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Abstract

Time series analysis is a staple work horse in many fields, including climatol-

ogy, econometrics, stock and derivatives markets, systems engineering, etc.

Traditional analysis of time series data is focused on predicting or forecast-

ing future values based on analysis and modelling of past values. In this

work, we present methods of time series analysis that are based on geometric

principles. First cyclicity analysis, a method of analysis of repeating but ape-

riodic signals, is introduced and treated in depth. This method is then used

to examine two sets of brain imaging data, specifically functional magnetic

resonance imaging data under both resting state and task paradigms. We

present results that show our ability to fingerprint individuals using their rest-

ing state scans, detect slow cortical waves in the brain, and classify between

groups in the dataset. Next we apply principles from geometric diffusion

process in the context of manifold learning to show how synergy detection

in eletcromyography data is best viewed as a nonlinear clustering problem

rather than a factor analysis problem. We also present simple kinematic ex-

amples where linear methods fail to show that nonlinearity is inherent in

even the simplest systems. Finally, we conclude this document with a review

of results presented, some comments of a historical nature, ongoing trends

in the fields that supplied the data, and what can be expected in the near

future.
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Chapter 1

Introduction

Data or information is all around us in its myriad forms, and we have evolved

to constantly process massive amounts of it. For example, at a personal

level from our surroundings, we unconsciously detect ambient temperature

and humidity, wind speed and direction, objects in our periphery, sources of

sounds and movements, etc. At another level, we also keep track of what

time of day it is, what weather to expect in the near future, which season of

the year it is, and so on. While this definition of what constitutes data and

information may be too broad to be useful, there is a subset of such data

that will be the main object of interest in this work, in particular data that

systematically evolves with time. The analysis and study of such data can

be traced all the way back to antiquity - for example, detailed maps of the

heavens, including the motions of planets and stars, were charted by many

ancient societies, all the way from the Indus valley to Mesoamerica. More

recently, the study of dynamical systems, which give rise to such data, took

off in earnest in the 18th century on the heels of the Englightenment and

the advent of the Industrial Age. The theory of dynamical systems, and

its numerous applications, has had tremendous success in the last couple of

centuries, ushering in successively the machine age, the atomic age, the space

age, and, finally now, the information age. In the broadest sense, a dynamical

system is simply represented by the following state space equation:

ẋ = f (x, t, u) (1.1)

where the variable x encodes the state of the system, which is necessarily

dependent on natural time t ∈ R, via some function f describing the dynam-

ics, and another function u describing inputs into the system. Often, not all

the states x will be observable or measurable, and, therefore, we tend to say
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that the output y is described by:

y = h (x, t, v) (1.2)

where the function h determines the manner by which the state x becomes

the output y, subject to some external process v. While Eqs. 1.1 and 1.2 look

tame and fairly innocuous, they are capable of describing almost any system

that thought can conjure, precisely because we have placed no restrictions

on what x, u, f, v or h may be. Thus, in a sense, Eqs. 1.1 and 1.2 are also

too general to be useful.

For a fairly large class of systems, it is often possible to determine what

f and h should be via modeling and experiments (e.g., multi-bar linkages,

robots, coupled tanks, etc.) or approximate what they should be via simpli-

fications ( e.g., satellites, spacecraft, fighter jets, etc.). The former set tend

to be systems where the dynamics can be described in closed form or the

dimension of x and y is in the order of tens of states, while in the latter

their dimensions may be in the order of thousands, and yet only a score or

so physical effects dominate the dynamics. However, there is still another

class of systems, often termed complex systems, where neither situation is

true - the dynamics maybe intrinsically complicated and the dimension of

the states also approaches thousands - for example the animal brain, human

genomics, dynamics of the folding of proteins, etc. In such systems, it is

nearly impossible to approximately describe f and h, let alone know what

they should be; nor can they be adequately described by a smaller collection

of variables more amenable to analysis. In such cases, what we may be left

with are called the so called time series of observables y, and it is only by

study of this quantity we can hope to infer something about the system that

generated it.

The majority of this work is concerned with the analysis of collections of

such observables yk that arise from various sources. In the past decade, the

ubiquity of data in almost every aspect of life has spawned “the age of Big

Data” and, along with it, a proliferation of techniques to facilitate analysis of

huge data sets. These advances have not just been in terms of new algorithms

but also in terms of programming languages and paradigms, the applied

mathematics that underpin them, as well as new platforms and tools that

make it possible to analyze the titanic data sets available today. Yet working
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with high dimensional data when there is a dearth of samples remains a

challenging problem. The ‘big’ in big-data refers to the vast number of

samples or data-points available for the investigator to analyze, that is, the

intrinsic dimensionality or cardinality of the data set [1]. However, data

can also be ‘big’ in another way - in terms of its extrinsic dimensionality,

i.e. the number of variables of interest to the investigator far exceeds the

number of observations he or she is able to make. Time series data are good

examples of such data sets. Consider, for example, the thousand currently

largest companies on the New York Stock Exchange and suppose the data set

is the daily closing market price of each company’s stock considered over a

ten-year period. Let the objective of the analysis be to perform unsupervised

clustering of the thousand companies - say to discover new or up and coming

industry sectors - or to extract information about interrelations between them

- say to better understand the market. Then, because each company’s market

price over the ten year period would be considered a single sample in this

scenario, we would have a data set of intrinsic dimension a thousand; however,

its extrinsic dimension would be approximately two and a half times that.

Conversely, one can think of each day’s closing price as an observation of a

thousand variables. In any case, the sample sizes do not reach anywhere near

the hundreds of thousands of samples required for training in contemporary

machine learning techniques. Medical imaging datasets and/or biophysical

signals are another source where the extrinsic dimensionality is naturally high

- indeed a major part of this work focuses on functional Magnetic Resonance

Imaging (fMRI) data where it costs roughly a couple of thousand dollars to

generate a single data point.

When y has a systemic structure to it, for example periodicity in some

of its elements, then tools such as the repertoire of Fourier analysis and re-

lated techniques often aid in characterization and study of them. On the

other hand, one can examine relationships within the collection absent peri-

odicity using concepts like correlation, auto-correlation, stationarity, cosine

similarity, etc. In a similar vein, one of our tools here will be the concept of

cyclicity [2]. Cyclicity analysis - which draws on ideas from differential geom-

etry & topology and has connections with the signature methods introduced

by Lyons et. al [3] - was presented as a tool to analyze the interrelationships

between a collection of aperiodic yet repeating signals (see, for example, Fig-

ure 2.1) which were not easily amenable to analysis by traditional methods.
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We expand this toolkit by way of addition of new algorithms & methods as

well as new applications of related concepts. We then, demonstrate their

use on real world datasets, specifically functional magnetic resonance imag-

ing (fMRI) data both from healthy control participants and also participants

suffering from the tinnitus condition.

While cyclicity and related methods seek to complement correlation and

Fourier methods in explaining and finding interdependencies in the data, the

classification, decomposition, and/or clustering of time series data is another

important, if not parallel, objective in the pursuit of their analysis. Within

this context of clustering, some of this work also analyzes electromyography

(EMG) data with the help of nonlinear clustering tools to extract and/or de-

lineate periods of synergies. A synergy can be thought of as the mechanism

by which different muscles act in concert to achieve a task while eliminating

motor redundancy inherent in the control of animal musculoskeletal struc-

tures. EMG data has long been used to attack this problem - that is, how

does the human central nervous system choose from millions of possibilities

for parameters associated with a motor task? More concretely [4],

“... imagine a pointing task that requires a certain trajectory of a

fingertip. How to select a combination of joint angles to produce

the required trajectory? How to select muscle forces that would

implement the joint rotations? How to select patterns of firing

of individual motor units that would produce required muscle

forces?”

Simply put, in terms of understanding motor control, there are clearly multi-

ple redundant degrees of freedom, which is somehow naturally accounted for

by the central nervous system (CNS). A long held view was one of a multi-

level theory of movement control [5, 6, 7], one level of which was “synergy”,

in which coordinated actions by a set of effectors emerged. In this model,

synergies are patterns of joint movements and muscle activations that are

either hardwired or learned with practice over time, and help eliminate re-

dundant degrees of freedom. Our objective in the second part of this work is

to understand how one can relate the muscle activation potentials observed

as EMG signals with the forces and moments that extensions or contractions

of the muscle generates. We show that synergy detection and/or analysis is

more appropriately viewed as a nonlinear clustering problem rather than the

4



signal decomposition problem commonly seen in the literature.

In light of the above, the rest of this document is structured as follows: In

Chapter 2 we will review some classical methods of time series analysis and

the background material required to introduce the methods used in this work.

Chapter 3 will contain the bulk of exposition involving the mathematical

treatment of our techniques. In Chapters 4 and 5, we will introduce and

analyze the problems chosen for study by the application of methods in

Chapter 3. Specifically, functional magnetic resonance imaging (fMRI) data

and application of cyclicity analysis to it will be studied in Chapter 4. In the

penultimate chapter we will examine the application of nonlinear clustering

methods to electromyography (EMG) data. Finally, the last chapter will

conclude this document with a cursory review of the history & context, a

reiteration of open questions, and directions for future work.
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Chapter 2

Preliminaries

Given the ubiquitousness of time series data, innumerable methods and tech-

niques of analyzing them have been developed. Broadly speaking, traditional

time series analysis methods can be chiefly divided into two camps - time do-

main methods and spectral methods. Within the former camp, the objective

is frequently to perform forecasting, regression, modeling, etc., whereas in

the latter case the objective is often to extract summary statistics and/or

perform decompositions. While not meant to be exhaustive in any fashion,

we briefly review some popular methods in the following.

2.1 A short review of time series analysis

2.1.1 Time domain methods

When the objective is to perform forecasting, modeling, or regression as is

common in the fields of econometrics, statistics, meteorology, finance, etc.,

the methods most commonly in use tend to be based in the time domain.

Potentially, the simplest such model arises when the time series’ current

value is hypothesized to depend on its past values in some fashion - the so

called autoregressive (AR) model [8]. When the current value of a variable

y depends on p past values, we write it as the AR(p) model

yt = c+

p∑
i=1

φiXt−i + ϵt (2.1)

where the subscript in yt denotes that the value of the time series y at time

t is under consideration, c is a constant, φi are model parameters, and ϵt is

(often white) noise. Given yi, various methods of estimating the φi exist,

however the general sources of uncertainty in the model are: applicability of
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the model to the given time series y, the correct value of p to be used, the

noise term, and, paramountly, the uncertainty in autoregressive coefficients

φi.

Using the AR model, we can also construct forecasts ŷt of the process

once the parameters φi have been estimated. The residuals ϵt := ŷt − yt

form their own time series, possibly with some structure. Applying the same

autoregressive logic to the residuals, we can construct a model for the residual

errors and predict the expected error. These error predictions can then be

subtracted from the model prediction to provide an additional performance

gain. This results in the very popular autoregressive moving average (ARMA)

model. Here, we have that ARMA(p, q) is defined as:

yt = c+ ϵt +

p∑
i=1

φiXt−i +

q∑
i=1

θiϵt−i (2.2)

where φi and θi are now the model parameters and q is the number of resid-

uals used. Introducing differencing to account for nonstationarity results in

the autoregressive integrated moving average (ARIMA) model, often written

as ARIMA(p, d, q), where d now stands for the order of differencing applied.

These models can also be extended to multidimensional times series result-

ing in vector autoregressive (VAR) models and their siblings VARMA and

VARIMA models.

Other classical methods in the time-domain include Hidden Markov Models

(HMM) and nonlinear autoregressive exogenous (NARX) models. NARX

models are essentially derived from Eq. 1.1 and Eq. 1.2 by dropping the

former and adopting x := y in the latter allowing the equation to take the

form [9],

yt = h (yt−1, yt−2, yt−3, . . . , vt, vt−1, vt−2, vt−3, ) + ϵt

where h may now represent a neural network, polynomials and/or other

nonlinear functions. In contrast, HMMs do not drop the state x but rather

“hide” it while constraining its relationship to y such that the output yt0 only

depends on the hidden state xt0 at time t0 and not any other past hidden

states or outputs (xt<t0 , yt<t0).
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2.1.2 Spectral methods and decompositions

In contrast to regression and forecasting, the objective of most spectral anal-

ysis methods is usually to obtain decompositions of the given time series

into simpler constituent components. For example, Fourier analysis aims

to uncover the constituent frequencies present in a periodic signal by way

of representing it as a sum of trigonometric functions; principal component

analysis (PCA) applied to multivariate or multidimensional time series finds

representations that encode most of the variability in the data with a few

components, and so on. We call these spectral techniques because often at

the heart of the method lies an eigenanalysis problem. For example, the PCA

decomposition is obtained by examining the spectrum of the centered covari-

ance matrix of the data, the Fourier components describe a periodic function

in terms of an eigenbasis of complex exponentials and so on. Numerous algo-

rithms and techniques fall under the grand umbrella of “spectral methods,”

so much so that to describe in detail even a handful of them would be be-

yond our scope. Nevertheless, the ideas applied and/or examined in this work

frequently make comparison to the popular spectral methods which can be

grouped together generically as factor-analysis methods which include non-

negative matrix factorization (NMF), independent component analysis (ICA)

and so on.

Yet another popular method which deserves a passing mention, the seasonal-

trend-cycle (STC1) decomposes a time series into seasonal, trend, noise, and

cyclic components, either additively or multiplicatively. That is, the time

series is decomposed as

yt = Tt + Ct + St + It or yt = Tt × Ct × St × It

where Tt stands for trend, Ct for cyclical, St for seasonal components and It

denotes any residuals. In the STL method the trend and cyclical components

are grouped into one [10]. While not strictly a spectral method, the decom-

position that this technique yields is imminently interpretable and easy to

understand.

1Also often called STL for Seasonal-Trend decomposition using LOESS [10] where
LOESS itself is an acronym for locally estimated scatterplot smoothing.
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2.1.3 Clustering and similarity measures

Classification or clustering of samples over time, based on their own past be-

haviors - both auto and inter relations - may be important for many purposes

including inferring dynamics between them, detecting anomalies or outliers,

gaining insights into their driving processes, etc. For an example, huge orga-

nizations may keep track of their external and intranet servers by monitoring

relevant statistics over time. Any anomalies detected from such time series

data could point to an imminent failure or an ongoing malicious attack. In

such cases extracting or generating features that summarize statistics, or

capture interpretable content from the multivariate time series, constitute

a popular methodology for overcoming high extrinsic dimensionality. How-

ever, it may still be the case that the generated features themselves have

high enough extrinsic dimensionality that the investigator may have to re-

sort to further dimension reduction methods. Conversely, in the setting of

machine learning, one may seek to augment the data set to increase the in-

trinsic dimension to be on par with the extrinsic dimension. For example, in

image recognition or classification, flipping, rotating, or skewing the image

is a common practice that can add additional data points to the set without

changing its essential nature.

Clustering refers to techniques that aim to aggregate data that are ‘similar’

in nature together. Often, the metric used to define similarity is a parameter

left to the choice of the user. Such techniques may be used to group time

series behaving in a similar fashion together or may be used to group together

periods of essentially the same activity within a single time series. Here,

popular methods include the ubiquitous k-means adapted for time series (by

way of an appropriate choice of similarity metric), kernel k-means, k-mediods,

hierarchical and density based clustering to name a few.

Each technique presents its own advantages and disadvantages. For exam-

ple, the Euclidean k−means algorithm requires the user to estimate a priori

k, the number of clusters present in the data. Then it proceeds to initialize

k centroids within the dataset and iteratively assigns data points so as to

minimize within-cluster variance for each of the k clusters. More formally,

the objective is to find amongst all k subsets S = {S1, S2, . . . , Sk} of the
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data,

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥2 (2.3)

where µi is the mean of the data points in Si. Therefore, the naive algorithm

at each step performs assignments, as mentioned above, and recalculates

the cluster centroids. The iterations are said to be convergent when no

more updates are required (or effect any change to the minimization). This

algorithm is neither particularly fast nor guaranteed to find the optimum

with local minima heavily influenced by choice of initial centroids. Kernel

k-means extends k-means via the kernel trick to implicitly perform clustering

in the embedding space associated with the chosen kernel. Kernel k-means is

closely related to the spectral clustering methods [11], which is the main tool

used in Chapter 5. For time series data, the norm in Eq. 2.3 is often replaced

with an appropriate metric or similarity measure, e.g. the Dynamic Time

Warping (DTW) distance for vanilla k-means or Global Alignment Kernel

(GAK) for kernel k-means.

Recall that DTW method was introduced in the field of speech recognition

to account for differences in the variation (in intonation, speed, timbre, etc.)

of the same spoken content by different speakers [12]. Therefore, it was

constructed to allow for a notion of “nearness” or distance between time series

of unequal lengths, in contrast to the usual one where vectors are restricted to

be of the same size. To wit, consider two given time series of not necessarily

equal length, X = (x1, x2, . . . , xk, . . . , xM) and Y = (y1, y2, . . . , yj, . . . , yN),

with the objective of finding the optimal alignment between the two. Here

alignment means allowing for non-linear but monotonic warping of the time

axis so that one series maybe transformed into the other. Specifically, an

alignment between series of length M and N corresponds to a path through

an M ×N matrix that connects the (1, 1) entry with the (M,N) entry using

just →, ↓ and ↘ motions. Then the DTW algorithm begins by constructing

a matrix C of size M by N where each element Ckj of the matrix corresponds

to the optimal cost of the alignment between Xk = (x1, x2, . . . , xk) and Yj =

(y1, y2, . . . , yj), i.e., the first k points of X and the first j points of Y . This

optimal cost is obtained as

Ckj = dkj +min(C(k−1)j, C(k−1)(j−1), Ck(j−1)), (2.4)
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where dkj is a distance metric, such as the Euclidean distance (with the spe-

cific choice being left to the practitioner) between the k-th and j-th symbols

in the series. While a popular method in the analysis of time series data,

the DTW distance is not a true metric, as it does not satisfy the triangle

inequality nor is it amenable for use in the definition of a positive definite

kernel. The global kernel alignment algorithm attempts to address this is-

sue by changing the minimum in Eq. 2.4 with a soft-minimum so as to be

able to define a kernel function appropriately [13, 14]. Many other similarity

measures exist in literature, with survey papers describing them found as far

back as forty-five years ago [15], as well as more recently [8, 16].

With this preliminary review of classical time series behind us, let us now

proceed to describe the central problems of interest in this work.

2.2 Problem statement(s)

The main object of our analysis and study are multidimensional time series

data. By dimension here, we mean that the dataset of interest, recorded

over some [0, T ] interval or consisting of T steps, is comprised of multiple

channels or coordinates. For example, in the case of fMRI recordings, this

would be multiple regions of interest (ROIs) that provide changes in Blood

Oxygen Level Dependent (BOLD) signal, or in the case of EMG data, this

may correspond to different muscles reporting activity via various electrodes

attached to them. The defining characteristic of the kinds of time series

analyzed here is that they frequently exhibit repetition without a period.

In this work, this is called cyclic but aperiodic behavior, an example of

which is shown in Figure 2.1. The image of the collection of signals shown is

constrained to be in I := [−2, 2] for all t, i.e. they cycle through the values

in I, albeit with no definite period. At this juncture, it is crucial to draw

the distinction between periodic signals and cyclic signals to the forefront.

A signal x(t) is said to be periodic with period P if there exists a P ∈ R+

such that x(t + P ) = x(t). For an aperiodic signal there is no single P that

can be found to be termed its period. A signal y(t) is said to be cyclic if

there exists a bounded monotonic function ϕ : t → ϕ(t) so that y (ϕ(t)) is

periodic. Such signals arise frequently in bio-physical contexts, for example

the cardiac and respiratory rhythms which change frequently throughout the
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Figure 2.1: Signals that exhibit repeating but aperiodic behavior, termed
cyclic that still exhibit structure. The order within the black sub-collections
is | ⋆ ▷ ◁ and that within the red sub-collection is □− ·×

day depending on various factors like arousal, rest, medication, exertion, etc.

A function like ϕ(t) is essentially a re-parametrization of time; therefore, one

interpretation of cyclic signals is to picture some internal processes with an

unknown private clock and internal state space giving rise to the observable

y via the function ϕ−1 (provided ϕ is strictly monotonic).

Yet within Figure 2.1, we see that the signals are not all random; they do

exhibit a certain structure. Namely, we see that there are two sub-collections

of signals, the red and black ones with the latter being a more cohesive bunch

compared to the other. Even within the red sub-collection, it is clear that

two of the signals coalesce around each other more than the others. In terms

of order of appearance, we can see the black signals follow each other in

the order: | ⋆ ▷ ◁. Similarly, in the red sub-collection we have the order:

□−·×. Moreover, the structure just presented is preserved under monotonic

transformations ϕ : t→ ϕ(t). Then, naturally a few questions arise:

• Is it possible to recover the structure elucidated above from such a

collection of signals?

• Is it possible to recover the fact there are two sub-collections in the
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signal?

• Is this recovery preserved under reparametrization of time?

In certain cases, the analysis pipeline outlined in Chapter 3 will be able to

answer the above questions affirmatively. In other cases, we may have to

resort to different techniques. Before we proceed to describe our methods,

we take a quick detour to present what questions we sought to answer with

each of the datasets in use. Recall that the datasets used in this work are

functional Magnetic Resonance Imaging (fMRI) data and electromyography

(EMG) data.

2.2.1 Functional MRI datasets

We begin by briefly reviewing how the fMRI time series analyzed in this work

are generated. Recall that at the heart of the fMRI machine is a Magnetic

Resonance Imaging (MRI) scanner. MRI imaging works on the principle of

nuclear magnetic resonance, namely, it utilizes the phenomenon that precess-

ing atoms in a strong external magnetic field, give out characteristic energy

signatures when returning to equilibrium. The said return being caused by

intentional perturbation from equilibrium via radio-frequency (RF) pulses.

These signatures can be studied and analyzed to glean information about

the underlying tissue and body structure. Functional MRI of the brain,

then, works by focusing on molecules within blood itself. Specifically, the

hypothesis is that activity in any region of the brain requires energy, which

necessitates the increased flow of oxygen rich blood to the said region. Since

oxygen rich blood has an increased concentration of oxygenated hemoglobin

(diamagentic), its characteristic signature can be mapped distinctly from

that of deoxygenated hemoglobin (paramagnetic). This gives rise to what is

called the Blood Oxygen Level Dependent (BOLD) signal. The fMRI time

series studied in this work are all traces of various BOLD signals from dif-

ferent parts of the brain as recorded from individuals in a resting or task

modulated state. An example of this BOLD signal is visualized in the left

panel of Figure 2.2.

We examine two main sources of fMRI data in this work.

1. The first is fMRI data that was collected at the University of Illinois,

Urbana-Champaign. In particular, data was recorded at the Auditory
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& Cognitive Neuroscience Laboratory directed by Dr. Fatima Husain.

This data was primarily collected in the resting-state and was done so

with the objective of studying the neurological underpinnings of tinni-

tus as detailed in Chapter 4. The exact details of the fMRI recording

pipeline is presented along with demographic information in Section

4.1.1.

2. The second is openly available fMRI data that was collected at the

Washington University at St. Louis as part of the Human Connectome

Project under the aegis of the Connectome Coordination Facility. In

this dataset, fMRI scans were performed in both the resting state and

task modulated paradigms. Whereas the previous cohort of subjects

was a mixture of tinnitus afflicted and healthy individuals, all the data

in the HCP dataset comprised of healthy individuals between the ages

of eighteen and forty. More details regarding the HCP dataset can be

found in Section 4.3 and in relevant literature [17, 18].

With the former dataset, we sought to utilize fMRI data for better un-

derstanding the neural underpinnings of tinnitus [19]. Tinnitus is a common

neurological disorder that is characterized by a persistent perception of phan-

tom noise often described as a ringing or buzzing sound. The tinnitus is typ-

ically associated with the presence of hearing loss and reportedly affects 1 in

6 individuals at some point of their lives. While some people habituate quite

effectively with the presence of tinnitus, for many others it is a debilitating

condition that can seriously affect their quality of life. The ringing or buzzing

noise is characterized as phantom because no physical stimulus is actually

present in the ambient environment. Analysis of the fMRI data collected

at the Auditory & Cognitive Neuroscience Laboratory and presented in [19]

further lead to [20] where we compared our proposed methods with other

methods popular in the field. The overarching objective with this dataset

was to gain insights into the brain processes, inter-region connectivity, and

differences if any in the functional connectivity of the brain that could ad-

dress the presence of tinnitus in the subject population. Such findings would

allow for the development of diagnostic tools and/or intervention strategies

for the management of the tinnitus condition.

In analysis of the dataset fromWashington University at St. Loius, namely

the Human Connectome Project (HCP) dataset, we sought to extend the
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cyclicity analysis toolkit [21]. In particular, we showed how cyclicity analysis

equipped with the so-called chain of offsets model can be used to recover an

underlying network structure. For HCP data under the task paradigm, we

showed that we are able to detect periods of directed activity between pairs

of brain regions signifying the progression of a wave of activity.
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Figure 2.2: This figure visualizes exemplar data studied in this work. (a) The
Blood Oxygen Level Dependent (BOLD) signal from 32 regions-of-interest
(ROIs) is shown. (b) Here six channel EMG data sampled at 1000 Hz is
shown for the duration of a sub-second task recording.

2.2.2 Electromyography data

The second source of biophysical time series data that is studied in this

work is electromyograph (EMG) readings obtained from healthy individuals

as they performed various tasks. EMG readings can be obtained from an

individual in three principal ways:

1. Intramuscular EMG: Here EMG readings are obtained from the

muscles directly by implanting small needle electrodes directly into the

musculature. This is the oldest method of EMG recording and is still

used in many applications where high degree of localization and selec-

tivity is required (i.e. where individual motor unit activity needs to be

recorded).

2. Surface EMG: In this method, EMG readings are obtained from the

surface of the muscle via the skin, thereby covering a larger portion of

the musculature and more muscle fibers. This method’s distinct advan-
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tage is its non-invasiveness, albeit at the cost of more signal processing

to clean up the (possibly more) noisy signal and loss of selectivity.

3. Multi-array EMG: In this latest method, a multitude of electrodes

are utilized in an arrayed fashion on the surface of the skin to provide

localized information about the depth at which the muscle is activated

apart from intensity of activation itself.

The dataset utilized in this work is of the second kind listed above, namely

surface EMG recordings. The overarching aim with this latter dataset was

to try and address the problem of motor redundancy by way of nonlinear

techniques. In this context, i.e. within kinesiology, the motor redundancy

problem is one of providing a mechanism by which the central nervous sys-

tem (CNS) is able to coalesce the multitude of options available to it. For

concreteness, it is not hard to see that a simple action like tracing an arc

with one’s finger on a blackboard involves multiple motor units, the hun-

dreds of muscle fibers that comprise them, the tens of joints that link the

musculature together, and so on. Thus, there are innumerably many degrees

of freedom available to the CNS if one were to count from the level of in-

dividual muscle fibers, joint angles, etc. Yet, somehow the CNS is able to

choose from amongst them reliably and repeatedly without fail. In address-

ing the problem of redundancy in motor control, researchers seek to provide

a plausible mechanism by which the same is accomplished. With our work

on the dataset collected at the Neuroscience of Dance in Health, Disease and

Disability Laboratory under the supervision of Dr. Citlali Lopez-Ortiz, we

show how nonlinear clustering techniques provide one way address this ques-

tion. In particular, we are able to cluster the multichannel EMG data with

the clusters being demarcated by changes in the force/moment generation in

the task - data which is in fact absent as input into the clustering pipeline!

With this brief summary of the types of datasets that will be used in this

work, we will now move on to the next chapter, where we will introduce the

methods we will use to study the data.
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Chapter 3

Methods

Now we turn to the task of describing the methods used in the analysis

promised and previewed so far. We utilized methods related to cyclicity

analysis, nonlinear clustering, and machine learning techniques along with

some methods described in the previous section. We start with cyclicity

analysis.

3.1 Cyclicity analysis

To describe the crux of our method in detail, let us formalize a few definitions

we alluded to in Section 2.2.

Definition 3.1 (Path). is an alias for a multidimensional signal, i.e. a

d−dimensional path X is simply a continuous mapping from a subset of the

real line to the vector space Rd, X : [s, t] ⊂ R→ Rd.

The terms trajectory, path and signal are used interchangeably in this

document and are all multidimensional unless specified in the context.

Definition 3.2 (Reparametrization). A reparametrization of a path over

an interval [s, t] is a change of variable X (t) → X (ϕ(t)) such that X(s) =

X (ϕ(s)) , X(t) = X (ϕ(t)) and ϕ (·) is continuous, bounded and increasing

over [s, t].

Note that some authors use the alternate spelling reparameterization. Re-

call that we said a periodic signal is necessarily cyclic but the converse need

not be true. Indeed, we have that a signal or time series is periodic if shifting

it in time ahead by a value P keeps the series unchanged. The smallest such

P is called its period. On the other hand, a cyclic signal is one that repeats

itself identically over and over again but perhaps with a variable speed. More

precisely,
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Definition 3.3 (Cyclic). A signal g (t), is considered cyclic if there is a

monotonically increasing bounded function, ϕ (t), so that g (ϕ (t)) is periodic.

Now to understand why we care about reparametrizations, let us consider

a pulse and its shifts in time as shown in the left panel of Figure 3.1. In

this figure, a Gaussian pulse and its progressive time shifts are shown so that

the first (blue) and last (deep red) pulses have virtually no overlap. On the

right panel in the same figure, we show the parametric plots of the first pulse

against the rest of the shifted pulses. Here, the blue fixed pulse is plotted on

the abscissa while the different red pulses are plotted on the ordinate.

Naturally, we see that when the shift S = 0 the parametric plot essentially

becomes the straight line y = x (c.f. the top row in the right panel of Figure

3.1 and imagine possibly, a Plot 0). Conversely, when there is no overlap at

all, the parametric plots collapse onto the cardinal axes as shown tending to

in Plot 9. However, in the middle, the parametric plots enclose areas of the

plane by way of loops. It follows then that in the case of pair of sinusoids

time shifted by S, the enclosed area would take on extreme values when the

shift is a quarter period or three quarters of a period and a value of zero

when the shift is a half or full period.

Given two time series x and y defined on [a, b] such that x(a) = x(b)

and y(a) = y(b), we can calculate the above mentioned signed area A(x, y)

enclosed by their parametric plot as

A(x, y) =
1

2
·
∫ b

a

x(t) · y′(t)− y(t) · x′(t)dt (3.1)

by way of Green’s Theorem. Note that the above quantity is reparametrization

invariant with respect to monotonic transformations t → ϕ(t). In other

words, if we were to think of a transformation t → ϕ(t) as a warping of the

time axis, it is clear that regardless of how quickly we traverse the image of

x(t) and y(t), the curve in the x − y plane remains unchanged and conse-

quently, so should the area enclosed by it. This is easy to verify. Let A(x, y)
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A pulse and its shifts in time
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Parametric plots of the blue pulse on the left against 
 timeshifted versions of itself

Figure 3.1: A pulse and its time shifts are shown on the left panel. The
right panel shows parametric plots of the first (blue) pulse against its time
shifts. We see that the parametric plots each enclose certain areas by forming
loops. These areas are interpreted as signed areas because the parametric
curve is considered to be oriented. A loop traversed in the counterclockwise
direction contributes a positive area. We see that when the time shift S = 0
the parametric plot becomes a segment of y = x and when |S| >> 0 the
parametric plot collapses onto the cardinal axes.
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be as defined in Eq. 3.1 and consider:

A (x (ϕ(t)) , y (ϕ(t))) =
1

2

∫ b

a

(x (ϕ(t)) · y′ (ϕ(t))ϕ′(t))

− (y (ϕ(t)) · x′ (ϕ(t))ϕ′(t)) dt

=
1

2

∫ b

a

(x (ϕ(t)) · y′ (ϕ(t))− y (ϕ(t))x′ (ϕ(t)))ϕ′(t)dt

Let z := ϕ(t) so that dz = ϕ′(t)dt. Then,

A (x (ϕ(t)) , y (ϕ(t))) =
1

2

∫ b

a

(x (z) · y′ (z)− y (z)x′ (z)) dz

=: A (x (z) , y (z))

Moreover, we can in fact consider the enclosed areas to be signed areas, be-

cause the progression of time in the left plot of Figure 3.1 accords a natural

orientation to the parametric curves in the 2-coordinate planes of the right

panel of plots. By convention, a loop traversed in the counterclockwise di-

rection is said to contribute a positively signed area. The determination of

quantities related to multidimensional trajectories

X(t) =
(
x1(t), x2(t), . . . , xd(t)

)
∈ Rd

which remained invariant with respect to reparametrizations was studied by

Kuo-Tsai Chen in the 1950s [22]. In particular, Chen established that it was

their iterated integrals which comprised the reparametrization invariants of

such signals. More concretely, let Xt = X (t) be a d-dimensional path in Rd

defined over an interval [s, t]. For any such path it is possible to define its

n-th iterated integral [23] as,

Xn
s,t =

∫
s<u1<...<un<t

dXu1 ⊗ dXu2 ⊗ . . .⊗ dXun (3.2)

where ⊗ denotes the tensor product1. Note that ui in the above are simply

integration variables. For example the first order iterated integral is simply

1For elements of a real valued finite dimensional vector space, this is simply the outer
product.
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the increment of the path over [s, t]:

X1
s,t =

∫
s<u1<t

dXu1 =

t∫
s

dX (u1) du1 = Xt −Xs

where in the last equality we have dropped the argument to subscripts. Sim-

ilarly the second order iterated integral is:

X2
s,t =

∫
s<u1<u2<t

dXu1 ⊗ dXu2 =

t∫
s

u2∫
s

dXu1 ⊗ dXu2

=

t∫
s

X1
s,u2
⊗ dXu2

Example 3.1. As an example consider the path:

Xt := [0, 2π] 7→

[
cos t

sin t

]
⊂ R2 ⇒ dXt =

[
− sin t

cos t

]

Then we can compute,

X1
s,t = Xt −Xs =

[
cos t− cos s

sin t− sin s

]

and,

X2
s,t =

t∫
s

u2∫
s

[
sinu1 sinu2 − sinu1 cosu2

− cosu1 sinu2 cosu1 cosu2

]
du1du2

where we have made use of the fact that ⊗ for finite dimensional vectors is

the outer product.

In general, Eq. 3.2 defines an n dimensional tensor so that an iterated

integral of n-th order captures interrelationships between n-tuples of elements

of X. By defining the zeroth order iterated integral to be unity, i.e. X0
s,t := 1,

it is possible to group iterated integrals of all orders n > 0 together into a

21



single infinite dimensional entity called the signature of a path [24].

S (Xs,t) :=
(
1,X1

s,t,X
2
s,t, . . .

)
(3.3)

Xn+1
s,t :=

t∫
s

Xn
s,u ⊗ dXu, n ≥ 0

The signature of a path encodes many of its algebraic and geometric proper-

ties and can be shown to be invariant to translations and reparametrizations

[25, 24]. The signature method promoted by the Lyons’ school utilizes trun-

cations of the signature as features in different machine learning applications.

However, here we will focus on the second order component of the signature,

in particular its antisymmetric part, i.e. oriented areas. When n = 2, we see

that the antisymmetric part of Eq. 3.2 can be written as a matrix

Â =
1

2
·

∫
s<u1<u2<t

dXu1 ⊗ dXu2 − dXu2 ⊗ dXu1

⇔ Âij =
1

2
·

∫
0<u1<u2<t

dxi
u1
dxj

u2
− dxj

u1
dxi

u2
(3.4)

where each (ij)-element then captures signed area corresponding to the pair

of curves (xi, xj).

The matrix in Eq. 3.4 is intimately related to the lead matrix of cyclicity

analysis from [2]. Each (ij)-entry of the lead matrix is proportional to the

sum of areas enclosed by the corresponding (ij)-pair of signals in their re-

spective 2-coordinate planes weighted by their winding numbers. Recall that

a winding number is the number of times a curve is traversed in either clock-

wise or counterclockwise around a point of interest. Figure 3.2 suffices to

illustrate this point, and the reader may refer to the Appendix for a primer

on the topic. In Figure 3.2 we show how the algebraic area for a pair of

curves is defined. In the left panel, we see that the areas enclosed by the

curves form loops which are assigned a sign depending on the orientation of

traversal. Plot 1 has a positive area of π since counterclockwise traversal is

by convention taken to contribute a positive area. Plot 2, however, has a

net zero algebraic area because the two leaves in the figure contribute equal

areas of opposite signs. The right loop is completed in a counterclockwise
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Plot 1: Non-zero net area

+

Plot 2: Zero net area

++

Plot 3: Non-zero net area

+
+

Plot 4: Zero net area

How algebraic areas get added up

0.5 0.0 0.5 1.0 1.5
x(t) = cos(t)

0.5
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0.5
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t)

=
si

n
(t

)

The algebraic area here is the area enclosed by the secant and the arc.
Plot of cos(t), sin(t) for t∈ [0, π/2]

Figure 3.2: The algebraic area is the winding number weighted sum of the
areas contributed by the loops. In the left panel, only the leftmost column of
curves has a nonzero net area whereas for the right column, the net area is
zero due to cancellations. These cancellations arise due the opposing nature
of signs of the winding number for each of the loops/leaves. In the right panel
we show how to interpret the algebraic area when the curve in the parametric
plot does not form a closed loop. In this case, the area given by Eq. 3.4 for
i ̸= j is the signed area between the curve and a chord connecting its two
end points - a quantity called Levy area in some publications [26]. On the
other hand Eq. 3.1 would return the area beneath the curve, i.e. area of the
quarter sector of the unit circle.
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fashion (hence a winding number of +1 around any point inside it) while

the left loop is completed in a clockwise fashion (hence a winding number

of −1 for points in the domain it encloses). Similarly, the algebraic area in

Plot 3 is nonzero while that of Plot 4 is zero. The right panel shows how the

area is interpreted when the pair of time series or trajectories do not result

in closed parametric curves. In this case, the algebraic area - also called

Levy area [26] - is the area enclosed by the curve and the chord connecting

its end points. Indeed, one can verify that the pair (cos(t), sin(t)) generates

the figure for t ∈ [0, π/2] and that the area involved can be calculated from

simple geometric intuition as:

sector− triangle =
π

4
− 1

2
=

π − 2

4

whereas from Eq. 3.1 we see that the area A is:

A =
1

2
·

π/2∫
0

cos(t) (sin(t))′ − sin(t) (cos(t))′ dt =
1

2
·

π/2∫
0

cos2(t) + sin2(t)dt

= π/4

This illustrates the difference between the i ̸= j elements of Â in Eq. 3.4 and

area of Eq. 3.1. The former would read here as:

Âij = A+
1

2
sin(0) [cos(π/2)− cos(0)]− 1

2
cos(0) [sin(π/2)− sin(0)]

= A− 1

2
=

π − 2

4

since for a pair of trajectories (X, Y ), the quantity in Eq. 3.4 is

1

2

t∫
s

(XudYu − YudXu) du︸ ︷︷ ︸
:=A

+
1

2
Ys (Xt −Xs)−

1

2
Xs (Yt − Ys)

This motivates the following definition for the lead matrix.

Definition 3.4. Given a collection of time series X = (x1(t), x2(t), . . . , xn(t))

with t ∈ [a, b] we define the lead matrix M via Eq. 3.1 as

Mij(X̃) := −A (x̃i, x̃j) (3.5)
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where X̃ = (x̃1, x̃2, . . . , x̃n) is the collection X linearly adjusted so that xk(a) =

xk(b) for all k.

Note that the negative sign is present in this definition to be consistent

with [2]. The primary use of the matrix M is to automatically extract cyclic

ordering from the collection X via its eigen-analysis. To see why this would

be possible, consider the matrix M when it arises from a collection X of

single harmonics, Xk = sin (αt+ ϕk) , k = 1, . . . , n. In this case the lead

matrix A defined via Eq. 3.5 by considering all pairs (xi, xj) is a rank 2

skew-symmetric n× n. It is given by,

akl = C sin (ϕk − ϕl)

akl = −alk

}
for k, l = 1, . . . , n, k ≤ l

where C is a constant function of α and the period of integration. Now

consider the following result stated by Baryshnikov in [21] for which we offer

a proof.

Lemma 3.1. If a real skew-symmetric rank 2 operator A admits a decompo-

sition A = z⊗ y− y⊗ z where z, y are linearly independent then (v, λ) is an

eigenvector-eigenvalue pair where

v = −e−iθz

|z|
+

y

|y|
, λ = i sin θ |z| |y| , θ = arccos

(
z · y
|z| |z|

)
Proof: We have,

Av =
(
zyT − yzT

)
v = zyT

(
−e−iθz

|z|
+

y

|y|

)
− yzT

(
−e−iθz

|z|
+

y

|y|

)
=

(
−e−iθzyT z

|z|
+

zyTy

|y|

)
+

(
e−iθyzT z

|z|
− yzTy

|y|

)
= −e−iθz |y| cos θ + z |y|+ e−iθy |z| − y |z| cos θ

=
(
−e−iθ |z| |y| cos θ + |z| |y|

) z

|z|
+
(
e−iθ |y| |z| − |y| |z| cos θ

) y

|y|

The second term simplifies to

(
e−iθ |y| |z| − |y| |z| cos θ

)
= −i (sin θ) |z| |y| = λ
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establishing that

(
e−iθ |y| |z| − |y| |z| cos θ

) y

|y|
= λ

y

|y|

For the first term,(
−e−iθ |z| |y| cos θ + 1 · |z| |y|

)
=

(
i sin θ cos θ + sin2θ

)
|z| |y|

= −i sin θ |z| |y| (− cos θ + i sin θ) = −λe−iθ

which gives

Av = λ
(
−e−iθ

) z

|z|
+ λ

y

|y|
= λv

Therefore if we write a component of v as vk = uk + iwk in terms of its real

and imaginary parts then,

uk =
− cos θ

|z|
zk +

yk
|y|

, wk =
sin θ

|z|
zk

which shows that if (zk, yk) = (cosϕk, sinϕk) then the order of the collection

of points on the unit circle {(cosϕk, sinϕk)} is the same as that of the phase

angles of {vk}. Therefore, in the case of a signal consisting of a single har-

monic we are able to determine the cyclic order of the phase shifts. Figure

3.3 shows the recovered cyclic ordering of the phase shifts in just such a case.

Further, supposing that a single harmonic dominates in the real signal, one

hopes that rank two matrix PAP will closely approximate A in Frobenius

norm, where P denotes the projection matrix onto the subspace spanned by

the eigenvectors of the largest (in absolute value) eigenvalue [2]. Moreover,

the rank two decomposition extends to the case when the collection contains

harmonics that are integer multiples of t in different coordinates by consid-

ering any two harmonics xk (t) = sin (αkt+ ϕk) and xj (t) = sin (αjt+ ϕj).

The area element corresponding to them in a lead matrix can be shown to be

zero if αk, αj ∈ Z and αk ̸= αj. Therefore, the lead matrix will then admit a

decomposition

A =
m∑
i

zi ⊗ yi − yi ⊗ zi (3.6)
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Order and grouping recovery in single harmonic case
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Figure 3.3: Here we see a collection of signals with a single harmonic. Two
of them have higher magnitude than the others. They are also colored into
groups of red, blue and green signals. The green signals are of opposite
phase. On the right we see that the grouping structure, phase & amplitude
difference are recovered in the leading eigenvector.

where m is the number of unique αk and so it suffices to consider the m

eigenvectors; each returning the cyclic ordering corresponding to one har-

monic. In the absence of clean noiseless harmonics, we rely on the ratio of

eigenvalues λ1/λ3 to assign a measure of quality to the recovered ordering

(recall λ1 = λ̄2) because λ1/λ3 →∞ as we approach the rank two case.

A collection {akf (t− αk)}k where the coordinates track essentially the

same function f albeit with different offsets αk ∈ S1 is called a Chain-of-

Offsets-Model (COOM). Such a model is descriptive of systems where one

process triggers another which yet again triggers another and so on, resulting

in a self-sustained cycling behavior. Supposing that the observed Yk arise

from such a collection via a reparametrization as in Definition 3.3, then

expanding the generative function in its internal state space via its Fourier

coefficients2

cm sin [mω (t− αk) + ϕm] , m = 1, 2, . . . and ω =
2π

T

one gets that the elements of the lead matrix are given by summation of the

2Ignoring the constant term.
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terms:

Am
k,l = 2πm|cm|2akal sin (m (αk − αl)) , m = 1, 2, . . . (3.7)

when integrated over [0, T ]. Then, if one of the coefficients in the Fourier

series dominates, we have that lead matrix is well approximated by the rank

two skew-symmetric matrix of Eq. 3.7 in the Frobenius norm and by virtue

of Lemma 3.1, the cyclic ordering of the phase shifts be approximately recov-

ered. We now exhibit an example of the utility of this method in a network

model.

3.1.1 An example in a gossip network

Consider a network model where the information propagates along nodes in

a peer-to-peer fashion with propagation delay proportional to edge weights.

Such node-to-node information exchange modulated by edge weights is preva-

lent in so called gossip networks and first passage percolation models. For

our purposes, suppose a connected network G with n = 12 nodes as shown

in Figure 3.4 has a signal f(t) broadcast from a source node s. This graph

was constructed by starting with the C3 graph and adding nodes with k = 3

edges at a time. The edges are attached to vertices at random following a

distribution proportional to the vertex degree. Suppose this signal,

f (t) :=
s∑

k=1

rkg (t, k) , (3.8)

where g (t, k) = exp
(
− (t− kπ + cRk)

2)
arrives at other nodes affected by a small amount of noise and the above men-

tioned propagation delay as shown in Figure 3.5. In Eq. 3.8 the amplitudes

(rk) and displacements (Rk) were drawn uniformly from the appropriate dis-

tributions so that f(t) is a convex combination. Note that though the signal

can arrive at a node in many different ways, only the first arrival is counted

and the rest are ignored. Moreover, it is also possible that the shortest path

might not be the single-hop distance.

The question then we seek to answer is whether the delayed arrival of the

source signal (in essence, the phase shifts) can provide some information to us

about the structure of the network. Running the observed collection depicted
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(b) Weighted adjacency matrix of the graph
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(d) Pulse train from chosen source node.

Figure 3.4: This figure shows a simulated example of information propagation
along a network. The source of the signal is the red colored node in (a) with
each node connected to it receiving the signal with a delay proportional to
the connecting edge weights. These delays are represented in (b) where a
0 denotes a lack of connectivity between the nodes corresponding to that
row/column. However, information can propagate throughout the graph as
long as it is connected with the delays adding up. This is visualized in (c)
where each entry is the graph distance between a pair of nodes. Finally (d)
shows the noiseless waveform of the signal f(t) of Eq. 3.8 emanating from
node 5.

in Figure 3.5 through cyclicity yields results that hint in the affirmative. In

this case, the obtained lead matrix shows that it is dominated by the leading

eigenvalue with a λ1/λ3 ≈ 7. Moreover, the plot of derived phase values

versus the known sensor distance shows a nearly perfect linear dependence,
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The noisy and delayed signals seen at each node in the graph

Figure 3.5: The signals arrive at each node with some corrupting noise and
a delays. Note that even the source nodes sensor is assumed to have some
noise and the delay is defined by the shortest path between a pair of nodes.

i.e. the lag-structure is recoverable. Typically the distance of the node

from the source will be unknown; however, repeated analysis using multiple

source nodes over time can possibly allow these to be inferred. While the area

integral in Eq. 3.1 calculates as its value a quantity signifying the average

leader-follower relationship over the entire interval of definition [a, b], it is

possible to leave the upper limit of integration as a variable,

Axy(t) =
1

2
·

t∫
a

x(s) · y′(s)− y(s) · x′(s) ds (3.9)

thereby creating a new time series that captures the time evolution of the

elements of the lead matrix. This creates n(n− 1)/2 new times series out of

the original n ones, which we can eyeball collectively to infer interrelation-

ships. See Figure A.1 for such pairs of area dynamics that correspond to the

network we simulated above.
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(c) Leading eigenvector v1 on the complex plane
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(d) Eigenvector v1 vs distances

Figure 3.6: Results from cyclicity analysis on the collection of Figure 3.5.
(a) The computed lead matrix. The interpretation of the entries shows for
example that the nodes 3 and 4 are not too distant because of the nearly zero
area between them. (b) The eigenvalue drop off shows that λ1/λ3 ratio to
be quite high. (c) Shows the eigenvalue components plotted on the complex
plane. (d) The plot of the derived phase values vs. the known distance of
the node from the source shows a nearly linear dependence implying the lag
stucture is recoverable.

In the next chapter we will see the application of cyclicity analysis in the

study of fMRI data.

31



3.2 Nonlinear clustering

In this section, we will describe in detail the nonlinear clustering techniques

that were applied to the EMG data mentioned in Section 2.2.2 and discussed

in greater detail in Chapter 5. However, we first motivated the need for

nonlinear methods by first describing some simple situations where linear

methods can fail to account for the underlying structure of the data (cf. Fig-

ure 3.7).
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(b) The data set after dimension reduction

Figure 3.7: The swissroll dataset and the result of application of PCA to it
fails to unroll the data manifold.

The key here is to note that linear methods intrinsically consider features in

the data at a global scale. Therefore, in situations where first approximations

fail to capture adequately the intricacies happening at a local scale, linear

methods are set up to fail; contrast the linearization of a nonlinear system

about a stable equilibrium vs. unstable equilibrium. The domain of valid-

ity of the linearization is larger for the stable one. This would necessitate

chaining together multiple linearizations to approximate the system in the

unstable case. A similar situation may arise within data. To see how this may

happen, consider Principal Component Analysis (PCA) and the now famous

swissroll dataset in Figure 3.7(a). While commonly used as a dimensionality

reduction technique, PCA can also be interpreted as an unsupervised learn-

ing method for clustering data. The hypothesis being that in the Principal
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Coordinate (PC) space, data points that are similar, should ideally cluster

together. However, by restricting oneself to a single, purely linear change of

coordinates, we end up considering only the global structure in the data.

Application of PCA to this data set results in Figure 3.7(b), where in the

PC space, points that would have been far apart if the local structure of the

data had been considered, end up being mapped close to each other. In such

datasets, methods that are inherently sensitive to the local structure of the

data are required. In view of Figure 3.7(a), it is obvious that the point cloud

being considered has intrinsic dimension of two. More formally, the points

plotted lie in a two-dimensional manifold embedded in R3, the familiar three

dimensional euclidean space.

Consider data points xi ∈ Rn where i = 1, . . . , N . We denote by X the

dataset, represented as a n ×N matrix and assume with no loss of general-

ity that the dataset has zero mean. That is, each column of X is a data-

point/sample and the mean across the rows of the matrix X amounts to a

zero vector. In PCA, one begins by constructing matrix Σ =
1

N − 1
XXT

and decomposing it as Σ = UDUT wherein the change of basis Y = UTX

projects that dataset into PC space. If the data is not zero-mean then one

achieves the same by first performing X ← X − 1T · µ1 where 1 is a n-long

column vector of ones and µ is a vector holding the mean values. Observe

that Σ is a positive semi-definite matrix and U is an orthogonal matrix, i.e,

UTU = UUT = I where I is the identity matrix. Diffusion maps and Lapla-

cian eigenmaps generalize this fact by constructing positive semi-definite ker-

nels whose eigenstructure provides a coordinate change that is essentially

nonlinear. A kernel function K : Rn × Rn 7→ R is one that satisfies, for two

data points xi and xj,

1. Symmetry: K (xi, xj) = K (xj, xi)

2. Positive definiteness: K (x, y) =≥ 0 ∀x, y

The choice of the kernel is informed usually by some prior knowledge of

the statistics of the dataset or the process that generated the data point.

Common ones include the radial basis function (RBF) kernel

k (x, y) = exp (−γ∥x− y∥r)

for γ, r > 0 and the polynomial kernel K (x, y) = (x · y + c)r for c, r > 0.
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When r = 2, γ =
1

2σ2
the former is called the Gaussian kernel and for γ =

1

σ
i

and r = 1 the Laplace kernel. The Gaussian kernel is popularly used when

the prior distribution of the data is unknown and the sigmoid kernel is often

used as a proxy for neural networks where κ =
1

n
is a popular parameter

choice (n being the dimensionality of the data).

For each dataset X and kernel function K : Rn×Rn → R, we can generate

a N ×N positive semi-definite kernel matrix KX whose entries kij are given

by kij := K (xi, xj) for i, j = 1, . . . N . In the following we make no distinction

between the kernel function K and the matrix KX formed by considering all

pairs of data points xi, xj under said kernel function. Note that this kernel

K (dropping the subscript X) is distinct from Σ in that dimension of K

depends on the size or cardinality of the data set whereas the dimension of

Σ depended on the dimension of the data set (i.e. the n number of features

being observed per sample). Previously and in [1], this is referred to as a

distinction between the intrinsic and extrinsic properties of our dataset.

3.2.1 Diffusion maps

Diffusion maps proceed then by furthering modifying the kernel matrix K

to have some rather appealing properties we now describe. Consider for

example the kernel function defining:

K = kij = exp

(
−∥xi − xj∥2

σ

)
(3.10)

Suppose the kernel function satisfied for each xi the condition

1

dX

∑
xj∈X

k (xi, xj) = 1

for some normalization constant dX . One can then interpret its entries as

representing transition properties of a random walk on the data set. Indeed,

we can generate one-step Markov transition matrix P = D−1K where D is

a diagonal matrix comprised of the row or column sums of K. Successive

powers of P give then the transition probabilities after each step. Note that P

is no longer symmetric but its spectral analysis P = UΛU−1 can be facilitated
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by considering a related positive semi-definite kernel D1/2PD−1/2. See [1] for

more details. This construction - of generating a transition matrix based

on the diffusion kernel in Eq. 3.10 - allows one to see why the procedure

extracts the underlying geometry of the sampled manifold. Note that if

xi = xj the corresponding entry in K is equal to one. Therefore, points xi, xj

that are locally closer together generate higher probabilities - that is, the

random walk is more likely to land on a data-point if it came from another

point locally close to it. The eigenvectors U are called diffusion coordinates

and the embedding to the diffusion space after t time steps then is given by

Y = UΛt. Since the larger eigenvalues in Λ determine which coordinates are

more important than the other, a dimension reduction is performed on the

data by simply retaining only a few largest ones. The hyper-parameter σ

then controls in effect the size of the neighborhood around each data-point

that we examine to determine a local structure. The parameter t determines

how much importance to give to the local structure since larger values of t

increase the relative importance of some diffusion coordinates compared to

each other.

3.2.2 Laplacian eigenmaps

Note that the kernel matrix K in the previous section is a dense matrix,

i.e. nearly all of its entries are non-zero. The Laplacian eigenmap is essen-

tially a sparsified version of the previous method. Instead of relying on the

kernel matrix K directly, a sparsified K is constructed by zeroing out some

entries. The entries to be zeroed out are determined by a k-nearest neigh-

bor graph constructed from the data with vertices represented by the data

points. Edges not in the graph correspond to row-column indices that need

to be zeroed out. As opposed to a transition matrix P one instead consid-

ers the graph Laplacian L := D −K where D is the same matrix from the

previous section. Since we seek a mapping that respects the local structure,

an embedding Y minimizing
∑
ij

∥yi − yj∥2Kij will ensure that close points

that end up being mapped far apart incur heavy penalties. A normalization

constraint [
∥∥D1/2yi

∥∥ = 1 can be imposed to avoid the arbitrary scaling factor

in the embedding. As shown in [1], this problem can be cast as seeking an
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embedding Y such that,

argmin
Y TDY=I

tr
(
Y TLY

)
(3.11)

whose solution is provided by spectral analysis of the normalized Laplacian

D−1/2LD−/2

3.2.3 T-distributed stochastic neighbor embedding

Considering kernel in Eq. 3.10, it is somewhat obvious that the choice of

the parameter σ makes a difference to the obtained lower-dimensional em-

bedding. t-Distributed Stochastic Neighbor Embedding (t-SNE) is an award

winning technique introduced which takes this idea one step further [27, 28].

In [27], the similarity measure between two data points xi and xj is defined

as

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i

exp
(
−∥xi − xk∥2/2σ2

i

) (3.12)

where σi is now the variance of a Gaussian centered at datapoint xi. That is,

pj|i is the conditional probability that xi would consider xj as its neighbor if

neighbors were chosen in proportion to the probability density of a Gaussian

distribution centered at xi (with pi|i set to zero).

By allowing σi to vary between points, the algorithm is able to take into

account local density differences along the data cloud in the high dimensional

space. Given this distribution in the original space, SNE method seeks to

create a lower dimensional embedding {yi} such that a similar conditional

probability qj|i in the embedding space obtained via:

qj|i =
exp

(
−∥yi − yj∥2

)∑
exp

(
−∥yi − yk∥2

) (3.13)

remains “faithful”. This is done by minimizing the Kullback-Leibler (KL)
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divergences3 between the original pj|i and qj|i:

C =
∑
i

KL (Pi||Qi) =
∑
i

∑
j

pj|i log

(
pj|i
qj|i

)
(3.14)

in which Pi represents the conditional probability distribution over all other

data points given data point xi and similarly for Qi. Note that in the lower

dimensional space we set σ = 1/
√
2 for all data points so that the induced

probability qj|i is a function of all points in the lower-dimensional embedding.

Therefore, the SNE cost function is geared towards retaining the local struc-

ture of the data in the obtained mapping. For the sake of brevity we leave

details of how to choose σi (it is a binary search over values of σi that produce

a parameter called ‘perplexity’ which is a smooth measure for the effective

number of neighbors) and other optimization/computational considerations

to [27]. However the SNE methods suffers from the ‘crowding problem’ re-

lated to the curse of dimensionality. Roughly put, in higher dimensions it is

possible for many more points to be equidistant from a given point (recall

the surface area of the n-sphere is proportional to the n-th power of its ra-

dius). Therefore, in any mapping to lower dimensions, many points will try

to ‘occupy the same space’. The t-SNE method overcomes this problem by

using distributions with much heavier tails than the Gaussian distribution in

the embedding space, specifically the t-distribution so that,

qj|i =

(
1 + ∥yi − yj∥2

)−1∑
k ̸=l

(
1 + ∥yk − yl∥2

)−1 (3.15)

3.3 Classification methods

Whereas clustering methods seek to obtain an arrangement of data-points

that help understand its underlying geometry and features, and are generally

called unsupervised learning methods, the classification task is one which is

considered to a be a supervised learning technique. Here, the distinction is

that we provide the machine with labeled data points so as to make inferences

regarding its structure. Then, when presented with new information or data

3Recall that the KL divergence is a measure of similarity between probability distribu-
tions.
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points, the classifier has to determine which of the previously seen labels

apply to the new data. Support Vector Machines (SVMs) are a classical

approach to this problem, formulated as early as 1963 [29]. While we use

SVMs, here we discuss in detail only some related methods.

3.3.1 Sparse support vector machines

Recall that a traditional SVM is a maximum margin classifier developed

based on the linear classification problem, involving the construction of a

separating hyperplane that breaks up training observations based on the

corresponding class labels. The margin being defined as a distance between

any two hyperplanes that obtain separation in the linearly separable case,

SVMs solve an optimization problem with some specific constraints on find-

ing an optimal hyperplane that maximizes the margin. The standard risk

function minimized by SVM includes two terms. The first one is the hinge

loss function,

l (y) = max (0, 1− ty) = max (0, 1− t (w · x+ b)) , (3.16)

where t is the true label and y is the prediction, the elements of the vector

w determining the optimal separating hyperplane. The second term is the

squared l2-norm of the weight vector w. In sparse linear SVM, the l1-norm

is used as the regularization term in lieu of l2-norm allowing for a sparser

solution of the weight vector. The non-zero elements of the weight vector

then inherently correspond to variables that play more dominant roles in

building the optimal separating hyperplane. This allows for interpreting the

specific elements in a feature vector as substantially discriminative for the

classification task [20].

3.3.2 Partial least squares discriminant analysis

PLS-DA is an iterative algorithm that makes use of the class labels in the

training data to find transformation (or loadings) vectors a that has the

following objective function:

max
(ah,bh)

cov (Xhah, yhbh) (3.17)
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where ah, bh are the loading vectors for the data and the labels at iteration

h and Xh is the residual. The initial iteration starts with X1 = X the data

matrix. The obtained principal components can be shown to be equiva-

lent to the eigenvectors of the non-singular portion of the covariance matrix

given by 1
(N−1)2

XyTyXT . PLS-DA can be thought of as a supervised version

of Principal Component Analysis (PCA) because it attempts to achieve di-

mensionality reduction but with full awareness of the class labels. Aiming

to maximize the covariance between the independent variables X and the

corresponding dependent variable (class labels) of highly multi-dimensional

data, PLS-DA finds a linear subspace of explanatory variables that allows for

the prediction of y on new data with a reduced number of factors. Besides

its use as for dimensionality-reduction and classification, it can be adapted

to be used for feature selection [30].

3.3.3 Neural networks

Neural networks are a classical (going all the way back to the perceptron)

method of learning. At the most basic level, the mimic the architecture of

biological neurons. An artificial neuron is represented by a mathematical

node that takes inputs via incoming weighted edge and combines them in

some fashion to produce a single output. A column or array of neurons are

said to form a layer. Typical models involve multiple layers starting with an

input layer and ending with an output layer with varied models of intercon-

nectivity between intervening layers depending on the type of network. A

fully connected network where every node in a layer is connected to every

node in successive layers are results in the classical multilayer perceptron of

the 1980s. However, recently a regularized variation of them, termed con-

volutional neural networks (CNN), have become incredibly popular due to

their huge success in dealing with image classification and related problems.

CNN is a class of artificial neural networks that uses convolution operation

inspired by visual neuroscience [31]. Contrary to the conventional neural

networks, CNN introduces sparse connectivity by sharing parameters lead-

ing to fewer number of parameters. Similar to conventional neural networks,

CNN can use gradient-descent based algorithms to classify training observa-
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tions according to their class labels. These general models can collectively

called feedforward neural networks, i.e. the connections feed outputs of each

layer forward (with “forward” taken to mean the direction from the input

layer to the output layer). When the outputs can be fed back into the same

layer or previous layer, we get a another general class of models called re-

current neural networks which have been shown to be Turing complete and

have found applications in handwriting recognition, speech recognition, and

related fields. Finally, one can set up far more general models by piecing

together different types of layers, networks, and models. For example, by

jointly training an encoder and decoder network where the encoder maps

from the input space to a latent space, and the decoder maps from the latent

space to the output space, with the objective to reduce reconstruction error,

we have model popularly called Variational Auto Encoder (VAEs). VAEs are

a popular method to augment data by synthesizing data by sampling from

the latent space. Since we only minimally utilize neural networks in this

work, a general treatment is skipped and specific details will be provided

where necessary.
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Chapter 4

Functional magnetic resonance imaging data

In this chapter, we deal with functional magnetic resonance imaging (fMRI)

data. Apart from the problem of high extrinsic dimensionality, there are

other reasons to motivate the development of new methods for such datasets

like fMRI time series. In fMRI imaging studies, correlation based methods

have long been one of the most popular. Correlation of pixel-time courses

as a method of analysis was arguably first reported in 1993 by Bandettini &

colleagues [32], and, by 1995, was used to define functional connectivity of the

brain [33]. Regions of the brain may be structurally connected by white or

gray matter; however BOLD signals from spatially distinct and unconnected

regions of the brain can show high levels of correlation. Such regions are

defined to be functionally connected and such connectivity between different

regions of the brain is studied by generating a correlation matrix (CM) whose

entries correspond to the correlation coefficient:

Ci,j =
1

σ (xi)σ (xj)
· 1
T

T∫
0

xi (t)xj (t) dt (4.1)

between each pair of rows in X where σ(·) is the standard deviation function

and [0, T ] is the interval the time series is observed over. Study of more

general correlation maps - seed based, graph based etc. - is one way of

discovering so called large scale brain networks[34], see for example [35, 36,

37]. Some authors also study lagged correlations to account for the delay

in propagation of neuronal activity in the brain [38, 39]. They do this by

computing the value of τ at which

Ĉi,j (τ) =
1

σ (xi)σ (xj)
· 1
T

T∫
0

xi (t+ τ)xj (t) dt (4.2)
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is extremized and call it the temporal lag between signals xi and xj. This

gives rise to two matrices, a lagged cross-correlation matrix (LCM) comprised

of entries in which (4.2) is extremized and the corresponding time delay

matrix comprised of entries capturing the time lag between each pair of time

series in X.

On the other hand, there has been an argument that cross-correlation

based methods need to be carefully scrutinized [40]. For example, though

correlation based methods have been long used in fMRI studies to study the

connectivity structure in the brain they suffer from a few draw-backs [19, 20].

As noted in [20],

... it assumes the time series are not auto-correlated [40], but

this assumption may not hold for resting state BOLD signals [41].

Second, the correlation analysis fails to capture the information

expressed in lag structure [38, 42].

Even though other methods discussed in Chapter 3 may account for temporal

lag and/or nonlinear relations between time series data, an essential problem

still remains in the setting of machine learning algorithms. It is a common

paradigm in fMRI based studies to treat the set of brain volumes over the

entire scan duration as as a single sample and to use estimates of functional

connectivity between brain regions’ time courses as features by vectorizing

covariance matrices. However, many classification and/or clustering algo-

rithms implicitly assume that features used are generally uncorrelated. This

assumption does not hold water in the case of correlation based methods be-

cause elements of the feature vector are intimately inter-related, since these

matrices are sampled from a positive semi-definite cone [43]. This further

necessitates the development of new methods to either generate different

kinds of features from multi-variate time series data, or for algorithms and

procedures to effectively de-correlate the data.

As mentioned in Section 2.2.1, we used data from two sources for analy-

sis. Recall, the first was collected at the Auditory & Cognitive Neuroscience

Laboratory with a primary objective of better understanding the neural un-

derpinnings of tinnitus. Chronic tinnitus is a common and sometimes debil-

itating condition that lacks scientific consensus on physiological models of

how the condition arises as well as any known cure. Tinnitus is classified

into two types, objective and subjective. In objective tinnitus there is a clear
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physical cause - often structures near the ear - for the perception of noise,

and is much rarer than subjective tinnitus where no underlying cause can be

found. Tinnitus is often accompanied by hearing loss and is more common

among people who have had head or neck injuries, or exposure to concussive

blasts. As such, it is a common condition among veterans. However, due

to the internal nature of the condition, there exist no diagnostic methods or

known cures. It is hypothesized that functional differences in regions of the

brain may shed light on the condition. Though there exist many approaches

to measure brain activity, the least invasive one is functional magnetic reso-

nance imaging (fMRI).

While the datasets from the Auditory and Cognitive Neuroscience Labora-

tory were leveraged to explore biomarkers of tinnitus, data from the Human

Connectome Project (HCP) was utilized to investigate what insights can be

gained from the application of the cyclicity algorithms described in Section

3.1. The following sections will largely follow the trajectory of [19, 20, 21].

4.1 Zimmerman et. al

In this study1 data was collected from neuro-typical controls as well as tinni-

tus afflicted participants with and without hearing loss using a 3T Siemens

Magnetom Prisma MRI scanner. The data collected was in the so called

resting state, i.e. participants are simply asked to lie awake in the scanner

with their eyes open and fixated on a cross, as opposed to being asked to

perform a mental or cognitive task. Such resting-state data was collected

at two sessions, 1 week apart and in each session two 10 minute scans were

performed. Resting state fMRI (rs-fMRI) studies have shown reorganization

in resting state functional connectivity in the brain due to the presence of

tinnitus [19, 20]. Rs-fMRI is an interesting candidate to study because the

absence of task eliminates as cause for concern, a poorly designed/executed

experiment. On the other hand, tinnitus participants are at a pseudo task

state because they are presumably aware of the internal noise.

1Material in this subsection was previously published in [19].
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4.1.1 Data collection

All imaging data were collected using a 3T Siemens Magnetom Prisma MRI

scanner. A high-resolution, T1-weighted sagittal MPRAGE image (TR =

2300 ms, TE = 2.32 ms, flip angle = 89◦, 192 slices, voxel size = 0.9×0.9×0.9
mm3) and a lower-resolution, T2-weighted, image (TR = 3400 ms, TE = 65

ms, flip angle = 120◦, 38 slices, voxel size = 1.2× 1.2× 3.0 mm3) were both

collected for use during preprocessing. Resting state data was collected at

two sessions, one week apart. Two ten minute runs of resting state data were

acquired at both sessions. Resting state BOLD acquisition used a gradient

echo-planar EPI sequence with transversal orientation (TR = 2000 ms, TE

= 25 ms, flip angle = 90◦, 38 slices, voxel size = 2.5 × 2.5 × 3.0 mm3).

During the resting state scans, participants were instructed to lie still with

eyes open fixated on a cross presented to them, and to not think about

anything in particular. The first 4 volumes of each run were discarded prior

to preprocessing to allow for magnet stabilization. Thus, of the 304 volumes

collected in each run (four runs were collected per subject), 300 were used

for subsequent analysis. Cohort specific and demographic data are available

in the appendix.

4.1.2 Data processing

Preprocessing was performed using SPM12 (Welcome Trust Centre for Neu-

roimaging2). Slice-time correction was first applied to the interleaved, as-

cending data. Functional images were realigned according to a 6-parameter

rigid body transformation to correct for head motion. Seven subjects were

removed from subsequent analysis due to motion exceeding a 2 mm trans-

lation or 2◦ rotation in one of the resting state runs. Following this, two

co-registration steps were performed. First, the T2-weighted image was reg-

istered to the mean functional image generated during realignment. Second,

the MPRAGE image was registered to the resulting T2-weighted image.

Next, the MPRAGE image was normalized to MNI space via a nonlinear

warp transformation. The resulting image was used to normalize the re-

aligned functional data. Lastly, the functional images were smoothed using

a Gaussian kernel of 8 × 8 × 8 mm3 full width at half-maximum. Thirty

2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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three regions of interest (ROIs) were chosen based on their implication in

previous fMRI based tinnitus studies. A list of these can be found in Table

4.1. The ROI time series were constrcuted by averaging the time courses

acros all voxels within an ROI.

Table 4.1: Regions-of-Interest used in Zimmerman et. al[19] along with the
functional networks which contain them.

Name Center Coordinates Network

l amygdala -17,-2,-24 Limbic
l anterior insula -36,3,7 Attention control
l cuneus -4,-88,16 Visual
l frontal eye field -25,-11,54 Dorsal attention
l inferior frontal lobe -41,6,10 Attention control
l inferior parietal lobe -31,68,32 Default mode
l mid frontal gyrus -39,11,38 Attention control
l parahippocampus -24,-22,-24 Limbic
l posterior intraparietal sulcus 26,-62,53 Dorsal attention
l primary auditory cortex 55,-27,9 Auditory
l primary visual cortex -11,-84,1 Visual
l superior occipital lobe -12,-80,23 Visual
l superior temporal junction -49,-53,28 Ventral attention
l superior temporal sulcus -56,-52,9 Ventral attention
l ventral intraparietal sulcus -30,-83,13 Dorsal attention
medial prefrontal cortex 8,59,19 Default mode
posterior cingulate cortex -2,-50,25 Default mode
precuneus 0,-56,50 Default mode
r amygdala 18,-7,-17 Limbic
r anterior insula 36,3,7 Attention control
r cuneus 4,-88,16 Visual
r frontal eye field 27,11,54 Dorsal attention
r inferior frontal lobe 45,-4,13 Attention control
r inferior parietal lobe 40,-67,32 Default mode
r mid frontal gyrus 39,11,38 Attention control
r parahippocampus 23,-21,-20 Limbic
r posterior intraparietal sulcus -23,-70,46 Dorsal attention
r primary auditory cortex -41,-27,6 Auditory
r primary visual cortex 11,-84,1 Visual
r superior occipital lobe 15,-79,23 Visual
r superior temporal junction 49,-53,28 Ventral attention
r superior temporal sulcus 56,-52,9 Ventral attention
r ventral intraparietal sulcus 30,-83,13 Dorsal attention
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Figure 4.1: The analysis pipeline used for [19].

4.1.3 Results

Cyclicity analysis was used along with standard classifiers like SVMs and lin-

ear & quadratic discriminants to test whether it was possible to disassociate

tinnitus data from control data. Since each element in the feature matrices

corresponds to ROI pairs, lead matrices were used to hone in on ROI pairs

that were found to be most helpful in discriminating between the groups.

Moreover, since data was collected from the same participant twice one week

apart, the stability, i.e. how much they differ from week to week, of the lead

matrices were also tested using a 1-nearest neighbor classifier. Figure 4.1

shows the overall pipeline used in this first paper. Specifically from [19],

Using the output from the cyclicity analysis, we were able to

differentiate between these two groups with 58 − 67% accuracy

by using a partial least squares discriminant analysis. Stability

testing yielded a 70% classification accuracy for identifying in-

dividual subjects’ data across sessions 1 week apart. Additional

analysis revealed that the pairs of brain regions that contributed

most to the dissociation between tinnitus and controls were those

connected to the amygdala. In the controls, there were consistent

temporal patterns across frontal, parietal, and limbic regions and

amygdalar activity, whereas in tinnitus subjects, this pattern was

much more variable.

For each of the four scans corresponding to one participant a lead matrix was

created and examined. Since each subject was scanned twice per session,

using one session as a training set and the second set as a test set was a

natural split.
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Recall that in cyclicity analysis, eigenvector components with higher mag-

nitude correspond to larger magnitude signals. To determine which ROIs

were consistently ‘loud‘, phase magnitudes were computed across the tinni-

tus and control population and the ROIs that consistently appeared in the

top 10 magnitudes determined. This result is shown in Figure 4.23. It was

found that the bilateral cuneus and bilateral primary visual cortices were the

strongest signal in both sets of population. These are ROIs involved in visual

processing and dominated signals from other regions - perhaps an artifact of

the fact that participants had their eyes open during scans. Further, PCA

revealed that the greatest contributor to variance in the data were the bilat-

eral cuneus in both sets of population. Therefore, it was adjudged that the

bilateral cuneus does not provide any discriminatory information and was

removed from further analysis. After removal of the bilateral cuneus, PCA

was performed again and studying the loadings of the principal component

revealed that [19]:

The first and second components appear to switch between the

two groups. In the normal hearing controls, the first component is

weighted toward the cyclic relationships with the primary visual

cortices and occipital lobe, while the second component is more

weighted toward the precuneus and amygdala. In contrast, in the

tinnitus group, the first component seems to be strongly weighted

toward the cyclic connectivity of the precuneus while the amgy-

dala is less constrained, and the second component seems to be

weighted toward the visual areas.

We interpreted signals with large phase magnitudes having a more robust or

constrained cyclic ordering compared with signals with low phase magnitudes

[19]. Further, as mentioned earlier, the ‘stability’ of the lead matrix was

investigated using a 1-nearest-neighbor classifier using the cosine metric. The

classifier was trained and tested twice - trained on the first weeks data and

tested on the second week and vice versa. Therefore, a subject could be

correctly identified upto four times. This result is shown in Figure 4.3 with

a 70 % accuracy rate for the classifier.

Further, classifcation using Linear SVMs (LSVM) and Quadratic SVMs

(SVM) as well as Linear (LDA), Quadratic (QDA) and Partial-Least Squares

3Figures and captions in this section are reproduced from [19, 20].
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Figure 4.2: Regions with the highest magnitudes in the cyclicity analysis.
The leading eigenvalue and the corresponding eigenvector of the lead ma-
trix determine the magnitude; in particular, the elements of the eigenvector
correspond to ROIs, and the larger an element’s modulus is, the greater
the magnitude corresponding to the signal from that ROI. The above chart
shows the proportion of times each region occurred in the top 10 magnitudes
for each subject. Bars are displayed for the tinnitus group and the normal
hearing controls. This graph reveals that certain regions have consistently
high magnitudes in the cyclicity analysis, especially in visual regions such as
the right and left cuneus. This is true for both tinnitus (TIN) and controls
(NH). In other regions, such as the precuneus, the phase magnitudes are
more variable between groups.

Discriminant (PLS-DA) Analysis were performed. When controlled for class

sizes the results were no better than a coin toss in being able to discrimi-

nate tinnitus data from control data. To see if classification results could

be improved, the Wilks Lambda criterion was used to select ROI pairs that

were most discriminating in their ability to seperate tinnitus data from con-

trol data. Wilks’ lambda is a direct measure of the proportion of variance

in the combination of dependent variables that is unaccounted for by the

independent variable (the grouping variable or factor). If a large proportion

of the variance is accounted for by the independent variable, then it suggests

that there is an effect from the grouping variable and that the groups have

different mean values [44].
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Figure 4.3: The stability of the lead matrix across sessions that were one
week apart. Since the lead matrix is a feature constructed from the fMRI
time series data; its consistency over time is investigated here. The figure
above is a visualization of the confusion matrix arising from a classifier.
Each row and column correspond to an individual subject in the analysis.
The colors correspond to how many runs (out of 4 total runs) were correctly
classified after training a 1-nearest neighbor classifier with the cosine metric
on the other week’s data. The cosine metric serves as a measure of how
closely aligned vectors are in high dimensional spaces. This graph shows
good stability in the cyclic patterns of data, i.e consistent leader-follower
relationships between ROIs, within subjects across one week.

We used Wilks’ lambda to aid analysis in two ways. First, rather than use

PCA to reduce dimensions in the data set, we used Wilks’ to reduce dimen-

sions from 528 features to just 20 features by keeping the top 20 discrim-

inatory features separating tinnitus data from control data. Classification

performed this way improved accuracy to 65%. This result is shown in Table
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4.2. Since the PLS-DA method utilizes class labels in finding its principal

components, classification performed this way involves double dipping to an

extent. To reduce this effect, 1000 randomly selected subsets of the data were

analyzed and a subset of the top 20 most occurring ROI pairs were selected.

Figure 4.4 visualizes this operation. The top 10 most occurring ROI pairs

were then used to re-perform classification. Results obtained in this fashion

are also presented in Table 4.2.

Number of appearences in top 20 discriminatory ROIS
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Figure 4.4: The most stable ROI pairs with respect to discriminatory ability
across the data set. The Wilks lambda criterion can be used to determine
which features in data have more discriminatory ability for classification.
Thousand random and equally sized subsets of the data were examined and
the top 20 ranked ROI pairs (with respect to discriminatory ability) were
recorded. The figure shows how many times an ROI pair appeared in the
ranking.
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Table 4.2: Classification results using top 20 (left) and 10 (right) most dis-
criminating ROI pairs

Linear SVM
Controls Tinnitus

Controls 23.53% 76.47%
Tinnitus 17.25% 82.75%

Accuracy: 63.85%

Linear Discriminant
Controls Tinnitus

Controls 34.07% 65.93%
Tinnitus 29.00% 71.00%

Accuracy: 59.21%

Quadratic SVM
Controls Tinnitus

Controls 32.93% 67.07%
Tinnitus 24.44% 75.56%

Accuracy: 61.96%

Quadratic Discriminant
Controls Tinnitus

Controls 7.13% 92.87%
Tinnitus 7.81% 92.19%

Accuracy: 65.04%

PLS-DA
Controls Tinnitus

Controls 52.47% 47.53%
Tinnitus 31.31% 68.69%

Accuracy: 63.51%

Linear SVM
Controls Tinnitus

Controls 20.47% 79.53%
Tinnitus 11.25% 88.75%

Accuracy: 66.96%

Linear Discriminant
Controls Tinnitus

Controls 30.73% 69.27%
Tinnitus 19.16% 80.84%

Accuracy: 64.85%

Quadratic SVM
Controls Tinnitus

Controls 31.73% 68.27%
Tinnitus 24.72% 75.28%

Accuracy: 61.38%

Quadratic Discriminant
Controls Tinnitus

Controls 23.60% 76.40%
Tinnitus 27.91% 72.09%

Accuracy: 56.62%

PLS-DA
Controls Tinnitus

Controls 50.47% 49.53%
Tinnitus 25.20% 74.80%

Accuracy: 67.03%

Analyzing the ROI pairs, the 20 ROI pairs that were found to be most dis-

criminating allowed us to replicate some findings in extant literature. To do

so, a graph was generated that visualized ROIs as nodes, and edges whose

weight or size depended on the proportion of the population exhibiting that

connectivity. In more detail, since each element of the lead matrix is a mea-

sure of the average leader-follower relationship between two ROIs, the lead

matrix elements were thresholded to ±1 depending on whether the entry was

positive or negative. Averaging the lead matrices for each group separately

then provides a matrix from which the top 20 most discriminating ROI pairs

can be examined. Each pair corresponds to some entry in the matrix, and

a value for the entry that is close to zero implies “no pattern.” That is, the

groups’ population as a whole exhibited no preference for a leader-follower

relation between that pair of ROIs. Conversely a value close to +1 or −1
implied nearly all members of the population exhibited a preference for a

particular leader-follower pattern between that pair of ROIs. This result is
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Figure 4.5: Graph structure of leader-follower connections. This figure shows
the direction of leader-follower relationships between 20 ROI pairs that most
help discriminate the normal hearing controls from the tinnitus subjects (ac-
tivity follows downwards). A node is assigned to each layer as soon as possible
provided its predecessors have already appeared. The thickness of the edges
corresponds to the proportion of subjects with that direction, and thus re-
veals the consistency of the leader-follower connections. In normal hearing
subjects, there is more consistent cyclic connectivity with the amygdala than
in the tinnitus subjects.

shown in Figure 4.5.

Table 4.3: Key for reading nodes in Figure 4.5 labeltbl:acronyms

Acronym Expanded form Acronym Expanded form
LAMG Left amygdala PCC Posterior cingulate cortex
LFE Left frontal eyefield PRC Precuneus
LIPL Left inferior parietal lobe RFE Right frontal eyefield
LMFG Left midfrontal gyrus RMFG Right midfrontal gyrus
LPAC Left primary auditory cortex RPH Right parahippocampus
LPH Left parahippocampus RPIPS Right posterior intraparietal sulcus
LPIPS Left posterior intraparietal sulcus RPVC Right primary visual cortex
LSOL Left superior occipital lobe RSOL Right superior occipital lobe
LSTJ Left superior temporal junction RSTJ Right superior temporal junction
MPFC Medial prefrontal cortex RVIPS Right ventral intraparietal sulcus

The most obvious result was the altered pattern of connectivity between

the amygdala and other brain regions for the two groups. From [19],

. . . the clearest discriminating pattern of activity is that the cyclic

connectivity with the amygdala is important in distinguishing
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tinnitus patients from controls. This result is strongly predicted

from the extant literature. A review of the literature by [45] em-

phasizes the broad changes in neural activity across the brain in

tinnitus depending on the paradigm used to study the condition.

In addition, the data presented here suggests that the ordering

between the amygdala and other ROIs is less constrained and

more heterogeneous than that of the normal hearing controls . . .

Changes in amgydalar activity is largely consistent with both the

literature on tinnitus as well as in other conditions with some

contribution of emotional dysfunction, such as depression. In de-

pression, there is heightened amygdala responses to emotional

stimuli [46], but at the same time, there is reduced connectivity

between the amygdala and the affective network [47]. The ob-

served changes in cyclic connectivity may contribute to cognitive

deficits in attention that have been seen in tinnitus [48] and may

affect the overall patterns of network connectivity that change

in tinnitus [49, 50]. A loss of connectivity may also correspond

with the less constrained pattern of leader-follower relationships

involving the amygdala, and future research should seek to better

understand this correspondence.

In conclusion, [19] served as a proof of concept that cyclicity analysis could

be used to study connectivity patterns in the brain using time series data.
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4.2 Shahsavarani et. al

In [20], we continued analysis using the cyclicity method by comparing it with

other features like correlation matrices and dynamic time warping matrices in

its ability to represent group level and individual specific information on the

same data set involving tinnitus afflicted participants and controls. However,

this data set was slightly expanded in number because data collection was

still ongoing when the manuscripts were prepared4.

4.2.1 Data collection & processing

Similar to Section 4.1.1 resting state BOLD data were obtained using a 3T

Siemens Magnetom Prisma MRI scanner (TR=2000 ms) in two visits, one

week apart. At each visit, two 10 minute resting state data were acquired

while participants were lying supine inside the scanner with eyes open looking

at a white fixed point on the center of a black screen. Further, earplugs were

used to reduce the scanner noise. More details about the specifications of the

scanner are given in [19]. Data collection was conducted with the approval

of the University of Illinois Urbana-Champaign Institutional Review Board

and each participant provided informed consent prior to image acquisition in

the first visit.

Data were first corrected for slice timing and head motion, and then were

normalized to a stereotactic space. Further, the normalized images were

spatially smoothed using a Gaussian kernel (8× 8× 8 mm3). MarsBaR [51],

a toolbox for SPM12, was used to extract the time series with 300 time points

from ROIs. The time series of each ROI was obtained by averaging the time

courses across all voxels within the ROI. After generation of said BOLD

fMRI time series, GSR was presented as an optional prepossessing step to

be additionally applied. It has been argued that frequencies higher than 0.1

Hz do not contribute to resting state regional coherency as they are often

related to physiological noise including cardiac and respiratory cycles [52].

As a result, the time series data were band-pass filtered, using a Bessel filter

with low and high cutoff frequencies of 0.008 Hz and 0.08 Hz as a baseline.

Before filtering, the time series were mean centered, de-trended, and scaled.

Three scaling methods were considered: scaling relative to: the quadratic

4This section contains material previously published in [20].
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variation, the norm, and the standard deviation of the time series. In the

cyclicity analysis, the signals were also end-matched before scaling.

Compared to Table A.1 now the tinnitus group included 50 patients with

mean age 52.96 years (σ = 10.29) of whom 38 had hearing loss and 21 were

women. As for the control group, it had 29 participants with mean age 47.75

years (σ = 11.06) of whome 12 presented with hearing loss and 15 were

women.

4.2.2 Motivation

While features like LCM and DM account for the drawback that CM does not

take lag-structure into account, they still fail to express information pertinent

to the collective temporal ordering of the time series data like cyclicity does

[20]. Therefore, we felt it necessary to perform an analysis comparing these

features to each other. However, unlike features like CM, LCM and DM

which are measures of similarity between pairs of time series collated into a

matrix, LMs are features that express an ‘average interactivity’ (specifically a

direction for the leader-follower relationship and a measure of strength to this

relationship). Therefore, rather than call it a ‘functional connectivity metric,’

we lumped all the features together under the term ‘functional interactivity

metrics.’

A second motivation to conduct the study was to better understand the

effect of particular pre-processing techniques on the outcome of the analysis.

For example, global signal regression or (GSR) is a particularly controversial

step performed in many fMRI studies. From [20],

Global signal is referred to as spontaneous BOLD fluctuations

that are common throughout the brain and defined as the aver-

age of BOLD signals over all voxels in the brain [53, 54]. The

fluctuations in the global signal have been attributed to non-

neuronal origin, especially physiologically induced fluctuations

such as changes in the level of arterial carbon dioxide or changes

in cardiac rhythm. In the literature, it has been argued that

the variances associated with global signal should be removed

from the resting state data because it may inflate the connectiv-

ity measures, specifically the results from the correlation metric
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[54]. Murphy et al. [53], however, showed that regressing out the

fluctuations related to global signal introduces spurious negative

correlations as well as reducing correlation in some areas. In con-

trast, Fox et al. [54] argue that using GSR indeed enhances and

improves results from correlation analysis. This lack of consensus

across studies necessitates the assessment of functional interac-

tivity techniques with and without GSR by each study [55]. In

a recent study, for instance, Meszlényi et al. [56] evaluated the

efficacy of DTW distance as a rsFC measure by comparing it with

correlation (both zero-lagged and lagged) while considering both

conditions of with and without GSR. Their results demonstrated

that the DTW distance is more robust to employing GSR than

the correlation analyses.

Another choice in the pre-processing steps are filter parameters to use on

the data, as well as scaling/detrending options. Commonly fMRI signals are

band-passed between 0.008 Hz - 0.08 Hz. However as noted in [20] many

other studies have used low-pass filtered data as well. To understand the

effect of filtering we considered (a) band-pass filter with critical frequences

at 0.008 Hz and 0.08 Hz and (b) band pass filter with critical frequencies at

0.008 Hz and 0.2 Hz. One way to understand whether a particular feature

has a propensity to represent individual level identifiers is to use the feature

to try and ‘fingerprint’ subjects. A feature that is good at fingerprinting

a subject can be thought of as capturing something invariant in the time

series for each subject in time, i.e. across visits 1 week apart in the vein

of the result of Figure 4.3. Continuing from [19], classification was also a

topic investigated in [20]. In particular, we considered the performance of

different kinds of feature matrices with respect to their ability to aid in

classification. Additionally, in this work we also investigated methods of

augmenting the data. Recall, that in machining learning settings, for example

in image classification, rotated, flipped, cropped, and resized images of the

same object serve to increase the training data set. Building on this idea

we used Variational Auto Encoders (VAEs) to augment the data (see Figure

A.3 for details regarding the encoder/decoder model used) and investigate

whether the augmented data set could be used to improve the classifiers.
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4.2.3 Results

Our results indicated that the stability of the features were in general de-

pendent on the use of GSR and filter parameters [20]. Removing the global

signal made all features except DTW distance based feature more stable. In

contrast, the effect of band-pass filtering was feature specific. In particular,

applying the filters reduced the stability of LM with and without the pres-

ence of GSR while for all other features the stability increased, especially

in conjunction with GSR. For all matrices, increasing the upper cutoff fre-

quency of the enhanced stability whereas for the scaling method, it did not

affect the general trend of stability except for DM where scaling time series

using their norms or standard deviation had adverse effects. These results

are in Tables 4.4 and 4.5. They show the accuracy rate of 1-nearest neigh-

bor classifier to identify individuals across two scan sessions held one week

apart with different filter specifications with and without GSR. The time se-

ries were normalized using their quadratic variation. In Figure 4.6 we depict

the confusion matrices of 1-nearest neighbor classifiers for the conditions in

which each feature matrix had the highest reliability.

Table 4.4: The accuracy rate of 1-nearest neighbor classifier to identify indi-
viduals absent GSR.

No GSR
Feature No filter BPF (fuc = 0.08 Hz) BPF (fuc = 0.2 Hz)

LM 0.68 0.45 0.67

CM 0.53 0.53 0.69

LCM 0.48 0.45 0.64

DM 0.32 0.47 0.56

Here BPF stands for the band-pass filter applied and fuc is its upper cutoff

frequency and the features are represented by their usual acronyms.

Table 4.5: The accuracy rate of 1-nearest neighbor classifier to identify indi-
viduals with GSR.

With GSR
Feature No filter BPF (fuc = 0.08 Hz) BPF (fuc = 0.2 Hz)

LM 0.83 0.56 0.79

CM 0.78 0.82 0.92

LCM 0.76 0.80 0.90

DM 0.28 0.42 0.53
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Figure 4.6: Confusion matrices of 1-nearest neighbor classifiers with the high-
est accuracy for each interactivity feature set used to identify individuals
across two visits, held one week apart. DTW stands for dynamic time warp-
ing.

On the other hand, to assess whether a feature is better at capturing

group level information, traditional classifiers were relied upon to determine

the separability of the control data from tinnitus data for (a) each feature

and combination of (b) filtering options, (c) with and without GSR. Specifi-

cally, we investigated the separability of tinnitus from controls by assessing

the accuracy of three classifiers: (1) discriminant analysis, (2) support vec-

tor machines, and (3) convolutional neural networks (see Figure A.2 in the

appendix). However, the performance of all classifiers was close to or slightly

better than chance, indicating a poor dissociation between tinnitus patients

and healthy controls regardless or pre-processing and filtering options - at

least in the realm of classical machine learning methods. Augmenting the

dataset with VAEs did not serve to improve the classification results. Nev-
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ertheless, there were some differences across classifiers and input feature ma-

trices. That is, the performance of SVM on LCM (sensitivity of 64 % and

specificity of 54%) surpassed the performance of all other classifiers. Based

on this we examined which ROI pairs (i.e. elements of the feature vector)

were providing the slightly superior classification ability. Recall [20],

. . . the hinge-loss will choose a combination of the ROI interac-

tions that form a maximum margin separating hyperplane be-

tween the two sets of labels because each element of our vector

corresponds to the interaction between a pair of ROIs. However,

in the sparse SVM formulation, the hinge loss is used in conjunc-

tion with a ℓ1 norm on w. This causes the optimization to have

a trade-off between maximizing margin while maintaining classi-

fication accuracy and sparsifying w. Thus, it selects those ROI

interaction pairs that determine the cardinal orientation of the

hyperplane (to maximize accuracy) while reducing the number of

components (by sacrificing on the margin), and thereby gives us

interaction pairs that play a dominant role in differentiating the

two classes.

Based on the dominant features found, the feature vectors were further di-

mension reduced and classification tried again. We found that classification

improved and SVM now had sensitivity and specificity of 62% for correlation

matrices. We visualized the interaction between ROI pairs found by using

graph methods. We first did this by first grouping together the ROIs into

their ‘large-scale brain networks’ (see Table 4.1) which included the limbic

system, visual network, dorsal attention network, default mode network and

auditory network. Each ROI is represented by a node and the interaction

between ROIs is depicted as an edge. The width of each edge signifies the

importance of the pairwise interaction to seperability, which corresponds to

the absolute values of the weight vector obtained in the SVM solution. See

Figure A.4 for an example, and also to discover roughly what ROIs constitute

what networks. This allowed us to study at a coarser level what interactions

between networks (as opposed to individual ROIs) were helpful in discrimi-

nation. Such analysis was done for each of the feature matrices involved in

the study and figures for those not shown here, i.e. Lagged Correlation Ma-

trices, Lead Matrices, and Dynamic Time Warping matrices may be found
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in [20].

Correlation analysis:

For both the correlation based methods, we found that seperating subject

groups relied upon the interaction between the auditory network and the

limbic system. From [20],

The central auditory regions are neuroanatomically connected to

the limbic system, which evokes emotional responses to auditory

stimuli. In turn, the limbic system interacts with the auditory

system, which regulates sound perception based on emotional

processing. Previous studies have reported on tinnitus-related

alternations in the interaction between the auditory network and

the limbic system [50, 57, 49, 58, 59]

The fact that we could replicate observed results with correlation based fea-

tures vectors may not seem surprising; however, cyclicity analysis also added

to the results.

Cyclicity analysis:

Using lead matrices it was found that the interaction between precuneus

and visual cortices contributed to the seperation between the groups [20].

Further the left frontal eyefield and parahippocampus were also found to

be important in being able to distinguish between the two conditions. This

serves as a second proof of concept that cyclicity analysis has its own merits.

Though the precise figure from [20] is omitted for brevity, we note:

Precuneus is a major hub in the default mode network and its

interaction with other networks indicates that the coherency of

the default mode network is disrupted in tinnitus. In fact, several

studies have reported tinnitus-related decrease in the coherency

of the default mode network [60, 61, 62, 49].
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Dynamic time warping:

In DTW analysis the interaction between the left frontal eye field (LFE) and

medial prefrontal cortex (MPFC) was found to be useful in differentiating

tinnitus participants from healthy controls. In addition, similar to cyclicity

analysis, the interaction between the limbic system and the dorsal attention

network was found to be different between the tinnitus and healthy control

groups [20]. The former replicates findings that tinnitus is correlated with

increased functional connectivity between default mode network (containing

MPFC) and the dorsal attention network (containing LFE) [50].

Finally, we also tried to visualize the space of feature matrices using the t-

SNE method from Section 3.2.3 and obtained in the case of correlation based

features and lead matrices, an embedding which seemed to span the space

(from light to dark for correlation matrices) and two clusters when using

DTW matrices. No such clustering was obtained at any scale using lead

matrices. This embedding exercise was repeated with and without GSR, and

we observed that GSR, no matter the filter setting, changed both CM and

LCM into a continuum and obscured the boundary between the two clusters.

Figure 4.7 depicts CM and DM of both tinnitus and control populations

after applying t-SNE, using band-pass filtering (0.008 Hz≤ fpass ≤ 0.2 Hz)

and with & without GSR. Each observation is shown with its corresponding

feature matrix. Further investigation revealed that this observed clustering

was not correlated with the subject group labels or any other metadata, such

as hearing status, age, or gender.

In conclusion, the methods and results in [19, 20] served to establish cyclic-

ity method as an useful avenue for analysis for time series data, which for

the purposes of this project was capable of replicating extant results. On

the other hand, with regards to bio-markers of tinnitus results suggest that

newer methods of analysis maybe required to achieve traditional classifi-

cation/clustering like results using fMRI data. We used this data (both

paradigms) with cyclicity analysis in [21] to detect cortical waves of activity

propagating in the brain with consistent leader-follower relationships. In par-

ticular, in the task paradigm we observed short bursts of directed temporal

ordering between pairs of regions via Eq. 3.9.
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Figure 4.7: Nonlinear dimensionality reduction of feature matrices using
tSNE.

4.3 Human connectome project data

While the data examined in the previous two subsections were primarily

concerned with fMRI scans of tinnitus afflicted populations, the data in the

following section was collected from healthy individuals aged 18 - 45 years.

Moreover, the data used in [19, 20] were resting state fMRI data while the

Human Connectome Project also includes data that was recorded in the task

paradigm5.

5The material in this section was previously published as a preprint in [21].
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4.3.1 Data collection/processing

From the Human Connectome Project (HCP) website, we utilized data from

M = 862 participants who ranged in age from 22-45 years. The data was

collected at the Washington University in St. Louis, USA using a Seimens

Skyra 3T MRI scanner. From the HCP S1200 release we only considered par-

ticipants who had completed all structural, resting state and task paradigm

scans and did not have any segmentation issues noted by the HCP Quality

Control Process. The final data was denoised, minimally preprocessed and

contained 464 females. Connectome Workbench software was used to extract

time series corresponding to regions of interest (ROI) in the provided fMRI

parcellations.

These ROIs were 34 in total and are listed in Table 4.6. Note that the

dimensionality of the time series then was 68 accounting for bilateral sym-

metry. With a time resolution (TR) of 720 milliseconds, each resting state

scan then resulted in multidimensional time series of that could be repre-

sented by arrays of size 68× 1200.

ROI # ROI full name ROI # ROI full name

1 Banks of superior temporal S. 18 Pars orbitalis C.
2 Caudal anterior cingulate C. 19 Pars triangularis C.
3 Caudal middle frontal C. 20 Pericalcarine C.
4 Cuneus 21 Postcentral C.
5 Entorhinal C. 22 Posterior cingulate C.
6 Fusiform C. 23 Precentral C.
7 Inferior parietal C. 24 Precuneus
8 Inferior temporal C. 25 Rostral anterior cingulate C.
9 Isthmus cingulate C. 26 Rostral middle frontal C.
10 Lateral occipital C. 27 Superior frontal C.
11 Lateral orbitofrontal C. 28 Superior parietal C.
12 Lingual C. 29 Superior temporal C.
13 Medial orbitofrontal C. 30 Supramarginal C.
14 Middle temporal C. 31 Frontal P.
15 Parahippocampal C. 32 Temporal P.
16 Paracentral C. 33 Traverse temporal C.
17 Pars opercularis C. 34 Insula

Table 4.6: Table of 68 ROIs involved in the analysis, showing numbers for
left-side regions; right-side regions run their indices as 35 through 68. Here
C - cortex, S - sulcus and P - pole.
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4.3.2 Motivation & methods

While [19, 20] were intrinsically motivated to analyze fMRI scans with the

objective of discovering biomarkers for tinnitus, the HCP data in [21] are all

from healthy individuals. Therefore, the objective with the use of this dataset

was to investigate how the cyclicity pipeline analysis fared when considerably

larger datasets were fed through it (the M above is 10 times larger when

compared to [19, 20]). Note that the increase in the size of the dataset is both

in terms of the intrinsic as well as extrinsic dimensionality which necessitated

the creation and adoption of new techniques to the pipeline.

First, lead matrices were generated from the collection of time courses D

and their eigenstructure analyzed. These matrices have dimension 68 × 68

with each (i, j) entry denoting the average leader-follower relationship be-

tween ROI i and ROI j. See the right panel in Figure 4.8 for a representative

example of a generic lead matrix. Recall that the |λ1|/|λ3| ratio (here λk are

eigenvalues of the lead matrix) is a measure of the dominance of the rank-two

approximation described in Section 3.1.This quantity was computed for all

lead matrices. A subset, S ⊂ D, of the data was identified by restricting

the lead matrices to have |λ1|/|λ3| ratios one standard deviation above the

group average µD (|λ1|/|λ3|). For a visualization of the distribution of the

four leading eigenvalues in D see the left image in Figure 4.9. The right

image shows the distribution of |λ1|/|λ3| ratio across D. We can see that S

roughly amounts to 1/6th of all scans analyzed. The leading eigenvectors for

this subset of the data was further examined. Recall that each entry vi of

the eigenvector v of a lead matrix corresponds to one of the N = 68 ROIs

whose time courses it was created from. Since skew-symmetric matrices only

admit zero or purely imaginary eigenvalues λk and corresponding eigenvec-

tors vk, the elements of an eigenvector vk can be visualized as a constellation

vik =
(
xi
k +
√
−1 · yik

)N
i=1

, a point cloud in the complex plane with each of

the N points representing the complex numbers vik, one for each ROI (recall

we saw this earlier in the right panel of Figure 3.3).

In such a constellation, the points farthest from the origin correspond to

ROI time courses that dominate the mode corresponding to the eigenvector

vk. To identify such dominant ROIs in a principled fashion, we used the

following heuristics. Recall that in the case of a single harmonic, the con-

stellations align along ellipses in the complex plane. In the general case, the

64



Figure 4.8: Representative time course data from the HCP dataset after pro-
cessing using Connectome Workbench (left) and corresponding lead matrix
(right). The lead matrix is generated after an appropriate normalization of
the BOLD signal (see [19, 20]).

ellipse maybe perturbed, but one can argue that it still can be recovered,

for example using least square regression. The best fitting ellipse defines a

positive definite quadratic form on the complex plane, with its value evalu-

ating to one on the ellipse. This form allows us to distinguish the significant

points in the constellation (those where the quadratic form evaluates above

a threshold, say the unity) vs. the insignificant ones (below unity, i.e. inside

the ellipse). Therefore, one can select a collection of ROIs dominant with

respect to a particular eigenvalue. We concentrated solely on the leading

eigenvalues, i.e., the largest in absolute value, denoted λ1,2 in our convention

[21]. See the left panel of Figure 4.10 for a representative example.

4.3.3 Results

This analysis resulted in the identification of a subset R, of 14 consistently

dominant ROIs for the time courses in S.

Robustness of ROIs:

Since the 14 ROI subset R was generated by considering the restriction of

the data set to S it important to verify that this dominance was a feature

common to the entire dataset D. To this end, random subsets S of the data
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Figure 4.9: Frequency of the absolute values of four largest non-conjugate
eigenvalues of the lead matrices in the data (left) along with the cumulative
histogram of observed λ1/λ3 values (right). Higher λ1/λ3 values indicate
more reliable outcomes from the Cyclicity Analysis pipeline.

of size N = 299 were run through the pipeline instead of S and the reported

dominant ROIs were tracked. Figure 4.11 below is a visualization of this as

a matrix - each row corresponds to a random subset S and the values along

the rows represent the dominant ROIs reported from examination of S - with

the color scheme set to aide visual identification of change in values between

rows. The average Levenshtein distance between each pair of rows in such a

matrix (across multiple trials) was found to be less than 2 illustrating that

the set R is indeed robust with respect to the choice of the subset S.

Average leader-follower relationship:

As we noted in Section 3.1, the cyclicity analysis pipeline is able to extract

an approximate cyclic ordering of the phase shifts in the Chain-of-Offsets-

Model from the oriented areas rendering the leader-follower relationships

between pairs of time series. It is cyclic because the ordering of the repeating

sequence of events (such as the excitation of a node in Figure 3.4) has no

intrinsic starting point; only the relative positions of the phases are of import.

Therefore, to compare between obtained orderings, one needs a consistent

way of presenting them. Towards this end, one can construct an axis joining

the origin to the center of mass for each constellation. Choosing this as

the abscissa, the cycle is then assumed to be proceeding counter clockwise
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Figure 4.10: This figure shows one step in the determination of dominant
ROIs in Cyclicity Analysis. The left panel shows components of the leading
eigenvector visualized on the complex plane. Each point corresponds to an
ROI and its BOLD signal; with greater absolute values indicating greater
dominance in the multidimensional time-series. The right panel shows the
constellation of points rotated about the axis identified in the left panel to
provide a consistent ordering across samples (said axis being determined by
the center-of-mass for the collection).

from this axis. This is shown in Figure 4.10 where the left panel shows a

sample constellation of the eigenvector components along with the above-

mentioned axis. The right figure shows the same constellation after the

standard rotation. Applying this procedure for the regions in R to S resulted

in estimated cyclic orderings for these dominant ROIs. These obtained cyclic

orderings can be visualized in a square permutation count matrix shown on

Fig. 4.12. In this matrix, the rows represent fixed ROIs and the columns

represent positions in the cyclic ordering. Therefore, the (i, j) entry of this

matrix represents a value showing how many times ROI i showed up in

position j in all the cyclic orderings obtained. Using this matrix, it was

possible to estimate the average cyclic ordering for the ROIS in R as shown in

Table 4.7. To do so, one first obtains a list of average positions by considering

the values in each row of the matrix as samplings from a distribution and

estimating their mean. Then, the permutation vector that sorts this list of

mean values will correspond to the average cyclic order across the subset

S.The stability of signal propagation across the significant ROIs in the order
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Figure 4.11: Figure showing reportedly dominant ROIs in 12 random (dis-
joint) partitions of the dataset. Each row of this matrix represents the most
dominant ROIs reported by restricting the analysis to a random subset of
the data (size N = 299). One can see that regardless of the subset, the same
ROIs are reported to be dominant by the analysis.

shown in the Table 4.7 is one of our main findings [21].

Area integral dynamics:

As noted towards the end of Section 3.1.1, one can create yet another time-

series by observing the value of Eq. 3.9 (i.e. the area involved between a

pair of time series as it is built up). Figure 4.13 shows this idea in greater

detail. The top left panel shows a pair of time-series corresponding to a

pair of ROIs from the dominant set R.The top right panel shows the value

of the above mentioned area integral computed between the pair of time-

series signal. A consistent increasing or decreasing trend over the period of

observation shows that there is an average leader (or follower) relationship

between the pair of time series - i.e. activity in one region precedes (or lags)

activity in the other region. These short periods of time where there is a

significant contribution to the increase in the area integral can be termed

“events” or significant periods of “directed activity” between the two pairs
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Figure 4.12: The permutation count matrix obtained from S by restricting
ROIs considered to R. Each row of this matrix represents observed positions
of the ROI in the cyclic ordering. Highlights indicate that ROI correspond-
ing to that row consistently showed up in a particular position (along the
columns) in the obtained cyclic orderings.

of brain signals. To methodically extract such instances in time, for each

frame fk of the time series, successive intervals of lengths 3-30 (i.e. intervals:

[fk, fk+3] , [fk, fk+4] , . . . , [fk, fk+30]

were obtained and their slope computed). These slopes obtained at each

frame are visualized in the bottom left image of Figure 4.13. Half of the

maximum slope observed among all such intervals over all frames was taken

to be a nominal threshold and significant jumps or contributions were deemed

to be those instances when the slope of the area integral was higher than said

threshold6. Periods of jumps identified in such manner are shown marked

in red in the bottom right image of Figure 4.13. Such analysis provided for

a striking observation: namely, that in the scans examined from the task

paradigm (in particular the social and motor tasks), there were periods of

strongly directed lead-lag relationships across multiple pairs of ROIs through-

6See Appendix, Section B for another alogorithm to determine significant jumps in the
time series data.
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ROI full name Ordering in cycle

bilateral order Right Left

Precentral cortex 1 2
Postcentral cortex 3 4
Lingual cortex 5 6

Superior parietal cortex 9 7
Cuneus 10 8

Pericalcarine 12 11
Lateral occipital cortex 14 13

Table 4.7: The fourteen dominant ROIs (including bilateral pairs) obtained
and their average cyclic ordering in the dataset. The ordering shows that
bilateral pairs frequently occur together in the cycle.

out the brain [21]. Recall that the tasks were as follows. For the motor task

[63]:

Participants are presented with visual cues that ask them to tap their left

or right fingers, squeeze their left or right toes, or move their tongue to map

motor areas. Each block of a movement type lasts 12 s (10 movements), and

is preceded by a 3 s cue. In each of the two runs, there are 13 blocks, with

2 of tongue movements, 4 of hand movements (2 right and 2 left), 4 of foot

movements (2 right and 2 left) and three 15 s fixation blocks per run.

whereas for the social task[63]:

Participants are presented with short video clips (20 s) of objects (squares,

circles, triangles) either interacting in some way, or moving randomly. These

videos were developed by either Castelli and colleagues (Castelli et al., 2000) or

Martin and colleagues (Wheatley et al., 2007). After each video clip, participants

chose between 3 possibilities: whether the objects had a social interaction (an

interaction that appears as if the shapes are taking into account each others

feelings and thoughts),Not Sure, or No interaction (i.e., there is no obvious

interaction between the shapes and the movement appears random). Each of

the two task runs has 5 video blocks (2 Mental and 3 Random in one run, 3

Mental and 2 Random in the other run) and 5 fixation blocks (15 s each).

In Figure 4.14, we show the general trend observed with the resting and task

paradigms. Area integral dynamics could either be plateaued or changing in

the resting paradigm depending on the particular pair of ROIs chosen. Recall

that the order listed in Table 4.7 is visually represented in the permutation
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Exaple data from motor task

Figure 4.13: These panel shows how intense periods of directed activity be-
tween a pair of time series was identified. For each pair of timeseries as
shown in the top-left panel, the area integral of Eq. 3.9 is computed as in
the top-right figure. The slopes for possible jumps at each frame are iden-
tified and a threshold applied to designate significant jumps that contribute
to the greatest overt increase in the value of the area integral.

count matrix of Figure 4.12. Referring to the Figure 4.12, we see that six

out of fourteen ROIs are strongly constrained to be in particular positions

of the ordering (which was obtained from resting state data). For resting

state, integral area dynamics was highly likely to be increasing or decreasing

when the pairs were chosen from the above mentioned six (c.f. panel (A)

vs. (C) of Figure 4.14). With the data in the task paradigm, the dynamics

depended on the task being analyzed. On one hand, for social task data

(see panel (B) of Figure 4.14) periods of directed activity were interspersed

with reversal in said direction in concordance with the five fixation blocks

(see task description above). On the other hand, for the motor task no such

general pattern was observed (see an exemplar of a generic pair in panel (A)

of Figure 4.14). The observations made above are generally observable by

visualization of all pairs of area integral dynamics at once as shown in Figures

4.15 and 4.16.
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Figure 4.14: Panel of area integral dynamics. In general, the social task (B)
was most likely to show periods of strongly directed activity across all pairs
of task while the motor task (A) was most likely to show plateaued dynamics.
Resting state data showed increasing or decreasing dynamics depending on
the pairs chosen - (C) is a strongly directed pair while (D) is a weakly directed
pair.

4.4 Discussion & conclusion

We conclude this chapter with a hybrid section discussing the results and

concluding this current chapter dealing with fMRI data since results pre-

sented in Sections 4.1.3 and 4.2.3 were extensively discussed in [19, 20]. In

[19], we analyzed the resting state data from the healthy controls and hear-

ing disorder affected populations using cyclicity analysis. The goal there was

to identify objective biomarkers of the tinnitus condition from fMRI data.

We found that the tinnitus condition was characterized by more variable

temporal patterns in regions connected to the amygdala. We hypothesized

that this heterogeneity in the temporal patterns could be due to differences

in levels of habituation to tinnitus. Some tinnitus patients may have re-
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Figure 4.15: A way to visualize directed leader-follower activity between
pairs of dominant ROIs obtained in the data set. A definitely increasing
or decreasing trend indicates a strongly constrained directed-leader follower
activity between two pairs while a variable trend indicates activity that is
less constrained. In the top inset image, the blue signal leads the orange one
whereas, in the bottom inset, the relationship is reversed.

duced amygdalar activation following habituation, whereas others may have

increased amygdalar activation to the bothersome internal noise. Neuroscien-

tific hypothesis for this observation and connections to extant literature were

discussed in depth [19]. Traditional machine learning approaches were used

to distinguish the two populations. Linear and quadratic discriminant anal-

ysis, partial least squares discriminant analysis, linear and quadratic support

vector machines were the tools used. We used the lead matrix as a feature

summarizing the BOLD series. We found that we could distinguish between

the two with 67% accuracy using partial least squares analysis coupled with

Wilks lambda criterion to choose pairs of ROIs. We also found that the lead

matrix was a feature that was suitable to fingerprint the subjects in the data

set. That is, we could identify the same individual across two sessions with

70% accuracy using a 1 nearest neighbor classifier with the cosine similarity
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Figure 4.16: Visualization of directed activity between ROIs observed in
the social cognition task. Compared to resting state or motor task scans,
intermittent bursts of directed activity are a more prevalent feature in this
analysis.

criterion. While group level classification was poor in [19], we noted that the

study was limited by the small number of subjects in the data set. Future

work here would be to combine anatomical and funtional data along with

behavioral metadata collected.

While [19] was focused on the cyclicity pipeline, in [20] we investigated how

different methods of generating dimension reduced features from the BOLD

time series stacked up against each other on a slightly expanded dataset.

In particular, we examined correlation matrices, lagged correlation matrices,

dynamic time warping matrices and lead matrices and further investigated

the effect of pre-processing options on the results with regards to group level

classification. The preprocessing options explored were different filtering op-

tions and for correlation matrices, global signal regression. Due to the limited

sample size of the data, a secondary objective of the work was to examine

data augmentation methods within the context of time-series data using vari-

ational auto encoders [20]. Further, since previously in [19], we showed that
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lead matrix as a feature is one suitable to be used as a fingerprinting method,

we also explored the ability of other features to be used as fingerprints. More

precisely, we utilized the fingerprinting ability of a feature generation method

as a measure of its robustness/stability to variation in the preprocessing op-

tions [20]. In general, none of the four feature generation methods provided

particularly good results with regard to being able to separate the two pop-

ulations regardless of preprocessing and/or filtering options. With regards

to fingerprinting we found that the extent to which matrices remained sta-

ble across the visits varied depending on the employment of global signal

regression (GSR) and the filters as outlined in Section 4.2.3.

The major contribution of the work presented in Section 4.3 was the ap-

plication of cyclicity analysis pipeline to one of the largest fMRI datasets

currently available and extensions to methods via analysis of the dynamic

nature of each component of the lead matrix. Possible future work includes

the adoption and adaptation of network inference techniques that span the

fields of graph, information, utility, and systems theory as well as geographic

information systems.
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Chapter 5

Electromyography data

As mentioned in the introductory chapter, on of the major problems in the

field of kinesiology is one of addressing the problem of redundancy in motor

control.

The classical approach is to adopt a multi-level theory of movement con-

trol [5, 6, 7], one level of which involves “synergies,” which is the name for

the mechanism by which coordinated activity amongst a set of effectors takes

place. Within this model, synergies are patterns of joint torques or muscle

activations that are either hardwired or learned with practice over time and

help eliminate redundant degrees of freedom. In animal studies, it is possi-

ble to directly stimulate the nerves and spinal cord (SC) to elicit motion in

the limbs & appendages. That neuronal stimulation leads to consistent and

repeatable motor activity has been the central finding of such studies. These

consistent and repeatable movements are taken to be motion primitives, var-

ious combinations of which were thought to generate all observed motion

[64, 65, 66, 67, 68]. While it is possible to implant electrodes in animal mus-

cles to record changes during the progression of some motor task, by far the

most common method of detecting muscle activations in healthy humans is

by the recording of electromyography (EMG) signals. Three kinds of EMG

recordings are possible, (a) one in which small needle electrodes are directly

implanted into a small localized region of the musculature, (b) another less

localized one in which recordings are made from the surface of the skin, and

(c) a more recent method utilizing a multitude of arrayed surface sensors to

locally provide information about the depth at which activation occurs in

the musculature [69, 70]. The latter two methods are advantageous when it

is preferred to avoid penetration of the skin and musculature. It has been

shown that EMG signals are directly proportional to the level of muscle ac-

tivations in isometric contractions and therefore used as a standard proxy to

detect muscle activity in tasks of that nature [71]. Then, one approach to the
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solution of the problem of redundancy in motor control is to understand how

one can relate muscle activation potentials observed as EMG signals, with

forces & moments generated by extensions or contractions of the muscle so

as to uncover synergies present in the system.

Various theories and models have been introduced for this purpose. In the

next section we discuss some major approaches and show how their assump-

tions and/or reliance on linearity may hinder them from uncovering synergies

in the higher dimensional space of EMG signals used to characterize mus-

cle activity in motor tasks. In Section 5.2 we present a simple motivating

example for a situation in which such linear methods fail. In Section 5.3

we discuss our approach to data collection and recording, and in Section 5.4

we will describe the preprocessing done on the data. Finally, in Section 5.5

we present the results of applying aforementioned nonlinear methods to our

data set.

5.1 Classical models and linearity

Since the central problem being addressed is the mechanism by which the

huge parameter space available to the CNS is organized and coalesced into

subsets that act in concert, it is natural to assume that the data being

recorded during a motor tasks is one that can be described by a low dimen-

sional model. Various studies have borne out this assumption [72, 73, 74, 75].

Therefore, the objective then becomes to perform an appropriate dimension

reduction on the recorded data, so as to recover the underlying lower dimen-

sional structure. See [76] for a survey of dimensionality reduction techniques

and [77] for models and techniques particular to neuromuscular function.

In [78] and [79], the authors introduced a paradigm to mathematically

concretize the notion of synergies in motor control. Under this approach, the

controller, (i.e. the combination of the brain & nervous system), rather than

eliminate redundant degrees of freedom, makes use of them to extremize some

functionally important performance variables. The controller assembles all

the elemental variables1 pertinent to the task at hand so as to compensate for

each other’s spontaneous errors and/or unpredictable environment variables.

1In the sense of configurable parameters or basic units, e.g. muscle lengths, joint angles,
etc.
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The ‘uncontrolled manifold hypothesis ’ (UMH) posits that the elemental vari-

ables are organized in such a way as to restrict their values to a subspace

in the space of feasible ones - termed the uncontrolled manifold. Under this

restriction, the variability of performance variables is maximized along cer-

tain good directions (which provide robustness) while being minimized in bad

directions (which reduce errors) and synergies arise from coordination of el-

emental variables within this subspace. Other related theories include the

minimal intervention principle (MIP) [80, 81] and optimal feedback control

approaches [82, 83]. The former posits a control scheme that approximates

a certain desired trajectory while allowing for errors in the non-task related

directions. Such errors are ignored and not corrected for unless detrimen-

tal to the task performance. They argue that indeed correcting for errors

in non-task related directions may incur higher costs on the controller and

degrade task performance. The related latter theory casts the problem of

redundancy in the framework of linear optimal feedback control.

The above and other classical approaches (e.g. principal component anal-

ysis, non-negative matrix factorizations, factor analysis etc.) used to uncover

synergies in the space of EMG signals (which arise from elemental variables)

are linear in nature. The UMH approach utilizes a Jacobian to map between

elemental variables and the motor task space. MIP while formulated in the

general form of a stochastic optimal control problem, readily admits closed

form solutions only in the linear quadratic or other special cases. Even recent

frameworks like that of neural manifolds [75], while admitting the underly-

ing manifold maybe nonlinear, only examine planar local approximations in

the neural space for each task mode. However, there is no reason to expect

a-priori that synergies or coordination in biological systems are of a linear na-

ture. The primary reason for a preference for linear frameworks has been that

often, truly nonlinear phenomena are also well-approximated by linear ones.

A classic example is the oscillating pendulum whose equation of motion is

nonlinear but excellently approximated by a linearization. This phenomenon

has also been observed in the field of neurophysiology [84, 85, 86, 87]. No

doubt, another reason for our reliance on our repertoire of linear methods is

one of computational simplicity and interpretability. Before the age of com-

puters and the advent of numerical methods, this was a significant practical

criterion that dictated how well the tools could be developed and/or put into

practice. However, such methods can be agnostic to the source of the data
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and can fail in scenarios where truly nonlinear behavior needs to be studied.

For example, in the field of mechanics of materials, hydrodynamics, biology

etc. essentially all phenomena are nonlinear in nature. Therefore, a reliance

on purely linear methodologies may be overly restrictive in the pursuit of un-

covering the workings of bio-mechanical systems. The next section describes

simple situations where this may happen.

5.2 Motivation and examples

While the example of the swissroll data set may seem contrived, we now

present an example from mechanics where essentially the same phenomenon

is observed. Consider the two bar linkage shown in Figure 5.1(a), whose

end-effector may take up position anywhere in the white unshaded region

as shown in the Figure 5.1(b). Now consider a task where the end-effector

needs to move from an initial point on the horizontal axis to a point that is

vertically above it (see the black lines in Figure 5.1(b)).

(a) A two bar link (b) Feasible workspace

Figure 5.1: A simple mechanical example with two bars connected by a
single revolute joint and the end of one bar being fixed. The left figure
shows the joint angles and how they are measured while the right figure
shows the feasible workspace for the end effector. Not that any point in the
feasible workspace (excluding the two circles themselves), admit a pair of
joint configurations as depicted by the red and blue lines.
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(a) Two different trajectories for end-effector
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(b) Combination of trajectories on the left

Figure 5.2: Multiple different trajectories for moving the end effector of the
two-bar linkage of Figure 5.1(a) from a point on the horizontal axis to one
above it (see Figure 5.1(b)).

Let us consider then different ways of achieving said objective. The end

effector could move smoothly in two different ways between the two starting

and ending points as shown in Figure 5.2(a). On the other hand, nothing

prevents us from instructing the manipulator to perform a more complicated

maneuver as shown in the right panel of the same figure. Here we have

combined the straight line motion with that of the sinusoidal motion, with a

choice to perform the former first or second. The joint angles θ1 and θ2 will

then be appropriately varying functions of time to facilitate this motion.

Suppose the two modes are the vertical straight line motion and the sinu-

soidal one as shown in the Figure 5.2(a), setting aside the more complicated

case of Figure 5.2(b) for the rest of the section. Solving the inverse kinemat-

ics of the two-bar linkage one finds that the joint angles behave as shown in

the two panels of Figure 5.3 - the top is for the simple motion and the bot-

tom is for the sinusoidal mode. Note that since any point within the white

annulus of Figure 5.1 (b) admits two pairs of joint angle configurations, there

arise two solutions - (θ1, θ2) and (θ′1, θ
′
2) - for the values of the joint angles

corresponding to each trajectory/mode; here we depict only one of these for

simplicity.

Whereas in human activity EMG signals are in direct correlation with the

level of muscle activation for isometric contractions, in this simple mechan-
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Figure 5.3: Plot of the joint angles & derivative quantities in the simple
mechanical system for the trajectories shown in Figure 5.1(a) for one set of
solutions.2

ical example, we can consider the derivatives of the joint angles as a proxy

for joint activation - that is, we consider θ̇1, θ̇2 and θ̈1, θ̈2 as our measured

signals. Application of PCA to our set of measured signals shows that a

standard clustering algorithm like k−means would fail to separate the two

motor modes3 present. In Figure 5.4, a set measurements θ̇1, θ̈1, θ̇2, θ̈2 of two

different trajectories in Figure 5.2(a) were fed into a standard PCA pipeline.

This set corresponds to the two rows (a) and (b) in Figure 5.3 which shows

one set of solutions possible to the inverse kinematics of Figure 5.1.

The figure shows that in PCA coordinates, there are two distinct connected

components corresponding to the two different trajectories. However, they

are not linearly separable in any fashion by standard techniques. In this

simple example, even if we did not possess prior knowledge of the end-effector

trajectories, visual inspection of the PCA data alone was sufficient to indicate

the presence of two different connected components. However, in systems

with more complicated dynamics when we have multi-channel data, such

3A crude analogue of synergy for the mechanical example.
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may not be the case and we need algorithms to automatically detect the

synergies. When linear separability is unattainable in simple examples, one

cannot hope they find success in more involved ones. This necessitates that

we look for nonlinear techniques for such datasets.

Towards this end, Figure 5.5 shows the result of applying standard eigen-

map techniques followed by k−means clustering on our set of measurements

θ̇1, θ̇2, θ̈1, θ̈2. In this case the two different colors correspond to the two differ-

ent trajectories (straight vs. sinusoid) and the lower/upper panels correspond

to different solutions (i.e. the left and right columns of Figure 5.3).
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PCA on joint angle's 1st & 2nd derivatives

Figure 5.4: Application of PCA to derivatives of joint angles in Figure 5.3.
(L) In two principal coordinates (PCs) and, (R) in three PCs. The two major
connected components in the PC space correspond to the two different motor
modes in Figure 5.2.

Here we can see that in eigencoordinates, k-means algorithm is able to

identify clusters easily, whereas it struggles with the data in principal coor-

dinates. Recall that PCA for dimensionality reduction, followed by k-means

for clustering, is a popular choice for a clustering pipeline [88, 89]. How-

ever, both being linear and closely related methods [90], this combination

fails on this example whereas the nonlinear method succeeds. Once again,

in the above example, it is fairly obvious what is missing is an emphasis on

the local structure of the data as opposed to the global one implied by a

linear change of coordinates. Note that central to the idea of learning the

local structure of the dataset is the idea of distance between two points. In

the swissroll dataset of Figure 3.7(a), the key observation is that there an

intrinsic notion of distance between two points (on the manifold) which is
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distinct from the extrinsic notion of distance between two points (with re-

spect to the ambient space). Successfully learning the manifold (or in effect

being able to unroll the swissroll), therefore, will depend on techniques that

rely on the notion of intrinsic distance as opposed to that of the extrinsic

distance. Similarly, using a notion of some k− nearest-neighbors to discover

the distinct connected components, and using the neighborhood information

pertinent to each point to create a new coordinate system, in which the two

synergies get mapped far apart is possible. Figure 5.5 shows the result of one

such approach when applied to the quantities in Figure 5.3.
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Nonlinear embedding can seperate data PCA cannot

Figure 5.5: Example of nonlinear embedding technique followed by k-means
algorithm being able to separate synergies in the observed variables for the
example of Figure 5.1 while PCA fails.
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5.3 Data collection

Data was collected from 11 adult participants with no history of neuromus-

cular disorders who gave informed written consent. All procedures were

approved by the local Institutional Review Board for the protection of hu-

man subjects in research. Two participants had to be excluded because they

did not complete the task as instructed. The task involved holding a pre-

defined western classical ballet pose (second position of the feet in demi-plié

and arms in first position) and exerting force using either the forearm or

upper arm with a horizontal pull or push effort against a six channel force

transducer (ATI Delta 660, Apex, NC, USA) held rigidly at the height of

the individual’s upper extremity in the described pose. The particular ballet

position was chosen so as to standardize a whole body static position while

voluntarily activating either the shoulder join or the elbow joint for the push

and pull efforts.

Data was recorded using 32 wireless Delsys surface EMG sensors (Trigno,

Delsys, Natick, MA, USA) supported by a Qualisys camera system interface

(Oqus 5+ Wide, Gothenborg, Sweden). Sixteen of the EMG sensors were

placed on the left side of the participants body, and sixteen were placed on

the right side. The force transducer, was mounted on a wall with z-axis

perpendicular to the face of the transducer, which could be adjusted verti-

cally for the height of each participant. The force and torque recordings were

made at 100 Hz while EMG was recorded at 1 kHz. The EMG channels and

corresponding muscles are listed in Table 5.1.

Table 5.1: EMG Channels and corresponding muscles. All channels have
bilateral symmetry, i.e left and right pairs.

Ch. # Muscle Ch. # Muscle
01 Middle deltoid 09 Semitendinosus
02 Triceps brachii 10 Adductor magnus
03 Biceps brachii 11 Rectus femoris
04 Extensor carpi radialis 12 Vastus medialis
05 Flexor carpi radialis 13 Anterior tibialis
06 Upper trapezius 14 Medial gastrocnemius
07 Infraspinatus 15 Rectus abdominus
08 Latissmus dorsi 16 Erector spinae

We first measured the maximum voluntary contraction (MVC) for each mus-

cle - that is the maximum force a particular muscle could generate and
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recorded the corresponding EMG values [91]. Then participants were asked

to complete four tasks, upper-arm push, upper-arm pull, forearm push, and

forearm pull. For each of the tasks the force transducer was strapped to

the body part involved in the task. The pull or push task for each upper

limb segment was done ten times continuously - i.e. for example push-relax,

push-relax etc. ten times. In doing so, the participants were asked to use

30% of the previously recorded maximum voluntary force magnitude for each

of elbow extension, flexion, shoulder horizontal abduction, or adduction ac-

cording to the task presented. They were also given real-time visual feedback

on a screen as an aid.

(a) (b) (c)

Figure 5.6: (a) Frontal (b) lateral and (c) posterior views of a forearm
push/pull task

5.4 Data processing

To preprocess the data, we first eliminated high frequency noise using a 6th

order bi-directional low pass Butterworth filter with a cutoff frequency of 100

Hz. Note that it is commonly believed that motor control processes do not

exceed 40 Hz though studies have shown that the corner frequency for the

low pass filter affects the total variance accounted for by synergies [92], and

therefore, a relatively high corner frequency was chosen. Further, a notch

filter of 60 Hz was also applied to eliminate electrical and electronic noise.

Each filtered and demeaned EMG channel’s data was then normalized with

respect to the maximum EMG signal value attained during the aforemen-

tioned MVC measurement or with respect to the maximum attained during

the task itself. To identify regions of force generation in the recorded data,
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Figure 5.7: Exemplar of force-moment data that is identified to constitute a
single ‘ramp’, i.e. a montononic increase/decrease in the force magnitude.

we began by identifying the end of force generation in total force value (i.e.

magnitude of force, including all fx, fy and fz components). That is, we

identified peaks in the total force (signifying the beginning of a relaxation

period) and worked our way backwards to the beginning of force generation.

Due to noise factors present, there can be small multiple local peaks between

the major ones found. We took as one ramp-up a clean 70% drop from the

identified peak value going backwards in time. This start time was noted

in the force data, and from that time, we subtracted 50 milliseconds to ac-

count for electro-mechanical delay. Each ramp was then visually inspected

for monotonicity in force magnitude, with monotonicity enforced by trunca-

tion to a monotonic region. See Figure 5.7 for an exemplar ramp. Within

each of the ramp intervals, the EMG data was visually checked. If there were

large spikes in both the positive and negative directions for a given muscle,

which would indicate a sensor malfunction, the corresponding channel was

bilaterally removed from dataset. Finally, PCA and the nonlinear methods

of Section 3.2.1 and 3.2.2 were applied to each ramp’s EMG data.

5.5 Results

The procedure described in the previous section first results in data visualized

as ‘ramp-ups’ in Figure 5.8 for one sample. Next, the portions corresponding

to the identified ramps in the force-moment data were extracted from the

EMG recordings of the 32 channels described in Section 5.3. When visualized,

this data looks like Figure A.5 which shows multiple ramps identified and

colored differently. Further, one can examine each of those ramps by itself
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Figure 5.8: Examples of ramp-ups of force generation extracted from analysis
of total force magnitude as described below. In the corresponding EMG
signal data only data corresponding to these ramp-ups are examined.

in detail. This produces the plots shown in Figure 5.9. Each of these figures

are representative images generated from the data recorded during a single

task performed by a single participant.

5.5.1 Principal component analysis

Suppose that for a single task performance of a subject, the above procedure

resulted in k ramp-ups being identified from the data.

Let ni, i = 1, . . . , k denote the number of samples recorded within each

ramp-up. Then it is possible to perform principal component analysis (PCA)

on the extracted data in one of two ways:

(a) Stack all the ramp-ups together to form a 32 × N data matrix where

N =
k∑

i=1

ni and perform PCA on it

(b) Perform PCA on each data matrix Di with sizes 32×ni for i = 1, . . . , k.

Both approaches were adopted. A prototypical example of the results ob-

tained from the latter approach is shown in Figure 5.10. Unlike Figure 5.4

where we were at least able to see distinct connected components in the

principal coordinate space, in Figure 5.10 we fully see the limitation of the

87



linear factor analysis methods. On the other hand, in the next section we will

see markedly different results in the eigencoordinate space of the nonlinear

methods.
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Figure 5.9: Visualization of a single ramp EMG content after pre-processing.

It is also possible perform PCA via the former approach, i.e. stack together

all ramps identified during the completion of one task (see for example, Fig-

ure A.6). However, in this case the number of components required to explain

most of the variance invariably increased and visualizations were not helpful.

On the other hand, since PCA is often used as an unsupervised clustering
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PCA Analysis for ramp #4 in AS002's right forearm pull task

Figure 5.10: PCA analysis performed on ramp #4 identified during AS002’s
forearm pull task as shown in Figure 5.9. (a) Shows the total variance ac-
counted for as a function of the number of principal components, (b) and (c)
show visualization of the data in the principal coordinates and (d) shows the
first two principal coordinates against time. In the latter plots, lighter colors
occur later in the task.

algorithm, it was instructive to check whether the four different tasks would

cluster differently. Recall that the four tasks are (a) forearm push, (b) fore-

arm pull, (c) upper arm push, and (d) upper arm pull. Therefore, one can

create four combinations of data sets for each participant, and run them

through PCA to see how they would cluster. Results of this process are vi-

sualized in Figures 5.11 and 5.12. It is clear that PCA is not able perform

unsupervised learning, i.e. clustering based on differences in the muscular

activation when different body parts perform the same task, nor is it able to

distinguish between different tasks performed by the same part of the limbs.
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Figure 5.11: PCA on all the ramps identified during AS002’s push and pull
tasks.
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Figure 5.12: PCA on all the ramps identified during AS002’s forearm and
upperarm tasks.
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5.5.2 Eigenmap & diffusion map analysis

The Laplacian eigenmap algorithm described in Section 3.2.2 was performed

on the ramps ups identified in the data. Compared to PCA, the eigenmap

algorithm was successful in clustering the EMG data. This is shown in Figure

5.13. Here some salient features of the eigenmap algorithm are observable.
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Figure 5.13: Eigenmap analysis performed on the ramp #5 identified during
AS002’s forearm pull task as visualized in Figure A.5

The spectrum of the affinity matrix in Eq. 3.10 shown in the left panel of

Figure 5.13 shows six dominant eigenvalues. The right panel shows that in

the new eigencoordinate we obtain three (or four) clusters4. The behavior

of the data in the eigencoordinates is distinctly different from that of the

data in the principal coordinates of the previous section. Here the obtained

groupings are from a single ramp showing identifiable modes/clusters as the

task progresses. Figure 5.13 is a prototypical example of eigenmap analysis.

Recall that σ in Eq. 3.10 is a hyper-parameter to choose which roughly de-

termines the size of the local neighborhood used to obtain the structure of

the underlying manifold. In a majority of our data, it was possible to obtain

such modes/clusters by varying σ appropriately.

Similar to Figure 5.11 and 5.12 it is possible to put together different tasks

or parts of the arm and see whether clustering is possible with the eigenmap

4The number of clusters in 3D eigencoordinates is function of spread of values in the
corresponding eigenvectors, see Figure 5.17 of Section 5.6.
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analysis. An exemplar result is shown in Figures 5.14 and 5.15 for different

values of neighbors N in graph corresponding to the Laplacian L in Eq. 3.11.
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(a) Results for N = 50
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(b) Results for N = 100

Figure 5.14: Laplacian eigenmap embedding obtained for 50 and 100 nearest
neighbor values on AS002’s upperarm vs forearm data in a pull task.
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(a) Results for N = 250
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(b) Results for N = 500

Figure 5.15: Laplacian eigenmap embedding obtained for 250 and 500 nearest
neighbor values on AS002’s upper arm vs forearm data in a pull task.

Now we see that changing the neighborhood size allows use to qualitatively

see structure of the point cloud at different scales. More importantly, we see

that different tasks for the same limb or different parts of the arm for the same

task tend to align along different directions in the eigencoordinate space.
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5.6 Discussion

That nonlinear methods succeed where linear methods fail should come as no

surprise. In effect, what they allow us to do is include higher order effects and

interactions than those captured by first order approximations underlying

factor analysis and other matrix methods. While various extensions to factor

analysis methods exist, in this section we elucidate on the differences between

the two nonlinear methods and PCA.

5.6.1 Principal components vs. nonlinear embeddings

As evidenced by their immense popularity, methods like PCA and linear

regression are easy to utilize, provide us with a concrete measure of total-

variance-accounted-for (TVAF), and are inherently highly interpretable. Com-

pared to them, the use of nonlinear methods requires decidedly more finesse.

For example, in both Laplacian eigenmaps and diffusion maps, there is a

free parameter σ specifying the gaussian kernel size or N the number of

nearest-neighbors which in effect controls the size of the local neighborhoods

examined to recover the underlying structure. On one hand, while a standard

threshold of 90% TVAF is easy to apply across the board, the determination

of σ and N in the algorithms described here is an art-form dependent very

much on the data at hand as well as the experience of the practitioner.

That TVAF in PCA or R2 in regression methods do not capture the whole

story is evident is markedly evident in even our own data set. Consider

the principal components of the same data shown in Figure 5.9. There we

see that the first sixteen PCs explain well over 90% TVAF and yet it is

plain that any synergies represented or encoded by them vary in time. This

is captured in the interweaving and vacillating helical structures of Figure

5.10. The time varying nature of the synergies uncovered by PCA is well

known observation and various models have been proposed to address it

[93, 74, 94, 68, 95]. However, note the stark contrast between the PCA output

and the plot obtained via eigenmaps in Figure 5.13 where the clustering in

the eigencoordinate space seems readily apparent - signifying that it is able

to extract much simpler modes or synergies from the EMG signals as the

task progresses.

Recall that the eigenvalues of the covariance matrix in PCA directly signify
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the explanatory power of the corresponding principal components. Contrar-

ily, the spectrum of the affinity matrices of Eq. 3.10 and Eq. 3.11 do not

encode anything directly analogous. Rather, the number of nonzero com-

ponents of the spectrum signify the intrinsic dimensionality of the obtained

embedding.

0

1

Eigencoordinate 1

0.0

2.5

Eigencoordinate 2

0

2
Eigencoordinate 3

0.0

2.5
Eigencoordinate 4

1
0
1

Eigencoordinate 5

0

5

Eigencoordinate 6

0

5

Eigencoordinate 7

0.0

2.5
Eigencoordinate 8

0.0

2.5
Eigencoordinate 9

0

5

Eigencoordinate 10

0

100

Eigencoordinate 11

0
10

Eigencoordinate 12

0

5

Eigencoordinate 13

0

10

Eigencoordinate 14

0

10

Eigencoordinate 15

10

0

10
Eigencoordinate 16

0.0

2.5

Eigencoordinate 17

0

10
Eigencoordinate 18

0

5 Eigencoordinate 19

0

10

Eigencoordinate 20

0

25
Eigencoordinate 21

0

20
Eigencoordinate 22

0

20
Eigencoordinate 23

10
0

10

Eigencoordinate 24

0

5
Eigencoordinate 25

2.5
0.0
2.5

Eigencoordinate 26

0

20

Eigencoordinate 27

0

50

Eigencoordinate 28

7.5 7.6
Time (s)

0

50
Eigencoordinate 29

7.5 7.6
Time (s)

0

25

Eigencoordinate 30

7.5 7.6
Time (s)

0

10

Eigencoordinate 31

7.5 7.6
Time (s)

0

50
Eigencoordinate 32

Eigencoordinate for AS002's right forearm pull

Figure 5.16: Eigencoordinates for the data which generated Figure 5.13.
Note how the three clusters in that figure correspond to the three distinct
levels/values exhibited in the first two eigencoordinates.

On the other hand, the number of distinct components of the eigenvectors

corresponding to the largest eigenvalues indicate the number of clusters ob-
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tained in the embedding. This can be seen in Figure 5.16. The three clusters

of Figure 5.13 can readily seen to be a function of the three (or four) nonzero

values attained by the first two eigencoordinates. The synthetic data of Fig-

ure 5.17 makes it clear why this is the case - when clustering is present in

the obtained embedding the eigencoordinates necessarily adopt a step-like

structure.
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Figure 5.17: This figure shows how to interpret the clustering obtained from
the eigencoordinate plots. While PCs explain components that account for
most of the variation in the data, eigencoordinates provide local charts such
that the obtained embedding groups together the most similar data points.
Here on the top left panel we show synthetic data that simulates what hap-
pens in the EMG space. Its readouts in time coordinates are shown in the
right panel. The bottom left panel shows that the manifold structure is re-
covered via eigenmap analysis of the traces on the right.

The left column shows two datasets, one of which exhibits clustering. Then

the ordinate and abscissa when indexed against the number of points shows

an approximately piecewise-constant structure for the dataset with clusters.
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In the case of task ramps analyzed in the EMG data, the number of data

points are in direct correspondence with the sampling instances and therefore

the clustering observed is along the axis of time.

Eigenmap analysis of the combined forearm and upper arm data shown

in Figures 5.14 and 5.15 show a marked difference from a similar analysis of

PCA data presented in Figures 5.11 and 5.12. In the latter set of figures,

it is clear that PCA is unable to find any separation between the two data

sets in the principal coordinate space. In the former set of figures, the pa-

rameter dependent embeddings obtained in eigenmap analysis show that the

two datasets occupy different (albeit overlapping) subspaces in the eigenco-

ordinate space. The overlap is ostensibly expected to be present because

the a common subset set of muscles are relevant to the completion of the

task at hand.To quantify concretely the ability of the nonlinear technique to

find separable embeddings for mixed datasets, classical linear and quadratic

support vector machines (SVMs) were trained on subsets of the obtained

embedding. On average, the nonlinear method outperformed the linear one

78% of the time.

5.6.2 Relevance to synergies

To illustrate that the clusterings obtained in the eignecoordinate space using

nonlinear techniques are not an artifact of the method, it is pertinent to see

whether any correlation exists between the force modes as the task progresses

and the eigenmodes obtained. Figure 5.18 shows a couple of instances where

it is manifestly clear that that this is indeed the case. In Figure 5.18 a right

forearm pull task is being performed and the force profile changes in the x

and z axes at t ≈ 5.6s while the moment profile changes in the z and y

axes at the same time. This results in the obtained nonlinear embedding

changing clusters in time. While the eigencoordinates are timevarying with

respect to the duration of the task, it does so in an piecewise constant fashion

as opposed to the continuous fashion of Figure 5.10. Similarly Figure 5.19

shows obtained clusterings in the nonlinear embedding change at t ≈ 7.55s

and t ≈ 7.6s. Here, remarkably, the clusters return to approximately the

same eigencoordinates when the y and z axis moments return to similar

values after peaking during the task. This example further illustrates how
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Eigenmap analysis for AS005's right forearm pull
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Figure 5.18: Example of correlation between force-moment profiles and the
obtained nonlinear embeddings from EMG data at t = 5.6 secs. The three
clusters line up in time as before, during and after the change in the x and
z forces axes and the y and z moment axes.
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Figure 5.19: Another example of clusterings being indicative of synergies.
The force-moment profiles change at t = 7.52s in the y and z axis. Cor-
respondingly, the obtained clustering change at the same time. Here the
clusters also change at t = 7.59s corresponding to changes in the y and z
moment axes at the same time instant.

changes in eigencoordinates based on EMG data alone correspond to changes

in the force-moment profiles. The sharp peak in the y-axis for the moment,
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is seemingly not captured in Figure 5.19. However, the addition of a third

eigencoordinate as shown in Figure 5.20 resolves this discrepancy.
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Figure 5.20: This figure visualizes the correspondance between changes in the
eigencoordinate values and changes in the force-moment profile. Note that
the data input into the nonlinear clustering algorithm that generates the
eigencoordinates is purely EMG data and absent any force-moment data.

Note that the obtained clusters are parameter dependent in the case of both

99



Coordinate 1 Coor
din

ate
 2

Ti
m

e a
xi

s

    σ= 150

Coordinate 1 Coor
din

ate
 2

Ti
m

e a
xi

s

    σ= 250

Coordinate 1 Coor
din

ate
 2

Ti
m

e a
xi

s

    σ= 400

Coordinate 1 Coor
din

ate
 2

Ti
m

e a
xi

s
    σ= 500

Coordinate 1 Coor
din

ate
 2

Ti
m

e a
xi

s

    σ= 600

Coordinate 1 Coor
din

ate
 2

Ti
m

e a
xi

s

    σ= 700

Effect of varying the σ parameter on AS002's forearm pull task

Figure 5.21: This panel shows the effect of varying σ in Eq. 3.10 on the
obtained embedding. Smaller values correspond to larger neighborhoods in
the original data cloud. The last figure of the panel (bottom-right) with
σ = 500 results in the clustering of Figure 5.13 which correspond well with
change in force-moment profile.

eigenmaps and diffusion maps; recall σ in Eq. 3.10 of diffusion maps and

k in the k-nearest neighbor graph of Laplacian eigenmaps. Varying this

parameter corresponds to smoothly modulating the embedding obtained in

the eigencoordinate space. Therefore, this allows one to obtain and examine

different clusterings admitted by the family of embeddings. The choice of a

correct parameter being admittedly data-set dependent, one obvious strategy

is to continuously vary σ or k depending on the chosen algorithm until the

obtained embedding cluster points differently in the time axis - in manifest

correspondence with temporal changes in the force-moment profiles (or in a

large majority of them) as shown in Figure 5.18 and 5.19. Note that the

eigenmap and diffusion map algorithms are agnostic to the force-moment

data and take as input only the EMG data. The effect of changing the

aforementioned parameter on the embedding is shown in the panel of Figure

5.21. As σ is increased the size of the local neighborhood around each data

point in EMG space (the data cloud in the original dimensional space) is
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decreased. For σ = 500 in Figure 5.21 we obtain the result of Figure 5.13

which as shown in Figure manifests changes in the force-moment profiles.

5.7 Conclusion

In the work presented in this chapter, we have shown that nonlinear analysis

techniques confer distinct advantages in the analysis of EMG data compared

to linear and/or factor analysis methods. We provided a small kinematic

example in which PCA followed by clustering is unable to distinguish be-

tween two modes of achieving a task objective. In the context of uncovering

synergies present in real EMG data, we have shown that while PCA almost

invariably extracts time modulated scores that are reflective of time varying

synergies, nonlinear analysis methods are able to extract piecewise constant

synergies that often repeat in time. Further, in the context of analyzing

combined datasets from different task paradigms, we observed that nonlin-

ear methods lead to dimension reduced embeddings that are better amenable

to successful treatment by methods like k-Means or SVMs. Finally, we noted

that while traditional methods like PCA, NMF and their kin (collectively

called Factor Analysis methods) are able to produce measures of quality

their decompositions by constructing R2 values from the residuals, and tally-

ing the Total-Variance-Accounted-For (TVAF), direct analogues of the afore-

mentioned are indeterminate for nonlinear embeddings. On the other hand,

the found synergies and/or clusterings from nonlinear methods correlated ex-

tremely well with changes in externally recorded force moment profile, pro-

viding independent validation regarding presence of synergies. Possible addi-

tional/future work here includes a systematic method to vary the paramter

σ in Eq. 3.10 and creation of an analogue to “goodness-of-fit” for obtained

clusters.
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Chapter 6

Epilogue

Humanity has always been interested in studying time-varying phenomena

and making sense of the driving processes behind them. Over the last couple

of centuries we have built an increasingly varied and mathematical reper-

toire of methods for analyzing time series data. In this work, we analyzed

multi-dimensional time series data in two different settings. In the first, we

examined interrelationships amongst repeating yet aperiodic signals, a type

we termed cyclic, by relying on features that are invariant to reparametriza-

tions of the timeline, culminating in an toolkit we called cyclicity analysis.

In the second, we examined multi-dimensional time series from a geometric

perspective, utilizing tools that leverage the intrinsic structure of the data

cloud in higher dimensional space to establish nonlinear clustering as the

natural setting for detection of covariation in the constituent signals.

Arguably, the genesis of the ideas that are utilized in cyclicity analysis

began with K. T Chen’s investigation of when two curves in a manifold

are considered equivalent [22]. He established in a series of papers that up

reparametrizations & translations (provided the pair are irreducible to begin

with) their equivalence is captured in their iterated integrals [23]. Building

on this idea, Lyon’s seminal work established a deterministic framework for

the integration of paths that traditionally arise as realizations of stochastic

processes [25]. In the machinery he built to do the same, we first chance

upon the signature of a path as an infinite dimensional object that encodes

information about that path which is necessary to build a consistent integra-

tion theory. While Lyons conjured the the signature of path as an extremely

insightful construction to enable rough path theory [25], it has generated sig-

nificant interest in its own right as an object of study [26]. Various papers

have explored the idea of using the signature of a time series as a basis for fea-

ture extraction [96], signal compressions [97], character recognition [98, 99],

prediction [100], and analysis [26]. On the other hand, due to the infinite
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dimensional nature of the signature, all such methods must rely on finite

truncations of it to utilize it in their computational pipelines. In first part of

this work, we have instead adopted the counterpoint to a maxim colloquially

attributed to Grothendieck, namely that it is ...

... better to work in a nice category with nasty objects than in a

nasty category with nice objects.

Our lead matrix of Eq.3.5 is a rather tame object1 in the computationally

hairy category of items presented in Eq. 3.3. We have shown how to interpret

each element of Eq. 3.5 as measure of directed leader-follower relationship

between the pair of time series that generate them via Eq. 3.1. Further, we

have shown how spectral analysis of the lead matrix can lead to recovery of

phase shifts between aperiodic and noisy signals not amenable to analysis by

traditional Fourier or correlation based methods, which are adversely affected

by reparametrizations of the timeline. Further, we applied the methods to

real-world data, namely fMRI signals from a cohort of control and tinnitus

afflicted participants, and were able to replicate observations and inferences

about functional connectivity changes between brain regions that we previ-

ously reported [19]. To understand the efficacy of lead matrix as feature for

automated learning methods, we compared its performance with traditional

features like Dynamic Time Warping and correlation matrices [20]. Finally,

we extended our analysis methods to show detection of the propagation of

cortical waves in fMRI data, that were previously reported in EEG studies

with much greater time resolution and on much larger datasets than previ-

ously examined using cyclicity [21].

The above studies establish cyclicity analysis as a general tool for analysis

of repeating but aperiodic data, however, more avenues of analysis yet remain

for the avid researcher. The field of neuroimaging is currently undergoing a

sea-change in its outlook towards data collection, analysis and dissemination

methods. The replicability crises in psychological studies that started gath-

ering steam about a decade ago [101] has made its way into neuroscience as

well [102, 103, 104]. This has spurred consensus that the field as a whole

needs to invest in standardization of its methods, techniques and pipelines

leading to widespread acceptance of the need to publish de-identified datasets

and codebases along with publications. These and related ideas along with

1In the sense of being interpretable and well-understood in its matrix form.
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tools to facilitate the same were already accepted practices in the realm of

open source software and data science. Consequently, this is an exciting time

to be working at the intersection of computer science, neuroscience & data

analysis.

While cyclicity analysis has its roots in topological concerns, the methods

of nonlinear dimension reduction applied here to EMG data have their roots

in early 19th century physics. The heat kernel of Eq. 3.10 is a well-studied

object in the field of parabolic differential equations, having first risen as the

fundamental solution of the famous heat equation that describes the diffu-

sion process for a given quantity of heat over a region as a function of time.

See [105] for a comprehensive review on the genesis and history of the topic.

Over time, the heat equation has become a fundamental object of study in

applied mathematics and in the theory of partial differential equations. Con-

sidering its variations and extensions has produced a veritable host of results

in the fields of geometric analysis and differential geometry, but not having

addressed the generating partial differential equation in this work, this fact

is of auxiliary concern to us, serving only to underline the deep connections

the innocuous Eq. 3.10 has throughout the field of mathematics. See [106]

for more information and a variety of articles illustrating its applications.

More pertinently for us, results in the vein of our methods, i.e using dif-

fusion processes over datasets to infer properties of the data appeared in

a progression of papers at the turn of the current centutry: kernel PCA

[107]in 1998, isometric feature mapping [108] in 2000 , Laplacian Eigenmaps

[109, 110] in 2001, local tangent space alignment [111] in 2002, Hessian eigen-

maps [112]in 2003 and finally diffusion maps [113] in 2004. These ideas were

quickly picked up in the following years in the context of shape recognition

& computer graphics [114, 115, 116] as heat kernel signature methods which

studied invariants of shapes under rigid and isometric transformations.

In the latter part of this dissertation, we have shown that using the same

geometric diffusion principles allows recasting the synergy detection problem

associated with the motor control tasks as a nonlinear clustering problem.

Both the number of synergies involved, as well as the nature of the process by

which they arise, are generally unknown in the context of motor tasks. At the

same time, the kinematic equations of models or mechanisms that mimic the

anatomy are decidedly nonlinear. Therefore, approaches that adopt a linear

framework lack a physiological basis for their choice, whereas data-driven
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model free approaches like diffusion maps, which uncover the underlying

structure of the datasets are more suitable. The evidence we presented for

this was the following: we observed a strong correspondence between changes

within eigenvectors of the normalized graph Laplacian used in the nonlinear

clustering algorithm for EMG data, with that of the associated force-moment

profiles, even though the algorithm never had the force-moment data as in-

put. This external validation of synergies detected (as opposed to internal

validation by examination of quality of reconstructions afforded by factor

analysis methods) is a novel contribution to the field. Ostensibly, the rel-

atively highly sophisticated mathematical pedigree of the diffusion method

(compared to factor analysis models) might be the reason they are not as

widely adopted in fields not adjacent to applied mathematics.

The borrowing of ideas, techniques, and tools from its different sub-realms

is a common occurrence in mathematics. In what is probably the most

famous example, geometry, analysis, algebra, and category theory came to-

gether in Wiles’ stunning proof of Fermat’s Last Theorem, a result in number

theory. A similar admixing also takes place across different areas of science

itself as evidenced by numerous examples throughout history. However, the

pace with which integration of ideas from traditionally disparate scientific

fields takes place has quickened since the turn of the century, arguably aided

by availability of the internet. Here, we have demonstrated the application

of concepts in applied mathematics to the setting of neuroscience and kine-

siology to derive the presented insights. One expects that as our world and

science becomes increasingly interconnected, such multidisciplinary collab-

orations will abound. This author is glad to have his humble dissertation

contribute to the same.
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Appendix A

Supplementary tables & figures

A.1 Chapter 3: Methods

A.1.1 Figures
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Figure A.1: This figure shows how each element of the matrix in Figure
3.6(a) is built up over time via Eq. 3.1. The insets show how sharp increases
correspond to a more dominant leader-follower relationship while those that
average about zero have a much more variable relationship.
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A.2 Chapter 4: fMRI data

A.2.1 Tables

Table A.1: Demographics for subject groups in [19]. Note that for controls
we have N = 15 with 10 female, and for tinnitus we have N = 32 with 14
female. BDI and BAI are Beck’s Depression and Anxiety Index respectively

Controls Tinnitus p-value

M SD M SD

Age 46.27 11.71 53.16 10.73 0.05

BDI 3.07 6.37 4.63 5.52 0.39

BAI 1.59 1.91 2.69 3.77 0.30

Tinnitus Functional Index

Total N/A N/A 23.44 17.78 N/A

Intrusive N/A N/A 39.43 20.46 N/A

Sense of Control N/A N/A 36.77 23.01 N/A

Cognitive N/A N/A 22.29 19.62 N/A

Sleep N/A N/A 15.99 21.36 N/A

Auditory N/A N/A 25.89 27.13 N/A

Relaxation N/A N/A 26.51 24.27 N/A

Quality of Life N/A N/A 13.87 18.31 N/A

Emotional N/A N/A 9.95 10.49 N/A

Pure tone averages

Right 250 Hz 12.00 10.14 13.28 6.04 0.59

Right 500 Hz 10.67 5.31 12.81 6.95 0.30

Right 1000 Hz 11.33 8.12 12.34 4.40 0.58

Right 2000 Hz 12.00 7.51 17.81 10.31 0.06

Right 3000 Hz 13.67 11.41 24.22 17.37 0.04*

Right 4000 Hz 16.00 16.50 27.03 18.62 0.06

Right 6000 Hz 16.67 19.24 30.78 19.06 0.02*

Right 8000 Hz 15.67 22.75 30.47 20.96 0.03*

Right 9000 Hz 21.00 19.29 38.75 21.96 0.01*

Right 10000 Hz 21.67 22.57 41.09 22.78 0.01*

Right 11200 Hz 30.00 25.64 47.50 21.02 0.02*

continued on next page . . .
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. . . Table A.1 continued

Controls Tinnitus p-value

M SD M SD

Right 12500 Hz 38.33 26.70 56.88 19.58 0.01*

Right 14000 Hz 45.33 28.19 64.22 15.35 0.00*

Right 16000 Hz 44.00 16.39 49.84 13.94 0.21

Left 250 Hz 9.00 7.37 15.00 12.25 0.09

Left 500 Hz 10.00 5.35 13.75 10.78 0.21

Left 1000 Hz 10.00 6.55 12.50 9.67 0.37

Left 2000 Hz 12.00 8.41 18.59 11.59 0.06

Left 3000 Hz 15.00 12.54 27.19 16.51 0.01*

Left 4000 Hz 17.33 18.89 29.22 17.19 0.04*

Left 6000 Hz 17.67 17.51 34.38 18.65 0.01*

Left 8000 Hz 14.67 16.31 33.44 21.27 0.00*

Left 9000 Hz 17.33 15.45 43.44 22.23 0.00*

Left 10000 Hz 19.67 15.86 47.03 22.93 0.00*

Left 11200 Hz 25.33 22.08 52.81 23.21 0.00*

Left 12500 Hz 37.67 27.31 60.63 23.38 0.00*

Left 14000 Hz 46.00 29.95 63.75 18.14 0.02*

Left 16000 Hz 41.00 20.02 50.63 14.85 0.07

*Significant at the p < .05 level. Scores from Beck’s Depression Inventory,

Beck Anxiety Inventory, and the Tinnitus Functional Index were acquired

at each imaging session and averaged together. Means (M) and standard

deviations (SD) are presented for each group, and p-values associated with

two-sample t-tests between group means are displayed. Pure tone averages

at 250, 500, 1000, 2000, 3000, 4000, 6000, 8000, 9000, 10000, 11200, 12500,

14000, and 16000 Hz are presented for both right and left ears.
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A.2.2 Figures
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Figure A.2: This figure shows the schematics of the convolutional neural
network that was used to attempt classification of feature matrices in [20].
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Figure A.3: This figure shows the schematics of the variational autoencoder
that was used to generate synthetic data for the purposes of data augmen-
tation in [20].
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  0 L amygdala

  1 L anterior insula

  2 L cuneus

  3 L frontal eye field

  4 L inferior frontal lobe

  5 L inferior parietal lobe

  6 L mid frontal gyrus

  7 L parahippocampus 

  8 L posterior intraparietal sulcus

  9 L primary auditory cortex

10 L primary visual cortex

11 L superior occipital lobe

12 L superior temporal junction

13 L superior temporal sulcus

14 L ventral intraparietal sulcus

15 Medial prefrontal cortex

16 Posterior cingulate cortex

17 Precuneus

18 R amygdala

19 R anterior insula

20 R cuneus

21 R frontal eye field

22 R inferior frontal lobe

23 R inferior parietal lobe

24 R mid frontal gyrus

25 R parahippocampus 

26 R posterior intraparietal sulcus

27 R primary auditory cortex

28 R primary visual cortex

29 R superior occipital lobe

30 R superior temporal junction

31 R superior temporal sulcus

32 R ventral intraparietal sulcus

Figure A.4: Zero-lag correlation analysis—the salient interactions in sepa-
rating patients and control groups, selected by the sparse SVM. The nodes
correspond to the ROIs listed on the left side of the figure. The edges rep-
resents the interaction between ROIs corresponding to SVM solution of the
weight vector. The width of the weights relates to the magnitude of inter-
actions. GSR stands for global signal regression and f denotes the passed
frequencies of band-pass filters.
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A.3 Chapter 5: EMG data

A.3.1 Figures
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EMGs in the 'ramp-ups' during forearm-pull for AS002

Figure A.5: Examples of ramp-ups of EMG signals extracted from analysis
of total force magnitude.

125



1

0

1 Middle deltoid

1

0

1Triceps Brachii Lateral Head

1

0

1 Biceps Brachii

1

0

1Extensor Carpi Radialis

1

0

1 Flexor Carpi Radialis

1

0

1 Upper Trapezius

1

0

1 Infraspinatus

1

0

1 Latissimus Dorsi

1

0

1 Semitendinosus

1

0

1 Adductor Magnus

1

0

1 Rectus Femoris

1

0

1 Vastus Medialis

1

0

1 Anterior Tibialis

1

0

1Medial Gastrocnemius

1

0

1 Rectus Abdominus

1

0

1 Erector Spinae

1

0

1 Middle deltoid

1

0

1Triceps Brachii Lateral Head

1

0

1 Biceps Brachii

1

0

1Extensor Carpi Radialis

1

0

1 Flexor Carpi Radialis

1

0

1 Upper Trapezius

1

0

1 Infraspinatus

1

0

1 Latissimus Dorsi

1

0

1 Semitendinosus

1

0

1 Adductor Magnus

1

0

1 Rectus Femoris

1

0

1 Vastus Medialis

0 10001

0

1 Anterior Tibialis

0 10001

0

1Medial Gastrocnemius

0 10001

0

1 Rectus Abdominus

0 10001

0

1 Erector Spinae

Combined EMG data from all ramps for AS002 during forearm pull task

Figure A.6: Visualization of all ramps EMG content after preprocessing.
Note that now rather than indicating time, the absissca corresponds to sam-
ple number.
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Figure A.7: Recall that the inverse kinematics of Figure 5.1 admit a pair of
solutions for a trajectory. This figure shows the solution complementary to
the one presented in Figure 5.3.
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Appendix B

Significant jumps via persistence diagram

The algorithm we describe is due to Y. Baryshnikov and can be found in

[117] and was implemented in Python with slight modifications. We first

begin by finding all the minima and maxima of a function over some interval

after removing any linear trends in the time series data. Then we construct

the persistence diagram of the zeroth persistent homology as in [117] and

keep only the corresponding maxima/minima pairs.
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Application of birth-death algorithm to find large jumps in time series

Figure B.1: In (a) we show the raw timeseries data that was (b) detrended
and marked with all pairs of maxima and minima. (c) Shows the correspond-
ing persistence diagram for the birth-death process as outlined in [117] and
while (d) shows the result when restricting the birth-death pairs to be some
fixed distance away from the identity.
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Appendix C

A primer on winding numbers

We will elucidate in this section the connection between Eq. 3.1 and winding

numbers. In this section let us restrict ourselves to the case where our time

series is a two dimensional one. Suppose that our path z(t) is a closed one as

in Definition 3.4, i.e. its starting and ending points on the plane are the same.

This occurs frequently when tracking coordinates on a plane; for example

the flight or path of a bird or animal that leaves its home/nest to forage or

hunt and then returns to it. The complete path has a natural orientation

accorded to it by the direction it was traversed in time. The winding number

w(z) ∈ Z is defined as the number of clockwise or counterclockwise turns

that the path makes around the origin1. Since this is equivalent to rotations

about the same, we can switch to polar coordinates (r(t), θ(t)) to describe

the trajectory of z(t). Then, since z(a) = z(b), the number of clockwise or

anti-clockwise windings is simply

w(z) :=
θ(b)− θ(a)

2π
(C.1)

Considering the change in θ(t) we have from its definition that:

θ (t) := arctan

(
y (t)

x (t)

)
=⇒ dθ =

x(t)dy − y(t)dx

x2(t) + y2(t)

Defining r2(t) = x2(t) + y2(t), we have that

b∫
a

dθ =

b∫
a

x(t)dy − y(t)dx

r2(t)
=

b∫
a

x(t)y′(t)− y(t)x′(t)

r2(t)
dt (C.2)

1Provided it does not pass through the origin itself
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Since the integral on the left of Eq. C.2 evaluates to the numerator of the

quantity in Eq. C.1 we have that in light

w (z) =
1

2π

b∫
a

x(t)y′(t)− y(t)x′(t)

r2(t)
dt (C.3)

Then we see that the integrand in Eq. 3.1 and Eq. C.3 are related by the

pointwise scaling transformation r(t) provided x(t) and y(t) are not simulta-

neously zero. Note that there is nothing special about the origin per se, we

can calculate the winding number about any point not on the curve. More

generally, on the complex plane, we have from complex analysis that for any

closed curve γ parametrized by t ∈ [a, b], i.e. γ : [a, b] → C the winding

number about z0 not in the image of γ(t) is

w (γ, z0) =
1

2πi

b∫
a

γ′(t)

γ(t)− z0
dt

The above quantity is often also called the index of z0 with respect to γ(t)

and denoted Indγ(z0). See Figure C.1 for some examples from [118].

Figure C.1: The first column shows the convention in place, i.e. counterclock-
wise is positive. The second column shows how windings can be calculated
for curves with self intersections and the final column shows that index of a
point not enclosed by the curve is zero.
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