Potassium lineshape study with collisional partners of nitrogen, helium, and hydrogen Joshua A. Vandervort¹, Yiming Ding¹, Richard S. Freedman², Mark S. Marley³, Christopher L. Strand¹, Ronald K. Hanson¹ ¹Department of Mechanical Engineering, Stanford University ²Carl Sagan Center, SETI Institute ³Department of Planetary Science, University of Arizona Abstract #6290 International Symposium on Molecular Spectroscopy June 20-24, 2022 #### Background - Alkali metal absorption coefficients key for interpreting brown dwarf spectra - No experimental data and widely varying model predictions above 500 K Log of absolute flux (F_v) vs. wavelength (λ) for Gliese 229B [1] #### **Motivations** - Extend previously developed alkali seeding methods to new collisional partners [2] - High temperature lineshape data needed for modeling brown-dwarf spectra - Opportunity to use nascent K as tracer in hypersonic test facilities ### Methodology: Potassium seeding in shock tube - Shock tube is an impulse facility - Near instantaneous change in T and P - Accessible pressures: 0.01 1000+ atm - Accessible temperatures: 500 10000+ K - ~1% accuracy in T and P - \sim 2 3 ms test time 3 # Methodology: Potassium seeding in shock tube - Potassium seeded using KCl saltwater solutions^[2] - Introduced via threaded rod - Two DFB ICL diode lasers target potassium D lines - D_1 (770 nm, $4^2S_{1/2} \rightarrow 4^2P_{1/2}$) - D_2 (767 nm, $4^2S_{1/2} \rightarrow 4^2P_{3/2}$) - Lasers scanned at 25 kHz Schematic for seeding and measuring K lineshapes in a shock tube #### Methodology: Laser absorption spectroscopy Beer-Lambert Law $$\alpha(\nu) = -\ln\left(\frac{I_T}{I_0}\right) = S(T) \cdot P \cdot \chi \cdot \phi(\nu) \cdot L$$ Lineshapes modeled as Voigt profiles $$\phi(\nu) = \int_{-\infty}^{\infty} \phi_D(u) * \phi_C(\nu - u) du$$ Doppler broadening FWHM [cm⁻¹] [3] $$\Delta v_D = 7.17 \times 10^{-7} \cdot v_0 \cdot \sqrt{T/M}$$ Collisional broadening FWHM and pressure shift [cm⁻¹] $$\Delta \nu_C = P \cdot \sum_i \chi_i \cdot 2\gamma_i(T)$$ $$\Delta \nu = P \cdot \sum_i \chi_i \cdot \delta_i(T)$$ Collisional broadening and shift coefficients are empirical correlations [cm⁻¹/atm] $$2\gamma_{i} = 2\gamma_{i}(T_{ref}) \left(\frac{T_{ref}}{T}\right)^{n}$$ $$\delta_{i} = \delta_{i}(T_{ref}) \left(\frac{T_{ref}}{T}\right)^{m}$$ This work Wavenumber [cm^{-1}] Visualization of lineshape parameters 5 Background Methodology Results Conclusions ### Results: Transmitted intensity time-history - K formation immediately behind shock wave [4] - Varying K concentration with time - Consistent results despite transient concentrations Laser scan signal and pressure trace during shock tube experiment #### Results: Broadening and shift parameter time-histories Broadening "relaxation" Hypothesized local Stark broadening Convergence time: $N_2 < Ar < He$ Special case H_2 : a strong reducing environment \rightarrow no seeding required Pressure broadening and shift parameter time-histories for N₂, N₂/Ar, He/Ar, and H₂/Ar collisional partners 7 #### Results: Lineshapes as Voigt profiles - Lineshapes are modeled well with Voigt profiles - Residuals within 2% near peaks and 4% on large wavenumber side Unperturbed D1 line center Line shape measurement Fitted Voigt profile Absorption lineshapes for K D1 transition with N_2 , N_2/Ar , He/Ar, and H_2/Ar collisional partners Background Methodology Results Conclusions ## Results: K+N₂ broadening/shift coefficients - Experimental data from 1100-1900 K - Good overlap with results from pure N₂ and N₂/Ar blends - Effect of spin-orbit-coupling weak on $2\gamma_{N_2}$, but strong for δ_{N_2} Methodology Simple model overpredicts by >20% Background Results Conclusions ### Results: K+He broadening coefficients - Experimental data from 1100-1500 K - General agreement with existing theoretical models [5,6] - Pressure shift coefficients small and positive - D1: +0.005 to +0.014 cm⁻¹/atm - D2: +0.002 to +0.008 cm⁻¹/atm - Large uncertainties (>40%) due to Argon dilution Temperature-dependent helium results ### Results: K+H₂ broadening coefficients - Experimental data from 1050-1350 K - Agreement with some existing theoretical models [5,7] - Simplified model between D1 and D2 data - Pressure shift coefficients small and negative - D1: -0.045 to -0.035 cm⁻¹/atm - D2: -0.040 to -0.030 cm⁻¹/atm - Large uncertainties due to Argon dilution Temperature-dependent hydrogen results #### Conclusions - Measured potassium lineshapes for D1 and D2 transitions at high-temperatures in a shock tube - Absorption features modeled as Voigt profiles - Presented power-law correlations for broadening contributions from N₂, He, H₂ and shift contributions from N₂ - Helium and Hydrogen broadening align with existing theoretical models Seeding approach my be extended to other alkali metals (Na, Cs) Presented correlations may be useful for developing potassium-based diagnostics in combustion plants, biomass combustors, and hypersonic facilities ### Acknowledgements - NASA Exoplanets Research Program (XRP) - Office of Naval Research - Stanford Office of the Vice Provost for Graduate Education - Stanford Mechanical Engineering Department #### References - [1] Burrows, A., Marley, M. S., and Sharp, C. M. "The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs." *The Astrophysical Journal*, Vol. 531, No. 1, 2000, pp. 438–446. - [2] Ding, Y., Vandervort, J. A., Strand, C. L., and Hanson, R. K. "Shock Tube Measurements of High-Temperature Argon Broadening and Shift Parameters for the Potassium D1 and D2 Resonance Transitions." *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 275, 2021, p. 107895. - [3] Hanson, R. K., Spearrin, R. M., and Goldenstein, C. S. "Spectroscopy and Optical Diagnostics for Gases." *Spectroscopy and Optical Diagnostics for Gases*, 2016. - [4] Ding, Y., Vandervort, J. A., Freedman, R. S., Strand, C. L., Marley, M. S., and Hanson, R. K. "Collisional Broadening and Pressure Shift of the Potassium Resonance Doublets by Nitrogen, Helium, and Hydrogen at High Temperatures." *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 283, 2022, p. 108149. - [5] Allard, N. F., Kielkopf, J. F., and Allard, F. "Impact Broadening of Alkali Lines in Brown Dwarfs." *The European Physical Journal D* 2007 44:3, Vol. 44, No. 3, 2007, pp. 507–514. - [6] Mullamphy, D. F. T., Peach, G., Venturi, V., Whittingham, I. B., and Gibson, S. J. "Collisional Broadening of Alkali Doublets by Helium Perturbers." *Journal of Physics B: Atomic, Molecular and Optical Physics*, Vol. 40, No. 6, 2007, p. 1141. - [7] Allard, N. F., Spiegelman, F., and Kielkopf, J. F. "K–H2 Line Shapes for the Spectra of Cool Brown Dwarfs." *Astronomy & Astrophysics*, Vol. 589, 2016, p. A21.