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Background
• Alkali metal absorption coefficients key for interpreting brown dwarf spectra
• No experimental data and widely varying model predictions above 500 K

Motivations
• Extend previously developed alkali seeding methods to new collisional partners [2]

• High temperature lineshape data needed for modeling brown-dwarf spectra
• Opportunity to use nascent K as tracer in hypersonic test facilities

Log of absolute flux (Fν) vs. wavelength (λ) for Gliese 229B [1]

Potassium
absorption
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Methodology: Potassium seeding in shock tube

• Shock tube is an impulse facility
• Near instantaneous change in T and P
• Accessible pressures: 0.01 – 1000+ atm
• Accessible temperatures: 500 – 10000+ K
• ~1% accuracy in T and P
• ~2 – 3 ms test time
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Shock tube operation animation
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Methodology: Potassium seeding in shock tube

Schematic for seeding and measuring K lineshapes in a shock tube

Background Methodology ConclusionsResults

• Potassium seeded using KCl
saltwater solutions[2]

• Introduced via threaded rod
• Two DFB ICL diode lasers target 

potassium D lines

• D1 (770 nm, 42S1/2 → 42P1/2)
• D2 (767 nm, 42S1/2 → 42P3/2)

• Lasers scanned at 25 kHz
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Methodology: Laser absorption spectroscopy
• Beer-Lambert Law
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• Lineshapes modeled as Voigt profiles
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• Doppler broadening FWHM [cm-1] [3]

Δ#6 = 7.17×104A . #+ . -/C
• Collisional broadening FWHM and pressure 

shift [cm-1]
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• Collisional broadening and shift coefficients are 
empirical correlations [cm-1/atm]
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Visualization of lineshape parameters
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Results: Transmitted intensity time-history

• K formation immediately behind shock wave [4]

• Varying K concentration with time
• Consistent results despite transient concentrations

Laser scan signal and pressure trace during shock tube experiment
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Results: Broadening and shift parameter time-histories
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Broadening “relaxation”
Hypothesized local 
Stark broadening

Convergence time: 
N2 < Ar < He

Special case H2: a 
strong reducing 
environment → no 
seeding required

Pressure broadening and shift parameter time-histories for N2, N2/Ar, He/Ar, and H2/Ar collisional partners 
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Results: Lineshapes as Voigt profiles
• Lineshapes are modeled well with Voigt profiles
• Residuals within 2% near peaks and 4% on large wavenumber side

Absorption lineshapes for K D1 transition with N2, N2/Ar, He/Ar, and H2/Ar collisional partners
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Results: K+N2 broadening/shift coefficients
• Experimental data from 1100-1900 K
• Good overlap with results from pure N2 and N2/Ar blends
• Effect of spin-orbit-coupling weak on 2"#$, but strong for %#$
• Simple model overpredicts by >20%

Temperature-dependent nitrogen broadening and shift results

Background Methodology ConclusionsResults

Nitrogen 
Broadening Nitrogen Shift
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Results: K+He broadening coefficients
• Experimental data from 1100-

1500 K
• General agreement with existing 

theoretical models [5,6]

• Pressure shift coefficients small 
and positive

• D1: +0.005 to +0.014 cm-1/atm
• D2: +0.002 to +0.008 cm-1/atm
• Large uncertainties (>40%) 

due to Argon dilution

Temperature-dependent helium results

Helium Broadening
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Results: K+H2 broadening coefficients
• Experimental data from 1050-

1350 K
• Agreement with some existing 

theoretical models [5,7]

• Simplified model between D1 
and D2 data

• Pressure shift coefficients small 
and negative

• D1: -0.045 to -0.035 cm-1/atm
• D2: -0.040 to -0.030 cm-1/atm
• Large uncertainties due to 

Argon dilution

Temperature-dependent hydrogen results

Hydrogen 
Broadening

Background Methodology ConclusionsResults



12

Conclusions

• Measured potassium lineshapes for D1 and D2 transitions at 
high-temperatures in a shock tube

• Absorption features modeled as Voigt profiles

• Presented power-law correlations for broadening contributions 
from N2, He, H2 and shift contributions from N2

• Helium and Hydrogen broadening align with existing theoretical 
models

Seeding approach my be extended to other alkali metals (Na, Cs)

Presented correlations may be useful for developing potassium-based 
diagnostics in combustion plants, biomass combustors, and hypersonic 
facilities

Background Methodology ConclusionsResults
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