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ABSTRACT

Error-correcting codes (codes) are the backbone of the modern information

age and were essential to the invention of groundbreaking technology such

as WiFi, cellular, cable, and satellite modems. In this thesis, we focus on

using machine learning techniques to design efficient and reliable data-driven

decoders for state-of-the-art channel codes.

In the first half of the thesis, we introduce a neural-augmented decoder for

Turbo codes called TinyTurbo. TinyTurbo has complexity comparable

to the classical max-log-MAP algorithm but has much better reliability than

the max-log-MAP baseline and performs close to the MAP algorithm. We

show that TinyTurbo exhibits strong robustness on a variety of practical

channels of interest, such as EPA and EVA channels, which are included in

the LTE standards. We also show that TinyTurbo strongly generalizes

across different rate, blocklengths, and trellises.

In the second half of the thesis, we focus on designing data-driven de-

coders for the polar code family: Polar codes and PAC codes. We pose

the decoding of PAC codes as a tree-search problem, and introduce PAC-

DQN, a reinforcement learning based decoder. While PAC-DQN achieves a

near-optimal reliability for short codes, it suffers from poor training sample

complexity and is not scalable to larger codes. We then introduce CRISP,

a GRU-powered neural decoder, which uses curriculum learning to achieve

excellent reliability and scale to larger codes. We show that CRISP out-

performs the successive-cancellation (SC) decoder and attains near-optimal

reliability performance on the Polar(16, 32), Polar(22, 64) and PAC(16, 32)

codes.
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CHAPTER 1

INTRODUCTION

Shannon, in his groundbreaking work in 1948 [1], showed that information

can be reliably transmitted over a noisy channel if the capacity of the trans-

mission is less than the channel capacity. One of the fundamental methods

that render this possible is channel coding. Codes, composed of (encoder,

decoder) pairs, ensure reliable data transmission even under noisy condi-

tions. The encoder adds structured redundancy to the data, enabling the de-

coder to perform error correction and detection. Since Shannon’s work, sev-

eral landmark codes have been proposed: Convolutional codes, low-density

parity-check (LDPC) codes, Turbo codes, Polar codes, and more recently,

Polarization-Adjusted-Convolutional (PAC) codes [2].

Turbo codes [3] have been widely used in modern communication sys-

tems and are part of 3G and 4G standards. While Turbo codes operate at

near-optimal performance on the canonical additive white Gaussian noise

(AWGN) channel, it is well known that the classical Turbo decoder lacks

robustness and performs poorly on non-AWGN channels. The MAP itera-

tive Turbo decoder is computationally expensive; therefore, approximations

such as the max-log-MAP decoder are used in practice, trading reliability for

complexity.

Polar codes, introduced by Arikan [4], are widely used in practice owing

to their reliable performance in the short blocklength regime. They exhibit

several crucial information-theoretic properties; practical finite-length per-

formance, however, depends on high complexity decoders. This search for

the design of efficient and reliable decoders for polar codes has been the focus

of substantial research in the past decade.

PAC codes [5], variants of polar codes, further improve performance, nearly

achieving the fundamental lower bound on the performance of any code at

finite lengths, albeit at a higher decoding complexity [6]. The sequential

“Fano decoder” [7] allows PAC codes to perform information-theoretically
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near-optimally; however, the decoding time is long and variable [8].

Thus, designing decoders with high reliability and robustness is of great

practical interest. This thesis focuses on designing efficient and reliable de-

coders for Turbo, Polar, and PAC codes.

Deep learning has been highly successful in recent years across various

disciplines such as computer vision and natural language processing. Deep

learning for communication [9, 10] has been an active field in the recent

years and has seen success in many problems including symbol detection

[11, 12, 13, 14, 15, 16], channel estimation [17, 18, 19], and channel feedback

[20, 21], among others.

We have also seen impressive results from deep-learning-based decoders in

channel decoding [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

37, 38]. There have also been works that focus on jointly learning channel

encoder-decoder pairs [39, 23, 40, 41, 42, 43, 44, 45, 46, 47]. It is well known

in the literature that naively parameterizing the decoder by general-purpose

neural networks does not work well, and they perform poorly even for small

blocklengths like n = 16 [48]. Hence it is essential to use efficient decoding

architectures that capitalize on the structure of the encoder [37, 27]. These re-

sults demonstrate the potential of DL in designing optimal decoders; however

most of them still suffer from substantial computational complexity, making

them intractable to be deployed in real-world communication systems.

Model-based machine learning is an alternate approach that has gained

traction in recent years [9]. One of the key ideas in this approach is to

augment learnable parameters to existing channel decoders and train these

parameters. A strong benefit of such neural decoders is that the complexity

of the decoder does not increase much while reliability can be improved.

The rest of this thesis is organized as follows: Chapter 2 formally defines

the channel decoding problem and introduces the codes of interest. Chapter 3

proposes a model-based machine learning approach to decode Turbo codes.

Chapter 4 proposes a reinforcement-learning based approach to decode PAC

codes. An improved approach is introduced in Chapter 5, which proposes

a sequential neural decoder, trained via supervised learning, that can be

trained to decode Polar codes and PAC codes.
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CHAPTER 2

BACKGROUND

In this chapter, we formally define the channel decoding problem and provide

a background of Turbo, Polar, and PAC codes. We also introduce some of

the classical decoding algorithms for these codes.

Our notation is the following: we denote Euclidean vectors by small bold

face letters x,y, etc. [n] ≜ {1, 2, . . . , n}. Form ∈ Rn,m<i ≜ (m1, . . . ,mi−1).

N (0, In) denotes a standard Gaussian distribution in Rn. u⊕ v denotes the

bitwise XOR of two binary vectors u,v ∈ {0, 1}ℓ.

2.1 Channel decoding

ModulationEncoder Channel Decoderm ∈ {0,1}k x ∈ {0,1}n x ∈ {±1}n y ∈ ℝn
m̂

Noise

MSE loss

Learn

Figure 2.1: Channel decoding problem.

The primary goal of channel decoding is to design efficient decoders that

can correctly recover the message bits upon receiving codewords corrupted

by noise (Figure 2.1). More precisely, let u = (u1, . . . , uk) ∈ {0, 1}k denote

a block of information/message bits that we wish to transmit. An encoder

g : {0, 1}k → {0, 1}n maps these message bits into a binary codeword x

of length n, i.e. x = g(u). The rate of a code is defined as R = k
n
, the

ratio of the number of message bits and the codeword length. The code rate

represents the amount of redundancy in the code. The encoded bits x are
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modulated via Binary Phase Shift Keying (BPSK), i.e. x 7→ 1−2x ∈ {±1}n,
and are transmitted across the channel. We denote both the modulated and

unmodulated codewords as x. The channel, denoted as PY |X(·|·), corrupts
the codeword x to its noisy version y ∈ Rn. Upon receiving the corrupted

codeword, the decoder fθ estimates the message bits as û = fθ(y). The

performance of the decoder is measured using standard error metrics such as

Bit-Error-Rate (BER) or Block-Error-Rate (BLER):

BER(fθ) ≜ (1/k)
∑
i

P[ûi ̸= ui]

BLER(fθ) ≜ P[û ̸= u]

Given an encoder g with code parameters (k, n) and a channel PY |X , the

channel decoding problem can be mathematically formulated as:

θ ∈ argmin
θ

BER(fθ), (2.1)

which is a joint classification of k binary classes. To train the parameters θ,

we use the mean-square-error (MSE) or binary cross-entropy (BCE) loss as

a differentiable surrogate to the objective in (2.1).

2.2 Turbo codes

2.2.1 Turbo encoder

Turbo encoder consists of an interleaver and two identical Recursive Sys-

tematic Convolutional (RSC) encoders, denoted by π and (E1, E2) respec-

tively, as depicted in Figure 2.2. RSC codes are a type of convolutional

code obtained by feeding back one of the outputs of a conventional convolu-

tional encoder to its input [49]. Let u = (u1, . . . , uK) denote the sequence

of K information bits that we wish to transmit. To encode the message bits

u, a block of them is directly transmitted via the systematic bit sequence

xs = (xs
1, x

s
2, . . . , x

s
K). On the other hand, the encoder E1 generates the

parity bit sequence x1p = (x1p
1 , x1p

2 , . . . , x1p
k ) from u whereas the encoder E2

generates the parity sequence x2p = (x2p
1 , x2p

2 , . . . , x2p
k ) using the interleaved
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input ũ = π(u). We assume that the encoded bits x = (xs,x1p,x2p) are

modulated via Binary Phase Shift Keying (BPSK) and transmitted over the

channel. For concreteness, we consider LTE Turbo codes, for which the RSC

code has the generator matrix (1, g1(D)/g2(D)) with g1(D) = 1 + D2 + D3

and g2(D) = 1 +D +D3 [50].

Puncturing
u x1p

x2p

xs

x

π

E1

E2

SISO 
D1y1p

ys

0 -+
-

SISO 
D2y2p

π(ys)
-+
- π−1π

SISO 
D1y1p

ys

-+
-

SISO 
D2y2p

π(ys)
-

+
- π−1π

…

Figure 2.2: Turbo encoder (top); Turbo decoder (bottom)

2.2.2 Turbo decoder

As depicted in Figure 2.2 (bottom), the classical turbo decoder [3] contains

two identical Soft-Input Soft-Output (SISO) decoders (D1, D2) and relies

on the ‘Turbo principle’, where these SISO decoders iteratively refine the

posterior of the information bits. More precisely, each SISO decoding block

takes the received signals and the prior as input and estimates the posterior

distribution for the message bits. This is then fed as a prior for the next SISO

decoding block. This procedure is repeated for a fixed number of iterations to

estimate the final posterior. The celebrated BCJR algorithm [51] is used as

the SISO decoding block; this algorithm performs a maximum a-posteriori

(MAP) decoding and is the optimal decoder for convolutional codes. We

describe the BCJR decoding in the context of decoder D1:

MAP turbo decoder: Let y = (ys,y1p) be the log-likelihood-ratios (LLRs)

of the encoded bits corresponding to encoder E1. The BCJR SISO decoder

D1 takes the soft-information y as its input and obtains the LLRs for the
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information bits as follows:

L(uk|y) ≜ log
P (uk = 1|y)
P (uk = 0|y)

= log

∑
(s′,s)∈S1 P (s′, s,y)∑
(s′,s)∈S0 P (s′, s,y)

,

where S1 = {(s′, s) : uk = 1} denotes the set of all ordered pairs (s′, s)

corresponding to state transitions s′ → s caused by data input uk = 1,

whereas S0 = {(s′, s) : uk = 0} pertains to the input uk = 0. Assuming that

the underlying channel is AWGN and memoryless, the joint probabilities

P (s′, s,y) can be efficiently computed:

P (s′, s,y) = P
(
s′, s,yk−1

1 , yk,y
K
k+1

)
= P

(
s′,yk−1

1

)
P (yk, s|s′)P

(
yK
k+1|s

)
= αk−1(s

′)γk(s
′, s)βk(s),

where αk−1(s
′) ≜ P

(
s′,yk−1

1

)
and βk(s) ≜ P

(
yK
k+1|s

)
can be computed via

the forward and backward recursions [51]:

αk(s)=
∑
s′∈SR

αk−1(s
′)γk(s

′, s),

βk−1(s
′)=

∑
s∈SR

βk(s)γk(s
′, s)

with the initial conditions α0(s) = βK(s) = 1{s = 0}. Here SR = {0, 1, . . . , 2m−
1} denotes the set of all possible states for the encoder whose memory is m.

The branch transition probabilities γk(s
′, s) ≜ P (yk, s|s′) can be computed

as

γk(s
′, s) = exp

(
1

2

(
xs
ky

s
k + x1p

k y1pk
)
+

1

2
ukL(uk)

)
, (2.2)

where L(uk) is the apriori LLR for the bit uk. To ensure numerical stability,

we consider the logarithmic values of the above probabilities, i.e. ᾱk(s) ≜
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logαk(s), β̄k(s) ≜ log βk(s), and γ̄k(s
′, s) ≜ log γk(s

′, s), and obtain

γ̄k(s
′, s) =

1

2

(
xs
ky

s
k + x1p

k y1pk
)
+

1

2
ukL(uk),

ᾱk(s) = LSEs′∈SR
(ᾱk−1(s

′) + γ̄k(s
′, s)) ,

β̄k−1(s
′) = LSEs∈SR

(
β̄k(s) + γ̄k(s

′, s)
)
,

L(uk|y) = LSE(s′,s)∈S1

(
ᾱk−1(s

′) + γ̄k(s
′, s) + β̄k(s)

)
− LSE(s′,s)∈S0

(
ᾱk−1(s

′) + γ̄k(s
′, s) + β̄k(s)

)
(2.3)

where LSE(z1, . . . , zn) ≜ log(exp(z1)+. . .+exp(zn)), the log sum-of-exponentials

function. Upon obtaining the posterior LLR L(uk|y), the decoder D1 com-

putes the extrinsic LLR Le(uk) as

Le(uk) = L(uk|y)− L(ysk)− L(uk), k ∈ [K] (2.4)

which is interleaved and passed as a prior to the decoder D2. This message

passing decoding is iteratively performed M times. The posterior LM(uk|y)
after the M th iteration is used to estimate the message bits:

ûk = 1{LM(uk|y) < 0}

2.2.3 Max-log-MAP turbo decoder

TheMAP algorithm uses the exact LSE function in the above set of equations

in Eq. (2.3) which is computationally expensive. Hence, in practice, several

variants and approximations are often used. A popular such decoder is the

max-log-MAP algorithm. The main idea behind the max-log-MAP is to

approximate the LSE function by the maximum, i.e.

LSE(z1, . . . , zn) ≈ max(z1, . . . , zn), z1, . . . , zn ∈ R.

While the max-log-MAP algorithm is more efficient than the MAP, it is less

reliable than the MAP [52].
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2.3 Polar codes

Plotkin

0 0/1 0 0/1

Plotkin Plotkin

m1 m2 m3 m4

u = (m2, m2) v = (m4, m4)

x = (m2 ⊕ m4, m2 ⊕ m4, m4, m4)

Figure 2.3: Polar(2, 4): Polar encoding via Plotkin tree

2.3.1 Polar encoding

Polar codes have a recursive encoding method, defined as follows: let (k, n)

be the code parameters with n = 2p, 1 ≤ k ≤ n. In order to encode a block

of message bits u = (u1, . . . , uk) ∈ {0, 1}k, we first embed them into a source

message vector m ≜ (m1, . . . ,mn) = (0, . . . , u1, 0, . . . , u2, 0, . . . , uk, 0, . . .) ∈
{0, 1}n, where mIk = u and mICk

= 0 for some Ik ⊆ [n]. Since the message

block m contains the information bits u only at the indices pertaining to Ik,

the set Ik is called the information set, and its complement ICk the frozen set.

For the set Ik, we first compute the capacities of the n individual polar bit

channels and rank them in their increasing order [53]. Then Ik picks the top k

out of them. For example, Polar(2, 4) has the ordering m1 < m2 = m3 < m4

and Ik = {2, 4}, and thus m = (0,m2, 0,m4). Similarly, Polar(4, 8) has

m1 < m2 < m3 < m5 < m4 < m6 < m7 < m8, I4 = {4, 6, 7, 8} and

m = (0, 0, 0,m4, 0,m6,m7,m8).

Finally, we obtain the polar codeword x = PlotkinTree(m), where the

mapping PlotkinTree : {0, 1}n → {0, 1}n is given by a complete binary tree,
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Ly

0 L2 0 L4

Lu Lv

m̂1 m̂2 m̂3 m̂4

y

Figure 2.4: Polar(2, 4): Successive cancellation decoder

known as Plotkin tree [54]. Figure 2.3 details the Plotkin tree for Polar(2, 4).

Plotkin tree takes the input message block m ∈ {0, 1}n at the leaves and

applies the “Plotkin” function at each of its internal nodes recursively to

obtain the codeword x ∈ {0, 1}n at the root. The function Plotkin : {0, 1}ℓ×
{0, 1}ℓ → {0, 1}2ℓ, ℓ ∈ N, is defined as

Plotkin(u,v) ≜ (u⊕ v,v).

For example, in Figure 2.3, starting with the message blockm = (0,m2, 0,m4)

at the leaves, we first obtain u = Plotkin(0,m2) = (m2,m2) and v =

Plotkin(0,m4) = (m4,m4). Applying the function once more, we obtain

the codeword x = Plotkin(u,v) = (m2 ⊕m4,m2 ⊕m4,m4,m4).

2.3.2 Successive cancellation decoding

The successive-cancellation (SC) algorithm is one of the most efficient de-

coders for polar codes, with a decoding complexity of O(n log n). The basic

principle behind the SC algorithm is to sequentially decode one message

bit mi at a time according to the conditional log-likelihood ratio (LLR),

Li ≜ log(P[mi = 0|y, m̂<i]/P[mi = 1|y, m̂<i]), given the corrupted code-

word y and previous decoded bits m̂<i for i ∈ Ik. Figure 2.4 illustrates
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this for the Polar(2, 4) code: for both the message bits m2 and m4, we com-

pute these conditional LLRs and decode them via m̂2 = 1{L2 < 0} and

m̂4 = 1{L4 < 0}. Given the Plotkin tree structure, these LLRs can be

efficiently computed sequentially using a depth-first-search based algorithm.

As a motivating example, let’s consider the Polar(2, 2) code. Let the two

information bits be denoted by u and v, where u, v ∈ {0, 1}. The codeword

x ∈ {0, 1}2 is given by x = (x1, x2) = (u ⊕ v, v). Let y ∈ R2 be the

corresponding noisy codeword received by the decoder. First we convert the

received y into a vector of log-likelihood-ratios (LLRs), Ly ∈ R2, which

contains the soft-information about coded bits x1 and x2, i.e.

Ly = (L(1)
y ,L(2)

y ) ≜

(
log

P[y1|x1 = 0]

P[y1|x1 = 1]
, log

P[y2|x2 = 0]

P[y2|x2 = 1]

)
∈ R2.

Once we have the soft-information about the codeword x, the goal is to

now obtain the same for the message bits u and v. To compute the LLRs

for these information bits, SC uses the following principle: first, compute

the soft-information for the left bit u to estimate û. Use the decoded û

to compute the soft-information for the right bit v and decode it. More

concretely, we compute the LLR for the bit u as:

Lu = LSE(L(1)
y ,L(2)

y ) = log
1 + eL

(1)
y +L

(2)
y

eL
(1)
y + eL

(2)
y

∈ R, (2.5)

where LSE(a, b) ≜ log(1 + ea+b)/(ea + eb) for a, b ∈ R. The expression in

(2.5) follows from the fact that u = (u ⊕ v) ⊕ v = x1 ⊕ x2 and hence the

soft-information Lu can be accordingly derived from that of x1 and x2, i.e.

Ly. Now we estimate the bit as û = 1{Lu < 0}. Assuming that we know

the bit u = û, we observe that the codeword x = (û⊕ v, v) can be viewed as

a two-repetition of v. Hence its LLR Lv is given by

Lv = L(1)
y · (−1)û +L(2)

y ∈ R. (2.6)

Finally we decode the bit as v̂ = 1{Lv < 0}. To summarize, given the LLR

vector Ly we first compute the LLR for the bit u, Lu, using (2.5) and decode

it. Utilizing the decoded version û, we compute the LLR Lv according to

(2.6) and decode it.

For a more generic Polar(k, n), the underlying principle is the same: to
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decode a polar codeword x = (u ⊕ v,v), first decode the left child u and

utilize this to decode the right child v. This principle is recursively applied

at each node of the Plotkin tree until we reach the leaves of the tree where

the decoding is trivial. Given this principle, the SC algorithm for Polar(2, 4),

illustrated in Figure 2.4, can be mathematically expressed as (in the sequence

of steps):

y ∈ R4 −→ Ly = (L(1)
y ,L(2)

y ,L(3)
y ,L(4)

y ) ∈ R4,

Lu = (LSE(L(1)
y ,L(3)

y ),LSE(L(2)
y ,L(4)

y )) ∈ R2,

frozen bit −→ m̂1 = 0,

L2 = LSE(L(1)
y ,L(3)

y ) + LSE(L(2)
y ,L(4)

y ) ∈ R,

m̂2 = 1{L2 < 0} ∈ {0, 1},

û = (m̂2, m̂2) ∈ {0, 1}2,

Lv = (L(1)
y ,L(2)

y ) · (−1)û + (L(3)
y ,L(4)

y ) ∈ R2,

frozen bit −→ m̂3 = 0,

L4 = L(1)
v +L(2)

v ∈ R,

m̂4 = 1{L4 < 0} ∈ {0, 1}.

In Figure 2.4, the above equations are succinctly represented by two sets

of arrows: the black solid arrows represent the flow of soft-information from

the parent node to the children and the green dotted arrows represent the

flow of the decoded bit information from the children to the parent. We note

that we use a simpler min-sum approximation for the function LSE that is

often used in practice, i.e.

LSE(a, b) ≈ min(|a| , |b|)sign(a)sign(b), a, b ∈ R.

2.3.3 Successive cancellation List decoding

SC decoding achieves the theoretically optimal performance only asymptot-

ically, and its reliability is sub-optimal at finite blocklengths. SC decoding

employs a greedy locally optimal strategy; however, these decisions may not

be globally optimal. In practice, the employment of SC-list (SCL) decoding

[55, 56, 57, 58] enables polar codes to achieve reliability close to capacity.
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SCL improves upon its error-correction performance by maintaining a list of

L candidate paths at any time step and choosing the best among them.

In fact, for a reasonably large list size L, SCL achieves MAP performance

at the cost of increased complexity (O(Ln log n)).

2.4 PAC codes

As described in Section 2.3, the successive cancellation decoding of polar

codes is sub-optimal compared to the MAP decoding [59]. Polar codes also

have poor minimum distance properties, which limits the performance of the

code. One way to alleviate this issue is to add a high-rate outer code. In

practice, cyclic redundancy checks (CRC) [60, 61, 62] are used in conjunction

with polar codes and SCL to achieve the desired reliability.

Figure 2.5: Bit channel capacities of Polar-128 code at SNR=3dB [5]

The key property of polar codes is the phenomenon of channel polarization.

The bit-channels of polar codes under successive cancellation decoding are

polarized. In other words, the bit channels either have a capacity of 0 or

1. But it turns out that this useful property does not hold at finite block

lengths due to the existence of partially polarized bit channels. For example,

the bit channel capacities for a Polar code of N = 128 is shown in Figure

2.5 [5]. Consequently, the capacities of the frozen bit channels are wasted.
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Motivated by these drawbacks of polar codes, Arikan [5] introduces a new

class of codes called Polarization-Adjusted-Convolutional (PAC) codes that

match the fundamental lower bound on the performance of any code under

the MAP decoding at finite-lengths [6, 63]. PAC codes shift the burden of

error correction entirely to an outer code and exploit the capacities of the

partially polarized channels of a polar code.

Figure 2.6: PAC encoding scheme

2.4.1 PAC encoding

PAC codes are constructed by adding a convolutional outer code, with an ap-

propriate indexing Ik, before polar encoding. More formally, a rate profiling

block embeds the message block m ∈ {0, 1}k is embedded into the source

vector v ∈ {0, 1}n. Positions i /∈ Ik are set to 0. The index set Ik is chosen

according to the Reed-Muller (RM) rule: : compute the Hamming weights

of integers 0, 1, . . . , n− 1 and choose the top k. For instance, consider a

PAC(4, 8) code; Ik = {3, 5, 6, 7}. The message block m = {d0, d1, d2, d3} is
passed through the rate profiling to obtain v = {0, 0, 0, d0, 0, d1, d2, d3}. We

obtain the input to the polar code by encoding the the rate-profiled message

v via a rate-1 convolutional code, i.e.

u = c ∗ v ⇔ ui =
∑
j

cjvi−j (2.7)

for some 1D convolutional kernel c ∈ {0, 1}ℓ. Finally we obtain the PAC

codeword x by polar encoding v:

x = PlotkinTree(v) (2.8)

The PAC encoding scheme is shown in Figure 2.6.

The addition of the outer code serves to improve the distance properties of

polar codes [64], which can explain the gains of finite length PAC codes over
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the corresponding Polar codes under MAP decoding. Notably, PAC codes

exploit all the polar bit channel capacities, enabling them to approach the

BIAWGN-dispersion bound: the minimum block error rate achievable using

a binary code of a given block length and rate on an AWGN channel without

feedback [6].

2.4.2 Decoding of PAC codes

The PAC encoding scheme can be viewed as a binary search tree. This is an

irregular tree in contrast to ones generated by convolutional codes because

of the rate profiling step. This is schematically shown in Figure 2.7 for a

PAC(4,8) code with Ik = {3, 5, 6, 7}. There are two branches at positions

belonging to the index set Ik. In contrast, there is no branching for positions

not belonging to Ik since there is only one possible value that vi can take.

The search tree branches represent all possible inputs u1, u2, · · · , un to the

polar encoder. Notably, each leaf of the tree corresponds to a unique code-

word. We can achieve the optimal performance by selecting the path which

maximizes the likelihood, i.e., ML decoding. But since the number of leaves

is exponential in K, ML decoding is intractable.

The successive cancellation algorithm described in Section 2.3.2 can be

used to decode PAC codes, but it is highly sub-optimal. Heuristic tree-search

methods on the PAC code tree (Figure 2.7) have achieved impressive per-

formance. One such method is the classical Fano algorithm [7], a sequential

decoding algorithm that uses backtracking [66]. It can be seen as a tree-

search algorithm on the PAC search tree, which uses metrics computed using

the SC algorithm. Put simply, the Fano decoder traverses down the tree if

a path metric is larger than a threshold; if not, it can either backtrack and

find an alternate path or reduce the threshold. Coupled with the Fano de-

coder, PAC codes achieve impressive results outperforming polar codes (with

SCL decoder) and matching the finite-length capacity bound [6]. However,

the Fano decoder has significant drawbacks like variable running time, large

time complexity at low-SNRs [67], and sensitivity to the choice of hyper-

parameters [68]. To overcome these issues, several non-learning techniques,

such as stack/list decoding, adaptive path metrics, etc., have been proposed

in the literature [65, 67, 69, 70, 71].
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Figure 2.7: An example of the PAC search tree (reproduced from [65])
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CHAPTER 3

TINYTURBO

Turbo codes (Section 2.2) have been widely used in modern communication

systems and are part of 3G and 4G standards. While Turbo codes operate

at near-optimal performance on the canonical additive white Gaussian noise

(AWGN) channel, it is well known that the classical Turbo decoder [1] lacks

robustness and performs poorly on non-AWGN channels. Thus, designing

turbo decoders with high reliability and robustness is of great interest.

In the recent past, deep learning-based decoders have been shown to achieve

impressive performance on Turbo decoding. Kim et al. used RNNs to train

neuralBCJR [27], which is trained to imitate the BCJR algorithm. This

method suffers from an error floor at high SNRs. Their follow-up work Deep-

Turbo [32] trained RNN and CNN-based decoders end-to-end without BCJR

knowledge. These methods matched the Turbo decoding performance, along

with significantly improved robustness and adaptivity to non-AWGN noise.

However, these decoders have a large computational complexity, which im-

pedes practical deployment.

Given this, more scalable approaches such as model-based DL have gained

traction recently. In the context of Turbo codes, in a recent work [35], He et

al. introduce TurboNet+, which augments learnable parameters to decoding

every bit, and show that it improves the reliability of the classical Turbo

decoders.

Despite the success of TurboNet+, there are three important open ques-

tions: (a) do we need all those learnable parameters, the number of which

scales linearly in blocklength? (b) can we learn weights that generalize across

rates, blocklengths, and codes and that are robust across channel variations?

(c) what is the role of the learned weights? In this chapter, we focus on

addressing these questions. Our contributions are as follows.
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• We propose TinyTurbo1, a neural augmented Turbo decoder that has

18 trainable weights. We show that TinyTurbo recovers the reliabil-

ity of the state-of-the-art neural augmented Turbo decoder, namely,

TurboNet+ [35] which has 720 weights, for AWGN channels.

• We show the robustness of TinyTurbo: TinyTurbo outperforms

TurboNet+ and the classical Turbo decoder for several practical chan-

nels.

• We demonstrate the strong generalization of TinyTurbo: TinyTurbo

trained for rate-1/3 LTE Turbo codes of blocklength 40 performs well

for Turbo codes with different blocklengths, rates, and trellises (e.g.,

blocklength 200, rate-1/2, Turbo-757).

• Our over-the-air experiment demonstrates that TinyTurbo achieves

improved reliability and efficiency compared to the classical Turbo de-

coders in indoor scenarios.

3.1 Weighted Max-log-MAP turbo decoder

As discussed in Section 2.2.3, approximations to the MAP algorithm such as

max-log-MAP are used in practice to reduce the decoding complexity. How-

ever, this comes with a degradation in the reliability. It is well-known in the

literature [72, 73, 74, 75, 76] that the max-log-MAP algorithm overestimates

the LLRs of the message bits, which leads to propagation of errors in the

later decoding stages. To counter this, a common technique is to scale the

LLRs in Eq. (2.4). A variety of methods have been proposed to determine

these scaling weights. Most existing works [72, 73, 74] propose using heuris-

tics via off-line time-averaged estimates to obtain the best scaling weights

for a specific SNR and channel setting. While Claussen et al. [75] propose

to find the scaling weights that maximize the mutual information, heuris-

tics are still needed as it is hard to estimate the mutual information. In

[76], Sun and Wang use brute force search to find these parameters, which is

computationally prohibitive.

1Code can be found at https://github.com/hebbarashwin/tinyturbo
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3.2 TinyTurbo: Efficient Turbo decoding

In the previous sections, we saw the shortcomings of existing turbo decoders.

Given this, it would be advantageous to have a set of scaling weights that

are both robust across varying block lengths, codes, and channels. How do

we find such weights?

In a recent work, He et al. [35] introduce TurboNet+, which can be viewed

as a weight-augmented version of the max-log-MAP algorithm. TurboNet+

augments the standard max-log-MAP algorithm by adding learnable weights

for each bit index k ∈ [K] in Eq. (2.4): Le(uk) = w
(1)
k L(uk|y) − w

(2)
k ysk −

w
(3)
k L(uk), k ∈ [K].

We propose TinyTurbo, a data-driven turbo decoder where the weights

in the TurboNet+ architecture are entangled across bit positions. One of the

major differences with TurboNet+ and other existing techniques is that the

TinyTurbo efficiently learns the optimal set of weights directly from the

data using an end-to-end loss function. Learnt in such a purely data-driven

manner, we show in Sec. 3.3 that these weights yield much better reliability

results than the existing baselines and successfully generalize across various

channels, block lengths, code rates, and code trellises.
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Figure 3.1: TinyTurbo decoder.

Architecture. As depicted in Figure 3.1, TinyTurbo generalizes the

standard max-log-MAP algorithm by adding just three trainable parameters

α = (α1, α2, α3) ∈ R3 in the extrinsic LLR computation, i.e.

Le(uk) = α1L(uk|y)− α2L(y
s
k)− α3L(uk), k ∈ [K]. (3.1)

Note that the same parameters α are used for all the bit indices k ∈ [K],

making it amenable to generalize across block lengths. Similarly, decoder D2

18



has three additional parameters β = (β1, β2, β3) ∈ R3. Thus every decoding

iteration in TinyTurbo has 6 parameters (α,β) with the total parameters

being 6M , where M denotes the number of decoding iterations. We consider

M = 3 in this paper. We also note that TinyTurbo can be used on top

of both max-log-MAP and the MAP algorithms in Eq. 2.3. In this work, we

restrict to the max-log-MAP given its computational efficiency.

Training. We propose an end-to-end loss function framework to train

the TinyTurbo parameters (αM
1 ,βM

1 ). Hence these weights can be learnt

directly from data alone. More precisely, let u(1),u(2), . . . ,u(B) ∈ {0, 1}K de-

note a batch ofB message blocks each of lengthK and let y(1),y(2), . . . ,y(B) ∈
RN be the corresponding codeword-LLRs received by the TinyTurbo de-

coder. Let LM(u(i)|y(i)) ∈ RK denote the estimated LLRs of the message

bits afterM decoding iterations of TinyTurbo for each block i ∈ [B], which

are obtained through equation 2.4. Define the Binary Cross-Entropy (BCE)

loss L(αM
1 ,βM

1 ) as

L(αM
1 ,βM

1 ) ≜
1

B

B∑
i=1

K∑
k=1

u
(i)
k log σ(LM

k (u(i)|y(i)))

+ (1− u
(i)
k ) log σ(−LM

k (u(i)|y(i))).

The weights (αM
1 ,βM

1 ) are then trained by running stochastic gradient de-

scent (SGD), or its variants like Adam [77], on the loss L. Once trained, these

weights are frozen and are used directly for inference (turbo decoding). Note

that the decoding complexity is comparable to that of the max-log-MAP

algorithm.

As we illustrate in Section 3.3, TinyTurbo performs much better than

the baselines on a variety of benchmarks.

Comparison with TurboNet+. While TinyTurbo is similar to Tur-

boNet+, the following are the key differences: (a) TurboNet+ introduces

weights for each bit index k ∈ [K] in Eq. (2.4). As shown in Table 3.1, they

have a total of 6MK parameters, as opposed to just 6M for TinyTurbo;

(b) For training the weights, they consider a mean square error (MSE) be-

tween their estimated LLRs and the target BCJR-LLRs, which are obtained

by running the MAP algorithm for BCJR. This introduces a computational

overhead and makes the training slow as BCJR-LLRs are required for each

training iteration; (c) Since the weights are learned for each bit index k ∈ [K],
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Block length 40 200
TinyTurbo 18 18
TurboNet+ 720 3600

Table 3.1: Number of parameters of TinyTurbo is independent of block
length

they cannot be reused for longer block lengths. In contrast, we show that by

using just a 1/K-fraction of weights and an end-to-end loss function, Tiny-

Turbo learns a better set of weights that yield better reliability performance

on various practical channels (Figures 3.6, 3.7, 3.8). . Further, our decoder

generalizes better across a variety of scenarios (Figures 3.2, 3.3, 3.4, 3.5).

3.3 Results

We compare the performance of TinyTurbo with that of the standard

max-log-MAP and MAP turbo decoders, and TurboNet+ [78]. We consider

rate-1/3 and rate-1/2 Turbo-LTE codes of block length 40 and 200, and use

the standard Quadratic Permutation Polynomial (QPP) interleaver [50].
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Figure 3.2: TinyTurbo trained on Turbo (40, 132) outperforms the
baselines and is close to MAP
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Figure 3.3: TinyTurbo trained on (40,132) generalizes to different
blocklengths : Turbo(200,612)
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Figure 3.4: TinyTurbo generalizes to a different rate: Turbo(200, 412)
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Figure 3.5: TinyTurbo generalizes to a different trellis: Turbo-757
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Figure 3.6: TinyTurbo exhibits strong robustness than baselines on a
bursty channel
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Figure 3.7: TinyTurbo exhibits robustness on EPA channel
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Figure 3.8: TinyTurbo exhibits robustness on EVA channel
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3.3.1 AWGN channel

We train the TinyTurbo for Turbo(40, 132) on the AWGN channel at −1
dB. Using these weights, we evaluate the performance of TinyTurbo on

the following three codes under AWGN: Turbo(40, 132), Turbo-757, and

Turbo(200, 412). As highlighted in Figs. 3.2, 3.4, and 3.5, TinyTurbo with

3 decoder iterations achieves a bit error rate (BER) performance close to

that of the MAP decoder with 6 iterations. Further, we achieve this with a

decoding complexity comparable to a max-log-MAP decoder. We also note

that TinyTurbo outperforms TurboNet+ even with 40× fewer parameters.

3.3.2 Generalization to other blocklengths, rates, and trellises.

One of the major shortcomings of learning-based decoders is that training

them directly on larger block lengths is generally difficult due to insufficient

GPU memory, and unstable training [32, 79, 42, 80]. It is thus ideal to

have models that are trained on short block lengths and are reusable for

longer ones. Indeed, as illustrated in Figure 3.4, we observe that Tiny-

Turbo trained on a small code, Turbo(40, 132), shows good performance

when tested on a Turbo code of block length 200. Interestingly, we also no-

tice that a TinyTurbo model trained directly on block length 200 achieves

similar performance. These results highlight that our model seamlessly gen-

eralizes to longer block lengths, and we are able to bypass the bottleneck of

directly training a decoder on long block lengths. Puncturing is a technique

used to encode and decode codes of higher rates using standard rate 1/3

encoders and decoders. Higher rates are achieved by removing certain parity

bits according to a fixed pattern. The use of puncturing improves the flexi-

bility of a system without significantly increasing its complexity. As shown

in Figure 3.4, the weights learned using a rate 1/3 Turbo code can be reused

for a rate 1/2 punctured Turbo code, which demonstrates the generalizability

of TinyTurbo across code rates. Surprisingly, TinyTurbo also general-

izes well to different trellises; Figure 3.5 shows that TinyTurbo trained on

Turbo-LTE achieves a BER performance close to MAP even on a Turbo-757

code with the generator matrix (1, g1(D)/g2(D)) with g1(D) = 1+D2 and

g2(D)=1+D+D2.
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3.3.3 Robustness across channel variations

Here we evaluate theTinyTurbo decoder trained on AWGN on various non-

AWGN settings (without any retraining). We consider both the simulated

and practical channels.

We first test on a bursty channel, defined as y = x + z + w, where z ∼
N (0, σ1

2) is an AWGN noise, and w ∼ N (0, σb
2) is a bursty noise with a high

noise power and low probability of occurrence ρ. Here we consider σb = 5

and ρ = 0.01. Figure 3.6 highlights that TinyTurbo is significantly more

robust to the bursty noise compared to the canonical Turbo decoders.

We now demonstrate the robustness of TinyTurbo on various practi-

cal channels. In particular, we consider the multi-path fading channels, as

defined in the 3GPP [81]. We simulate them using the LTE toolbox in MAT-

LAB. Specifically, we test on the Extended Pedestrian A model (EPA) and

the Extended Vehicular A model (EVA) specified in the LTE standard. The

EPA and EVA channels represent a low and medium delay spread environ-

ment respectively. The received signals are equalized using linear MMSE

estimation before proceeding to decode. As shown in Figures 3.7 and 3.8,

TinyTurbo achieves better reliability than the MAP Turbo decoder on the

EPA and EVA channels.

We see that a TinyTurbo trained on a short block length is able to

generalize well to longer block lengths, different rates, and different trellises.

This is advantageous for edge device implementations where memory is very

limited, since we do not need to store multiple models for different cases.

3.3.4 Over-the-air experiments

In this section, we use a rapid prototype system with a ZynQ SoC and an

AD9361 transceiver as a testbed to evaluate the performance of our Tiny-

Turbo algorithm in a practical setting. We implement these algorithms on

the ZynQ CPU and the FPGA with an OFDM-based end-to-end communi-

cation system. Specifically, we analyze the robustness of our algorithm due

to the multipath channel variations and showcase the practical viability of

the algorithms on transceiver chips. In a real-time processing system, we

use two of these systems as transmitter and receiver, to transmit and cap-

ture frames. The Turbo-encoded codewords were modulated and sent over
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the channel after adding a preamble for synchronization and frequency offset

correction. The received data was equalized and demodulated to get LLR

values for the decoder. Simulations were done over different gain settings at

the transmitter and the receiver to get the results for different SNRs. As

demonstrated in Figure 3.9, TinyTurbo is robust to multipath fading in

an indoor setting.
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Figure 3.9: Turbo(40, 132). TinyTurbo exhibits robustness in OTA
experiments

3.3.5 Ablation study

The key differences between TinyTurbo and TurboNet+ are: (i) weights

are shared across bit positions for TinyTurbo unlike TurboNet+, and (ii)

TinyTurbo minimizes the BCE loss between the predicted LLRs and the

ground truth message bits; TurboNet+ minimizes the MSE loss between the

estimated LLRs and the BCJR-LLRs from the MAP algorithm. We evaluate

the contributions of these components to our gains using the following abla-

tion experiments: (i) we do not entangle weights across bit positions in Tiny-

Turbo but train them using BCE loss. The resulting red curve in Figure 3.10

highlights that this approach has the same performance as that of Tiny-

Turbo. (ii) we entangle weights but train them using the same procedure
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as TurboNet+. The corresponding purple curve in Figure 3.10 shows similar

performance as TurboNet+. Together, these experiments suggest that train-

ing the weights via the end-to-end BCE loss function approach is the key con-

tributing factor to the gains of TinyTurbo over TurboNet+. While sharing

weights did not yield any change in the performance, it nonetheless allows for

a more computationally efficient decoder with a low-memory requirement.
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Figure 3.10: Turbo(40, 132). This ablation study highlights that our gains
are mainly due to the end-to-end BCE loss function.

3.4 Interpretation

α1 α2 α3 β1 β2 β3

Iteration 1 0.445 0.584 1 0.641 0.779 0.662
Iteration 2 0.834 0.795 0.725 0.863 0.716 0.645
Iteration 3 0.911 0.715 0.638 0.263 0.616 0.938

Table 3.2: TinyTurbo weights
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3.4.1 Interpreting TinyTurbo

In Sections 3.3 and 3.3.4, we have demonstrated that TinyTurbo 2 can

achieve much better reliability than the baseline turbo decoders across a

variety of channels. This raises a natural question: where do these gains

come from? To this end, we fix the input message bits to be the all-zero

vector and examine the corresponding LLR values predicted by TinyTurbo

and our baselines for Turbo(40,132). In Figure 3.11, we consider the AWGN

channel and plot the mean LLR together with the error bars corresponding to

two standard deviations. While all the decoding algorithms have a negative

mean LLR since the message bits are all-zero, only TinyTurbo and MAP

decoders can keep the deviations close to/lesser than zero resulting in fewer

errors. On the other hand, max-log-MAP has a significant portion of zero

crossings and hence more decoding errors. These observations are consistent

with our AWGN results in Figure 3.2.

We consider a simplified bursty channel model y = x+ z+w, where x, y, z

are as described in Section 3.3.3, and w = 10.0 only at the 57th symbol in

the 132-length zero codeword. Figure 3.11 illustrates that only TinyTurbo

can keep the deviations contained below zero, whereas the baselines have lots

of zero crossings resulting in poor decoding performance. This explains the

superior performance of TinyTurbo as demonstrated in Figure 3.6.

Figure 3.11: Average output LLRs on AWGN (left) and bursty (right)
channels

2The learned weights are shown in Table 3.2.
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CHAPTER 4

DQN-PAC: REINFORCEMENT
LEARNING-BASED DECODING OF

SHORT PAC CODES

Reinforcement learning (RL) is a paradigm of machine learning that deals

with sequential decision-making. Learning proceeds without explicitly speci-

fying the correct actions; the agent discovers optimal strategies through trial

and error. Deep reinforcement learning has seen tremendous success in many

sequential decision-making problems, most notably game playing [82, 83, 84].

In recent years, many works have used reinforcement learning for channel

coding and decoding. Several teams [85, 86, 87] used RL to learn bit-flipping

based channel decoders for linear codes. Reinforcement learning techniques

were also used for sequential decoding of moderate-length LDPC codes [88,

89], polar code construction [90, 91], and belief propagation decoding of polar

codes [92].

As detailed in Section 2.4.2, decoding PAC codes can be viewed as a binary

search tree traversal. Existing tree-search heuristics like Fano decoding have

a very high average time complexity. Reinforcement learning has been very

successful in tackling tree search problems. For example, game playing can

be seen as finding the best path in a decision tree. Inspired by this success, we

propose DQN-PAC1, a deep Q-network (DQN) - based algorithm to decode

PAC codes. We show that this method achieves a near-MAP performance

on PAC codes of block length 32 and K ≤ 14.

4.1 Background

An agent interacts with an uncertain environment and obtains scalar rewards.

The agent aims to learn to maximize the total reward received. Supervision

is only provided through the reward signal. Below, we define some common

terminology used in RL.

1Code can be found at https://github.com/hebbarashwin/dqn pac
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The agent can stay in one of many states s ∈ S, and takes one of many

actions a ∈ A at every time step. The agent receives a scalar reward r from

the environment, and transitions to a new state s′. This is represented by

a tuple (s, a, s′, r) known as a transition step. The state transition function

determines the probability of the agent moving to a state s′ from s after

taking an action a. The agent chooses its action at state s based on its

policy π. The policy can be deterministic : π(s) = a, or stochastic : π(a|s) =
Pπ[A = a|S = s]. Reinforcement learning problems are modeled as Markov

decision processes (MDP). MDPs consist of states that satisfy the Markov

property: the future only depends on the current state and not the past

history.

P[St+1|St, St− 1, · · · , S1] = P[St+1|St]

.

The reward function Rt(s, a) is the expected value of the reward received

if action a is taken at state s.

Rt(s, a) = E[Rt+1|St = s, At = a]

The goal of RL is to learn an optimal policy π⋆ that maximizes the cumulative

reward.

The return Gt is the future reward accumulated after the kth timestep:

Gt ≜
∞∑
k=0

γkRt+k+1

Here, γ is a discount factor that determines the importance of rewards in the

distant future relative to immediate rewards.

The Q-function Q(s, t) is a function that estimates the quality of a state

action pair (s, a). It is the expected return starting from s if action a is

chosen.

Q(s, t) = Eπ[Gt|St = s, At = a]

The Q function satisfies the Bellman equations, which decomposes it into

a sum of the immediate reward and the future values.

Q(s, a) = E[Rt+1 + γEa∼πQ(St+1, a)|St = s, At = a]

30



4.2 DQN decoding

Q-learning is an off-policy RL algorithm that seeks to find the optimal action

at the current state. This is done by learning the optimal Q-values for all

state-action pairs. Given this, at inference, the optimal policy can be followed

by choosing an action that maximizes the Q function at the current state.

π⋆(s) = argmax
a∈A

Q(s, a)

The sequence of states, actions, and rewards until a terminal state is

reached is called an episode. Within an episode, the Q-learning algorithm is

as follows:

1. Begin at the initial state S0 at t = 0.

2. At timestep t, we rake an action according to an ϵ -greedy policy. This

is a policy chosen to address the exploration-exploitation tradeoff. The

agent chooses a random action with probability ϵ, and chooses the

greedy action at = argmaxa∈A Q(s, a) with probability 1− ϵ.

3. The reward Rt is observed and the agent moves to the next state St+1

according to the transition function.

4. Update the Q-function:

Q(St, At)← (1− α)Q(St, At) + α(Rt +max
a∈A

Q(St+1, a)

5. t+ = 1. Go to step 2.

We can employ a Q-table to memorize the optimal Q-values for all state-

action pairs. But this is infeasible if the state or action spaces are large. We

can circumvent this issue by training a neural network Qθ(s, a) to approx-

imate the Q-values. Since Q-values satisfy the Bellman equation, we train

the parameters θ such that the mean squared error between the Qθ(s, a) and

the Bellman equation target is minimized:

L = (Qθ(St, At)− (Rt +max
a∈A

Qθ(St+1, a)))
2 (4.1)
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We use the DQN algorithm [93] that stabilizes deep Q-learning training. We

describe some crucial training methods [94] that allow stable training and

faster convergence.

• Periodically updated target The target in Q-learning is given by

the Bellman equation. At a non-terminal state St, the target = (Rt +

maxa∈A Qθ(St+1, a). In this learning paradigm, the target changes at

each update step, leading to unstable training. To tackle this, we use

two copies of the DQN, termed the policy network Qθ and the target

networkQT
θ , which is kept frozen. The parameters of the target network

are periodically updated to the policy network. The target network

is used to compute the Bellman target, while the policy network is

updated during training.

• Experience replay The high correlation between samples gathered

during exploration leads to unstable training. The DQN algorithm

tackles this by disentangling the learning phase from the experience

gathering phase. The agent’s experiences e = (st, at, rt, st+1) are stored

in a replay buffer B. A minibatch is sampled from the buffer to learn

the optimal policy. The use of experience replay and off-policy training

improve data efficiency since a sample can be used multiple times.

4.3 DQN-PAC

In this section, we discuss the formulation of PAC decoding within the RL

framework. Consider the decoding of a PAC(k, n) code. Our objective is to

estimate the message bits m̂ = (m̂0, m̂1, · · · m̂k−1), or equivalently the rate

profiled vector v̂ = (v̂0, v̂1, · · · v̂n−1) given the received vector y. We pose this

as a problem of finding the best path on the PAC search tree; which is a

surrogate for minimizing the block error rate (BLER).

At time step t, we define our state to be the concatenation of the received

vector and the previously decoded bits:

st = (y, v̂t−1
0 ) ∈ Rn × {±1}t
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. The actions are the estimated decoded message bits:

at = v̂t =

∈ {±1}, t ∈ It.

+1, t /∈ It.

Recall that at timesteps not in the index set, the bit vk is always set to +1.

So the action is known to be +1. Otherwise, the agent has two options to

choose from. The state transition can be viewed as appending the latest

action to the previous state:

st+1 = (st, at) = (y, v̂t−1
0 )

We define our reward to be the maximum likelihood (ML) metric:

ML - metric = P[v̂t = at|y, v̂t−1
0 ]

We can compute this metric efficiently using the successive cancellation

algorithm on the polar tree. We use the fact that ut can be uniquely de-

termined given the decoded bits vt−1
0 using (2.7). SC gives us the LLRs

corresponding to ut.

Rt(st, at) = P[v̂t = at|y, v̂t−1
0 ]

= P[ût = at|y, ût−1
0 ]

= log σ(LLRt · ût)

The PAC decoding objective is to find the optimal set of actions that

maximizes the cumulative reward:

maximize(a0,a1,···at−1)

n−1∑
t=0

Rt(st, at)

The discount factor γ = 1. In this formulation, the state space is continuous,

while the action space is discrete. The state transition function is determin-

istic, i.e., given the same state and action, the agent always transitions to

the same next state. We use the DQN formulation to learn the decoding

objective.
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4.4 Training

We use the DQN framework explained in Section 4.2 to train the decoding

agent. We parametrize the Q-network by a fully connected neural network

(FCNN). We first initialize the replay buffer with Eg ground-truth expe-

riences and Ei initial episodes before starting the training. We use an ϵ-

greedy exploration strategy, with a decaying ϵ as training progresses. Each

episode consists of k decoded bits (actions by the decoding agent) and ter-

minates when all bits are decoded. At each exploration step, the experience

e = (st, at, rt, st+1) is pushed into the replay buffer. We use the DQN frame-

work explained in Section 4.2 to train the decoding agent.

The number of leaves in the decoding tree increase exponentially with

increasing k. Consequently, we require longer training to achieve a good per-

formance. One of the methods that was critical to improving the training

sample efficiency was prioritized experience replay [95, 94]. In this method,

the experiences in the replay buffer are sampled with a probability propor-

tional to the last encountered temporal difference error:

pt ∝ |Rt+1 +max
a′

QT
θ (St+1, a

′)−Qθ(St, At)|

. Thus, since harder examples are shown more often, the training proceeds

significantly faster.

The space of codewords increases exponentially with increase in k. This

makes the exploration much harder, and consequently the training becomes

very slow. To scale to larger k, we propose a curriculum training approach.

Our key observation is that a PAC(k, n) code subsumes all the codewords of

lower-rate subcodes PAC(i, n), 1 ≤ i ≤ k. We use this nested property to pro-

gressively train these subcodes. For instance, the training of a PAC(14, 32)

DQN proceeds as follows:

DQN-PAC(8, 32)→ · · · → DQN-PAC(13, 32)→ DQN-PAC(14, 32)

We define the curriculum to train a PAC(k, n) code by progressively training

the PAC codes of smaller k, and using those trained weights to initialize the

next curriculum step. We found that such a curriculum training strategy was

essential to obtaining faster convergence.
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4.5 Results

In this section, we evaluate the DQN-based PAC decoder on codes of block

length 32 on the AWGN channel. We use the Fano decoder (Section 2.4.2),

which operates close to the optimal MAP performance, as our baseline.

Figure 4.1 highlights that the DQN decoding achieves a near-MAP per-

formance on PAC(12, 32) codes. A similar observation is seen in Figure 4.2,

where the DQN decoding achieves a reliability close to that of the Fano al-

gorithm. Notably, the curriculum training strategy enabled us to achieve a

much better reliability.
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Figure 4.1: DQN achieves near-MAP performance on PAC(12, 32)

Supervised learning-based channel decoding methods typically optimize

the bit error rate using suitable surrogates like the MSE between the mes-

sage and estimated message bits (Section 2.1). However, in many practical

application we are interested in optimizing the block error rate. DQN-PAC

provides a method to optimize the block error rate of channel decoding. Al-

though we obtain good results on decoding of short length polar codes, the

training becomes very expensive as we move to longer codes. The curricu-

lum training strategy of DQN-PAC is not scalable to larger codes; every

curriculum step required > 50 hours of training on a single GPU.

We also note that we are providing very weak supervision using the reward
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Figure 4.2: DQN achieves reasonably good reliability on PAC(14, 32)
decoding

signal that uses LLRs from the successive cancellation algorithm. We have

access to the ground truth labels, which can be leveraged to provide stronger

supervision during training. With access to a higher degree of supervision,

we can hope to achieve a more sample-efficient learning algorithm.

The DQN-PAC decoder described in this chapter used an RL-based tree-

search approach to learn to minimize the block error rate of PAC decoding.

In Section 5.1 we describe a neural decoder trained via supervised learning

to decode Polar codes and PAC codes. This approach in conjunction with

curriculum learning proves to be a more scalable approach.

36



CHAPTER 5

CRISP: CURRICULUM-BASED
SEQUENTIAL NEURAL DECODERS FOR

POLAR AND PAC CODES

The polar family exhibits several crucial information-theoretic properties;

practical finite-length performance, however, depends on high complexity

decoders. This search for the design of efficient and reliable decoders for

the Polar family is the focus of substantial research in the past decade. (a)

Polar codes: The classical successive cancellation (SC) decoder achieves

information-theoretic capacity asymptotically, but performs poorly at finite

blocklengths compared to the optimal maximum a posteriori (MAP) de-

coder [5]. To improve upon the reliability of SC, several polar decoders have

been proposed in the literature. One such notable result is the celebrated

Successive-Cancellation-with-List (SCL) decoder [55]. SCL improves upon

the reliability of SC and approaches that of the MAP with increasing list

size (and complexity). (b) PAC codes: The sequential “Fano decoder” [7]

allows PAC codes to perform information-theoretically near-optimally; how-

ever, the decoding time is long and variable [8]. Although SC is efficient,

O(n log n), the performance with PAC codes is significantly worse than that

of the Fano decoder. Several works [65, 67, 69, 70, 71, 96] propose ameliora-

tions; it is safe to say that constructing efficient and reliable decoders for the

Polar family is an active area of research and of utmost practical interest given

the advent of Polar codes in 5G wireless cellular standards. The design of

efficient and reliable decoders for the Polar family is the focus of this chapter.

The DQN based decoders achieved good performance for short codes, how-

ever it is computationally prohibitive to scale to larger block lengths. One

drawback of the RL-based approach is that we are providing a very weak su-

pervision in the form of rewards. However, we have access to the ground truth

message bits, which can act as a much stronger supervision signal. In this

section, we describe an RNN-based sequential decoder CRISP1, for Polar and

PAC codes which is trained via supervised learning. We describe our meth-

1Code can be found at https://github.com/hebbarashwin/crisp
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ods in the context of polar decoding; the same ideas readily extend to PAC

decoding. We show that CRISP outperforms existing baselines and attains

near-MAP reliabilty on Polar(22, 64), Polar(16, 32) and PAC(16, 32) codes

whilst having an efficient decoder. Our key observation is that a Polar(k, n)

code subsumes all the codewords of lower-rate subcodes Polar(i, n), 1 ≤ i ≤ k

(Section 2.3). Capitalizing on this nested property, we design a principled

curriculum of training on these subcodes which enables CRISP to attain

near-optimal performance (Section 5.2).

We design CRISP, a curriculum-learning-based sequential neural decoder

for polar codes that strictly outperforms the SC algorithm and existing base-

lines. CRISP uses a sequential RNN decoder, powered by gated recurrent

units (GRU) [97], to decode one bit at a time. Instead of standard training

techniques, we design a novel curriculum to train the RNN to learn good

decoders. Figure 5.2 illustrates our approach.

Earlier works on designing neural polar decoders [98] used off-the-shelf

neural architectures. These were only able to decode codes of small block-

length (≤ 16) [48, 99, 100, 101]. Later works augmented belief propagation

decoding [102, 103, 104, 91], and SC-flip decoding [105, 106] with neural

components and improved performance. In [107, 108], the authors replace

sub-components of the existing SC decoder with NNs to scale decoding to

longer lengths. However, these methods fail to give reasonable reliability

gains compared to SC. In contrast, we use curriculum learning to train neu-

ral decoders and show non-trivial gains over SC performance. Our approach

is closest to that of Lee et al. [109], who consider a progressive training of

polar codes using the naive curriculum.

5.1 CRISP decoder

We use the Polar(2, 4) code as a guiding example to illustrate our decoder

(Figure 5.1). This code has two message bits (m2,m4) and the message block

is m = (0,m2, 0,m4). Upon encoding it to the polar codeword x ∈ {±1}4

and receiving its noisy version y ∈ R4, the decoder estimates the message as

m̂ = (0, m̂2, 0, m̂4). Similar to SC, CRISP uses the sequential paradigm of

decoding one bit m̂i at a time by capitalizing on the previous decoded bits

m̂<i and y. To that end, we parameterize the bit estimate m̂i conditioned
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Figure 5.1: CRISP decoder for Polar(2, 4).

on the past as a fully connected neural network (FCNN) that takes the

hidden state hi as its input. Here hi denotes the hidden state of the GRU

that implicitly encodes this past information (m̂<i,y) via GRU’s recurrence

equation, i.e.

hi = GRUθ(hi−1, m̂i−1,y), i ∈ {1, 2, 3, 4}, (5.1)

m̂i|y, m̂<i = FCNNθ(hi), i ∈ {2, 4}, (5.2)

where θ denotes the FCNN and GRU parameters jointly. Henceforth we

refer to our decoder as either CRISP or CRISPθ. Note that while the RNN

is unrolled for n = 4 time steps ((5.1)), we only estimate bits at k = 2 infor-

mation indices, i.e. m̂2 and m̂4 ((5.2)). A key drawback of SC is that a bit

error at a position i can contribute to the future bit errors (> i), and it does

not have a feedback mechanism to correct these error events. On the other

hand, owing to the RNN’s recurrence relation ((5.1)), CRISP can learn to
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correct these mistakes through the gradient it receives (via backpropagation

through time) during training.

5.1.1 Training

Given the decoding architecture of CRISP in Figure 5.1, a natural approach

to train its parameters via supervised learning is to use a joint MSE loss

function for both the bits (m̂2, m̂4): MSE(m̂2, m̂4) = (m̂2(θ)−m2)
2+(m̂4(θ)−

m4)
2. However, as we highlight in Section 5.2, such an approach learns to

fail better decoders than SC and gets stuck at local minima. To address this

issue, we propose a curriculum-learning based approach to train the RNN

parameters.

CRISPθx ym2 m̂2

MSE loss

ChannelPolar

CRISPθx y(m2, m4) (m̂2, m̂4)

MSE loss

ChannelPolar

Figure 5.2: Curriculum to train CRISP

The key idea behind our curriculum training of CRISP is to decompose the

problem of joint estimation of bits (m̂2, m̂4) into a sequence of sub-problems

with increasing difficulty: start with learning to estimate only the first bit

(m̂2) and progressively add one new message bit at each curriculum step

(m̂4) until we estimate the full message block m = (m̂2, m̂4). We freeze all

the non-trainable message bits to zero during any curriculum step. In other

words, in the first step, we freeze the bit m4 and train the decoder only to
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estimate the bit m̂2 (i.e. the subcode corresponding to k = 1):

(m2,m4 = 0)→m = (0,m2, 0, 0)
Polar−−−→ x

Channel−−−−→ y
CRISPθ−−−−→ m̂2. (5.3)

We use this trained θ as an initialization for the next task of estimating

both the bits (m̂2, m̂4):

(m2,m4)→m = (0,m2, 0,m4)
Polar−−−→ x

Channel−−−−→ y
CRISPθ−−−−→ (m̂2, m̂4). (5.4)

Figure 5.2 illustrates this curriculum-learning approach. We note that the

knowledge of decoding m̂2 when m4 = 0 ((5.3)) serves as a good initialization

when we learn to decode m̂2 for a general m4 ∈ {0, 1} ((5.4)). With such

a curriculum aided training, we show that the CRISP decoder outperforms

the existing baselines and attains near-optimal performance for a variety of

blocklengths and codes.

Left-to-Right (L2R) curriculum for Polar(k, n). For a general Polar(k, n)

code, we follow a similar curriculum to train CRISPθ. Denoting the in-

dex set by Ik = {i1, i2, . . . , ik} ⊆ [n] in the increasing order of indices

i1 < i2 < . . . < ik, our curriculum is given by: Train θ on m̂i1 → Train

θ on (m̂i1 , m̂i2)→ . . .→ Train θ on (m̂i1 , . . . , m̂ik). We term this curriculum

Left-to-Right (L2R). The anti-curriculum R2L refers to progressively training

in the decreasing order of the indices in Ik.

5.2 Results

In this section, we present numerical results for the CRISP decoder on the

Polar code family.

The optimal channel decoder is given by the MAP estimator:

m̂ = arg max
m∈{0,1}k

P[m|y]

, whose complexity grows exponentially in k and is computationally infeasi-

ble. Given this, we compare our CRISP decoder with SCL [55], which has

near-MAP performance for a large L, along with the SC baseline. Among

learning-based decoders, we choose the state-of-the-art Neural-Successive-

Cancellation (NSC) as our baseline [108]. NSC is a model-based DL ap-
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Figure 5.3: CRISP achieves near-MAP reliability for Polar(22, 64) code on
the AWGN channel

proach that leverages the structure of the SC tree. In this method, sub-trees

of depth 4 are replaced by neural networks trained to decode polar codes of

block length 16. While the original NSC uses a sub-optimal training proce-

dure with SC probabilities as the target, we consider an improved version

with end-to-end training (Figure 2.1) for a fair comparison. We also include

the performance of CRISP trained directly without the curriculum. Both

these baselines have the same number of parameters as CRISP.

Figure 5.3 highlights that the CRISP decoder outperforms the existing

baselines and attains near-MAP performance over a wide range of SNRs for

the Polar(22, 64) code. NSC is restricted by the structure of the SC decoding

tree, and does not outperform SC. Figure 5.4 illustrates the mechanism be-

hind our gains at 0dB: the curriculum-guided CRISP slowly improves upon

the overall BER (over the 22 bits) during the training and eventually achieves

much better performance than SC and other baselines. In contrast, the de-

coder trained from scratch makes a big initial gain but gets stuck at local

minima and only achieves a marginal improvement over SC. We observe a

similar trend for Polar(16, 32) code in Figure 5.5, where CRISP achieves

near-MAP performance. We posit that aided by a good curriculum, CRISP

avoids getting stuck at bad local minima and converges to better minima in
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Figure 5.4: Our proposed curriculum is crucial for the gains CRISP attains
over the baselines
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Figure 5.5: Polar(16, 32)
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Figure 5.6: PAC(16, 32)
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Figure 5.7: PAC(16,32) - Progressive train

the optimization landscape.

5.3 CRISP PAC decoder

We demonstrate that the CRISP decoder achieves a good decoding perfor-

mance for PAC codes. In contrast to the DQN approach, the RNN-based

decoder for PAC codes is trained in a supervised manner, exploiting the

ground truth messages. We use the same architecture and L2R curriculum

described above to decode PAC codes.

Figure 5.6 highlights that the CRISP decoder achieves near-MAP per-

formance for the PAC(16, 32) code. While Fano decoding achieves similar

reliability, it is inherently non-parallelizable. In contrast, neural decoders

allow for batching and are highly optimized on GPUs, and can achieve a

higher throughput: at SNR = 1 dB, Fano [8] takes 6.3 minutes on average

to decode 100K samples whereas CRISP only takes 2 seconds (on GTX 1080

Ti GPU).
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5.4 Implementation details

5.4.1 Architecture

We use a 2-layer GRU with a hidden state size of 512. The output at each

timestep is obtained through a fully connected layer (as shown in Figure 5.1).

The network has 2.5M and 600K parameters for block lengths 64 and 32. As

shown in Figure 5.8, 2-layer-LSTM and 3-layer-GRU models achieve similar

performance. We choose a 2-layer GRU for our experiments since it allows

for faster training and has fewer parameters.

5.4.2 Training.

We also note that it is a standard practice to use teacher forcing to train

sequential models [110]: during training, as opposed to feeding the model

prediction m̂i as an input for the next time step, the ground truth message

bit mi is provided as an input to the model instead (Figure 5.1). Student

forcing refers to using the same m̂i as an input. We found that teacher forcing

gives a better final performance in terms of both BER and BLER, whereas

student forcing only provides gains in the BER reliability (Figure 5.9). We

observed that student forced training achieved sub-optimal performance for

larger block lengths.

Empirically, we observed that the number of iterations spent on training

each intermediate subcode of the curriculum is not critical to the performance

of the final model (Figure 5.10). To train CRISP for Polar(22,64), we use the

following curriculum schedule: Train each subcode for 2000 iterations, and

finally train the full code until convergence with a decaying learning rate.

This training schedule required 13-15 hours of training on a GTX 1080Ti

GPU.
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Figure 5.8: Polar(22, 64): LSTMs and GRUs achieve similar reliability.
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Figure 5.9: Training CRISP using student forcing results in sub-optimal
BLER.
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Figure 5.10: The number of iterations to train CRISP on each subcode
using the curriculum are not critical to the final performance achieved.
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CHAPTER 6

CONCLUSION

In this thesis, we propose machine-learning based channel decoders that out-

perform existing baselines. We use different machine learning paradigms,

including model-based ML, deep reinforcement learning, and deep learning.

In Chapter 3 we presented TinyTurbo , a model-based ML approach to

decode Turbo codes. TinyTurbo is an augmented version of the max-log-

MAP algorithm with just 18 parameters learnt by using SGD to minimize

an end-to-end loss function. We show that TinyTurbo approaches the

performance of the MAP algorithm while having a complexity of the max-

log-MAP algorithm. We also demonstrate robustness to various practical

channels and demonstrate the generalizability of TinyTurbo to different

blocklengths, rates, and trellises.

In Chapter 4, we presented a reinforcement learning-based method to de-

code short length PAC codes. We use the DQN algorithm to train an agent

to search the PAC code tree to recover the transmitted message. In con-

junction with a curriculum learning strategy, we show that DQN decoding

achieves a reliability close to that of Fano decoding for PAC(14, 32). How-

ever, this approach is not scalable to decode larger codes owing to its poor

sample-complexity.

In Chapter 5, we described CRISP, a GRU-parametrized neural decoder to

decode Polar and PAC codes, trained via curriculum learning. We show non-

trivial gains over the baseline SC algorithm on Polar(22, 64) and Polar(16, 32).

CRISP also shows a near-MAP performance on PAC(16, 32), and is the first

learning-based method to do so to the best of our knowledge. Due to the

inherent parallelizability of neural networks, the DQN and CRISP methods

achieve a better throughput than current methods.

Model-based machine learning methods promise scalable decoders that

achieve good reliability with low computational complexity, as we demon-

strate with TinyTurbo. However, in scenarios such as Polar decoding prior

50



work has shown that the above approach does not provide significant gains

over the baseline SC algorithm. Deep learning architectures which exploit the

structure of the encoder can achieve near-optimal results in channel decod-

ing. However, this comes at a cost of computational complexity and difficulty

to scale to large codes.
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