 4.2, the reactant group “Aryl Halide” can be converted

into a subgraph regular expression of a benzene ring with a Br connected to carbon #1,

where this Br can be replaced with either I or Cl. By definition in chemistry knowledge,

a candidate chemical name belongs to a reactant group if any subgraphs in its molecular

structure match the subgraph regular expression of that reactant group. So any chemical

names (e.g., “tert-butyl (4-bromo-2-nitrophenyl) carbamate”) with a molecular structure

that can match the graph representation of “Aryl Halide” can be classified into the “Aryl

Halide” reactant group. The subgraph regular expressions of the ten reactant groups are

also defined by chemists.

After we get the graph representations of both the chemical names and the reactant

groups, we use the RDKit software to conduct the subgraph matching in the molecular

structures. Specifically, the RDKit function HasSubstructMatch() uses the VF2 subgraph

isomorphism algorithm to search for substructures in molecules. After subgraph matching,

we have created a large amount of quality training data for the human-defined ten reactant

groups. We further create the training data for an additional group “Other” that contains all

the chemical names with molecular structures that cannot match the graph representations

of any of the ten given reactant groups. This training data creation has perfect accuracy

since it strictly follows the chemistry knowledge of how human defines a chemical molecule

belonging to a reactant group.

13https://www.reaxys.com/#/search/quick
14https://pubchem.ncbi.nlm.nih.gov/
15https://www.rdkit.org/

46



However, there are two remaining problems with this automatic training data creation.

One problem is that some chemical names can be mapped to multiple reactant groups by the

subgraph matching. We ignored all the multi-labeled chemical names in our experiments and

put this multi-label disambiguation in our discussions. The other problem is that not all the

chemical names in the text can be converted into molecular structures due to two reasons.

First, the state-of-the-art chemical linking tools (e.g., PubChem and OPSIN [94]) cannot

link all the chemical names in the text to the chemistry knowledge bases perfectly. For

example, those chemical names with plural forms or near-miss spellings can be easily missed

by the chemical linking tools. Second, and more importantly, not every chemical name in

the text has a corresponding molecular structure in theory. For example, the chemical name

“2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidin-ylidenemethyl) furan”, although looks like a

concrete molecule, refers to a group of molecules thus do not have a corresponding molecular

structure. We observe that less than 10% of all the chemical names in the text can be directly

converted into molecular structures in our experiments. This motivates us to conduct the

next step of classification model training for a generalized chemical name classification that

can deal with any chemical name that has appeared in the text.

4.2.2 Subword Cross-Attention-Guided Chemical Classification

Based on the training data obtained from the previous step of subgraph matching, we

observe a knowledge-aware subword correlation between the chemical names to be classified

and the reactant groups as class labels. For example, in the bottom part of Figure 4.3,

we see a subword cross-attention map between the chemical name “tert-butyl (4-bromo-2-

nitrophenyl) carbamate” and its corresponding reactant group “Aryl Halide”. The subword

cross-attention map is constructed by first extracting the subword representations from a

pre-trained language model in the chemistry domain and then calculating the cosine simi-

larities between the subword representations of the chemical names and the reactant groups.

Looking at this subword cross-attention map, we observe that the subword string “phenyl”

in the chemical name is highly correlated with the subword string “Aryl” in the reactant

group. This is well-aligned with the chemistry knowledge: “Aryl” means any species created

by removing a hydrogen atom from an aromatic hydrocarbon and “phenyl” is a specific

aryl radical, which is created by removing a hydrogen atom from a benzene ring. Similarly,

we can observe that the subword string “bromo” in the chemical name is highly correlated

with the subword string “halide” in the reactant group. This observation indicates that rich

chemistry domain knowledge is captured by the subword cross-attention map that is created

based on the pre-trained language model in the chemistry domain.
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This observation of knowledge-aware subword correlation also motivates us to train a

classifier based on the subword cross-attention maps between the chemical names and the

reaction groups. The general idea of our proposed method for subword cross-attention-guided

chemical name classification is shown in the top part of Figure 4.3. First, we take ChemBERT

[95], a Transformer-based language model pre-trained on massive chemistry literature, as our

base model. We obtain the subword representations from the ChemBERT model and then

construct the subword cross-attention map by calculating the cosine similarity between the

subword representations of the chemical name and the reactant group. Then we take this

2-D map of subword cross-attention as input and encode it with a CNN, converting the text

classification task into an image classification task. We demonstrate the effectiveness of our

proposed method by comparing it with baseline methods that directly use the output states

of ChemBERT plus a linear layer for prediction in the experiments.

We formally describe our method of subword cross-attention-guided chemical name clas-

sification as follows. We first describe how we construct the cross-attention map. Taken

each chemical name ei = ⟨w1, w2, ..., w|ei|⟩ and reactant group gj = ⟨w1, w2, ..., w|gj |⟩ as a

sequence of subword tokens wk, we first extract the representation for each subword token

from last hidden states of the fine-tuned ChemBERT model. Then we calculate the cosine

similarities between the representations of subword tokens in the chemical names and the

reactant groups. Specifically, we obtain the cross-attention matrix as follows.

q = xgroupWq, k = xWk, v = xWv (4.1)

A = softmax(qkT/
√

C/h) (4.2)

where Wq,Wk,Wv ∈ RC×(C/h), C, h are the embedding dimension and the number of heads,

x is representation of the input chemical name, and xgroup is the representation of the input

reactant group. The attention matrix A will be used as our input feature for the classification

model training.

Taken the attention matrix A constructed above, we then describe our design of the

classification model. We consider each cross-attention map as a single-channel image and

encode it with a three-layer CNN, transforming the text classification task into an image

classification task for the final prediction. For each chemical name, we first create positive

training data by constructing cross-attention matrix between the chemical name and its

corresponding reaction group from subgraph matching. We then create negative training

data by constructing cross-attention matrix between the chemical name and other group

names. Our learning tasks is a binary classification task. For the learning objectives, we

adopt binary-class cross-entropy loss for simplicity with our created training data. Thus,
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Table 4.1: Dataset Statistics

Dataset Suzuki Coupling
# Training Samples 30,488

# Validation Samples 3,855
# Testing Samples 3,858

# Groups 11
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Figure 4.4: Class Distribution

the training loss function for the classification model can be formulated as

L =− 1

|D|
∑

xi,yi∈D

yi log(f(xi)) + (1− yi) log(1− f(xi)) (4.3)

where D = {(xi, yi)} is the training dataset, xi is the attention matrix, and yi ∈ {+1,−1}.
During inference, we compute the scores of the attention matrices between each chemical

name and all the ten reactant groups to find the reactant group with the highest proba-

bility. Since different molecule names are tokenized into subword sequences with different

lengths, it results in different dimensions for each cross-attention map. Some extremely

long chemical names even contain a lot of repeated information. So we consider padding

and truncating the matrices to K × K dimensions, where K is a hyperparameter during

training. The overall efficiency now mainly depends on K, the size of the attention map.

We quantitatively compared the performance with different K in our experiments. Another

possible hyperparameter is the number of transformer layers to use for subword representa-

tion extraction. Existing studies have observed considerable redundancy in the outputs of

different Transformer layers, including attention distributions [96, 97]. We also compare the

attention matrix constructed from different layers of ChemBERT in our experiments.
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4.3 EXPERIMENTS

4.3.1 Dataset

We create a dataset for our task of chemical name classification. We first get ten reactant

groups (i.e., M1, M2, M3, M4, M5, X1, X2, X3, X4, and X5 in Figure 4.4) from chemistry

experts to serve as our class labels. Each reactant group has a corresponding reactant group

name (e.g., “M1” is “Primary Boronate”) that can be used in our experiments. Then we

collect the chemical names to be classified from both the reaction database (Reaxys [92])

and the named entity recognition (ChemNER [7]) results in chemistry literature. Last,

following the training data creation process described in Section 4.2.1, we automatically

create around 38K training data for the ten reactant groups plus an “Other” class with

cross-modal supervision of molecular structure matching. We split the 38K training data

into training/validation/test sets with a ratio of 8:1:1. The dataset details can be found in

Table 4.1.

In Figure 4.4, we observe that the class distribution is imbalanced in our automatically

created training data. Some reactant groups (e.g., X4 and M4) have more than 10K training

samples, while some reactant groups (e.g., X5 and M5) have less than 100 training samples.

This class imbalance issue makes it hard for direct training to learn enough characteristics

for the reactant groups with few training samples. We leverage an oversampling strategy,

weighted bootstrapping, to ensure that the models receive about the same number of data

in each class during training. This oversampling strategy is proved to be highly effective in

dealing with the class imbalance issue in our experiments.

4.3.2 Baselines

We compare the performance of ReactClass with several baseline methods.

• BERT/BioBERT/ChemBERT + Softmax: This is a simple baseline method that

directly uses the output states of a pre-trained language model plus a linear layer for pre-

diction. We explored various pre-trained language models in different domains (e.g., BERT

[61] in the general domain, BioBERT [20] in the biomedical domain, and ChemBERT [95]

in the chemistry domain).

• ChemBERT + Triplet Loss: To tackle the class imbalance problem in our training

data, we tried the triplet loss that is less sensitive to the imbalanced training data com-

pared to the softmax loss.
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• ChemBERT + Softmax (Oversampling): To further tackle the class imbalance prob-

lem in our training data, we leverage the weighted bootstrapping strategy to ensure that

the models receive about the same number of data in each class during training.

• Subword + CNN + Softmax: This is our proposed method that takes the subword

cross-attention map between each chemical name and the corresponding reaction group

as the input feature and then encodes it with a 3-layer CNN for the final prediction.

• Subword + CNN + Softmax (Oversampling): This is our final model that has the

same architecture as Subword + CNN + Softmax, only adding the weighted bootstrapping

strategy to further tackle the class imbalance problem in our training data.

We use the micro-F1 and macro-F1 scores16 as the evaluation metrics for our performance

comparison.

4.3.3 Overall Performance

Table 4.2 shows the main results on the test set of our chemical name classification dataset.

Comparing different pre-trained language models (BERT/BioBERT/ChemBERT + Soft-

max), the domain-specific pre-trained language model achieves better performance than that

is trained in the general domain. Comparing ChemBERT + Softmax, ChemBERT + Triplet

Loss, and ChemBERT + Softmax (Oversampling), both the triplet loss and the oversam-

pling strategy are effective in dealing with the class imbalance problem in our automatically

created training data. The oversampling strategy is the most effective one that brings the

most performance improvement. Our final model (ReactClass + Oversampling) achieves

98.56% micro-F1 and 90.76% macro-F1 scores with significant performance improvements

compared with all the baseline methods. It demonstrates the effectiveness of our proposed

method that takes the subword cross-attention maps between the chemical names and the

reaction groups as the input feature for classification.

4.3.4 Parameter Study

We perform several experiments on the hyperparameters in our framework to study the

efficacy of our classification model. One important hyperparameter is the dimension of our

cross-attention matrix K during training and inference. Due to a large amount of computa-

tion in calculating cross-attention maps, large dimensions result in much longer computation

16https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

51



Table 4.2: Main Results (F1 Scores in %)

Method Micro F1 Macro F1
BERT + Softmax 97.72 82.83

BioBERT + Softmax 97.85 85.00
ChemBERT + Softmax 97.95 84.20

ChemBERT + Triplet Loss 98.16 88.25
ChemBERT + Softmax

(Oversampling)
98.16 89.46

Subword + CNN + Softmax
(ReactClass)

98.28 83.44

Subword + CNN + Softmax
(ReactClass + Oversampling)

98.56 90.76

time while small dimensions may cause information loss. We conducted experiments on a

dimension size K from 10 to 50. In Figure 4.5, we observe that a larger dimension K will

lead to better performance. We use K = 50 in all our experiments.

Another important hyperparameter is the number of transformer layers to use for subword

representation extraction. In our experiments, we observe that different transformer layers

produce redundant information in the constructed subword cross-attention maps. For this

reason, as the default setting of ReactClass, we only preserve the attention map from the

last layer in ChemBERT. As ChemBERT has 15 layers in total, this saves more than 90%

of computational resources.

4.3.5 Discussions

There are still challenges for completely resolving this chemical name classification prob-

lem. For example, one chemical name can be matched to multiple reactant groups via

subgraph matching. We currently ignored all the multi-labeled entities during our model

training, but they can be further disambiguated based on the chemical reactions they are

involved in the original text. Also, there is positional information in the molecule structures

that are not captured by our current subword cross-attention maps. We discuss each of the

two challenges in detail below.

Figure 4.6 illustrates the challenge of multi-label disambiguation based on the chemical

reactions. The chemical name “3-diethylboranylpyridine” has a molecular structure that can

match the subgraph representations of both the reactant group “Primary Alkyl Boronate”

(green circle) and the reactant group “Aryl Boronate” (blue circle). To determine the correct

reactant group for “3-diethylboranylpyridine”, we need to go back to the original paper and
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Figure 4.5: Parameter Studies on Dimension K

find the concrete chemical reaction where “3-diethylboranylpyridine” has participated in.

From the original paper, we can see that “3-diethylboranylpyridine” mainly function as

an “Aryl Boronate” (blue circle) in the concrete chemical reactions (shown in the bottom

part of Figure 4.6). So the correct reactant group for “3-diethylboranylpyridine” should be

“Aryl Boronate”. We currently ignored all the multi-labeled entities in our experiments.

However, this reaction-based multi-label disambiguation can be added to further improve

the performance of ReactClass.

Figure 4.7 illustrates the challenge of distinguishing the primary and secondary carbons

with positional information in the chemical names. For example, based on subgraph match-

ing, we know that “1-dodecylbromide” should belong to the reactant group “Primary Alkyl

Bromide” rather than the reactant group “Secondary Alkyl Bromide”. However, when we

look at the surface names of “1-dodecylbromide” and “Primary Alkyl Bromide”, we can-

not observe a clear subword correlation between “primary” and “1-dodecylbromide”. This

indicates that using the subword cross-attention map as the input feature may lose certain in-

formation that is originally contained in the molecular structures. The reason we know from

the surface names that “1-dodecylbromide” contains a “primary” rather than a “secondary”

carbon is that the subwords “1-” is in front of the subword “dodecyl”. This positional

information needs to be captured to further improve the performance of ReactClass.
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Figure 4.6: Case study of the challenge of multi-label disambiguation based on the chemical
reactions.

4.4 RELATED WORK

Chemical Molecule Representation Chemical molecules can be represented in two

modalities: a chemical name in the text and a molecular structure in the graph. For the

chemical names in the text, representation learning based on chemical IUPAC strings has

shown noticeable progress in the recent studies [95]. ChemBERT [95] is a transformer-based

language model pre-trained on vast amounts of unlabeled chemistry literature, which is

effective for two chemistry literature understanding tasks: chemical product extraction and

reaction role labeling. For the molecular structures in the graph, representation learning

based on molecular structures has long been studied. Traditional fingerprinting methods

[98, 99] have long been used for molecule structural representations without learning from the

data. Inspired by recent advances in word embedding methods, new approaches have been

developed for molecule representation learning [14, 91, 98, 100, 101]. For example, Mol2Vec

[100] treats each molecule as a sentence and its substructures as the words in the sentence and

then applies Word2Vec [45] to generate the molecule representation. Additionally, MolBERT

[101] and ChemBERTa [14] use SMILES strings (a character-based sequence representation

of chemical molecules) as inputs and then apply BERT [61] to generate a transformer-based

molecule representation. In ReactClass, we use ChemBERT [95] as our base model to

obtain the subword representations for chemical name classification.
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Figure 4.7: Case study of the challenge of distinguishing the primary and secondary carbons
with positional information.

Cross-Modal Supervised Learning. There has been a growing interest in using cross-

modal supervision for various applications, such as speaker detection and identification [102,

103, 104], action recognition [105, 106], lip-reading [104, 107], touch representation learning

[108], radar object detection [109], and multi-modal event extraction [110]. The existing work

has mostly focused on speech recognition and computer vision. Some work has been done

for cross-modal retrieval between text and graphs [86, 87]. Zhou et al. [86] replace chemical

entities in the text with a unique canonical key in a database to perform query expansion by

including additional molecules with similar structures in the database. In contrast, Edwards

et al. [87] perform a direct semantic cross-modal retrieval by constructing a paired dataset

of molecules and their corresponding text descriptions and then learning an aligned common

semantic embedding space for retrieval. However, little work has been done for cross-modal

supervision in the text or graphs. Due to the special characteristics of chemical molecules

(i.e., a chemical molecule can be represented both as a chemical name in the text and a

molecular structure in the graph), we propose to automatically create the training data for

chemical name classification in the text with cross-modal supervision of molecular structure

matching in the graph.

Attention Map Representation Recent studies have focused on using the attention

maps from pre-trained transformer-based language models [13, 61] as the input features to

capture inter-relation information of tokens in the sentences [97, 111, 112]. Linzen et al.

[111] showed that a sufficient amount of linguistic knowledge, such as noun determiners

and objects of verbs and prepositions, are captured by the attention maps of BERT [61].

Moreover, using only attention maps as the input features, a model can be trained to perform

high-quality dependency parsing [111] and constituency tree construction [112]. UCPhrase
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[97] utilizes only the attention maps as the input feature to identify quality phrases in the

text. Compared with directly using the output states of RoBERTa [13] as the input feature,

Gu et al. [97] showed that the model using the attention maps is less likely to overfit and

has a more robust generalization. In this study, we observed a strong subword correlation

between the chemical names to be classified and the reactant group names as labels. This

subword correlation is highly indicative of chemical name classification. So we propose to

train a classifier that takes the subword cross-attention map between each chemical name

and the corresponding reaction group as the input feature.

4.5 SUMMARY

In this chapter, we proposed a highly effective method, ReactClass, for reactant entity

classification without requiring human effort for training data annotation. ReactClass

is designed to take two special characteristics of the chemical molecules into consideration.

First, we propose to automatically create the training data for chemical name classification

in the text with cross-modal supervision of molecular structure matching in the graph.

Second, we propose to train a classifier that based on the subword cross-attention map

between each chemical name and the corresponding reaction group. Our method achieves

state-of-the-art performance in classifying the chemical names into ten Suzuki cross-coupling

reactant groups. Future improvements include multi-label disambiguation based on concrete

chemical reactions and adding positional information to better reveal the hidden structural

information in the chemical surface names.
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CHAPTER 5: SCIENTIFIC TEXTUAL EVIDENCE DISCOVERY

5.1 INTRODUCTION

Search engines on scientific literature have been widely used by life scientists for discov-

eries based on prior knowledge. Each day, millions of users query PubMed17 and PubMed

Central18 (PMC) for their information needs in biomedicine [19]. However, traditional search

engines for life sciences (e.g., PubMed) are designed for document retrieval and do not allow

direct retrieval of specific statements [113, 114, 115]. With the results from those search

engines, scientists still need to read a large number of retrieved documents to find specific

statements as textual evidence to validate the input query. This textual evidence is key to

tasks such as developing new hypotheses, designing informative experiments, or comparing

and validating new findings against previous knowledge.

While the last several years have witnessed substantial growth in interests and efforts in

evidence mining [19, 116, 117, 118, 119, 120, 121], little work has been done for evidence

mining system development in the scientific literature. A significant difference between

evidence in the scientific literature and evidence in other corpora (e.g., the online debate

corpus) is that scientific evidence usually does not have a strong sentiment (i.e., positive,

negative or neutral) in the opinion it holds. Most scientific evidence sentences are objective

statements reflecting how strongly they support a query statement. Therefore, if scientists

are interested in finding textual evidence for “melanoma is treated with nivolumab”, they

may expect a ranked list of statements with the top ones like “bicytopenia in primary lung

melanoma treated with nivolumab” as the textual evidence that supports the input query.

In this chapter, we propose EvidenceMiner, a web-based system for textual evidence

discovery for life sciences (Figure 5.1). Given a query as a natural language statement, Ev-

idenceMiner automatically retrieves sentence-level textual evidence from a background

corpora of biomedical literature. EvidenceMiner is constructed in a completely auto-

mated way without any human effort for training data annotation. It is supported by novel

data-driven methods for distantly supervised named entity recognition and open informa-

tion extraction. EvidenceMiner relies on external knowledge bases to provide distant

supervision for named entity recognition (NER) [2, 4, 62]. Based on the entity annotation

results, it automatically extracts informative meta-patterns (textual patterns containing en-

tity types, e.g., CHEMICAL inhibit DISEASE) from sentences in the background corpora

17https://www.ncbi.nlm.nih.gov/pubmed/
18https://www.ncbi.nlm.nih.gov/pmc/
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Figure 5.1: System architecture of EvidenceMiner.

[39, 41, 42, 122]. Sentences with meta-patterns that better match the query statement is

more likely to be textual evidence. The entities and patterns are pre-computed and indexed

offline to support fast online evidence retrieval. The annotation results are also highlighted

in the original document for better visualization. EvidenceMiner also includes analytic

functionalities such as the most frequent entity and relation summarization.

5.2 THE EVIDENCEMINER FRAMEWORK

EvidenceMiner consists of two major components: an open information extraction

pipeline and a textual evidence retrieval and analysis pipeline. The open information ex-

traction pipeline includes two functional modules: (1) distantly supervised NER, and (2)

meta-pattern-based open information extraction; whereas the textual evidence retrieval and

analysis pipeline includes three functional modules: (1) textual evidence search, (2) anno-

tation result visualization in the original document, and (3) the most frequent entity and

relation summarization. Figure 5.1 shows the system architecture of EvidenceMiner. The

functional modules are introduced in the following sections.
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Table 5.1: Basic statistics of background corpora. It includes PubMed abstracts and PMC
full-text papers related to cancers and heart diseases published in 2019.

Background Corpora Cancers Heart Diseases

# of PubMed abstracts 48,201 11,766
# of PMC full-text papers 7,130 1,151
# of Sentences in total 1,466,091 246,106

# of Entity instances 3,315,092 400,327
# of Relation instances 29,160 9,576

5.2.1 Open Information Extraction

The open information extraction pipeline extracts entities with distant supervision from

knowledge bases and relations with automatic meta-pattern discovery methods. In particu-

lar, to extract high-quality entities and relations, we design noise-robust neural models for

distantly supervised named entity recognition [4, 62] and wide-window meta-pattern discov-

ery methods to deal with the long and complex sentences in biomedical literature [42, 122].

Corpus Collection To obtain the background corpora for EvidenceMiner, we collect

the titles and abstracts of 26M papers from the entire PubMed19 dump, and the full-text

contents of 2.2M papers from PubMed Central20 (PMC). For the demonstration purpose, we

select a subset of documents published in 2019 that are specifically related to two important

diseases (cancers and heart diseases) to form the background corpora. The subset of doc-

uments are selected by concept matching on MeSH21, a biomedical concept ontology with

the concepts related to cancers (Neoplasms) and heart diseases (Cardiovascular Diseases).

Table 6.1 summarizes the statistics of the background corpora.

Distantly Supervised Named Entity Recognition Taking the corpus as input, Ev-

idenceMiner relies on UMLS22, a comprehensive biomedical knowledge base to provide

distant supervision for named entity recognition. We select 5 major biomedical entity

types (Organism, Fully Formed Anatomical Structure, Chemical, Physiologic Function, and

Pathologic Function) including 17 fine-grained entity types (Archaeon, Bacterium, Eukary-

ote, Virus, Body Part/Organ/Organ Component, Tissue, Cell, Cell Component, Gene or

Genome, Chemical, Organism Function, Organ or Tissue Function, Cell Function, Molecu-

lar Function, Disease or Syndrome, Cell or Molecular Dysfunction, Experimental Model of

19https://pubmed.gov/pubmed
20https://pubmed.gov/pmc
21https://www.nlm.nih.gov/mesh/
22https://www.nlm.nih.gov/research/umls/index.html
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Disease, and Pathological Function) from UMLS as the entity types to be annotated. To

tackle the problem of limited coverage of the input dictionary, we first apply a data-driven

phrase mining algorithm, AutoPhrase [68], to extract high-quality phrases as additional

entity candidates. Then we automatically expand the dictionary with a novel dictionary

expansion method [4]. The expanded dictionary is used to label the input corpora with the

17 fine-grained entity types to train a neural model. We apply AutoNER [62], a state-of-the-

art distantly supervised NER method that effectively deals with noisy distant supervision.

Comparing with PubTator [8], a state-of-the-art BioNER system trained with extensive hu-

man annotation on 5 biomedical entity types, EvidenceMiner can automatically annotate

17 fine-grained entity types with high quality without any human effort for training data

annotation.

Meta-Pattern-Based Open Relation Extraction Based on the entity annotation re-

sults above, meta-patterns can be automatically discovered from the corpora to support

textual evidence discovery. Meta-patterns are defined as sub-sequences in an entity-type-

replaced corpus with at least one entity type token in it. For example, “PPAR gamma

agonist” and “caspase 1 agonist” are two word-sequences in the raw corpus. If we replace

all the entities (i.e., “PPAR gamma” and “caspase 1”) with their corresponding entity types

(i.e., $GENE) in the raw corpus, “PPAR gamma agonist” and “caspase 1 agonist” are rep-

resented as one meta-pattern “$GENE agonist” in the entity-type-replaced corpus. Meta-

patterns containing at least two entity types (e.g., “$CHEMICAL induce $DISEASE”) are

relational meta-patterns. Quality relational meta-patterns can serve as informative textual

patterns that guide textual evidence discovery. We apply two state-of-the-art meta-pattern

discovery methods, CPIE [42] and WW-PIE [122], to extract high-quality meta-patterns

from the NER-tagged corpora. Both methods are specifically designed to better deal with

the long and complex sentence structures in the biomedical literature. In EvidenceMiner,

we combine the meta-pattern extraction results from CPIE and WW-PIE as our informative

meta-patterns to guide textual evidence retrieval. We use Elasticsearch23 to create the index

for each sentence for fast online retrieval. In addition to indexing the keywords, we index

each sentence with the meta-patterns it matches and the corresponding entities extracted

by the meta-patterns in the sentence.

23https://www.elastic.co/

60



(a) Query: melanoma is treated with nivolumab

(b) Query: (nivolumab, DISEASEORSYNDROME treat with CHEMICAL)

Figure 5.2: The search interface with the textual evidence retrieved. The evidence score
indicates the confidence of each retrieved sentence being a supporting evidence of the input
query.

5.2.2 Textual Evidence Retrieval and Analysis

The textual evidence retrieval and analysis pipeline retrieves textual evidence given a

user-input query statement and the indexed corpora. The retrieved evidence sentence can

be easily located in the original text. The entity and relation annotation results are also
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Figure 5.3: The annotation interface with all the entity and relation annotation results.

highlighted in the text for better visualization. EvidenceMiner also includes analytic

functionalities such as finding the most frequent entities and relations as summarization.

Textual Evidence Sentence Retrieval Given a user-input query statement and the

indexed corpora, EvidenceMiner retrieves and ranks the candidate sentences with a com-

bined approach of keyword weighting and meta-pattern weighting. Taking the input query

and the background corpus indexed with the extracted entities and relationships, we first

retrieve all the candidate evidence sentences that cover the words or entities in the input

query. Then we rank the candidate evidence sentences by a confidence score of it being

textual evidence for the input query. The confidence score is designed to reflect how well

the candidate sentence covers the key entities and expresses the relation between the key

entities in the input query. The confidence score is a weighted combination of three scores:

a word score, an entity score, and a pattern score. The three scores are designed to satisfy

the following three criteria:

1. Candidate evidence sentences covering the query entities should be ranked higher than

those covering only the synonyms to reflect the coverage of the words in the query.

2. Candidate evidence sentences covering the query entities should be ranked higher than

those covering only the query words to reflect the coverage of the entities in the query.

3. Candidate evidence sentences covering more query-matched meta-patterns should be

ranked higher to reflect the expression of the relation between the entities in the query.
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(a) Query: entity type=DISEASEORSYNDROME

(b) Query: pattern=DISEASEORSYNDROME treat with
CHEMICAL

(c) Query: entity=nivolumab&pattern=DISEASEORSYNDROME
treat with CHEMICA

Figure 5.4: The analytic interface with the entity and relation summarization results.
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• Word Score: We define the word score to satisfy the first criteria: candidate evidence

sentences covering the exact query entities will be ranked higher than those covering only

the entity synonyms. We use the BM25 [123] score as the word score to measure the

relatedness between the query and the candidate evidence sentence. BM25 is a commonly

used ranking score for information retrieval. Given a query qe = ⟨h, r, t⟩, where h ∈ E is

the head entity, r = ⟨w1, w2, ...w|r|⟩ is the relation, and t ∈ E is the tail entity, the BM25

score of a candidate evidence sentence s ∈ D is

Sw(qe, s) =
n∑

i=1

IDF (wi) ·
f(wi, s) · (k + 1)

f(wi, s) + k · (1− b + b · |s|
avgsl

)
, (5.1)

where f(wi, s) is the term frequency of wi in the sentence s, |s| is the length of the sentence

s, avgsl is the average length of all the sentences and k and b are two free parameters

chosen by the user. IDF (wi) is the inverse document frequency of wi,

IDF (wi) = log
N − n(wi) + 0.5

n(wi) + 0.5
, (5.2)

where N is the number of sentences and n(wi) is the number of sentences containing wi.

• Entity Score: We define the entity score to satisfy the second criteria: candidate evi-

dence sentences covering the query entities will be ranked higher than those covering only

the query words. Similarly, we use the BM25 score as the entity score to measure the re-

latedness of the query and the candidate evidence sentence. Given the query qe containing

the entities ⟨e1, e2, ..., em⟩, the BM25 score of a candidate evidence sentence s ∈ D is

Se(qe, s) =
m∑
i=1

IDF (ei) ·
f(ei, s) · (k + 1)

f(ei, s) + k · (1− b + b · |s|
avgsl

)
, (5.3)

where f(ei, s) is the term frequency of ei in the sentence s, IDF (ei) is the inverse document

frequency of ei,

IDF (ei) = log
N − n(ei) + 0.5

n(ei) + 0.5
, (5.4)

where n(ei) is the number of sentences containing ei.

• Pattern Score: We define the pattern score to satisfy the third criteria: candidate ev-

idence sentences covering more query-matched meta-patterns will be ranked higher. We

measure how many times the query meta-pattern can be matched on each candidate ev-

idence sentence. For example, given an input query (e.g., (resveratrol, inhibit, pancreatic
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cancer)), we first try to convert it into a query meta-pattern (i.e., “CHEMICAL inhibit

DISEASE”). Then we measure how many times the query meta-pattern can be matched

for each candidate evidence sentence on the query entities (i.e., “resveratrol” and “pancre-

atic cancer”). Given the query qe containing the entities ⟨e1, e2, ..., em⟩, the pattern score

of a candidate evidence sentence s ∈ D is

Sp(qe, s) =
k∑

i=1

Match(MPi(qe), s), (5.5)

where MPi(qe) is query meta-pattern generated from the query on qe, Match(MPi(qe), s)

is an indicator function that measures how much overlap the sentence s has with the

query meta-pattern MPi(qe) on the query entities, and k indicates how many the times

the sentence s matches the query meta-pattern MPi(qe).

• Textual Evidence Score: The final score of the candidate evidence sentence is a

weighted average of the three scores,

S(Q,S) = σ · Sw + θ · Se + η · Sp, (5.6)

where (σ, θ, η) is the weight vector indicating the importance of each aspect of the informa-

tion (i.e., word, entity, and pattern). The default weight vector we use is equal weight for

the word, entity, and meta-pattern in our experiments. EvidenceMiner is more effective

compared with baseline methods, such as LitSense [19], for textual evidence retrieval in

biomedical literature.

This ranking mechanism is more effective compared with existing methods (e.g., LitSense)

for textual evidence retrieval in biomedical literature. We use Elasticsearch24 to support a

fast evidence retrieval over the indexed background corpora.

In Figure 6.3, we show an example of our search interface. For example, if scientists are

interested in finding the textual evidence for “melanoma is treated with nivolumab”, they

can search it in EvidenceMiner and see the top results such as “bicytopenia in primary

lung melanoma treated with nivolumab” (Figure 5.2(a)). If they click one of the top results,

the retrieved sentence is highlighted in the original article (Figure 5.3) on the annotation

interface. Moreover, EvidenceMiner allows more flexible queries, such as a mixture of

keywords and relational patterns. For example, if scientists are interested in finding the

diseases that can be treated with the chemical “nivolumab”, but are not sure which disease

24https://www.elastic.co/
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to search, they may input a query like “nivolumab, DISEASEORSYNDROME treat with

CHEMICAL”. EvidenceMiner automatically finds all the textual evidence indicating a

“treatment” relationship with the chemical “nivolumab” (Figure 5.2(b)).

Fine-Grained Entity and Relationship Visualization The annotation interface shows

all the annotated entities and relations for better visualization. For example, in Figure 5.3,

we color all the annotated entities with different colors for different types. We use five

different colors for the five major biomedical entity types and two additional colors for two

specific fine-grained types, “Gene or Genome” and “Disease or Syndrome”, since those two

are the most frequent biomedical entity types. In Figure 5.3, we see that the “melanoma” is

colored as a “Disease or Syndrome” and “nivolumab” is colored as a “Chemical”. We also list

all the meta-pattern instances and meta-patterns that match the sentences in the article. If

the user clicks the meta-pattern instances, the corresponding sentences are also highlighted

in the article. In Figure 5.3, a meta-pattern “DISEASEORSYNDROME patient treat with

CHEMICAL” captures the entity pair “melanoma” and “nivolumab” in the article.

Fine-Grained Entity and Relation Summarization To make our system more user-

friendly and interesting, we add analytic functionalities for the most frequent entity and

relation summarization. For example, in Figure 5.4, if scientists are interested in finding

the most frequent diseases, they can search “entity type = DISEASEORSYNDROME” in

our analytic interface and see the top entities such as tumor and breast cancer. Similarly, if

scientists are interested in finding the most frequent chemical-disease pairs with a treatment

relation, they can search “pattern = DISEASEORSYNDROME treat with CHEMICAL” in

our analytic interface and see the top entity pairs such as HCC&sorafenib. More interestingly,

if researchers are interested in finding the most frequent diseases that can be treated by

a specific chemical (e.g., nivolumab), they can search “entity = nivolumab & pattern =

DISEASEORSYNDROME treat with CHEMICAL” in our analytic interface and see the

most frequent diseases, such as melanoma and NSCLC, that can be treated with nivolumab.

With these analytic functionalities, EvidenceMiner can help scientists uncover important

research issues, leading to more effective research and more in-depth quantitative analysis.
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Table 5.2: Performance comparison of the textual evidence retrieval systems with
nDCG@1,5,10.

Method nDCG@1 nDCG@5 nDCG@10

BM25 0.714 0.720 0.746
LitSense 0.599 0.624 0.658

EvidenceMiner 0.855 0.861 0.889

5.3 EXPERIMENTS

5.3.1 Overall Performance

To demonstrate the effectiveness of EvidenceMiner in textual evidence retrieval, we

compare its performance with the traditional BM25 [123] and a recent sentence-level search

engine, LitSense [19]. The background corpus is the same PubMed subset for all the com-

pared methods. We first ask domain experts to generate 50 query statements based on

the relationships between three biomedical entity types (gene, chemical, and disease) in the

Comparative Toxicogenomics Database25. Then we ask domain experts to manually label the

top-10 retrieved evidence sentences by each method with three grades indicating the confi-

dence of the evidence. We use the average normalized Discounted Cumulative Gain (nDCG)

score to evaluate the textual evidence retrieval performance. In Table 6.2, we observe that

EvidenceMiner always achieves the best performance compared with other methods. It

demonstrates the effectiveness of using meta-patterns to guide textual evidence discovery in

biomedical literature.

5.3.2 Future Development

In some cases, a strict query matching may not find sufficiently high-quality answers due to

the stringent search requirements or limited available entities that match the search queries.

In this case, a smart query processor should automatically kick-in to do an approximate

match, such as a graph-based approximate match or an embedding-based semantic match.

In other cases, a user may query a set of entities (e.g., genes or diseases) or a timeline. We

need to conduct a summary of the major differences among the set of entities or over time

by analyzing large text.

25http://ctdbase.org
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5.4 RELATED WORK

Search engines performing sentence-level retrieval have been developed in the biomedical

domain. For example, Textpresso [124] highlights the query-related sentences in the retrieved

documents. However, the sentence highlighting is only based on query word matching, which

does not necessarily find sentences semantically related to the input query. Another example

is LitSense [19], which retrieves semantically similar sentences in biomedical literature given

a query sentence. It returns best-matching sentences using a combined approach of tradi-

tional word matching and neural embedding. However, their neural embeddings are noisy

and thus negatively impact the effectiveness in retrieving query-specific evidence sentences.

EvidenceMiner is more effective compared with LitSense for textual evidence retrieval in

biomedical literature.

Similar tools are also developed for other domains, such as claim mining and argument

mining tools on Twitter or news articles. PerspectroScope [119] allows users to query a natu-

ral language claim and extract textual evidence in support or against the claim. ClaimPortal

[120] is an integrated infrastructure for searching and checking factual claims on Twitter.

TARGER [121] is an argument mining framework for tagging arguments in the free input

text and keyword-based retrieval of arguments from the argument-tagged corpus. Most of

these tools rely on fully supervised methods that require human-annotated training data. It

is difficult to directly apply these systems to other domains such as life sciences. Because it

is non-trivial to acquire the human-annotated articles and the annotations are usually prone

to errors [125].

5.5 SUMMARY

In this chapter, we proposed EvidenceMiner, a web-based system for textual evidence

discovery for life sciences. The retrieved evidence sentences can be easily located in the

background corpora for better visualization. EvidenceMiner also includes analytic func-

tionalities such as the most frequent entity and relation summarization. We incorporated

another corpus on COVID-19 in EvidenceMiner to help boost the scientific discoveries.

We plan to further develope EvidenceMiner to be a more intelligent system that can assist

in more efficient and in-depth scientific discoveries.
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CHAPTER 6: SCIENTIFIC TOPIC CONTRASTING

6.1 INTRODUCTION

Scientific topic contrasting allows scientists to explore multiple topics at the same time to

find representative and contrasting knowledge (entities or relationships) for each topic from

the scientific literature. A similar scenario, product comparison, has been widely used in

e-commerce today. The major difference between them is that product comparison is based

on structured databases whereas scientific topic contrasting is based on unstructured text

data (e.g., scientific literature).

Scientific topic contrasting is commonly needed in scientific research. For example, in

Figure 6.1, the clinical researchers want to develop drugs that precisely treat six main cat-

egories of heart diseases: cerebrovascular accident (CVA), ischemic heart disease (IHD),

cardiomyopathies (CM), congenital heart disease (CHD), arrhythmias (ARR), and valve

disease (VD). To conduct this precision medicine development, researchers need to find the

most representative and contrasting proteins for each category as target proteins for treat-

ment. The target proteins for each category of heart diseases (e.g., TSPNA2 for CVA)

should be strongly associated with this category (CVA) but weakly associated with other

categories (IHD, CM, CHD, ARR, or VD). To find the most representative proteins for each

category of heart diseases, researchers often look into biomedical literature for distinctive

associations between proteins and heart diseases before they conduct expensive experimental

validation. Scientific topic contrasting finds the most representative and contrasting knowl-

edge (e.g., proteins) for multiple comparable topics (e.g., six categories of heart diseases)

from the scientific literature.

Scientific topic contrasting, unfortunately, is under-explored in current literature search

and analysis systems. Traditional search engines for life sciences (e.g., PubMed) are de-

signed for document retrieval and do not include the scientific topic contrasting function

[113]. Large-scale information extraction systems have been constructed to transform mas-

sive unstructured text data into structured knowledge [9, 114, 126, 127, 128, 129, 130] in

many domains. However, such information extraction systems have not built functions to

allow users to query knowledge by comparing across multiple customized topics. Life-iNet

[114] provides a function of distinctive entity summarization but the topics that can be

compared are restricted to entity types pre-defined by Life-iNet, not allowing users to query

customized topics of their interests.

In this chapter, we propose SciContrast that addresses this open problem of scientific
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Scientific Literature Clinical Researchers Clinical Research Question

What are the proteins that are specifically associated 
with six main categories of heart diseases?

CVA IHD CM CHD ARR VD

TSPNA2 
CETP 

AQP2

TRDN 
VIM

FBN1 

The TSPAN2 gene has recently been identified as a risk factor for CVA.

Fine-grained Information Extraction

Comparative Text Analysis

Textual Evidence Discovery

Algorithm Pool
AutoBioNER, 

PeNNER, PatNER, 
CPIE, WWPIE, 

CaseOLAP, 
EvidenceMiner

Figure 6.1: An example of scientific topic contrasting from life science literature.

topic contrasting in scientific literature. It allows scientists to explore a set of customized

topics of their interests by summarizing the most representative knowledge for each topic as

well as providing concrete evidence sentences supporting such knowledge discovery from a

scientific corpus. SciContrast is constructed in a completely automated way without any

human effort for training data annotation. Taken a background corpus and a domain-specific

knowledge base as input, SciContrast relies on the domain-specific knowledge base (e.g.,

UMLS for biomedicine) to provide distant supervision for fine-grained named entity recog-

nition [2, 4, 5, 7, 80] and meta-pattern-based open relation extraction [42, 122]. Based on

the extracted entities and relationships, SciContrast summarizes the most representative

knowledge for each topic using comparative text analysis [131]. Concrete evidence sentences

[16, 17] are provided to further support knowledge discovery from the scientific literature.

SciContrast is resulted from our long-term collaborations with biomedical and clinical

researchers to help scientists recognize the major differences among comparative topics and

further uncover hidden important issues for effective research [21]. In this study, we demon-

strate the power of SciContrast in the biomedical literature. However, SciContrast can

be generally applied to any scientific domains requiring a comparative knowledge discovery.

6.2 THE SCICONTRAST FRAMEWORK

SciContrast consists of three major components: a fine-grained information extraction

pipeline, a comparative text analysis pipeline, and a textual evidence discovery pipeline.

The details of each component are introduced below.
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Table 6.1: Basic statistics of the background corpus. It includes biomedical literature pub-
lished in 2019 that are specifically related to cancers and heart diseases.

Background Corpora Heart Diseases Cancers

# of PubMed Abstracts 11,766 48,201
# of PMC Full Texts 1,151 7,130

# of Sentences 246,106 1,466,091

# of Entities 400,327 3,315,092
# of Relationships 9,576 29,160

6.2.1 Fine-grained Information Extraction

The fine-grained information extraction pipeline extracts entities with distant supervi-

sion from comprehensive biomedical knowledge bases and open relations with meta-pattern

discovery methods.

Corpus Collection We have collected a background corpus of biomedical literature from

PubMed26 and PubMed Central27 (PMC), containing 26 million PubMed papers (titles and

abstracts) and 2.2 million PMC full-text papers. For the demonstration purpose, we use

a subset corpus containing biomedical literature published in 2019, specifically related to

cancers and heart diseases. To collect this subset corpus, we first use a biomedical concept

ontology, MeSH28, to find all the concepts related to cancers (“Neoplasms” in MeSH) and

heart diseases (“Cardiovascular Diseases” in MeSH), and then select the papers that contain

any of those related concepts for cancers and heart diseases to form the background corpus

for SciContrast. Table 6.1 shows the summary statistics of the background corpus for

SciContrast.

Distantly Supervised Named Entity Recognition SciContrast utilizes entity in-

formation from UMLS29, a comprehensive biomedical knowledge base for distantly super-

vised named entity recognition (NER). A major problem of existing distantly supervised

NER methods [62] is the limited coverage of the dictionaries, which leads to false-negative

labeling errors. We use PatNER [4, 5] that leverages frequent pattern mining to enhance the

distantly supervised NER performance. The intuition is that biomedical entities are often

named following some principles (e.g., disease entities often contain the words “syndrome”

or “disorder”) that can be indicative for biomedical entity recognition. PatNER automati-

26https://pubmed.gov/pubmed
27https://pubmed.gov/pmc
28https://www.nlm.nih.gov/mesh/
29https://www.nlm.nih.gov/research/umls/index.html
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cally mines the entity naming principles from the domain-specific dictionaries from UMLS

to quantify the entities and candidate phrases. It then labels each candidate entity as a

probability distribution over all the entity types to train a fuzzy NER neural model. This

fuzzy NER neural model allows us to skip the most uncertain labels during training and sig-

nificantly reduce the impact of false-negative labeling errors. PatNER achieves comparable

NER performance with state-of-the-art supervised BioNER methods, such as BioBERT [20].

However, the supervised BioNER methods cannot be directly applied to recognize new entity

types. PatNER requires no human effort for training data annotation and can automatically

recognize 17 fine-grained biomedical entity types from UMLS for SciContrast.

Meta-Pattern-Based Open Relation Extraction Following the fine-grained named

entity recognition, fine-grained relations need to be further extracted to provide comprehen-

sive knowledge for comparative text analysis. Supervised relation extraction methods cannot

cover all possible relation types between the input entity types. To extract all possible re-

lations involving the 17 fine-grained biomedical entity types without human supervision, we

use CPIE [42] and WW-PIE [122], two state-of-the-art meta-pattern discovery methods for

open relation extraction in the biomedical domain. Meta-pattern-based methods utilize data

redundancy to derive informative frequent patterns as relation types for open relation ex-

traction. In a large corpus, such redundancy is abundant. With the entities pre-recognized,

entity mentions can be replaced with their entity types, and meta-patterns (textual pat-

terns containing entity type tokens) become apparent (e.g., by replacing “Denosumab” with

“DRUG” and “Osteoproposis” with “DISEASE”, and so on, “DRUG treat DISEASE” be-

comes a frequent pattern). By breaking down long sentences into shorter yet meaningful

sentences or segments, we can conduct pattern mining, discover high-quality meta-patterns,

and group patterns hierarchically to better understand and organize patterns. Then we

match the quality meta-patterns back to the corpus for relation instance extraction. The

mined meta-patterns (e.g., “DRUG treat DISEASE”) can be used as relation types, and

their corresponding extractions matched in the text (e.g., (Denosumab, treat, Osteopropo-

sis)) can be used as relation instances.

The fine-grained information extraction pipeline is run offline as a pre-processing step

to provide comprehensive knowledge for comparative text analysis. In SciContrast, we

have provided the 17 fine-grained biomedical entity types as well as the most frequent 100

meta-pattern relation types for users to select from as the knowledge to be compared across

different customized topics.
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6.2.2 Comparative Text Analysis

The comparative text analysis pipeline takes the user-input topics and the user-selected

knowledge types (entity types and relation types) to perform fast online comparative anal-

ysis. It first categorizes the documents in the background corpus by the user-input topics

and then summarizes the most representative knowledge for each topic.

Topic-Guided Document Categorization Taken the user-input topics and the docu-

ments in the background corpus, we associate each document with its corresponding topics

via simple string matching. In particular, a document is associated with a topic if the topic

phrase appears at least once in that document. Then we find the most representative entities

and relationships within the documents for each topic via comparative text analysis.

Comparative Entity and Relationship Discovery There is no universally accepted

standard for measuring the representativeness of entities or relationships for a given topic.

Inspired by CaseOLAP [131], we measure the representativeness in terms of two criteria:

• Popularity: An entity or relationship is considered popular if it has a large number of

occurrences. Representative entities or relationships should appear with some frequency

within the documents for that topic for a substantial contribution to the topic semantics.

• Distinctiveness: Entities or relationships that appear more discriminatively on one topic

in comparison with other topics should have higher discrimination power. Representative

entities or relationships should distinguish the target topic from other topics with more

salient information.

According to the above two criteria, we define the score for each representative entity or

relationship as a combination of two scores: popularity and distinctivity.

The popularity score SP is defined as follows:

SP (k, t) =
log(c(k,Dt) + 1)

log(
∑

k′∈K c(k′, Dt))
∈ [0, 1], (6.1)

where c(k,Dt) is the number of occurrences of the entity or relationship k in the documents

Dt for the topic t. K = {k} is the set of all the entities or relationships given a user-selected

knowledge type.

The distinctivity score SD is defined as follows:

SD(k, t) =
erel(k,t)

1 +
∑

t′∈T ′ erel(k,t
′)
∈ (0, 1], (6.2)
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where T ′ = T \ {t} is the set of all the user-input topics T excluding the current topic t and

rel(k, t) is the relevance score of the entity or relationship k in the documents for the topic

t. To better describe the relevance between an entity or a relationship k and a topic t, two

normalizations were adopted:

rel(k, t) = NormTF (k, t)×NormDF (k, t). (6.3)

NormTF (k, t) is the normalized term frequency and NormDF (k, t) is the normalized doc-

ument frequency, which are calculated as follows:

NormTF (k, t) =
c(k,Dt)(a + 1)

c(k,Dt) + a(1− b + bNt)
, (6.4)

where a and b are two weighting constants and Nt is the number of entities or relationships

in the documents Dt for the topic t. Specifically for SciContrast, we use a = 1.2 and

b = 0.75.

NormDF (k, t) =
log(1 + |{d ∈ Dt : k ∈ d}|)

log(1 + maxk′∈K(|{d ∈ Dt : k′ ∈ d}|))
, (6.5)

where |{d ∈ Dt : k ∈ d}| is the number of documents for topic t that k occurs and

maxk′∈K(|d ∈ Dt : k′ ∈ d|) is the collection of documents in topic t with the largest car-

dinality.

The combined score S for each entity or relationship is the product of its popularity and

distinctivity scores:

S = SP × SD ∈ [0, 1]. (6.6)

This ranking function is more effective compared with baseline methods, such as TF-IDF

[132] or MCX [133], for representative phrase discovery across multiple comparable document

sets [131]. The output of the comparative text analysis pipeline should be ranked lists of

the user-selected knowledge (entities or relationships) for the user-input topics.

Figure 6.2 shows an example of the comparative entity and relation discovery results. By

default, we show the top-10 representative entities or relationships (ranked by the combined

score) for each user-input topic. For example, the top representative “GENE OR GENOME”

entity for the topic “breast cancer” is “brca1”, one of the most important genes related

to breast cancer30. Different score components (“distinctivity” and “popularity”) can be

30About 55%–72% of women who inherit a harmful BRCA1 variant will develop breast cancer by the age
of 70–80 [134].
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Figure 6.2: Example of the comparative entity and relation discovery results for three user-
input topics (“breast cancer”, “lung cancer”, and “bladder cancer”) on two user-selected
entity types (“GENE OR GENOME” and “CHEMICAL”) and two user-selected relation
types (“GENE OR GENOME associate with DISEASE OR SYNDROME” and “DISEASE
OR SYNDROME treat with CHEMICAL”).

explored by users. A user can select to show “distinctivity” or “popularity”, or sort the

representative entities or relationships by “distinctivity” or “popularity”.

6.2.3 Textual Evidence Discovery

The textual evidence discovery pipeline retrieves textual evidence to support the repre-

sentative entity or relationship discovery from the scientific literature. It also includes visu-
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Figure 6.3: Example of the evidence sentence retrieval results for the topic “breast cancer”
and its top-1 representative GENE “brca1”. The fine-grained entities are highlighted in
different colors according to their entity types.

Figure 6.4: Example visualization of a retrieved textual evidence and the fine-grained entity
and relation extraction results in the original document. The fine-grained biomedical entities
are highlighted in different colors according to their entity types. The meta-pattern relations
with their extracted relation instances are also shown on the right.

alization of the retrieved textual evidence and the fine-grained entity and relation extraction

results in the original documents.

Textual Evidence Sentence Retrieval Given the top-ranked entities or relationships

and their corresponding topics, SciContrast retrieves and ranks the evidence sentences

with EvidenceMiner [16, 17] to support this representative entity or relationship discov-
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ery from the background corpus. EvidenceMiner is more effective compared with baseline

methods, such as LitSense [19], for textual evidence retrieval in biomedical literature. The

sentences containing the selected entity or relationship are ranked higher if they are more

related to the selected topic.

Figure 6.3 shows an example of the evidence sentence retrieval results. For example, if

the scientists are interested in finding the textual evidence for the topic “breast cancer” and

its top-1 representative GENE “brca1”, SciContrast will return the evidence sentences

such as “Breast cancer risk associated with BRCA1/2 variants in the Pakistani population”

as the supporting evidence. The evidence score indicates the confidence of each retrieved

sentence being supporting evidence for this representative knowledge discovery.

Fine-Grained Entity and Relationship Visualization If the user clicks one of the

retrieved evidence sentences, the selected evidence sentence will be highlighted in the original

document. Figure 6.4 shows an example of retrieved textual evidence and the fine-grained

entity and relation extraction results in the original document. The fine-grained entities are

highlighted in different colors according to their entity types. The meta-pattern relations

with their extracted relation instances are also shown and can be linked to the sentences

where each relation instance is extracted in this document.

6.3 EXPERIMENTS

6.3.1 Overall Performance

To demonstrate the effectiveness of SciContrast in unsupervised representative knowl-

edge discovery, we compare its performance with traditional information retrieval methods,

TF-IDF [132], BM25 [123], and QLM-Dirichlet [135], and a recent pre-trained language

model in the biomedical domain, BioBERT [20]. We first collect the top 50 proteins for the

six main categories of heart diseases (CVA, IHD, CM, CHD, ARR, and VD) generated by all

the baseline methods. We then ask the clinical researchers at the UC Davis Medical Center

to manually label the proteins with five grades indicating the relevance of the protein to the

heart diease category. We use the average normalized Discounted Cumulative Gain (nDCG)

score to evaluate the unsupervised representative protein discovery performance. In Table

6.2, we observe that SciContrast always achieves the best performance compared with

other baseline methods. Some of our discovered proteins are under experimental evaluation

by clinical researchers at the UC Davis Medical Center, looking for novel therapeutic targets

that do not respond to the conventional drug treatment used in clinic for heart failure.
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Table 6.2: Performance comparison of baseline methods for unsupervised representative
protein discovery in six main categories of heart diseases with nDCG@10,50.

Method nDCG@10 nDCG@50

TF-IDF 0.5439 0.8183
BM25 0.5501 0.8209

QLM-Dirichlet 0.5547 0.8226
BioBERT 0.6054 0.8415

SciContrast 0.6819 0.8721

Table 6.3: Popularity comparison of baseline methods for unsupervised representative pro-
tein discovery in six main categories of heart diseases with nDCG@10,50.

Method nDCG@10 nDCG@50

TF-IDF 0.5671 0.8371
BM25 0.5789 0.8420

QLM-Dirichlet 0.5724 0.8383
BioBERT 0.6642 0.8705

SciContrast 0.6704 0.8748

6.3.2 Popularity and Distinctivity

In addition to the general relevance showed in Table 6.2, we also ask the clinical researchers

in the UC Davis Heart Failure Program at the UC Davis Medical Center to manually label

the proteins with five grades indicating the popularity and distinctivity of the protein to

the heart diease category, respectively. In Table 6.3 and 6.4, we observe that SciContrast

always achieves the best performance in both popularity and distinctivity compared with

other baseline methods.

6.3.3 Case Study

We also show some case studies of the top-10 proteins discovered by different baseline

methods in arrhymias (ARR) in Table 6.5. The good proteins (marked in blue) are the

ones that have already been identified with clear clinical meanings for the disease ARR. The

bad proteins (marked in red) are the ones identified by the clinical researchers that do not

have any relationship with the disease ARR. In Table 6.5, we observe that SciContrast

discovers many good proteins and a few bad proteins in the top results. TF-IDF, BM25, and

QLM-Dirichlet discover more bad proteins than good proteins in the top results. BioBERT

does not discover any good proteins nor bad proteins in the top results. Moreover, we observe

that the top results of SciContrast and BioBERT are complementary to each other. One

future improvement is to ensemble with or incorporate the BioBERT embedding into the
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Table 6.4: Distinctivity comparison of baseline methods for unsupervised representative
protein discovery in six main categories of heart diseases with nDCG@10,50.

Method nDCG@10 nDCG@50

TF-IDF 0.4778 0.7587
BM25 0.4689 0.7551

QLM-Dirichlet 0.4854 0.7613
BioBERT 0.5417 0.7851

SciContrast 0.6345 0.8452

Table 6.5: Case study of the top-10 proteins discovered by different baseline algorithms in
arrhymias (ARR). The clinically relevant proteins are marked in blue and the irrelevant
proteins are marked in red based on clinical researcher evaluation.

SciContrast TF-IDF BM25 QLM-Dirichlet BioBERT
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comparative text analysis framework of SciContrast for better performance.
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Figure 6.5: Running Time vs. the number of topics

Figure 6.6: Running Time vs. the number of entities/relations

6.3.4 Runtime Analysis

The SciContrast system is run on the Intel Xeon CPU E5-2630 with no GPU involved.

There are three types of inputs that users can change for SciContrast (i.e., topics, entities,

relations). To avoid system timeout, users can contrast at most six topics, five entities, and

five relations. A detailed runtime analysis is shown below.

• Fine-grained Information Extraction: The fine-grained information extraction pipeline

is run offline. The extracted entities and relationships are stored and indexed to support

a fast online topic contrasting and evidence sentence retrieval.

• Query Processing: Taken the user-input topics and selected entity/relation types as
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input, the query processing step takes several milliseconds since no query pre-processing

is involved.

• Scientific Topic Contrasting: The details of the average runtime performance of topic

contrasting are shown in Figures 6.5 and 6.6. The running time in Figure 6.5 is the result

of holding both the number of entities and the number of relations constantly at four. The

average runtime linearly increases as the number of topics increases. The running time in

Figure 6.6 is the result of holding both the number of topics constantly at two and the

other entity/relation variable at zero. The average runtime has no obvious relationship

with the number of entities and relations but is rather related to the number of occurrences

of the entity or relation in the documents. Since the occurrences of relations are usually

far less than the occurrences of entities in the documents, the increase in average runtime

by increasing the number of relations is not as obvious as that of entities.

• Evidence Sentence Retrieval: We use Elasticsearch31 to create the index for each

sentence for fast online retrieval. In addition to indexing the keywords, we index each

sentence with the meta-patterns it matches and the corresponding entities extracted by

the meta-patterns in the sentence. The average runtime of evidence sentence retrieval is

about tens of milliseconds for any given query.

6.3.5 Clinical Use Case

We have been collaborating with clinical researchers on using SciContrast for distinctive

gene set discovery to identify cardiovascular proteins that are specifically associated with six

main categories of heart diseases [21]. Some of our discovered representative proteins are

under experimental evaluation by clinical researchers looking for novel therapeutic targets

in patients and means to repurpose drugs already used in clinic. Our method may unveil

new molecular drug targets in heart diseases that do not respond to the conventional drug

treatment used in clinic. We are continuing our collaboration with the UC Davis Medical

School to further extend SciContrast for broader clinical applications such as identifying

the distinctive genes for different risk factors (e.g., diabetes) that may lead to different

sub-categories of heart diseases as well as cancers.

31https://www.elastic.co/
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6.4 RELATED WORK

Large-scale information extraction systems have been constructed to transform massive

unstructured text data into structured knowledge [9, 114, 126, 127, 128, 129, 130]. In the

biomedical domain, Life-iNet [114] constructs structured networks of factual knowledge from

large amounts of biomedical literature. COVID-KG [9] constructs a comprehensive knowl-

edge graph by extracting fine-grained multimedia knowledge elements (entities, relations, and

events) from COVID-19 literature. The extracted knowledge (e.g., entities and relationships)

helps downstream tasks such as knowledge exploration, question answering, drug target pre-

diction, and drug repurposing report generation. However, existing literature search and

analysis systems built on top of these literature information extraction results are designed

for users to query knowledge without comparing across different topics or conditions.

Little effort has been made for scientific topic contrasting from the scientific literature.

Life-iNet [114] has a function of distinctive entity summarization. However, the categories

that can be compared with are confined to some pre-defined categories by the system. It

does not allow users to query any customized categories of their interests. Also, Life-iNet

only finds distinctive entities without other kinds of knowledge such as distinctive relation-

ships. For the supporting literature evidence, Life-iNet only shows the relevant papers for

each distinctive entity without finding concrete evidence sentences supporting the distinctive

association between each entity and its corresponding category.

6.5 SUMMARY

In this chapter, we proposed SciContrast, a web-based system for scientific topic con-

trasting from life science literature. SciContrast summarizes and contrasts the most

representative knowledge for each user-input topic as well as providing concrete evidence

sentences supporting this representative knowledge discovery from the scientific literature.

We have been collaborating with clinical researchers on using the system for real-world clini-

cal studies. SciContrast have high potential to advance both literature analysis techniques

and scientific discovery applications.

82



CHAPTER 7: APPLICATIONS AND CONCLUSIONS

7.1 SCIENTIFIC TEXT MINING: SUMMARY

This thesis focuses on developing effective and scalable text mining algorithms and sys-

tems to enable and accelerate scientific discovery. With the growing volume of text data

and the breadth of information, it is inefficient or nearly impossible for humans to manually

find, integrate, and digest useful information. A major challenge is to develop methods that

automatically understand massive unstructured text data. To address this challenge, we

have developed methods that extract information from text with minimal human supervi-

sion. With the advanced text mining methods developed, we future study how to enable

and accelerate real-world knowledge discovery. We have been collaborating with experts

in various science domains (e.g., biomedicine, chemistry, and health) to achieve this goal.

Overall, this thesis has made contributions to the following aspects.

Contributions 7.1 We propose three weak supervision sources for scientific informa-

tion extraction with minimal human supervision.

• Pattern-Enhanced Weak Supervision: Scientific literature analysis needs dozens to

hundreds of distinct, fine-grained entity types, making consistent and accurate annotation

difficult even for crowds of domain experts. However, domain-specific ontologies and

knowledge bases (KBs) can be easily accessed, constructed, or integrated, making distant

supervision realistic for fine-grained scientific NER tasks. For distant supervision, training

labels are automatically generated by matching the mentions in text with the concepts in

the KBs. A major challenge of distant supervision is the limited coverage of the dictionaries

from the KBs, leading to false-negative errors during the distant training label creation.

To tackle the challenge incomplete dictionaries for distant label generation, we study the

problem of biomedical named entity recognition with various weak supervision signals

(e.g., distant supervision from knowledge bases and weak supervision from seed textual

patterns).

• Ontology-Guided Distant Supervision: In addition to the aforementioned incom-

plete dictionary problem, the distant supervision faces another great challenge of noisy

annotation where a mention can be erroneously matched due to the potential matching

of multiple entity types in the KBs. Previous distantly supervised NER studies largely

ignore the noisy annotation problem by simply discarding those multi-labels during the
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KB-matching process. However, the noisy labels cannot be simply ignored for the chem-

istry entities because they consist of a large portion of distant training labels. To tackle

the noisy annotation challenge for distant label generation, we study the problem of fine-

grained chemistry named entity recognition with distant supervision from domain-specific

knowledge bases and ontologies for multi-type disambiguation.

• Cross-Modal Supervision Between Text and Graph: Scientific knowledge usually

resides in multiple modalities. For example, chemical compounds can be described with

both text descriptions and molecule graphs. It is challenging to learn a scientific entity

representation with multi-modal information. On the other hand, we see this multi-modal

representation as an opportunity since the information in one modality may benefit the

tasks in other modalities. To investigate and better utilize the multi-modal representation

of the scientific knowledge, we study the problem of reactant entity classification with

supervision from molecule graph matching.

Contributions 7.2 We study different scientific text mining tasks including the

biomedical entity recognition (Chapter 2), fine-grained chemistry named entity recognition

(Chapter 3), chemical reactant entity classification (Chapter 4), scientific textual evidence

retrieval (Chapter 5), and scientific topic contrasting (Chapter 6). In particular, we inves-

tigate solutions with minimal human supervision using weak supervision from knowledge

bases, ontologies, and other data modalities (e.g., graphs).

Contributions 7.3 We have proposed models and algorithms to solve the above tasks.

• We proposed PeNNER (Chapter 2) to solve the nested biomedical named entity recogni-

tion problem. PeNNER relies on massive corpora and unsupervised pattern mining for

nested named entity boundary correction.

• We proposed ChemNER (Chapter 3) to solve the fine-grained chemistry named entity

recognition problem. ChemNER leverages the chemistry type ontology structure to pro-

vide a global topic constraint for context-aware multi-type disambiguation.

• We proposed ReactClass (Chapter 4) to solve the chemical reactant entity classification

problem. ReactClass is designed to take two special characteristics, multi-modal repre-

sentation and knowledge-aware subword correlation, of the chemical molecules into con-

sideration.
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• We proposed EvidenceMiner (Chapter 5) to solve the scientific textual evidence retrieval

problem. EvidenceMiner incorporates the fine-grained named entity and open relation

information to discover textual evidence.

• We proposed SciContrast (Chapter 6) to solve the scientific topic contrasting problem.

SciContrast summarizes and contrasts the most representative knowledge for each user-

input topic as well as provides concrete evidence sentences supporting this representative

knowledge discovery from the scientific literature.

7.2 APPLICATIONS

7.2.1 Open Information Extraction with Meta-Pattern Discovery

Inspired by our pattern-enhanced, weakly supervised BioNER methods, we further pro-

pose pattern-guided open information extraction (OpenIE) methods for biomedical litera-

ture. OpenIE requires no pre-specified relation types (e.g., DRUG treat DISEASE) but

aims to extract all the relation tuples (e.g., (Denosumab, treat, Osteoporosis)) from a text

corpus. Meta-pattern discovery methods [39, 41] utilize data redundancy to derive infor-

mative frequent patterns and use the derived patterns as relation types for open relation

extraction. Compared with existing OpenIE methods, meta-pattern discovery produces a

more structured relationship that can be used in downstream applications.

However, existing meta-pattern discovery methods cannot extract patterns spanning long

and complex sentences, which greatly limits their performance in the scientific domains. For

example, in Figure 7.1, “Pre-treatment of ATRA can decrease the overexpression of cyclin D1

and E2F-1 induced by B(a)P”, where “ATRA” and “B(a)P” are chemicals and “cyclin D1”

and “E2F-1” are genes. Existing meta-pattern discovery methods discover frequent meta-

patterns such as “GENE and GENE” and “CHEMICAL decrease CHEMICAL”, but not

long and infrequent meta-patterns such as “CHEMICAL decrease GENE and GENE induced

by CHEMICAL”. To tackle the above challenge, we propose several meta-pattern-guided

OpenIE methods (CPIE [42] and WW-PIE [122]) that extract meta-patterns spanning long

and complex sentences in biomedical literature.

We propose WW-PIE, a novel wide-window pattern-based OpenIE method for biomedical

literature. WW-PIE addresses three challenges: (1) the long sentences with long-distanced

entity mentions, (2) the hierarchical or n-ary relations among long-distanced entities men-

tioned in one sentence, and (3) the completeness of extractions. The key idea is to first break

down the long sentences into shorter yet meaningful sentences or segments and then conduct
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Figure 7.1: The overall framework of WW-PIE: Wide-Window Pattern-based Open Infor-
mation Extraction. This figure is adapted from [122].

pattern mining. We utilize dependency parsing to resolve complex sentence structures and

utilize frequency pattern mining to discover quality meta-patterns. After discovering quality

meta-patterns, we propose a novel hierarchical pattern grouping to better organize the ex-

tractions, keeping both the simplicity and the structure of the relationships. The output will

include two parts: the tuples as relation instances and the meta-patterns as relation types.

For example, in Figure 7.1, the tuple extraction is ⟨ATRA, decrease, cyclin D1:⟨(cyclin D1,

E2F-1), induced by, B(a)P⟩⟩, and the meta-pattern extraction is “pre-treatment of CHEMI-

CAL:ATRA can decrease the overexpression of GENE:cyclin D1 and GENE:E2F-1 induced

by CHEMICAL:B(a)P ”. Experiments on real-world biomedical corpus demonstrate the

power of WW-PIE at extracting precise and well-structured information. Our meta-pattern-

guided OpenIE methods are highly effective in extracting rich information from large-scale

biomedical literature. They have been used for downstream applications such as textual

evidence discovery in life sciences [16, 17].

7.2.2 Knowledge Graph Construction and Drug Repurposing Report Generation

Our fine-grained named entity recognition methods (e.g, CORD-NER [6]) and textual

evidence discovery methods (e.g., EvidenceMiner [16]) have been used in and inspired a

follow-up work COVID-KG [9]: COVID-19 knowledge graph construction and drug repur-
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Figure 7.2: COVID-KG overview: from data to semantics to knowledge. This figure is
adapted from [9].

posing report generation. COVID-KG has been awarded the Best Demo Paper Award

in 2021 from NAACL.

Practical progress in combating COVID-19 relies heavily on effective search, discovery,

assessment, and extension of scientific research results. However, clinicians and scientists

are facing two unique barriers in digesting these research papers. The first challenge is

quantity. Such a bottleneck in knowledge access is exacerbated during a pandemic when

increased investment in relevant research leads to even faster growth of literature than usual.

The resulting knowledge bottleneck contributes to significant delays in the development of

vaccines and drugs for COVID-19. More intelligent knowledge discovery technologies need to

be developed to enable researchers to more quickly and accurately access and digest relevant

knowledge from the literature. The second challenge is quality. Many research results about

coronavirus from different research labs and sources are redundant, complementary, or even

conflicting with each other, while some false information has been promoted in both formal

publication venues as well as social media platforms such as Twitter. As a result, some

of the public policy responses to the virus, and public perception of it, have been based

on misleading, and at times erroneous claims. The relative isolation of these knowledge

resources makes it hard, if not impossible, for researchers to connect the dots that exist in

separate resources to gain new insights.

Let us consider drug repurposing as a case study32. Besides the long process of clinical

32This is a pre-clinical phase of biomedical research to discover new uses of existing, approved drugs
that have already been tested in humans and so detailed information is available on their pharmacology,
formulation, and potential toxicity.
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trials and biomedical experiments, another major cause of the lengthy discovery phase is

the complexity of the problem involved and the difficulty in drug discovery in general. The

current clinical trials for drug repurposing rely mainly on reported symptoms in considering

drugs that can treat diseases with similar symptoms. However, there are too many drug

candidates and too much misinformation published in multiple sources. The clinicians and

scientists thus urgently need assistance in obtaining a reliable ranked list of drugs with

detailed evidence, and also in gaining new insights into the underlying molecular cellular

mechanisms on COVID-19 and the pre-existing conditions that may affect the mortality and

severity of this disease.

To tackle the above two challenges, we propose a new framework, COVID-KG, to acceler-

ate scientific discovery and build a bridge between the research scientists making use of our

framework and clinicians who will ultimately conduct the tests, as illustrated in Figure 7.2.

COVID-KG starts by reading existing papers to build multimedia knowledge graphs (KGs),

in which nodes are entities/concepts and edges represent relations and events involving these

entities, as extracted from both text and images. Given the KGs enriched with path rank-

ing and evidence mining, COVID-KG answers natural language questions effectively. With

drug repurposing as a case study, we focus on eleven typical questions that human experts

pose and integrate our techniques to generate a comprehensive report for each candidate

drug. Preliminary assessments by expert clinicians and medical school students indicate

that reports generated by our framework are both informative and sound.

7.2.3 Searching and Mining Literature for Chemical Reactions

Our fine-grained chemistry named entity recognition method (ChemNER [7]) and reactant

entity classification method (ReactClass [15]) have been used in and inspired a follow-up

work ReactionTracker: Searching and Mining Literature for Chemical Reactions. We expect

this ReactionTracker system will significantly benefit the query-based tracking of scientific

publications and the downstream scientific experiment design process.

Tracking the latest research on certain chemical reactions is a key challenge in mining and

searching chemistry literature for chemical synthesis applications. For example, chemists

may have a specific information need of finding papers about Suzuki coupling reactions

involving two reactant groups: primary alkyl boronates and primary alkyl halides. They will

formulate a query such as “Suzuki coupling between primary alkyl boronates and primary

alkyl halides” and put it into a literature search engine. However, current literature search

engines (e.g., PubMed and Reaxys) will have a low recall (i.e. missing some papers) on

this kind of reaction queries. Because they do not know, for example, “n-octyl-9-BBN” is a
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Figure 7.3: The demo interface of ReactionTracker. Papers are ranked based on their rele-
vance to the query reactant groups.

“primary alkyl boronate” and “1-bromododecane” is a “primary alkyl halide”.

To tackle the above challenge, we propose a new chemical literature search engine, Reac-

tionTracker, that uses ChemNER and ReactClass for a smart query expansion to enhance the

chemical reaction literature tracking performance. A demo interface of ReactionTracker is

shown in Figure 7.3. If we input this query of reactant groups into PubMed, the most widely

used scientific literature search engine, we will get no paper returned. Because PubMed

search is based on keyword matching, while most scientific papers discuss concrete chemi-

cal compounds instead of their corresponding reactant groups. In ReactionTracker, we got

2,000 papers returned with the top results highly relevant to our input query. Because Re-

actionTracker first uses ChemNER to identify all the fine-grained chemistry entities in the

background corpus and then uses ReactClass to automatically map those chemical entities

to their corresponding reactant groups. As a result, we know what chemical compounds

are relevant to the input query and it greatly improved the recall of the ReactionTracker

system. In addition to the retrieved papers, ReactionTracker further highlights the query

entities and other chemical compounds in the same reactant groups as the query entities for
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better visualization. ReactionTracker is one key achievement of the National Science Foun-

dation (NSF)-funded Molecular Maker Lab Institute at the University of Illinois at Urbana-

Champaign. It has further been used in AI-driven systems for automatic chemical/material

synthesis plan generation and optimization to support intelligent molecule discovery.

7.3 CONCLUSIONS

My research tackles a series of technical challenges for extracting a wide range of fine-

grained information from unstructured text for scientific discovery. Our research benefits

from and fosters collaborations with experts in various research areas within and beyond

computer science from various institutions, including hospitals (UC Davis Medical Center),

government (National Institute of Health and Army Research Lab), industry (IBM and Eli

Lilly), and academics from other universities (Stanford, UCLA, UC Davis, UCSD, USC,

Purdue, and Iowa State University). Our algorithms and systems can be generally used for

any science domain where a knowledge discovery from massive text data is needed. Finally,

our work has been used in the following settings:

• Used in real world:

– Clinical Domain: Our text mining methods have been used to find proteins that

are specifically associated with six main categories of heart diseases. Our top-ranked

proteins match the knowledge of the clinical researchers very well. Some of our dis-

covered proteins are currently under experimental validation by clinical researchers at

the UC Davis Medical School. This collaboration has a high potential to unveil novel

therapeutic targets in patients and repurpose drugs already used in the clinic.

– Chemistry Domain: Our text mining methods have been used to support an intelli-

gent molecule discovery process in organic chemistry. We have been collaborating with

the researchers in the Chemistry Department at UIUC, finding the most representative

catalysts and reaction conditions by comparing different organic reaction types. This

collaboration leads to AI-driven systems for automatic chemical/material synthesis plan

generation and optimization.

• Taught in classes and conference tutorials: Our methods on pattern-enhanced

weakly-supervised NER (PeNNER), ontology-guided distantly-supervised NER (Chem-

NER), and cross-modal supervision between text and graph (ReactClass) are being taught

in graduate courses, e.g., University of Illinois at Urbana-Champaign (CS 512), and are
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introduced as major parts of the conference tutorial in top data mining and database

conferences such as SIGKDD, WWW, and IEEE-BigData.

• Awards: This thesis work has been awarded YEE fellowship from 2020 to 2021 from

the University of Illinois at Urbana-Champaign. It has also impacted an application on

COVID-19 knowledge graph construction that has been awarded the Best Demo Paper

Award in 2021 from NAACL.
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CHAPTER 8: VISION AND FUTURE DIRECTIONS

There still remain grand challenges for scientific text mining, such as a lack of specialized

domain knowledge in a natural language context, complex conditions associated with sci-

entific information, and multi-modal representations of scientific knowledge. In the future,

I plan to develop knowledge-enhanced, condition-aware, and multi-modal text mining ap-

proaches for scientific discovery to tackle the above challenges. These future directions will

involve collaborations with experts in various research areas within and beyond computer

science, such as graph mining, natural language processing, computer vision, bioinformatics,

computational biology, health informatics, and natural sciences.

8.1 KNOWLEDGE-ENHANCED SCIENTIFIC INFORMATION COMPREHENSION

One major challenge for comprehending the fine-grained scientific information in the text

is the urgent need for domain-specific background knowledge. Domain knowledge (e.g., from

knowledge bases and ontologies) can be naturally expressed in logical rules or symbolic pat-

terns. I propose developing approaches combining deep learning and symbolic patterns to

better understand the scientific text. Recently, deep learning-based approaches have led to

state-of-art performance on various NLP and text mining tasks. However, these approaches

lack explainability to human experts, and it is hard to incorporate domain knowledge into

these learning-based models. On the other hand, although symbolic pattern matching-based

approaches are less accurate on standard test splits than deep learning-based approaches,

they still offer significant practical advantages. The pattern-based approaches are more

transparent to human experts and support human examination of intermediate represen-

tations and reasoning steps. They are amenable to having a human in the loop through

intervention, manipulation, and incorporation of domain knowledge.

Specifically, we can integrate domain-specific knowledge graphs with the representation

learning in text in two ways: (1) using domain-specific knowledge bases to guide the language

model pre-training, and (2) using the pre-trained language models to enhance the knowledge

graph (KG) reasoning. For the first direction, we can formulate the structured knowledge

(e.g., molecule graphs, reaction equations, and numerical properties) into textual sequences

and incorporate this additional information into the domain-specific language model pre-

training. We expect this additional knowledge will greatly enrich the knowledge of the

domain-specific language models and benefit downstream tasks such as information extrac-

tion. For the second direction, we can harness the power of pre-trained language models
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(PLMs) to add facts, definitions, and attribute information for open knowledge graph rea-

soning. The mission of open knowledge graph reasoning is to draw new findings from known

facts. Existing works that augment such reasoning require either (1) factual triples to directly

enrich the current KG or (2) manually crafting prompts to probe knowledge from a PLM,

indicating limited performance and expensive expert knowledge respectively. Additionally,

most of them only support single-hop reasoning, whereas multi-hop reasoning has a broader

range of uses. We can automatically generate decent prompts and support information to

fine-tune PLM for the task of multi-hop KG reasoning.

8.2 MULTI-MODAL SCIENTIFIC INFORMATION EXTRACTION

In addition to the text information, scientific knowledge is usually embedded in multi-

modal formats (e.g., text and graphics) in the scientific literature. Scientific data can also

exist in multi-omics formats in some domains (e.g., genomics and proteomics data in the

biology domain). A multi-modal information extraction will significantly benefit literature-

based scientific discovery in various domains: (1) biomedicine (text + image + table), (2)

chemistry (text + molecular graph), and (3) health (electronic health record + genomics

data). However, it is nontrivial to integrate information from the text and other modalities.

Based on my expertise in text mining, I propose to bridge the gap of multi-modal scientific

information extraction by collaborating with experts in various research areas, such as graph

mining, natural language processing, computer vision, bioinformatics, and natural sciences.

Specifically, we can develop cross-media semantic representation learning and informa-

tion extraction approaches to support complex real-world applications such as multi-modal

knowledge base curation and completion. One way to do the multi-modal knowledge in-

tegration is multi-media representation learning. We can develop methods for mapping

knowledge elements from difference spaces of various modalities to the same continuous vec-

tor space with much lower dimensionality. Another way to do the multi-modal knowledge

integration is intermediate graph-based knowledge fusion. We can first convert both text

and images into intermediate graph structures (e.g., knowledge graphs for text and scene

graphs for images) and then integrate these separate graphs into one comprehensive graph.

This fused graph not only integrates knowledge from different data modalities but also facili-

tates downstream tasks such as knowledge graph reasoning and graph-based text generation.

Compared with directly fusing multi-modal information with a multi-media representation

learning, we expect this intermediate graph-based knowledge fusion could possibly provide

more explainability for downstream task predictions.
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8.3 MULTI-DIMENSIONAL SCIENTIFIC INFORMATION ANALYSIS

Another major challenge for scientific information extraction is that scientific knowledge

can only be valid under certain conditions. For example, a drug may only be considered

effective for a disease with a certain dosage or for certain patient groups (e.g., age, gender,

or comorbidity with other diseases). I propose to consider different conditions as different

dimensions, organizing massive text into multi-dimensional text cube structure, and synthe-

sizing knowledge in the multi-dimensional space.

Specifically, we can develope multi-dimensional information extraction approaches to ex-

tract entities, relationships, and knowledge graphs by considering user-specified conditions

or dimensions. This multi-dimensional information extraction and knowledge organization

facilitates complex real-world applications, such as distinctive summarization of entities,

relationships, and networks under each dimension and knowledge discovery through cross-

dimensional comparison and inference. For example, we can develop a multi-dimensional-

cube-based document organization method that benefits downstream tasks such as com-

parative document summarization and analysis. Massive documents can be organized into

multi-dimensional text cubes to facilitate downstream tasks such as search and summariza-

tion. For example, the COVID-19 literature can be organized in a three-dimensional text

cube of “Virus Type”, “Study of Virus”, and “Age Group”. Each dimension may contain

several categories for comparison (e.g., the “Virus Type” dimension may contain categories

“COVID-19”, “SARS”, “MERS”, and “Ebola” ). The task of multi-dimensional cube-based

document search aims to automatically retrieve the most relevant documents (sentences or

paragraphs) for each cell in the text cube. We can use category-indicative concept discovery

for an explainable cube-based document search.
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