

Potassium lineshape study with collisional partners of nitrogen, helium, and hydrogen

Joshua A. Vandervort¹, Yiming Ding¹, Richard S. Freedman², Mark S. Marley³, Christopher L. Strand¹, Ronald K. Hanson¹

> 1Department of Mechanical Engineering, Stanford University 2Carl Sagan Center, SETI Institute 3Department of Planetary Science, University of Arizona

> Abstract #6290 International Symposium on Molecular Spectroscopy June 20-24, 2022

1

Background

- Alkali metal absorption coefficients key for interpreting brown dwarf spectra
- No experimental data and widely varying model predictions above 500 K

Log of absolute flux (F_ν) vs. wavelength (λ) for Gliese 229B ^[1]

Motivations

- Extend previously developed alkali seeding methods to new collisional partners ^[2]
- High temperature lineshape data needed for modeling brown-dwarf spectra
- Opportunity to use nascent K as tracer in hypersonic test facilities

Background Methodology Results Results Conclusions

Methodology: Potassium seeding in shock tube

- Shock tube is an impulse facility
	- Near instantaneous change in T and P
	- Accessible pressures: 0.01 1000+ atm
	- Accessible temperatures: 500 10000+ K
	- \sim 1% accuracy in T and P
	- \sim \sim 2 3 ms test time

Methodology: Potassium seeding in shock tube

- Potassium seeded using KCI saltwater solutions[2]
- Introduced via threaded rod
- Two DFB ICL diode lasers target potassium D lines
	- D_1 (770 nm, 4²S_{1/2} \rightarrow 4²P_{1/2})
	- D_2 (767 nm, 4²S_{1/2} \rightarrow 4²P_{3/2})
- Lasers scanned at 25 kHz

Schematic for seeding and measuring K lineshapes in a shock tube

Methodology: Laser absorption spectroscopy

• Beer-Lambert Law

$$
\alpha(\nu) = -\ln\left(\frac{I_T}{I_0}\right) = S(T) \cdot P \cdot \chi \cdot \phi(\nu) \cdot L
$$

• Lineshapes modeled as **Voigt** profiles ∞

$$
\phi(v) = \int_{-\infty}^{\infty} \phi_D(u) * \phi_C(v - u) \, du
$$

- Doppler broadening FWHM [cm-1] [3] $\Delta v_D = 7.17 \times 10^{-7} \cdot v_0 \cdot \sqrt{T/M}$
- Collisional broadening FWHM and pressure shift [cm-1]

$$
\Delta v_C = P \cdot \sum_i \chi_i \cdot 2\gamma_i(T)
$$

$$
\Delta v = P \cdot \sum_i \chi_i \cdot \delta_i(T)
$$

• Collisional broadening and shift coefficients are empirical correlations [cm-1/atm]

Wavenumber $[cm^{-1}]$

Visualization of lineshape parameters

Background **Methodology Results Conclusions** Conclusions

Results: Transmitted intensity time-history

- K formation immediately behind shock wave [4]
- Varying K concentration with time
- Consistent results despite transient concentrations

Laser scan signal and pressure trace during shock tube experiment

6

Results: Broadening and shift parameter time-histories

Pressure broadening and shift parameter time-histories for N₂, N₂/Ar, He/Ar, and H₂/Ar collisional partners

7

Results: Lineshapes as Voigt profiles

- Lineshapes are modeled well with Voigt profiles
- Residuals within 2% near peaks and 4% on large wavenumber side

Absorption lineshapes for K D1 transition with N₂, N₂/Ar, He/Ar, and H₂/Ar collisional partners

Results: K+N₂ broadening/shift coefficients

- Experimental data from 1100-1900 K
- Good overlap with results from pure N_2 and N_2/Ar blends
- Effect of spin-orbit-coupling weak on $2\gamma_{N_2}$, but strong for δ_{N_2}
- Simple model overpredicts by >20%

Results: K+He broadening coefficients

- Experimental data from 1100- 1500 K
- General agreement with existing theoretical models [5,6]
- Pressure shift coefficients small and positive
	- D1: ± 0.005 to ± 0.014 cm⁻¹/atm
	- $D2: +0.002$ to $+0.008$ cm⁻¹/atm
	- Large uncertainties (>40%) due to Argon dilution

Temperature-dependent helium results

Results: K+H₂ broadening coefficients

- Experimental data from 1050- 1350 K
- Agreement with some existing theoretical models [5,7]
- Simplified model between D1 and D2 data
- Pressure shift coefficients small and negative
	- D1: -0.045 to -0.035 cm⁻¹/atm
	- D2: -0.040 to -0.030 cm⁻¹/atm
	- Large uncertainties due to Argon dilution

Temperature-dependent hydrogen results

Conclusions

- Measured potassium lineshapes for D1 and D2 transitions at high-temperatures in a shock tube
- Absorption features modeled as Voigt profiles
- Presented power-law correlations for broadening contributions from N_2 , He, H₂ and shift contributions from N_2
- Helium and Hydrogen broadening align with existing theoretical models

Seeding approach my be extended to other alkali metals (Na, Cs)

Presented correlations may be useful for developing potassium-based diagnostics in combustion plants, biomass combustors, and hypersonic **facilities**

Acknowledgements

- NASA Exoplanets Research Program (XRP)
- Office of Naval Research
- Stanford Office of the Vice Provost for Graduate Education
- Stanford Mechanical Engineering Department

References

[1] Burrows, A., Marley, M. S., and Sharp, C. M. "The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs." *The Astrophysical Journal*, Vol. 531, No. 1, 2000, pp. 438–446.

[2] Ding, Y., Vandervort, J. A., Strand, C. L., and Hanson, R. K. "Shock Tube Measurements of High-Temperature Argon Broadening and Shift Parameters for the Potassium D1 and D2 Resonance Transitions." *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 275, 2021, p. 107895.

[3] Hanson, R. K., Spearrin, R. M., and Goldenstein, C. S. "Spectroscopy and Optical Diagnostics for Gases." *Spectroscopy and Optical Diagnostics for Gases*, 2016.

[4] Ding, Y., Vandervort, J. A., Freedman, R. S., Strand, C. L., Marley, M. S., and Hanson, R. K. "Collisional Broadening and Pressure Shift of the Potassium Resonance Doublets by Nitrogen, Helium, and Hydrogen at High Temperatures." *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 283, 2022, p. 108149.

[5] Allard, N. F., Kielkopf, J. F., and Allard, F. "Impact Broadening of Alkali Lines in Brown Dwarfs." *The European Physical Journal D 2007 44:3*, Vol. 44, No. 3, 2007, pp. 507–514.

[6] Mullamphy, D. F. T., Peach, G., Venturi, V., Whittingham, I. B., and Gibson, S. J. "Collisional Broadening of Alkali Doublets by Helium Perturbers." *Journal of Physics B: Atomic, Molecular and Optical Physics*, Vol. 40, No. 6, 2007, p. 1141.

[7] Allard, N. F., Spiegelman, F., and Kielkopf, J. F. "K–H2 Line Shapes for the Spectra of Cool Brown Dwarfs." *Astronomy & Astrophysics*, Vol. 589, 2016, p. A21.