
© 2022 Xiaofan Zhang



EFFICIENT AI HARDWARE ACCELERATION

BY

XIAOFAN ZHANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Doctoral Committee:

Professor Deming Chen, Chair
Professor Wen-Mei Hwu
Professor Sanjay Patel
Assistant Professor Jian Huang
Professor Jinjun Xiong, University at Buffalo



ABSTRACT

The great success of artificial intelligence (AI) has been driven in part by the

continuous improvement of deep neural networks (DNNs) with deeper and

more sophisticated model structures. DNNs thus become more compute- and

memory-intensive. They cause significant challenges for hardware deploy-

ment, as they require not only high inference accuracy but satisfied inference

speed, throughput, and energy efficiency. Challenges also come from lim-

ited hardware resources, restricted power budgets, tedious hardware design

programming, intricate hardware verification problems, and time-consuming

design space explorations. To address these challenges, this dissertation pro-

poses a comprehensive toolset for efficient AI hardware acceleration targeting

various edge and cloud scenarios. It covers the full stack of AI applications,

from delivering hardware-efficient DNNs on the algorithm side to building

domain-specific hardware accelerators for existing or customized hardware

platforms. Major novelties include HLS-based accelerator design and opti-

mization strategies, end-to-end automation tools, and DNN-accelerator co-

design methods, which enable highly efficient AI hardware acceleration for

various popular AI applications.

Our proposed solution starts with the efficient DNN hardware accelerator

design using a High-Level Synthesis (HLS) design flow. Customized hardware

accelerators can be developed from a higher abstraction level with a fast re-

sponse to support emerging AI applications. We demonstrate this method by

implementing the first FPGA-based accelerator of the Long-term Recurrent

Convolutional Network (LRCN) to enable real-time image captioning. Our

design achieves 3.1× higher speedup and 17.5× higher efficiency compared

to the optimized GPU-based solution.

We then propose DNNBuilder to improve the efficiency of accelerator de-

sign and optimization. It is an end-to-end automation tool providing an inte-

grated design flow from DNN design in deep learning frameworks to board-

ii



level FPGA implementations. Users are no longer required to design and

optimize accelerators manually but can enjoy the auto-generated hardware

accelerators for desired AI workloads. Novel designs include the fine-grained

layer-based pipeline architecture and the column-based cache scheme, which

achieve 7.7× and 43× reduction of latency and on-chip memory usage. We

demonstrate DNNBuilder by generating state-of-the-art accelerators for var-

ious AI services with high quality and energy efficiency.

In addition, we propose a series of efficient design methods to perform algo-

rithm/accelerator co-design and co-optimization, which provides systematic

strategies to integrate hardware and software designs. We propose SkyNet,

a co-design strategy for hardware-efficient DNN design and deployment with

a comprehensive awareness of the hardware constraints. Its effectiveness is

demonstrated by outperforming 100+ competitors in the IEEE/ACM Design

Automation Conference System Design Contest (DAC-SDC) for low-power

real-time object detection. We then extend the co-design to handle two

emerging and challenging AI tasks in real-life edge and cloud AI scenarios.

We propose F-CAD to deliver customized accelerators for Virtual Reality

(VR) applications running on extremely lightweight edge devices. Its gen-

erated designs can achieve up to 4.0× higher throughput and up to 62.5%

higher energy efficiency than state-of-the-art designs. We propose AutoDistill

to address the difficulties of serving large-scale Natural Language Processing

(NLP) models in the cloud. Following the co-design strategy, it integrates

effective model compression and neural architecture search technologies to

deliver high-quality and hardware-efficient NLP pre-trained models. Eval-

uated on the latest TPU chip, the AutoDistill-generated NLP model can

achieve 3.2% higher accuracy and 1.44× faster hardware performance than

the state-of-the-art.

These techniques contribute to a new comprehensive toolset that covers

hardware accelerator design and optimization on different abstraction levels

and DNN-accelerator co-design to deliver efficient AI acceleration for edge

and cloud scenarios. It successfully bridges the gap between DNN designs

and their hardware deployment and enables easy-accessible, high-quality, and

sustainable AI acceleration. As a result, we are able to demonstrate state-

of-the-art solutions for various popular and emerging AI applications.

iii



To my parents, for their love and support.

iv



ACKNOWLEDGMENTS

My Ph.D. journey is a precious and unforgettable chapter in my life. I

am exceptionally grateful for receiving a lot of help and support from my

advisors, colleagues, friends, and family.

First, I would like to express my sincere gratitude to my advisor, Prof.

Deming Chen, for trusting and inviting me to join the ES-CAD research

group. I have learned a lot from his creativity, dedication, and passion for

research, which have shaped my personality as a passionate researcher. With-

out his guidance, it would not be possible for me to get my achievements,

including this dissertation. I would like to thank Prof. Wen-mei Hwu and

Prof. Jinjun Xiong, my mentors and closest collaborators in the C3SR re-

search center, for their continuous support, guidance, and encouragement.

They are absolutely the role models of great researchers with immense knowl-

edge, brilliant ideas, and ceaseless enthusiasm. I am grateful to have Prof.

Sanjay Patel and Prof. Jian Huang on my thesis committee. They have

provided valuable feedback and suggestions for improving my dissertation.

Besides, I would like to thank all my labmates in the ES-CAD research

group for sharing with me their brilliant ideas and exciting discussions.

Thanks to Xinheng Liu, Anand Ramachandran, and Chuanhao Zhuge who

worked closely with me to build the first LRCN accelerator and prepared

for the prototype in Chapter 3. Thanks to Cong Hao, Yuhong Li, Sitao

Huang for working toward the DNN/accelerator co-design idea in Chapter

5 and their great efforts to win the DAC-SDC. I want to thank Di He, Wei

Zuo, Qin Li, Yao Chen, Hanchen Ye, Yuan Ma, Junhao Pan, Zehua Yuan,

for being awesome labmates. I enjoy working with them on numerous ex-

citing projects. I also want to thank my friends in the Coordinate Science

Laboratory (CSL) who always encouraged me to think outside the box and

motivated me to work harder.

Next, I would like to thank my collaborators outside the University of Illi-

v



nois, who gave me insights and helped me complete this dissertation. It is

great fun and rewarding to work with them. I would like to thank Yonghua

Lin, Junsong Wang, Chao Zhu, and Yubo Li at IBM Research. Their pioneer-

ing works on end-to-end automation tools led me to the DNNBuilder project

in Chapter 4. Many thanks for their insights, discussions, and contributions.

I would like to thank Yuecheng Li, Dawei Wang, Pierce Chuang, and Shugao

Ma at Meta Reality Labs Research. They helped me identify the bottlenecks

of current VR accelerators and made the F-CAD design possible in Chapter

6. I also want to thank Emma Wang and Zongwei Zhou at Google for guiding

me toward the research topics on large-scale model serving in the cloud and

for their great support in the AutoDistill project presented in Chapter 7.

Finally, I would like to thank my fiancée and my parents for their uncondi-

tional love and support. Words cannot express my appreciation, and I know

that they are always proud of me no matter what I achieve.

vi



TABLE OF CONTENTS

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . . . 8
2.1 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Hardware-efficient DNN designs . . . . . . . . . . . . . . . . . 12
2.3 Efficient DNN accelerators . . . . . . . . . . . . . . . . . . . . 14
2.4 Efficient Co-design Strategies . . . . . . . . . . . . . . . . . . 15

CHAPTER 3 HLS-BASED DESIGN AND OPTIMIZATION STRATE-
GIES FOR ACCELERATING LRCN . . . . . . . . . . . . . . . . . 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Design Challenges of Accelerating Video Analysis . . . . . . . 17
3.3 Design Methodologies for Building LRCN Accelerator . . . . . 19
3.4 Hardware Implementation and Comparison . . . . . . . . . . . 25
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER 4 DNNBUILDER: AN AUTOMATED TOOL FOR
BUILDING HIGH-PERFORMANCE DNN HARDWARE AC-
CELERATORS FOR FPGAS . . . . . . . . . . . . . . . . . . . . . 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The Proposed Automation Flow . . . . . . . . . . . . . . . . . 30
4.3 Accelerator Architecture . . . . . . . . . . . . . . . . . . . . . 32
4.4 Automatic Resource Allocation . . . . . . . . . . . . . . . . . 37
4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 5 SKYNET: EFFICIENT DNN-ACCELERATOR CO-
DESIGN STRATEGIES . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 DNN-Accelerator Co-Design . . . . . . . . . . . . . . . . . . . 52
5.3 A Bottom-up DNN Design strategy . . . . . . . . . . . . . . . 55

vii



5.4 The SkyNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 A Top-down Accelerator Design Strategy . . . . . . . . . . . . 60
5.6 Experimental Results on DAC-SDC . . . . . . . . . . . . . . . 62
5.7 SkyNet Extension on GOT-10K Object Tracking . . . . . . . . 69
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

CHAPTER 6 F-CAD: A CUSTOMIZED ACCELERATOR DE-
SIGN FLOW FOR EMERGING EDGE VR APPLICATIONS . . . 72
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Design Challenges of accelerating VR codec avatar . . . . . . . 74
6.3 The Proposed F-CAD Design Flow . . . . . . . . . . . . . . . 77
6.4 Accelerator Architecture . . . . . . . . . . . . . . . . . . . . . 79
6.5 Multi-Branch Design Space Exploration . . . . . . . . . . . . . 81
6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 86
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

CHAPTER 7 AUTODISTILL: AN END-TO-END FRAMEWORK
TO EXPLORE AND DISTILL HARDWARE-EFFICIENT LAN-
GUAGE MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Knowledge Distillation Background and Challenges . . . . . . 91
7.3 The Proposed AutoDistill . . . . . . . . . . . . . . . . . . . . 93
7.4 Flash Distillation . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 Hardware-Aware Model Selection . . . . . . . . . . . . . . . . 99
7.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 101
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

CHAPTER 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 114

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



LIST OF ABBREVIATIONS

AI Artificial Intelligence

ACM Association for Computing Machinery

ASIC Application-Specific Integrated Circuit

BN Batch Normalization

BO Bayesian Optimization

BRAM Block Random Access Memory

CE Compute Engine

CPU Central Processing Unit

CNN Convolutional Neural Network

Conv layer Convolutional layer

CPF Channel Parallelism Factor

CTC Computation-to-Communication

DAC-SDC Design Automation Conference System Design Contest

DNAS Differentiable Neural Architecture Search

DNN Deep Neural Network

DRAM Dynamic Random Access Memory

DSE Design Space Exploration

FC layer Fully-Connected layer

FF Feed-Forward

FFT Fast Fourier transform

ix



FIFO First In First Out

FM Feature Map

FPGA Field-Programmable Gate Array

FPS Frames Per Second

GFLOP Giga Floating-point Operations

GLUE General Language Understanding Evaluation

GOPS Giga Operations

GPU Graphics Processing Unit

HD High-Definition

HDL Hardware Description Languages

HLS High-Level Synthesis

HMD Head Mounted Display

IEEE Institute of Electrical and Electronics Engineers

IOU Intersection Over Union

IP Intellectual Property

KPF Kernel Parallelism Factor

LRCN Long-term Recurrent Convolutional Network

LSTM Long Short-Term Memory

MHA Multi-Head Attention

MLM Masked Language Modeling

NAS Neural Architecture Search

NLP Natural Language Processing

NSP Next Sentence Prediction

PC Personal Computer

PE Process Element

PSO Particle Swarm Optimization

QPI QuickPath Interconnect

x



RAM Random Access Memory

RNN Recurrent Neural Network

RTL Register-Transfer Level

RX Receiver

SoC system-on-Chip

SQuAD Stanford Question Answering Dataset

TPU Tensor Processing Unit

TX Transmitter

VR Virtual Reality

xi



CHAPTER 1

INTRODUCTION

The recent development of DNNs has made AI more relevant and accessible

to the general public. We have seen that most DNN technologies have been

deeply integrated into applications related to our daily lives, such as image

recognition, object tracking, speech recognition, language translation, self-

driving cars, and augmented and virtual reality. These applications can be

easily found running at the edge devices or in the cloud servers, requiring high

inference accuracy to achieve intelligent responses and aggressive inference

speed, throughput, and energy efficiency to meet various real-life demands.

As DNNs become more complicated, developing and serving the DNN-

enabled applications requires more compute and memory resources, longer

latency, and greater energy consumption. For example, the amount of com-

putation for DNN training has risen by over 300,000× in just six years be-

tween AlexNet [1], the champion DNN model of 2012 ImageNet competition,

and AlphaGo Zero [2], the AI player for the board game Go with superhuman

skills [3]. For DNN inference, by taking image recognition as an example,

we have seen 16× model complexity increase from AlexNet to ResNet-152

[4]. By processing the same size of input images from the ImageNet dataset,

AlexNet requires 1.4 Giga floating-point operations (GFLOP) and achieves

around 85% top-5 accuracy, while ResNet-152 takes 22.6 GFLOP and reaches

around 95% top-5 accuracy.

Such exponentially increasing compute and memory demands cause great

difficulties for DNN deployment on hardware. Fortunately, we have seen

continuous progress published in recent studies to build domain-specific ac-

celerators for efficiently handling the resource-demanding DNN workloads.

These accelerators attempt to take advantage of different hardware design

styles, such as adopting acceleration libraries on CPU [5], exploring kernel

optimization on GPUs [6, 7], building customized accelerator on FPGAs

[8, 9, 10] and ASICs [11, 12, 13], to improve the speed and efficiency of DNN

1



inference and training processes. Among these accelerator designs, FPGA-

and ASIC-based designs can be fully customized to implement the neural

network functionality with improved latency, throughput, and energy con-

sumption compared to CPU- and GPU-based designs.

However, developing customized DNN accelerators still presents significant

challenges, such as the tedious programming using hardware description lan-

guages (HDL), the intricate hardware verification problems, and the time-

consuming design space exploration process. All these challenges seriously

reduce the accelerator design efficiency and easily cause sub-optimal solu-

tions given available hardware resources. In addition, emerging AI applica-

tions usually adopt DNNs with diverse layers and deeper network structures.

They often have multiple requirements, such as high-definition image/video

input support, real-time capability, flexible batch-process configuration, etc.

It is still unclear how to effectively and systematically exploit the available

resources and produce customized DNN accelerators that meet all the desired

requirements.

This dissertation provides a comprehensive toolset to address the chal-

lenges mentioned above and deliver efficient AI hardware acceleration for

various real-life scenarios. Our proposed toolset includes HLS-based DNN

accelerator design and optimization strategies, end-to-end automation tools

for customized accelerator designs, and DNN-accelerator co-design and co-

optimization strategies. We demonstrate the proposed designs by generat-

ing state-of-the-art solutions to accelerate popular AI applications, including

video analysis in Chapter 3, image classification in Chapter 4, object detec-

tion and tracking in Chapter 5, VR codec avatar in Chapter 6, and popular

NLP tasks in Chapter 7.

1.1 Motivations

1.1.1 HLS-based design and optimization strategies

HLS allows the use of high-level (behavioral-level) programming languages,

such as C/C++, to be the abstract descriptions of hardware functions, which

significantly improve the design efficiency compared to the conventional de-

velopment using HDL on register-transfer level (RTL). A higher-level de-

2



scription requires fewer codes and gives faster simulation. In an example

mentioned in [14], a hardware design with one million logic-gates-circuit re-

quires roughly 300K lines of RTL codes, but it can be described by only 40K

lines of C codes, where 7× code size reduction is achieved. In addition, HLS

provides a variety of loop-based optimization strategies, such as loop un-

rolling and loop pipelining, which exhibit great potential for handling DNN

layers, as most of the layers can be expressed in the form of intertwined loops.

In our proposed methods, we leverage the advantage of HLS design flow as

well as various optimization strategies and eventually deliver accelerators

with improved hardware performance and efficiency. We choose FPGAs as

the targeted devices because they can be fully customized. It is the critical

feature we need in this dissertation, but CPUs and GPUs cannot provide

it. Compared to ASICs, FPGAs provide a higher degree of design flexibility,

faster time-to-market, and less non-recurring engineering cost.

1.1.2 End-to-end automation tools

To step further in the direction of improving accelerator design efficiency,

we propose end-to-end automation tools to seamlessly bridge the gap be-

tween fast DNN construction in software (the machine learning framework,

e.g., Caffe [15], TensorFlow[16], PyTorch [17], etc.) and slow hardware im-

plementation. These proposed tools support inputs described on a much

higher abstraction level, which are the same as DNN definition files used in

the machine learning frameworks. So, DNNs can be directly imported to

the proposed tools, and no manual code conversions are required. The ben-

efits of proposing end-to-end tools are not only to support higher abstract

DNN descriptions, but also integrate design space exploration (DSE) engines

for effective and systematical explorations and deliver highly optimized ac-

celerators to meet specific performance targets with the available resource

budgets.

1.1.3 DNN-accelerator co-design strategies

Although hardware accelerators can be fully optimized to deliver improved

performance, there are still challenges from the conflict between limited avail-

3



able hardware resources and increasingly demanding application-specific re-

quirements. To address these conflicts, optimizations need to be done on

both software and hardware sides to compress the DNNs and make them

hardware-efficient, as well as to build powerful hardware accelerators by fully

utilizing the available resource budgets. However, conventional approaches

still construct DNN and accelerator in two separate steps and perform op-

timization iteratively for improved software and hardware metrics. It is dif-

ficult to balance the DNN design metrics (e.g., accuracy, model complexity,

robustness, etc.) and hardware accelerator design metrics (e.g., throughput,

latency, resource usage, power consumption, etc.) due to the inefficient co-

ordination between hardware and software, resulting in a time-consuming

and error-prone procedure with no guarantee of convergence. To address

this issue, we propose DNN-accelerator co-design strategies to consider soft-

ware and hardware metrics simultaneously. DNNs are designed to satisfy

accuracy demands and must be aware of the hardware constraints with ra-

tional network configurations. At the same time, the accelerators need to

provide extensive support for different DNN components without introduc-

ing too many restrictions on network design and guarantee performance to

meet the specifications. To achieve this goal, we introduce a unified interme-

diate representation for both DNNs and hardware accelerators to explore the

joint optimization opportunities and deliver better solutions than optimizing

DNNs or accelerators alone.

1.2 Contributions

In this dissertation, we provide a comprehensive toolset to cover hardware

accelerator design and optimization on different abstraction levels and DNN-

accelerator co-design to deliver efficient AI acceleration for edge and cloud

scenarios. Compared to previously published solutions, our proposed toolset

provides more comprehensive support to enable AI hardware acceleration

from the behavioral level while working with DNN-accelerator co-design. It

forms a comprehensive design space of the customized hardware accelerators

as well as the DNN models and provides various optimization strategies to

create the final optimized design given multiple constraints, such as user-

specific requirements and available hardware resources. The proposed solu-

4



Figure 1.1: A comprehensive toolset is proposed to address the challenges
of AI hardware acceleration. The contributions in this dissertation include
HLS-based accelerator design and optimization strategies [18] in Chapter 3,
end-to-end automation tools [10] in Chapter 4, DNN-accelerator co-design
methods [19] in Chapter 5, and demonstrations of the proposed designs on
emerging edge VR [20] and cloud NLP applications [21] in Chapter 6 and 7.

tions have been demonstrated in various popular AI applications and have

led to multiple breakthroughs in delivering efficient AI hardware acceleration.

As shown in Figure 1.1, our work focuses on bridging the gap between DNN

designs and their hardware deployment as well as enabling DNN/accelerator

co-design and co-optimization. This figure first shows the conventional design

flow: DNNs are developed on machine learning frameworks and converted to

RTL descriptions for hardware deployment. Our work provides more efficient

DNN mapping solutions using higher abstraction levels, such as the HLS-

based design methods in Chapter 3 and the end-to-end solutions in Chapter

4. We also contribute to the DNN/acceleration co-design and co-optimization

(Chapter 5 ∼ 7) to enable joint-optimization opportunities between software

and hardware. Detailed contributions are summarized as follows:

• HLS-based design and optimization methods for accelerating compli-

cated video analysis DNN on FPGAs [18]. Our proposed toolset pro-

vides the first FPGA implementation of LRCN, a hybrid DNN model

with both Convolutional Neural Network (CNN) and Recurrent Neu-

ral Network (RNN). It demonstrates the feasibility of using HLS to

implement high-performance DNN accelerators and overcomes the de-

sign challenges in managing computational complexity, on-chip mem-

5



ory limitation, and external memory bottleneck. We then release the

first open-source LRCN accelerator design, which provides success-

ful design templates to address challenges in managing compute- and

communication-intensive AI workloads. We will introduce the detailed

designs in Chapter 3.

• An end-to-end design automation tool called DNNBuilder [10]. We fur-

ther provide an integrated design flow from DNN models in deep learn-

ing frameworks to board-level FPGA implementations. DNNBuilder

further improves the hardware accelerator design efficiency as it auto-

mates the customized DNN accelerator design process and overcomes

the significant challenges encountered before, such as hardware pro-

gramming, hardware verification, and design space exploration. DNNBuilder

gives a new direction for accelerator architecture design by proposing

a fine-grained layer-based pipeline and a column-based cache scheme.

These novel technologies reduce 7.7× latency and 43.0× on-chip mem-

ory consumption. Because of its novel contributions, DNNBuilder has

been awarded the IEEE/ACM William J. Mccalla ICCAD Best

Paper Award. It is also an open-source project, which has been

adopted by the industry. We will introduce this work in Chapter 4.

• DNN-accelerator co-design strategies to integrate hardware and soft-

ware designs. In addition to the methods mentioned above, we expand

our proposed toolset to support DNN-accelerator co-design and pro-

vide more effective methods for building optimized AI solutions con-

sidering larger and more challenging co-design spaces. The proposed

co-design strategies help deliver efficient AI acceleration with careful

considerations of both DNN design diversity and hardware constraints.

Particularly, we propose a uniform intermediate representation called

Bundle to connect software and hardware metrics. These strategies

are demonstrated in SkyNet to provide efficient and real-time object

detection and tracking [19]. SkyNet won the First Place Winner

Awards of the DAC-SDC by generating solutions that significantly

outperformed other 100+ competitors. We will introduce SkyNet in

Chapter 5.

• To cover emerging edge AI applications, we propose F-CAD, the first

6



design flow for accelerating emerging VR applications running on lightweight

edge devices [20]. F-CAD introduces a novel elastic accelerator archi-

tecture and a dynamic design space exploration to optimize hardware

designs. It achieves up to 4.0× higher throughput and up to 62.5%

higher energy efficiency than state-of-the-art designs and can perfectly

meet the demanding VR requirements. It is a timely addition to our

toolset to overcome the emerging challenges. We will introduce F-CAD

in Chapter 6.

• Finally, we integrate AutoDistill into our toolset to support emerging

cloud AI applications. AutoDistill is the first fully automated frame-

work that integrates model distillation and neural architecture search

(NAS) to deliver hardware-efficient NLP pre-trained models for cloud-

based AI services [21]. It comprehensively considers both model quality

and serving latency on the targeted cloud server following the co-design

strategies. Compared to the state-of-the-art compressed BERT model,

AutoDistill provides better solutions with 1.44× faster hardware per-

formance and 3.2% higher accuracy. We will introduce AutoDistill in

Chapter 7.

7



CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter will briefly introduce DNNs and popular solutions to make

DNNs efficient for hardware deployment. We will also cover the design

methodologies and recent development of AI accelerator designs. At last,

we will introduce recent software/hardware co-design and co-optimization

methods to implement efficient AI solutions for real-life applications.

2.1 Deep Neural Network

AI is a broad concept that refers to the intelligence provided by smart ma-

chines with the capability of performing tasks that typically require human

intelligence. There are many AI applications in our daily lives, such as

video analysis in a security camera to detect crowd density [22, 23], lan-

guage translation in a cell phone to ensure communication when traveling

abroad [24, 25, 26], a recommendation system to achieve personalized adver-

tising during internet surfing [27, 28], immersive communication using VR

technologies [29, 30, 31], etc. AI can be achieved in different ways, and,

among all, deep learning is one of the most popular approaches, which pro-

cesses inputs through DNNs. With the recent breakthroughs in DNNs and

improvements in computing power and datasets, AI applications have be-

come increasingly diverse and accessible, continually reshaping our lives in

many different ways [32]. In this section, we will introduce the DNNs men-

tioned in the following chapters, which include AlexNet [1] and VGG [33] for

image classification, LRCN for video analysis [23], and a multi-branch DNN

for VR codec avatar [29].

8



Figure 2.1: AlexNet architecture [1].

Figure 2.2: VGG architecture [33].

2.1.1 CNN architectures

A CNN includes multiple intermediate layers between the input and output

layers, and each intermediate layer consists of artificial neurons for trans-

forming the input information following the predefined network connections.

It is one of the most widely used deep learning algorithms for computer vi-

sion applications, which takes images or video frames as inputs and then

recognizes the spatial information of the input contents. A typical CNN is

structured as a series of layers, including Conv layer, pooling layer, activation

layer, and FC layer.

By taking AlexNet [1] as an example (shown in Figure 2.1), its major

layers include five Conv layers using three kernel sizes (11×11, 5×5, and

3×3), three pooling layers, and three FC layers. Compared to the prior

designs (e.g., LeNet), AlexNet is very deep and complicated, and it achieves

57.2% top-1 accuracy on the ImageNet dataset. Another example, VGG-16,

is shown in Figure 2.2, which is deeper with 13 Conv layers and three FC

layers. It makes the improvement over AlexNet by replacing large kernels

with the 3×3 kernels. It demonstrates that multiple stacked smaller size

kernel with a deeper network structure is better than the one with a larger

size kernel but shallow network. Its ImageNet top-1 accuracy is 68.5%. We

9



will present the customized hardware accelerator designs for handling these

CNNs in Chapter 4.

2.1.2 LRCN for video content analysis

When dealing with complex AI applications, different types of DNNs can

be combined together to maximize their different strengths. For example, a

DNN called LRCN adopts both CNNs and RNNs to perform activity recog-

nition and content captioning based on the input videos [23]. A typical

implementation of the LRCN includes an AlexNet [1] for the CNN and mul-

tiple LSTM layers [34] for the RNN. Its workflow is shown in Figure 2.3,

where input video frames are first passed to a CNN to extract its spatial

features and these features are then fed into an RNN composed of multiple

long short-term memory (LSTM) layers to finally produce a video content

description. The advantages of LRCN come from its hybrid neural network

structure combining both CNN and RNN layers: the CNN is first used to

capture the input’s spatial information, while the following RNN takes these

spatial features sequentially and generates text descriptions.

Although LRCN is a powerful tool for video analysis, it involves more com-

plex network structures and requires more intensive compute and memory

capacity during inference compared to a single CNN or RNN. There is no

doubt that we need to use hardware acceleration to meet various performance

requirements. In Chapter 3, we will introduce HLS-based design and opti-

mization strategies for building a hardware accelerator for efficiently running

LRCN.

2.1.3 Multi-branch DNN for VR codec avatar

Another DNN example comes from an emerging AI application called VR

codec avatar [29]. It performs as a decoder to render and display the codec

avatar in the receiver’s VR headset with the overall workflow shown in Figure

2.4. The goal of this DNN is to generate photo-realistic and three-dimensional

reproductions of human appearances and real-time expressions, so that we

can achieve VR telepresence with more effective communications. The state-

of-the-art codec avatar decoder contains at least three branches for generating

10



Figure 2.3: LRCN adopts both CNN and RNN for video content analysis.
Input video frames are first processed by the CNN to extract the spatial
features, and these features are then passed to the RNN for generating
descriptions. The CNN generates spatial features of the inputs while the
RNN outputs a sentence as the video content description in a recurrent
manner, which starts with the entry <BOS> (beginning of sequence) and
ends up with <EOS> (end of sequence) [35].

facial geometry (3D vertices), UV texture (a 2D surface of a 3D model follow-

ing U- and V-axis), and warp field (specular effects), of which the second and

third branches have a common front part. The decoder can contain more than

13.6 GFLOP and 7.2 million parameters. Unlike general DNNs, the decoder

introduces complex data dependencies by adopting multi-branch structures

and high-definition intermediate results for high-quality VR avatar textures.

Other features come from the customized convolutional (Conv) layer, where

each output pixel has its dedicated bias (also named untied bias for im-

proved image output quality) instead of sharing one bias across pixels within

the same output channel.

The unique multi-branch feature and customized layers from codec avatar

decoders cause complicated dataflows and high compute and memory de-

mands during inference, which make existing DNN accelerators ineffective.

Challenges include the enormous and unevenly distributed computations and

the substantial memory footprints. It becomes even more challenging for

hardware accelerators with limited resources aiming at real-time response

with high throughput performance. Chapter 6 will introduce F-CAD to ad-

11



Figure 2.4: The workflow of VR codec avatar: from images captured by the
transmitter (TX) to VR avatar displayed by the receiver’s (RX) head
mounted display (HMD). The decoder is the most complicated part with a
multi-branch DNN to generate different components of the avatar (e.g.,
mesh vertices in Branch 1, the view-specific texture in Branch 2, etc.) [20].

dress these challenges and deliver hardware acceleration for codec avatar

decoders.

2.2 Hardware-efficient DNN designs

In general, a DNN contains millions of parameters and requires billions of op-

erations during inference. To successfully deploy DNNs onto hardware with

desired performance, researchers and developers start focusing on network

compression to reduce the network complexities and lower the compute and

memory demands. Recent research has demonstrated the possibility of using

lower bit-width data to represent original floating-point parameters, such as

using 16/8-bit quantization or even binary and ternary data representation

for network parameters or intermediate results [13, 36, 37, 38, 39, 40]. These

solutions are intended to replace the hardware-intensive floating-point multi-

plications by fixed-point operations or logical operations, so that DNNs can

be more efficient when deploying on hardware platforms.

12



Another method to compress DNN is known as network pruning, which

aims to reduce the redundancy of DNN structures [41, 42, 43]. According to

the published pruning strategies, the relatively less important connections be-

tween DNN layers are discarded, and network retraining is then performed

to regain accuracy. Significant reductions can be achieved on the classic

DNNs, such as AlexNet [1] and VGG-16 [33]. Since the major benefit of

network compression comes from the fully-connected (FC) layers, to contin-

uously have effective pruning results for latter DNNs (e.g., GoogleNet [44]

and ResNet [4]) with reduced FC layers, more sophisticated algorithms are

required to be integrated in network pruning, such as using evolutionary al-

gorithms [45], alternating direction method of multipliers [46], and iterative

pruning [47].

As most of the computations happen inside the Conv layers, previous works

also attempt to reduce the computation complexity by using depth-wise sep-

arable Conv layers for image classification and ubiquitous keyword-spotting

applications [48, 49]. The depth-wise separable structure can effectively re-

duce the number of operations and provide more compact DNN designs for

resource-constrained hardware. To further improve the DNN deployment

on hardware, layer fusion is proposed in [50] to minimize data movements

between on-chip and off-chip memory.

More recently, large-scale pre-trained language models, such as GPT-3 [51]

and BERT [52], have achieved state-of-the-art results on many NLP tasks.

So, serving these models has become essential in cloud servers. With the

advent of such large-scale language models, minimizing the serving cost is

becoming increasingly important as the cost of serving adds up from ev-

ery request. To reduce the model size, knowledge distillation is adopted to

compress large models by generating a compact model (the student model)

and training it based on the trained pattern of a larger model (the teacher

model) [53]. Earlier work has focused on distilling large models, like BERT,

to task-specific compact designs with less redundancy in model architec-

ture [54, 55, 56], or task-agnostic pre-trained models, which can then be

fine-tuned to different downstream tasks [57, 58].

13



2.3 Efficient DNN accelerators

To support the complicated DNN workloads, we have seen extensive studies

of building domain-specific hardware accelerators. These accelerators at-

tempt to take advantage of customized or specialized hardware and software

designs, such as adopting acceleration libraries on CPUs [5], exploring kernel

optimization on GPUs [7], and building customized accelerators on FPGAs

[8, 9, 10] and ASICs [11, 12, 13] to improve the speed and efficiency of DNN

inference and training processes.

Among these designs, FPGA-based solutions have been rapidly developed

and become one of the most promising solutions to provide improved per-

formance and efficiency [59, 10, 60, 61]. Designs presented in [8] explore the

design space of loop optimizations in a CNN implementation to locate the

best implementation point. To improve the hardware efficiency, the authors

in [9] investigate dynamic quantization schemes for quantizing both DNN

parameters and intermediate feature maps. The designs in [62, 37] support

binary and ternary quantization, which further relax the intensive computa-

tional pressure using logical operations. Researchers also focus on building

accelerators for sparse matrix-vector/matrix multiplication and attempt to

address the irregular computation and memory accesses [63, 64]. These accel-

erators can be applied to DNN workloads for more efficient executions with

a high sparsity level where zero elements are frequently involved [65]. In this

dissertation, we adopt network pruning to eliminate network redundancy

and treat them as dense DNN workloads. We will continue investigating the

sparse matrix optimization for DNNs in our future work. Other optimizations

include implementing fast Conv algorithms, such as using Winograd-based

solutions and Fast Fourier transform (FFT) to replace the original spatial

Conv operations [66, 67]. In [68], the targeted DNN is first compressed and

then deployed onto FPGA to achieve higher efficiency.

Still, developing customized accelerators presents significant challenges,

such as the tedious hardware design process, the intricate hardware verifica-

tion problems, and the time-consuming design space exploration during DNN

deployment. To alleviate these challenges, recent investigations have started

focusing on techniques including high-level synthesis [18, 69, 70] and end-to-

end design frameworks for fast DNN accelerator design and efficient work-

load deployment [71, 10, 72, 73, 35]. They support high abstraction inputs,

14



such as Python-based DNN descriptions used by popular machine learning

frameworks (e.g., Caffe [15], TensorFlow [16], PyTorch [17]), so DNNs can be

directly imported without manual code conversions and be parsed and then

mapped onto hardware. In Chapter 4, we will introduce DNNBuilder [10] to

provide an end-to-end design flow for building high-performance and efficient

DNN accelerators. DNNBuilder introduces a fine-grained pipeline structure,

a novel caching scheme between pipeline stages, and highly optimized RTL

network layers with arbitrary quantizations to deliver high throughput, low

latency, and desired network accuracy.

2.4 Efficient Co-design Strategies

Recent research also focuses on co-design and co-optimization opportunities

for both DNNs and hardware accelerators in order to achieve more efficient

DNN hardware deployment [61, 74, 75, 76, 77, 35, 78]. These co-design ap-

proaches have been studied with remarkable achievements by combining mul-

tiple optimization techniques across DNN and accelerator designs. For ex-

ample, while NAS has been largely successful in designing high-quality DNN

models [79, 80], it is extended to consider hardware metrics to deliver DNNs

with high inference accuracy and hardware efficiency when deploying onto

targeted devices [81, 82, 83]. Recent work also shows increasing interest to

incorporate hardware performance feedback with network compression tech-

nologies, such as knowledge distillation, to better serve the large-scale NLP

models in the cloud [57, 21]. Driven by the success of such a co-design strat-

egy, other types of co-design methods are also proposed recently. They in-

clude software/compiler co-design [84, 85], compiler/hardware co-design [86],

software/system co-design [77], etc.

In Chapter 5, we will introduce one of the pioneer co-design solutions called

SkyNet to deliver hardware-efficient AI solutions. SkyNet is demonstrated

by winning the competitive DAC-SDC for providing the best solution in low

power object detection [19]. In Chapter 6 and 7, we will present co-design

strategies called F-CAD [20] and AutoDistill [21] to handle emerging edge

VR and cloud NLP applications.

15



CHAPTER 3

HLS-BASED DESIGN AND
OPTIMIZATION STRATEGIES FOR

ACCELERATING LRCN

3.1 Introduction

DNN-based video analysis has become one of the most essential and chal-

lenging tasks to capture implicit information from video streams. It allows

machines to handle more real-life applications that originally require human

efforts. For example, videos captured by surveillance systems can be fast

exterminated by machines to identify particular dangerous scenes without

manual interventions. Some emerging applications, such as video and im-

age annotations, can also benefit from the development of DNN-based video

analysis in order to generate the desired output descriptions automatically.

Among various DNN designs, LRCN presents the most promising capa-

bility for video analysis, such as performing activity recognition and content

captioning for the input videos [23]. As introduced in Section 2.1, LRCN con-

tains two types of DNNs: an AlexNet [1] for the CNN and multiple LSTM

layers [34] for the RNN. In this case, LRCN contains 2.22 GFLOP and 86.56

million parameters for processing one input video frame. Such a unique DNN

combination exhibits significantly different layer characteristics with respect

to the computational complexity (the number of operations required in one

layer) and memory demands (the amount of data fetched and stored in a

certain period). For example, the Conv layers in CNN are computationally

intensive, so accelerating these layers is often limited by the available com-

pute units. In contrast, the FC layers are highly memory-intensive, where

on-chip memory size and the external memory access bandwidth dominate

their achievable performance.

With such characteristics, using general-purpose processors may fail to

deliver satisfactory performance and efficiency for video analysis using LRCN.

In this chapter, we will adopt the HLS design flow and build a customized

16



hardware accelerator for running LRCN inference. The key contributions are

summarized as follows:

• We present a complete HLS design flow from C-level descriptions to

FPGA board-level implementations for developing a video analysis sys-

tem. We propose highly optimized HLS IPs (e.g., Conv, Pooling, and

LSTM IPs) to leverage DNN implementations and essential support-

ing modules, such as the memory hierarchy and the data streaming

module, to ensure the efficient operation of the proposed accelerator.

• We introduce a resource partitioning solution called REALM to provide

layer-wise resource allocation guidelines to configure the proposed HLS

IPs for minimum overall latency.

• We demonstrate the feasibility of using the proposed HLS design and

optimization strategies to deliver a higher-performance LRCN acceler-

ator. By implementing our proposed accelerator on the Xilinx VC709

FPGA board, we achieve 3.1× higher speedup and 17.5× higher effi-

ciency than an optimized GPU-based design.

3.2 Design Challenges of Accelerating Video Analysis

Before introducing the detailed approaches for building the accelerators, in

this section, we summarize three design challenges from DNN structure, real-

life requirements, and hardware implementation.

3.2.1 Diverse DNN layers

The unique combination of CNN and RNN creates unbalanced demands for

different types of layers in LRCN. These layers exhibit different characteris-

tics in consuming computation and memory resources. Regarding an LRCN

design that contains an Alexnet as the front-end CNN and 15 iterations of

LSTM layers as the back-end RNN, processing one video frame costs 2.22

GFLOP and consumes 86 million DNN parameters occupying 346 MB of

memory.

17



Table 3.1: Percentage of computation and memory consumption in LRCN

Layer Compute resource Memory resource CTC ratio

Conv 60.06% 2.69% 1700.9

FC 5.29% 67.73% 2.0

LSTM 34.65% 29.58% 30.1

As shown in Table 3.1, we break down the resource demands for three

major types of layers as Conv and FC layers in the CNN and LSTM lay-

ers in the RNN. The computation demand is dominated by the Conv lay-

ers with 60.06% of the total computation, while the memory consumption

mostly comes from the FC layers, peaking at 67.73% over all required pa-

rameters. Since DNN parameters can not be fully accommodated on chip,

most of them are stored in the external memory and are only fetched if neces-

sary by consuming external memory access bandwidth. Therefore, we adopt

computation-to-communication (CTC) ratio to indicate the layer-wise data

reuse behaviors. Layers with higher CTC ratios mean that they are expected

to be compute-bounded, while layers with lower ratios indicate that they are

memory-bounded. Such diverse layer characteristics pose tough challenges

for efficient hardware accelerator design and require the proposed design to

have great adaptability for different layers with expected performance.

3.2.2 Real-life application requirements

By targeting video analysis applications, accelerators are required to handle

streaming inputs and deliver satisfactory throughput performance to match

the video frame rate. Techniques, such as using a large batch size to increase

the degree of computing parallelism and data reuse, are thus often carried

out. However, this type of application also needs to support frequent user

interactions, making real-time response indispensable. The design difficulty

then lies in the place where the proposed hardware accelerator needs to de-

liver high throughput without using large batch sizes since the extra delay

in collecting batch inputs may fail to meet the real-time requirement.

18



3.2.3 Hardware implementation difficulties

Major layers, which dominate the compute and memory resources – such as

Conv, FC, and LSTM layers, are constructed by multiple nested loops from

the algorithmic perspective. By following the HLS design flow, developers

can adopt the loop optimization strategies (e.g., loop unrolling and pipelin-

ing) provided by HLS directives to create hardware instances with improved

performance. However, inserting directives may not guarantee better perfor-

mance since some specific loop structures can invalidate certain directives and

thus result in undesired designs. For instance, the loop unrolling directive

should not be applied to the loops with complex data dependency. In addi-

tion, an optimal hardware implementation always requires careful resource

allocation since the DNN layers vary significantly in compute and memory

demands. If a DNN layer is memory-bounded, its achievable performance is

less affected by the allocated computation resources but by how frequently

it accesses the memory and whether enough memory access bandwidth can

be provided.

3.3 Design Methodologies for Building LRCN

Accelerator

To overcome the challenges mentioned in Section 3.2, we introduce the de-

sign methodologies that we used for developing the LRCN accelerator with

an HLS design flow. The key techniques include 1) highly configurable HLS

IPs for designing Conv, FC, and RNN layers for building all network layers

of the LRCN; 2) a resource partitioning solution that provides guidelines for

resource allocation per layer for minimum overall latency; 3) network com-

pression technologies, including network pruning and dynamic quantization,

to ensure our LRCN design can exploit the strength of FPGA platforms, and

4) a hierarchical memory subsystem design for hiding data fetch latency.

3.3.1 HLS IP for LRCN

Our IP-based design methodology provides opportunities to quickly imple-

ment a high-quality FPGA design and gives an efficient approach for design

19



Figure 3.1: (a) The proposed compute engine (CE) design and (b) an
example of how the proposed CE leverage a Conv layer in LRCN.

space exploration by adjusting different IP configurations. To leverage its

benefits, the proposed HLS IP covers the most critical and universal opera-

tions in DNNs, the multiply-accumulation, and its parametric feature makes

sure it can adapt to implement different layers of LRCN.

We propose a compute engine (CE) for handling computations in every

DNN layer. As shown in Figure 3.1 (a), CE is represented as a yellow rect-

angle, which provides two-dimension parallel processing along with input and

output channels of the targeted DNN layer. Assuming a CE with parallelism

configured as cpf and kpf, cpf pairs of inputs and DNN parameters are passed

from the on-chip buffers and handled by the process element (assuming in

PE1, which is a sub-module in CE) for multiply-accumulate (MAC) opera-

tions, and the generated results are produced along the first output channel

dimension. Meanwhile, PE2 ∼ PEkpf are working on the same inputs but

different DNN parameters to generate results for the next kpf−1 output

channels. In this case, kpf PEs are instantiated providing a total parallelism

factor as cpf × kpf.

Figure 3.1 (b) illustrates how a complete Conv layer is processed by the

proposed CE. In this example, the Conv layer has 48 input channels (along

the Z-axis of the green cube) and 128 output channels (along the Z-axis of

the orange cube). The input and output feature map sizes are both 27×27

(corresponding to the X- and Y-axis), and each convolutional kernel is 5×5

(X-, Y-axis of the blue cube). Assume the CE’s parallelism configuration is

cpf = 24 and kpf = 16. In each iteration, there are 24 input channels (the

part filled with green color) that are passed to the CE and distributed to 16

PEs for parallel computing. Eventually, the CE generates 16 outputs (the

20



Algorithm 1: Configurable HLS IP for DNN layer

1 for Ci → InCh, Ci+ = Cii (InCh partitioning) do
2 for Co → OutCh, Co+ = Coo (OutCh partitioning) do
3 for i→ KernelHeight , i ++ do
4 for j → KernelWidth , j ++ do
5 for i→ KernelHeight , i ++ do
6 #pragma HLS dataflow ▷ Create ping-pong buffer
7 InFM , weight← Load Data( )
8 for h→ OutHeight , h ++ do
9 for w → OutWidth , w ++ do

10 #pragma HLS pipeline ▷ The following loops are unrolled
11 for coo→ Coo , coo ++ do
12 for SelBuf → 1, 2 do
13 for cii→ Cii , cii ++ do
14 Out[SelBuf ][Co + coo][h][w]
15 += weight[SelBuf ][coo][cii] ×

InFM [SelBuf ][Ci + cii][h+ i][w + j]
16 end

17 end

18 end

19 end

20 end

21 end

22 end

23 end

24 end

25 end

part filled with orange color) as the partial results corresponding to 16 output

channels. In this case, we have a total parallelism factor of 24 × 16 = 384.

By swapping another pair of input feature map and kernel, CE generates the

output results corresponding to the next 16 output channels.

Algorithm 1 shows the HLS descriptions of a CE implementation targeting

Conv layers. In this design, parallel factors cpf and kpf are represented by

variables Cii and Coo, respectively. In this example, line 11 ∼ 18 describe the

key function of the proposed CE as it performs Cii×Coo multiply-accumulate

operations in parallel. When resources allow, we can increase the number of

PE instances in each CE IP by increasing Coo to achieve a higher level of

parallelism. The achievable performance is proportional to the degree of par-

allelism because there are no data dependencies following the Coo dimension.

Similarly, by increasing Cii, we can also increase the number of input handled

by each PE for improved performance. With the configurable HLS IP de-

sign, we can instantiate dedicated CEs to handle various layers operations in

21



Algorithm 2: The REALM algorithm

1 latency = α
∑n

i=1
ci
ri

2 RAcc =
∑n

i=1 ri

3

[∑n
i=1

(√
ci
ri

)2
]

[
∑n

i=1(ri)
2] ≥

[∑n
i=1

√
ci
]2

4
∑n

i=1
ci
ri
≥ [

∑n
i=1

√
ci]

2∑n
i=1 ri

5 latencymin = α
[
∑n

i=1

√
ci]

2∑n
i=1 ri

6 REALM: ri
rj

=
√
ci√
cj

7 Notice: (a21 + a22 + · · ·+ a2n) (b21 + b22 + · · ·+ b2n)

≥ (a1b1 + a2b2 + · · ·+ anbn)2 when:

a1
b1

= a2
b2

= · · · = an
bn

satisfies with equality

fulfilling the desired performance within the hardware resource constraints.

3.3.2 Resource allocation

One of the most critical problems in FPGA-based DNN implementation is the

unclear resource allocation. Therefore, we propose an algorithm for resource

allocation management called REALM to provide allocation guidelines by

considering the predefined hardware resource constraints. The main idea of

the REALM is shown in Algorithm 2, where we assume the computational

demand of the layer i to be ci and the resource consumed by that layer to be

ri. An increase in ri results in a proportional increase of the parallel factor

that configures the proposed HLS IP (e.g., the CE IP) used in building the

layer. With the same logic, we can expect a proportional decrease in the

latency of that layer, which can be illustrated in line 1 in Algorithm 2. By

considering the resource budget RAcc, formulas shown in line 3 ∼ 6 hold,

with α indicating a constant of proportionality.

By taking a close look at these formulas, we have lines 1 and 2 listing the

assumptions discussed above. Lines 3 ∼ 5 find a lower bound for the latency

22



of the overall accelerator under these assumptions. Among them, line 3 is

a Cauchy inequality, while line 4 can be generated after simplifying line 3.

Line 5 holds when using line 1 and 4. At last, line 6 lists the condition under

which minimum latency is obtained, which is hence the resource allocation

guideline that we call REALM.

3.3.3 Network compression

Additional optimizations are needed to ensure that our design assumptions

are valid and that the LRCN network aligns well with the strengths of the

FPGA platform. First, REALM does not consider communication overheads.

One of the conditions that can invalidate the assumptions behind REALM is

when the computation within the HLS IP itself is not the bottleneck to the

latency of a layer, but an external factor like memory is. This can happen

in the case of FC layers which have very low CTC ratio (as indicated in

Table 3.1). The LSTM layers may also be affected by a similar issue. Also,

FPGAs perform favorably with fixed-point operations but not as well as the

floating-point operations.

To address these concerns, we adopt network compression technologies to

reduce the memory demands of the FC and LSTM layers. We first prune

the original LRCN network and reduce the number of output channels in the

last two FC layers from 4096 to 256. Also, the two LSTM layers with 1000

hidden units are converted to one LSTM layer with 256 hidden units. We

then quantize the weights, biases, and intermediate results into fixed point

presentations. These technologies can provide improved DSP utilization and

reduce the memory pressure due to smaller memory footprints.

To maintain the inference accuracy, we re-train the compressed LRCN net-

work using Caffe [15] following two steps. First, we train the pruned LRCN

network with a floating-point data type. We get a pruned model with compa-

rable accuracy compared to the original LRCN network. We then fine-tune

this model and adopt a dynamic quantization scheme as shown in Table 3.2.

This quantization scheme allows variable bit-width allocated for the frac-

tional part so that our design can be built to reduce the quantization error.

In summary, we use 12-bit quantization for weights and 16-bit quantization

for intermediate results. The accuracy results of the resultant networks are

23



Table 3.2: Dynamic quantization scheme for LRCN

Layers
Output data

(total bits, fractional bits)
Weight and Bias data

(total bits, fractional bits)

Conv1 16, 4 12, 11
Conv2 16, 7 12, 11
Conv3 16, 8 12, 11
Conv4 16, 9 12, 11
Conv5 16, 10 12, 11

FC1∼FC3 16, 11 12, 11
LSTM 16, 11 12, 11

Table 3.3: Accuracy of the LRCN model after Re-training

Network Accuracy

LRCN - original (AlexNet + 2 LSTM layers) 43.0%
LRCN - pruned (AlexNet + 1 LSTM layer) 41.8%

LRCN - pruned, quantized (AlexNet + 1 LSTM layer)
implemented on FPGA

42.0%

summarized in Table 3.3. After network compression, the number of required

weight has a 7.8× drop (from 86 Million to 11 Million), while the compu-

tation complexity of LRCN dropped around 1.5×, from 2.2 to 1.5 billion

operations.

3.3.4 Memory management

To improve the memory access efficiency, the data access patterns need to

be simple and straightforward, which means data can be fetched following

consecutive locations in memory. To ensure this, the multi-dimensional DNN

parameters are re-ordered into a linear sequence that follows the order of

computation. This process can guarantee that data locality is exploited

when the CE instance accesses weight data and thus improve the data access

throughput.

In our design, DNN parameters are quantized and represented by a 12-bit

24



Figure 3.2: Memory bus organization for minimizing bandwidth wastage

fixed-point format, but the memory bus-width is 512, which is not divisible

by 12. Using a 12-bit data format means that eight bits in each access need to

be discarded. To prevent this, we collect bits from three bus accesses because

the number of bits received during the three accesses can be evenly divided

into parameters of width 12. The scheme is shown in Figure 3.2. Instead

of viewing a single bus access as containing 12-bit parameters, we view it as

containing 4-bit fields. Over the course of three bus accesses, we can collect

all the required data to form 12-bit parameters without any wastage.

To further hide the effects of off-chip memory access latency, we overlap

the computation with communication. When a CE instance is consuming

parameters already fetched, fetch requests for the new parameters are sent

out concurrently. As shown in Figure 3.3, we design a hierarchical memory

system to meet this requirement by instantiating FIFO buffers in the path

connecting the on-chip buffers to external memory. The FIFO buffers pre-

fetch a few parameters first, and for every buffer row of parameters consumed

by CE, a new row is fetched at the back of the buffer. The depth of the FIFO

buffer can be adjusted to adapt to different memory access requirements.

Besides, the weight buffers are instantiated as ping-pong buffers to hide a

few cycles of access time between the proposed CE and the FIFO buffer.

3.4 Hardware Implementation and Comparison

To implement the LRCN accelerator, we need to first pre-process the LRCN

source code and set up REALM for resource allocation guidelines. Source

codes of LRCN are developed in Caffe, and we convert the Caffe code into a

regular C code, which can be executed independently without the Caffe en-

vironments. After that, we filter the code by removing all non-synthesizable

constructs to satisfy the needs of HLS. These non-synthesizable parts include

25



Figure 3.3: Memory hierarchy design for timely data delivery

Table 3.4: FPGA resource consumption

BRAM DSP FF LUT

1508 3130 321165 316250
51% 87% 37% 73%

dynamic memory allocation, recursive functions, and linked list data struc-

tures. By processing the source-code, LRCN is ready to go through HLS,

and eventually, it can be implemented on FPGA.

During experiments, a Xilinx VC709 board is used for our design following

the proposed strategies mentioned in Section 3.3, and Vivado HLS 2016.2 is

used for high-level synthesis. To demonstrate the performance of the pro-

posed accelerator, we build a real-time video analysis system that can directly

process frames from a commercial webcam and generate sentences for video

content descriptions. We use a Tegra TK1 embedded GPU and a Logitech

C920 full-HD webcam as the front-end to capture video. We down-sample

the captured frames to the size that fits the LRCN network and stream these

frames over the internet to the back-end. On the back-end side, the host

PC receives the frames and passes them to the proposed LRCN accelerator.

Results are sent back to the PC and presented on the monitor. The complete

system is shown in Figure 3.4.

After implementation, the resource consumption of the proposed acceler-

ator is shown in Table 3.4. We compare the performance of running the

pruned LRCN model on three different hardware platforms, which include

26



Figure 3.4: The proposed video analysis system includes a front-end (a
Tegra TK1 and a webcam) and a back-end (a host PC and a Xilinx VC709
board) for performing real-time video content descriptions.

Table 3.5: LRCN performance comparison

Frequency Latency Speedup Power Efficiency

This work 100 MHz 0.040s 4.75× 23.6W 0.94J/image
NVIDIA K80 562 MHz 0.124s 1.53× 133W 16.49J/image
Intel E5-2630 2.6 GHz 0.190s 1.00× 88W 16.72J/image

CPU, GPU, and FPGA. We prepare two versions of the model, the one using

floating-point data format for the GPU and CPU and the other using fixed-

point data format for the FPGA. In addition, two GPUs in the NVIDIA

K80 are used to map the LRCN network (using cuDNN) under the Caffe

framework. The CPU version is an optimized implementation (using BLAS)

from the Caffe framework.

The performance and power comparisons are provided in Table 3.5. For our

FPGA implementation, a power meter is used to measure the consumption

of the entire evaluation board during video analysis. For the GPU imple-

mentation, power is measured using the command “nvidia-smi”, and for the

CPU implementation, power is measured by a power meter.

3.5 Conclusion

In this chapter, we presented HLS-based design and optimization strategies

27



to accelerate LRCN, a DNN for video description and image captioning.

These proposed techniques successfully raised the hardware design abstrac-

tion level and made the hardware design and optimization process more

efficient. The main techniques introduced in this chapter included highly

configurable HLS IPs for building neural network layers and a resource al-

location strategy called REALM to help map complicated DNNs onto hard-

ware. REALM drives theoretical guidelines for resource allocation given the

computational demand of each DNN layer and the available computational

resources. We also presented an efficient hierarchical memory system to sup-

port data streaming between off-chip and on-chip memory with a flexible

memory bus organization design. Results showed that our proposed design

achieved 3.1× higher speedup and 17.5× higher efficiency compared to the

model implemented on an NVIDIA K80 GPU.

28



CHAPTER 4

DNNBUILDER: AN AUTOMATED TOOL
FOR BUILDING HIGH-PERFORMANCE
DNN HARDWARE ACCELERATORS FOR

FPGAS

4.1 Introduction

FPGAs have become promising candidates for DNN implementations, but

the development of DNN designs on FPGAs still presents significant chal-

lenges, such as the tedious RTL programming, the intricate verification prob-

lems, and the time-consuming design space exploration process, all of which

often hinder FPGAs’ adoption by application developers who may have fewer

experiences on hardware accelerator design.

The design difficulties also come from the diverse requirements of AI appli-

cations and various resource budgets of targeted FPGAs. For example, cloud

AI applications require sophisticated resource allocation strategies to accom-

modate flexible batch-processing and meet throughput requirements with

given FPGAs. Edge AI applications usually ask for real-time processing of

streaming inputs that limit the FPGAs’ ability to batch the data for increased

throughput, as the additional latency incurred by the batch process can ex-

ceed what is allowed by real-time performance requirements. Also, most edge

AI applications require processing high-definition (HD) images/videos, which

generates even higher requirements for feature map storage and computation

power.

In addition to the HLS-based design and optimization strategies proposed

in Chapter 3, we need end-to-end automation tools to keep improving the

hardware design efficiency and make hardware accelerators easier to access.

In this chapter, we propose DNNBuilder for building DNN designs on FP-

GAs. It is an automated tool flow that can transform DNN designs from

popular deep learning frameworks (such as Caffe [15] and TensorFlow [16]) to

highly optimized board-level FPGA implementations with considerations of

available computation units, on-chip/off-chip memory, and external memory

29



access bandwidth in targeted FPGAs. To summarize, the main contributions

of DNNBuilder are as follows.

• An end-to-end automation tool called DNNBuilder, which provides

an integrated design flow from deep learning frameworks to board-

level FPGA implementations. With DNNBuilder, users are no longer

required to program in RTL or to perform manual resource allocation

and optimization for deploying DNNs on FPGAs.

• A flexible quantization scheme for smooth tradeoffs between lim-

ited resources on FPGAs and desired output accuracy. Our design

supports arbitrary quantization for DNN parameters (weights and bi-

ases) and activations either within a layer or across layers in DNNs. It

also supports binary and ternary networks.

• A fine-grained layer-based pipeline architecture and a column-

based cache scheme can deliver high throughput (even without batch

processing), low startup latency, and low on-chip memory consump-

tion. With the proposed designs, we reduce 7.7× latency and 43×
BRAM usage than the conventional structure. These features ensure

the millisecond-scale response and HD input support of our design.

• Highly optimized RTL network components that can be auto-

matically generated for building DNN layers with high quality. Com-

monly used loop structures in DNNs are captured by a parameterized

PE, which can be configured to deliver the best performance under

constraints of given FPGAs.

• An automatic resource allocation management that provides

computation and memory resource allocation guidelines across network

layers. It considers the external memory access bandwidth, data reuse

behaviors, computation resource availability, and network complexity.

4.2 The Proposed Automation Flow

DNNBuilder produces board-level FPGA implementations in three steps:

Design, Generation, and Execution (Figure 4.1). After networks are de-

termined, RTL codes and corresponding files for running DNN accelerators

30



on FPGAs can be generated in seconds. In this design, we assume that

the targeted network can fit into the targeted hardware device specified by

DNNBuilder users.

During the Design step, a targeted network is designed and trained using

deep learning frameworks, which generally employ CPUs and GPUs. After

training, network definition files (“DNN def.” in Figure 4.1) and trained pa-

rameters are passed to the next step. To ensure design freedom specified by

users, the proposed flow supports arbitrary quantization schemes not only

for functions within a layer (e.g., Conv, Relu), but also for inputs across

layers (e.g., different weight/bias quantizations for layer i and i + 1) to ex-

plore tradeoffs among inference accuracy, resource utilization, performance,

etc. One important feature of the Design step is that it receives feedbacks

from performance estimation (“P. estim.”) in Generation. If the current

DNN design runs slower or consumes more resources than expected, users

could update their network designs, such as adjusting quantization schemes

or modifying network layers to meet performance requirements. With several

iterations between Design and Generation, the best network configuration

can be developed for the targeted FPGA. This feature makes the hardware-

software co-design possible.

In the Generation step, network parsing is the first process for decom-

posing targeted DNNs from input network models (which include network

definitions in .prototxt and weight information in .caffemodel when using

Caffe). Different network layers, e.g., Conv, Pooling, and FC layers, are

decomposed and then mapped to our pre-built RTL components. The com-

putational intensive nested loops are captured by parameterized PEs which

are introduced in Section 4.3.1. Automated optimization works for ex-

ploring design space and balancing pipeline stages in DNNBuilder so that

our design can achieve maximum throughput performance. We propose an

automatic resource allocation scheme (details in Section 4.4) which generates

optimization guidelines for parameter adjustment of the pre-built RTL com-

ponents. Major elements in these guidelines include kernel/channel parallel

factors and buffer sizes, and they can be manually modified for expert users.

Following the guidelines, network construction is responsible for building

DNN implementations with the pre-built RTL network components, dataflow

controller, and memory instances, which are highly configurable to ensure the

adaptability and scalability for various DNNs. Code generation generates

31



Figure 4.1: Design flow of using DNNBuilder containing DNN design &
training (Design), network optimization & automated RTL code generation
(Generation), and FPGA board-level implementation (Execution)

accelerator related files for FPGA-based instances.

In the Execution step, the DNN accelerator is instantiated in FPGA hard-

ware platforms with unified interfaces, including a FIFO-like data input/output

interface and a weight access interface connecting the off-chip memory con-

troller. In this final step, the DNN accelerator is ready for eventual deploy-

ment.

4.3 Accelerator Architecture

DNNBuilder generates a pipeline structure where each pipeline stage corre-

sponds to each major neural network layer, like Conv or FC layer, which

dominates computation and memory consumption. The rest of the layers,

such as batch normalization (BN), scale, and activation layers, are aggre-

gated to the major layers so that we reduce the number of pipeline stages for

lower latency.

In Figure 4.2, we present two pipeline stages instantiated on FPGA for

computing two Conv layers (i and i + 1). This design consumes three types

of FPGA resources as computation resources (blue area), on-chip memory

(green area), and external memory (orange area). Two datapaths are gener-

ated for passing input feature maps horizontally and trained DNN parameters

vertically to the computation units. To maintain sufficient data supply, we

set up two buffers for each pipeline stage as the reshape buffer for keeping

slices of the input feature map and the weight buffer for pumping in the

32



Figure 4.2: Accelerator architecture generated by DNNBuilder

trained parameters from external memory.

We define two parameters, the Channel Parallelism Factor (CPF) and the

Kernel Parallelism Factor (KPF). CPF and KPF represent the number of in-

put channels and the number of kernels, respectively, which can be processed

in one IP array (a group of RTL network components) inside a pipeline stage.

These two factors allow DNNBuilder to implement a two-dimensional par-

allelism scheme and adjust the resource utilization for each pipeline stage.

CPF and KPF are calculated by our resource allocation algorithm, which

is discussed in Section 4.4. DNNBuilder also supports flexible quantization

schemes. As shown in Figure 4.2, DWi is the input data bit-width of the i-th

layer while WWi represents the bit-width of weights.

4.3.1 Computation engine design

The core functions in DNNs are carried out by the auto-generated RTL

network components (e.g., Conv, FC, Pooling, BN, Relu, etc.), which are the

RTL IPs for building the whole network. Since the same for-loop structure

is frequently used in Conv and FC, we abstract it as a PE, which can be

unfolded in two dimensions corresponding to CPF and KPF. In our design,

the CPF and KPF work for unrolling input and output channels, respectively.

Figure 4.3 presents a detailed structure of the PE which is designed for

processing CPF number of input feature maps while the number of PEs is

decided by KPF. To better explain how the PE works, we take a small-

size Conv layer as a case study (notice that CPF and KPF are power of

33



2 in real case for efficient hardware design). Assuming there is a 4×3×3

input feature map in blue (the left side of Figure 4.3 (a)), it is processed

by six 4×2×2 kernels with green color (the middle of Figure 4.3 (a)) with

the channel/kernel parallel factors as CPF=2 and KPF=3 (total parallel:

2×3=6). Since CPF=2 and the kernel size is 2, a cube with 2 elements along

X-, Y-, and Z-dimension is considered as one tile. Each tile requires four steps

of processing following number 1○ to 4○ because only one pixel in the X-Y

plane is processed every step. In each step, two pieces of data (along Z-axis)

from input feature maps (InFM) are collected (corresponding to the CPF)

and they are simultaneously processed by the first three of the six kernels

(corresponding to the KPF). In total, six multiply-accumulates are executed

in parallel (which equals to CPF×KPF), and the first 3 partial sums (in

orange) are generated. These partial sums still need 4 more steps to complete

calculation with the next cube in input feature maps along the Z-axis (the

second half along the Z-axis surrounded by the dashed line). Figure 4.3 (b)

shows the required input data of the PE in one step. Two elements (blue) are

fetched from input feature map while six elements (green) are fetched from

weights. The reshape buffer and weight buffer provide these data respectively

by one memory access. In this example, the order of outputs is illustrated

in Figure 4.3 (c), following indexes from 1 to 8. The first three kernels

contribute output 1, 2, 5, and 6 while the remainder three kernels generate

the output 3, 4, 7, and 8. Figure 4.3 (d) presents the multiply-accumulate

operation in the PE with CPF=2 and KPF=3.

Following the idea above, we can design RTL IPs with high-performance

and controllable resource overhead. As basic building blocks, these high-

quality RTL IPs fundamentally ensure the high-performance design gener-

ated by DNNBuilder.

4.3.2 ON-chip/off-chip memory management

In this subsection, we present two techniques to efficiently use the scarce on-

chip memory in FPGAs for keeping input feature maps and buffering weight

data.

34



Figure 4.3: The proposed PE in DNNBuilder (aggregated functions are not
shown, e.g. BN and ReLU)

1. Column-based cache scheme:

For buffering input feature maps, previous designs (e.g., [87] and [88]) have

stored input feature maps on chip to achieve higher throughput and avoid

complicated data movements. The size of their input images is relatively

small such as 256×256, 32×32, and 28×28 in ImageNet, Cifar100, and

MNIST, respectively. But images captured in real-life can easily reach HD,

like 1280×720. Although down-sampling may mitigate the issue somewhat,

it is not always acceptable, especially for the small object detection. With

the HD input, feature maps are enormous and impossible to be stored on

chip entirely.

To address this problem, we propose a novel column-based cache scheme

for only keeping a subset of the input feature map on chip. Figure 4.4 shows

a convolution with kernel size=3 and stride=1. Since slices 1∼3 contribute

to the first sliding window operation (from top to bottom), we name the first

three slices as column 1. Similarly, column 2 represents the amount of data for

the second sliding window operation, so that slices 2∼4 constitute the column

2. DNNBuilder caches at least two columns before starting computing, which

allows the kernel to perform the second vertical sliding window operation

immediately after finishing the first one. Delay caused by data shortage

will not happen by caching one more column. Meanwhile, slice 5 will start

35



Figure 4.4: The proposed column-based cache scheme

buffering to form the next column (with slices 3∼5) after releasing the room

taken by slice 1. In this example, the required size of the reshape buffer

(shown in Figure 4.2) equals to the size of two columns (four slices). Since

most of the input images have fewer pixels in height than width, we buffer

slices in a column way to save on-chip memory. This scheme can be easily

extended to row-based processing if needed.

2. Adaptive hierarchical memory system:

To tolerate the delay of off-chip data access, we design an adaptive hierarchi-

cal memory system that can insert buffers between the computation-intensive

IP array and the external memory (shown in Figure 4.2). The weight buffers

are implemented by dual-port RAMs in FPGA for continuously buffering the

weights from DRAM. Also, DNNBuilder provides optional ping-pong buffers

at the input of each layer. Once the required amount of weights exceeds a

certain threshold, these data need to be stored off-chip so that ping-pong

buffers are automatically generated to overcome the data shortage problem

when fetching data from external memory. Conversely, when users develop

a low bit-width quantized DNN, the ping-pong will not be generated, as the

required data size is below the threshold.

36



4.4 Automatic Resource Allocation

One of the most critical problems in FPGA-based DNN implementation is

the resource allocation under constraints while seeking optimal performance.

To address this problem, we propose an automatic resource allocator for

DNNBuilder, which can generate parallel schemes (e.g., CPF and KFP for

each layer) and data buffering guidelines (e.g., size of the reshape buffer) with

considerations of network complexity, external memory access bandwidth,

and data reuse behaviors.

4.4.1 Theoretical guideline

Li = α
Ci

Ri

,
n∑

i=1

Ri = Rtotal (4.1)

TP =
1

max{Li}
(4.2)

C1

R1

=
C2

R2

= ... =
Ci

Ri

(4.3)

The theory for maximum throughput performance of the pipeline archi-

tecture can be found in Equation 4.1 to 4.3. Li represents the latency of

layer i, while the computation demand (computation complexity) of layer

i is Ci and the computation resource consumed by that layer is Ri. As-

suming the available resource is Rtotal, the increase of allocated resource for

each layer Ri results in a proportional increase in parallelism and eventually

lowers the latency for that layer (α is a constant of proportionality related

to the hardware working frequency). Since the generated accelerator uses a

pipeline architecture, the overall throughput depends on the layer with the

maximum computation time (Equation 2). We derive the upper-bound of

the throughput from Equation 3, which lists the conditions for achieving the

maximum throughput when workloads for all pipeline stages are perfectly

balanced. It gives us a theoretical guideline to allocate computation resource

for each layer.

37



Figure 4.5: Basis of the roofline model

Figure 4.6: Memory bandwidth adjustment

4.4.2 Memory bandwidth adjustment

We use the roofline model adopted by [8] to illustrate the limitation of mem-

ory bandwidth. In Figure 4.5, memory access bandwidth is represented by

the slope. The area covered by blue is memory-bounded where performance

is determined by the memory access latency under given CTC ratio. With

a lower CTC ratio, there are fewer data reuse opportunities, meaning more

fresh data must be fetched through memory interfaces to maintain GOPS.

The right-side gray area is computation-bounded with a larger CTC ratio,

where performance is restricted by the available computation resource be-

cause memory access bandwidth is not the bottleneck. The optimal design

locates at the top-left corner of the roofline, which achieves the maximum

throughput (GOPS) with the least bandwidth resource and CTC ratio re-

38



quired.

Our design intends to adjust the data reuse behavior of each layer so

that we change its CTC ratio. For buffering more columns in the proposed

column-based cache scheme (Section 4.3.2), we exploit more data reuse op-

portunities, which means a higher CTC ratio is achieved and it equivalently

relaxes the dependency on memory access bandwidth (with a smaller required

slope). Eventually, we place each DNN layer close to its optimal design spot

and meet the constraints of available bandwidth and on-chip memory.

The procedure of this adjustment is shown in Figure 4.6. During the first

step, the layer’s computation demand is satisfied by a prorated allocation

of the computation resource according to Equation 4.3, and CTC ratio is

determined based on the data reuse behavior of each DNN layer. Here we

mark three layers in the roofline model in Figure 4.6 (a). Bandwidth resources

are first allocated to FC layers to reach their optimal design spots. We do

not shrink their required bandwidth, since these layers highly depend on

memory bandwidth, and no data reuse can be exploited. If the bandwidth

of the targeted FPGA is insufficient for FC layers, we need to use more

aggressive quantization (e.g., 8, 4 or even 2 bits) to represent the trained DNN

parameters. In this case, DNNBuilder provides feedbacks from Generation to

Design step and updates the network definition, which can be found in Figure

4.1 “updating” arrow. After going through the Design step for network

retraining, we can avoid a significant accuracy drop.

We then allocate the remainder memory bandwidth to Conv layers as

shown in Figure 4.6 (b) (where the FC layer is omitted for conciseness). If

Conv layers are memory-bounded as well (Figure 4.6 (c)), it is necessary to

cache more columns to get higher CTC ratios so that these layers can be

moved to the computation bounded area. In the other case (Figure 4.6 (d)),

if the Conv layers are not memory-bounded but the bandwidth is insufficient

for them to reach their optimal design spots, we adjust the layer with the

highest bandwidth demand (Conv i in our example) and shrink its bandwidth

usage by caching more columns of the corresponding feature map even though

it locates in the computation-bounded area already. As a result, the Conv i

(green marker) is moved to the right with a bandwidth drop (smaller slope).

In summary, both Figure 4.6 (c) and (d) introduce bandwidth drop but they

focus on two different scenarios.

39



Algorithm 3: Computation resource allocation

1: Set available computation resource: Rtotal ▷ total DSPs
2: Computation resource for layer i following Equations (4.1)-(4.3):

Ri = Ci

Ctotal
×Rtotal ▷ number of DSPs for layer i

3: Initialize allocated resource for i-th layer (parallelism factor):
4: Ri = 2⌊log2 Ri⌋

5: while
∑n

i=1Ri ≤ Rtotal

6: Select layer j with maximum
Cj

Rj

7: if
∑n

i=1Ri + 2×Rj ≤ Rtotal

8: Rj = 2×Rj ▷ double the resource for layer j
9: else break

10: endif
11: endwhile
12: Ri = CPFi ×KPFi

*CPF, and KPF are power of 2 for efficient hardware implementation

4.4.3 Allocation algorithm in DNNBuilder

To sum up the idea in Section 4.4.1 and 4.4.2, we present a resource allocation

algorithm running in DNNBuilder. First, it starts allocating the computa-

tion resource shown in Algorithm 3. Since the parallelism factors must be

the power of 2, DNNBuilder further fine-tunes the allocation scheme and fills

up the gap between actual and the theoretical value (line 5∼line 11). Re-

source allocated for layer i is represented as Ri, which is also the product of

CPFi and KPFi. Eventually, DNNBuilder generates parallelism guidelines

for building IP instantiations.

In step two, Algorithm 4 allocates the memory bandwidth resource given

the constraints of total remainder bandwidth BW conv
total for Conv layers (sub-

tracted the bandwidth consumed by FC layers) and the total amount of re-

mainder on-chip memory memrb
total for reshape buffers to keep feature maps

(subtracted the memory occupied by weights buffers and reshape buffers in

FC layers).

We initialize Coli = 1 (caching one column of the input feature map) and

the reshape buffer is implemented by a dual-port RAM with the width of

read/write port widthrd
i , widthwr

i , and the depth of read port depthrd
i in i-th

layer, which can be referred to Figure 4.2. In line 5, Algorithm 4 first satisfies

the bandwidth demands of allocated computation resources. PFi represents

the parallel factor, which is equal to Ri. If the required memory bandwidth

40



Algorithm 4: Memory bandwidth resource allocation

1: Set available memory bandwidth: BW conv
total

2: Set available on-chip memory for input feature map: memrb
total

3: Set single DSP’s bandwidth usage: BWR

4: Initialize Coli = 1; size of reshape buffer (e.g. widthrd
i , depthrd

i , and
widthwr

i according to KPFi and CPFi)
5: Allocate bandwidth BWi for layer i to best satisfy its Ri demand:

BWi = PFi×BWR

Hout
i ×Coli

6: while
∑n

i=1BWi ≥ BW conv
total ▷ Conv layer bandwidth overuse

7: Select layer i in Conv layer with maximum BWi

8: depthrd
i + =

Hin
i ×Cin

i ×Stridei
CPFi

, depthrd
i+1+ =

Hout
i ×Cout

i

CPFi+1

9: if
∑n

i=1 f(widthrd
i , depthrd

i , widthwr
i ) ≤ memrb

total

10: Coli = Coli + 1 ▷ Cache one more column

11: BWi = BWi × Coli−1
Coli

12: else ▷ Conv layer bandwidth overuse

13: depthrd
i − =

Hin
i ×Cin

i ×Stridei
CPFi

, depthrd
i+1− =

Hout
i ×Cout

i

CPFi+1
, break

14: endif
15: endwhile

exceeds the total available bandwidth, we need bandwidth adjustment (line 6

∼ line 16). It intends to address the problem shown in Figure 4.6 (c) where

the layer is in the memory-bounded area and (d) where particular layers

excessively consume bandwidth resources. Since the microarchitecture of on-

chip memory is significantly different between FPGAs, e.g., RAM18K/36K

in Xilinx and M20K in Intel, we use a unified function f shown in line 9 to

calculate the number of occupied memory blocks. In this algorithm, H in
i ,

Hout
i and Stridei represent the height of input and output feature maps

and the stride in layer i. Cin
i and Cout

i represent the number of channels of

the input and output feature map in layer i, respectively. Coli represents

the number of cached columns in layer i which relates to the kernel reuse

behavior (CTC ratio) and the consumption of on-chip memory memi.

4.5 Experimental Results

In this section, we demonstrate the capability and scalability of DNNBuilder

by mapping four DNNs onto two FPGAs (XC7Z045 in Xilinx ZC706 and

KU115 in AlphaData 8K5) for running edge and cloud applications. We use

41



Table 4.1: Top-1 Accuracy for image classification

Network Float32 Fix16 Fix16+f.-t. in Design Fix8 Fix8+f.-t. in Design
Alexnet 55.7% 53.3% 55.1% ( 0.6% ↓ ) 51.6% 53.4% ( 2.3% ↓ )

ZF 58.0% 56.3% 57.6% ( 0.4% ↓ ) 54.2% 56.2% ( 1.8% ↓ )
VGG-16 68.3% 67.0% 69.3% ( 1.0% ↑ ) 63.7% 69.2% ( 0.9% ↑ )

Table 4.2: Accuracy for object detection (AP@IOU=0.5)

Network Precision Car Pedestrian Cyclist mAP

YOLO
(HD)

Float32 88.9% 64.9% 72.5% 75.5%
Fix16+f.-t. in Design 88.9% 65.0% 73.2% 75.7% ( 0.2% ↑ )
Fix8+f.-t. in Design 88.9% 65.2% 72.6% 75.6% ( 0.1% ↑ )

a Yokogawa WT310 digital power meter to measure the power consumption.

4.5.1 DNN models in case study

We build four DNNs using DNNBuilder, which include Alexnet [1], ZF [89],

VGG-16 [33] and YOLO [90]. The ZF and VGG-16 are trained on ImageNet

dataset [91] with input size 224×224, and Alexnet is trained on ImageNet but

uses 227×227 inputs. For VGG-16, to fit in our embedded FPGA (ZC706)

and meet the real-time requirement, we have to cut off half of the kernels of

Conv layers (except the CONV5) and half of the activations in FC layers. The

weights of the FC layers are quantized to 4 bits to reserve memory bandwidth

for Conv layers according to the feedback from Generation step. For the

implementation in KU115 FPGA, we use the original VGG network structure

without pruning. Accuracy results are shown in Table 4.1, where column

“Float32” means using float32 model without quantization. “Fix16” and

“Fix8” show the results of quantized models using 16-bit and 8-bit feature

maps and DNN parameters without retraining. “f.-t. in Design” represents

the accuracy results are collected after retraining and fine-tuning (such as

adjusting the quantization following Section 4.4) in the Design step. The

quantized models may also introduce regularizations, which causes the 1.0%

accuracy increase in VGG-16 even compared to the original Float32 version.

Regarding the YOLO network, we modify it from the YOLO-tiny model,

42



Table 4.3: Evaluation on Xilinx ZC706 (Zynq XC7Z045@200MHz, batch
size = 1 for Fix16, batch size = 2 for Fix8)

Network
Complexity

(GOP)
Throughput

Fix16 (img./s)
GOPS
Fix16

Throughput
Fix8 (img./s)

GOPS
Fix8

DSP
Efficiency

Alexnet 1.45 170.0 247 340.0 494 76.3%
ZF 2.34 112.2 263 224.4 526 79.7%

VGG-16 (pruned) 9.45 27.7 262 55.4 524 96.2%
YOLO (HD) 10.6 22.1 234 44.2 468 86.0%

Table 4.4: Resource utilization (Xilinx ZC706)

Network
Utilization

LUT (218600) FF (437200) BRAM (545) DSP (900)
Alexnet 86262(39%) 51378(12%) 303(56%) 808(90%)

ZF 87465(40%) 50853(12%) 333(61%) 824(92%)
VGG-16 (pruned) 114521(52%) 61189(14%) 542(99%) 680(76%)

YOLO (HD) 86103(39%) 48853(11%) 333(61%) 680(76%)

which is originally designed for 416×416 input resolution, and adapt it to

the KITTI dataset [92] with 1280×384 HD input. Due to the hardware

constraint, we change the kernel number of Conv layer 7 and Conv layer 8

from 1024 to 512 to target the real-time detection capability. We choose this

model to demonstrate the scalability of DNNBuilder for handling HD inputs.

We use 80% of the KITTI provided dataset for training set and the remainder

for validation set to perform car, pedestrian, and cyclist detection and show

the accuracy results in Table 4.2. We use IOU=0.5 as the threshold to identify

true positive cases and mAP to represent the mean average precision of the

car, pedestrian, and cyclist categories.

4.5.2 FPGA mapping results

These four DNNs are automatically deployed and optimized following the

whole design flow of DNNBuilder. After synthesis by Vivado 2016.4, place-

ment and routing are completed subsequently showing performance and re-

source utilization in Table 4.3, 4.4, 4.5, and 4.6, respectively. We achieve 200

MHz working frequency in the Zynq XC7Z045 (28nm) and 220-235MHz in

43



Table 4.5: Evaluation on AlphaData 8K5 (Xilinx KU115) with the batch
size pre die = 3, 3, 1 and 4 for Alexnet, ZF, VGG-16, YOLO(HD),
respectively. The batch size is doubled for running Fix8 models.

Network
Complexity

(GOP)
Freq.
(MHz)

Throughput
Fix16 (img./s)

GOPS
Fix16

Throughput
Fix8 (img./s)

GOPS
Fix8

DSP
Efficiency

Alexnet 1.45 220 1126 1633 2252 3265 76.4%
ZF 2.34 225 759 1776 1518 3552 79.7%

VGG-16 30.94 235 65 2011 130 4022 99.1%
YOLO (HD) 10.6 220 199 2109 398 4218 90.7%

Table 4.6: Resource utilization (Xilinx KU115)

Network
Utilization

LUT (663360) FF (1326720) BRAM (2160) DSP (5520)
Alexnet 262360(40%) 177146(13%) 986(46%) 4854(88%)

ZF 268242(40%) 186198(14%) 1162(54%) 4950(90%)
VGG-16 257862(39%) 171616(13%) 1578(81%) 4318(78%)

YOLO (HD) 262356(40%) 165601(13%) 1256(63%) 5286(96%)

KU115 (20nm) without any sophisticated timing adjustment.

The Batch per Die in Table 4.5 shows the batch size of Fix16 version in

one die of the KU115 FPGA (two dies in total) and we keep the same design

in both dies. For the Fix8 version, the performance could be doubled by

packing two activations together according to [93]. In summary, DNNBuilder

can generate DNN hardware accelerators with performances peaking at 526

GOPS in an embedded FPGA and 4218 GOPS in a mid-range FPGA.

Since DSP is one of the most critical resources of FPGA-based DNN accel-

erators, we need to carefully evaluate the utilization efficiency of the DSPs.

Therefore, we introduce the DSP efficiency to exhibit the ratio between ac-

tual and theoretical maximum performance of the allocated DSPs. It is

defined as:

DSP efficiency =
Performance

β ×DSP num× freq.
(4.4)

Since β multiply-accumulate operations (β=2 in Fix16, β=4 in Fix8) can

be handled by one DSP and corresponding logics in one cycle, the denomi-

44



Figure 4.7: Accelerator for real-time car/pedestrian/cyclist detection
generated by DNNBuilder

nator equals to the theoretical best performance provided by allocated DSPs

under a given frequency. The numerator means the actual achieved perfor-

mance (GOPS) as shown in Table 4.3 and 4.5. Following Equation (4.4),

VGG-16 accelerator achieves the highest DSP efficiency, which is followed

by designs for YOLO and ZF, while Alexnet accelerator is in the last place.

The reason is that VGG-16 has unified Conv (3×3 with stride 1) and pooling

pattern (2×2 with stride 2), which makes Equation (4.3) perfectly satisfied

under the constraints that Ri is a power of 2. The more balanced for the

latency of each layer, the higher DSP efficiency can be achieved.

4.5.3 Latency and on-chip memory analysis

We take the DNNBuilder generated YOLO accelerator (Fix16) as a case

study. In Figure 4.7, a real-time detection for HD video input is running

on the targeted FPGA (ZC706). The input video frame with HD resolution

(1280×384) is captured by a wide-angle camera and sent to the FPGA at

20 FPS (meaning the frame transmission delay is 50ms). In Table 4.3, this

YOLO accelerator achieves a throughput at 22.1 FPS, which is enough for

processing the 20 FPS video. Since the proposed fine-grained pipeline archi-

tecture and column-based cache scheme are applied, accelerator is launched

once the first few columns of input frame are ready (in the reshape buffer).

In Figure 4.8, the startup latency is 9.92ms. After 9.92ms, Conv layer 9 keeps

generating outputs until 9.04ms after the first frame is fully loaded, so we

call this period “output time-slot” which lasts 50+9.04-9.92=49.12ms. This

accelerator utilizes 137 BRAMs for keeping columns of feature maps and 333

45



Figure 4.8: Startup latency analysis in pedestrian detection

Figure 4.9: Latency comparison between fine-grained (left) and conventional
(right) pipeline architecture while running YOLO with HD inputs

BRAMs (Table 4.3) for the whole accelerator. Since four pedestrians are

shown in this frame, they are detected one after another from left to right

during the“output time-slot”.

The advantage of using the proposed fine-grained layer-based pipeline ar-

chitecture is that we can hide the data transmission delay (generating out-

puts when the first frame is still loading), and deliver a small startup latency

(which is 9.92ms in this case). Detailed comparisons are shown in Figure

4.9. The length of each rectangle represents the latency of one major net-

work layer.

The conventional pipeline architecture (right), with the same 20 FPS over-

all throughput, waits for the finish of all frame and feature map transmissions

at preceding stages so that it suffers a very long latency (457.24ms) for gen-

erating all results of the first frame. Conversely, our proposed design starts

running layer i + 1 pipeline stage after we collect several columns of output

46



Figure 4.10: On-chip memory demand comparison between column-based
cache and conventional design while holding feature maps in YOLO with
HD inputs

feature maps of layer i. So, we deliver the latency as 59.04ms, which achieves

an amazing 7.7x reduction. The advantage of using column-based cache can

be shown in Figure 4.10. We significantly reduce the required BRAM for

keeping DNN feature maps. In total, we instantiate only 137 BRAMs in our

YOLO accelerator instead of 5920 BRAMs in the conventional pipeline de-

sign where feature maps need to be stored completely using on-chip memory.

The overall BRAM reduction is 5920÷137 = 43x while the best case happens

in the first layer with 320x reduction achieved. The proposed column-based

cache ensures the scalability of our accelerator design while using HD or even

4K inputs.

It is the fine-grained layer-based pipeline structure and column-based cache

that help us reduce startup latency and BRAM utilization, which are com-

mon shortcomings in pipeline structures and hide the video frame transmis-

sion time. As a result, DNNBuilder can deliver millisecond-scale responses

during object detection and accommodate HD inputs.

4.5.4 Comparison to FPGA & GPU accelerators

We compare our design to the five latest FPGA-based accelerators with

classification-oriented DNNs in Table 4.7. For Intel FPGA, the actual DSP

utilization in [94] and [95] should be twice as shown in the original paper

because one variable-precision DSP block can simultaneously work for two

16-bit multipliers [96]. For the cloud-computing case, the DNNBuilder gen-

47



Table 4.7: Comparison with existing FPGA-based DNN accelerators

Reference [94] [59] [95] DNNBuilder

FPGA chip Arria10-1150 Arria10-1150 Stratix-V + CPU KU115
FPGA Frequency 303 MHz 385 MHz 200 MHz 235 MHz

Network Alexnet VGG Alexnet VGG
Precision Float16 Fix16 Fix16 in FPGA Fix16 (Fix8)

DSPs (used/total) 2952/3036 2756/3036 512/512 in FPGA 4318/5520
DSP Efficiency 77.3% 84.3% - 99.1%

Performance (GOPS) 1382 1790 781 2011 (4022)
Power Efficiency (GOPS/W) 30.7 47.8 - 90.2 (180.4)

Table 4.8: Comparison with existing embedded FPGA-based DNN
accelerators

Reference [9] [66] DNNBuilder
FPGA chip Zynq XC7Z045 Zynq XC7Z045 Zynq XC7Z045
Frequency 150 MHz 100 MHz 200MHz
Network VGG VGG VGG
Precision Fix16 Fix16 Fix16 (Fix8)

DSPs (used/total) 780/900 824/900 680/900
DSP Efficiency 44.0% 69.6% 96.2%

Performance (GOPS) 137 230 262 (524)
Power Efficiency (GOPS/W) 14.2 24.4 36.4 (72.8)

erated design achieves 4022 GOPS using KU115 FPGA. Our design with

Fix8 quantization outperforms those in [94], [59], and [95] by 2.91×, 2.25×,

and 5.15×, while our Fix16 version outperforms them by 1.46×, 1.12×, and

2.57×, respectively. Although our design uses more DSPs, we deliver the

highest DSP efficiency (99.1%) which allows us to slow down the clock fre-

quency for achieving 5.88× higher power efficiency compared to [94].

The design in [95] deploys a DNN accelerator on a Xeon CPU+FPGA

system. Layers with low CTC ratio (e.g., FC layers, which are limited by

memory access bandwidth on FPGAs) are swapped out to CPU using QPI.

Since we can not quantify the equivalent DSP utilization in CPU and the

authors fail to mention any power consumption (which should be the sum of

CPU+FPGA), we leave the DSP and power efficiency blank for [95].

Major drawbacks of [95] are the large batch size requirement and the re-

sulting high demand for FPGA on-chip memory. It requires large batch size

48



Table 4.9: Alexnet inference comparison: GPU vs FPGA

Platform Precision Batch
Throughput
(img./S)

Power
(W)

Efficiency
(img./S/W)

DNNBuilder (ZC706) Fix16, Fix8 1, 2 170, 340 7.2 23.6, 47.2
GPU-TX2[6] Float16 2 250 10.7 23.3

DNNBuilder (KU115) Fix16, Fix8 3, 6 1126, 2252 22.9 49.2, 98.3
GPU-TitanX Float32 128 5120 227.0 22.6

to recover the input padding overhead and the low data reuse behavior while

running Conv in the frequency domain. Design in [95] may not be feasible

for using embedded FPGAs. On the contrary, DNNBuilder can deliver high-

performance DNN accelerators on both cloud FPGAs and energy-efficient

embedded FPGAs for cloud and edge applications. By evaluating the edge-

computing ability, we use the same embedded FPGA in [9] and [66]. Our

DNNBuilder generated design reaches the best performance (524 and 262

GOPS in Fix8 and Fix16) and power efficiency (72.8 GOPS/W in Fix8 and

36.4 GOPS/W in Fix16).

We extend our comparison to the latest embedded GPU (TX2) and the

high-end GPU (TitanX) in Table 4.9. Because of the real-time requirement

of edge applications, we attempt to use the smallest batch size. However, the

result of TX2 is using a batch size of two, which is the smallest batch size

implementation we could find from NVIDIA’s official source. Our design in

ZC706 delivers higher efficiency than the TX2-based solution, even without

using batch processing. Our design (Fix8) in KU115 delivers 4.35x higher

efficiency than the TitanX-based solution (Float32) with a much smaller

batch size.

4.6 Conclusion

In this chapter, we presented DNNBuilder, an automation tool for building

DNN hardware accelerators on FPGAs with high performance and power

efficiency. We proposed a fine-grained layer-based pipeline architecture and

a column-based cache scheme for higher throughput, lower pipeline latency,

and smaller on-chip memory consumption. We introduced the flexible pro-

49



cess engine that not only provides optimal implementations of diversified

DNN layers but also allows us to adjust the parallelism factors (CPFs and

KPFs) to fit in the resource allocation guidelines. We designed an auto-

matic resource allocation algorithm to enable design space exploration and

generate parallelism schemes under constraints of computation resource, on-

chip memory capacity, and external memory access bandwidth. Because of

the above novel designs, we reached the highest throughput performance,

peaking at 4218 GOPS (KU115) and 526 GOPS (ZC706), compared to the

existing FPGA/embedded FPGA-based solutions. We also achieved higher

efficiency (up to 4.35×) than the GPU-based solutions. The novel techniques

proposed in this chapter further improve the hardware accelerator design ef-

ficiency through automated design process and optimizations for customized

DNN accelerators.

50



CHAPTER 5

SKYNET: EFFICIENT
DNN-ACCELERATOR CO-DESIGN

STRATEGIES

5.1 Introduction

AI applications require not only high inference accuracy from DNNs, but

also aggressive inference speed, throughput, and energy efficiency to meet

real-life demands. In addition to building hardware accelerators, applica-

tions also rely on hardware-efficient DNN designs when they are deployed

onto embedded systems with limited computation and memory resources.

As mentioned in Section 2.2, researchers have investigated various network

compression and optimization technologies to reduce the redundancy of the

DNN structure and make DNN hardware-efficient.

In general, a conventional design process for hardware-efficient DNNs can

be summarized in Figure 5.1. It is a top-down design flow that starts from

step 1 : to select a reference DNN by concentrating on accuracy. Such DNNs

are typically too complicated for the targeted embedded systems and need

to be compressed using network compression technologies in step 2 and ded-

icated hardware accelerator design in step 3, respectively. Since DNN com-

pression and its hardware implementation are typically carried out in two

separate steps, step 2 and 3 are usually performed in an iterative manner to

balance DNN accuracy and hardware performance on targeted devices. Net-

work retraining is also required to regain accuracy after compression before

step 4. Because of the iterative nature of the process, it is very challenging

to cover both inference accuracy in software and deployment efficiency in

hardware.

To address the design challenges of building efficient edge AI solutions, we

propose DNN-accelerator co-design methods to effectively generate hardware-

efficient DNNs from scratch and dedicated FPGA accelerators. Following

these methods, we propose SkyNet, a co-design strategy for handling de-

51



Figure 5.1: A conventional design flow for edge AI solution. It contains
DNN compression in step 2 and hardware accelerator design in step 3.
Challenges appear between step 2 and 3 where iterative explorations are
necessary to balance DNN accuracy and performance on targeted devices.

manding AI applications, including object detection and tracking. The con-

tributions of this chapter are summarized as follows:

• We propose a simultaneous DNN-accelerator co-design methodology,

which includes (1) a bottom-up hardware-efficient DNN design ap-

proach and (2) a top-down approach for high-performance FPGA ac-

celerator design. We introduce a unified intermediate representation

called Bundle to construct the desired DNN and accelerator for the

targeted edge AI application.

• For DNN design, we introduce a three-step bottom-up design approach

to construct hardware-efficient DNN with an adequate understanding of

the hardware constraints. For accelerator design, we introduce a fine-

grained tile-based pipeline architecture to provide dedicated support

for the co-designed DNN.

• Following the co-design methods, we propose SkyNet and demonstrate

it by winning the DAC-SDC [97]. SkyNet achieved the highest overall

score regarding accuracy, throughput, and energy efficiency and won

the first place winner awards for both GPU and FPGA tracks.

5.2 DNN-Accelerator Co-Design

The proposed co-design flow is intended to solve two design problems simul-

taneously: the bottom-up DNN model exploration and the top-down DNN

52



accelerator generation. For DNN models, we start from basic hardware-aware

building blocks and gradually construct DNNs to reach desired inference ac-

curacy; for DNN accelerators, we follow a fixed architecture and optimize

configurable parameters to pursue the most efficient DNN implementation.

5.2.1 Co-design space

There is a large design space for DNN design, such as the number and types

of DNN layers, layer-wise configurations, layer interconnection styles, etc.

Similarly, the design space for hardware accelerators is also enormous, in-

cluding IP instance categories, IP reuse strategies, quantization schemes,

parallel factors, data transfer behaviors, buffer sizes, etc. Therefore, to cover

both the DNN model and accelerator design, the co-design space is exponen-

tially greater than any of the above, which requires effective techniques to

find high-quality solutions. In this chapter, we propose a co-design space to

summarize the configurable parameters for DNN-accelerator co-design.

The variables in the proposed co-design space are summarized in Table 5.1.

For FPGA accelerator, we use IP-based design strategy mentioned in Chapter

3 [18] and Chapter 4 [10]. Each IP supports a basic DNN layer type (e.g.

Conv, Pooling), which must be instantiated and configured if the DNN model

contains such type of layer. L is the total number of DNN layers. IP1

to IPm represent the available configurable IP templates. pj(1 ≤ j ≤ n)

represents the configured IP instance, where the configurable parameters

include parallelism factor PFj and quantization scheme Qj. < l1j , · · · lzj >

represent the layers for which an IP instance pj is used in accelerator to

conduct the computation. The vector < fch1 , fch2 , · · · , fchL
> represents

the expansions of channel depth through the entire DNN. In addition, ds1

to dsk represent down sampling layers with a down sampling factor fdsi .

The combination of these parameters can specify the DNN model and the

accelerator design.

5.2.2 A unified intermediate representation

One of the most critical challenges is the lack of unified intermediate repre-

sentations between the DNN and its accelerator design. So, the DNN and

53



Table 5.1: Key Variables in the co-design space

Variables Explanation Effect
L Total number of layers A, P, R

IP1, IP2, · · · , IPm IP templates for DNN building A, P, R
p1, p2, · · · , pn Labels for IP instances P, R
⟨PFj, Qj⟩ Configuration for pj(1 ≤ j ≤ n) A, P, R
⟨l1j , · · · , lzj ⟩ The layers where pj is used A, P

< fch1 , fch2 , · · · , fchL
> Channel expansion factors A, P, R

ds1, ds2, · · · , dsk Down-sampling layers A, P, R
fdsi Down-sampling factor A, P, R

A: Accuracy, P: Performance, R: Resource

accelerator designs are still in two separate directions using respective met-

rics. For example, a particular DNN tries to achieve higher inference accuracy

by adding extra layers and channel numbers. It may help achieve higher in-

ference accuracy, but this design causes extra calculations and reduces the

expected hardware performance.

To help balance the different metrics between the DNN and the accelera-

tor design, we propose a unified intermediate representation called Bundle.

From a software perspective, a Bundle is a set of sequential DNN layers,

which can be repeatedly stacked for constructing DNNs. From the hardware

perspective, a Bundle is a set of IPs to be implemented on hardware. As

shown in Figure 5.2, a Bundle contains three DNN layers cascaded from top

to bottom. DNN models are built by replicating, shaping, and configuring

this type of Bundle in a bottom-up manner. Figure 5.2 shows three replica-

tions of the same Bundle, and each of them may vary in input/output data

dimensions. Between Bundles, we reserve down-sampling spots for feature

map (FM) size compression.

When implemented on hardware, a Bundle also represents a combination

of the IP instances for handling DNN layer computations. The IPs within one

Bundle are organized based on our proposed fine-grained tile-based pipeline

architecture (which will be introduced in Section 5.5), to deliver optimized

low-latency designs.

54



Figure 5.2: The proposed unified intermediate representation called Bundle.

5.3 A Bottom-up DNN Design strategy

We propose a bottom-up approach to leverage the hardware-efficient DNN

design for embedded systems. It is a three-stage approach as shown in Figure

5.3.

5.3.1 Stage 1 Bundle selection and evaluation

This flow starts with building Bundles, the hardware-aware basic blocks for

DNN construction. To capture the hardware constraints, Bundles need to be

evaluated on targeted embedded systems for collecting realistic latency and

resource utilization results. In the first stage, we enumerate DNN compo-

nents (such as Conv, pooling, activation layers, etc.) and assemble them into

Bundle 1 ∼ n. Each Bundle is then implemented and evaluated in targeted

hardware devices for hardware performance metrics. To get their potential

accuracy contributions, we build DNN sketches with fixed front- and back-

end structures based on given tasks and respectively insert one type of Bundle

(with replications) in the middle. We limit one type of Bundle for one DNN

sketch to guarantee its hardware efficiency. Then, DNN sketches are fast

trained using the targeted datasets to find out the ones with relatively high

accuracy.

By targeting the object detection task, for example, we concatenate an

input resizing unit (front-end) and a bounding box regression (back-end)

with the selected Bundle to build a DNN sketch. The number of training

epochs may vary from different datasets as a 20-epoch-training can distin-

guish sketches using the DAC-SDC dataset (with 100K images), while five

epochs are enough if using the Cifar-10 dataset. We have also seen similar

55



Figure 5.3: The proposed bottom-up DNN design flow to deliver
hardware-efficient DNNs for embedded systems in three stages.

strategies in [76] to distinguish candidates by a 25-epoch-training on a subset

of the ImageNet dataset. At last, the most promising Bundles located in the

Pareto curve are selected for the next stage.

5.3.2 Stage 2 Hardware-aware DNN search

During the DNN search stage, its inputs include the software and hardware

metrics (e.g., DNN accuracy and throughput performance) and the targeted

hardware platforms. Its outputs are DNN candidates built by the proposed

Bundle, which can meet the software and hardware requirements.

To solve such a multi-objective optimization problem, we propose a group-

based particle swarm optimization (PSO) evolutionary algorithm to discover

proper DNN candidates since literature has demonstrated the validity of

using evolutionary methods to discover DNNs with state-of-the-art accuracy

[98, 99]. From the design methodology perspective, this solution can be

extended to support other optimization algorithms and meet the needs of

different scenarios.

In the proposed group-based PSO algorithm, each individual DNN is re-

garded as a particle, and all active DNNs during the search contribute to the

swarm. Since we only use one type of Bundle in each DNN, DNNs composed

of the same type of Bundle are considered in a particle group. In order to

maintain evolution stability, a DNN only evolves within its own group. We

label the group optimal position as P i
group within the i-th group, meaning

such DNN has the best fitness value evaluated under given conditions. We

56



Algorithm 5: The bottom-up DNN design with PSO

1 P ← InitialPopulation(M, N )
2 while itr < I do
3 FastTraining(P , eitr)
4 Fitij ← GetFitnessVal(P ) //evaluate all candidates

5 for each group i do
6 GroupRank(i) //rank candidates in group i
7 N i

group ← GroupBest(i) //select the best one in group i

8 //get the group best position
9 P i

group(fv1, fv2)←GetPosition(N i
group)

10 for each candidate ni
j(itr) in group i do

11 //rank ni
j across all passing iterations

12 LocalRank(i, j)

13 N ij
local ← LocalBest(i, j)

14 //get the local best position

15 P ij
local(fv1, fv2)←GetPosition (N ij

local)
16 //get the current position
17 P i

j (fv1, fv2)←GetPosition (ni
j(itr))

18 //get the velocity toward the local and the group best

19 Vlocal ←GetV(P i
j , P

ij
local)

20 Vgroup ←GetV(P i
j , P

i
group)

21 ni
j(itr + 1)← Evolve(ni

j(itr), Vlocal, Vgroup)

22 end

23 end

24 end

denote a DNN particle j within group i as ni
j and each ni

j has a pair of fea-

ture vectors (fv1, fv2) to illustrate two hyper-parameters regarding the DNN

structure. fv1 represents the number of channels of each Bundle replication;

fv2 describes the pooling position between Bundles. Both feature vectors

with dimensions equal to the number of stacked Bundles in ni
j, and both of

them affect accuracy and hardware performance. To locate the best DNN

candidates, we propose Algorithm 5 with the following major components.

Population generation:

An initial network population P (a set of DNN candidates) is generated with

M groups and N networks for each group. The search contains I iterations

and in the itr-th iteration, all networks are fast trained for eitr epochs, where

eitr increases with itr.

57



Latency estimation:

We perform a platform-specific latency estimation. For GPUs, we directly

measure the inference latency on the training GPU and scale latency to the

targeted GPU for deployment if the target GPU differs from the training one.

For FPGAs, we follow a predefined IP-based DNN accelerator template [61]

for hardware performance evaluation. Layer-specific IPs are implemented

in hardware and shared by corresponding DNN layers. To maximize the

performance, IPs are configured to fully consume the available resources.

We then collect the end-to-end performance and resource overhead of each

DNN from an FPGA high-level synthesis tool.

Fitness value:

After network training and latency estimation, we calculate the fitness value

for each network ni
j as:

Fitij = Accij + α · (Est(ni
j)− Tar) (5.1)

where Accij is the validation accuracy of ni
j and Est(ni

j) represents the latency

on hardware; Tar is the targeted latency. Parameters α (α < 0) is used to

balance between network accuracy and hardware performance.

Velocity calculation and particle update

In standard PSO, the updated velocity of a particle is calculated every itera-

tion based on the current velocity and the velocities toward the local and the

global best positions. Particles can move to a better position with assigned

probabilities following the updated velocity. Similarly, in our case, DNNs in

the same group update their positions (meaning network structures repre-

sented by feature vectors) based on the current design, the local best design

(the best one across all passing iterations), and the group best design. To

determine the velocity toward the local best Vlocal and the group best Vgroup,

we compute the differences between positions of current and the local/group

best designs. Since each position is represented by (fv1, fv2), position dif-

ferences can be captured by the mismatch of layer expansion factors fv1 and

pooling spots fv2, respectively. Then, with the velocities known, we start

58



evolving the current network by updating its position toward the local and

the group best by a random percentage.

5.3.3 Stage 3 Feature Addition

More advanced DNN design features are added if hardware metrics allow.

For example, we can include a bypass from low-level features to high-level

features along with FM reordering [90] to improve small object detection.

We can also replace ReLU with ReLU6 [100] to enhance hardware efficiency.

More discussions are provided in the next section.

5.4 The SkyNet

Following the proposed flow, the best Bundle is selected as a combination

of 3×3 depth-wise Conv layer (DW-Conv3 [48]), 1×1 point-wise Conv layer

(PW-Conv1), batch normalization layer (BN [101]), and ReLU6. By repeat-

edly stacking this Bundle, we generate three backbones shown in Table 5.2

to handle the object detection challenge in DAC-SDC. These networks share

the same chain structure but with different configurations of FM bypass. For

model A, no bypass is included; for the model B and C, output FMs of Bun-

dle #3 are fed into the Bundle #6. SkyNet also adapts the YOLO detector

head [102] by removing the classification output and uses two anchors for

bounding box regression.

By examining the DAC-SDC training data, we keep a record of the size

ratio between the output bounding box and the input image and present a

distribution diagram in Figure 5.4. It clearly shows that 91% of the objects

to be detected are less than 9% of the original input image size, and 31% of

them are even smaller than 1% of the input image size. It means the majority

of objects inside this dataset are small objects. So, we add FM bypass and

reordering to enhance the ability to detect small objects (in model B and C).

The bypass helps to keep small object features in the later part (closer to the

output layer) of the DNN by adding low-level high-resolution FMs. Also, it

is beneficial to have multiple FMs (from different layers) before generating

the bounding boxes. Since the bypass crosses a pooling layer (highlighted

in Figure 5.5), we use reordering (shown in Figure 5.6) to align the size of

59



Table 5.2: The SkyNet architecture with number of channels shown in the
bracket. Each convolutional layer except the last one is followed by a BN
and a ReLU (omitted for conciseness).

Configurations of SkyNet
A B C Bundle

input (3×160×360 color image)
DW-Conv3 (3)
PW-Conv1 (48)

#1

2×2 max-pooling
DW-Conv3 (48)
PW-Conv1 (96)

#2

2×2 max-pooling
DW-Conv3 (96)
PW-Conv1 (192)

[Bypass Start] FM Reordering (768)
#3

2×2 max-pooling
DW-Conv3 (192)
PW-Conv1 (384)

#4

DW-Conv3 (384)
PW-Conv1 (512)

#5

[Bypass End]
FM Concatenated

DW-Conv3
(512+768)

PW-Conv1 (48)

[Bypass End]
FM Concatenated

DW-Conv3
(512+768)

PW-Conv1 (96)

#6

PW-Conv1 (10)
Back-end for bounding box regression

original FM (generated by the Bundle #5) and the low-level feature without

losing information.

The other feature to improve hardware efficiency is the ReLU6, which

clips output range to [0, 6]. Since ReLU6 generates a much smaller data

range compared to the original ReLU ([0,+∞)), fewer bits are required to

represent intermediate FMs. It also helps better implement lower-precision

floating point in embedded GPUs and fixed-point data format in embedded

FPGAs.

5.5 A Top-down Accelerator Design Strategy

The top-down accelerator follows a well-defined hardware architecture tem-

plate called Tile-Arch, which is a fine-grained tile-based pipeline accelerator

60



Figure 5.4: The distribution of bounding box relative size in DAC-SDC
training dataset. We capture the bounding box relative size by computing
the ratio of output bounding box size divided by the input image size. The
green bars show the ratio distribution, and the blue curve shows the
corresponding cumulative distribution.

Figure 5.5: SkyNet backbone (model C in Table 5.2) generated by stacking
six of the selected Bundle (circled by green dashed line) with DNN
components as: DW-Conv3, PW-Conv1, BN, and ReLU6. The number of
output channels is listed on top of each Bundle denoted as Ch. Three 2×2
pooling layers are inserted. The bypass is highlighted in orange, which
passes FMs generated by the Bundle #3 directly to the last Bundle. The
FM reordering is also performed along with the bypass.

architecture template. It can deliver low latency designs and exploit maxi-

mum resource-saving. This template has the following features:

• Layer-level IP reuse: we adopt a folded overall structure, where the

DNN layers are computed sequentially on FPGA by reusing IP in-

stances across layers. It can maximally exploit resource reuse, which is

especially crucial for embedded FPGAs with tight resource budgets.

61



Figure 5.6: Feature map reordering from 1× 4× 4 to 4× 2× 2 with
shrunken width and height but expanded number of channels. There is no
information loss compared to pooling operation. In addition, this reorder
pattern also ensures larger receptive field.

• Tile-level IP reuse: resulting from layer-level IP reuse, the intermediate

data between layers are partitioned into tiles of common size across all

layers, and an IP instance is reused for multiple tiles. It allows direct

data transfer between IP instances of subsequent layers without on-

/off-chip memory access.

• Tile-level pipelining: since data tiles within a layer do not have data

dependencies, we can leverage tile-level IP pipelining within and across

consecutive layers.

Figure 5.7 (a) shows an example of the top-level diagram of the proposed

template architecture. In this example, the Bundle contains IP instances

including Conv 3× 3, 1× 1 and Pooling. On-chip data buffers are allocated

in BRAM for intra-Bundle communication, while off-chip data buffers are

allocated in DRAM for inter-Bundle communication. Figure 5.7 (b) illus-

trates the tile-level pipelining for computation in one Bundle with four tiles.

Following the top-down approach, parameters of the proposed architecture

can be configured to adapt to different FPGA devices and to maximize the

performance of FPGA accelerators.

5.6 Experimental Results on DAC-SDC

DAC-SDC features a single object detection challenge for embedded systems,

which include embedded GPUs (NVIDIA TX2) and FPGAs (Pynq-Z1 and

Ultra96) with very low energy consumption. The goal is to consider the

62



1 2
3 4

Input feature maps: 
8x8 tiling

Load data

B
un
dl
e CONV 3x3

CONV 1x1
Pooling

Write back

Time1
1

1
1

1

2
2

2
2

2

3
3

3
3

3

4
4

4
4

4

Off-chip data transfer

Bundle outputs

(b)

(a)

CONV 3x3 
IP instance

CONV 1x1 
IP instance

Pooling
IP instance

Bundle

On-chip
Weight Buffers

On-chip
Data Buffers

BRAM

DRAM

Off-chip 
Data Buffer

DNN 
Weights

PL

PS

Input
Data

Pre-processInput image

Logic

Off-chip data transfer

On-chip data transfer

Figure 5.7: Tile-Arc: a low latency FPGA accelerator template with (a) a
top-level diagram of the proposed architecture and (b) an example of
tile-based pipeline structure.

most appropriate needs of UAV applications, such as the capability of real-

time processing, energy efficiency, and detection accuracy. To better reflect

real-life challenges, images of the dataset are captured by UAVs in the real

environment. The whole dataset is divided into two parts: the training

dataset with 100,000 images with objects of interest across 12 main categories

and 95 subcategories, and the hidden test set for official evaluation with

50,000 images that only the contest organizers could access. In DAC-SDC’19,

52 GPU and 58 FPGA teams participated worldwide, creating very intense

competition. Our SkyNet design has successfully delivered the best inference

accuracy and total score for both GPU and FPGA tracks.

63



Table 5.3: Validation accuracy of SkyNet.

DNN Model Parameter Size IoU

SkyNet A - ReLU 1.27 MB 0.653
SkyNet A - ReLU6 1.27 MB 0.673
SkyNet B - ReLU 1.57 MB 0.685
SkyNet B - ReLU6 1.57 MB 0.703
SkyNet C - ReLU 1.82 MB 0.713
SkyNet C - ReLU6 1.82 MB 0.741

5.6.1 Ablation study

We perform an ablation study on the DAC-SDC dataset to analyze these

three configurations of SkyNet (Model A, B, and C listed in Table 5.2). By

combining two activation functions (ReLU and ReLU6), six configurations of

SkyNet are evaluated. We train these models in an end-to-end fashion using

multi-scale training with the learning rate starting from 1e-4 to 1e-7. We

apply stochastic gradient descent (SGD) to update parameters. To further

enrich the training data, we use data augmentations to distort, jitter, crop,

and resize inputs with size 160×320. The accuracy results are presented in

Table 5.3, where SkyNet C - ReLU6 reaches the highest IoU (0.741) on the

validation set. Therefore, we use this model as the proposed design for the

following experiments.

5.6.2 Evaluation Criteria

Comprehensive evaluations are introduced in DAC-SDC, covering detection

accuracy (IoU), throughput (FPS), and energy consumption. To identify

the best design, a total score is calculated following Equation 5.2 to 5.5.

Assuming there are I registered teams and K images in the test set, the IoU

score for team i, denoted as RIoUi
, is calculated as:

RIoUi
=

K∑
k=1

IoUi,k

K
(5.2)

For energy, ĒI is denoted as the average energy consumption of all I entries

when performing DNN inference on the test dataset (Equation 5.3). The

64



energy score of team i (ESi) is then computed using Equation 5.4 relating to

the ratio between average energy and the energy consumed by this team. x

is set to 2 and 10 for FPGA track and GPU track, respectively. Eventually,

the total score, denoted as TSi, is calculated in Equation 5.5 including both

inference accuracy (RIoUi
) and energy consumption (ESi).

ĒI =

I∑
i=1

Ei

I
(5.3)

ESi = max{0, 1 + 0.2× logx
ĒI

Ei

} (5.4)

TSi = RIoUi
× (1 + ESi) (5.5)

5.6.3 GPU Implementation

For the TX2 GPU implementation, we keep all network parameters using

Float32 to maintain the best inference accuracy. Since most of the compute-

intensive parts of DNN inference are handled by NVIDIA cuDNN, which

leaves little space for customized improvement, we start optimizing our design

on a system level.

The whole procedure of running SkyNet contains four steps: 1) input fetch-

ing from the flash storage in a unit of the batch; 2) image pre-processing,

which includes input resizing and normalization; 3) DNN inference; and 4)

post-process to generate bounding boxes and buffer results in DDR memory.

The most straightforward way is to execute these steps in serial but with the

cost of low resource utilization and poor throughput performance. In our de-

sign, we first merge step 1 and 2 in pre-processing and enable multithreading

technology to execute these steps in a pipelined fashion shown in Figure 5.8.

We use NVIDIA System Profiler (L4T) to capture the latency results. On

average, the proposed system-level optimizations enable a 3.35× speedup

compared to the original serial design and help our design reach the highest

throughput performance, peaking at 67.33 FPS.

65



Figure 5.8: Task partitioning in SkyNet implementation on TX2 GPU and
Ultra96 FPGA.

Table 5.4: Validation accuracy results regarding different quantization
schemes during FPGA implementation

Scheme Feature Map Weight Accuracy (IoU)

0 Float32 Float32 0.741
1 9 bits 11 bits 0.727
2 9 bits 10 bits 0.714
3 8 bits 11 bits 0.690
4 8 bits 10 bits 0.680

5.6.4 FPGA Implementation

To implement DNNs on FPGA, we suffer even scarcer resource budgets, as

the theoretical peak performance provided by Ultra96 FPGA (144 GOPS

@200MHz) is much lower than the TX2 GPU (665 GFLOPS @1300MHz).

By using the proposed bottom-up design flow, hardware limitations have

already been captured by the Bundle design, and the Bundle is instantiated

on FPGA as a single customized hardware IP. Since the proposed network is

structured by the same type of Bundle, this IP can be shared across different

layers to cope with the resource constraints. Still, we need more optimizations

to further enhance the performance.

Quantization, batch process, and tiling:

Since fixed-point representation is more favorable in FPGA design, we quan-

tize the FMs and weights from Float32 to fixed point and explore different

quantization schemes in Table 5.4. After quantization, the SkyNet backbone

suffers different levels of accuracy drop from 1.4% to 6.1% in scheme 1 to 4.

66



Figure 5.9: The proposed batch and tiling design to increase the data reuse
opportunity and avoid on-chip memory waste.

We finally pick scheme 1, as accuracy has a higher weight in the total score

calculation (Equation 5.5).

Since network parameters can not be accommodated by the FPGA on-

chip memory (which is BRAM with only 0.95 MB available), we have to

store them in the external memory (DRAM). Still, it makes the memory

access bandwidth a bottleneck. To mitigate the bandwidth demand, the

input batch process is applied to exploit data reuse opportunities, where a

certain number (which equals to the batch size) of input images are assembled

before sending to FPGA for DNN inference. So, task size (the number of

images being processed at one time) increases while consuming the same

amount of network parameters from DRAM.

With a larger batch size, the process of network inference asks for a larger

amount of FPGA on-chip memory to buffer intermediate FMs. Since our

implementation is based on an IP-shared structure, buffers instantiated on

FPGA are shared by different layers, which means the buffer may not be

large enough for the FMs generated by the first few layers while it may be

too large for the last few layers as FMs get smaller after pooling.

To solve this problem, we propose an input tiling and batch scheme as

shown in Figure 5.9. Four inputs are stitched to form a larger input that

can be processed as an entirety. With the tiling and batch process, it is

possible to use one shared buffer across different layers without changing its

size. The proposed solution inherits the benefit of the batch process to allow

better reuse of DNN weights, and it eliminates the possible waste of unused

buffer space.

67



Layer fusion, memory hierarchy, and task partitioning:

To avoid dealing with the floating-point operations (e.g., inverse-square root)

in the BN layer, we use layer fusion to merge both parameters from Conv and

its successive BN offline. So, there are no separated BN layers nor expensive

floating-point operations required during DNN inference.

With hardware resources shared by DNN layers, the intermediate results

need to be swapped in/out between on-chip and external memory. To boost

the performance, we instantiate the selected Bundle on hardware and im-

plement a five-stage pipeline with Load, EXE-CONV3, EXE-CONV1, EXE-

Pooling, and WriteBack stages. By using ping-pong buffers between memory

and computation units, data transfer (in the Load and WriteBack stages)

can be fully overlapped by computation latency. Regarding the data transfer

between adjacent execution stages (with the “EXE” prefix), we keep data

on-chip without going through external memory.

To fully utilize the available computational resource, we also implement

task partitioning on the Ultra96. The whole design is shown in Figure 5.8,

which is highly similar to our GPU design. Workloads are distributed to

both CPU and FPGA and creating a system-level pipeline. With all three

tasks (pre-processing, SkyNet inference, and post-processing) overlapped, our

FPGA design can reach 25.05 FPS.

5.6.5 Result Comparison

After implementing the proposed DNN on GPU and FPGA following the

proposed co-design strategies, our designs are evaluated by the DAC-SDC

organizers using the hidden test set. As shown in Table 5.5 and 5.6, we

present the comparison results with the top-3 teams in DAC-SDC’19 and ’18.

In our GPU design, SkyNet outperforms all other competitors by delivering

the best accuracy (0.731), throughput performance (67.33), and total score

(1.504). In terms of the FPGA design, SkyNet also reaches the best accuracy

and gets the highest total score.

68



Table 5.5: GPU final results from DAC-SDC’19 and ’18 using the hidden
test set with 50K images, evaluated by a TX2 GPU.

Team Name IoU FPS Power(W) Total Score

Results from 2019

SkyNet (ours) 0.731 67.33 13.50 1.504

Thinker [103] 0.713 28.79 8.55 1.442

DeepZS [104] 0.723 26.37 15.12 1.422

Results from 2018

ICT-CAS [105] 0.698 24.55 12.58 1.373

DeepZ [106] 0.691 25.30 13.27 1.359

SDU-legend [107] 0.685 23.64 10.31 1.358

Table 5.6: FPGA final results in DAC-SDC’19 and ’18 using the hidden
test set with 50K images. Designs in 2019 are evaluated on a Ultra96
FPGA while designs in 2018 use a Pynq-Z1 FPGA.

Team Name IoU FPS Power (W) Total Score

Results in 2019

SkyNet (ours) 0.716 25.05 7.26 1.526

XJTU Tripler [108] 0.615 50.91 9.25 1.394

SystemsETHZ [109] 0.553 55.13 6.69 1.318

Results in 2018

TGIIF [110] 0.624 11.96 4.20 1.267

SystemsETHZ [111] 0.492 25.97 2.45 1.179

iSmart2 [112] 0.573 7.35 2.59 1.164

5.7 SkyNet Extension on GOT-10K Object Tracking

Since SkyNet can deliver real-time object detection on embedded systems,

we set up experiments on the GOT-10k benchmark [113] to demonstrate its

potential for object tracking. GOT-10k is a large and highly diverse database

for generic object tracking with rich motion trajectory and comprehensive

coverage of object classes. Models are evaluated with two metrics in GOT-

10k as average overlap (AO) and success rate (SR). AO is defined as the

mean of IoU between prediction and ground truth bounding boxes, while SR

69



Table 5.7: Performance of SiamRPN++ trackers on GOT-10k with
different backbones evaluated on single NVIDIA 1080Ti.

Backbone AO SR0.50 SR0.75 FPS

AlexNet 0.354 0.385 0.101 52.36
ResNet-50 0.365 0.411 0.115 25.90

SkyNet 0.364 0.391 0.116 41.22

is defined as the proportion of predictions where the IoU is beyond some

threshold. During an evaluation, Got-10K only provides the ground truth

bounding box in the first frame and expects trackers to keep tracking the same

object for subsequent frames by predicting bounding boxes. The predictions

will then be evaluated by the Got-10K server. In this section, we integrate

the SkyNet backbone with two state-of-the-art trackers (SiamRPN++ and

SiamMask) and evaluate its capability for real-time tracking.

5.7.1 Evaluation Using SiamRPN++

Siamese network is one of the most popular network structures for building

object trackers. The Siamese trackers locate the object by the correlation

between features extracted from the exemplar image and search image, where

DNN-based feature extraction plays an important role. SiamRPN++ [114]

is the first Siamese tracker that has been proven to profit from using DNN

backbones with different capacities as long as they are properly trained. To

evaluate the performance of different backbones, we train three SiamRPN++

trackers with AlexNet, ResNet-50, and SkyNet backbones on GOT-10k. We

maintain the size of exemplar and search images as 127×127 and 255×255

(128×128 and 256×256 for SkyNet for better implementation efficiency),

respectively, and we set the learning rates to start from 1e-3 to 1e-5. Results

are shown in Table 5.7 where SkyNet achieves nearly the same quality (AO

and SR) as the ResNet-50 backbone but much better speed (1.59× faster).

5.7.2 Evaluation Using SiamMask

SiamMask [115] is another Siamese tracker which outperforms SiamRPN++

by incorporating image segmentation for object tracking tasks. Since the seg-

70



Table 5.8: Performance of SiamMask trackers on GOT-10k with different
backbones evaluated on single NVIDIA 1080Ti.

Backbone AO SR0.50 SR0.75 FPS

ResNet-50 0.380 0.439 0.153 17.44
SkyNet 0.390 0.442 0.158 30.15

mentation information is not provided, it cannot be directly trained with the

GOT-10k dataset. Instead, we perform training using Youtube-VOS dataset

[116] and apply object tracking on Got-10K to compare the performance of

different backbones using the SiamMask structure. We maintain the same

input size setup as Section 5.7.1 and apply the learning rates from 1e-3 to

1e-4. As shown in Table 5.8, the proposed SkyNet backbone outperforms

ResNet-50 in all metrics when using SiamMask tracker with better tracking

quality and 1.73× speedup.

5.8 Conclusion

In this chapter, we proposed a DNN-accelerator co-design method for deliv-

ering efficient edge AI applications. The proposed co-design method includes

a bottom-up hardware-efficient DNN design approach to capture hardware

limitations using realistic hardware feedback and a top-down approach for

high-performance FPGA accelerator design. We then introduced a unified

intermediate representation called Bundle to effectively balance the hard-

ware and software metrics. By applying the proposed co-design method,

we proposed SkyNet for running object detection on embedded systems.

SkyNet was demonstrated by the low power object detection challenge on

the IEEE/ACM DAC-SDC and won the first place winner award for both

GPU and FPGA tracks. We also extended SkyNet to handle object track-

ing tasks, and it delivered 1.60× and 1.73× higher FPS, and 37.20× smaller

parameter size with comparable accuracy when compared to the state-of-the-

art Siamese trackers with ResNet-50 backbone. By enabling DNN-accelerator

co-design, the solutions introduced in this chapter can solve more challeng-

ing co-design problems by delivering highly optimized DNNs and accelerators

simultaneously.

71



CHAPTER 6

F-CAD: A CUSTOMIZED ACCELERATOR
DESIGN FLOW FOR EMERGING EDGE

VR APPLICATIONS

6.1 Introduction

VR is a major area in which AI technologies play essential roles, and it

urgently needs efficient hardware acceleration. The emerging VR applications

are compute- and memory-intensive and require real-time and high-quality

image rendering on edge devices (e.g., VR headsets). Take codec avatar as

an example. It is one of the most impressive breakthroughs that enables

immersed communications in VR with photo-realistic and three-dimensional

human appearances and real-time expressions [29]. This emerging application

helps achieve VR telepresence with more effective communications with not

only speaking and listening but also facial expressions and body languages.

The latest DNN model to render codec avatar (introduced in Section 2.1.3)

contains multiple DNN branches and complicated layer dependencies with

more than 13.6 GFLOP and 7.2 million parameters. It is required to serve

with real-time response and high throughput (90 or even 120 FPS) for smooth

user interactions. We present the whole codec avatar system in Figure 6.1,

where all the information (e.g., a wry smile and a furrowed brow) of the

transmitter (TX) will be encoded, transmitted, and decoded after reaching

the receiver (RX) to generate the TX’s codec avatar for high-fidelity social

presence. Among them, the decoder is the most complex module, occupying

90% of the calculations required by the entire system. Without effective

optimizations, it can easily become the bottleneck and hinder the smooth

running of VR telepresence.

However, deploying codec avatar decoders on VR headsets presents sig-

nificant challenges. It is compute- and memory-intensive. It also requires a

higher refresh rate (90 or even 120 FPS) compared to non-VR applications

(30 FPS) to prevent motion sickness and real-time response for smooth user

72



Figure 6.1: Social interactions with codec avatars using head-mount devices
(HMDs) in VR. The TX’s information is captured by the built-in sensor,
compressed into a TX code by the encoder, and passed through the
network. The RX then starts decoding based on the virtual environment
and the state of the RX, and eventually displays TX’s information on the
HMD [20].

interactions. In this case, the strategy of using a large batch size becomes in-

feasible, as the extra delay in collecting batch inputs may fail to meet the real-

time requirement. In addition, emerging codec avatar decoders start adopt-

ing complicated multi-branch DNNs with customized neural network layers

to generate different components of the codec avatar, such as one branch

for facial geometry and another for textures. These branches may have very

different requirements. Such unique challenges make codec avatar decoders

difficult to be handled effectively by existing hardware accelerators. Evalu-

ated by a state-of-the-art commercial SoC processor (Snapdragon 865 [117])

and two recently published DNN accelerators from academia (DNNBuilder

[10] and HybridDNN [72]), we have found that all these accelerators failed

to deliver satisfactory performance and efficiency required by this compelling

VR application.

So, we propose F-CAD, a new automation tool for building customized

hardware accelerators to accelerate emerging VR applications at the edge.

We focus on codec avatar decoding in this chapter as an important and

practical use case of F-CAD to deliver the optimized hardware accelerators by

meeting specific performance targets under resource budgets. To summarize,

the main contributions are as follows.

• This is the first work that focuses on building an automated design flow

with rapid hardware accelerator design and exploration to leverage VR

avatar applications for resource-constrained devices.

73



• We propose a novel elastic architecture. It is a new accelerator tem-

plate with two-dimensional expansion capability to flexibly support

multi-branch DNNs with complicated layer dependencies and a well-

constructed architecture unit to support up to three-dimensional par-

allelism (3D parallelism) for high throughput and efficiency.

• We define a multi-branch dynamic design space to cover all possible

hardware design combinations. It allows F-CAD to obtain the opti-

mized solution with the best achievable performance by considering

customized requirements and resource constraints.

• We integrate a DSE engine to leverage efficient explorations within

the predefined space and deliver the best accelerator by considering

various customized constraints, such as available resources, maximum

parallelism, maximum batch size, different branch priorities, etc.

6.2 Design Challenges of accelerating VR codec avatar

6.2.1 Background of codec avatar

Codec avatar is formulated as a view-dependent Variational Auto-Encoder

(VAE) framework [29, 30]. As described in Figure 6.2, the encoder E takes

sensor-captured images X as inputs and generates an l -dimensional latent

(TX) code z:

z ← E(X), z ∈ Rl (6.1)

where E is a trained DNN transforming spatial features into a latent code.

This code and the view code (v, indicating the RX’s view direction) are

processed by the decoder D to generate graphic components of avatars. In

Figure 6.2, D outputs facial geometry and view-specific texture information:

M,T ← D(z, v),M ∈ Rn×3, T ∈ Rw×h (6.2)

where D is a multi-branch DNN with deconvolution-like structures for re-

constructing TX’s realistic VR appearances. M represents the facial shape

comprising n-vertices, and T is the view-dependent RGB texture with w×h

74



Figure 6.2: The VAE framework adopted by the Codec Avatar application.

resolution. In state-of-the-art designs, decoders are much more complicated

than encoders, which contribute more than 90% of operations of the whole

VAE framework. Therefore, decoders urgently need high-performance and

efficient accelerators.

6.2.2 The targeted decoder structure

In this chapter, we target a state-of-the-art codec avatar decoder for facial

animation. It is shown in Table 6.1 with three branches (Br.) for generat-

ing facial geometry (3D vertices), UV texture (a 2D surface of a 3D model

following U- and V-axis), and warp field (specular effects), of which the sec-

ond and third branches have a common front part. The input of Br. 1 is

reshaped from a 256-dimensional latent code, while the input of Br. 2 and 3

is the combination of both latent and view code to have texture appearance

conditioned by different view angles. We adopt C, A, and U to represent the

customized Conv, activation, and up-sampling layer, respectively, and we use

× to indicate the number of repetitions. In total, the decoder contains 13.6

GFLOP and 7.2 million parameters without repeatedly counting the shared

part. Unlike general DNNs, the decoder introduces complex data depen-

dencies by adopting multi-branch structures and HD intermediate results for

high-quality VR avatar textures. Other features come from the customized

Conv, where each output pixel has its dedicated bias (as known as untied

bias) instead of sharing one bias across pixels within the same output channel.

75



Table 6.1: Network architecture of the targeted decoder

Br. [Input size]→Network→[Output size] GFLOP Parameters
1 [4,8,8]→[CAU]×5+C→[3,256,256] 1.9 (10.5%) 1.1M (12.1%)
2 [7,8,8]→ [CAU]×2+C→[3,1k,1k] 11.3 (62.4%) 6.1M (67.0%)
3 [CAU]×5+ C→[2,256,256] 4.9 (27.1%) 1.9M (20.9%)

6.2.3 Accelerator design challenges

The unique multi-branch feature and customized layers from codec avatar

decoders cause complicated dataflows and high compute and memory de-

mands during inference, which make existing DNN accelerators ineffective.

Challenges include the enormous and unevenly distributed computations and

the substantial memory footprints (with the intermediate feature map size

up to 16× 1024× 1024). This becomes even more challenging for hardware

accelerators with limited resources but aiming at real-time response with

high throughput performance.

We select three existing accelerators from industry (Snapdragon 865 SoC

[117]) and academia (DNNBuilder [10], HybridDNN [72]) to accelerate codec

avatar decoding. For 865 SoC, we run the targeted decoder shown in Table

6.1. Since DNNBuilder and HybridDNN have not supported the customized

Conv, we create a mimic decoder by replacing the customized Conv with the

conventional one while keeping the rest of the network structure unchanged.

The mimic decoder has a highly similar structure but 3.7% less computa-

tions, which can still provide insights to identify bottlenecks of the existing

accelerator designs. During the evaluation, we use two performance indica-

tors, including FPS (to indicate the throughput) and efficiency (the ratio

between actual and theoretical peak throughput as Equation 6.3 to evaluate

whether an accelerator works efficiently). β represents the number of oper-

ations handled by one multiplier in one clock cycle. For example, β = 2 for

16-bit operands in FPGA where multipliers are implemented by DSPs.

EFFI =
GOP per Second

β ×# of Multiplier × FREQ
(6.3)

As shown in Table 6.2, the 865 SoC only delivers 35.8 FPS even though

it integrates an AI engine for DNN workloads. The major bottleneck is its

76



Table 6.2: Evaluations by 865 SoC (@1450MHz) [117], DNNBuilder
(@200MHz) [10] and HybridDNN (@200MHz) [72] when running the
targeted decoder

Scheme Utilization FPS Efficiency
865 (8-bit) - - 35.8 16.9%

DNNBuilder
(8-bit)

1 DSP: 644, BRAM: 723 30.5 81.6%
2 DSP: 1044, BRAM: 861 30.5 50.4%
3 DSP: 1820, BRAM: 1197 30.5 28.8%

HybridDNN
(16-bit)

1 DSP: 512, BRAM: 576 12.1 77.5%
2 & 3 DSP: 1024, BRAM: 1120 22.0 70.4%

limited cache size, which causes frequent data transfers and severely restricts

performance. So, its overall efficiency barely reaches 16.9%. We then tar-

get three FPGAs (Xilinx Z7045, ZU17EG, and ZU9CG corresponding to

Scheme 1, 2, and 3) with increasing resource budgets and let DNNBuilder

and HybridDNN generate accelerators with unfolded and folded accelerator

structures for running the mimic decoder, respectively. DNNBuilder achieves

a slightly lower throughput (30.5 FPS) and a much higher efficiency (81.6%)

using the Z7045 FPGA in Scheme 1 compared to the 865 SoC. Its unfolded

structure allows dedicated DNN layer acceleration for higher design speci-

ficity. Still, it fails to scale using more resources in Scheme 2 and 3 and

suffers deteriorating efficiency. For HybridDNN, we adopt a 16-bit mimic

decoder as 8-bit models are not supported. The scalability is slightly bet-

ter than DNNBuilder when handling more abundant resources in Scheme 2.

However, its folded structure and coarse-grained configuration prevent fur-

ther scaling in Scheme 3, and it generates an accelerator with the same size

as that from Scheme 2.

6.3 The Proposed F-CAD Design Flow

We propose F-CAD to address these challenges and deliver customized hard-

ware accelerators for codec avatar decoding. As shown in Figure 6.3, F-CAD

directly connects to popular machine learning frameworks and takes the de-

veloped decoder models as inputs as well as arbitrary hardware budgets and

77



Figure 6.3: The proposed F-CAD design flow with three major steps to
deliver optimized hardware accelerators for codec avatar decoding.

differentiated branch priority for more refined customization.

In the Analysis step, F-CAD starts analyzing the targeted network by

extracting not only layer-wise information (e.g., layer types, layer configu-

rations), but also branch-wise information (e.g., branch number, number of

layers in each branch, and layer dependencies). Then, the profiler begins

to calculate the compute and memory demands of each layer and provides

statistics on branch-wise demands to help map the targeted decoder onto our

proposed accelerator architecture. Inputs also contain resource budgets and

branch priority to set up resource boundaries and highlight the importance

of different branches for architecture exploration in Step 3.

In the Construction step, layer fusion is performed to reduce the layer

number, where lightweight layers (e.g., activation layers) are aggregated to

their neighboring major layers, such as Conv-like and up-sampling layers,

which dominate the computation or memory consumption. Branches with

shared parts are then separated to create individual dataflows, and the cor-

responding layers are reorganized and assigned to the flow with the highest

computation demand. This strategy helps avoid hardware redundancy, as no

duplicated hardware units will be instantiated, and it creates a clear critical

flow (with the most computations) from the shared branches and guarantees

this flow will get enough attention in the Optimization step. For example,

Br. 2 and 3 of the targeted decoder share the same front-end. Layers from

this part will be assigned to Br. 2 as it is more critical and contains higher

computation demand. After fusion and reorganization, F-CAD imports and

expands the proposed elastic architecture (Section 6.4) along X and Y dimen-

78



sions according to the layer and branch number, respectively. Eventually, a

basic accelerator is generated and will be optimized in Step 3.

In the Optimization step, the accelerator design space (Section 6.5.1) is first

determined. The layers and branches of the decoder contribute to the higher

dimensional design space, so it becomes complex to search for the optimized

design. F-CAD introduces a DSE engine (Section 6.5.2) to leverage both

cross-branch and in-branch optimization. A stochastic search is applied in

the cross-branch optimization to explore resource distribution schemes across

branches; a greedy search is adopted for in-branch optimization, finding the

best accelerator candidate for each branch by considering design spaces and

available resources. After that, accelerator candidates are evaluated against

performance, efficiency, and customization requirements. The DSE engine

eventually generates the globally optimized design through an iterative pro-

cess.

6.4 Accelerator Architecture

6.4.1 A layer-based multi-pipeline accelerator paradigm

The design paradigm of our proposed accelerator is presented in Figure 6.4

(a). Inputs of each branch (e.g., three 256-dimensional latent codes named In

a1 ∼ a3 for branch 1) are processed in a pipeline manner and passed through

all pipeline stages belonging to that branch. For branches with the shared

part, corresponding stages are assigned to one of the branches following the

layer reorganization strategy. For example, Br. 2 and 3 share the first two

layers, so stage 1 ∼ 2 are assigned to Br. 2 in this case, while the subsequent

stages are separately executed. The results of stage 2 are distributed to two

different branches. We also adopt the fine-grained pipeline design from [10]

to lower the pipeline initial latency.

6.4.2 The elastic architecture with 2D expansion capability

To enable the proposed accelerator paradigm, F-CAD introduces an elastic

architecture to flexibly expand the accelerator following two dimensions. In

Figure 6.4 (b), this elastic architecture consists of basic architecture units

79



Figure 6.4: (a) F-CAD generated accelerators follow a layer-based
multi-pipeline accelerator paradigm, where each layer after reorganization
contributes to a pipeline stage; (b) The proposed elastic architecture
features a flexible expansion capability, which can be extended along
X - and Y -axis to instantiate multiple basic architecture units according to
the branch number and the layer number in each branch for parallel
processing across branches. Each basic architecture unit is equipped with
external memory, on-chip memory (for weight buffers and input buffers),
and computation resources (for PEs). It provides maximum
three-dimensional parallelism (3D parallelism) following input
channel, output channel, and the height of the input feature map when
handling compute-intensive DNN layers; (c) Example of data partitioning
to enable the proposed 3D parallelism.

that are arranged in a two-dimensional plane reflecting the layer reorganiza-

tion results and each unit is responsible for one pipeline stage. For example,

the expansion following the X -axis, such as unit instances (1,1), (1,2), and

(1,3), means more stages (three in this case) need to be handled in this

branch; the expansion along the Y -axis represents more branches are used

in the targeted decoder. In this example, F-CAD generates an accelerator

with three pipelines corresponding to Br. 1 ∼ 3.

Inside the basic architecture unit, there are three types of resources: com-

putation (yellow area), on-chip memory (blue and green areas), and external

memory (red area) resources. The input feature map from the previous layer

is passed horizontally from the left, and a fraction of it is kept in the input

buffer (InBuf) to provide a timely data supply. Meanwhile, DNN parameters

are fetched from external memory and stored in the weight buffer (Weight-

Buf) following the computation order. Each basic architecture unit is highly

configurable to meet various requirements from different layer stages. It sup-

ports the proposed 3D parallelism, which includes two unrolling factors along

the output and input channels (kernel parallelism factor kpf and channel

80



parallelism factor cpf ) and the partition factor of the input feature map (H-

partition). After configuration, H-partition number of compute engines are

instantiated and each engine contains kpf PEs to handle computations. The

proposed basic architecture unit also allows customized bitwidth of the input

features (DW), the weights (WW), and the external memory bus (MW).

6.4.3 The basic architecture unit with 3D parallelism

Figure 6.4 (c) provides a detailed illustration of the proposed 3D parallelism.

Assuming a Conv-like layer with a 4×6×3 input feature map (InFM) and two

4×2×2 kernels. We have the maximum input parallel factor as cpf max = 4

and the maximum output parallel factor as kpf max = 2, since this layer

contains four input channels and two output channels that can be processed

in parallel. In this case, we configure both input and output parallel factors

as 2 (cpf = kpf = 2), so each compute engine will instantiate two PEs and

each PE performs two multiply-accumulations (MACs) in parallel. Since the

parallelism from input/output channels may not be sufficient for codec avatar

decoding, we add one additional parallelism by partitioning the InFM along

the height dimension. So, all InFM subsections can be processed in parallel.

The total parallel factors of this example are cpf × kpf× H-partition = 8

with four PEs instantiated.

6.5 Multi-Branch Design Space Exploration

6.5.1 Multi-branch dynamic design space

Although the highly configurable and scalable features of the proposed elas-

tic architecture help address the unique network structures adopted by codec

avatar decoders, they also introduce a complicated and high-dimensional de-

sign space. The more branches in the decoder or more layers in a branch

there are, the higher dimensional design space it becomes. We define it as

a multi-branch dynamic design space and summarize all configurable hard-

ware parameters in Table 6.3. Assuming a decoder with B branches, we

pick the first two (with l and m layers) and the last branch (with n layers)

as examples. Each of them can be configured in four major aspects as the

81



Table 6.3: The multi-branch dynamic design space

Br. Hardware configurable parameters
1 config1 ← batchsize1, cpf 1

1 · · · cpf 1
l , kpf 1

1 · · · kpf 1
l , h1

1 · · ·h1
l

2 config2 ← batchsize2, cpf 2
1 · · · cpf 2

m, kpf 2
1 · · · kpf 2

m, h2
1 · · ·h2

m

· · · · · · · · ·
B configB ← batchsizeB, cpfB

1 · · · cpfB
n , kpfB

1 · · · kpfB
n , hB

1 · · ·hB
n

Customization Q, BatchSize1 · · ·BatchSizeB, P1 · · ·PB

Resource budgets Cmax, Mmax, BWmax

cpf, kpf, and H-partition (h) from the proposed 3D parallelism and batch size

(batchsize). Parameters of the same branch are passed to a configuration file

(config), and all these files together describe the overall accelerator configu-

ration. The goal of F-CAD is to explore the best accelerator configuration in

the design space by considering the customization and resource constraints.

The customization includes the data quantization (Q), the branch-wise tar-

geted batch size (BatchSize), and the priority (P ) to indicate the different

importance of each branch. While the resource budgets specify three major

resources as compute resource Cmax, on-chip memory Mmax, and external

memory access bandwidth BWmax.

6.5.2 Design space exploration

To effectively search for the best configuration, the proposed DSE engine

adopts a two-step strategy with a cross-branch stochastic search and an in-

branch greedy search. It follows the divide and conquer idea to first confirm

the resource distribution for every branch and then aim for the best individual

branch configuration with given resources.

Cross-branch optimization

In Algorithm 6, the proposed DSE engine first randomly generates P re-

source distribution schemes (rd). Each scheme is considered as a candidate,

corresponding to a cross-branch resource distribution regarding compute re-

source C, on-chip memory M , and external memory access bandwidth BW .

82



Algorithm 6: Cross-branch optimization algorithm

1 Setup resource budgets: budget ={Cmax, Mmax, BWmax}
2 Setup maximum iteration number: N
3 Import user customization: U = {BatchSize, Priority}, where

BatchSize ={BatchSize1, · · · , BatchSizeB},
Priority ={P1, · · · , PB}

4 Randomly initialize RD0 with P population: {rd01, · · · , rd0p}
5 for iter in range(N ) do
6 for rditeri in RDiter do
7 for brj in {br1, · · · , brB} do
8 configj ← InBranchOptim(rditeri , U) ▷ Algorithm 2
9 end

10 Config = {config1, · · · , configB}
11 Perf ← Eval(Config) ▷ Evaluate performance
12 fitness← S(Perf , U) − P(Perf) ▷ Get fitness score
13 rdbesti , rdbestglobal ← Update(fitness, rdbesti , rdbestglobal)

14 if rdbestglobal has changed then
15 Configbestglobal = Congfig ▷ Save the best HW config.

16 rditer+1
i ← Evolve(rditeri , rdbesti , rdbestglobal, budget)

17 end

18 end
19 return rdbestglobal, Configbestglobal ▷ Output the global optimal design

In each iteration, rd is then passed to Algorithm 2 for a detailed hardware

configuration (Config) following the proposed architecture template. With

the Config, we can evaluate the accelerator performance and calculate the

fitness score for every candidate. We build a function S to provide a weighted

score based on the branch performance Perf ={perf1 · · · perfB} and branch

priority factor as
∑B

j=1 perfj × Pj. We also introduce a penalty term P to

control the branch-wise performance variance as: α × σ2(Perf). Then, we

calculate the fitness score by subtracting P from S. A candidate with higher

fitness score means it is better than others. We define rdbesti and rdbestglobal to

keep track of the local best of each candidate across all iterations and the

global best candidates. rdbesti and rdbestglobal can clarify the optimization direc-

tions in each iteration, so that each candidate can be evolved iteratively to

approach the local and the global best positions by a random distance. By

performing such a stochastic search, eventually, Algorithm 6 discovers the

global best design by considering the given constraints.

83



Algorithm 7: In-branch optimization algorithm

1 Input resource distribution: rd = {C, M , BW}
2 Input user customization from U : BatchSize
3 Initialize config for a l-layer branch: {pf1, · · · , pfl}
4 for layerk in {layer1, · · · , layerl } do
5 opk ← GetOP(layerk)
6 norm paramk ← GetReuse(layerk)

7 end
8 opmin = min(op1, · · · , opl)
9 norm bw =

∑l
k=1(opk/opmin)× norm paramk × Freq

10 for k in range(l) do
11 pfk = ⌈BW/norm bw × (opk/opmin)⌉ ▷ Parallelism targets
12 end
13 while True do
14 for layerk in {layer1, · · · , layerl } do
15 cpfk, kpfk, hk ← GetPF(pfk, layerk)
16 ck, mk, bwk ← Utilization(cpfk, kpfk, hk)

17 end

18 batchsize = min(C/
∑l

k=1 ck,M/
∑l

k=1mk, BW/
∑l

k=1 bwk)
19 if batchsize < BatchSize then
20 {pf1, · · · pfk}/2
21 else
22 batchsize = BatchSize break
23 end

24 end
25 config ← batchsize, {cpf1 · · · cpfk}, {kpf1 · · · kpfk}, {h1 · · ·hk}
26 return config ▷ Output HW config.

In-branch optimization

rd is passed to Algorithm 7 for the best in-branch hardware configuration.

Since the proposed accelerator follows an unfolded pipeline architecture, its

throughput can be maximized when all pipeline stages are load-balanced

with similar latency. To achieve this goal, we capture the layer-wise compute

demands (op) and data reuse characteristics (norm param) to obtain the

most optimistic layer-wise parallelism targets (pf) by exhausting the allo-

cated bandwidth resources. After that, a greedy search algorithm is applied

to approach hardware configurations (config) with the largest level of paral-

lelism under resource constraints. It will converge once the parallelism fails

to grow.

84



Figure 6.5: F-CAD FPS estimation errors targeting eight benchmarks.

Figure 6.6: F-CAD efficiency estimation errors targeting eight benchmarks.

6.5.3 Performance estimation

We adopt highly accurate analytical models to provide performance and re-

source utilization feedback and help the DSE engine make the most suitable

decisions. Since each branch is individually evaluated, we take a branch with

l Conv-like layers as an example. For layer i, we assume the input feature

map size InChi ×Hi ×Wi and the kernel size OutChi × InChi ×Ki ×Ki.

With hardware configuration Config, the latency Lati when executing layer

i with working frequency f can be determined as:

Lati =
OutChi × InChi ×Hi ×Wi ×Ki ×Ki

cpfi × kpfi × hi × f
(6.4)

The overall throughput (FPS) of this branch is:

FPS =
BatchSize

max(Lat1, Lat2, ..., Latl)
(6.5)

85



Estimations also include the resource utilization {C, M , BW} (by summing

up the resource consumed by all layers) and efficiency (by following Equation

6.3). To verify the accuracy of our method, we select DNN benchmarks in-

cluding AlexNet, ZFNet, VGG16, and Tiny-YOLO with 16-bit (benchmarks

1 ∼ 4) and 8-bit (benchmarks 5 ∼ 8) quantization schemes and compare their

estimated performance to the real performance after board-level implemen-

tation on a Xilinx KU115 FPGA. As shown in Figure 6.5, we normalize the

FPS to the real results in every case to better illustrate the error rate. Real

FPS results are also listed in the green bars. The maximum error is only

2.89% while the average error is 2.02%. Similarly, we present the efficiency

error in Figure 6.6 with 3.96% maximum error and 1.91% average error.

6.6 Experimental Results

In this section, we target three embedded FPGA platforms (Xilinx Z7045,

ZU17EG, and ZU9CG) to demonstrate F-CAD’s capability and scalability for

accelerating codec avatar decoding. Since the targeted platforms are FPGAs,

we set up resource budgets Cmax and Mmax as the available DSPs and BRAMs

in the targeted FPGA, and BWmax as the DDR3 memory bandwidth. The

clock frequency is set to 200MHz for all platforms. The targeted decoder is

described in Table 6.1 with customized batch size {1, 2, 2} corresponding to

Br. 1 ∼ 3. Such customization is considered by most VR avatar applications

where Br. 2 and 3 need to render two HD textures with specular effects seen

by both eyes, while the Br. 1 only outputs one facial geometry that both

eyes can share.

Experimental results are listed in Table 6.4, where F-CAD generates five

accelerators following the proposed elastic architecture. To evaluate the

search speed, we perform 10 independent searches with N = 20 (mean-

ing the search contains 20 iterations) and P = 200 (meaning 200 resource

distribution candidates are initialized) for each case, and all of them con-

verge in minutes using an Intel i7 CPU working at 2.6 GHz. The average

iteration for convergence is 9.2 (min: 6.8; max: 13.6). Eventually, F-CAD

generates optimized designs by considering customization and resource con-

straints. In particular, the accelerator for case 4 reaches the highest 122.1

FPS, which fully satisfies the VR requirements; while accelerator for case 5

86



T
ab

le
6.

4:
F

-C
A

D
ge

n
er

at
ed

ac
ce

le
ra

to
rs

fo
r

co
d

ec
av

at
ar

d
ec

o
d

in
g

B
r.

D
S
P

U
sa

g
e

T
o
ta

l
D
S
P
s

B
R
A
M

U
sa

g
e

T
o
ta

l
B
R
A
M

s
F
P
S

E
ffi
c
ie
n
c
y
(%

)
D
S
E

T
im

e
(s
)

C
a
se

1
:
Z
70
45

(8
-b
it
)

1
19
9

7
3
7
(8
1
.8
%
)

2
2
1

8
8
4
(8
1
.1
%
)

6
1
.0

7
6
.6

1
0
1
.8

R
es
ou

rc
e
b
u
d
ge
t:

2
50
0

5
5
1

3
0
.5

8
6
.6

90
0
D
S
P
s,

10
90

B
R
A
M
s

3
38

1
1
2

6
1
.0

8
4
.2

C
a
se

2
:
Z
U
17
E
G

(8
-b
it
)

1
35
1

1
3
5
7
(8
3
.5
%
)

2
8
0

1
0
2
4
(6
4
.3
%
)

1
2
2
.1

8
6
.8

7
7
.3

R
es
ou

rc
e
b
u
d
ge
t:

2
93
6

6
4
2

6
1
.0

9
2
.6

15
90

D
S
P
s,

15
92

B
R
A
M
s

3
70

1
0
2

1
2
2
.1

9
1
.4

C
a
se

3
:
Z
U
17
E
G

(1
6-
b
it
)

1
35
1

1
3
0
1
(8
1
.8
%
)

3
8
2

1
5
7
3
(9
8
.8
%
)

6
1
.0

8
6
.8

8
2
.8

R
es
ou

rc
e
b
u
d
ge
t:

2
92
8

9
8
3

3
0
.5

9
3
.4

15
90

D
S
P
s,

15
92

B
R
A
M
s

3
22

2
0
8

1
5
.3

7
2
.7

C
a
se

4
:
Z
U
9C

G
(8
-b
it
)

1
35
1

2
2
2
9
(8
8
.5
%
)

2
8
0

1
1
6
8
(6
4
.0
%
)

1
2
2
.1

8
6
.8

5
6
.9

R
es
ou

rc
e
b
u
d
ge
t:

2
18
08

7
8
6

1
2
2
.1

9
5
.8

25
20

D
S
P
s,

18
24

B
R
A
M
s

3
70

1
0
2

1
2
2
.1

9
1
.4

C
a
se

5
:
Z
U
9C

G
(1
6-
b
it
)

1
35
1

2
2
1
3
(8
7
.8
%
)

3
8
2

1
7
3
5
(9
6
.1
%
)

6
1
.0

8
6
.8

6
7
.6

R
es
ou

rc
e
b
u
d
ge
t:

2
17
92

1
1
8
3

6
1
.0

9
6
.7

25
20

D
S
P
s,

18
24

B
R
A
M
s

3
70

1
8
8

6
1
.0

9
1
.4

87



Table 6.5: Result comparison to existing customized accelerators
(@200MHz)

DNNBuilder[10] HybridDNN[72] F-CAD (our work)
Precision 8-bit 16-bit 8-bit 16-bit

DSP 1820 1024 2229 2213
BRAM 1197 1120 1168 1735

FPS 30.5 22.0 122.1 61.0
Efficiency 28.8% 70.4% 91.3% 91.6%

delivers the highest efficiency peaking at 96.7%, which can efficiently leverage

codec avatar decoding using lightweight HMDs.

We compare F-CAD generated accelerators to existing designs in Ta-

ble 6.5 by targeting the same ZU9CG FPGA with 2520 DSPs and 1824

BRAMs. We use the same mimic decoder mentioned in Section 6.2.3 for

DNNBuilder and HybridDNN, while using the targeted decoder (a real-life

decoder) for F-CAD. The batch size is uniformly set to one for fair compar-

ison, as DNNBuilder and HybridDNN do not support differentiated batch

schemes. The performance and efficiency of DNNBuilder are limited by in-

sufficient parallelism, so the allocated resources are not fully utilized. On the

other hand, HybridDNN fails to allocate more DSPs and leaves more than

half of available DSPs unallocated. The reason is that the coarse-grained

configuration requires a double-sized accelerator instance to continue scal-

ing, but the BRAM budget is not enough and becomes a bottleneck. In our

design, F-CAD delivers the highest FPS and efficiency given the same re-

source budgets. Compared to DNNBuilder, we achieve 4.0× higher through-

put and 62.5% higher efficiency for running the 8-bit codec avatar decoder.

Compared to HybridDNN, we can deliver 2.8× higher throughput by allo-

cating only 2.2× more DSPs and 21.2% higher efficiency when running the

16-bit model. F-CAD can also target ASIC designs with the resource budgets

{Cmax, Mmax, BWmax} associating to three most commonly used resources

in ASIC DNN accelerators: the available MAC units, the on-chip buffer size,

and the external memory bandwidth.

88



6.7 Conclusion

In this chapter, we presented F-CAD, an automation tool to design and

explore optimized hardware accelerators for VR avatar decoding with high

throughput and efficiency. To address the unique challenges coming from the

special DNN structures and demanding performance requirements, we pro-

posed an expandable elastic architecture to support multi-branch DNNs and

a highly configurable basic architecture unit to provide flexible and scalable

parallel processing. We then introduced a multi-branch dynamic design space

to describe hardware configurations and an efficient DSE engine to explore

the optimized accelerator by considering various customized constraints and

available resource budgets. F-CAD delivered the highest throughput and ef-

ficiency, peaking at 122.1 FPS and 91.6%. Compared to the state-of-the-art

accelerators, F-CAD achieved 4.0× and 2.8× higher throughput and 62.5%

and 21.2% higher efficiency than DNNBuilder and HybridDNN when tar-

geting the same FPGA. F-CAD significantly expands the capability of our

toolset proposed in this dissertation, which helps overcome emerging edge AI

challenges.

89



CHAPTER 7

AUTODISTILL: AN END-TO-END
FRAMEWORK TO EXPLORE AND
DISTILL HARDWARE-EFFICIENT

LANGUAGE MODELS

7.1 Introduction

Recently, large-scale pre-trained language models have achieved state-of-the-

art results on many tasks. These models not only facilitate a variety of NLP

applications but also have continuously improved the result quality of these

challenging tasks [26, 118, 119, 52]. Among these models, BERT [52] achieves

state-of-the-art performance on a number of NLP tasks and has profoundly

affected subsequent model designs [120, 121, 122, 57].

With the advent of such large-scale language models, minimizing the serv-

ing cost is becoming increasingly important. They make serving challenging,

even for datacenters, due to their sheer sizes. Furthermore, recent advances

in techniques to amortize the training cost of large language models, such as

fine-tuning, make serving even more costly than training, let alone the fact

that training cost is usually amortized over weeks or months while the cost

of serving adds up from every request. To alleviate this problem, recent work

has extensively investigated model compression techniques, and knowledge

distillation is one of the most promising techniques. Earlier knowledge dis-

tillation work focuses on distilling large models, like BERT, to task-specific

compact designs with less redundancy in model architecture [54, 55, 56], or

task-agnostic pre-trained models, which can then be fine-tuned to different

downstream tasks [57, 58].

In this chapter, we extend our proposed toolset to support the NLP do-

main and address two key challenges in practical application of knowledge

distillation as part of regular large-scale model release processes: (1) fully

automated, efficient distillation process and (2) latency-guided model opti-

mization. Production models in datacenters are diverse and evolve rapidly,

which necessitates distillation without human in the loop for scalability. Also,

90



latency is a crucial metric for production model serving since user-facing

products often have strict latency requirements and any latency reduction

leads to a significant ownership cost and carbon footprint reduction consid-

ering datacenters’ large volume. Therefore, we propose AutoDistill, a model

distillation framework integrating model architecture exploration and multi-

objective optimization for building hardware-aware NLP pre-trained models.

To summarize, the main contributions of this paper are as follows.

• We propose an end-to-end framework for fully automated model distil-

lation, which satisfies user-defined metrics and constraints by delivering

optimized pre-trained models distilled from large NLP models. It can

be easily extended to new search spaces and objectives, thereby elimi-

nating the need for distillation experts. It helps solve the most critical

problem of productionizing large-scale model distillation in datacenters

and significantly reduces the datacenters’ ownership cost and carbon

footprint when serving the emerging NLP applications.

• We use Bayesian Optimization (BO) [123, 124] to conduct multi-objective

NAS for student model architectures. The proposed search comprehen-

sively considers both prediction accuracy and serving latency on target

serving hardware. It is the first time that BO is adopted by the NAS

and distillation framework to deliver hardware-efficient large-scale NLP

pre-trained models.

• Enabled by AutoDistill, the experiments on TPUv4i identify seven

model architectures with up to 3.2% higher pre-trained accuracy and

up to 1.44× speedup on latency compared to MobileBERT [57]. Four of

them have higher GLUE average scores (up to 81.69) than BERTBASE [52],

DistillBERT [125], TinyBERT [126], and MobileBERT. Two models

are smaller and have higher SQuAD accuracy than DistillBERT, Tiny-

BERT, and NAS-BERT [58].

7.2 Knowledge Distillation Background and Challenges

After BERT was proposed in [52], it has attracted extensive studies on model

compression. Knowledge distillation is one widely adopted method to deliver

91



compact BERT models for serving environments where memory or latency

is limited. For example, the authors in [55] perform task-specific knowledge

distillation and transfer the knowledge from BERT to a single-layer LSTM

model, while the authors in [56] distill smaller BERT models for sequence

labeling tasks. Also, a distillation method is developed in [54] to extract

knowledge from a teacher model’s intermediate and last layers. In addi-

tion, DistillBERT [125] performs distillation during model pre-training and

reduces the depth of BERT by half. TinyBERT [126] performs layer-wise

distillation for model pre-training and fine-tuning. Researchers also focus on

building task-agnostic compressed models. For example, MobileBERT can

be generically fine-tuned on different downstream NLP tasks [57]. Recent

work also shows increasing interest in leveraging NAS for NLP model com-

pression with the goal of discovering more diverse model architectures so that

models no longer rely on handcrafted designs [127, 128].

Although knowledge distillation and NAS help diversify the compressed

model architectures, existing work mainly focuses on reducing model sizes

with accuracy loss as a constraint and formulates model compression as a

single-objective optimization problem. Such a strategy may not guarantee

that the compressed model can be efficiently deployed on the target hard-

ware, as smaller models do not necessarily perform faster. To address this

problem, researchers create a datacenter-optimized network search space and

adopt NAS to discover neural networks with optimized accuracy and serv-

ing latency [129]. NAS-BERT adopts a look-up table (LUT) to calculate

the overall inference latency by adding up costs of the selected operations

and uses the latency to guide model search [58]. Similarly, designs in [127]

consider the layer-wise hardware costs and calculate the overall model per-

formance as a weighted summation of these costs during the architecture

search. However, the weighted summation represents the cost expectation of

a group of operations rather than the actual cost of the selected architecture.

It also excludes the memory transfer overhead between operations which is

very important for accurately modeling performance.

In AutoDistill, we intend to adopt precise hardware feedback by using mod-

els’ measured hardware performance while running on the target hardware

to guide the multi-objective architecture search. Compared to previous de-

signs using proxy or approximated hardware feedback, our method captures

more hardware information that cannot be obtained by previous methods.

92



Figure 7.1: Illustration of the proposed AutoDistill framework. Model
Exploration, Flash Distillation, and Evaluation are applied iteratively for
compressed model exploration. After exploration, the selected models are
passed to regular distillation and then output by the framework. We
assume n different architectures are defined in the design space and model
ak is proposed in the k-th iteration. F. D. and R. D. represent the training
setups for Flash Distillation and regular distillation.

To reduce the search cost, we propose Flash Distillation and adopt the BO

algorithm to effectively explore model architectures. All these features are

integrated into our proposed framework, AutoDistill, to deliver task-agnostic

hardware-efficient pre-trained models.

7.3 The Proposed AutoDistill

7.3.1 Framework overview

AutoDistill provides an end-to-end solution to satisfy user requirements and

generates optimized task-agnostic pre-trained models for target hardware.

User requirements, including objectives and constraints, are passed to Au-

toDistill as inputs, which include pre-training tasks, model design spaces,

target hardware, evaluation metrics, and constraints (e.g., model size, infer-

ence latency limit) that need to be considered. We illustrate the overall flow

in Figure 7.1. Three major stages, Model Exploration, Flash Distillation, and

Evaluation, are executed in a loop for searching models that best suit the

user inputs. Every time the loop is completed, we call it one iteration. After

several iterations, the search engine returns the models on the Pareto curve,

and they are passed to Regular Distillation for more thorough pre-training

93



so that they can be prepared to serve different downstream tasks.

In Model Exploration, the architecture design space is first initialized and

passed to the search engine. During every iteration, the engine searches

for a better-compressed model by considering the design space, evaluation

metrics, and user-specified constraints. We list two metrics as examples in

Figure 7.1 (for Metric 1, the higher, the better; while for Metric 2, the lower,

the better). After several iterations, found models are plotted on the same

coordinate, and AutoDistill selects those located along the Pareto curve as

the most promising candidates. We will provide more detailed explanations

regarding the design space and the search algorithm design in Section 7.3.2

and 7.5.2, respectively.

AutoDistill then adopts Flash Distillation to grow the model recommended

by the last stage. This model is considered as a student model, which learns

from both pre-training datasets and the teacher model. We include three

knowledge distillation technologies: a layer-wise knowledge transfer, a pro-

gressive knowledge transfer, and a model pre-training distillation (details in

Section 7.4). We have demonstrated that the Flash Distillation needs only

5% of the regular pre-training steps to distinguish promising models at the

early stage, which significantly reduces the search efforts. This stage is also

responsible for regular distillation with the same teacher model but different

training setups (which are the hyperparameters, e.g., training steps, learning

rate, and batch size). After iterations of model exploration, regular distilla-

tion is launched with more thorough pre-training setups (e.g., more training

steps) than Flash Distillation. After that, AutoDistill outputs fully distilled

models.

In Evaluation, the flash-distilled student model is evaluated with the tar-

get tasks and hardware. In general, commonly used metrics include the

prediction accuracy (e.g., masked language modeling (MLM) accuracy, next

sentence prediction (NSP) accuracy) and the hardware performance (e.g.,

inference latency, throughput, CE utilization, maximum memory footprint).

After all desired metrics are collected, all information is passed to the Model

Exploration stage, and the search engine selects the next model for the next

iteration. We will introduce how we capture the precise hardware perfor-

mance in Section 7.5.1.

94



Figure 7.2: The student model design template adopted by AutoDistill for
model exploration. It contains a bottleneck structure between two linear
transformations and two major configurable blocks including the
multi-head attention (MHA) block and the feed-forward (FF) block [57].
The orange and blue arrows represent data flows with different dimensions
specified by Hidden Size and Bottleneck Size.

7.3.2 Model template and architecture design space

To enable more diverse model configurations, we refer to the bottleneck struc-

ture from [57] and build a flexible student model template as shown in Figure

7.2. It defines the student model design space by providing multiple config-

urable network components. With the proposed template, AutoDistill can

search for the most suitable model to satisfy user-specific requirements. The

proposed template follows a chain structure and consists of a stack of n con-

figurable building blocks, which connect the first embedding layer and the

last classifier. It shares a similar block-based network design as BERT to en-

sure effective knowledge transfer from BERT-like teacher models. For each

building block, taking the building block i as an example, there are two ma-

jor configurable blocks, called multi-head attention (MHA) and feed-forward

(FF). These two blocks contribute to a five-dimensional architecture design

space that provides a variety of structure combinations.

We summarize the proposed design space in Table 7.1. The first config-

urable factor is called Hidden Size, which indicates the input and output

dimensions of the building block and the input dimension of the MHA block.

The second factor is Bottleneck Size, which shows the output dimension of

the MHA block. We have drawn orange and blue lines in Figure 7.2 to re-

95



Table 7.1: A five-dimensional student model architecture design space.
Note that these only serve as examples and the design space can be
configured differently based on user requirements.

# Configurable Factors Value Choices

1 Hidden Size [128, 246, 384, 512]
2 Bottleneck Size [64, 96, 128, 160]
3 Attention Head Number [1, 2, 4, 8]
4 Intermediate Number [384, 512, 640]
5 Stacked FF Number [2, 4, 6]

spectively denote data flows related to the configuration of hidden size and

bottleneck size. By taking advantage of two linear transformation layers, the

proposed student model design template can accommodate arbitrary value

combinations generated by these configurable factors. Regarding the MHA

design, we allow different configurations of the number of heads (Attention

Head Number). For the FF block design, we consider two configurable fac-

tors: Intermediate Number) and Stacked FF Number. The former explains

the FF intermediate size, while the latter illustrates the number of stacked

FF networks. Note that every FF network contains two dense layers.

Possible values of these factors are listed in Table 7.1 as examples for

quantitative analysis in the following experiments. In total, this example

space contains 576 student model design combinations for one building block.

Note that AutoDistill supports configurable student model design spaces,

which can be further expanded by adding more choices in each configurable

factor.

7.4 Flash Distillation

Model accuracy is considered one of the key metrics for evaluating model

candidates. That means the ability to quickly determine a model’s accu-

racy potential is crucial to the search efficiency of an end-to-end framework.

Therefore, we propose Flash Distillation, a model-agnostic knowledge distil-

lation technique to enable fast selection of promising student models with a

great potential for achieving high accuracy. Flash Distillation incorporates

96



multiple distillation techniques: we adopt layer-wise knowledge transfer for

the MHA blocks and the building block feature maps, which shares similar

strategies in [54, 125], and we use the progressive knowledge transfer [57] to

secure an effective knowledge transfer even for deeper models.

7.4.1 Multiple knowledge transfer schemes

AutoDistill adopts three types of knowledge transfer: MHA transfer LMHA,

building block feature map transfer LFM , and the conventional logit transfer

during pre-training distillation LD. Note that AutoDistill is not restricted

by the following loss function designs (Equation 7.1 - 7.3) as they can also

be configurable by experienced users.

Since the attention mechanism is the unique feature in BERT-like models,

we enable MHA knowledge transfer to better guide student models in imi-

tating their teacher’s attention block behavior. We adopt Kullback-Leibler

divergence (KDL), which is a relative entropy, to measure the differences be-

tween the student and the teacher (DKDL), and our goal is to minimize the

loss as shown as follows:

Lk
MHA =

1

SH

S∑
s=1

H∑
h=1

DKDL(aT ,k
s,h ||a

S,k
s,h ), (7.1)

where S is the sequence length and H is the number of attention heads. aT

and aS denote the attention feature maps from the teacher and the student

model, respectively. k means the distillation happens in the k-th building

block.

Regarding the building block feature map transfer, we minimize the mean

squared error between the teacher and the student model, which is shown as

follows:

Lk
FM =

1

SN

S∑
s=1

N∑
i=1

(fT ,k
s,i − fS,k

s,i )2, (7.2)

where fT is the teacher’s feature map and fS is the student’s feature map.

N denotes the feature map size.

After performing layer-wise knowledge transfers, we include model pre-

97



training distillation and use LD to represent the distillation loss:

LD = αLM + (1− α)LMD + LN , (7.3)

where LM and LMD denote the Masked Language Modeling (MLM) loss and

the MLM distillation loss. LN is the Next Sentence Prediction (NSP) loss.

α is a hyperparameter between 0 and 1.

7.4.2 Knowledge transfer with different layer dimensions

Previous work assumes that the teacher and student layers being distilled

share the same layer dimension sizes as they are handcrafted with careful

considerations of model architectures. However, it is not a reasonable as-

sumption in AutoDistill, since we need to target a much broader design

space with arbitrary student model architectures. The layer dimension size

of the student model may not always be the same as that of the teacher.

To address this issue, we insert a dense layer between the teacher and the

student layers where knowledge transfer occurs. For example, if the dimen-

sion of the student building block output is not the same as the teacher’s,

a dense layer is inserted between them. With these additional dense layers,

student layers that need to be distilled can be scaled up to match the size of

the corresponding teacher layers, so that teacher’s knowledge can be trans-

ferred smoothly. We have seen a similar solution adopted by [130], using an

additional convolution layer to match the feature map size. Layer dimension

mismatch also happens between the embedding layer and the first building

block because the embedding layer is directly copied from the teacher model.

To solve this problem, we down- or up-sample the embedding weights to

match the student layer size.

7.4.3 Progressive knowledge transfer

With the mismatch problem solved, we launch the progressive knowledge

transfer to help student models quickly acquire knowledge from the teacher

model, which was proposed by [57]. Assuming a student model with K build-

ing blocks, layer-wise transfers for MHA and building block feature maps are

conducted one block after another. It is a K-stage process following the order

98



from block 1 to K. When working on the k-th stage, all trainable parameters

in stage 1 to stage k − 1 are frozen, so the student model can learn knowl-

edge progressively one building block after another. Next, we continue the

model pre-training distillation until the training reaches the preset training

step. In addition, we set a fixed ratio between the step number in progres-

sive distillation and those in the pre-training distillation to guarantee that all

three types of distillation schemes mentioned in Section 7.4.1 can be applied

effectively.

7.4.4 Flash Distillation vs. regular distillation

In the proposed Flash Distillation, the training step count is set to a much

smaller number compared to the regular distillation because they are de-

signed for different goals. Flash Distillation works for the early selection of

promising student model architectures. It is not necessary to fully train a

model to start evaluating it and making decisions. In contrast, regular dis-

tillation works for fully preparing student models and make them ready for

use. It generally contains hundreds of thousands of steps. We will have more

discussions in the experiment (Section 7.6.7) to illustrate how we select the

step number for Flash Distillation.

7.5 Hardware-Aware Model Selection

7.5.1 Hardware Performance Integration

Each model is measured with multiple runs for forwarding propagation.

In each run, the hardware traces are collected, including inference latency,

throughput, CE utilization, as well as memory capacity and bandwidth uti-

lization. Particularly, our experiments use the average serving latency as the

desired metric. It can easily be extended to incorporate more metrics in the

search engine because the BO algorithm is very flexible for optimizing more

objectives. The collected metrics are then passed to Model Exploration for

guiding the search process. Since the hardware performance evaluation is in-

dependent of Flash Distillation or pre-training accuracy, it can be completed

in parallel to or offline during the distillation process.

99



7.5.2 NAS for student models

AutoDistill adopts a search-based solution to explore all possible student

model configurations. One major goal is to reduce the reliance on prior

knowledge summarized by human experts, so AutoDistill can find designs

that have not been discovered before but may achieve better hardware and

software performances given user-specific requirements. AutoDistill formu-

lates the student model architecture search as a black-box optimization prob-

lem, as it needs minimal assumptions about the problem and minimal inter-

nal information of the system [131, 132], i.e., the inner relationship between

the selected model architecture and its performance objectives. To be more

specific, AutoDistill optimizes the following problem

maximize f(x) : X → Ro, s.t. x ∈ X (7.4)

where x represents a set of configurable factors for describing model archi-

tectures and o is the number of objectives. In our experiments, o is two,

representing accuracy and latency objectives. AutoDistill can be easily cus-

tomized for more and different objectives. With this formulation, all we need

is to choose samples (e.g., any x ∈ X) and evaluate f(x), without needing

to access other information.

To solve this problem, AutoDistill leverages Bayesian Optimization (BO),

an effective black-box optimization algorithm that does not assume any func-

tional forms of objective problems. It uses Gaussian Processes to learn the

posterior distribution of the objective function, which is then used to con-

struct an acquisition function to determine the next trial [124]. We use the

BO algorithm implemented in Vizier [123], a cloud-based black-box optimiza-

tion service, and integrate it into the search engine for student architecture

search. Results in Section 7.3.2 show that BO outperforms other algorithms

that support multi-objective optimization, including random search and evo-

lutionary algorithms.

In previous designs, the gradient-based method is adopted to speed up

NAS (referred as differentiable NAS, or DNAS), and it has been demon-

strated to work well by generating more accurate models for computer vi-

sion tasks [133, 81]. It is difficult for DNAS to handle NLP tasks, as it is

required to train a huge supernet, containing all possible architecture candi-

100



dates, on the NLP pre-training tasks, which has been proven to be extremely

costly [58, 134]. Compared to the DNAS approach, our solution has the

following major benefits: 1) AutoDistill does not need to spend enormous

effort to train a large supernet beforehand on NLP pre-training tasks; 2)

it can better scale to handle a much larger design space; and 3) it can be

easily extended to new objectives and new models with different architecture

configurations.

7.6 Experimental Results

In this section, we evaluate AutoDistill and demonstrate its effectiveness for

exploring hardware-efficient task-agnostic NLP models. First, we present the

compressed task-agnostic models found by AutoDistill with optimized pre-

training accuracy and hardware performance. Since the search is enabled

by the BO algorithm, we compare it to random and evolutionary algorithms

to demonstrate its better search efficiency. Next, we evaluate the proposed

models on the GLUE benchmark, and we also fine-tune these models on a

downstream task called SQuAD and compare them to the state-of-the-art

distilled BERT models. We also provide quantitative analysis to show the

importance of using multi-objective search and the effectiveness of Flash

Distillation.

7.6.1 Experimental Setup

To launch AutoDistill, we first specify the framework inputs as described in

Figure 7.1, which include pre-training tasks, design space, target hardware,

and target metrics. AutoDistill can also support user-defined constraints

to help reduce the search space, such as specifying the minimum acceptable

hardware performance. In this experiment, we do not provide any constraints

to limit the model exploration. To demonstrate AutoDistill’s effectiveness on

compressing task-agnostic models, we measure student models’ pre-training

accuracy [52], which includes MLM and NSP. We evaluate AutoDistill on

the design space described in Table 7.1 for building block search and stack

24 of the same building blocks to construct every student model. In this

experiment, TPUv4i [135] is used as the target hardware to perform model

101



inference. Inference latency is measured with batch size = 1, which can

be changed to a representative production serving batch size of the user’s

target model. Since our goal is to deliver hardware-efficient models with

high accuracy, we pass both hardware and software metrics to AutoDistill as

optimization objectives, which are precise model inference latency and model

pre-training accuracy.

In each iteration, one student model is selected by the Model Exploration

stage and passed to the Flash Distillation stage for rapid model pre-training.

The teacher model is called IB-BERTLARGE, which is a 24-layer BERT-like

model with 293M parameters proposed by [57]. The selected student model

follows the pre-training schedule introduced in Section 7.4, which includes

the layer-wise knowledge transfer, the progressive knowledge transfer, and

the model pre-training distillation. Each building block is quickly trained

by 500 steps for layer-wise knowledge transfer, so the progressive knowledge

transfer lasts for 500×24=12k steps. Next, the student model is pre-trained

for 25k steps with 500 warm-up steps. In total, a Flash Distillation contains

37k steps and it is performed on TPU v3 1 chips with a batch size of 2048

and LAMB optimizer [136]. For pre-training data, we follow the same recipe

as BERT, using the BooksCorpus [137] and English Wikipedia.

7.6.2 Models that outperform the state-of-the-art

MobileBERT [57], the state-of-the-art task-agnostic design for BERT com-

pression, is selected as our baseline. To ensure a fair comparison, we run

the open-sourced MobileBERT code 2 and use the same hyperparameters for

MobileBERT pre-training and our models’ regular distillation. All models

are trained from scratch.

After Flash Distillation, AutoDistill finds seven compressed models that

exhibit higher pre-training accuracy and lower inference latency on the target

hardware than MobileBERT with the same Flash Distillation process. We

then run regular distillation for these seven models for a thorough training

process. It is a much longer training process, which includes 240k-step pro-

gressive knowledge transfer (10K steps for each layer) and 500k-step model

pre-training with 10k warm-up steps. All models are trained on TPU v3

1https://cloud.google.com/tpu
2https://github.com/google-research/google-research/tree/master/mobilebert

102



Table 7.2: The student models found by Autodistill. We train these models
using the same pre-training setup as the baseline (with 740k-step
pre-training and the batch size of 2048) and present their pre-training
accuracy (MLM accuracy) and measured inference latency results. All
models achieve better accuracy and lower latency compared to the baseline.
The number shown in parentheses is the result of comparison to the
baseline. ‡denotes our runs with the open-sourced MobileBERT code. For
reference, MLPerf [138] uses MLM accuracy = 72 as the target pre-training
accuracy of BERTLARGE.

# Param Latency Accuracy

MobileBERT‡(baseline) 25.3 M 0.65 ms 69.2

Model 512 128 1 384 4 22.2 M (87.7%) 0.54 ms (1.21×) 70.0 (101.3%)
Model 512 128 1 640 2 20.6 M (81.4%) 0.45 ms (1.44×) 69.5 (100.4%)
Model 512 128 1 640 4 28.5 M (112.6%) 0.58 ms (1.12×) 71.4 (103.2%)
Model 512 128 2 640 2 20.6 M (81.4%) 0.49 ms (1.32×) 70.0 (101.2%)
Model 512 128 4 512 2 19.0 M (75.1%) 0.54 ms (1.21×) 69.7 (100.8%)
Model 512 128 4 640 2 20.6 M (81.4%) 0.56 ms (1.16×) 70.3 (101.6%)
Model 512 160 2 512 2 22.8 M (90.1%) 0.59 ms (1.09×) 70.4 (101.8%)

chips with a batch size of 2048.

After regular distillation, we list their accuracy and inference latency in

Table 7.2. The compressed model candidates are encoded with their five

architecture configurable factors described in Table 7.1. For example, the

model name Model 512 128 1 384 4 encodes a model architecture with Hid-

den Size=512, Bottleneck Size=128, Attention Head Number=1, Intermedi-

ate Number=384, and Stacked FF Number=4.

All seven models outperform the baseline regarding both accuracy and

inference latency. Among them, Model 512 128 1 640 4 achieves the best

accuracy, peaking at 71.4. That is 3.2% higher than the baseline. The

other one, Model 512 128 1 640 2, maintains a competitive accuracy while

achieving 1.44× speedup on inference latency compared to the baseline.

Model 512 128 4 512 2 achieves the smallest model size with 19.0M param-

eters (75.1% of the baseline). We observe that models with more parame-

ters do not always have longer inference latency: Model 512 128 1 640 4 has

12.6% more parameters, but it performs 1.12× faster than the baseline.

Such a counter-intuitive observation could be caused by the larger model’s

better operational intensity and parallelism, or that its computation pattern

103



Figure 7.3: Search efficiency of Bayesian optimization (BO), random search,
and firefly algorithm (FA). The three red vertical lines in each bar indicate
the iteration numbers where three better-than-MobileBERT student models
are found. BO finds three models with fewer iterations than other two
algorithms.

is better optimized by the software stack. Similar findings are published in

[129], where models with more parameters can achieve better latency than

those with fewer parameters. This indicates that optimizing for model size

during distillation is not sufficient for better serving latency. This finding also

emphasizes the importance of using precise hardware performance instead of

proxy metrics to guide the model search.

7.6.3 Search Algorithm Comparison

The search engine in the Model Exploration stage is one of the most cru-

cial components facilitating the search efficiency of AutoDistill. An efficient

search algorithm that gives good candidates with fewer iterations during

the model search can reduce the computation cost and end-to-end dura-

tion of NAS. To better understand its search efficiency, we compare the BO

algorithm used in AutoDistill to two other popular algorithms with multi-

objective support: the random search algorithm and the firefly algorithm

(FA) [139]. The random search represents a naive baseline, which is com-

monly compared against in previous work [134]. In each iteration, a random

search selects one of the possible models uniformly at random, and every

trial is independent of other trials. The FA represents a more sophisticated

104



baseline, and it generates a new suggestion every iteration by taking a linear

combination of previous suggestions with a small perturbation.

In this experiment, we measure the number of NAS iterations these search

algorithms take to search for three pre-trained models that outperform the

baseline model (MobileBERT). For a fair comparison, we maintain the same

setup, including the design space, the metrics, and the Flash Distillation

technique, while evaluating different search algorithms. In AutoDistill, the

search engine proposes one model candidate per iteration, by going through

the three major stages of Model Exploration, Flash Distillation, and Evalu-

ation. We set the maximum iteration number as 500 to provide sufficient

time for these algorithms and evaluate how many iterations they take to find

three models outperforming MobileBERT.

Comparison results are shown in Figure 7.3, where the X-axis represents

the number of iterations and the Y-axis indicates nine independent exper-

iments (three trials per algorithm). The results show that BO can finish

searching much earlier than the other two algorithms. For the best case, it

discovers all three models within 80 iterations, and, on average, it can fin-

ish in 110 iterations. As a comparison, the random algorithm and the FA

require 270 and 296 iterations on average to find all three better models.

The average number of iterations to discover the first promising model is

another very important metric to compare, because in production, people

usually need only one model to deploy. BO takes 43 iterations on average to

find the first promising model, while it is 116 and 64 respectively for random

algorithm and FA.

7.6.4 Results on GLUE

We demonstrate the AutoDistill generated models on the General Language

Understanding Evaluation (GLUE) benchmark with nine downstream natu-

ral language understanding tasks [140]. As shown in Table 7.3, we compare

our pre-trained models from Table 7.2 to BERTBASE [52] and state-of-the-art

BERT compression models, including DistillBERT [125], TinyBERT [126],

NAS-BERT [58], and MobileBERT [57].

All of the AutoDistill generated models in Table 7.3 achieve higher average

scores than BERTBASE, DistilBERT, TinyBERT6, and MobileBERT with

105



T
ab

le
7.

3:
T

h
e

re
su

lt
s

on
th

e
G

L
U

E
b

en
ch

m
ar

k
.

*d
en

ot
es

m
o
d

el
s

co
n

d
u

ct
in

g
k
n

ow
le

d
ge

d
is

ti
ll

at
io

n
in

b
ot

h
p

re
-t

ra
in

in
g

an
d

fi
n

e-
tu

n
in

g
st

ag
es

.
◦m

ar
k
s

M
ob

il
eB

E
R

T
w

it
h

ou
t

op
er

at
io

n
al

op
ti

m
iz

at
io

n
s.

▷m
ar

k
s

N
A

S
-B

E
R

T
w

it
h

d
at

a
au

gm
en

ta
ti

on
.

#
P
ar
am

L
a
te
n
cy

C
oL

A
M
N
L
I-
m
/m

m
M
R
P
C

Q
N
L
I

Q
Q
P

R
T
E

S
S
T
-2

S
T
S
-B

A
v
g.

B
E
R
T
B
A
S
E

1
09

M
-

52
.1

84
.6
/8

3.
4

8
8
.9

90
.5

71
.2

66
.4

9
3
.5

85
.8

79
.6
0

D
is
ti
lB
E
R
T

6
7
M

-
51

.3
82

.2
87

.5
89

.2
88

.5
59

.9
91

.3
86

.9
79

.6
0

T
in
y
B
E
R
T
6
*

6
7
M

-
51

.1
84

.6
/8

3.
2

87
.3

90
.4

71
.6

70
.0

93
.1

83
.7

79
.4
4

N
A
S
-B

E
R
T
*

6
0
M

-
48

.4
83

.5
84

.5
90

.9
88

.9
7
3
.7

92
.9

86
.1

81
.1
1

N
A
S
-B

E
R
T
*▷

6
0
M

-
50

.5
84

.1
86

.4
91

.2
88

.8
72

.7
92

.6
86

.9
81

.6
5

M
o
b
il
eB

E
R
T

2
5.
3
M

0.
65

m
s

50
.5

83
.3
/8

2.
6

88
.8

90
.6

70
.2

66
.2

92
.8

84
.4

78
.8
2

M
o
b
il
eB

E
R
T
◦

2
5.
3
M

0.
65

m
s

51
.1

84
.3
/8

3.
4

88
.8

9
1
.6

70
.5

70
.4

92
.6

84
.8

79
.7
2

M
o
d
el

51
2
1
28

1
64

0
2

2
0
.6

M
0
.4
5
m
s

53
.2

81
.0
/8

1.
9

84
.1

88
.9

89
.4

67
.2

90
.8

87
.0

80
.3
8

M
o
d
el

51
2
1
28

2
64

0
2

2
0
.6

M
0
.4
9
m
s

53
.2

82
.3
/8

2.
5

83
.8

90
.2

89
.7

66
.1

90
.8

88
.1

80
.7
5

M
o
d
el

51
2
1
60

2
51

2
2

2
2.
8
M

0.
59

m
s

52
.1

82
.6
/8

2.
9

86
.3

90
.4

90
.0

63
.9

91
.2

88
.7

80
.8
9

M
o
d
el

51
2
1
28

1
64

0
4

2
8.
5
M

0.
58

m
s

5
5
.9

82
.7
/8

2.
8

87
.5

90
.4

9
0
.2

66
.1

90
.8

8
8
.8

8
1
.6
9

106



significantly smaller model sizes. Among them, two of our most compact

models (Model 512 128 1 640 2 and Model 512 128 2 640 2) have a 81.1%

size reduction compared to BERTBASE and deliver higher average scores. Our

most accurate model (Model 512 128 1 640 4) achieves the highest scores in

three tasks (CoLA, QQP, and STS-B) and the highest average score (81.69)

across all nine tasks. It is worth mentioning that AutoDistill is task-agnostic

and does not require teacher models (no distillation) for downstream tasks,

while TinyBERT and NAS-BERT require teacher models in fine-tuning which

have unfair advantages over AutoDistill.

7.6.5 Results on SQuAD

To further evaluate the model quality that AutoDistill found, we assess the

pre-trained models from Table 7.2 with a downstream NLP task called Stan-

ford Question Answering Dataset (SQuAD) [141]. It is a large-scale dataset

with 100k crowd-sourced question/answer pairs for question answering and

reading comprehension. We choose the dev F1 and the exact match (EM) as

accuracy metrics.

Table 7.4 compares our models to the BERTBASE [52] and the recently pub-

lished compressed designs, including DistillBERT [125], TinyBERT [126],

NAS-BERT [58], and MobileBERT [57]. Note that DistillBERT performs

knowledge distillation only in model pre-training stage, while DistillBERT*

(distinguished with *) uses two-stage knowledge distillation for both model

pre-training and fine-tuning. The TinyBERT6* denotes the 6-layer model

with two-stage distillation and it is the most accurate model proposed in

[126]. Similarly, both NAS-BERT designs do distillation in both stages and

NAS-BERT*†uses 1.6× more pre-training steps than NAS-BERT*. Such a

two-stage distillation strategy generally involves a more complicated distil-

lation pipeline as it needs additional fine-tuned teachers for different down-

stream tasks.

In contrast to the above-mentioned designs, MobileBERT and our solutions

only require a single-stage knowledge distillation during pre-training, so that

the pre-trained models can be directly fine-tuned for downstream tasks. We

collect MobileBERT’s performance from [57], which involves hyperparame-

ter tuning, especially for the SQuAD task to achieve better accuracy. In

107



Table 7.4: The results on SQuAD v1.1. *denotes models conducting
knowledge distillation in both pre-training and fine-tuning stages. †denotes
a model using 1.6× more pre-training steps than its original setup. ‡marks
our run with the open-sourced MobileBERT code without hyperparameter
tuning and using the same fine-tuning setup as our models.

# Param Latency F1 EM

BERTBASE 109 M - 88.5 80.8

DistilBERT 67 M - 85.8 77.1
DistilBERT* 67 M - 86.9 79.1
TinyBERT6* 67 M - 87.5 79.7
NAS-BERT* 60 M - 88.0 80.5
NAS-BERT*† 60 M - 88.4 81.2
MobileBERT 25.3 M 0.65 ms 90.0 82.9
MobileBERT‡ 25.3 M 0.65 ms 87.7 80.0

Ours-1 22.8 M 0.59 ms 88.4 80.8
Ours-2 20.6 M 0.49 ms 88.1 80.5

addition, we run its open-sourced code following our setups in Section 7.6.1

without hyperparameter tuning and present the results with the mark ‡.

The reason why MobileBERT‡’s results are different from MobileBERT [57]

is that we do not conduct hyperparameter tuning as the original paper does

to make it a fair comparison for the rest of the models.

Table 7.4 shows that the student models found by AutoDistill have lower

inference latency and smaller model sizes while maintaining great accuracy

for the SQuAD task. The average F1 and EM of the seven models are

88 and 80, respectively. Among them, the most accurate one (Ours-1:

Model 512 160 2 512 2) achieves the same F1 score (88.4) with only 38% of

the parameters compared to NAS-BERT*†. The more efficient model (Ours-

2: Model 512 128 2 640 2) has a more compact architecture with only 20.6M

parameters and higher accuracy than five other compressed models listed in

Table 7.4.

7.6.6 Multi-objective vs. single-objective search

Additionally, we compare the multi-objective and the single-objective search

and show their different effects on compressed model exploration. The multi-

108



Figure 7.4: Multi-objective search in AutoDistill helps identify the most
promising models by considering both hardware and software metrics after
Flash Distillation. The pentagon marks the performance of the
MobileBERT representing the baseline. The clusters with yellow triangles
and blue diamonds show the models optimized for latency and accuracy,
respectively. The green dots at the bottom right are the seven models listed
in Table 7.2, which are discovered by multi-objective search in AutoDistill.

objective search experiment maximizes accuracy and minimizes latency. And

the two experiments of single-objective search respectively optimize for model

accuracy (which is more popular in previous work) and serving latency. The

same model architecture design space in Table 7.1 is used for all three search

strategies.

Figure 7.4 shows the most promising models found, with accuracy shown

on the X-axis and latency on the Y-axis. We observe totally different be-

haviors from these search objectives. The single-objective approaches output

models that are located close to the two ends of the Pareto curve: one along

the lower latency limit (denoted as yellow triangles for optimized latency)

and the other along the upper accuracy limit (denoted as blue diamonds for

optimized accuracy). However, these models may not be ideal for production

deployment which usually needs to accommodate more than one optimiza-

tion objective, such as a better balance between accuracy and latency. By

considering multiple objectives, the search can find all models near the Pareto

curve. Assuming users are interested in models with both high accuracy and

low latency, they can select models toward the middle of the Pareto curve

109



with all objectives being optimized. In our experiments, those are models

(denoted as green dots) near the lower right. Compared to models that only

focus on higher accuracy (the blue ones), these models (the green ones) have

1.8× speedup on average with a loss 2.5% accuracy, which could be valuable

for production deployment and would not have been found with a single-

objective search. It is important for the multi-objective search to find all

models along the Pareto curve so that users can have a better idea about the

design space and select ones that are of interest by setting different weights

for the objectives.

Besides the unconstrained search introduced in the last paragraph, an-

other common single-objective search approach considers metric constraints,

for example, maximizing accuracy with a latency constraint or vice versa.

However, this approach needs reasonable constraints to find models similar

to what can be found by multi-objective search, and setting constraints is

difficult without prior knowledge of the Pareto curve. Let us use the re-

sults in Figure 7.4 as examples and assume a single-objective search tries

to maximize accuracy with a latency constraint. If the latency constraint

is lower than 1ms, the search results are similar to optimizing for accuracy

only, which are some of the blue diamonds. If the latency constraint is lower

than 0.4ms, we will get models with worse accuracy than the baseline. It is

much easier to adopt a multi-objective search to find the student models (in

green dots) which are better than the baseline.

7.6.7 Flash Distillation

With Flash Distillation, AutoDistill is able to select models with large po-

tential to achieve high accuracy at an early pre-training stage. We evaluate

the accuracy potential of student models with a smaller number of training

steps during knowledge transfer and skip unpromising candidates for regular

distillation.

To determine a suitable step number, we launch four Flash Distillation

tests with 1.25%, 2.5%, 5%, and 10% of the step number in the regular

distillation (which contains 740k steps). The ratio between progressive and

pre-training distillation is set to 0.48 for all cases. We plot the pre-training

accuracy and distillation time for each case in Figure 7.5. Since the accu-

110



Figure 7.5: Illustration of four Flash Distillation cases with 9.25k, 18.5k,
37k, and 74k steps comparing to the regular distillation case with 740k
steps for the same student model (a total of five data points). The growth
of accuracy shows a logarithmic trend while the time spent on training
increases linearly with increasing training steps.

racy shows a logarithmic trend, selecting a spot when the accuracy growth

becomes slower seems a great trade-off between training costs and accuracy

gain. We, therefore, select 37k (5% of the regular distillation steps) as the

Flash Distillation step number.

To verify that Flash Distillation is effective in selecting promising candi-

dates, we perform flash and regular distillation for models from Table 7.2

and compare the changes in their relative positions in accuracy and latency

dimensions. Figure 7.6 shows the results of the same group of models being

pre-trained for 37k (in Flash Distillation) and 740k steps (in regular distilla-

tion), respectively. Each dot represents one student model in Table 7.2 and

the pentagon denotes the baseline model (MobileBERT). Since different dis-

tillation methods for the same model only affect model accuracy, we observe

that dots are shifted to the right, meaning they become more accurate after

a much longer pre-training process. Their relative positions, however, are

fairly stable regardless of using Flash Distillation or regular distillation. In

this experiment, Flash Distillation only consumes 5% of the training steps

to grow the models compared to using regular distillation and models can

already be distinguished even though they have not reached the final accu-

racy. We therefore conclude that Flash Distillation is helpful in facilitating

the early selection of promising models.

111



Figure 7.6: The models selected using Flash Distillation with 37k steps (the
left cluster) and the same ones using regular distillation with 740k steps
(the right cluster). Promising models can be identified much earlier using
Flash Distillation. Note that the pentagon denotes the performance of
MobileBERT (baseline).

7.7 Conclusion

This chapter presented AutoDistill, an end-to-end model distillation frame-

work that integrates model architecture exploration and multi-objective opti-

mization to explore hardware-efficient task-agnostic NLP models for datacen-

ter deployment. We formulated the compressed model exploration as a black-

box optimization problem and adopted BO to conduct a multi-objective

model architecture search. To rapidly identify more promising models, we

introduced a model-agnostic pre-training technique called Flash Distillation

to enable fast knowledge distillation for compressed model candidates. Ex-

periments on TPUv4i showed that models generated by AutoDistill achieved

up to 3.2% higher pre-trained accuracy and up to 1.44× speedup on latency

compared to MobileBERT [57]. By evaluating on GLUE, our most accu-

rate model with 28.5M parameters achieved an 81.69 average score, which

outperformed BERTBASE [52], DistillBERT [125], TinyBERT [126], NAS-

BERT [58], and MobileBERT. Our most compact model with 20.6M param-

eters (81.1% size reduction compared to BERTBASE) still achieved a higher

average score than BERTBASE, DistillBERT, TinyBERT, and MobileBERT.

By evaluating on SQuAD, two of the proposed models with less than 23M pa-

rameters achieved higher accuracy than DistillBERT, TinyBERT, and NAS-

112



BERT. Results demonstrated that the proposed AutoDistill delivered more

efficient NLP models, greatly reducing ownership cost and carbon footprint

during high-quality NLP model serving on datacenters.

AutoDistill successfully expands the applicability of our proposed toolset

to cover NLP domains by delivering state-of-the-art NLP solutions. Its in-

tegration of model distillation and network architecture search enables more

efficient design space exploration, model training, and model selection, effec-

tively addressing the challenges of the latest NLP model development. With

AutoDistill, our toolset provides comprehensive coverage of both computer

vision and NLP applications.

113



CHAPTER 8

CONCLUSION

The recent development of AI applications causes significant challenges for

hardware deployment, as they require not only high inference accuracy but

also high inference speed, throughput, and energy efficiency. Although AI

hardware acceleration can alleviate these problems, design difficulties still

come from limited hardware resources, restricted power budgets, tedious

hardware design, intricate hardware verification problems, and time-consuming

accelerator design space explorations.

To address these challenges, this dissertation introduced a comprehensive

toolset to deliver efficient AI hardware acceleration for various real-life sce-

narios. The proposed tools include HLS-based DNN accelerator design and

optimization strategies, end-to-end automation tools for customized acceler-

ator designs, and DNN-accelerator co-design and co-optimization strategies.

With these proposed tools, we generated state-of-the-art solutions to acceler-

ate popular AI applications, covering image/video understanding in Chapter

3, image classification in Chapter 4, object detection and tracking in Chapter

5, VR codec avatar in Chapter 6, and various NLP tasks in Chapter 7.

We first demonstrated the proposed HLS-based design flow by delivering an

LRCN accelerator for real-time video analysis. We successfully addressed the

design challenges in managing computational complexity, on-chip memory

limitation, and external memory bottleneck. This work contains three novel

designs: highly optimized IPs as the accelerator’s building blocks to speed up

computation; an efficient hierarchical memory system to alleviate slow data

transfer; and multiple technologies (e.g., network pruning, quantization) to

reduce model size while maintaining model accuracy. We also introduced a

resource allocation strategy called REALM to drive theoretical guidelines for

optimized accelerator configurations to achieve minimal execution latency.

The proposed accelerator showed 4.8× and 3.1× speedup compared to an

Intel Xeon CPU and an NVIDIA K80 GPU, while it consumed 17.5× less

114



energy for every image processed. It is the first FPGA-based LRCN acceler-

ator to enable real-time image captioning with careful considerations of the

model accuracy and energy efficiency. This work is open-source, which pro-

vides successful design templates to address challenges in managing compute-

and communication-intensive AI workloads.

We then introduced DNNBuilder to address the challenges caused by inef-

ficient hardware accelerator design and optimization. These challenges create

an ever-widening barrier between fast AI model design in software and slow

hardware accelerator implementation. To bridge the hardware-software gap,

we proposed DNNBuilder, an integrated design flow for building FPGA-based

AI accelerators automatically from popular machine learning frameworks.

Users are no longer required to design and optimize accelerators manually

but can enjoy the auto-generated hardware accelerators for desired AI work-

loads. We introduced two major architecture innovations, the fine-grained

layer-based pipeline architecture and the column-based cache scheme, which

achieved 7.7× and 43× reduction in latency and on-chip memory usage. To

adopt the diverse demands of edge- and cloud-computing, we proposed an

automatic design space exploration tool to generate optimized architecture

configurations by considering the targeted AI workload and available hard-

ware resources. DNNBuilder is an open-source project to make high-quality

AI hardware accelerators easier to implement. The generated accelerators

can be adapted to various AI applications and provide real-time and high

throughput AI services. Because of the state-of-the-art accelerator designs,

DNNBuilder has been awarded the ICCAD William J. McCalla Best Paper

Award, and it has been widely adopted by the industry.

Next, we introduced SkyNet to provide DNN-accelerator co-design and co-

optimization strategies. Instead of following the standard top-down compact

DNN design flow, we proposed a novel bottom-up design approach to con-

struct DNNs from basic building blocks, which can capture comprehensive

hardware constraints. An evolutionary algorithm was introduced to evolve

the network candidates toward higher accuracy and efficiency. We demon-

strated the effectiveness of SkyNet by winning a competitive System Design

Contest at DAC-SDC for low-power object detection. It outperformed 100+

competitors and delivered the best solutions for embedded GPUs and FP-

GAs. For object tracking, SkyNet enabled 1.6× and 1.7× faster throughput

and the same accurate outputs by replacing the ResNet-50 backbone in two

115



popular trackers named SiamRPN++ and SiamMask.

Following the co-design strategies, we proposed an efficient method, called

F-CAD, to deliver customized accelerators for emerging VR applications run-

ning on extremely lightweight edge devices. The F-CAD generated designs

with up to 4.0× higher throughput and up to 62.5% higher energy efficiency

than state-of-the-art designs and which perfectly met the demanding VR re-

quirements. Additionally, we proposed AutoDistill to address the difficulties

of serving large-scale NLP models in the cloud. It is the first fully automated

framework that integrates model distillation and neural architecture search to

deliver hardware-efficient NLP pre-trained models. Compared to the state-

of-the-art compressed BERT model, AutoDistill provides even more compact

designs with 3.2% higher accuracy and 1.44× faster hardware performance.

The above scenarios introduce various design spaces for building DNN

models and their hardware accelerators to meet real-life requirements. These

design spaces contain many different design dimensions and configurable pa-

rameters, increasing the difficulty of finding the optimal designs. Since the

design spaces are highly application-specific, finding a unified solution to

effectively represent them and search for optimal design spots from these

spaces is still very challenging.

To improve our proposed designs, we will cover the investigation of unified

design space representation and more efficient design space exploration meth-

ods. We believe AI hardware acceleration will involve more effective and com-

prehensive design methods in the future, covering AI algorithms, customized

accelerators, and co-design and co-optimization strategies. Our future works

will cover more advanced software/hardware co-design for emerging AI mod-

els running on heterogeneous systems, which contains a much larger design

space and is thus more challenging. Major directions include 1) efficient

hardware accelerator designs for handling sparse AI workloads, 2) heteroge-

neous computing support, which intends to enable system-level design and

optimization for heterogeneous AI systems, 3) dynamic computational graph

scheduling, which enables the generation of runtime adaptive accelerators for

future AI applications, and 4) further investigation of a unified design-space

representation and more advanced design-space exploration methods, such

as machine-learning based methods.

116



REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proceedings of the
Advances in neural information processing systems, 2012.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” Nature, vol. 550, no. 7676, pp.
354–359, 2017.

[3] OpenAI, “Ai and compute,” 2018. [Online]. Available:
https://openai.com/blog/ai-and-compute/

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), 2016.

[5] B. Brown, “Intel® math kernel library for
deep learning networks,” 2018. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/intel-
mkl-dnn-part-1-library-overview-and-installation

[6] D. Franklin, “NVIDIA Jetson TX2 delivers twice the intelligence to
the edge,” NVIDIA Accelerated Computing— Parallel For all, 2017.

[7] D. Franklin, “NVIDIA Jetson AGX Xavier delivers 32 teraops for new
era of AI in robotics,” NVIDIA Accelerated Computing— Parallel For
all, 2018.

[8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing FPGA-based accelerator design for deep convolutional neural
networks,” in Proceedings of the International Symposium on Field-
Programmable Gate Arrays (FPGA), 2015.

[9] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded FPGA platform
for convolutional neural network,” in Proceedings of the International
Symposium on Field-Programmable Gate Arrays (FPGA), 2016.

117



[10] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“DNNBuilder: an automated tool for building high-performance DNN
hardware accelerators for FPGAs,” in Proceedings of the International
Conference on Computer-Aided Design (ICCAD), 2018.

[11] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” in Proceedings of the International Solid-State Circuits Con-
ference (ISSCC), 2016.

[12] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2016.

[13] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Ba-
jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2017.

[14] K. Wakabayashi, “System LSI design with c-based behavioral synthesis
and verification,” in Proceedings of the International Symposium on
Circuits and Systems (ISCAS), 2005.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the ACM international
conference on Multimedia, 2014.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proceedings of the USENIX sympo-
sium on operating systems design and implementation (OSDI), 2016.

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” in Proceedings
of the Advances in neural information processing systems, 2019.

[18] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang,
Z. Cheng, K. Rupnow, and D. Chen, “High-performance video con-
tent recognition with long-term recurrent convolutional network for
FPGA,” in Proceedings of the International Conference on Field Pro-
grammable Logic and Applications (FPL), 2017.

118



[19] X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong,
T. Huang, H. Shi et al., “SkyNet: a hardware-efficient method for
object detection and tracking on embedded systems,” in Proceedings of
the Conference on Machine Learning and Systems (MLSys), 2020.

[20] X. Zhang, D. Wang, P. Chuang, S. Ma, D. Chen, and Y. Li, “F-CAD: A
framework to explore hardware accelerators for codec avatar decoding,”
in Proceedings of the Design Automation Conference (DAC), 2021.

[21] X. Zhang, Z. Zhou, D. Chen, and Y. E. Wang, “AutoDistill: an end-to-
end framework to explore and distill hardware-efficient language mod-
els,” arXiv preprint arXiv:2201.08539, 2022.

[22] Y. Li, X. Zhang, and D. Chen, “CSRNet: Dilated convolutional neural
networks for understanding the highly congested scenes,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(CVPR), 2018.

[23] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent con-
volutional networks for visual recognition and description,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(CVPR), 2015.

[24] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of Machine Learning Research, vol. 3,
no. 2, pp. 1137–1155, 2003.

[25] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proceedings of the Pro-
ceedings of the International Conference on Learning Representations
(ICLR), 2015.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez,  L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proceedings of the Advances in neural information processing systems,
2017.

[27] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston et al., “The youtube
video recommendation system,” in Proceedings of the ACM Conference
on Recommender Systems, 2010.

[28] S. A. Shaya, N. Matheson, J. A. Singarayar, N. Kollias, and J. A.
Bloom, “Intelligent performance-based product recommendation sys-
tem,” 2010, US Patent 7,809,601.

119



[29] S. Lombardi, J. Saragih, T. Simon, and Y. Sheikh, “Deep appearance
models for face rendering,” ACM Transactions on Graphics (TOG),
vol. 37, no. 4, pp. 1–13, 2018.

[30] S.-E. Wei, J. Saragih, T. Simon et al., “VR facial animation via mul-
tiview image translation,” ACM Transactions on Graphics (TOG),
vol. 38, no. 4, pp. 1–16, 2019.

[31] H. Chu, S. Ma, F. D. la Torre, S. Fidler, and Y. Sheikh, “Expressive
telepresence via modular codec avatars,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2020, pp. 330–345.

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[34] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proceedings of the International Confer-
ence on Machine Learning (ICML), 2014.

[35] X. Zhang, Y. Ma, J. Xiong, W.-M. W. Hwu, V. Kindratenko, and
D. Chen, “Exploring HW/SW co-design for video analysis on CPU-
FPGA heterogeneous systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 41,
no. 6, pp. 1606–1619, 2022.

[36] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2016.

[37] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, “Design
flow of accelerating hybrid extremely low bit-width neural network in
embedded FPGA,” in Proceedings of the International Conference on
Field Programmable Logic and Applications (FPL), 2018.

[38] D. Gope, G. Dasika, and M. Mattina, “Ternary hybrid neural-tree net-
works for highly constrained IoT applications,” 2019.

[39] Y. Chen, K. Zhang, C. Gong, C. Hao, X. Zhang, T. Li, and D. Chen,
“T-DLA: An open-source deep learning accelerator for ternarized dnn
models on embedded FPGA,” in Proceedings of IEEE Computer Soci-
ety Annual Symposium on VLSI (ISVLSI), 2019, pp. 13–18.

120



[40] C. Gong, T. Li, Y. Lu, C. Hao, X. Zhang, D. Chen, and Y. Chen,
“µl2q: An ultra-low loss quantization method for dnn compression,” in
Proceedings of the International Joint Conference on Neural Networks
(IJCNN), 2019, pp. 1–8.

[41] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Proceedings of the Advances
in neural information processing systems, 2015.

[42] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” in Proceedings of the Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2016.

[43] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2017.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), 2015.

[45] X. Dai, H. Yin, and N. K. Jha, “Nest: A neural network synthesis tool
based on a grow-and-prune paradigm,” IEEE Transactions on Com-
puters, vol. 68, no. 10, pp. 1487–1497, 2019.

[46] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
“ADMM-NN: An algorithm-hardware co-design framework of dnns us-
ing alternating direction methods of multipliers,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[47] X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning
for efficient convolutional neural networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2018.

[48] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[49] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” arXiv preprint arXiv:1711.07128, 2017.

[50] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in Proceedings of the International Symposium on Mi-
croarchitecture, 2016.

121



[51] L. Floridi and M. Chiriatti, “GPT-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, no. 4, pp. 681–694, 2020.

[52] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understand-
ing,” in Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (NAACL). Association for Computational Linguistics,
2019, pp. 4171–4186.

[53] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[54] S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient knowledge distilla-
tion for BERT model compression,” in Proceedings of the Conference
on Empirical Methods in Natural Language Processing and the Inter-
national Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, pp. 4323–4332.

[55] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin, “Distill-
ing task-specific knowledge from BERT into simple neural networks,”
arXiv preprint arXiv:1903.12136, 2019.

[56] H. Tsai, J. Riesa, M. Johnson, N. Arivazhagan, X. Li, and A. Archer,
“Small and practical BERT models for sequence labeling,” in Proceed-
ings of the Conference on Empirical Methods in Natural Language Pro-
cessing and the International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 2019, pp. 3632–3636.

[57] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “MobileBERT:
a compact task-agnostic BERT for resource-limited devices,” in Pro-
ceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2020, pp. 2158–2170.

[58] J. Xu, X. Tan, R. Luo, K. Song, J. Li, T. Qin, and T.-Y. Liu, “NAS-
BERT: Task-agnostic and adaptive-size bert compression with neural
architecture search,” in Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), 2021, p. 1933–1943.

[59] J. Zhang and J. Li, “Improving the performance of opencl-based fpga
accelerator for convolutional neural network,” in Proceedings of the In-
ternational Symposium on Field-Programmable Gate Arrays (FPGA),
2017.

[60] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “TGPA:
tile-grained pipeline architecture for low latency cnn inference,” in Pro-
ceedings of the International Conference on Computer-Aided Design
(ICCAD), 2018.

122



[61] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “FPGA/DNN co-design: An efficient design method-
ology for IoT intelligence on the edge,” in Proceedings of the Design
Automation Conference (DAC). IEEE, 2019.

[62] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural
networks with software-programmable fpgas,” in Proceedings of the In-
ternational Symposium on Field-Programmable Gate Arrays (FPGA),
2017.

[63] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A high
memory bandwidth FPGA accelerator for sparse matrix-vector multi-
plication,” in Proceedings of the International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2014,
pp. 36–43.

[64] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in Proceedings of the International Symposium on Microar-
chitecture. IEEE, 2020, pp. 766–780.

[65] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu, and
L. Zhang, “Efficient and effective sparse LSTM on FPGA with bank-
balanced sparsity,” in Proceedings of the International Symposium on
Field-Programmable Gate Arrays (FPGA), 2019, pp. 63–72.

[66] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring het-
erogeneous algorithms for accelerating deep convolutional neural net-
works on FPGAs,” in Proceedings of the Design Automation Conference
(DAC), 2017.

[67] C. Zhuge, X. Liu, X. Zhang, S. Gummadi, J. Xiong, and D. Chen, “Face
recognition with hybrid efficient convolution algorithms on FPGAs,” in
Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), 2018.

[68] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proceedings of the International Symposium on
Field-Programmable Gate Arrays (FPGA), 2017.

[69] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An open
framework for mapping dnn models to cloud FPGAs,” in Proceedings
of the International Symposium on Field-Programmable Gate Arrays
(FPGA), 2019, pp. 73–82.

123



[70] Q. Li, X. Zhang, J. Xiong, W.-M. Hwu, and D. Chen, “Efficient meth-
ods for mapping neural machine translator on FPGAs,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 32, no. 7, pp. 1866–1877,
2020.

[71] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolu-
tional neural networks,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085,
2018.

[72] H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen, “HybridDNN: A
framework for high-performance hybrid DNN accelerator design and
implementation,” in Proceedings of the Design Automation Conference
(DAC), 2020.

[73] S. Huang, K. Wu, H. Jeong, C. Wang, D. Chen, and W.-M. Hwu,
“PyLog: An algorithm-centric Python-based FPGA programming and
synthesis flow,” IEEE Transactions on Computers, vol. 70, no. 12, pp.
2015–2028, 2021.

[74] Y. Yang, Q. Huang, B. Wu et al., “Synetgy: Algorithm-hardware co-
design for convnet accelerators on embedded FPGAs,” in Proceedings
of the International Symposium on Field-Programmable Gate Arrays
(FPGA), 2019.

[75] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-
based neural network inference accelerators,” ACM Trans. Reconfig-
urable Technol. and Syst., vol. 12, no. 1, pp. 1–26, 2019.

[76] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi,
and J. Hu, “Accuracy vs. efficiency: Achieving both through FPGA-
implementation aware neural architecture search,” in Proceedings of
the Design Automation Conference (DAC), 2019.

[77] J. Wang, X. Zhang, Y. Li, and Y. Lin, “Exploring HW/SW co-
optimizations for accelerating large-scale texture identification on dis-
tributed GPUs,” in Proceedings of the International Conference on
Parallel Processing (ICPP), 2021, pp. 1–10.

[78] Y. Fu, Y. Zhang, C. Li, Z. Yu, and Y. Lin, “A3C-S: Automated agent
accelerator co-search towards efficient deep reinforcement learning,” in
Proceedings of the Design Automation Conference (DAC), 2021, pp.
13–18.

[79] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey,” The Journal of Machine Learning Research, vol. 20, no. 1,
pp. 1997–2017, 2019.

124



[80] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transfer-
able architectures for scalable image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR),
2018.

[81] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet de-
sign via differentiable neural architecture search,” in Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR),
2019, pp. 10 734–10 742.

[82] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search
for mobile,” in Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), 2019, pp. 2820–2828.

[83] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu,
and D. Chen, “EDD: Efficient differentiable dnn architecture and im-
plementation co-search for embedded AI solutions,” Proceedings of the
Design Automation Conference (DAC), 2020.

[84] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and
B. Ren, “Patdnn: Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020, pp. 907–922.

[85] J. Lin, W.-M. Chen, J. Cohn, C. Gan, and S. Han, “Mcunet: Tiny
deep learning on iot devices,” in Proceedings of the Advances in neural
information processing systems, 2020.

[86] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini,
“XpulpNN: accelerating quantized neural networks on risc-v proces-
sors through isa extensions,” in Proceedings of the Design, Automation
& Test in Euro. Conf. & Exhibition (DATE), 2020, pp. 186–191.

[87] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high per-
formance FPGA-based accelerator for large-scale convolutional neural
networks,” in Proceedings of the International Conference on Field Pro-
grammable Logic and Applications (FPL), 2016.

[88] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-optimized OpenCL-based FPGA accel-
erator for large-scale convolutional neural networks,” in Proceedings
of the International Symposium on Field-Programmable Gate Arrays
(FPGA), 2016.

125



[89] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proceedings of the European Conference on Com-
puter Vision (ECCV), 2014.

[90] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2017.

[91] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), 2009.

[92] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), 2012.

[93] Y. Fu, E. Wu, A. Sirasao, S. Attia, K. Khan, and
R. Wittig, “Deep learning with int8 optimization on
Xilinx devices,” White Paper, 2017. [Online]. Available:
https://www.xilinx.com/support/documentation/white papers/wp486-
deep-learning-int8.pdf

[94] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An opencl deep learning accelerator on arria 10,” in Proceedings
of the International Symposium on Field-Programmable Gate Arrays
(FPGA), 2017.

[95] H. Zeng, R. Chen, C. Zhang, and V. Prasanna, “A framework for gen-
erating high throughput CNN implementations on FPGAs,” in Pro-
ceedings of the International Symposium on Field-Programmable Gate
Arrays (FPGA), 2018.

[96] Intel, “Enabling high-performance DSP applications
with Stratix V variable-precision DSP blocks.” [On-
line]. Available: https://www.altera.com/content/dam/altera-
www/global/en US/pdfs/literature/wp/wp-01131-stxv-dsp-
architecture.pdf

[97] X. Xu, X. Zhang, B. Yu, X. S. Hu, C. Rowen, J. Hu, and Y. Shi, “Dac-
sdc low power object detection challenge for uav applications,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2019.

[98] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2019.

126



[99] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neu-
ral architecture search via lamarckian evolution,” in Proceedings of the
Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2019.

[100] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition
(CVPR), 2018.

[101] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[102] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), 2016,
pp. 779–788.

[103] F. Xiong, S. Yin, Y. Fan, and P. Ouyang, “DAC-SDC’19 2nd place
winner in GPU track,” 2019.

[104] J. Deng, T. Shen, X. Yan, Y. Chen, H. Zhang, R. Wang, P. Zhou, and
C. Zhuo, “DAC-SDC’19 3rd place winner in GPU track,” 2019.

[105] H. Lu, X. Cai, X. Zhao, and Y. Wang, “DAC-SDC’18 1st place win-
ner in GPU track,” https://github.com/lvhao7896/DAC2018, 2018, ac-
cessed: 2020-02-28.

[106] J. Deng and C. a. Zhuo, “DAC-SDC’18 2nd place winner in GPU
track,” https://github.com/jndeng/DACSDC-DeepZ, 2018, accessed:
2020-02-28.

[107] C. Zang, J. Liu, Y. Hao, S. Li, M. Yu, Y. Zhao, M. Li, P. Xue, X. Qin,
L. Ju, X. Li, M. Zhao, and H. Dai, “DAC-SDC’18 3rd place winner
in GPU track,” https://github.com/xiaoyuuuuu/dac-hdc-2018-object-
detection-in-Jetson-TX2, 2018, accessed: 2020-02-28.

[108] B. Zhao, W. Zhao, T. Xia, F. Chen, L. Fan, P. Zong, Y. Wei, Z. Tu,
Z. Zhao, Z. Dong, and P. Ren, “DAC-SDC’19 2nd place winner in
FPGA track,” 2019.

[109] K. Kara and G. Alonso, “DAC-SDC’19 3rd place winner in FPGA
track,” 2019.

[110] S. Zeng, W. Chen, T. Huang, Y. Lin, W. Meng, Z. Zhu,
and Y. Wang, “DAC-SDC’18 1st place winner in FPGA track,”
https://github.com/hirayaku/DAC2018-TGIIF, 2018, accessed: 2020-
02-28.

127



[111] K. Kara, C. Zhang, and G. Alonso, “DAC-SDC’18 2nd place winner
in FPGA track,” https://github.com/fpgasystems/spooNN, 2018, ac-
cessed: 2020-02-28.

[112] C. Hao, Y. Li, S. H. Huang, X. Zhang, T. Gao, J. Xiong, K. Rupnow,
H. Yu, W.-M. Hwu, and D. Chen, “DAC-SDC’18 3rd place winner
in FPGA track,” https://github.com/onioncc/iSmartDNN, 2018, ac-
cessed: 2020-02-28.

[113] L. Huang, X. Zhao, and K. Huang, “Got-10k: A large high-diversity
benchmark for generic object tracking in the wild,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 43, no. 5, pp. 1562–
1577, 2019.

[114] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, “Siamrpn++:
Evolution of siamese visual tracking with very deep networks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition (CVPR), 2019.

[115] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. Torr, “Fast online
object tracking and segmentation: A unifying approach,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(CVPR), 2019.

[116] N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and T. Huang,
“Youtube-vos: A large-scale video object segmentation benchmark,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018.

[117] Qualcomm, “Snapdragon 865 5G mobile plat-
form,” accessed: 2022-07-12. [Online]. Avail-
able: https://www.qualcomm.com/products/snapdragon-865-5g-
mobile-platform

[118] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies (NAACL), 2018, pp. 2227–2237.

[119] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V.
Le, “XLNet: Generalized autoregressive pretraining for language un-
derstanding,” Proceedings of the Advances in neural information pro-
cessing systems, pp. 5753–5763, 2019.

[120] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

128



[121] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “Ernie:
Enhanced language representation with informative entities,” in Pro-
ceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2019, pp. 1441–1451.

[122] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Sori-
cut, “ALBERT: A lite BERT for self-supervised learning of language
representations,” in Proceedings of the Proceedings of the International
Conference on Learning Representations (ICLR), 2020.

[123] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Scul-
ley, “Google vizier: A service for black-box optimization,” in Proceed-
ings of ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2017, pp. 1487–1495.

[124] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian opti-
mization of machine learning algorithms,” Proceedings of the Advances
in neural information processing systems, vol. 25, 2012.

[125] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[126] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu, “TinyBERT: Distilling bert for natural language understand-
ing,” in Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, pp. 4163–4174.

[127] H. Tsai, J. Ooi, C.-S. Ferng, H. W. Chung, and J. Riesa, “Finding
fast transformers: One-shot neural architecture search by component
composition,” arXiv preprint arXiv:2008.06808, 2020.

[128] D. Chen, Y. Li, M. Qiu, Z. Wang, B. Li, B. Ding, H. Deng, J. Huang,
W. Lin, and J. Zhou, “AdaBERT: Task-adaptive BERT compression
with differentiable neural architecture search,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence.
Proceedings of the International Joint Conferences on Artificial Intel-
ligence (IJCAI), 2020, pp. 2463–2469.

[129] S. Li, M. Tan, R. Pang, A. Li, L. Cheng, Q. V. Le, and N. P. Jouppi,
“Searching for fast model families on datacenter accelerators,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition (CVPR), 2021, pp. 8085–8095.

[130] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” arXiv preprint
arXiv:1412.6550, 2014.

129



[131] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Proceedings of the Advances in neu-
ral information processing systems, 2011.

[132] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[133] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable archi-
tecture search,” in Proceedings of the Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

[134] J. Gao, H. Xu, X. Ren, P. L. Yu, X. Liang, X. Jiang, Z. Li
et al., “AutoBERT-Zero: Evolving bert backbone from scratch,” arXiv
preprint arXiv:2107.07445, 2021.

[135] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten lessons from
three generations shaped google’s TPUv4i: Industrial product,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA). IEEE, 2021, pp. 1–14.

[136] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimization
for deep learning: Training BERT in 76 minutes,” in Proceedings of
the Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2020.

[137] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books,” in Proceedings of
the International Conference on Computer Vision (ICCV), 2015, pp.
19–27.

[138] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf et al., “Mlperf training
benchmark,” arXiv preprint arXiv: 1910.01500, 2019.

[139] X.-S. Yang, “Firefly algorithm, stochastic test functions and design
optimisation,” International journal of bio-inspired computation, vol. 2,
no. 2, pp. 78–84, 2010.

[140] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in Proceedings of the Proceedings of the In-
ternational Conference on Learning Representations (ICLR), 2019.

130



[141] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+
questions for machine comprehension of text,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing,
2016, pp. 2383–2392.

131




