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Abstract

Recent years have witnessed much interest in expanding the use of wireless

networks beyond their traditional use for communications to providing new

perception solutions, such as sensing, imaging, and localization. The vision

is, the wireless perception functionalities of the next generation wireless net-

works are going to create a digital twin of the physical world.

This thesis introduces new software and hardware primitives that advance

wireless technologies towards achieving the vision of ubiquitous perception

in next-generation wireless networks.

The software primitive we introduce is AI-enhanced wireless imaging, where

we leverage recent advances in deep neural networks to extract the under-

lying perceptual and contextual information of the environment from raw

wireless images. We demonstrate the applications of AI-enhanced wireless

imaging in self-driving car perception, where we develop systems to achieve

millimeter-wave radar-based high-resolution imaging and accurate object de-

tection.

The hardware primitive we introduce is the first of its kind Micro-Electro-

Mechanical System (MEMS) filter hardware, which we leverage to enable

joint communication and high-performance sensing in next-generation wire-

less networks. Towards this end, we first present a spectrum sensing scheme

that can efficiently sense wideband spectra with high time resolution. This

system can be used to enable dynamic spectrum sharing between perception

and communication services in future wireless networks for them to coexist.

We also exploit reusing communication signals for perception. We develop an

accurate Internet-of-Things (IoT) self-localization system that simply over-

hears ambient 5G communications signals without any coordination with the

base stations in 5G cellular networks.

ii



Dedicated to my parents and Han.

iii



Acknowledgments

First and foremost, I want to express my deepest gratitude to my advisor

Haitham Hassanieh, who has been and will always be my role model. He has

enabled me to grow and achieve goals that were beyond my wildest dreams.

I have enormous respect and gratefulness for the guidance and support he

has provided to me.

I am very grateful to my Ph.D. committee members and mentors too -

Prof. Romit Roy Chowdary, Dr. Alberto Valdes-Garcia, and Prof. Sanjay

Patel. Romit was like a second advisor to me, especially in the first two years

of my Ph.D journey. The discussions and brainstorming in the SyNRG group

helped me develop and improve all-around research skills. I also truly admire

Romit’s life wisdom and his genuine eager to pursue knowledge. Working

with Alberto during my internship at IBM Research was a great learning

experience, because he offered me the opportunity to explore and conduct a

project as an independent researcher. Obviously, however, I couldn’t have

completed much of that project without the guidance and help from my

other mentors, Dr. Bodhisatwa Sadhu and Dr. Arun Paidimarri. Last but

not least, I also want to thank Sanjay for all his suggestions and kind support.

I also owe my sincere gratitude to many other mentors I’ve had along

my Ph.D. journey. They are Prof. Saurabh Gupta, Prof. Songbin Gong,

Prof. Deepak Vashisht, Prof. Kirill Levchenkov, Prof. Jin Zhou, Prof. Sibin

Mohan, Dr. Radhika Gowaikar, Dr. Saeed Khosravirad, Jakub Sapis, and

Dr. Sheng Shen. I’ve learned a lot from every single one of them.

A lot of my thesis work could not be done without the help of a few

close collaborators, in particular, Suraj Jog, Sohrab Madani, Waleed Ahmed,

Ruochen Lu, and Steffen Link. I want to especially thank Prof. Songbin

Gong and Prof. Ruochen Lu, because it is their amazing work on the overtone

MEMS resonators and filters that enables the spectrum sensing and IoT self-

localization projects.

iv



I also must acknowledge the National Science Foundation for supporting

my Ph.D. study and research. I would like to thank Qualcomm as well, for

awarding me the Qualcomm Innovation Fellowship.

The next name on my gratitude list is my alma mater, University of Illinois

at Urbana-Champaign. I enjoyed every bit of my nine years at UIUC, through

which I’ve grown from an 18-year-old international student to a Ph.D. It’s

not simply a place where I received my education, but also the place I would

call my second home, and where my outlook on life and core values were

formed. I am grateful to everyone I met here, especially my many friends

and colleagues in SyNRG, ILIRM, and CSL: Jiaming, Jitian, Hailan, Ishani,

Thomas, Karthik, Mahanth, Nirupam, Ashutosh, Zhijian, Walley, Hyungjoo,

Yansong, Ali, Anming, Ashish, Megan, etc. I also feel so lucky to meet all of

my classmates and friends in my undergraduate here.

I also want to thank all the obstacles, rejections, and failures in my life.

They made me the stronger and better me.

Lastly but not least, I can never express sufficient gratefulness to my par-

ents Shaobo and Yajun, my wife Han, for their endless love and support. I

owe all my achievements to them.

v



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 AI-Enhanced Wireless Imaging . . . . . . . . . . . . . . . . . 3
1.2 MEMS-Enhanced Wireless Sensing and Localization . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Part I AI-Enhanced Wireless Imaging . . . . . . . . . . . . . . . . . . 7

Chapter 2 Through Fog High Resolution Imaging Using Millime-
ter Wave Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Primer on GANs . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 HawkEye’s GAN Architecture . . . . . . . . . . . . . . . . . . 16
2.6 Data Collection Platform . . . . . . . . . . . . . . . . . . . . . 21
2.7 HawkEye’s Data Synthesizer . . . . . . . . . . . . . . . . . . . 24
2.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3 Accurate Detection Using Multi-Resolution Cascaded
MIMO Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Radar Signal Processing . . . . . . . . . . . . . . . . . . . . . 44
3.6 Radatron’s Network Design . . . . . . . . . . . . . . . . . . . . 48
3.7 Radatron Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . 53
3.10 Doppler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.11 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



Part II MEMS-Enhanced Wireless Sensing & Localization . . . . . . 67

Chapter 4 MEMS Spike-Train Filter: A Primer . . . . . . . . . . . . 68
4.1 Micro-Electromechanical System Resonator . . . . . . . . . . . 68
4.2 MEMS Spike-Train Filters . . . . . . . . . . . . . . . . . . . . 69

Chapter 5 Efficient Wideband Spectrum Sensing Using MEMS
Acoustic Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 S3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 S3 Recovery Algorithm . . . . . . . . . . . . . . . . . . . . . . 79
5.5 S3 with Practical Limitations . . . . . . . . . . . . . . . . . . 83
5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.8 Extending the Prototype . . . . . . . . . . . . . . . . . . . . . 98
5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.10 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 6 Enabling IoT Self-Localization Using Ambient 5G Signals . 106
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Capturing 5G Signals Using Spike-Train Filter . . . . . . . . . 115
6.6 Super-Resolution CIR Estimation . . . . . . . . . . . . . . . . 124
6.7 ISLA’s Localization Algorithm . . . . . . . . . . . . . . . . . . 127
6.8 Integrating ISLA with 5G-NR Standard . . . . . . . . . . . . 129
6.9 System Implementation . . . . . . . . . . . . . . . . . . . . . . 130
6.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.11 Extending ISLA to mmWave . . . . . . . . . . . . . . . . . . . 144
6.12 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . 147

Chapter 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

vii



Chapter 1

Introduction

Wireless networks have traditionally been used for communications. How-

ever, as wireless technologies evolve, the applications of wireless networks

are expanding beyond communications to perceiving the physical world. In

fact, a central vision of next-generation wireless networks like 6G is to create

digital twins of the physical and biological worlds using wireless perception

functionalities integrated into wireless networks. Towards this vision, there

has been significant research investigating the use of wireless signals for local-

ization [1, 2, 3, 4, 5], health monitoring including measuring vital signs like

breathing and heart rate [6, 7, 8], as well as wireless imaging for applications

like behavioral sensing and autonomous driving [9, 10, 11, 12, 13].

Despite significant advances in the past decade, wireless perception sys-

tems remain limited in terms of resolution and accuracy. For example, au-

tonomous radars used on self-driving cars, which are the top-notch wireless

imaging technology in terms of performance and resolution, are still not

ranked among the key sensing modalities in such applications. Self-driving

cars nowadays mainly rely on LiDARs and cameras for perception. Radars

only play supportive roles such as collision avoidance and parking assistance

despite the fact the radar can work well in bad weather like fog and snow

where LiDARs and cameras fail. However, the current imaging resolution of

radar is nowhere near the resolution provided by optical sensors. Wireless

signals also suffer from problems like multipath and specular reflections which

lead to artifacts and missing parts of the scene in a wireless imaging system.

Another example is in localization systems where the resolution is limited by

the bandwidth of the wireless network. While new technologies like 5G have

increased the available bandwidth, using large bandwidth consumes a lot of

power and remains infeasible for many IoT applications. Moreover, a lot of

the current proposals for localization require deploying extensive infrastruc-

ture or modifying the existing infrastructure which significantly hinders their
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deployment in practice.

In addition to their poor performance, current wireless perception tech-

nologies cannot be easily integrated in next-generation wireless networks. In

many cases, they use specialized waveforms, require a dedicated wireless spec-

trum, and utilize different processing hardware than the ones used in wireless

networks. These gaps between prevent us from seamlessly integrating wire-

less perception into next-generation wireless communication networks.

The research presented in this thesis aims address the above problems by

answering the following key question:

How can we enhance the resolution and accuracy of wireless perception

systems & facilitate their integration into next generation wireless networks?

This thesis answers the above question by introducing new software and

hardware primitives that advance wireless technologies towards fulfilling the

vision of ubiquitous perception in next-generation wireless networks. In par-

ticular, we present:

� AI-Enhanced Wireless Imaging: where we introduce new deep neu-

ral network architectures along with novel signal processing algorithms

to enable high resolution wireless imaging that does not suffer from

artifacts or specularities. We demonstrate the effectiveness of our ap-

proach for the application of self-driving cars where we show through

fog high resolution wireless imaging and accurate detection.

� MEMS-Enhanced Wireless Sensing and Localization: where

we introduce the first of their kind Micro-Electro-Mechanical-Systems

(MEMS) filters that look like spike trains in the frequency domain into

the analog radio front-end. We show how combining these filters with

new sparse recovery algorithms can enable joint communication and

sensing in 5G. We demonstrate the effectiveness of our approach for

the applications of spectrum sensing and IoT localization at low power

and without the need to modify the 5G infrastructure.

Below, we describe the systems we built around these primitives to enhance

wireless perception and demonstrate the ability for joint communication and

sensing in 5G networks and beyond.
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1.1 AI-Enhanced Wireless Imaging

1.1.1 High Resolution Imaging of Autonomous Vehicles Using
Millimeter Wave Radar

There has been a lot of interest in achieving the vision of full autonomy

for self-driving cars, which requires autonomous navigation in all weather

conditions, including low visibility conditions like dense fog. However, one

of the biggest roadblocks to this vision is the inability of optical perception

sensors like cameras and LiDARs in harsh weather.

Millimeter-wave radars have more robust propagation characteristics and,

hence, can operate reliably in low visibility condition. However, mmWave

radars have not yet played central roles in the perception module of self-

driving cars, because mmWave radars suffer from very low resolution, spec-

ularity, and noise artifacts.

To resolve the limitations of mmWave radar imaging, we develop HawkEye,

a system that leverages a conditional GAN architecture to recover high-

frequency shapes from low-resolution radar heatmaps. We propose a novel

design that addresses challenges specific to the structure and nature of the

radar signals involved. We also develop a data synthesizer to aid with large-

scale dataset generation for training.

1.1.2 Accurate Detection of Autonomous Vehicles Using
MIMO Millimeter Wave Radar

AlthoughHawkEye has taken an initial step towards high-resolution mmWave

radar imaging, it is far from a practical system that can image highly mo-

bile scenes on board self-driving cars. Therefore, in the second system, we

take a step further and use commercial off-the-shelf (COTS) mmWave radars

known as the cascaded Multiple Input Multiple Output (MIMO) radar.

Furthermore, we also take the mmWave radar perception functionality to

one level higher, from imaging to semantic scene understanding. We design

Radatron, a system capable of accurate object detection using mmWave radar

as a stand-alone sensor.

Radatron is trained with a real-world high-resolution automotive radar

dataset that we collect in practical self-driving scenarios. We also develop
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a novel hybrid radar processing and deep learning approach to achieve high

vehicle detection accuracy.

1.2 MEMS-Enhanced Wireless Sensing and

Localization

1.2.1 Efficient Wideband Spectrum Sensing

Dynamic spectrum sensing is becoming a new spectrum access paradigm in

next-generation wireless networks. In this new paradigm, wireless perception

applications can opportunistically access idle channels that are not being

occupied by communication services. In order to enable dynamic spectrum

sharing, one needs to first sense the wideband spectrum, which is power

consuming and expensive due to the requirement for high-speed analog-to-

digital converters (ADC). Although sub-Nyquist sampling techniques exist,

they are built on the assumption of sparse spectrum and cannot work in

dynamically shared spectrum with dense occupancy.

To overcome this challenge, we present S3, an sensing system that can

reconstruct the wideband spectrum occupancy while sampling the spectrum

below the Nyquist rate using cheap and low-power ADCs. Besides, S3 is able

to operate in densely occupied spectrum and achieve high time resolution to

detect instantaneous vacancies.

To do so, S3 leverages a novel RF filtering solution - MEMS spike-train

filters. These filters sparsify the spectrum while at the same time allowing

S3 to monitor a small fraction of bandwidth in every band. Using a new

structured sparse recovery algorithm we design, S3 is able to accurately detect

the occupancy of multiple bands across a wide spectrum.

1.2.2 IoT Self-Localization Using Ambient 5G Signals

5G cellular networks, especially those in the mmWave bands, provide unique

opportunities for localization, because of their wide signal bandwidth and

small cell deployment of base stations. In this project, we try to utilize these

unique features to enable a high-accuracy and scalable IoT self-localization
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technique, which we name as ISLA.

Our approach is to have IoT devices simply overhearing ambient 5G sig-

nals and reuse them for localization without any coordination with the base

stations, so that the IoT localization system does not occupy any base sta-

tion resources and can hence scale. The key challenges of this system are:

1) Low-power IoT nodes are incapable of capturing wideband 5G signals,

so that they cannot leverage the full bandwidth to achieve high localiza-

tion accuracy. 2) The localization algorithm running on the IoT nodes must

not require coordination with the base stations or modifications to the 5G

standards.

To address these challenges, ISLA utilizes MEMS spike-train filters to

stretch the effective localization bandwidth to 100 MHz while using 6.25 MHz

receivers, improving ranging resolution by 16×. We also design new coordination-

free localization algorithms, that leverages unique 5G-NR waveform struc-

tures.

1.3 Organization

The rest of this thesis is organized as follows. In the first part, we demonstrate

AI-empowered high-resolution wireless imaging that can recover the underly-

ing perceptual and contextual information of the physical world. We take the

example of mmWave radar perception on self-driving cars in next-generation

vehicular networks. In particular, chapter 2 presents HawkEye and how it

recreates high-resolution 3D images of cars from mmWave radar heatmaps.

Chapter 3 describes Radatron and how it accurately detect vehicles from raw

radar heatmaps in practical highly mobile self-driving scenarios.

Then, before moving on to the other two systems presented in the second

part of the thesis, we first give a primer on MEMS Spike-Train filters in

chapter 4, which are the key enablers of S3 and ISLA.

The second part of the thesis presents how we leverage the MEMS Spike-

Train filters to enable joint communication and sensing. Chapter 5 presents

S3 and how it efficiently senses wideband spectra with high time resolution.

Note that spectrum sensing can used to enable dynamic spectrum sharing

and the coexistence between perception and communication services in next-

generation networks. Finally, chapter 6 presents ISLA and how it co-designs
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the accurate localization functionality for low-power IoT devices with the 5G

cellular network by reusing the ambient 5G-NR communication signals.

We conclude the thesis and list some possible future directions in chap-

ter 7.
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Part I

AI-Enhanced Wireless Imaging
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Chapter 2

Through Fog High Resolution Imaging Using
Millimeter Wave Radar

This chapter demonstrates high-resolution imaging using millimeter-wave

(mmWave) radars that can function even in dense fog. We leverage the

fact that mmWave signals have favorable propagation characteristics in low

visibility conditions, unlike optical sensors like cameras and LiDARs which

cannot penetrate through dense fog. Millimeter-wave radars, however, suf-

fer from very low resolution, specularity, and noise artifacts. We introduce

HawkEye, a system that leverages a conditional GAN architecture to recover

high-frequency shapes from raw low-resolution mmWave radar heatmaps.

We propose a novel design that addresses challenges specific to the structure

and nature of the radar signals involved. We also develop a data synthesizer

to aid with large-scale dataset generation for training. We implement our

system on a custom-built mmWave radar platform and demonstrate perfor-

mance improvement over both standard mmWave radars and other compet-

itive baselines.

2.1 Introduction

Achieving fully autonomous vehicles, referred to as Level 5 in the standards

for driving automation, has gained significant interest from major companies

like Tesla, Ford, Honda, Waymo, Toyota, Uber, and NVIDIA [14, 15, 16, 17,

18, 19]. Level 5 autonomy requires the ability to operate in severe weather

conditions such as dense fog, smog, snowstorms, and sandstorms [16, 20].

Autonomous vehicles, however, mainly use cameras or LiDARs, to obtain an

accurate and reliable view of the environment, which suffer in low visibility

conditions and bad weather [21, 22, 23, 24, 25, 26]. Cameras also suffer

at night in low light conditions. This is problematic as many manufacturers

including Tesla avoid using LiDAR altogether, making cameras their primary
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Figure 2.1: The figure above shows (a) the original scene, (b) ground truth
depth map captured with stereo camera, (c) the scene in fog, (d) the mmWave
radar point cloud generated in the presence of fog, (e) the corresponding radar
heatmap, and (f) the recovered output of our system.

sensory module [27].1

Millimeter-wave (mmWave) radars offer more favorable characteristics due

to their ability to work at night and penetrate through fog, snow and dust [29,

30]. However, car manufacturers today, still use mmWave radar for the sole

purpose of unidirectional ranging, i.e., to determine the distance to other

vehicles [31, 32]. Imaging using mmWave radar is challenging for several

reasons. First, the resolution of mmWave radar is extremely low compared

to LiDARs or cameras. Figure 2.1 (d,e) show an example where the radar

image appears as blobs of radar reflections and carries little to no contextual

and perceptual information as compared to the corresponding camera shown

in Fig. 2.1 (a). Second, unlike optical signals, wireless mmWave signals

are highly specular, i.e., the signals exhibit mirror-like reflections from the

car [33]. As a result, not all reflections from the car propagate back to

the radar receiver and major parts of the car do not appear in the image,

making it impossible to detect its shape, as can be seen in Fig. 2.1 (d,e).

Finally, wireless reflections from the car can also bounce off the road and

other cars and travel along multiple paths to the radar receiver creating

shadow reflections and artifacts in various locations in the scene as shown in

Fig. 2.1 (d,e).

Today’s commercial mmWave imaging systems, like airport scanners, use

human-sized mechanically steerable arrays to improve the resolution. They

also isolate the object being imaged in the near field to eliminate multipath

reflections and rotate the arrays around the object to address specularity [34,

1Other modalities such as thermal imaging also fail in dense fog [28].
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35]. However, such a design would be extremely bulky and not practical for

self-driving cars as we have no control over the cars being imaged.

In this chapter, we present HawkEye, a system that consolidates advances

to enable practical use of mmWave imaging radars in realistic applications.

Using a mmWave radar, we can sense and predict shape for cars in the

presence of dense fog. Figure 2.1 column (e) shows our system’s predicted

depth (as predicted from the sensed radar signal visualized in column (d)).

Column (b) shows the ground truth depth map (recovered using a stereo

camera in the absence of fog). While, obviously, we are far from a practical

system that can use imaging radars on board self-driving cars, we have made

huge advances towards this. This chapter describes the different aspects that

have enabled this advance.

Our central contribution is to cast the problem of predicting high-frequency

shape from raw radar heatmaps as a learning problem. Use of learning pro-

vides robustness to hard-to-model radar reflections and sources of noise like

specularity and multipath reflections. At the same time, learning can effec-

tively leverage priors on shapes of cars to make reasonable predictions from

coarse radar heatmaps. However, use of learning for this task was non-trivial.

We had to innovate on the design of the neural network, loss functions for

training, and development of large-scale realistic datasets for training. We

employed Generative Adversarial Network (GAN) [36] based architectures

that consume mmWave radar heatmaps and predict high-resolution depth

maps. The specific nature of the signal required the design of custom neu-

ral network architectures (that map 3D input heatmaps to 2D depth maps,

and skip connections that project 3D information to 2D) and custom loss

functions (combination of perceptual, L1, and adversarial loss). We built a

realistic radar data synthesizer that captures unique characteristics of radar.

We used this module to create a synthesized dataset which was used to train

our expressive neural networks. Finally, we built a real-world data collec-

tion platform to collect real data for fine-tuning and benchmarking. These

all collectively enable the end-to-end system of HawkEye, which to the best

of our knowledge, is the first system that can deliver the results shown in

Fig. 2.1(f). Our results show that HawkEye is able to generate high-resolution

depth maps from raw 3D radar heatmaps and accurately reconstruct the car

in the real scene even in low visibility conditions like fog.
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(b) 3D Radar Heatmap

(c) 2D Top View of Radar Heatmap (d) 2D Front View of Radar Heatmap

(a) Scene

Figure 2.2: Output of the Millimeter Wave Imaging Radar

2.2 Background

Millimeter wave radar works by transmitting a wireless signal and receiving

back the reflections from various objects in the scene. It operates in the high

frequency bands such as 24 GHz, 60 GHz, and 77 GHz and uses techniques

like Frequency Modulated Continuous Wave (FMCW) and antenna arrays

to separate the received reflections.2 The antenna arrays are electronically

steered to capture and separate reflections from the scene based on their

spatial direction (ϕ, θ) whereas FMCW is used to separate reflections based

on the range (ρ) from the reflecting object. This allows us to compute a 3D

heatmap x(ϕ, θ, ρ) where each point represents the energy reflected from a

voxel in space.

Figure 2.2 shows an example of the output of our radar. The 3D heatmap

corresponding to the car in (a) is shown as a point cloud in (b). The point

cloud is generated by thresholding out the voxels where the reflected signal

energy is very weak. We also show projections of the 3D heatmap in the

2D top view in (c), and the 2D front view in (d). The figure also overlays

the car’s silhouette on the 2D heatmaps to better demonstrate where the

reflections are coming from.

2At such high frequencies, there is abundant bandwidth available for FMCW signals.
The signal wavelength is also small (millimeters) which enables the design of large compact
antenna arrays [37, 38].
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Specularity

(b) 2D sinc function(a) Specularity and Multipath

mmWave
Radio

Figure 2.3: Challenges in Millimeter Wave Imaging

As can be seen from the figure, mmWave radar imaging has fundamentally

different challenges compared to camera and LiDAR data. First, the imaging

resolution is significantly lower than vision. For example, in our system, the

range resolution is 10 cm which is 3.3× worse than that of the commercial

LiDAR [39]. The azimuth and elevation resolution is 5◦ which is 50× worse

than LiDAR [39]. Range resolution depends on the FMCW signal bandwidth

and can potentially be improved using more expensive hardware. However,

angular resolution depends on the aperture of the antenna array. To achieve

sub-degree angular resolution, similar to LiDAR, we would need a 9 m long

antenna array which is impractical both in terms of cost and form factor.3

For practical aperture sizes (few centimeters), the output mmWave radar

image gets convolved with a very wide 2D sinc function along the azimuth

and elevation dimensions similar to the one shown in Fig. 2.3 (b). The 2D

sinc function eliminates almost all high frequency perceptual content such

as object boundaries. That is why the mmWave image in Fig. 2.2 looks like

blobs. The sinc sidelobes also create artifacts and noise in the image as can

be seen in the 2D projections in Fig. 2.2.

Resolution, however, is not the only challenge. Unlike light, mmWave

signals do not scatter as much and mainly reflect off surfaces. Hence, the

car is highly specular and acts as a mirror reflector of radar signals. As

a result, most reflections never trace back to the mmWave receiver. This

leads to specularity as shown in Fig. 2.3 (a), making certain portions of the

car impossible to image as can be seen in Fig. 2.2, where a large portion of

the car’s surface is missing. Moreover, due to multipath propagation, some

3Note that for systems like the airport security scanners, the target being imaged is in
short range and hence, human sized arrays are sufficient.
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reflections bounce off the street and other obstacles and trace back to the

receiver as shown in Fig. 2.3 (a) creating many artifacts in the image as can

be seen in Fig. 2.2 (c,d). Finally, radar data has a different representation

and perspective as compared to cameras. We must accommodate the above

challenges in designing a neural network framework that is able to recover

the shape, size, and location of the car being imaged.

2.3 Primer on GANs

GANs are generative models that have proven to be very successful since

they are able to generate data samples that closely follow the distribution

of data without explicitly learning the distribution. To do so, GANs adopt

an adversarial learning paradigm where two players compete against each

other in a minimax game [36]. The first player, the Generator G, attempts

to generate data samples that mimic the true distribution, e.g. generate

realistic 2D depth-maps of cars. The second player, the Discriminator D,

attempts to differentiate between samples generated by G from real data

samples e.g. differentiate output of G from ground-truth 2D depth-maps

from stereo cameras. G and D keep learning until G can generate samples

that D can no longer distinguish from real samples of the true distribution.

At this stage, D is no longer needed and G can be used during inference to

generate new samples.

HawkEye uses a variant called conditional GANs (or cGANs) where G

attempts to mimic a distribution of the data conditioned on some input [40],

i.e. P (y|x) where x is the low resolution mmWave heat-map and y is the high

resolution 2D depth-map. x is given as input to both the generator G and
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the discriminator D. Figure 2.4 shows the architecture of a conditional GAN.

Intuitively, D serves two purposes. First, it helps generalize G by eliminating

dependency on the environment i.e., G can create realistic images of cars by

learning features that are independent of the background and location of the

car in the training scenes. Second, it teaches G to fill in the missing parts of

the car due to specularity and eliminate artifacts causes by multipath, i.e.,

unless artifacts are removed and specularity is addressed, D will be able to

tell that the output was generated by G.

Mathematically, G learns a mapping from the input 3D mmWave heat-

map x to the output 2D depth-map G(x). D, on the other hand, attempts

to learn a mapping from the input x and a 2D depth-map to a probability

∈ [0, 1] of the 2D depth-map being real y, or generated G(x). A perfect

discriminator would give D(x, y) = 1 and D(x,G(x)) = 0. Hence, to win the

game against a given G, D tries to maximize the following objective function:

L(G) = max
D

(
Ey

[
logD(x, y)

]
+ Ex

[
log (1−D(x,G(x)))

])
,

where the first term is maximized when D(x, y) = 1 and the second term is

maximized when D(x,G(x)) = 0, i.e. when D correctly classifies the images

as real or generated.

Generator G on the other hand tries to minimize the above objective func-

tion (which is referred to as its loss function L(G)), since its goal is to fool the
Discriminator into classifying its output data samples as being real. There-

fore, the GAN optimization is a minimax problem given by:

min
G

(
max
D

(
Ey

[
logD(x, y)

]
+ Ex

[
log (1−D(x,G(x)))

]))
.

Since the mapping functions in G and D can be very complex, G and D

are implemented and optimized using deep convolutional neural networks.

The final output of the above GAN optimization is a G∗ that minimizes the

loss function L(G) and can be used to generate 2D depth-maps from new

unseen 3D mmWave heatmaps. A few points are worth noting:

� The generator G never actually sees any real ground-truth data. Instead,

it must learn to create realistic images based only feedback it receives from

the discriminator D.

� The GAN never explicitly learns the distribution of the data. Prior to
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GANs, generative models would attempt to explicitly learn the distribution

by approximating it as mixture of Gaussians or other simplified models

that typically fail to capture the real distribution of data. GANs are very

powerful since they can generate real looking samples without having to

learn complex data distributions.

� The GAN adaptively learns its own loss function. Any machine learning

model is trained by optimizing a given loss function that provides a quanti-

tative measure of the model’s performance e.g. ℓ1 or ℓ2 distance. Choosing

the right loss function is a very difficult task [41]. GANs are powerful since

they do not require a fixed hand-tuned loss function and rather can adapt

the loss function in the above equation as they learn.

2.4 System Overview

HawkEye is a mmWave imaging system designed for autonomous vehicles.

HawkEye can generate high resolution perceptually interpretable 2D depth-

maps from 3D mmWave heat-maps. To do so, HawkEye has five modules

shown in Fig. 2.5: a mmWave imaging module, a stereo camera, a simulator,

a GAN, and a perception module. The stereo camera and simulator are used

only during training and evaluation. The mmWave and GAN modules are

used during training and testing. We summarize these components below:

� GAN Model (section 2.5): We design a new GAN architecture customized

for mmWave imaging in self-driving cars. The GAN uses an encoder-
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decoder paradigm, a modified loss function, and a skip connection to pro-

duce perceptually interpretable and accurate reconstructions of cars.

� mmWave Radar Module (section 2.6): We custom-build a mmWave imag-

ing module using off-the-shelf 60 GHz radio and RF circuit components.

It also uses a linear slider platform to emulate a large antenna array lever-

aging synthetic aperture radar, which provides us with more flexibility to

test and experiment various parameters and setups. This module produces

3D mmWave heat-maps. However, on its own, it is intrinsically limited in

resolution and suffers from specularity and artifacts caused by multipath.

� Simulator (section 2.7): This module augments the training dataset with

synthesized data obtained from 3D CAD models of cars and mmWave ray

tracing algorithms. It produces both the ground truth 2D depth-map and

the synthesized 3D mmWave depth-maps.

� Stereo Camera (section 2.9): We custom-build a long-range stereo camera

that can generate high-resolution 2D depth-maps of cars that serve as

ground-truth for HawkEye.

Next, we will discuss these modules in more detail.

2.5 HawkEye’s GAN Architecture

2.5.1 Overview

We propose a conditional GAN [40] based architecture. Given an input

mmWave RF heatmap x, we learn a conditional generator G. This condi-

tional generator employs an encoder decoder architecture. Although mmWave

heatmaps have low spatial resolution, they can achieve high resolution in the

depth dimension due to their large sensing bandwidth. In order to retain

these high-frequency details in depth, we use skip-connections [42] in our de-

sign. Our discriminator D takes in (x, y) or (x,G(x)) pairs, and learns to dis-

criminate between them. The generator and discriminator are trained jointly,

with the discriminator trying to distinguish generated output from ground

truth, and the generator trying to fool the discriminator. We additionally

use L1 and perceptual losses to make the output of the generator consistent
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with the instance being input to it. Figure 2.6 shows our architecture. The

peculiarities of the raw mmWave signal requires us to carefully consider the

design choices involved. We next provide necessary technical details and em-

phasize the important design choices. Further details of HawkEye’s neural

network architecture can be found in the supplementary material.

2.5.2 Input and Output Representation

We use the per-voxel energy in the sensed mmWave heatmap as our input

representation in the 3D spherical coordinate system (ϕ, θ, ρ). The output

from the GAN is the high-frequency shape of the object. We represent the

predicted shape in the form of a 2D depth map in the stereo camera frame,

where the GAN predicts the depth for each pixel in the image. The generator

learns a mapping from R64×32×96 to R256×128.

Most past works that employ conditional GANs either study 2D to 2D

or 3D to 3D transformations. However, our problem requires design of a

hybrid 3D to 2D transformation. The sensed mmWave signal is very low

resolution, and we do not want to introduce further aliasing by projecting

the sensed 3D heatmap to 2D. At the same time, we desire the high-frequency

shape as output. It is challenging to predict high-resolution 3D heatmap for

computational and optimization reasons [43, 44]. Thus, we chose to represent

our outputs as 2D depth maps. Further, note that mmWave signals only

provide reflections from metal surfaces in the line-of-sight, since mmWave

is shielded by metal surfaces. Thus, the 2D depth map representation of

the car serves as a meaningful intermediate representation that can be post-

processed to construct full 3D predictions.

2.5.3 Generator Architecture

We follow standard encoder-decoder architecture [45] for representing the

generator. The generator is implemented using a deep neural network that

maps the input 3D heatmap to a low-dimensional representations z using the

encoder. This low-dimensional representation is used by a decoder to produce

the 2D depth prediction. We use a 2048 dimensional z-vector. The encoder

starts with one channel of 3D input (ϕ, θ, ρ) of size 1× 64× 32× 96. There
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Figure 2.6: Network Architecture of the Generator G

are 6 3D convolution layers with kernel sizes=6 and strides=2 on all three

dimensions. With every convolution layer, the number of channels increases,

while the 3D feature map size decreases by half in every dimension. We use a

BatchNorm layer followed by a Leaky-ReLU layer after every 3D convolution

layer. The encoder outputs a 2048× 1× 1× 1 dimensional z-vector, which is

then squeezed to 2048× 1× 1. At each layer we appropriately zero-pad the

features in order to get the desired input and output sizes.

The decoder begins with the 2048 × 1 × 1 dimensional z-vector, and it

contains 8 2D deconvolution layers produce the 2D depth map. The first

deconvolution layer has a kernel size=(4, 3), and stride=(2, 1) in order to get

an output of size (2, 1). The subsequent deconvolution layers have kernel

sizes=4 and strides=2 on both dimensions. Hence, each layer doubles the

feature map sizes, and we also decrease the number of channels. We use a

BatchNorm layer followed by a ReLU layer after every deconvolution layer.

Again, at each layer we appropriately zero-pad the features in order to get

the desired input and output sizes. This results in an output feature map of

size 1× 256× 128.

Finally, we apply the hyperbolic tangent function alongside a linear trans-

formation that maps the final output between 0 and 1, which corresponds to

the absolute depth in the scene. This resulting generator output G(x) has a

dimension of 256× 128.
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2.5.4 Skip Connections

We also use skip connections [42] in the generator. Skip connections provide

higher layers in the decoder with high-frequency information from the input

/ early layers of the encoder. While this is simple in networks that map

2D to 2D or 3D to 3D, our network learns a 3D to 2D projection. Thus,

our skip connection design projects the input 3D heatmap into a 2D image,

which is concatenated with the higher layers of the decoder. This projection

is done as follows. We compute the following 2D image by recording the

location that corresponds to the highest value along a ray that projects at

that location:

x2D(ϕ, θ) = argmax
r

x3D(ϕ, θ, r). (2.1)

Simply choosing the depth corresponding to the largest value is unstable.

Thus, we choose them largest values and createm = 8 channels of 2D feature

maps of size 64×32, ordered from highest to lowest power. These 2D feature

maps are concatenated with the features maps at the 6th layer in the decoder

along the channel axis, so that the high-resolution depth information from

the radar heatmap is directly extracted and passed to the output in order

to retain the high-frequency details in depth. The concatenated feature map

then goes through the last deconvolution layer and a fully connected layer.

Note that, this projection is done in a spherical coordinate frame, while our

output is in the camera coordinate frame. As the field of view of the camera

is not very large, the two images are still reasonably well aligned. This is a

non-differentiable operation and is only done with the input.

2.5.5 Discriminator Architecture

The discriminator takes two inputs: the 3D heatmap x and a 2D depth map

that either was the ground-truth y or was generated G(x). It outputs the

probability of the input being real. Typically, the input and output to the

generator are of the same type (both 2D or both 3D). However, in our case

input is 3D and output is 2D. Thus, we adopt a two-stream architecture

that uses two separate networks to map x and y to 1D feature vectors, and

then fuses them to classify real vs generated samples, as shown in Fig. 2.6.

Heatmap x is processed through a 3D CNN with the same architecture as

used in the generator but with different weights, resulting in 512 dimensional
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output vector z′. The encoder for 2D depth-maps takes the ground-truth y

or the generator output G(x) as input and also outputs a 512 dimensional

vector z′′. It has eight 2D convolution layers with kernel sizes = 4 and strides

= 2 on both dimensions with appropriate zero-padding. Each convolution

layer is followed by a BatchNorm layer and a Leaky-ReLu layer. z′ and z′′

are then concatenated and fed into two fully connected layers with ReLu and

Dropout layers in between. Finally, we use the sigmoid activation function

to get the output probability of the discriminator as the final classification.

2.5.6 Loss Function

The output of the discriminator D and generator G are used to calculate

the vanilla GAN loss function L(G) [36]. As with past work [41, 46], we

also include L1 loss (between the ground truth and the prediction), and

a perceptual loss term Lp [46, 47] (on activations of a pre-trained neural

network, VGG [48] in our case, on y and G(x)). During training, D and G

are optimized to minimize the LH(G) loss as below:

L1(G) = E∥y −G(x)∥1 (2.2)

Lp(G) = E∥V GG(y)− V GG(G(x))∥1 (2.3)

LH(G) = L(G) + λ1L1 + λpLp (2.4)

While L1 losses aren’t effective for pixel prediction, our outputs are depth

values and thus L1 makes sense. We use the feature space of a VGG net-
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work [48] to compute the perceptual loss. We feed HawkEye’s output G(x)

and the corresponding ground-truth y into a pretrained VGG16 [48] model,

by replicating G(x) and y to three channels. We obtain outputs of the VGG

model at the 3rd, 8th, 15th, and 22nd layers for G(x) and y. Then we compute

the L1 difference of the outputs at each layer and normalize them to get

the perceptual loss Lp(G). HawkEye employs a combination of three losses

(Eq. 2.4), λ1 and λp are hand-tuned relative weights of the loss functions.

Using this loss function enables HawkEye to accurately capture both the low

and high frequency components in the image. This results in perceptually

interpretable high-resolution images that faithfully represent the scene.

2.6 Data Collection Platform

Since there is no publicly available 3D mmWave imaging radar dataset, we

custom-built a data collection platform and collected our own dataset, which

includes 3D mmWave radar heatmaps of cars and the corresponding stereo

camera depthmaps. We custom-built the mmWave imaging radar system us-

ing 60 GHz radios and a SAR (Synthetic Aperture Radar) platform. We send

standard FMCW radar waveform generated by our custom-build FMCW cir-

cuit.

2.6.1 2D Synthetic Aperture Radar (SAR)

We leverage SAR to emulate a 2D antenna array by mechanically scanning a

single mmWave radio. We opt for SAR-based implementation because of the

limited availability of 2D phased arrays with hundreds of antennas like [37, 38]

in commercial systems and the high flexibility of SAR. SAR provides us with

a reconfigurable antenna array for a wide range of frequencies and aperture

sizes, which allows us to generate radar heatmaps with different resolutions.

We build a 2D SAR platform shown in Fig. 2.8 using three FUYU FSL40

linear sliders [49] with sub-millimeter accuracy. We mount a Pasternack 60

GHz radio front-end [50] on the SAR platform as the receiver, and another

radio on the side as the transmitter. We use omni-directional antennas for

both the transmitter and receiver to have a maximum field-of-view of 180◦ in

azimuth and 35◦ in elevation. We also place RF absorbers and shields around
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Figure 2.8: HawkEye’s Data Collection Platform

the antennas to eliminate the direct path leakage and unwanted reflections

from the backside. The horizontal slider scans the mounted receiver radio

along the X-axis, while two vertical sliders scan along the Z-axis. In HawkEye,

only a fraction of 10cm× 10cm area is scanned to emulate a 40× 40 array at

60 GHz, which provides ∼ 8◦ angular resolution along azimuth and elevation

axes. The scanning time is 5 minutes and reduces to 90 seconds for a 20×20

array.

2.6.2 Frequency Modulation Continuous Wave (FMCW)
Radar Circuit

For the mmWave radar circuit, we implement a heterodyne architecture, as

shown in Fig. 2.9. We first generate the same FMCW waveform at baseband

22



FMCW Generator
(PLL)

mmWave
Tx

mmWave
Rx

mmWave
Rx

Quadrature

USRP

USRP
Q

Hybrid
Splitter

LO
0

90

In‐Phase

I

Tx I

Tx I‐
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using ADF4159 PLL (Phased Locked Loop) [51], with a bandwidth of 1.5

GHz sweeping from 0.1 GHz to 1.6 GHz. Then we up-convert it to have a

center frequency of 60.15 GHz using quadrature modulation. The resulting

signal sweeps from 59.4 GHz to 60.9 GHz with the other unwanted sideband

suppressed. The FMCW receiver has a reciprocal architecture. The reflected

signals at 60 GHz are first down-converted to the baseband through quadra-

ture demodulation to get 90◦ phase-shifted I and Q channels. Then we feed

them separately into RF mixers along with the original baseband FMCW

waveforms to extract the beat signal, whose frequency is proportional to the

time-of-flight of the radar waveform in the air. We sample the I and Q com-

ponents of the complex beat signal with two N210 USRP software-defined

radios [52] for direct phase measurement. We use a common clock to enforce

frequency and phase synchronization in the radar circuit.

We then align the continuously sampled complex beat signal to the an-

tenna positions in the array. In this process, we track the SAR trajectory

by leveraging the phase shift in the residual direct path leakage. We then

apply Fast Fourier Transform and conventional beamforming in sequence to

estimate the reflected signal power from every voxel x(ϕ, θ, ρ) to generate the

3D mmWave radar heatmap.
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2.6.3 Stereo Camera Module

To capture the corresponding high resolution 2D depth maps for ground

truth, we build a custom wide baseline stereo camera system. We mount an

iPhone camera on a linear slider with sub-mm accuracy to capture multiple

images of the scene, and apply a standard stereo image processing algo-

rithm [53] to extract 2D depth maps. The linear slider setup is stable, which

allows us to calibrate once and apply the same rectification to all experiments.

In the ground truth, we filter out pixels that do not belong to the vehicles of

interest using labeled object masks generated from Mask R-CNN [54].

2.7 HawkEye’s Data Synthesizer

Collecting real-world mmWave data using our custom-built mmWave mod-

ule is very time-consuming. Hence, training with real data would take a

prohibitively long time. To address this, we build a synthesizer to generate

paired 3D radar heatmaps and 2D depth maps of cars from 3D CAD mod-

els. Our synthesizer is designed to create 3D point reflector models of cars

and then simulate mmWave radar signals using ray tracing. It takes into ac-

count multipath reflections as well as specularity based on reflection angles

to generate realistic mmWave radar 3D heatmaps. Simulation has 3 stages:

1. Scene Generation: We first generate scenes of cars based on two types of

datasets: 3D CADmodels for autonomous driving [55] and Cityscapes [56],

a street view video recordings dataset. The 3D CAD models provide us

with precise 3D meshes of a wide variety of vehicles, while the street view

photos offer references for car placement in the camera frame. We apply

Mask R-CNN [54] on the street views to detect objects of interest.

2. Ray Tracing: Here we model the mmWave reflectors in the scene. First, we

remove occluded bodies through spherical projection. Then, we model the

remaining parts as clusters of point reflectors, where the number of points

represents the size of the radar cross section. We classify the specularity of

each cluster as scattering corners or mostly specular surfaces by referring

to the known car outline. Finally, we perform standard ray tracing [57]

on the point reflectors with their specularity taken into account.

24



3. mmWave Heatmap and Ground-truth Generation: We simulate the re-

ceived signal based on the point reflector model with background noise

introduced. We add thermal noise and phase noise to the mmWave sig-

nals. Additionally, to avoid the nontrivial extrinsic calibration for the field

point and point of view between the mmWave and stereo camera mod-

ules in our experimental setup, we import the same displacement into our

synthesizer to make predictions at the stereo camera view point, and to ac-

curately train and test HawkEye’s GAN architecture. Similarly, our model

can be re-trained to make predictions from any other viewpoint as well

(with appropriately modified skip connections). By applying mmWave

processing as described in section 2.2, we get the 3D mmWave heatmap.

The ground-truth 2D depth map is generated to match the stereo camera

frame.

2.8 Experiments

2.8.1 Dataset

We imaged 327 scenes of cars in 3 types of backgrounds: indoor parking

garage, outdoor lot, and outdoor house drive-through. The dataset includes 9

categories of cars spanning 60 different models: 2 Sub-compact, 12 Compact,

16 Mid-sized, 7 Full-sized, 5 Sports, 11 SUVs, 1 Jeep, 2 Vans, and 4 Trucks.

We tested all 360◦ orientations of the car with respect to the radar. The

distance from the radar to the car is between 3.3 to 11.9 meters, with a mean

of 6.2 m and a standard deviation of 1.66 m. We then created a dataset

of paired 3D mmWave heatmaps, RGB camera images, and stereo camera

depth maps. In addition to real data, we also have 4000 synthesized scenes

generated from HawkEye’s data synthesizor for 120 car models.

2.8.2 Controlled Experiments in Fog/Rain

Out of the 327 real scenes we imaged, there are 101 experiments in fog

and rain to test HawkEye’s performance in poor visibility conditions where

today’s optical sensors fail. Due to practical limitations such as the risk of

water damage to our setup, we conduct controlled experiments where we
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emulate real fog and rain. We use a fog machine along with a high-density

water-based fog fluid to emulate severe and realistic fog conditions, similar

to previous studies [58, 59]. We emulate rain using a water hose in a confined

region around the object of interest (the car).

2.8.3 Training

HawkEye’s GAN is trained with the Adam optimizer in two stages. In the

first stage, we train for 170 epochs using a synthesized dataset of 3000 images

with batch size 4. We use a constant learning rate of 10−4 for the first 100

epochs, and then linearly decay the learning rate to zero for the next 70

epochs. In the second stage, we fine-tune the model for 60 additional epochs

with 100 real mmWave images captured in clear weather. In this stage, we

use a learning rate of 10−5. It is important to note that HawkEye’s GAN

model is never trained on examples collected in fog or rain. The training takes

12 hours on an Nvidia Titan RTX GPU. We test HawkEye’s performance on

1000 synthesized images, and the remaining 227 real images including the fog

and rain experiments. For testing, we follow standard k-fold cross-validation

with k = 5 to test all 327 scenes while ensuring examples in the test dataset

are not used during training.

2.9 Results

2.9.1 Baselines

We compare HawkEye to three baselines:

1. mmWave Radar: We compare against raw mmWave radar heatmaps to

evaluate HawkEye’s improvement over the low resolution and artifact-

ridden radar images.

2. L1 Based Loss: To determine the utility of the GAN and discriminator

in HawkEye, we compare against an identical neural network trained only

with the L1 based loss function, L = L1 + λpLp, as defined in Eq. 2.2 and

Eq. 2.3.
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Figure 2.10: HawkEye’s qualitative performance on real test data in
clear weather conditions. Row (a) and (b) show the original clear scene with
the car and the corresponding stereo depth map. Row (c) and (d) show the radar
heatmap as 3D point cloud and 2D front-view projection. Row (e) shows the
output from HawkEye, while rows (f) and (g) show the output from L1 and
Nearest Neighbor baselines. The scale bar shows the absolute depth metric in the
depth map.

3. Nearest Neighbor: One could argue that our method overfits and simply

memorizes sample points from the training dataset. To understand this,

we compare against a Nearest Neighbor scheme, which retrieves samples in

the input feature space of 3D radar heatmaps with the minimum Euclidean

distance.

2.9.2 Qualitative Results

We show HawkEye’s performance in clear weather and fog in Fig. 2.10 and

Fig. 2.11 respectively.4 In both visibility conditions, HawkEye accurately

reconstructs the shape and size of the car in the scene, and captures key

defining features such as its wheels and orientation comparably better than

the other baselines. HawkEye can also accurately determine the distance to

the car in 3D space, as can be seen from the intensity in the depth maps.

4We show additional qualitative results for the synthetic test dataset and for experi-
ments in rain in the supplementary material.
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Figure 2.11: HawkEye’s performance with fog in scene. Row (a) and (b)
show the original scene and corresponding stereo depth map. Row (c) shows the
scene filled with fog. Row (d) and (e) show the radar heatmap in the fog scene as
3D point cloud and 2D front-view projection. Row (f) shows the output from
HawkEye, while rows (g) and (h) show the output from L1 and Nearest Neighbor
baselines. The scale bar shows the absolute depth metric in the depth map.

HawkEye’s ability to accurately image in fog and rain5, despite not being

trained with such examples, demonstrates that our model can generalize well

in different weather conditions due to the favorable propagation character-

istics of mmWave signals. Further, note that although HawkEye is trained

primarily on synthesized data, it could generalize well to real scenes with

different backgrounds and visibility conditions with only a small amount

of fine-tuning. Hence, the simulator faithfully emulates the real mmWave

heatmaps.

Failure Examples: Figure 2.12 shows some typical failure cases for Hawk-

Eye. (i) and (ii) are from the fog experiments. In (i), although HawkEye

estimates the correct bounding box, it misjudges the front and back of the

car. In (ii), although HawkEye successfully detects the corner of the car, due

to both strong fictitious reflections and specularity in the heatmap, it incor-

rectly estimates the orientation of the car. Lastly, a current limitation of

5See supplementary material for results in rain.
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Figure 2.12: Examples where HawkEye fails. The first and second rows
show the original scene and corresponding stereo depth map. Third and fourth
row show the radar heatmap as point cloud and front view projection. The fifth
row shows HawkEye’s output.

our system is that its performance deteriorates when the scene has multiple

cars (Fig. 2.12(iii)). To address this, a potential future direction is to adopt a

Region Proposal Network [11], where HawkEye can first isolate the reflections

from the cars in the scene, and then reconstruct each car individually.

2.9.3 Quantitative Metrics

We evaluate on range, size (length, width, height), and orientation of the car,

as they represent the contextual information of the car in the scene (shown

in Fig. 2.13(i)). We define the distance to the closest corner of the car as

the range, and orientation as the angle between the longer edge of the car

and the 0◦ azimuth of the mmWave heatmap. First, we convert depth maps

into 3D point clouds in the camera frame based on the mapping from pixel

values to metric depth as shown in the scale bars. Then we estimate the

bounding boxes of cars by projecting the point clouds onto the horizontal

plane and fitting the points into either a 90-degree corner or a straight line.
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(i) Top View of Scene

⍺
Orientation

(ii) Front View of Scene

(iii) Front View Object Mask

Figure 2.13: Quantitative Metrics used in the Evaluation of HawkEye

For radar heatmaps, we manually annotate the bounding boxes in the 2D

top-view projections, similar to Fig. 2.2(c). Finally, we fill up the occluded

parts of the bounding boxes and extract the metrics. Range, length, width,

and orientation of the cars are computable from the corners and edges of the

top-view bounding boxes, while heights are estimated from the 3D points

inside the bounding boxes.

We also evaluate accuracy in shape prediction by comparing (a) % of Car’s

Surface Missed (False Negatives) and (b) % of Fictitious Reflections (False

Positives) in the object masks of HawkEye’s output along the front view

of the scene as shown in Fig. 2.13(ii,iii). Note that (a) is indicative of the

specularity effects whereas (b) is indicative of artifacts such as multipath

and ambient reflections in the image. We extract the object masks from the

mmWave heatmap and the outputs of HawkEye and baseline methods sepa-

rately, and then compute the False Positive Rates (FPR) and False Negative

Rates (FNR) against the ground truth object masks. We obtain the ground

truth object mask by applying Mack-RCNN on the camera image. For the

depth map outputs of HawkEye and the baseline methods of L1 and Nearest

Neightbor, we eliminate noise that are far away from the object body using

a distance threshold, so that the remaining pixels in the region of the object

form the mask. For mmWave heatmaps, we project the 3D heatmaps onto

the front-view plane and then select pixels exceeding a power threshold as

the object mask. We choose the distance and power thresholds from the

ROC (Receiver operating characteristic) curves.
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Table 2.1: Quantitative Results. See text for more details.

Experiment System
Error in Error in Error in Error in Error in Fictitious Surface
Ranging Length Width Height Angle Reflections Missed

Clean Air

HawkEye 30 cm 47 cm 29 cm 9 cm 27◦ 1.5% 12.9%
mmWave 53 cm 179 cm 89 cm 45 cm 64◦ 15.6% 30.5%

L1 Based Loss 40 cm 97 cm 76 cm 13 cm 37◦ 2.5% 13.1%
Nearest Neighbor 90 cm 114 cm 70 cm 17 cm 68◦ 3.5% 16.0%

Fog

HawkEye 50 cm 83 cm 44 cm 11 cm 29◦ 2.5% 15.4%
mmWave 67 cm 222 cm 99 cm 53 cm 72◦ 20.9% 31.9%

L1 Based Loss 60 cm 108 cm 80 cm 12 cm 38◦ 3.5% 13.8%
Nearest Neighbor 121 cm 117 cm 76 cm 18 cm 45◦ 3.6% 22.3%

HawkEye 23 cm 64 cm 37 cm 8 cm 30◦ 1.3% 10.2%
Synthetic mmWave 29 cm 182 cm 77 cm 31 cm 62◦ 10.8% 19.2%
Data L1 Based Loss 20 cm 113 cm 73 cm 14 cm 47◦ 3.4% 9.3%

Nearest Neighbor 81 cm 81 cm 57 cm 13 cm 64◦ 5.2% 17.5%

2.9.4 Quantitative Results

Table 2.1 shows median errors comparing HawkEye to the baseline schemes.

These results are extracted from 168 scenes in clean air, 59 scenes in fog, and

510 synthesized scenes. We summarize HawkEye’s performance compared to

each baseline below.

� mmWave radar: HawkEye achieves an improvement in ranging accuracy

of 1.35× in fog and 2× in clear weather. Although mmWave radars can

achieve high ranging resolution, the artifacts in the radar heatmaps lead to

high ranging error. The skip connections in HawkEye’s design allow for the

direct transfer of the high ranging resolution from the mmWave radar input

to HawkEye’s output, while additionally HawkEye’s GAN model corrects

for the sinc artifact to achieve lower median ranging error. However, note

that HawkEye’s gains over mmWave radar become more apparent for the

other metrics, spanning from 2× to 12× gain for percentage of fictitious

reflectors. This is because the other metrics are a lot more sensitive to

the specularity and multipath artifacts, and HawkEye can significantly

improve these metrics by correcting for these noise sources.

� L1 based Loss: The L1 loss baseline achieves good performance in terms

of ranging error compared to HawkEye. This is expected since optimizing

for L1 loss over 2D depth maps would directly optimize for ranging error.

However, L1 loss cannot capture the high frequency components of the

output shape, resulting in blurring of boundaries. As a result, the errors

in estimated size, orientation and fictitious reflectors are high for L1 loss,
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with HawkEye achieving approximately 2× performance gains across these

metrics. These results demonstrate the importance of the GAN architec-

ture in HawkEye.

� Nearest Neighbor: HawkEye outperforms the Nearest Neighbor baseline,

achieving an improvement of 1.3× to 3× in clear weather, and 1.4× to

2.4× in fog across various metrics. This demonstrates that our model is

not overfitting and can generalize well to new data points in the test set.

For the synthesized dataset, the performance trends are similar. The above

results show that HawkEye can faithfully reconstruct an accurate and high

resolution image of the car in the scene in both clear weather and in low

visibility conditions. One should note that HawkEye’s performance in fog

degrades slightly compared to clear weather. This can be attributed to the

poor propagation characteristics of 60 GHz RF signals in the presence of

water particles in fog. It is worth noting that due to FCC regulations, we are

constrained to build our experimental setup at the 60 GHz unlicensed spec-

trum, which suffers from higher attenuation from water particles compared to

other frequencies in the mmWave band. We believe that implementing Hawk-

Eye with commercial grade mmWave radars built at the 77 GHz frequency

band, which is allocated specifically for automotive radar applications, would

resolve the performance degradation observed here.

2.10 Related Work

2.10.1 Super-Resolution

Neural networks have been used to increase the resolution of camera im-

ages and near-Infrared images [60, 61, 46, 62]. Such techniques rely on the

correspondence of image patches between low and high resolution images

and can achieve an upscaling factor of 4×. The closest to our work are

techniques for upsamplng sparse 3D LiDAR data to create dense 2D depth

maps [63, 64, 65, 66, 67, 68]. However, these works require an RGB camera

in addition to LiDAR [63, 64, 65, 66] and, hence, do not work in low visibil-

ity conditions, or rely on high frequency visual features like edges to cluster

and upsample objects [67, 68]. Millimeter wave images, however, have sig-
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nificantly lower spatial resolution where high frequency visual features like

boundaries and edges are not apparent. Millimeter wave also suffers from

artifacts and specularities that cannot be addressed with traditional super-

resolution and upsampling techniques.

2.10.2 LiDAR in Fog

Recent work aims to improve the performance of LiDAR in fog [21, 22, 23].

However, even state-of-the-art research systems either require knowing a

depth map of the scene a priori [21] or work only when the object is static

by estimating the statistical distribution of the photon reflected off the ob-

ject [22, 23]. These systems also work only up to 54 cm and have limited

resolution (32 × 32 pixels) and field of view. Millimeter wave radar, on the

other hand, can penetrate through dense fog and does not require the object

to be static [58, 69].

2.10.3 Radar Imaging Systems

There exist mmWave radar imaging systems that can achieve high resolu-

tion [35, 70, 71, 72, 34]. However, these systems can only work at very near

distances (< 50cm) and use very bulky human-sized arrays similar to airport

security scanners [35]. Other radar systems that can achieve high resolution

at longer distances, are integrated with optical components like a large fo-

cusing lens and a mechanically scanning raster [73, 72, 74]. Hence, they are

bulky and perform poorly on mobile platforms like self driving cars [70].

Past works also leverage deep learning in the context of mmWave radar

data. Danzer et al. [75] extend the PointNet architecture from PointNet [76]

to perform 2D object detection from radar data but cannot perform high

resolution depth imaging. Fang et al. [77] and Armanious et al. [78] apply

neural networks to radar acquisitions to enhance their resolution. Both Fang

et al. [77] and Armanious et al. [78], however, work only at short distances and

use radar data both as input and ground-truth to their system, making them

inherently incapable of dealing with challenges like specularity and multipath.

HawkEye, on the other hand, achieves much better results by training using

high resolution depth maps to recover the visual representation of the cars
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and learn to cope with specularity and multipath.

Recent work showed significant progress in using low frequency wireless

radar (below 6 GHz) to estimate the 3D pose of humans and track them

through walls and occlusions [9, 11, 10, 12]. The work leverages human

motion to combat specularity by combining reflections from different body

parts over time and stitching them to form the full human body. The work

also uses deep convolutional neural networks to label limbs and joints and

map them to 3D models of the human skeleton. However, unlike humans

in indoor settings, cars move as one single rigid body and only a single

viewpoint of the car is typically observed in practice. Therefore, even during

motion, most portions of the car will remain invisible due to specularity. Our

system adopts a conditional GAN [40] architecture that is able to address

specularity without relying on the object’s mobility and, hence, can also

image static objects like parked cars and cars stopped at traffic lights.

2.11 Conclusion

In this chapter, we show that HawkEye is a promising approach for achieving

high resolution imaging with mmWave wireless systems, through the novel

design of neural network architectures for processing mmWave data. We

evaluate HawkEye in low visibility conditions such as heavy fog and show

that it can significantly improve performance over mmWave radars today.

While significant future work is required before HawkEye becomes a practical

system that can be used on board self-driving cars, we have made huge

advances toward this goal.
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Chapter 3

Accurate Detection Using Multi-Resolution
Cascaded MIMO Radar

Millimeter wave (mmWave) radars are becoming a more popular sensing

modality in self-driving cars due to their favorable characteristics in adverse

weather. Yet, they currently lack sufficient spatial resolution for semantic

scene understanding. In this paper, we present Radatron, a system capable

of accurate object detection using mmWave radar as a stand-alone sensor.

To enable Radatron, we introduce a first-of-its-kind, high-resolution automo-

tive radar dataset collected with a cascaded Multiple Input Multiple Output

(MIMO) radar. Our radar achieves 5 cm range resolution and 1.2◦ angular

resolution, 10× finer than other publicly available datasets. We also develop

a novel hybrid radar processing and deep learning approach to achieve high

vehicle detection accuracy. We train and extensively evaluate Radatron to

show it achieves 92.6% AP50 and 56.3% AP75 accuracy in 2D bounding box

detection, an 8% and 15.9% improvement over prior art respectively.

3.1 Introduction

Recently, there has been a significant amount of work, from both academia [79,

80, 81, 82] and industry [83, 84, 85, 86], on leveraging millimeter wave

(mmWave) radars for imaging and object detection in autonomous vehi-

cles. Millimeter wave radars are relatively cheap and can operate in adverse

weather conditions such as fog, smog, snowstorms, and sandstorms where

today’s sensory modalities like cameras and LiDAR fail [23, 25]. Despite

that, today’s commercial use of mmWave automotive radars remains limited

to unidirectional ranging in tasks like adaptive cruise control and parking

assistance. This is mainly due to the fact that radar’s angular resolution is

extremely low, 100× lower than LiDAR as shown in Fig. 3.1(b, c), making

it difficult to use radar for object detection. As a result, prior work aiming
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Figure 3.1: The low resolution of millimeter wave radar makes it difficult to
perform accurate bounding box detection in (c). High resolution cascaded MIMO
radars can improve the resolution but suffer from motion smearing in (d).
Radatron delivers accurate detection in (e) by combining motion compensation
with a two stream deep learning architecture that takes low and high resolution
radar images as input.

to gain semantic understanding directly from low resolution radar heatmaps

is only able to coarsely localize objects [87, 88, 89] or must fuse radar with

LiDAR or cameras to enable object detection [90, 86]. In this chapter, we

focus on exploring how well radar performs in object detection tasks and

devise techniques to improve its performance.

Improving the angular resolution of conventional radar sensors is chal-

lenging. This is because in principle, radar’s angular resolution is inversely

proportional to the size of the radar antenna aperture [89]. For example, in

order to achieve 0.1◦ angular resolution similar to LiDAR [91], we require a

10 meter-long aperture consisting of an array of 3000 antennas. The cost,

power, and large form factor make such a design prohibitively expensive.

An alternative cheaper solution is to use a cascaded MIMO (Multiple Input

Multiple Output) radar in which multiple radars are combined to emulate a

much larger radar aperture [92, 93]. The radars take turns transmitting to

avoid interference between the transmitters. Signals from multiple transmit-

ters and receivers are then combined coherently to generate a high resolution

image as shown in Fig. 3.1(d) (for primer on radar, see section 3.3). This

design, however, cannot work well for dynamic scenes like self-driving cars

where the different radar transmitters capture snapshots of the scene at slight

timing offsets. In vision, such a problem leads to motion blur which can be

addressed using a higher frame rate or deblurring techniques [94, 95]. Radar,

on the other hand, uses mmWave RF signals that travel as sine/cosine waves
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with millimeter scale wavelength. As a result, even a slight motion of few mil-

limeters can completely change the sign of signal across transmitters which

can destructively combine to smear, defocus and even eliminate the object es-

pecially as the number of radar transmitters increases. Figure 3.1(d.i) shows

this effect: reflections in the moving scene get smeared and appear in differ-

ent locations than where they really are, which leads to inaccurate bounding

boxes prediction.

In this chapter, we present Radatron, a mmWave radar-based object de-

tection system that can detect precise bounding boxes of vehicles using a

cascaded MIMO radar. Radatron overcomes the above challenge by com-

bining a novel radar data pre-processing method with a new deep learning

framework. First, we show how to compensate for motion induced errors in

pre-processing the raw radar data from a large cascaded MIMO radar. This

alleviates most errors, as can be seen by comparing the smeared versions in

Fig. 3.1(d) with ones after pre-processing in Fig. 3.1(e). The remaining errors

stem from scenarios where the relative speed of the cars is high (e.g. incom-

ing cars, see section 3.6). To address these cases, we design a two stream

neural network that takes as input both high and low resolution versions of

the radar image. Since the low resolution image uses a single radar transmit-

ter, it does not suffer from motion induced errors which allows the network

to correct for faulty information like smeared or missed cars that might be

mistaken as noise and artifacts.

The chapter also introduces a first-of-its-kind high resolution radar data set

collected using a commercial cascaded MIMO radar in urban streets. The

data set features radar heatmaps with 10x higher angular resolution than

those used in prior work [88, 89, 96], resulting in rich geometric information

of objects in the scene, i.e. boundaries and sizes. The data set also includes

stereo-camera images which are used for extracting the ground truth and an-

notating the data. The data set includes 152k frames representing 4.2 hours

of driving over 12 days. We also leverage data augmentation to generate

significantly more data especially for less common cases (e.g. oriented cars).

We train and extensively evaluate Radatron using our self-collected dataset.

Our results show that Radatron improves overall detection accuracy by 8%

for AP50 and 15.9% for AP75 compared to low resolution radars used in prior

work [88, 96, 89]. For hard cases like oriented and incoming cars, Radatron

improves overall detection accuracy by upto 14.8% for AP50 and 33.1% for
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AP75 compared to low resolution radars, and by upto 13.8% for AP50 and

25.2% for AP75 compared to a cascaded MIMO Radar without Radatron’s

pre-processing and two stream network. We also conducted controlled ex-

periments to qualitatively evaluate Radatron’s performance in fog.

Finally, this chapter makes the following contributions. First, we demon-

strate the ability of achieving accurate vehicle detection using radar by lever-

aging the high resolution heatmaps captured by cascaded MIMO radars.

Second, we propose a network architecture leveraging multi-resolution radar

data along with a motion compensation pre-processing algorithm. Third, we

collect a high resolution automotive radar dataset with real-world driving

scenarios on urban streets using cascaded MIMO radar, which we plan to

release once the chapter is accepted.

3.2 Related Work

3.2.1 Radar-based Datasets

Several radar datasets have recently been introduced using single TI chips

[85, 97, 98, 80, 99], the Navtech CTS350-X radar device [82, 87, 81], or other

low resolution and 1D radar device [84, 100]. Unlike these datasets, Radatron

uses the cascaded MIMO TI radar which provides an angular resolution of

1.18◦ in azimuth, 18◦ in elevation and a range resolution of 5 cm enabling

accurate object detection. Additional details of our dataset can be found

in section 3.7. We summarize and compare our data set to other publicly

available datasets in Table 3.1. [82, 81] are the closest in terms of resolution

but use a mechanically rotating horn antenna which results in a low frame

rate of 4 Hz, motion smearing that cannot be corrected in pre-processing, and

inability to compute velocity from Doppler information in the radar signals.

3.2.2 Learning with Radar Data

Low-cost radar has been used with deep learning in applications such as

hand-gesture recognition [101], imaging and tracking of the human body [10,

11, 12, 102], as well as indoor mapping [103]. Our work focuses on using radar

for autonomous driving where prior work can be divided into two groups:
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1. Radar Point Clouds: Point clouds are a common interface of commercial

automotive radars. Therefore, learning radar data in the format of point

clouds is widely studied [106, 107, 75, 96]. Schumann et al. [106, 107]

demonstrate a semantic segmentation network on radar point clouds while

Danzer et al. [75] adjust PointNet [76] for radar data to perform 2D object

detection. Pointillism [96] performs 3D bounding box by combining point

clouds from multiple spatially separated radars. However, to get point

clouds, filtering and thresholding are performed to remove sensor leakage,

background clutter, and noise. These hard-coded filtering algorithms lead

to the loss of useful information and result in point clouds that are 10 to

100 times sparser than LiDARs [108].

2. Radar Heatmaps: To avoid loss of information, radar data can be pro-

cessed as heatmaps with range-angle-Doppler tensors [89, 109, 83, 108, 99].

In order to learn the 3D radar tensors, past methods collapse the 3D

radar tensor onto each dimension separately to extract features, and then

concatenate the resulting multi-view feature maps for semantic segmen-

tation [109], object classification and center point detection [89], as well

as 2D bounding box detection [83]. Other work feeds the 2D BEV range-

angle heatmap into the network as an image [87]. Note that while Major

et al. [83] and Dong et al. [87] achieve relatively accurate 2D bounding

box detection results, their datasets were collected on highways and are

not publicly available. Compared to highway driving scenarios, where

cars are all moving in the same direction and with similar speeds, our

dataset is on urban and suburban streets with more complicated traffic

intersections, parked cars on the curbside, and various clutters. Zhang et

al. [99] provides urban street radar data, but it places the radar on the

side of the street for infrastructure-based traffic monitoring. In addition

to CNN-based networks, Meyer et al. [108] use graph neural network to

achieve a 69% AP50 but their data and code are not available.

1The radar in [85, 80] can provide 3D data with 30◦ resolution in elevation. However,
the data sets provided are 2D.

2The radar is mounted on the side of the road rather than on a moving car.
3Driving for 280 km which can correspond to 3 to 10 hrs.
4Report 260 K objects but only the center is annotated, not the bounding box.
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3.2.3 Radar-optical sensor fusion

Complementary features of multi-sensor data along with the added redun-

dancy has encouraged previous work to combine different sensors. In particu-

lar, Radar and LiDAR fusion has been studied [110, 90, 111], while radar and

monocular camera fusion has also been studied [112, 113, 114, 115, 116, 117].

In this work, we focus on radar as a stand-alone sensor and aim to show the

capabilities of high resolution radar in detecting objects with high accuracy,

even in urban and dynamic scenarios.

3.3 Background

3.3.1 mmWave MIMO Radar

Millimeter wave radars transmit Frequency Modulated Continuous Wave

(FMCW) signals to sense the environment. The chirps emitted from the

transmitter antenna (TX) reflect off objects in the scene which are then

captured by the receiver antenna (RX). By comparing the transmitted and

received chirp, we can estimate the round-trip Time-of-Flight (ToF) τ , and

hence the ranges of the reflectors ρ = τc/2 (c denotes the speed of light) in

the scene. Ranging alone, however, is not sufficient to localize objects. One

step further is to use a radar with multiple RX antennas that all receive the

reflected chirp. The minute ToF differences ∆τij = τi − τj between these

received version leads to different phase shifts of the electromagnetic waves:

∆θij = 2πf0∆τij = 2πf0(τj − τi) = 2π
l sin(ϕ)

λ
(j − i), (3.1)

where l is the spacing between adjacent elements, λ is the radar signal wave-

length, and ϕ is the angle from which the reflections arrive, also known as the

Angle-of-Arrival (AoA). Therefore, one can exploit the phase shift differences

across the antenna array ∆θij to estimate ϕ [118]. The pair (ρ, ϕ) creates a

radar heatmap that localizes objects in the 2D polar coordinate.

For this technique to be viable for applications such as semantic scene

understanding and object detection, we need to consider the resolution of the

radar, which is closely tied to hardware configuration: the range resolution
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is proportional to the bandwidth of the FMCW chirp, while the angular

resolution is proportional to the number of RX antennas. Thanks to the high

bandwidth in the mmWave band, mmWave radars achieve cm-level ranging

resolution, which is sufficient for most applications. However, reaching an

acceptable angular resolution is much more difficult. For instance, to achieve

the same angular resolution as a commercial LiDAR, we would need to build

a radar with hundreds of RX antennas, which is simply impractical due to

the hardware complexity, cost, and power consumption.

A much more scalable solution is to use multiple TX as well as multiple RX

antennas, a technique referred to as MIMO radar. In MIMO, each of the N

TX antennas take turns to transmit one FMCW chirp, which is then received

by all M RX antennas, thereby emulating N×M total virtual antennas, while

using only N+M physical antennas [92]. The received chirps from all N·M
virtual antennas are then combined to create the (ρ, ϕ) heatmap of the scene.

3.3.2 Motion-Induced Distortion

While MIMO enables higher angular resolution, it comes at the cost of unique

challenges. To understand these challenges, we reiterate that in MIMO, TX

antennas each transmit one chirp, and all these chirps jointly contribute

to the radar heatmap. As TX antennas need to take turns transmitting,

there will be a slight time offset δtij between when the ith and jth chirp are

transmitted. For stationary scenes (v ≈ 0), such time offsets are harmless

since they will not affect the ToF difference ∆τij and phase difference ∆θij

between different virtual antennas.

However, if the scene moves even by as much as 1 mm (∼ λ
4
at 77 GHz)

during the transmitting interval δtij, the phase different can be significantly

off because of f0 = 77 GHz. As a result, the angle estimation and overall

radar heatmap can be significantly distorted, especially in sensing highly

dynamic environment like self-driving cars. This is because the movement

of reflections within δtij contaminates the phase differences ∆θij between

different virtual antennas, making Eq. 3.1 as follows:

∆θ′ij = 2π
lsin(ϕ)

λ
(j − i) + 2πf0δtij

2v

c
(3.2)

where v is the relative speed of the object in the scene, and c is the speed of
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Motion-induced distortion

Figure 3.2: Motion-induced distortion and Radatron’s compensation
algorithm. (a) Original scene. (b) Bird’s-eye view radar heatmap under
motion-induced distortion. (c) Processed heatmap after applying Radatron’s
motion compensation algorithm.

light. Note that the motion induced phase 2πf0δtij
2v
c
cannot be isolated from

the AoA dependent phase difference 2π lsin(ϕ)
λ

(j− i). Therefore, object reflec-
tions can get smeared in the radar heatmap, moved into another location, or

split into multiple less prominent reflections at different angles. We note that

the effect of the error term increases with the speed of the object v, making

the problem even more severe for high speed objects. We call this effect the

motion-induced distortion of the MIMO radar. Figure 3.2(b) shows the im-

pact of motion-induced distortion in selected range-azimuth radar heatmaps

where there is a car moving towards the radar, and we zoom into the region

of the incoming car. As one can see, reflections of the car got smeared along

ϕ axis, and even split into multiple less prominent reflections appearing at

wrong locations away from the car.

3.4 Overview

Our goal is to design a system that can leverage the high resolution cascaded

radar as a stand-alone sensor and perform accurate object detection. While

the radar heatmaps created using cascaded radar benefit from high angular

and range resolution, they come with a set of unique challenges as laid out

in section 3.1 and 3.3. On the one hand, if we cascade multiple TX antennas
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Figure 3.3: Radatron’s Data Pre-Processing Pipeline

to emulate a virtual array with more antenna elements, we can maximize the

angular resolution and minimize leakages due to sparsity in the antenna array.

However, the transmit time offsets between different TX antennas can cause

motion-induced distortion (section 3.3.1), and the resulting radar heatmap

will be smeared. This issue is particularly severe for automotive radars since

both the radar and the scene are moving at high speeds. Radatron overcomes

this challenge via a hybrid signal processing and deep learning approach. We

will start by explaining our radar processing solution and then proceed to

describe our network design to tackle this problem.

3.5 Radar Signal Processing

On the signal processing end, we design a motion compensation algorithm

and integrate it into our radar processing pipeline as shown in Figure 3.3. It

takes the raw radar signal samples as input, and first applies a standard fast

Fourier transform to the time-domain signal, which estimates the reflected

power from different ranges. Then, before estimating the angles of reflections

to localize the objects, we first compensate for the motion-induced distortion.
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Figure 3.4: Physical TX antenna Array of Radatron’s Cascaded Radar
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Figure 3.5: Physical RX Antenna Array of Radatron’s Cascaded Radar

3.5.1 Virtual Antenna Array Emulation

We collect our own mmWave radar data featuring high angular resolution

using TI MMWCAS mmWave cascaded MIMO radar [92]. By cascading

four radar system on chips (SoCs), we form a 12 TX and 16 RX MIMO

radar system, which can emulate a very large antenna array with up to

16× 12 = 192 elements.

The emulation of virtual antenna array is a process of converting the mul-

tistatic TX and RX antennas to a monostatic virtual antenna array, where

the effective phase center theory is commonly employed [119]: Under the far

field assumption, a pair of TX and RX antennas can be approximated by

a TX/RX collocated phase center at their midpoint. This equivalent can

also be explained using the space convolution of the TX and RX antenna

array [120].

Figure 3.4 shows the physical positions of the 12 TX antennas, while Fig 3.5

shows the physical positions of the 16 RX antennas. Note that, out of the 12

TX antennas, there are nine TX antennas in the same row (height), whereas

the other three antennas located on different rows (heights). These three TX

antennas can be used to estimate the elevation angle of the reflections. Al-

though we provide data from these three TX antennas in Radatron’s dataset,

we do not use them to generate the 2D range-azimuth input heatmap to

Radatron’s network. According to the effective phase center theory, we use

the other 9 TX antennas along with all 16 RX antennas to emulate an 86×1
uniform 1D virtual antenna array as shown in Fig 3.6.
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TX 1
TX 2

TX 9

Emulating  uniform 86x1 1D virtual antenna array using 9 TX antennas

Figure 3.6: Emulating large 1D virtual antenna array using Radatron’s
cascaded radar. Each row shows the horizontal locations of virtual antennas
emulated using one of the TX antennas. Virtual antenna elements used to
emulate large 1D array are marked in red, whereas the unused ones due to
overlapping are marked in pink.

3.5.2 Motion-Induced Distortion Compensation Algorithm

We design a motion compensation algorithm as the first step to mitigate the

motion induced distortion problem. To do so, we leverage the fact that the

emulated virtual antenna array has some redundancies ; that is, there are 32

pairs of co-located virtual antennas in the 192 emulated virtual antennas,

that are emulated using adjacent physical TX. Therefore, the time interval

between each co-located virtual antenna pair i and i′ is one chirp interval

∆T . Besides, since virtual antennas i and i′ are co-located, there will be no

AoA dependent phase differences, and Eq. 3.2 becomes:

∆θ†ii′ = 2πf0δtii′
2v

c
. (3.3)

Since the only phase difference between these two co-located virtual an-

tennas is the motion-induced phase variance, we can estimate the motion-

induced phase variance by measuring ∆θ†ii′ . Therefore, in our radar signal

pre-processing pipeline, in addition to the two virtual antenna array formu-

lations, we also group together the 32 pairs of co-located virtual antennas,

as shown in Fig. 3.7. We measure the phase differences between each co-

located antenna pairs for each range bin and take an median between the

32 measurements as our final motion-induced phase variance estimation. We

then scale the estimated motion-induced phase variance according to the

transmitting interval δt for all TX antennas. Finally, we compensate for the

motion-induced phase variances for all virtual antennas by multiplying with

phasors with opposite phases.

Figure 3.2(c) shows the intermediate motion compensation results, where

the smearing artifacts are mostly corrected, and the reflections overlap well

with the ground truth location of the car.

46



TX 1
TX 2

TX 9

Figure 3.7: Emulated co-located virtual antennas used for
motion-induced phase variance estimation. Co-located virtual antenna
pairs that are emulated using adjacent TX antennas (time gap equals single chirp
interval) are marked in navy and light blue.

Note that, although prior works have also noticed the similar motion-

induced distortion problem and tried to compensate for it [89, 121], because

of their smaller single chip MIMO radar with only two TX antennas, their

motion-induced distortion is much less severe. Their compensation technique

using multiple chirps from the same TX antenna also cannot work well for

our cascaded MIMO radar due to the 6× longer time gap between when the

same TX antenna transmits.

3.5.3 Radar Heatmap Generation

After compensating for the motion-induced phase variances, we then utilize

the non-overlapping virtual antennas to extract the angular information of

the reflections. We use the Conventional Beamforming algorithm [122] that

outputs a 2D range-azimuth (RA) radar heatmap of the scene in the polar

coordinates, where the pixel values represent the reflected signal power. We

use this radar signal processing pipeline to create two types of inputs for the

network:

High resolution cascaded radar: The high-resolution radar heatmap is

created using the uniform 86×1 virtual antenna array, emulated with multiple

TX antennas. It features the high azimuth resolution achieved using our

cascaded MIMO radar.

Low resolution single radar: Instead of using multiple TX antennas, here

we only use one TX antenna with all the RX antennas to emulate a non-

uniform 16×1 virtual antenna array, so motion compensation is not needed

and hence skipped. This processing pipeline approximately reduces the angle

resolution by half and introduces leakage artifacts.
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3.6 Radatron’s Network Design

Although our motion compensation algorithm can alleviate the motion-induced

distortions to some extent, it is not perfect. Specifically, the algorithm fails

in cases of high speed incoming cars, and there will be residual distortions

even after applying the motion compensation algorithm. For example, in

Fig. 3.2(c.iv), although after compensation the reflection is centered at the

location of the car, it is still smeared across a wider range of angles. To deal

with these residual distortions, one potential solution would be to cascade

M RX antennas with a single TX antenna. As we use only one TX here, the

radar heatmap does not suffer from any motion-induced distortion. However,

the virtual antennas in the low resolution version are a sparse subset of the

complete N·M virtual array. This results in a heatmap with lower resolution

and more leakages, as shown in Fig. 3.3. Using this heatmap alone as a

solution is therefore not sufficient.

In order to get the best of both worlds, Radatron combines the high res-

olution with the low resolution solution. Specifically, we leverage the high

angular resolution nature of former and the distortion-free nature of latter,

by fusing these two versions of radar heatmaps in Radatron’s network model.

We adapt the Faster R-CNN FPN architecture [123] which has been shown

effective previously [90, 108] for radar data. Figure. 3.8 shows Radatron’s

network architecture. It takes the two versions of radar heatmaps as input

into two parallel branches: The first branch uses the low resolution single

radar heatmap, which is free of motion-smearing and hence effective in de-

tecting highly dynamic objects such as incoming vehicles; the second branch

uses the high resolution cascaded radar heatmap and excels in accurately

capturing vehicle outlines. Radatron processes these two parallel branches

to bring them into a common feature space and then deep-fuses them at an

intermediate layer of the backbone network as shown in Fig. 3.8. At the

end of the backbone, the feature maps are then converted from the polar

to Cartesian coordinates before being fed to the Region Proposal Network

and the ROI heads. The output of the network will be 2D vehicle bounding

boxes. We will now explain each part of Radatron’s network in more detail.
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Figure 3.8: Radatron’s network architecture. We combine two branches of high
resolution and low resolution radar data in an intermediate layer. For each
feature map the number of channels and dimensions is indicated above and below
it respectively.

3.6.1 Radatron’s backbone

For the backbone, we adapt an FPN-based architecture. We process the two

input heatmaps to have the same dimension, and feed them into two identical

branches. Each of the two branches first goes through a stem layer which

consists of a 7×7 Conv. layer, ReLU non-linearity [124] and BatchNorm [125].

Each branch then goes through two ResNet stages, which are the same ones

used as the building blocks of ResNet50 [126]. We then combine the two

branches by concatenating their feature maps of the same dimension across

channels, and fuse them by applying a 3×3 Conv. layer. We further encode

the feature maps by passing them through ResNet stages, and combine them

to create the feature maps similar to [123].

3.6.2 Coordinate conversion

Compared to the Cartesian coordinate, the polar coordinate is more natural

to radar data as radar has uniform resolution across range and angle. It is

also easier for a convolutional network to learn radar artifacts like side lobe

leakages in the polar coordinates as they appear parallel to the range and

angle coordinates, but extend in a circular fashion in the Cartesian coordi-

nates. On the other hand, bounding boxes work naturally with Cartesian
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coordinates. We therefore feed in the radar data in the polar coordinates to

Radatron’s backbone network, and at the end of the backbone explicitly map

the features from polar to Cartesian coordinates using bilinear interpolation

and before feeding it to the RPN and ROI heads.

3.6.3 RPN and ROI head

As described earlier, the output feature maps of the backbone are converted

from polar to Cartesian coordinates before being fed into the network. We

adopt the RPN and ROI architecture [123] and add oriented boxes. Imple-

mentation details can be found in section 3.8.

3.6.4 Data augmentation

We applied two forms of data augmentations in training:

A. Flipping in Angle. The input heatmap is flipped along the angle axis. In

normal driving scenarios, most incoming cars appear on only one side of the

ego vehicle, and flipping azimuth angles eliminates such inherent bias in the

dataset.

B. Translation in Angle. We translate the input heatmap along the angle

axis. This transformation is similar to one demonstrated by Gao et al. [89],

with the difference that we perform circular shift in angle; i.e., the angles

outside the field of view wrap around and fill in the resulting blank space

after translation. As most other vehicles appear straight with respect to the

ego vehicle, this helps create more oriented cars.

3.7 Radatron Dataset

3.7.1 Data Collection Platform

Our data collection platform consists of a TI-MMWCAS cascaded MIMO

radar [92] and a ZED stereo camera [127] as shown in Fig. 3.3. Our radar

data features high resolution in both range and angle. Our hardware cascades

four TI radar chips, with 3 TX and 4 RX antennas each similar to the ones
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used in prior work [88, 96, 89], into a 12 TX and 16 RX MIMO radar system.

This cascaded MIMO radar can emulate a large virtual antenna array with up

to 192 antenna elements, which provides us with 1.2◦ azimuth resolution and

and 18◦ elevation resolution. We transmit FMCW radar signals at 77 GHz

with 3 GHz bandwidth, yielding a range resolution of 5 cm. We show more

details on our radar hardware in the supplementary material.

3.7.2 Data Collection Experiments

We drove with our data collection platform in diverse scenarios including

campus roads, our local urban streets, and the downtown area of Chicago, US

over 12 days. Each day, we conducted four 20-minute data collection sessions,

during which we streamed data with a frame rate of 10 FPS. Then we further

refined the data and filtered out empty frames with no objects. Our final

dataset consists of 152K frames translating into a duration of 4.2 hrs. Note

that although Radatron’s network only takes 2D range-azimuth heatmap as

the input, the raw radar data in our dataset also contains elevation and

Doppler information. For operator safety and numerical evaluation need,

our dataset was collected in clear weather, but we expect the results to hold

in tough weather, as vast prior works have shown that radar works well in

fog, rain, and snow [58, 81, 128]. As a initial verification, we conducted

controlled fog experiments to qualitatively evaluate Radatron’s performance

in fog.

3.7.3 Annotation

We manually annotated 2D bird’s-eye view (BEV) bounding boxes on our

radar data using stereo camera point clouds and RGB camera images as ref-

erences. We synchronized the radar and stereo camera frames using their own

time stamps after aligning the starting time of both sensors. We also cali-

brated for the coordinate system offsets between the two sensors by applying

a rigid motion transformation on anchor points [129].
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Table 3.2: Parameters and experimental configurations of Radatron’s
mmWave cascaded MIMO radar.

Center Frequency 78.5 GHz Chirp Duration 34.13 us
Bandwidth 3 GHz # Chirp Loops 64

Range Resolution 5 cm Chirp Interval 45.62 us
Chirp Slope 88 GHz/ms Frame Periodicity 40 ms

ADC Sampling Rate 15 MHz Velocity Resolution 0.054 m/s
# ADC Samples 512 Max Unambiguous ±20.85 m/s

Max Range 25.59 m Velocity
Azimuth Aperture 43λ Elevation Aperture 3.5λ
Azimuth Resolution ∼1.2◦ Elevation Resolution ∼18◦

3.8 Implementation

3.8.1 MIMO Radar Configuration

We report our cascaded radar parameters as well as its configuration in our

data collection experiments in table 3.2.

3.8.2 Training Details

We summarize our training details:

� Input: The input dimensions to our network are both 448×192 in the polar

(ρ, ϕ) coordinates, with range going from 2m to 22.4m and 5cm resolution,

and the azimuth angle in [0◦, 180◦], with 0.94◦ resolution. The output after

conversion to Cartesian (section 3.6) is of size 256×320, with the x-axis

from -16 to 16m and y-axis from 0 to 25.6m, both with 0.1m resolution.

We zero-pad the unmatched areas between the two representations.

� Anchor Boxes: We choose two anchor sizes of 28 and 35 pixels (geomet-

ric mean of dimensions) according to the average sizes of the cars in our

dataset and our output grid resolution. We choose the aspect ratio of the

anchors to be 2.5 which is typical for most vehicles, and anchor orientation

angles of −90◦,±45◦, and 0◦.

� Training Parameters: We train for 25K iterations with SGD Optimizer.

The learning rate starts at 0.01, decays by 0.2 after 15K and again after

20K iterations.
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3.9 Evaluation and Results

3.9.1 Evaluation Metrics

We use Average Precision (AP) as our main metric to evaluate Radatron’s

detection performance, following recent work [90, 108] in radar object detec-

tion, using Intersection over Union (IoU) thresholds values of 0.5, and 0.75.

We also use the mean AP (mAP) of IOU values from 0.5 to 0.95 with 0.05

steps. We follow the COCO framework [130] to evaluate Radatron.

3.9.2 Baselines

We compare with the following baselines:

� Radar used in prior work: We implement a virtual array equivalent to the

radar used in recent radar datasets [85, 97, 80, 98, 82, 131, 89].

� Stand-alone single radar TX: We trim Radatron’s network to parse one

TX antenna only, which is equivalent to having stand-alone top stream in

Fig. 3.8.

� Stand-alone cascaded radar: We process the Cascaded radar data with

high resolution but bypass our motion compensation algorithm, and feed

it into stand-alone bottom stream in Fig. 3.8.

3.9.3 Radatron Variants

We also implement three different variants of Radatron:

� Radatron (No Compensation): We remove the motion compensation algo-

rithm (3.5) from the signal processing pipeline.

� Radatron (High-res Only): We remove the top branch from Fig. 3.8 and

only feed in the high-resolution processed radar data through the bottom

branch.

� Radatron(Multi-res): We perform the motion compensation algorithm and

use both branches with high- and low-resolution processed radar data in

Fig. 3.8.
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3.9.4 Dataset Split

Out of 152K overall frames, we manually annotate 16K frames following

section 3.7. We split the dataset into train and test sets by a 3 to 1 ratio.

The set of days from which train and test frames were chosen were disjoint.

In addition, for the test test, we further split the vehicles of interest into

the following three different categories, as these scenarios introduce different

challenges to Radatron as we have discussed in section 3.5 and section 3.6.

1. Straight : Any vehicle on the same lane with an orientation within ±5◦.

2. Oriented : Any vehicle whose orientation is out of the ±5◦ range.

3. Incoming : Any vehicle on the opposite lane, moving towards the ego

vehicle.

The straight vehicles are relatively easy to detect even using low resolution

radars. However, for oriented vehicles, high resolution radar is required

to accurately detect their angle with respect to the ego vehicle. Finally,

incoming vehicles tend to get missed by the high resolution heatmap due

to the motion induced distortions, as explained in section 3.4. Instead, our

partial cascade radar will pick up the incoming cars when the high resolution

heatmap fails. Our test set includes 2854 straight, 327 oriented, and 512

incoming cars.

3.9.5 Performance Against Baselines

We first compare Radatron with the prior work radar baseline which uses

radar heatmaps used by previous art. As seen in table 3.3 , Radatron outper-

forms the prior work radar baseline consistently across all evaluation metrics.

This proves empirically that the higher angular resolution of our radar data

indeed improves the vehicle detection task. We highlight that while their

difference in the overall AP50 is around 8%, for the harder cases of oriented

cars, Radatron outperforms the baseline by as much as 14.8% in the AP50

metric. The gap in performance becomes even more prominent for AP75,

where Radatron outperforms the prior work radar baseline by as much as

15.9% overall and 33.1% for oriented cars. The same trend is also seen using

the mAP metric. We attribute this performance gap to our motion compen-

sation algorithm, multi-resolution network, and high angular resolution of
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Table 3.3: Performance against baselines. Best performing model is
boldfaced. Str. stands for straight. Ori. stands for oriented. Inc. stands for
incoming.

Eval
Split

Radar in Stand-alone Stand-alone Radatron
Metric Prior work single-TX cascaded (multi-res)

AP 50

str. 88.6% 92.4% 87.7% 95.6%
ori. 73.9% 77.6% 80.9% 88.7%
inc. 69.4% 74.3% 65.9% 79.7%

overall 84.6% 88.9% 84.6% 92.6%

AP 75

str. 45.0% 50.2% 42.9% 56.3%
ori. 24.0% 31.6% 31.9% 57.1%
inc. 24.6% 33.6% 26.2% 38.2%

overall 40.4% 46.4% 39.8% 56.3%

mAP

str. 47.3% 51.4% 45.5% 53.8%
ori. 34.4% 36.6% 38.1% 53.1%
inc. 31.2% 37.6% 30.9% 41.4%

overall 44.2% 48.4% 43.2% 53.8%

our dataset. For example, as shown in Fig. 3.1, one can visually make out

the outline of a vehicle by only looking at the radar heatmaps of Radatron,

while the prior work radar baseline only roughly localizes the car. This also

explains increased performance gaps for the harder cases of oriented cars,

and for the higher IoU thresholds.

We next compare Radatron with the other two baselines to show the impact

of the our compensation algorithm (section 3.5) as well as our fusion network

(section 3.6) on Radatron’s performance. We state few points. First, in AP50,

Radatron outperforms the single-TX and cascaded baseline baselines by 3.7%

and 8% respectively. For AP75, the margin jumps to 9.9% and 16.5% respec-

tively. This indicates that Radatron is better able to capture the harder cases

compared to the two baselines. Second, Radatron outperforms the single-TX

baseline in the oriented cars significantly, by 11.1% and 25.5% in AP50 and

AP75 respectively. This is in line with our expectation from section 3.6, as

the low-resolution and high leakage of single-TX makes it difficult to find

the vehicle orientation. Finally, for the incoming cars, Radatron outperforms

the cascaded baseline by large margins of 13.8% and 12% for AP50 and AP75

respectively. This confirms our hypothesis in section 3.5 and 3.6, as the lack

of motion compensation algorithm severely distorts the cascaded baseline, as

shown in Fig. 3.2(b).
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Table 3.4: Performance of Radatron’s variants. Best performing model is
boldfaced. Str. stands for straight. Ori. stands for oriented. Inc. stands for
incoming.

Eval Metric
Model Radatron Radatron Radatron
Split (no comp.) (high-res only) (multi-res)

AP 50

str. 93.3% 94.7% 95.6%
ori. 84.6% 90.7% 88.7%
inc. 78.9% 73.1% 79.7%

overall 91.1% 92.4% 92.6%

AP 75

str. 49.9% 61.4% 56.3%
ori. 40.4% 56.3% 57.1%
inc. 37.3% 34.6% 38.2%

overall 46.9% 57.1% 56.3%

mAP

str. 51.3% 56.6% 53.8%
ori. 43.9% 52.3% 53.1%
inc. 40.6% 37.6% 41.4%

overall 49.1% 53.9% 53.8%

3.9.6 Radatron’s Performance

We now analyze the performance of three different variants of Radatron de-

fined earlier in this section. The results are shown in table 3.4. The multi-

resolution model outperforms the no compensation model by 1.5% and 9.4%

in AP50 and AP75 respectively, which means that the multi-res architec-

ture alone without the motion compensation algorithm will not perform well

enough, especially for the harder cases, like high-speed incoming cars. On

the other hand, the multi-resolution model also outperforms high-resolution

only for incoming cars by 6.6% and 3.6% respectively, which further shows

that the motion compensation algorithm alone is not sufficient and can be

improved upon using the multi-res network. We note, however, that multi-

resolution’s performance improvement for the high speed incoming vehicles

comes with a slight decrease in performance for oriented cars compared to

the high-resolution only network. We envision that one could come up with

smart combination of high-res and multi-res variants of Radatronto improve

the results on all metrics.
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Table 3.5: Ablation studies on data augmentation and coordinate
system conversion. Best performing model is boldfaced.

Eval Metric AP 50 AP 75
Ablation Split str. ori. inc. str. ori. inc.
Cartesian input 91.8% 86.3% 66.5% 49.1% 53.5% 23.8%
Learned conversion 86.5% 55.4% 45.4% 42.7% 9.0% 8.7%
No augmentation 90.6% 77.7% 65.9% 53.2% 29.6% 21.3%
Radatron 95.6% 88.7% 79.7% 56.3% 57.1% 38.2%

3.9.7 Ablation Study - Data Augmentation

To study the impact of the two forms of data augmentations applied (dis-

cussed in section 3.4) on Radatron’s performance, we remove the data aug-

mentations while keeping the rest of Radatron’s pipeline the same. As the

results in Table 3.5 show, the augmentations consistently improve the per-

formance across all metrics. The 16.9% AP75 improvement over incoming

cars confirms our assumption on the horizontal flipping augmentation (sec-

tion 3.4), while the 27.5% AP75 improvement for oriented cars shows affirms

that angular shift can help with oriented vehicle predictions.

3.9.8 Ablation Study - Coordinate System

Here we wish to study the impact of different possible choices for input coor-

dinates. To do so, we consider two alternatives to our design. In the first ver-

sion, Cartesian input, we feed in Cartesian coordinates to the network from

the beginning by converting the input radar tensors from polar to Cartesian.

In the second version, learned conversion, we remove the conversion and let

the network implicitly learn to convert from the polar input to Cartesian

bounding boxes at the output. As the results in Table 3.5 show, Radatron’s

original coordinate conversion outperforms Cartesian input by 3.8% in AP50

and 7.2% in AP75 for straight cases. A similar trend is seen for oriented and

incoming cars. This confirms our hypothesis in section 3.4 that it is easier for

the network to learn the radar artifacts and suppress them in polar coordi-

nates compared to Cartesian. Radatron also outperforms learned conversion

by 9.1% in AP50 and 13.6% in AP75 for straight cars and even larger margins

for other cases. Hence, explicit conversion of the coordinates rather than

letting the network learn the conversion improves the performance.
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Table 3.6: Ablation study on fusion at different stages. Best performing
model is boldfaced.

Eval Metric
Model Radatron Radatron Radatron
Split (Early Fusion) (Late Fusion)

AP 50

str. 91.0% 93.5% 93.0%
ori. 88.0% 88.1% 86.8%
inc. 69.0% 62.5% 74.1%

overall 87.9% 89.4% 90.1%

AP 75

str. 51.5% 55.7% 54.0%
ori. 53.6% 55.7% 53.7%
inc. 28.4% 27.2% 31.9%

overall 48.8% 51.6% 51.4%

mAP

str. 52.0% 54.0% 53.2%
ori. 52.1% 51.8% 50.0%
inc. 32.4% 29.5% 36.6%

overall 49.5% 50.7% 50.7%

3.9.9 Ablation Study - Fusion at Different Stages

In section 3.6, we proposed a fusion based approach for Radatron to lever-

age the high resolution of the cascaded radar input and the distortion-free

nature of the single radar input. We pass the two inputs through identical

streams and concatenate them after the second ResNet block. The decision

of where to fuse the two input streams is a key design choice that affects the

performance of Radatron. We show this ablation study in Table 3.6 where we

compare Radatron with its two other implementations: one where we fuse the

two inputs at the beginning and pass them through a single stream network,

and, second, where we fuse the two streams after passing them individually

through all the ResNet blocks.

Looking at the results, it’s evident that fusing the low resolution and high

resolution inputs before feeding them into the network gives the worse per-

formance. While Radatron is outperformed by its late fusion implementation

for straight and oriented cars in all metrics, it still holds significant advantage

over the late fusion implementation for incoming cars with improvements of

11.6%, 4.7% and 7.1% in the AP50, AP75 and mAP metrics respectively.

One possible reason for this improvement is that the number of learnable pa-

rameters increase exponentially for the late fusion implementation and the

network does not see enough of these rare hard examples to learn so many

parameters optimally.
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3.9.10 Qualitative Results

We show example qualitative results from our test set in Fig. 3.9, by over-

laying the predictions (in solid red line) and ground truth bounding boxes

(dotted green line) on top of Radatron’s high-resolution input radar heatmaps

in column (b). We also compare Radatron’s performance against other base-

lines, and summarize our observations as follows. As the resolution of the

radar heatmap improves, the predictions also become more accurate espe-

cially for oriented cars. However, even with the same resolution as Radatron’s

heatmap, the cascaded baseline suffers when the targets are moving with a

high relative speed to the radar, e.g. the incoming cars in Fig. 3.9(c.iii-vi),

due to motion-induced distortion as we described in section 3.3. Through dis-

tortion compensation and fusion network, Radatron is able to overcome this

challenge and accurate predict incoming cars. We also noticed some typical

failure cases for Radatron, which we show in Fig. 3.9(b.vi-vii). These cases

are likely caused by the fusion network falsely trusting the low-resolution

branch and trying to resolve non-existing motion distortion. We show more

results and failure mode analysis in supplementary material.
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Figure 3.9: Examples from our test set. Ground truth marked in green and
predictions in red. (a) Original scene. Column (b) shows Radatron’s performance
overlaid on distortion compensated radar heatmaps. Columns (c) and (d) show
the performances of stand-alone cascaded and radar in prior work baselines along
with their input heatmaps respectively.
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Figure 3.10: Controlled Fog Experiment. (a) Original scene. (b) Scene in
fog. (c) Prediction overlaid on radar heatmap captured in fog.

3.9.11 Controlled Fog Experiment

Figure 3.10 shows Radatron’s performance in realistic fog emulated using a

fog machine with high-density water-based fog fluid, following past work [58,

59]. As depicted in the figure, while the cars are not be visible in the RGB

image, Radatron can accurately detect cars in the scene.

3.9.12 Failure Cases Analysis

Here we summarize a few typical failure examples of Radatron, and we ana-

lyze the possible reason for the prediction errors.

1. Occlusion. The first type of failure cases we notice is when the line of

sight path to a car is partially blocked by another car. In these scenarios,

Radatron can either miss the occluded car, e.g. Fig. 3.11(1), or predict

misplaced bounding boxes, e.g. Fig. 3.11(2). This is because the metal-

lic bodies of vehicles block mmWave signals, such that the radar signals

cannot reach the occluded parts of cars. Therefore, these parts become

invisible in the radar heatmap, and, in some cases, the incomplete reflec-

tions provide too little information for Radatron to detect the partially

occluded cars.

2. Specular reflection. We also noticed that some predicted bounding boxes

suffer from low intersection over union (IoU), either because of incorrect

car size, e.g. Fig. 3.11(3,4), or inaccurate orientation, e.g. Fig. 3.11(5).

Such errors are likely caused by the specular nature of mmWave radar
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(1) (2) (3) (4)
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Figure 3.11: Typical prediction errors in our test set. Ground truth is
marked in green and predictions are marked in red. Top row of each example
shows the original scene and the bottom row shows Radatron’s predictions and
ground truth bounding boxes overlaid on the input radar heatmaps.

reflections. Millimeter-Wave signals exhibit mirror-like reflections on the

smooth metallic surfaces of cars [33], as a result, even if the car is not

occluded, reflections from some parts of the car cannot propagate back

to the radar receiver, rendering these parts invisible in the heatmap. Ra-

datron tries to learn the specularity effect in radar reflections and infer

the complete car bounding boxes. However, due to severe specularity in

some scenarios, e.g. the side of the incoming pickup truck in Fig. 3.11(3),

predictions can be off in size and orientation.

3. False alarm due to background reflections. Although in most cases Rada-

tron correctly identifies foreground objects from the background, it some-

times confuses background reflections for cars. For example, in Fig. 3.11(6),

the strong reflections from the building structures very close to the road

is incorrectly detected as cars.

4. Two adjacent cars. Another tricky scenario for Radatron is when two cars

are very close to each other as shown in Fig. 3.11(7). Radatron sometimes
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mistakes the two clusters of reflections from the two nearby cars as the

specular reflection from a horizontal car, so it draws a single bounding box

across the two cars. Interestingly, we have also seen the reverse case where

Radatron predicts two vertical bounding boxes for a single horizontal car

as shown in Fig. 3.11(8). Fortunately, as we will discuss in section 3.10,

we can leverage Doppler information to better distinguish two cars very

close to each other versus a single horizontal car.

5. Lower spatial resolution on the edges of the field of view. Finally, compared

to the center of the scene, Radatron tends to make more mistakes on the

edges of the radar field of view, e.g. Fig. 3.11(5,8). This is potentially

due to the lower spatial resolution on the edges compared to the center.

Note that radar heatmaps do not have uniform spatial resolution across

the entire field of view. The radar angular resolution decreases towards

the left and right boundaries of the field of view. Besides, for the farther

away distances, the same angular resolution translates into a lower spatial

resolution. Finally, the transmitter and receiver antennas of the radar

also have lower gain away from the center. As a result, prediction errors

caused by the above mentioned sources are more commonly seen on the

edges of the heatmap due to relatively lower spatial resolution. On the

other hand, the reduced detection accuracy in the lower resolution regions

also proves the importance of improving the spatial resolution of radar in

achieving accurate object detection.

3.10 Doppler

3.10.1 Doppler Pre-Processing Algorithm

As we have described in 3.5.1, we combine 9 TX chirps to create a range-

azimuth (RA) radar heatmap. However, a radar frame further include 64

such chirp loops, which we leverage to extract Doppler information. Similar

to how the we estimate the motion-induced phase variances, we can calculate

the phase differences of the same virtual antenna over time (∆θ†) to estimate

63



the velocity-induce Doppler shift, and hence the velocity:

v =
c

4πf0 · 9T
∆θ† =

λ

36πT
∆θ† (3.4)

where T is the time interval between consecutive chirps.

A standard algorithm applies another fast Fourier transform along the 64

chirp loops that outputs a 3D range-azimuth-Doppler (RAD) radar tensors.

Objects with different velocities are grouped into different bins along the

Doppler dimension in the 3D radar tensors. Prior works [89, 109, 83, 108,

99] take this 3D radar tensor and collapse it into three different 2D radar

feature maps for processing and then recombined the encoded latent vectors.

Considering the sparse 3D RAD radar tensor, this multi-view network design

also reduces the sparsity in each 2D feature maps, making it easier to learn.

However, simply applying the 3D radar tensor processing using Doppler

FFT to our cascaded radar is also problematic. This is because the much long

time gap between two chirps used for Doppler processing leads to aliasing

in the Doppler/velocity domain. For example, in our experimental radar

configuration, the time gap between when the same TX antenna transmits in

adjacent chirp loops is 45.62µs×12 = 547µs. This results in a the maximum

unambiguous velocity of only ±1.73 m/s. As a result, all objects whose

velocities differ by n × 3.47 m/s will end up in the same velocity/Doppler

bin.

To resolve the velocity/Doppler ambiguity, we leverage the fact that the

minimum time gap between chirps transmitted by our cascaded MIMO radar

is only one chirp interval (T ). This very short time gap can be leveraged to

resolve a lot of aliasing. Therefore, we try to combine the 12 TX chirps

in a chirp loop and the 64 chirp loops to achieve high-resolution and less

aliased Doppler estimation. Unfortunately, chirps transmitted by adjacent

TX antennas are not co-located, so that in addition to the phase variance

introduced by motion, they also experience AoA dependent phase differences.

Earlier, when we tried to accurately estimate AoA, we tried to disentangle

these two sources of phase variances by compensating for the motion-induced

phase. Here, in order to accurately estimate Doppler/velocity, we need to

compensate for the AoA dependent phase differences instead.

To do so, we processed low-resolution range-azimuth (RA) heatmaps with

every single TX antennas in every chirp loop separately, which provides us
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with 12 ∗ 64 = 768 2D RA heatmaps. Every RA heatmaps is created using

only one TX chirp with one chirp interval time gap in between. For each

azimuth angle in these heatmaps, we compensate for the AoA dependent

phase differences by multiplying with the complex conjugate of our TX an-

tenna array steering vector. Then we take a fast Fourier transform along the

768 RA heatmaps, which outputs a 3D range-azimuth-Doppler (RAD) radar

heatmap, whose azimuth resolution is the same as the low-resolution input

RA heatmap to Radatron’s network. This 3D RAD radar tensor has very

high velocity resolution of 0.05 m/s, and a maximum unambiguous velocity

of ±20.85 m/s.

Although there are still residual aliasing along the Doppler dimension due

to imperfect AoA phase compensation, the dominant velocity of each ob-

ject always correspond to the highest power bin the the Doppler dimension.

Therefore, we further take a argmax operation along the Doppler dimension

to extra the dominant velocity for each range-azimuth bin. In this way, the

aliases in Doppler are neglected due to their lower power, and we can obtain a

2D Range-Azimuth Doppler index feature map, whose pixel values represent

the dominant velocity of the corresponding range-azimuth bin. Moreover,

the sparsity of the 3D RAD radar tensor also significantly reduced, making

it much easier for a relatively smaller neural network model to learn. We

concatenate this 2D RA Doppler index feature map as a second channel to

the single-TX input of our network.

3.10.2 Results

Table 3.7 shows the comparison of Radatron with and without Doppler. It

can be observed that concatenating Doppler information as a second channel

to the single radar input improves the overall performance by 0.5% overall,

by 3.2% for oriented and by 1.5% for incoming cars in the AP50 metric. In the

AP75 metric, Doppler improves the performance by 3.1% overall, by 3.6% for

incoming and by 4% for straight cars. A similar improvement with Doppler

also follows for the mAP metric.

We note that the network can leverage the Doppler information to separate

out closely spaced cars based on their different velocities. Similarly, it can

also use the Doppler information to distinguish a moving car from static
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Table 3.7: Ablation study on Doppler input. Best performing model is
boldfaced.

Eval Metric
Model Radatron

Radatron
Split (With Doppler)

AP 50

str. 93.5% 93.0%
ori. 90.0% 86.8%
inc. 72.6% 74.1%

overall 90.6% 90.1%

AP 75

str. 58.0% 54.0%
ori. 53.5% 53.7%
inc. 35.5% 31.9%

overall 54.5% 51.4%

mAP

str. 55.3% 53.2%
ori. 51.9% 50.0%
inc. 37.5% 36.6%

overall 52.8% 50.7%

background clutters. We believe that these are the key reasons behind the

improvement in performances with Doppler.

3.11 Limitations

First, the maximum range of Radatron’s radar was configured to 25m to

match that of our stereo camera [127]. Hence, our dataset does not include

cars beyond 25m. Second, Radatron does not leverage the 3D nature of its

high resolution datasets, which could potentially be used to detect 3D bound-

ing boxes. Third, Radatron was trained and tested using data collected in

the same country and may not work as well in other locations. Finally,

Radatron currently only detecs vehicles but could be expanded to more ob-

jects like pedestrians and bikes by annotating these classes. Addressing these

limitations is left for future work.
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Chapter 4

MEMS Spike-Train Filter: A Primer

4.1 Micro-Electromechanical System Resonator

Part II of this thesis builds on recent advances in Micro-Electromechanical

System (MEMS) Radio Frequency (RF) resonators and filters [132, 133].

MEMS technology has become popular in the design of RF filters because

MEMS RF filters built with MEMS resonators feature chip-scale form-factors

and a wide range of operating frequencies from a few MHz to 30 GHz. Be-

sides, MEMS filters are also fully integratable with Integrated Circuits (IC)

to form a single-chip RF solution for mobile and IoT devices.

MEMS resonators leverage the piezoelectric effect to convert RF signals be-

tween electromagnetic domain signal and mechanical domain waves, so that

the signal can be processed in the mechanical domain leveraging the unique

structures of the MEMS devices. Specifically, the input RF electrical signal

is first converted into acoustic vibrations through inverse piezoelectric effect.

The mechanical waves than pass through the structure for processing in the

acoustic domain. In this process, frequency selectivity is achieved because

not all frequencies can be efficiently converted between RF and acoustic do-

mains. Finally, the acoustic waves are converted back to RF signals through

piezoelectric effect. As a result, only frequencies that match the resonance

frequencies of the piezoelectric structure can go through the conversions with

little loss, while other frequencies are filtered out.

To better understand how the MEMS devices work, consider the diagram

of a MEMS acoustic resonator shown in Fig. 4.1. This resonator is commonly

referred to as a Lateral Overtone Bulk Acoustic Resonator (LOBAR). The

device consists of three electrodes on the top of a thin film made of the

piezoelectric material LiNbO3. RF signals come through the middle electrode

and can be efficiently converted into acoustic waves through the piezoelectric
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Figure 4.1: MEMS Resonator Architecture and Diagram of Operation

effect, as long as their frequencies match the resonances of the film and are

supported by the electrode design. Otherwise, the signals are reflected back

and the frequencies are filtered out.

4.2 MEMS Spike-Train Filters

Past work on MEMS RF filters optimize for filters with a single passband [134,

135]. In contrast, this thesis uses some of the very first MEMS Spike-Train fil-

ters designed and fabricated at University of Illinois Urbana-Champaign [136,

137], which has a number of sharp and narrow passbands, creating a spike

train in the frequency domain as shown in Fig. 4.2. Therefore, the filtered

spectrum becomes very sparse similar to being sampled on the frequency

axis, which enables sparse recovery after below Nyquist sampling, which we

will cover in more details in the following chapters.

To create such filter frequency response, the MEMS spike-train filter lever-

ages the periodic resonance frequencies of LOBAR to create overtone res-

onators that have an assortment of equally spaced resonance frequencies.

Note that the spike frequencies are determined by the LOBAR resonator

architecture, so they can be specifically designed.

The filter design actually involves a 4-way trade-off [137] between (1) the

frequency span, (2) the spacing between adjacent spikes, (3) the insertion

loss in the spikes, and (4) the out-of-band rejection. In this thesis, we focus

on the design of the spike-train frequencies and the spike width.
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Figure 4.2: Spike-Train Filter Frequency Response

The resonance frequencies are determined by:

� The width of the film: the film supports resonance frequencies for which

acoustic wave vanishes at the edges of the film [138] i.e., the sine wave

crosses zero at the edges as shown in Fig. 4.1. This condition is satisfied

when the width of the film W is an integer (k) multiple of half a wave-

length (W = kλ/2). Since f = v/λ, where v is the acoustic velocity in the

piezoelectric material, which is ∼ 4 km/s in our design. The MEMS res-

onator will resonate at frequencies: fk = kv/2W , and the spacing between

spikes ∆f = v/W .

� The placement of electrodes: the filter will operate at center frequency

fc determined by the distance D between the electrodes: fc = v/2D.

Furthermore, for an odd number of electrodes, only acoustic waves that

cross zero at the middle electrode, as shown in Fig. 4.1, will resonate.

� The bandwidth or frequency span of the filter around fc is determined by

the electrodes where their RF-to-acoustic conversion efficiency degrades

for resonance frequencies far from fc, resulting in higher loss in spikes far

from fc. Adding more electrodes reduces the loss in spikes near fc but

narrows down the frequency span. We found that a three electrodes give

the widest span with minimal loss of at most 2 dB.

Thus, the resonance frequencies will be the fks around fc where k is even.

This leads to a filter with center frequency fc and a spike train where the

spacing between the spikes is ∆f = v/W . By modifying the width of the

film and the position of the electrodes, we can modify ∆f and fc to control
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Figure 4.3: Microscope Image of Our Fabricated MEMS Filter

the frequency of the spikes in the filter.

In order to create filter passbands, a number of shunt and series resonators

are combined into a ladder filter circuit [139] as shown under the microscope

in Fig. 4.3. The resonance frequencies of the shunt and series resonators

are set slightly differently, and this resonant frequency difference determines

the spike width ∆F . Therefore, spike width ∆F of the spike-train filter is

determined by the film width difference between ∆W between shunt and

series resonators: ∆F = fc∆W
W

.

The frequency response of our fabricated filter is shown in Fig. 4.2. It has

19 periodic spikes with lowest loss between 161 and 579 MHz spanning a

wide bandwidth of 418 MHz. The spacing between spikes is ∆f = 22 MHz

and the width of each spike is around 1 ∼ 1.5 MHz.
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Chapter 5

Efficient Wideband Spectrum Sensing Using
MEMS Acoustic Resonators

This chapter presents S3, an efficient wideband spectrum sensing system

that can detect the real-time occupancy of bands in large spectrum. S3

samples the wireless spectrum below the Nyquist rate using cheap, commod-

ity, low power analog-to-digital converters (ADC). In contrast to existing

sub-Nyquist sampling techniques, which can only work for sparsely occupied

spectrum, S3 can operate correctly even in dense spectra. This makes it ideal

for practical environments with dense spectrum occupancy, which is where

spectrum sensing is most useful. To do so, S3 leverages MEMS acoustic res-

onators that enable spike-train like filters in the RF frequency domain. These

filters sparsify the spectrum while at the same time allow S3 to monitor a

small fraction of bandwidth in every band.

We introduce a new structured sparse recovery algorithm that enables S3

to accurately detect the occupancy of multiple bands across a wide spectrum.

We use our fabricated chip-scale MEMS spike-train filter to build a prototype

of an S3 spectrum sensor using low power off-the-shelf components. Results

from a testbed of 19 radios show that S3 can accurately detect the channel

occupancies over a 418 MHz spectrum while sampling 8.5× below the Nyquist

rate even if the spectrum is densely occupied.

5.1 Introduction

The past decade has witnessed significant changes in the wireless spectrum

as the FCC (Federal Communications Committee) has repurposed many fre-

quency bands for dynamic spectrum sharing. This includes the 6 GHz band,

released in April 2020, to be shared between Wi-Fi 6E and the incumbent

users in this band like microwave backhaul [140]. Another example is the 3.5

GHz Citizens Broadband Radio Service (CBRS) band, which was recently
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approved for commercial deployments in September 2019. To leverage the

CBRS band, unlicensed devices must sense a 200 MHz spectrum and avoid

causing interference to primary and licensed users like military radars [141].

Of course, an earlier and more well-known example of spectrum sharing is

the TV White Spaces which were released in 2010 [142]. Moreover, there are

lots of opportunities for spectrum sharing in the millimeter-wave frequen-

cies. In particular, the FCC released 14 GHz of unlicensed spectrum in the

60 GHz band that can be shared among Wi-Fi and IoT technologies [143].

These changes have been driven by the ever-increasing demand for wireless

connectivity and aim to exploit previously underutilized frequency bands to

accommodate new unlicensed applications and achieve highly efficient usage

of the spectrum.

Efficient and truly dynamic spectrum sharing, however, requires unlicensed

devices to sense wideband spectrum (hundreds of MHz to GHz) in real-time

to spot and access momentarily idle channels. Unfortunately, real-time wide-

band spectrum sensing is challenging since it requires high-speed analog-to-

digital converters (ADCs) that can sample the signal at the Nyquist sampling

rate. Such high-speed ADCs are expensive, have low bit resolution, and can

consume several watts of power [144, 145, 146, 147, 148].1 To avoid using

high-speed ADCs, today’s systems sequentially scan the spectrum, monitor-

ing each narrow band for a short period of time [149, 150]. As a result,

they cannot continuously sense all bands in real-time and can easily miss

highly dynamic and fleeting signals such as radar waveforms in the CBRS

band [151].

Past work has proposed using compressive sensing or sparse Fourier trans-

forms to sense wideband spectrum without sampling at the Nyquist rate [152,

153, 154, 155]. However, these approaches inherently rely on the assumption

that the frequency spectrum is sparsely occupied. Hence, they only work in

the case of underutilized spectrum where at most 5% to 10% of the frequency

bands are occupied [155, 148]. The goal of dynamic spectrum sharing, how-

ever, is to efficiently utilize the spectrum. Hence, wideband spectrum sensing

must work even in a densely occupied spectrum in order to scale usage to

many users and achieve high utilization.

1In fact, the power consumption of spectrum sensors is dictated by the ADC sampling
rate as shown in [148]. Hence, we can significantly improve the energy efficiency by
reducing the sampling rate.
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Figure 5.1: Filtering using MEMS Spike-Train Resonators

In this chapter, we introduce S3 (Spectrum Sensing Spike-train), an ef-

ficient low power spectrum sensing system that can monitor the real-time

occupancy of multiple frequency bands in a wide spectrum. S3 samples the

wireless spectrum below the Nyquist sampling rate using cheap, commodity,

low power ADCs but does not assume that the spectrum is sparsely occupied.

A key enabler of S3 is the use of MEMS acoustic resonators that can create a

spike-train like filter in frequency as shown in Fig 5.1. The MEMS filter pro-

cesses the signal in the acoustic domain using carefully designed piezoelectric

resonators with an assortment of equally spaced resonance frequencies. The

resonators will pass the signals in these resonance frequencies and filter out

the rest before converting the signal back to the RF domain. This creates an

RF filter with very narrow, sharp, and periodic passbands across a wideband

spectrum.

The spike-train filter enables S3 to sample the spectrum in the frequency

domain and monitor a small fraction of bandwidth in every band. S3 can

then tell if a band is occupied or idle by examining the sampled bandwidth

in it, without the need to recover the entire band. This is like finding an

available spot in a parking lot; we can tell if a spot is taken by peeking at

some part of the car in it, and we don’t need to get close to every spot and see

the entire car. Moreover, even if the wideband spectrum is densely occupied,

the filter makes the spectrum significantly sparser as shown in Fig. 5.1. This

enables S3 to sample the signal below the Nyquist sampling rate and still

recover the channel occupancies.

Translating S3 into a practical system, however, requires addressing two
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key challenges. First, we need an algorithm that can accurately and effi-

ciently reconstruct the spectrum occupancy. To address this, S3 builds on

past work in sparse recovery theory but differs from it in key aspects. In par-

ticular, compressive sensing algorithms require randomly sampling the time

signal and cannot simply be implemented using low-speed ADCs [153, 156].

Sparse Fourier transform algorithms, on the other hand, can be implemented

using low-speed ADCs, but they assume that the sparsely occupied bands

are randomly distributed in the frequency spectrum [157, 155]. The MEMS

filter creates a sparse spectrum that is highly periodic and far from random.

For such sparsity patterns, sparse Fourier transform algorithms are highly

sub-optimal.

S3 aims to achieve the best of both worlds, i.e. no random sampling in

time and no assumption of random distribution of occupied frequencies. To

this end, S3 leverages the uniquely structured sparsity pattern created by

the filter to overcome the above challenges. The filter restricts the occupied

frequencies to known locations in the spectrum, which significantly reduces

the search space. It also allows us to optimize the sub-Nyquist sampling rate.

In particular, optimal recovery can be achieved by choosing a sub-sampling

factor that is co-prime to the number of spikes in the filter, as we show in

section 5.4.

The second challenge is that in practice the MEMS resonators do not create

an ideal spike-train. The spikes are not extremely narrow and have a small

passband bandwidth which reduces the sparsity. Moreover, the separation

between the spikes is not perfectly equal, and the spikes themselves are not

identical. To address this, S3 leverages the fact that different filters that

are manufactured using the same process exhibit a very similar non-ideal

spike-train, as we show in section 5.5. Hence, the filter frequency response

can be measured once and incorporated into the design of S3. Specifically,

we co-design the hardware and recovery algorithm of S3 to account for the

filter non-idealities and optimize its performance.

Evaluation: We had fabricated a chip-scale MEMS filter, shown in Fig. 5.1,

which we leveraged to build a working prototype of S3. The prototype can

sense channel occupancies over a 418 MHz spectrum in real-time while sam-

pling 8.5× below the Nyquist rate. The prototype uses two cheap, low power,

off-the-shelf ADCs that sample around 50 MS/s (≈ 1/17 of the Nyquist rate).
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We extensively evaluate the performance of S3 using a wireless testbed with

20 software defined radios that can occupy the entire 418 MHz spectrum at

various power levels. Our results show that S3 can accurately detect oc-

cupied channels. Even when the spectrum is as crowded as 90% occupied,

S3 achieves a false positive rate of 0.02 and a false negative rate of 0.0047.

We also compare S3 to state-of-the-art prior work like BigBand [155] and

SweepSense [158] and demonstrate 5 − 10× lower error rate for non-sparse

spectrum. Furthermore, we show that S3 can recover the wireless spectrum

by performing outdoor and indoor measurements at various frequencies us-

ing a spectrum analyzer as the ground truth. Finally, we extend S3 to not

only detect the occupancy of the bands but also capture the power spectral

density of the spectrum by quickly sweeping the center frequency for 22 MHz

to cover the separation between the spikes.

Contributions: This chapter has the following contributions:

� The chapter bridges the latest advances in overtone MEMS acoustic res-

onators to RF spectrum sensing by leveraging spike-train filters to enable

cheap and low power real-time wideband sensing of a densely occupied

spectrum.

� The chapter presents a novel sparse recovery algorithm that leverages the

uniquely structured spectrum sparsity to efficiently recover a spectrum

sampled significantly below the Nyquist sampling rate.

� The chapter builds a prototype using commodity low-power components

and evaluates its performance in a real testbed.

5.2 Background

In this section, we provide a brief background on wideband spectrum sens-

ing using sub-Nyquist sampling. Further related work and background on

spectrum sensing can be found in section 5.9.

This chapter builds on past work that senses wideband spectrum without

sampling at the Nyquist rate using compressive sensing [153, 159, 156, 160,

161, 154, 162, 148] or sparse Fourier transform algorithms [155, 163]. How-

ever, these approaches only work when the spectrum is underutilized and
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sparsely occupied, which defeats the purpose of efficiently utilizing the spec-

trum. Furthermore, compressive sensing needs random sampling [153, 156,

148], and as a result, requires custom hardware designs that can consume as

much power as an ADC that samples at the Nyquist rate [164, 165]. Sparse

Fourier transform algorithms do not necessarily require random sampling but

must assume that the sparsely occupied bands are randomly distributed in

the frequency spectrum to accurately recover the frequencies [155, 157].

BigBand [155] leverages sparse Fourier transform and uses co-prime sam-

pling to acquire a sparse bandwidth while sampling 6× below the Nyquist

rate. However, it only works up to 10% spectrum occupancy at which point it

cannot recover the status of more than 14% of the spectrum. An extension,

D-BigBand [163] can sense dense spectrum by considering the differential

changes in occupancy. However, it assumes that the spectrum occupancy is

mostly static with very few changes over time. Hence, it would not work

for dynamic spectrum sharing where users sense and opportunistically trans-

mit whenever they find an idle channel. Ma et al. [166] also attempt to

extend BigBand to dense spectrum but requires sampling the signal first at

the Nyquist rate in order to permute the samples and filter the signal before

further sub-sampling it below Nyquist. S3, on the other hand, can sense

dense spectrum without the need for Nyquist sampling or random sampling.

It also makes no assumptions on the changes in occupancy or the distribution

of occupied bands across the spectrum.

The possibility of using MEMS RF filters in wideband spectrum sensing

has been raised up with both parallelized single passband filter array [167]

and overtone filters [136, 137]. Nguyen el.all proposed a frequency gating

spectrum analyzer consist of a RF channel-select filter bank implemented

a micromechanical circuit [167]. Using spike-train filters as narrowband

channelizers in spectrum sensors have been proposed [136, 137], along with

feature-base algorithm and sparse-Fourier transform based algorithm respec-

tively. However, to the best of our knowledge, no proof of concept wideband

spectrum sensing systems using spike-train filters have been demonstrated.

In this paper, we present a full energy-efficient wideband sensing system

enabled by spike-train filter. Besides, instead of directly applying existed

algorihtm, we co-design the sensor hardware and the occupancy detection to

achieve minimum sampling rate and computational complexity.
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Figure 5.2: S3 System Pipeline: S3 samples the wideband spectrum along
the frequency axis using the spike-train filter. The output spectrum is
sub-sampled with low-speed ADC. S3 leverages the structured sparsity in the
filtered spectrum to resolve ambiguity and collisions due to aliasing and recovers
spectrum occupancy.

5.3 S3 Overview

S3 leverages the MEMS spike-train filters we introduced in chapter 4 to sense

wideband spectrum while sampling below the Nyquist rate. Figure 5.2 illus-

trates an overview of the system pipeline. The received wideband spectrum

is passed through the MEMS spike-train filter which samples the bands in

the spectrum along the frequency axis. Specifically, the filter passes signals

in frequencies aligned with the spikes and suppresses all the rest of the fre-

quency components in the spectrum as shown in Fig. 5.2. The output of

the filter is a sparse spectrum that preserves a small fraction of each band

which we can use to monitor the occupancy of the band. Since the output

spectrum is sparse, we can sample it below the Nyquist rate and still recover

the occupancy information efficiently.

S3 uses low-speed ADCs to sub-sample the signal. However, sampling

below the Nyquist rate results in “aliasing” in the frequency domain i.e.,

multiple frequencies across the wide spectrum will alias (map) to the same

frequency. Aliasing can lead to ambiguity and collisions, which prevent us

from distinguishing frequencies that are occupied from those that are not.

S3 leverages the uniquely structured sparsity at the output of the spike-train

filter to resolve such ambiguity and collisions and recover the spectrum oc-
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cupancy. Ideally, one ADC is sufficient as we prove in section 5.4. However,

due to practical limitations and imperfections in the spike-train filter, S3

must use two ADCs sampling at different rates to accurately resolve ambi-

guity and collisions. We co-design the hardware and recovery algorithm to

optimize the ADC sampling rates while accounting for the non-idealities of

the spike-train filter as we describe in detail in section 5.5.

5.4 S3 Recovery Algorithm

In this section, we describe S3 recovery algorithm assuming an ideal spike-

train filter. In later sections, we extend S3 to deal with practical limitations.

Ideally, the spike-train filter will have equally spaced, very narrow and

sharp spikes that can be approximated as an impulse train.2 The frequency

response of such a filter can be modeled as:

G(f) =
K∑
k

δ(f − k∆f − f0) (5.1)

where K is the number of spikes, ∆f is the spacing between spikes, and f0 is

the frequency of the first spike as shown in Fig. 5.2. Hence, the filter covers

a spectrum bandwidth of BW = ∆f ×K.

Let x(t) be the input wideband signal in time domain and X(f) be its non-

sparse frequency representation whose bandwidth is also BW . After passing

x(t) through the spike-train filter, we get the signal x̃(t) whose frequency

spectrum is:

X̃(f) = X(f)G(f) =
K∑
k

Akδ(f − k∆f − f0) (5.2)

where Ak = X(k∆f + f0). X̃(f) is at most K sparse i.e., it has at most K

large frequency coefficients. Our goal is to recover these K coefficients Ak

and estimate their power to detect the occupancy of the band around the

frequency f0 + k∆f .

S3 samples the signal x̃(t) using a low-speed ADC that samples at a rate

2We can approximate the spikes as impulses if the width of the spike ≪ 1/T where T
is the time window over which we sample the signal.
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R = BW/P where P is an integer corresponding to the subsampling factor.3

The sampling rate R is chosen such that K ≤ R ≪ BW . Let y(t) be the

sampled signal i.e., y(t) = x̃(P × t), and let Y (f) be the Fourier transform

of y(t). Then, Y (f) is an aliased version of X̃(f):

Y (f) =
P−1∑
i=0

X̃(f + iR) (5.3)

Y (f) will cover a narrow bandwidth equal to R where frequencies in X̃(f)

that are equally spaced by R alias and sum together in the same frequency

bin in Y (f). Hence, once S3 detects power in a frequency bin Y (f), it knows

that this power could have come from P different candidate frequencies in

X̃(f). Figure 5.3 shows an example where if we sub-sample the signal by a

factor P = 2, then every two equally spaced frequencies in X̃(f) map to one

value in Y (f). Since X̃(f) only has power in K coefficients Ak corresponding

to the spikes of the filter, S3 can easily eliminate a lot of candidates. Ideally,

we want these coefficients to map to different bins. In this case, the bin value

will be the same as the coefficient Ak which we can immediately estimate.

However, if two coefficients Ak1 and Ak2 collide in the same bin as shown in

Fig. 5.3, it will not be possible for S3 to distinguish and estimate them.

S3 can choose the sampling rate R in a manner that guarantees that no

two coefficients collide. In particular, if the sub-sampling factor P and the

number of spikes K are co-prime, then we can guarantee that none of K

3Note that for simplicity, we have assumed that the ADC takes complex samples of the
signal i.e., there are two ADCs sampling the I and Q of the wireless signal. We will relax
this assumption in the following section.
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coefficients collide in the same bin and become indistinguishable. To see

this, consider the example shown in Fig. 5.3 where we have K = 4 spikes

with coefficients A1 to A4 in the filtered spectrum X̃(f). When we sub-

sample by a factor of 2 below Nyquist, there will be collisions between A1

and A3, as well as A2 and A4. However, when we sub-sample by a factor of

3 below Nyquist, none of the coefficients collide, because the sub-sampling

factor P = 3 and the number of spikes K = 4 are co-prime.

It is worth noting here that even though P = 3 uses a lower sampling

rate than P = 2, increasing the sampling rate in this case results in more

collisions. This is in contrast to past work on sub-Nyquist sampling [155, 157]

where higher sampling rates reduce collisions as the coefficients are assumed

to be randomly distributed in the spectrum. Unlike past work, the structured

sparsity of our spectrum requires carefully selecting the sampling rate to

ensure that all coefficients can easily and immediately be recovered.

The below lemma theoretically proves that if P and K are co-prime, then

none of the coefficients will collide.

Lemma 5.1. Given K, P are co-prime integers, let fi and fj be the fre-

quencies of any two spikes in the spike train filter i.e. fi = ki∆f + f0 and

fj = kj∆f + f0 such that 0 ≤ ki, kj < K. Then, for all fi ̸= fj, we have

fi ̸= fj mod R.

Proof. Assume there exist an fi ̸= fj such that the coefficients collide i.e.,

fi = fj mod R. Note that by definition of the spike train, we also have

fi = fj mod ∆f . Consequently, fi and fj are equal modulo the least common

multiple: LCM(R,∆f) = LCM(BW/P,BW/K) = BW , since K and P are

co-prime. Thus, fi = fj mod BW which is a contradiction since BW is the

entire bandwidth and we are given that fi ̸= fj. Hence, by contradiction, for

all fi ̸= fj, we have fi ̸= fj mod R and none of the K coefficients collide.

Given that we can choose a sampling rate that results in no collisions, we

can easily recover the coefficients Ak as follows. We can compute Y (f) by

taking an FFT of y(t) and for 0 ≤ k < K, we directly set Ak = Y ((k∆f+f0)

mod R). We then apply an energy detector on Ak to obtain the occupancy

of the band around the frequency k∆f + f0. If |Ak|2 is above the noise floor,
then the band is occupied, otherwise, it is empty. A pseudocode for the

overall sensing of S3 with an ideal spike-train filter is shown in Alg. 1.
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Algorithm 1 S3 Sensing with an Ideal Spike-Train Filter

Input: x(t)
Bk ← Band around frequency f = k∆f + f0
x̃(t) = g(t)⊛ x(t) ▷ Filter X̃(f) = X(f)G(f)
y(t) = x̃(P × t) ▷ Sub-Nyquist Sample
Y (f) = FFT(y(t))
Ak = Y

(
(k∆f + f0) mod R

)
if E

[
|Ak|2

]
> σ2 then

Bk is occupied
else

Bk is empty

We can also prove the following theorem about the correctness and the

computational complexity of the algorithm.

Theorem 5.1. Assuming a signal SNR > 0 dB for each occupied band, the

system correctly recovers the occupancy of the bands using O(K) samples and

O(K logK) computations which is optimal.

Proof. We will prove the above statement for the case where the entire spec-

trum is occupied. We can compute the the signal power of the filtered and

sub-sampled signal as:

E
[
∥Ỹ (f)∥22

]
= E

[
R−1∑
f=0

|Y (f)|2
]
= E

[
R−1∑
f=0

P−1∑
i=0

|X̃(f + iR)|2
]

= E

[
K∑
k=1

|X̃(k∆f + f0)|2
]
= E

[
K∑
k=1

|Ak|2
]
≥ KE

[
min
k
|Ak|2

] (5.4)

Let σ2 be the noise power per frequency. Since the spike-train filter sup-

presses the noise outside the spikes, the remaining noise in the signal is Kσ2.

Hence, the SNR of the filtered and sub-sampled signal is:

SNR =
E
[
∥Ỹ (f)∥22

]
Kσ2

≥ E [mink |Ak|2]
σ2

> 1 (5.5)

Thus, as long as the received signal is above the noise floor i.e. SNR > 1

(0 dB), filtering and sub-sampling will not increase the noise floor and the

occupancy of the band can be detected correctly. Now, the algorithm sam-

ples at rate R = O(K), takes an FFT of size O(R) and then performs O(R)

computations. Hence, it requires O(K logK) computations and O(K) sam-
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ple, which is optimal. The algorithm is also deterministic, unlike compressive

sensing and sparse Fourier transform algorithms which are randomized.

5.5 S3 with Practical Limitations

As one can see from the frequency response of our fabricated filter shown in

Fig. 4.2, the MEMS spike-train filter is non-ideal i.e., the spikes have some

width as can be seen from Fig. 5.4. Although the ∼ 1.5 MHz bandwidth is

narrow compared to the channel bandwidth, it is still significant. Moreover,

the spikes are neither identical nor perfectly equally spaced. In fact, they

differ in magnitudes, bandwidths, and shapes. As a result, if we simply pick

a sub-sampling factor P that is co-prime to the number of spikes K, there

could be many collisions among the wide spikes. Figure 5.5 shows how the 19

spikes of our spike-train filter alias after sub-sampling. Figure 5.5(a) shows

the spikes in the original wideband spectrum, while Fig. 5.5(b-d) show the

aliasing of the spikes when sub-sampled at three different sampling rates.

First, we choose the sampling rate to be 38 MS/s, because the resulting

sub-sampling factor P = 11 is co-prime to K = 19. However, the aliased

spectrum ends up with many collisions, as shown in Fig. 5.5(b). This suggests

that the derived optimum no longer holds due to the practical limitations of

the filter.

Fortunately, different filters that are manufactured through the same pro-

cess exhibit a very similar spike train. Figure 5.4 compares the measured

frequency responses of three spike-train filters we fabricated. We zoom into

two spikes; otherwise, the differences are very hard to spot. As one can

see, the filters are almost identical. Hence, we can measure the frequency

response of one spike-train filter and use it for the others.

Knowing the filter frequency response, we run an optimization problem

to find a sampling rate that has as little collisions as possible. Ideally, this

sampling rate should separate all the wide spikes after aliasing and prevent

them from overlapping with one another. If a collision is unavoidable, we

want it to only occur at the boundaries of the spikes, rather than having two

wide spikes fully overlap. For example, as shown in Fig. 5.5(b), the collisions

marked in red are unacceptable, because most of a spike’s frequencies expe-

rience collision. In contrast, the collisions marked in green in Fig. 5.5(c) are
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Figure 5.4: Measured Frequency Responses of Three Fabricated
MEMS Spike-Train Filters using the Same Process

tolerable, because only the boundaries of two spikes collide. Because we can

simulate and compare the aliasing at different sampling rates offline, the op-

timization problem, in fact, can exhaustively search for all possible sampling

rates.

Another practical aspect is that in the real system, we only sample real

signals and not complex in order to reduce complexity. Since the signal is real,

the frequency representation is symmetric around the y-axis. Hence, with a

sampling rate of R = 38 MS/s, the wideband spectrum actually aliases to a

bandwidth of R/2 = 19 MHz. Formally, if the original frequency of a spike

is fspike = kR
2
+ b, where b < R/2, then the aliasing frequency falias of the

spike can be found through the following equation:

falias =

{
b if k is even
R
2
− b if k is odd

(5.6)

In our specific case, we find 45.5 MS/s to be a really good sampling rate.

As can be seen from Fig. 5.5(c), it spreads out the aliased frequencies of

the wide spikes to 1.5, 2.6, 3.8, 4.6, 5.7, 7.3 MHz, etc. Therefore, most

collisions only occur at the boundaries of the wide spikes. However, it still

cannot avoid all unacceptable collisions. In fact, it is likely that no sampling

rate can. For example, our spike-train filter has a unique 17th spike that is

composed of two very close spikes. When sampling at 45.5 MS/s, these two

small spikes completely overlap with the 15th and 19th spikes respectively.

Therefore, when spike 15 and 19 are both occupied, we might falsely classify

the spike 17 as occupied.

To resolve such unavoidable collisions, we leverage another sampling rate

that provides us with a different set of aliasing frequencies for the spikes.

We pick the second sampling rate in a way that any two spikes colliding at
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Figure 5.5: Aliasing of the spike-train filter at different sub-Nyquist
sampling rates: (a) Locations of the 19 spikes on the frequency axis
(b)Aliasing of the spikes at 38 MS/s (c) Aliasing of the spikes at 45.5 MS/s (b)
Aliasing of the spikes at 52.74 MS/s.

45.5 MS/s do not collide again. To this end, we find a good sampling rate of

52.74 MS/s, and the resulting aliased frequencies of the spike train is shown

in Fig. 5.5(d). One can see that the two parts of spike 17 do not collide with

any other spikes at 52.74 MS/s. Thus, as long as we observe no power on

frequencies corresponding to spike 17 at 52.74 MS/s, we will classify spike 17

as empty. Hence, by leveraging such incoherence between the two sampling

rates, we can further resolve unavoidable frequency collisions and correctly

identify the empty bands.

Using the two sub-Nyquist sampled spectra, S3 recovers signal power in

each spike, and then identifies the occupancy of the corresponding band. We

leverage the two sampling rates through a soft voting scheme. The idea is that

given an aliased spectrum and the sampling rate, we know all the possible

original frequencies that correspond to the aliased frequencies. Hence, each

aliased spectrum provides a vote for the source frequencies of the non-empty

spectral components. Moreover, the non-empty frequencies on the original

spectrum are also constrained to the spike-train frequencies. Therefore, when

the two sampling rates vote for the same frequency that also falls in a spike,

the frequency is very likely to be the true source frequency on the wideband

spectrum.

Consider the two aliased versions shown in Fig. 5.6(a,b), where 11 out of

the 19 bands are occupied and the other 8 bands are empty. Now we use them

to vote where the non-empty frequency components come from. According

to Eq. 5.6, aliasing folds the wideband spectrum on to the bandwidth of R
2
.

Therefore, we can vote on all the possible source frequencies by unfolding
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Figure 5.6: Practical S3 Recovery Algorithm Through Voting: S3

unfolds two aliased versions of the filtered spectrum to get a vote for the
frequency components in the spike train. It then combines votes from the two
different sampling rates to estimate the signal power in the spikes and the
spectrum occupancy.

the aliased spectrum. We accomplish this goal in the following three steps:

� 1. Unfold - Flip: First, we flip the aliased spectrum Y (f) with a band-

width of R
2
to get the bandwidth between R

2
and R, as it equals to Y (R

2
−f)

according to Eq. 5.6.

� 2. Unfold - Replicate: Then we replicate and concatenate the resulting

spectrum from 0 Hz to R, and we get a vote for all frequencies in the

frequency range of the spike train as shown in Fig. 5.6(c).

� 3. Soft Voting: Finally, we combine the votes of the two sampling rates,

where we only consider the frequencies within the spikes. This is done by

multiplying the two votes on every frequency and taking a square-root. As

a result, the non-empty frequencies that are voted by both sampling rates

are amplified. In contrast, the frequencies where the two sampling rates

vote differently will be attenuated as shown in Fig. 5.6(d).

After unfolding the aliased spectra and recovering the filtered spectrum

through voting, we calculate the average signal power in each spike by sum-

ming up the voting results and divide it by the spike width. Additionally,

we also estimate the average signal power in the spikes using the unfolded

spectrum at each sampling rate separately. We classify a band as occupied if

all three power estimations in the corresponding spike exceed a pre-selected

power threshold. This power threshold is selected based on the noise floor,

which is measured when all bands are empty. By using all three estimates,
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we add hard voting on top of the soft voting which adds more robustness to

the occupancy detection.

5.6 Implementation

We have built a basic prototype of an S3 spectrum sensor by combining our

MEMS spike-train filter with commodity, off-the-shelf, low-power compo-

nents. Figure 5.7 shows the circuit diagram of this basic prototype, and the

actual prototype is demonstrated in Fig. 5.8. The signal is received through

a broadband receiver. It is bandpass filtered and amplified before down-

conversion to an intermediate frequency (IF) between 150 and 600 MHz.

The IF signal is bandpass filtered and passed through the spike-train filter.

It is then split and sampled by the two synchronized ADCs.

5.6.1 Basic Prototype

We wire-bond the MEMS spike-train filter onto a gold-plated PCB (printed

circuit board) as shown in Fig. 5.8. We use K&S 4523A Wedge Bonder and

25 µm Aluminum wire. We use two Anolog Devices LTC2261-14 14-bit ADCs

to sample the output of the spike-train filter. This ADC features an 800 MHz

wideband input analog bandwidth and low power consumption of 89 mW.

The ADC sampling is timed through an external square-wave clock signal.

We use the DC1370A ADC evaluation board and the DC890 data acquisition

controller to control the ADC sampling through the open-sourced LinearLab
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Figure 5.8: S3 Basic Prototype Circuit

Tools Python API. We bypass the input low pass anti-aliasing filter on the

ADC evaluation board to maintain the wide analog bandwidth.

5.7 Evaluation

In this section, we present our main evaluation results along with a few

microbenchmarks that provide insights into the performance of S3 in various

spectra.

5.7.1 Testbed

We evaluate the performance on S3 both through controlled experiments

in an indoor wireless testbed as well as through measurements of ambient

transmissions outdoors and indoors. The wireless testbed allows us to control

the spectrum sparsity, how fast the occupancy changes for different bands,

the type of signals transmitted, and the power of various transmissions. It

also allows us to know the groundtruth band occupancy in order to evaluate

the performance of S3.

The testbed, shown in Fig. 5.9, can create a 418 MHz spectrum with var-
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Figure 5.9: Evaluation Testbed of S3

ious occupancy status at different frequencies. It consists of 19 N210 USRP

software-defined radios, each transmitting on a 25 MHz bandwidth. While

the USRPs are not very far from each other, we vary their transmission power

randomly by up to 10 dB and observe received signal SNR that varies by up

to 20 dB between different USRP transmitters. To avoid interference from

ambient 2.4 and 5 GHz ISM band signals, we conducted experiments in two

418 MHz-wide spectra: 4.73 to 5.15 GHz and 1.93 to 2.35 GHz, each divided

into nineteen 22 MHz bands. We vary the spectrum occupancy from 10% to

90%. We also vary the type of modulation being used. We test with single

carrier BPSK and QAM as well as OFDM signals. Note that single carrier

modulation has a non-flat power spectral density and significantly more leak-

age, so it results in higher false positive rates as we show in section 5.7. We

also leverage the testbed to compare S3 with state-of-the-art sensing systems

as our baselines. We ran over 5000 experiments with different configuration

of occupancy, power, modulation, etc.

5.7.2 Sensing Densely Occupied Spectrum

We evaluate S3 using following metrics:

� False Positive Rate (FPR): Percentage of empty bands that S3 incorrectly

reports as occupied.
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Figure 5.10: False Positives and Negatives as a Function of Spectrum
Occupancy (Mixed Modulation Schemes): The figure shows the false
positive rate (FPR) and false negative rate (FNR) of S3 as the spectrum
occupancy increases when modulation schemes are randomly picked by
transmitters.

� False Negative Rate (FNR): Percentage of occupied bands that S3 incor-

rectly reports as empty.

� True Positive Rate (TNR): Percentage of occupied bands that S3 correctly

reports as occupied.

Figure 5.10 and Fig. 5.11 shows S3’s error rate in detecting occupied bands

as we vary the total occupancy of the spectrum between 10% and 90%. Fig-

ure 5.10 shows the results when the transmitters randomly pick a modulation

scheme (e.g. single carrier BPSK, QAM, or OFDM). In this case, when the

total occupancy of the spectrum is less than 30%, S3 achieves a median false

positive rate (FPR) less than 0.5% and a median false negative rate (FNR)

of 0%. As the total occupancy increases and the spectrum becomes more

crowded, the FPR and FNR gradually increase. However, even when the

spectrum is extremely crowded (∼ 90% occupied), S3 can still achieve 2%

median FPR and 0.47% median FNR.

Figure 5.11 shows the same results when the transmitters only use OFDM

modulation. In this case, the FPR and FNR become even smaller at all

levels of occupancy with a maximum median FPR of 0.6% and a maximum

median FNR of 0.25%. This result can be attributed to two factors: (1)

OFDM signals have flat power spectral densities. Therefore, signal power

detected in the spike train can more accurately reflect the signal presence

in the corresponding channels. (2) Single carrier modulation schemes have
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Figure 5.11: False Positives and Negatives as a Function of Spectrum
Occupancy (OFDM Modulation): The figure shows the false positive rate
(FPR) and false negative rate (FNR) of S3 as the spectrum occupancy increases
when transmitters only use OFDM modulation.

lower spectral efficiency and leak power outside their bands, which leads

to a higher FPR as can be seen from Fig. 5.10. Finally, Fig. 5.12 shows

the receiver operating characteristic (ROC) curve, which demonstrates the

trade-off between false positives and false negatives as we vary the threshold

for detecting occupied band.
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Figure 5.12: ROC Curve for Selecting Power Threshold: The figure
shows the Receiver Operating Characteristic (ROC) curve we used to select the
power threshold for deciding occupied and idle bands in the experiments where
the modulation schemes are randomly picked by the transmitters.
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Table 5.1: Sum of false positives and negatives for S3 and
State-of-the-Art prior work: The table compares the sum of FPR and FNR
of S3, BigBand, D-BigBand, and SweepSense at different spectrum occupancies.

BigBand D-BigBand SweepSense S3

10% 0.38% + 14%(unresolved) ∼ 0.95% 4.88% 0.00%
50% N/A ∼ 1.75% 13.09% 1.29%
90% N/A ∼ 3% 13.76% 2.47%

5.7.3 Comparison with State-of-the-Art

We compare S3 with three baselines from prior work:

� BigBand: [155] leverages sparse Fourier transform and uses co-prime sam-

pling to acquire sparse spectrum. It achieves 6× sub-sampling below the

Nyquist rate, but only works when the spectrum is sparse.

� D-BigBand: [163] extends BigBand to sense dense spectrum by consider-

ing the differential changes in occupancy. It also achieves 6× sub-sampling,

but assumes the changes in the spectrum occupancy over time are sparse.

� SweepSense: [158] enhances USRP software-defined radio’s ability to

quickly scan and sense wideband spectrum. It is able to scan 5 GHz

bandwidth in 5 ms with 2× 25 MS/s ADC sampling rate.

Table 5.1 shows the sum of FPR and FNR when the total spectrum occu-

pancy is 10%, 50%, and 90%. We compare S3 directly to the results reported

in [155] and [163], because they used custom hardware but were evaluated

using the same metrics as ours. One can see that in sparse spectrum (¡10%

occupied) where BigBand works, BigBand has a total error rate of 0.38%

but still cannot recover the status of 14% of the spectrum. In contrast, S3

accomplishes a 0% error rate at such low spectrum occupancy and samples

8.5× below the Nyquist rate, which exhibits a 1.4× gain over BigBand.

D-BigBand is able to work in densely occupied spectrum. It has a total

error rate of 0.95% and 3% when the spectrum is 50% and 90% occupied

respectively. However, S3 is able to outperform D-BigBand at all occupancy

levels with a 1.2× to 1.35× gain in accuracy. Moreover, S3 also achieves 1.4×
gain in sampling rate reduction and makes no assumptions on the changes in

spectrum occupancy. Therefore, unlike D-BigBand, S3 can monitor highly

dynamic spectrum, which we will demonstrate later in this section.

To compare S3 to SweepSense, we reproduce SweepSense on a N210 USRP
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Figure 5.13: False positives and negatives comparison between S3 and
SweepSense

with a CBX daughterboard using the codes and FPGA images released by the

authors. We use SweepSense to sense the spectrum generated by our testbed

along with S3. In Fig. 5.13, we show SweepSense’s error rate in detecting

occupied bands as we vary the spectrum occupancy between 10% and 90%

and when the modulation scheme is randomly picked by the transmitters.

This result shows that SweepSense can work in densely occupied spectrum.

When the spectrum is 10% occupied, SweepSense achieves an FPR of 3.88%

and an FNR of 1%. As the spectrum becomes more crowded, the FPR

and FNR of SweepSense increase, but they remain below 10% and 3.76%

respectively even if the spectrum is 90% occupied. SweepSense’s higher error

rates are likely due to the fact that fast LO sweeping can smear non-empty

frequency components, resulting in more leakage from the occupied bands

to the adjacent bands, which increases its false positive rates. We also note

that, SweepSense requires accurate phase information for the digital chirp

demodulation, so it is sensitive to the IQ imbalance in the hardware, which

is likely why it underperforms S3. However, SweepSense is highly valuable

as we can combine it with S3 to capture the power spectral density as we

show later in this section.

Next, we present some microbenchmarks that provide more insights into

the working of S3 and its performance.
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Figure 5.14: FNR vs SNR and Sampling Time

5.7.4 Microbenchmark - Sensitivity

To understand the ability of S3 to detect low signal-to-noise ratio (SNR)

signals, we examine the FNR of bands with different SNRs. The SNR we

show is the average signal power per Hz of RX signal / noise floor. We

compare four different sampling duration: 10, 20, 40, and 100 µs. The FNR

is high when the SNR is low; however, this can be addressed by increasing

the sampling duration. In fact, we can reduce the FNR by 5× at 3dB SNR.

As the SNR gets higher, the FNR goes down and down, and eventually

even for shoft sampling windows, the FNR is very low (≈ 0%). Note that

40 ∼ 100 µs is a short enough window to detect short transient packets and

fleeting signals, as it is comparable to the DIFS duration for Wi-Fi carrier

sensing (e.g. 34 or 50 µs).

5.7.5 Microbenchmark - Dynamic Range

Here we evaluate the dynamic range of S3, which is the ratio between the

strongest and weakest signal powers S3 can accurately detect at the same

time. It reflects the ability of S3 to detect low-power signals with the pres-

ence of much higher power signals that would cause interference and lower

the signal-to-noise-pluse-interference ratio (SINR), making low-power signals

harder to be detected. In Figure 5.15, we compare the FNRs in experiments

with different dynamic ranges. One can see that S3 achieves very low FNR

(< 0.63%) when the power difference between the occupied bands is up to

15 dB. As the signal power difference becomes even larger, the FNR of S3

increases. When the spectrum dynamic range reaches ∼ 21 dB, the FNR of
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Figure 5.15: FNR vs Dynamic Range

S3 is 2.54%. This result shows that S3 can accurately detect (FPN< 1%)

the relatively weak signals under interference from signals 19 dB stronger.

Note that, after wire-bonding, the spike-train filter experiences degradation

in the out-of-band suppression due to the direct leakage from the input port

to the output port of the PCB. Hence, the sensitivity and dynamic range of

S3 also degrade, but this issue can be resolved by better isolation in the PCB

design.

5.7.6 Microbenchmark - Resolving Collisions with Voting

We want to verify that through voting using two different sampling rates, S3

can effectively resolve frequency collisions. To this end, we compare S3 to

baselines where we detect the spectrum occupancy using only one ADC. In

Fig. 5.16, we qualitatively compare the correctness of occupancy detection

on each band in 20 randomly selected experiments. It shows that when using

either ADC alone, we have many false positives due to frequency collisions.

However, the two ADCs exhibit false positives in different bands, because

they experience frequency collisions between different spikes. As a result,

through voting S3 is able to distinguish and resolve false positives where the

two sampling rates disagree with each other. Furthermore, we also quantita-

tively show the FPR of S3 and baselines. As can be seen from Fig. 5.17, the

FPR of S3 is much lower than those of baselines, which suggests that our

voting scheme can effectively leverage the different sampling rates to resolve

frequency collisions. Note that ADC1 outperforms ADC2. This is expected

because, as we discussed in section 5.5, 45.5 MHz is an optimized sampling
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Figure 5.16: False positives comparison between S3 and baselines that
use single sampling rate: the spectrum occupancy detected by S3 and the
baselines in 20 randomly selected experiments.
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Figure 5.17: False positives comparison between S3 and baselines that
use single sampling rate: the false positive rate comparison as the spectrum
occupancy increases.

rate that can spread out the spikes and minimize the frequency collisions. In

contrast, the second sampling rate of 52.74 MHz is optimized to avoid having

the same collisions as ADC1, so it does not work as well by itself.

5.7.7 Monitoring Dynamic Spectrum

S3 senses all bands in the spectrum in real-time and makes no assumptions

on the changes of spectrum occupancy, so it can monitor highly dynamic

spectrum with rapidly-changing occupancied bands. To evaluate this ability

of S3 we create a rapidly-changing spectrum in our testbed whose occupied

bands change every 327 µs, and as a result, the total spectrum occupancy

varies between 0% and 63%. We use S3 to continuously monitor the occu-
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Figure 5.18: Monitoring rapidly-changing spectrum: The figure shows (a)
spectrogram (b) spectrum occupancy captured by S3 in real time.

pancy changes in the spectrum, and output a signal power estimation and

occupancy detection for every 76 µs-long frame. We show a spectrogram

captured by S3 consisting the signal power detected in every band per frame

in Fig. 5.18(a). Furthermore, we show the accuracy of the corresponding

occupancy detection per frame in Fig. 5.18(b). It shows that S3 is able to

capture the occupancy of rapidly-changing spectrum with great accuracy and

time precision.

5.7.8 Capturing Wideband Power Spectral Density

As we mentioned in section 5.6, we can sweep the LO frequency of S3 over

the 22 MHz spacing between spikes to sense all the frequencies in the spec-

trum. This enables S3 to capture the power spectral density (PSD) of the

entire wideband spectrum. At every LO frequency, S3 captures signal power

in the spike train and identifies the occupancy of each spike. For the occu-

pied spikes, S3 uses the signal power estimates in them to reconstruct the

PSD at the corresponding RF frequencies. When LO sweeping finishes, all

frequencies on the wideband spectrum will be reconstructed. Comparing to

conventional spectrum scanners, this extended S3 prototype only needs to

sweep a much narrower frequency range. Therefore, the scanning time is

much shorter.
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Figure 5.19: Wideband Power Spectral Density Capture (Testbed):
The figure shows the wideband power spectral density captured by the extended
S3 prototype. Spectra are generated by our evaluation testbed.

Figure 5.19(a-c) shows the PSD captured by the extended S3 prototype

of spectra generated by our testbed, along with the detected spike occu-

pancy. We use S3 and an HP 8563E Spectrum Analyzer to monitor the 1.8

to 2.4 GHz spectrum simultaneously. As one can see, the PSDs captured by

S3 match the ground truth from the spectrum analyzer very well. Besides, we

also measure PSDs of real-world spectra, both outdoors and indoors, which

are shown in Figure 5.20(a-c). Figure 5.20(a) shows the spectrum between

1.8 and 2.4 GHz measured outdoor at our geographical location. It shows

that S3 is able to capture the PSD of 4G LTE signals in Band 2 and 66. In

Fig. 5.20(b) and (c), we show the PSD of 2.4 GHz and 5 GHz Wi-Fi sig-

nals captured by S3 respectively. One can see that Channel 1 and 11 in the

2.4 GHz band as well as four non-overlapping 20 MHz channels (Channel

116, 120, 124, and 128) from 5.57 to 5.65 GHz in the 5 GHz band are being

used. Figure 5.20(a-c) demonstrate that the real-world PSDs captured by S3

also closely match the spectrum analyzer ground truth. On some frequen-

cies that S3 classifies as empty, the spectrum analyzer shows some non-zero

spectral components. However, this is expected because in our experiments,

the spectrum analyzer takes the maximum over a lot more scans than S3.

5.8 Extending the Prototype

The basic prototype we built using only one spike-train filter can be extended

to sense spectra with different center frequency, bandwidth, and channel
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Figure 5.20: Wideband Power Spectral Density Capture (Real-World):
The figure shows the wideband power spectral density captured by the extended
S3 prototype. Spectra are real-world spectra captured both outdoor and indoor.

allocation. Moreover, system level parallelism introduces another degree of

freedom and allow us to break the fixed design trade-offs at the filter level.

� Different Spectrum: By changing the LO frequency as well as the RF

bandpass filter and LNA, we can sense different frequency ranges. In our

evaluation, we test at center frequencies of 2.1, 2.4, 4.9, and 5.7 GHz.

� Larger Bandwidth: The current spike-train filter supports a bandwidth

of 418 MHz. We can extend S3 to larger bandwidth by either using two

sensors and configuring them to sense adjacent spectra or by using two

MEMS filters in parallel channels before combining the signals and sam-

pling it.

� Narrower Bands: The spikes in the spike-train filter are separated by

22 MHz. Hence, narrowband signals (< 20 MHz) that are not aligned

with the spikes might be filtered out. To address this, we can combine

frequency domain sampling with LO frequency sweeping over 22 MHz to

capture and sense all the frequencies in the spectrum as shown in our

results in section 5.7. Alternatively, we can design a MEMS filter with

narrower spacing or use two MEMS filters and set the center frequency to

be slightly different.

5.8.1 Changing LO Center Frequencies

First, we can combine two identical spike-train filters that are fabricated

using the same process. Hence, these two filters will have almost identical
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Figure 5.21: Circuit diagram and emulated spike-train filter for
alternative S3 architecture leveraging LO center frequency difference.

frequency responses with the same center frequency fc and spacing between

spikes ∆f . In order to cover different frequencies in the RF spectrum, we use

the two filters on separate receiver RF chains with different LO frequencies.

We demonstrate the circuit diagram and the emulated spike trains in the RF

spectrum in Fig. 5.21.

After bandpass filtering and amplifying the received signal, we split the RF

signal into two channels, and use two LOs with center frequencies fA
LO and

fB
LO to down-convert the signal to the IF frequencies. Then we pass each IF

signal into a spike-train filter to sampling the spectrum along the frequency

axis. Based on the LO frequency difference dfLO = fB
LO−fA

LO, we can emulate

two types of spike trains, as shown in Fig. 5.21(i) and (ii). When ∆fLO < ∆f ,

the two spike trains are slightly shifted on the frequency axis as shown in

Fig. 5.21(i). As a result, we can emulate a spike-train filter with narrower

spacing between the spikes. This increases the frequency domain sampling

rate of the filter and enables §3 to sense narrower channel bandwidths. On

the other hand, when dfLO = K∆f , the two spike trains are concatenated

along the frequency axis as shown in Fig. 5.21(ii). In this way, a longer spike

100



train with more spikes covering wider bandwidth is emulated.

Although it is straight forward to sample the two IF signals separately,

the number of ADCs required will increase linearly with the number of spike-

train filters. Instead, after passing IF signals on the two channels through the

spike-train filters, we combine the filtered signals and sample the combined

signal using two low-speed ADCs. The analog combination and splitting can

be achieved using an RF power combiner in series with an RF power splitter,

but it can also be done using a RF hybrid coupler. Note that with more

spikes in the emulated filter, there will be more aliasing in the sub-sampled

spectrum. Therefore, a higher ADC sampling rate might be needed, but the

sampling rate should be able to scale sublinearly with respect to the number

of spikes. Besides, the ADC input cutoff frequency needs to be higher than

the spike-train bandwidth.

The advantage of this architecture is that we can use the same MEMS

spike-train filter on the two channels without needing to redesign a new

filter. However, it requires two LOs and mixers which increases the cost and

power consumption of the system. 4

5.8.2 Changing Spike-Train Filter Structure

Instead of introducing a second local oscillator, we can use only one LO and

two different spike-train filters to emulate spike trains with wider bandwidth

as well as narrower or nonuniform spike spacing. As we mentioned in sec-

tion 4.2, we can modify the width of the piezoelectric film and the position

of the electrodes to obtain different ∆f and fc. When two spike-train filters

with different ∆f and/or fc are combined in parallel, we can emulate a spike

train with more sophisticated sparsity structures. We show the circuit dia-

gram for this type of alternative architectures in Fig. 5.22, along with three

emulated spike-train filter frequency responses.

In this architecture, the down-converted IF signal is split and filtered by

two different MEMS spike-train filters, whose center frequencies and spike

spacing are fA
c , f

B
c , and ∆fA, ∆fB. The output spectra of the two filters are

then combined and sampled by two low-speed ADCs. Using this architecture,

we can emulate the same spike trains as the first alternative architecture. For

4Since the power consumption of spectrum sensors is dictated by the ADC [148], the
additional power consumption of the second LO is not the primary concern.
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Figure 5.22: Circuit diagram and emulated spike-train filter for
alternative S3 architecture leveraging different MEMS spike-train
filters.

instance, when the difference between the filter center frequencies dfc = fB
c −

fA
c < ∆f , as shown in Fig. 5.22(i), the two spike trains are slightly shifted

on the frequency axis and emulate a spike-train filter with narrower spacing

between the spikes. Besides, when dfc = K∆f , the two spike trains are

spaced by the bandwidth of the spike train and emulate a wider bandwidth

spike train as shown in Fig. 5.22(ii). However, in additional to enlarging the

filter bandwidth and narrowing the spike spacing, we can even emulate a

non-uniformly spike train as as shown in Fig. 5.22(iii). This is achieved by

combining two spike-train filters with different ∆fA and ∆fB. Such spike

train profile provides us with all sorts of frequency resolutions across the

spectrum to accommodate the different channel bandwidth required by the

secondary users in TV Whitespace and CBRS bands.

102



5.9 Related Work

In this section, we provide more related work. For further background, we

refer the reader to section 5.2.

Spectrum sensing has been extensively studied in the past two decades [168,

169, 170]. However, most of this work focuses on narrowband sensing [171,

172, 173, 174, 175, 176, 177, 178]. In contrast, this chapter focuses on wide-

band spectrum sensing to enable dynamic spectrum sharing of many chan-

nels. Several systems attempt to sense wideband spectrum using narrowband

sensors without sequentially scanning each band [179, 180, 181]. Quick-

Sense [179] leverages analog filters and energy detectors to hierarchically

sense wide bandwidth by detecting the total signal power in groups of con-

secutive channels. However, when the spectrum is densely occupied, Quick-

Sense’s approach reduces to sequentially scanning the spectrum. SpecIn-

sight [181] leverages machine learning to predict spectrum occupancy based

on learned utilization patterns and optimize which channels to sense. Sim-

ilarly, Su and Wu. [180] use time-series analysis to predict which bands are

occupied. However, these systems are sensitive to training data and as-

sume that transmissions follow predictable patterns. Spectrum sharing is

based on opportunistic access and as a result is highly dynamic and unpre-

dictable [182].

Recent work aims to enhance USRP software-defined radio’s ability to

sense wideband spectrum [158, 183]. SweepSense [158] enables sensing wide-

band spectrum by quickly sweeping the center frequency of the USRP. It is

able to sweep 5 GHz bandwidth in 5 ms, which offers great potential for sens-

ing an extremely wideband spectrum on commercial software radios. How-

ever, SweepSense requires accurate phase information for the digital chirp

demodulation and is sensitive to the IQ imbalance. As a result, our com-

parison with SweepSense in section 5.7 shows that it can suffer from a high

error rate especially when the spectrum is not sparse. SparSDR [183] reduces

the backhaul and computation requirements for sensing sparse spectrum on

USRPs, which offers great utility for continuously monitoring underutilized

spectra but cannot scale to densely occupied spectrum.

The use of single passband MEMS filters in spectrum sensing has been

studied [184, 185]. However, these techniques require an array of channel-

select MEMS filters to form a reconfigurable filter bank. In contrast, S3 only
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uses a single MEMS spike-train filter that consists of overtone resonators.

Our work is also related to theoretical work on co-prime sampling [186,

187, 188] and multicoset sampling [189, 190] of sparse wideband spectrum.

These approaches also do not work for densely occupied spectrum. Moreover,

Xia [186, 187] require using k ADCs where k is the number of occupied

frequencies. Herley et al. [189] and Venkataramani et al. [190] aim to recover

the signals in each occupied band and must assume prior knowledge of which

bands are occupied. In contrast, S3 aims to recover the occupancy of each

band and uses 2 ADCs irrespective of the number of occupied frequencies.

S3 is further implemented and shown to work in practice.

Sub-Nyquist sampling has been used for test equipment to reconstruct

wideband periodic signals [191, 192]. However, these techniques require the

signal to be periodic and repeat for a long time in order to take on samples

during each period until all samples are recovered. Hence, these techniques

are not applicable to real communication signals where the signal is con-

stantly changing and carries different modulated bits.

Finally, some works aim to capture spectrum usage at large geographical

and time scales through crowdsourcing [193, 194, 195]. S3 is complementary

to these works, as it enables real-time wideband occupancy detection of every

single sensor with minimum data size and computational complexity.

5.10 Limitations

In this section, we discuss some limitations of S3.

� The frequency-domain sampling rate and maximum sensing bandwidth is

limited by the filter design trade-offs. As a result, narrowband signals

(< 20 MHz) and over GHz-wide spectrum cannot be sensed using a single

spike-train filter. This can be resolved by hopping the LO frequency as

shown in section 5.7. Alternatively, we can also use the extended architec-

tures proposed in section 5.8 that combines multiple spike-train filters in

parallel to break the fixed filter-level design trade-offs.

� Sub-Nyquist sampling leads to aliasing of both signals and noise, which

typically lowers the signal SNR and degrades the spectrum sensor’s sensi-

tivity. To minimize the loss of SINR, we design the spike-train filters to
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have low insertion loss and high out-of-band suppression i.e., most of the

noise is filtered out before it aliases. Moreover, instead of detecting signal

power, known signals like the preambles can be leveraged to improve the

sensitivity [196]. However, directly applying this technique to S3 would

require further research as the preambles might become corrupted after

applying the filter.

� While S3 can detect the occupancy of the different bands and reconstruct

the power spectral density of the spectrum, it cannot recover complex I

and Q samples of the signal. As results, S3 cannot reconstruct the signal

itself or decode the data in the signal.

5.11 Conclusion

This chapter presents S3, a new efficient real-time wideband spectrum sensing

mechanism that can work in densely occupied spectrum. S3 monitors only a

small fraction of bandwidth in each band to accomplish significantly below-

Nyquist sampling and, hence, great energy efficiency. It leverages recent

advances in RF MEMS filtering solution that enables sampling the spectrum

along the frequency axis. Empirical evaluation demonstrates that S3 can

accurately sense densely occupied spectrum and rapidly-changing spectrum;

we also show that S3 can be extended to capture the power spectral density

of the entire spectrum. We believe S3 can enable dynamic spectrum access

and very high spectrum utilization.
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Chapter 6

Enabling IoT Self-Localization Using Ambient
5G Signals

This chapter presents ISLA, a system that enables low power IoT nodes to

self-localize using ambient 5G signals without any coordination with the base

stations. ISLA operates by simply overhearing transmitted 5G signals and

leverages the large bandwidth used in 5G to compute high-resolution time

of flight of the signals. Capturing large 5G bandwidth consumes a lot of

power. To address this, ISLA leverages recent advances in MEMS acoustic

resonators to design a RF filter that can stretch the effective localization

bandwidth to 100 MHz while using 6.25 MHz receivers, improving ranging

resolution by 16×. We implement and evaluate ISLA in three large outdoors

testbeds and show high localization accuracy that is comparable with having

the full 100 MHz bandwidth.

6.1 Introduction

Recent years have witnessed a tremendous growth in the number of connected

IoT devices, with surveys projecting up to 31 billion deployed IoT nodes

by 2030 [197]. With such ubiquitous deployment of IoT nodes, the ability

to localize and track these nodes with high accuracy is essential for many

applications. For example, in data driven agriculture, it can enable real

time micro-climate monitoring and livestock tracking [198]. In smart cities,

IoT sensors are deployed throughout the city for tasks such as air quality

monitoring, tracking buses, trains, and cars, and monitoring the structural

health of infrastructure [199]. In the era of Industry 4.0, it can also enable

wide area inventory tracking and facilitate factory automation [200].

Today, the most prevalent outdoor localization technology is GPS which is

mainly used in cars and mobile phones. However, off-the-self GPS chips can

consume about the same power as the entire IoT device, thus reducing the
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battery life to half in addition to the extra hardware costs [3]. Due to this,

past work has proposed the use of cellular networks or dedicated IoT base

stations for localization [1, 201]. These solutions, however, either achieve

very low resolution of 100s of meters [1, 202] or require active participation

of the base stations to jointly compute the location or tightly synchronize

the base stations [201, 5, 203]. Realizing such solutions in practice requires

the cooperation of cellular providers to bear the additional cost of modifying

the base stations and a back end server to support the localization feature.

In this chapter, we ask whether an IoT device can accurately localize itself

simply by listening to ambient 5G cellular signals, without any coordination

with the 5G base stations? Doing so would allow us to easily deploy self-

localizing IoT nodes is wide areas without the need to modify the cellular

base stations or deploy new base stations for localization.

5G cellular networks present unique opportunities for enabling accurate

localization. First, the small cell architecture in 5G networks will lead to

a very high density of 5G base stations, with up to 40 to 50 base stations

deployed per square km [204], thereby allowing us to leverage more anchor

points in the network for increased localization accuracy. Second, the 5G

standard is designed to support very high data rates and can have OFDM

signals spanning up to 100 MHz in bandwidth in the sub-6 GHz frequency

range, and up to 400 MHz bandwidth in the mmWave frequency range [205].

Such large bandwidth can be used for accurate localization. To see how, con-

sider the 5G OFDM signal shown in Fig. 6.1(a) where data bits are encoded

in N frequency subcarriers. We can use the preamble which contains known

bits to compute the channel impulse response (CIR) by taking an inverse

FFT. The CIR in Fig. 6.1(a) shows the Time-of-Flight (ToF) of different

signal paths. Estimating the ToF from few base stations allows us to localize

the device. The larger the bandwidth of the signal, the higher the resolution.

In fact, we can achieve a resolution of 3 meters for 100 MHz and 0.75 meters

for 400 MHz signals.1

Leveraging these opportunities, however, is challenging since power-constrained

and low-cost IoT nodes cannot capture the large bandwidth of the 5G signals.

They are equipped with low-power and low-speed Analog-to-Digital Convert-

ers (ADCs) that can only capture a narrow bandwidth. In fact, while IoT

1The resolution is computed as c/B where c is the speed of light and B is the bandwidth
of the signal.
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has been one of the cornerstone applications in the design of 5G, it is only

supported in narrowband chunks for low data rate applications [206, 207].

Therefore, while the 5G standard does allocate higher bandwidth (up to 400

MHz) for mobile broadband and high data rate applications, IoT nodes can

capture only a very small fraction of this bandwidth (∼ 20× smaller [205]).

As a result, they significantly lose out on the ToF resolution that was made

possible by the high bandwidth 5G signals as shown in Fig. 6.1(b). Moreover,

it is infeasible to measure the absolute time-of-flight without any coordina-

tion or synchronization with the base stations.

In this chapter, we present ISLA, a system that enables IoT Self-Localization

using Ambient 5G signals. ISLA does not require any coordination with or

modifications to the base stations. The key enabler of ISLA is the use of

MEMS acoustic resonators. Past work [132] has demonstrated that we can

use such MEMS resonators to design new kinds of RF filters that look like a

spike-train in the frequency domain, as shown in Fig. 6.1(c). To understand

how we can leverage such MEMS spike-train filters, consider the 5G OFDM

signal shown in Fig. 6.1(a). Passing this signal through the filter allows us to

keep a few subcarriers of the wideband OFDM symbol while suppressing all

other subcarriers as shown in Fig. 6.1(d). There are two important features

of the resulting signal: (1) Since the remaining subcarriers that are passed

by the filter span the entire wideband, we should, in principle, be able to

recover the channel impulse response at the same high resolution of the orig-

inal signal. (2) Since the remaining subcarriers create a sparse signal in the

frequency domain, it should be possible to recover these subcarriers by sam-

pling the signal below the Nyquist sampling rate using the same low-power
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low-speed ADCs on the IoT nodes.2

However, recovering the channel impulse response from a signal sampled

with the low-speed ADCs is non-trivial. First, sampling the signal below the

Nyquist rate leads to aliasing in the frequency domain as shown in Fig. 6.1(e).

Some subcarriers might collide by aliasing on top of each other making it

hard to recover these subcarriers. Past work in sparse recovery addresses

this problem by using two co-prime subsampling rates [155]. Unfortunately,

we do not have the flexibility to choose co-prime subsampling factors. In

fact, since the number of OFDM subcarriers in the 5G standard is a power

of 2 (e.g. 1024, 2048, 4096), we can only subsample the signal by powers

of 2 otherwise the values of the subcarriers will be corrupted as we prove in

section 6.5.3 To address this, we carefully co-design the MEMS hardware

with the recovery algorithm. In particular, we jointly optimize the filter

shape (spacing between peaks, width of each peak, frequency span) with the

subsampling rate to minimize the number of colliding OFDM subcarriers as

we describe in detail in section 6.5.

Second, the recovered OFDM subcarriers are not uniformly distributed

across the wideband bandwidth. This is because non-idealities in the MEMS

filter make it hard to design a uniform spike train like the one shown in

Fig. 6.1(c). As a result, we can no longer recover the CIR using standard

super-resolution algorithms like MUSIC with spatial smoothing [208, 4] as

they require uniform measurements. Instead, we formulate an inverse op-

timization problem that accounts for non-idealities and optimizes the CIR

in the continuous time domain to achieve super resolution as described in

section 6.5.

Finally, while the above can provide very precise ToF measurements, these

ToF estimates are not going to capture the true time taken by the signal to

travel between the base station and the IoT device. This is because the 5G

base stations are not time-synchronized with each other or the IoT device. To

localize the device without any synchronization with the base station, ISLA

leverages a second antenna on the receiver to compute the differential ToF of

the propagation paths. While the absolute ToF measurements are corrupted

by synchronization offsets, these offsets are constant across the 2 antennas on

2Note that the MEMS filter is passive and does not consume any power.
3For example, for a 100 MHz OFDM signal, we can only sample at 50 MS/s (2×), 25

MS/s (4×), 12.5 MS/s (8×), 6.25 MS/s (16×), ...
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the IoT node, and hence can be eliminated by subtracting the measurements

from the 2 antennas. Using this differential ToF at the IoT receiver, we show

in section 6.7 that with measurements from four or more base stations, the

IoT device can localize itself regardless of its orientation. We integrate our

approach into a full system that addresses additional system challenges such

as figuring the base station ID and accounting for carrier frequency offsets.

Evaluation: We implemented and evaluated ISLA indoors for microbench-

marks and outdoors for overall localization performance. We ran experiments

in three outdoor settings:(1) Between campus buildings (52 m×85 m), (2) a

large parking lot (240 m×400 m), and (3) an agricultural farm (480 m×860
m). We use USRP X310 radios as base stations that can transmit high-

bandwidth packets of 100 MHz. Our custom IoT nodes are equipped with 2

antennas and subsample the 5G signals at 6.25 MS/s which is 16× below the

Nyquist rate. We fabricated a MEMS spike-train filter operating at a center

frequency of 400 MHz and used it to demonstrate accurate reconstruction

of the channel impulse response. However, due to significant interference at

the 400 MHz band outdoors in our city, we ran experiments at 1 GHz and

applied the filter response in digital. Our results reveal that with 5 base

stations in range, ISLA can achieve a median accuracy of 1.58 m on campus,

17.6 m in the parking lot, and 37.8 m in the farm where the IoT node can

be as much as 500 meters away from most base stations. For the parking

lot testbed, the accuracy improves to 9.27 m with 15 base stations and 4.26

m with 25 base stations in range. We compare ISLA’s localization approach

with several baselines [208, 209, 1] and show up to 4−11× higher localization

accuracy. Finally, we show that ISLA achieves a comparable performance to

having a full 100 MHz receiver while using a 16× lower sampling rate.

Contributions: We make the following contributions:

� We present, to the best of our knowledge, the first system that allows

IoT nodes to localize themselves using ambient 5G signals without any

coordination with the base stations.

� We demonstrate the ability to reduce the sampling rate by 16× while

retaining the benefits of high bandwidth 5G signals by leveraging recent

advances in MEMS RF filters.

� We implement and evaluate ISLA to demonstrate accurate localization in

3 outdoor settings.
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6.2 Related Work

Localization has been extensively studied in cellular, WiFi, and IoT networks.

Our work differs from past research in that it is the first to enable self-

localization using ambient 5G signals without requiring coordination with

the base stations.

6.2.1 Cellular Based Localization

Several studies [210, 202, 1, 2, 211] have proposed to use nearby cell tower in-

formation and statistics in order to localize a mobile device. These methods,

however, have a median accuracy of around 100 to 500 meters and are mostly

useful for very coarse localization. To improve localization accuracy, Aly et

al. [212] and Shokry et al. [213] propose to combine WiFi APs with cellular

base stations. Despite their relatively higher accuracy, these methods require

fingerprinting the surroundings and as such require extensive training and do

not generalize to new locations. More recent work exploits massive MIMO

and millimeter wave for localization in 5G [214, 215, 216]. However, all of

this work requires coordination with base stations and assumes the devices

can capture the entire bandwidth of the 5G signals which does not work for

IoT devices.

6.2.2 IoT Based Localization

Bansal et al. [3] leverage TV whitespace to achieve high localization accuracy

for LoRA IoT devices. However, it requires all base stations to be tightly

synchronized at the physical layer (time and phase) in order to measure

TDoA (Time Difference of Arrival). Recent work [201] designs low power

backscatter devices that leverage LoRa for localization to achieve high accu-

racy. However, the system mainly targets indoor applications where software

radios can be deployed as base stations to sample the I/Q of the signal and

localize the IoT node. Moreover, its current system design [201] supports

only a single node. Sallouha et al. [217] propose an outdoors localization

technique for SigFox IoT devices based on fingerprinting. However, as men-

tioned earlier, fingerprinting requires constant training and cannot scale to

new environments. Finally, there is a lot of work on using UWB or RFID
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nodes for localization [218, 219, 220]. However, these works focus on in-

doors and short range as the range of UWB and RFIDs is limited to 10-30

meters [221, 222].

6.2.3 IoT Self-Localization

LivingIoT [223] enables self-localization on IoT nodes. It designs a minia-

turized device that can be carried by a bumblebee and uses backscatter for

communication. The node localizes itself by extracting the angle to the Ac-

cess Point from the amplitude measurements using an envelop detector. The

technique, however, requires the APs to switch the phase across two anten-

nas to change the received amplitude at the IoT node, and hence, cannot be

applied to 5G without modifying the base stations. Naderiparizi et al. [224]

enable self-localization by placing a camera on a WISP RFID but only op-

erates within a range of 3.6 m from the RFID reader.

6.2.4 WiFi Based Localization

There has been a lot of work on indoor localization using WiFi [5, 208,

225, 226, 227, 228, 229, 4, 209]. The closest to our work are SpotFi [208],

Chronos [5], and mD-Track [209], which estimate the channel impulse re-

sponse (CIR) and time of flight (ToF) from the WiFi access point (AP).

Chronos [5] hops between WiFi channels to compute the CIR at high reso-

lution. However, it requires tight timing coordination with the AP to com-

pensate for carrier frequency offset (CFO) and ensure phase coherence across

the measurements. ISLA, on the other hand, captures measurements from

many frequencies across a wideband without hopping by using the MEMS

filter, and hence, does not require any coordination with the base stations.

SpotFi [208] combines measurements across antennas with large WiFi band-

width to separate Line of Sight (LoS) path from multipath reflections in

the CIR using MUSIC along two dimensions: ToF and Angle of Arrival

(AoA). mD-Track [209] also incorporates Doppler shifts and Angle of Depar-

ture (AoD) in addition to ToF and AoA and iteratively refines the CIR to

achieve a better estimate of the LoS path. In section 6.10, we adapt SpotFi’s

and mD-Track’s CIR estimation algorithms to our setting and demonstrate
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that ISLA’s algorithm achieves 4− 11× higher accuracy. It is worth noting,

however, that for our application, these past works cannot benefit from the

doppler or AoA/AoD dimensions.

6.3 Background

6.3.1 Wireless Channel Impulse Response (CIR)

The wireless channel can be modeled as the superposition of the signal along

all the different paths it takes to travel from the transmitter to the receiver.

The channel at frequency fi can be written as: hi =
∑L

l=1 al exp
−j2πfidl/c,

where L is the number of propagation paths between the transceivers, dl is

the distance traversed by path l, al is the complex path attenuation of path

l, and c is the speed of light.

In OFDM systems, data is transmitted over multiple frequency subcarriers

{f0, . . . fN−1}. If the frequency spacing between these subcarriers is ∆f , then

the bandwidth spanned by the signal is B = ∆f × (N − 1). Now, given the

channel measurements {h0, . . . hN−1} across these frequencies, the Channel

Impulse Response (CIR) can be computed as the inverse FFT of the channel

measurements.

CIR(τ) =
N−1∑
n=0

( L∑
l=1

al exp
−j2π

dl
c
fn
)
expj2πτfn (6.1)

where τ = { 0
B
, . . . (N−1)

B
} seconds. There are two important things to note

here. First, the resolution in Time-of-Flight in the CIR is 1/B seconds, that is

inversely proportional to the bandwidth B. Hence, larger bandwidth results

in higher ToF resolution and more accurate ranging. Second, the maximum

unambiguous ToF that can be measured from the CIR is (N−1)
B

= 1/∆f

seconds. This means, if some physical propagation path in the environment

has ToF > 1/∆f then it would alias and appear at a different tap value in

the estimated CIR in Eq. 6.1. For 5G OFDM signal with B = 100 MHz

bandwidth and ∆f = 60 kHz , we have a resolution of 10 ns (3 meters) and

a range of 16.6 µs (5 km).
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Figure 6.2: Overview Showing the Flow of ISLA’s System.

6.4 System Overview

ISLA enables self-localization on narrowband IoT devices by leveraging the

MEMS spike-train filter to capture ambient wideband 5G signals. ISLAconsists

of 3 main components:

1. Capturing the wideband 5G OFDM signal using the MEMS filter: The

received 5G signal is passed through the MEMS filter which samples the

OFDM symbol in the frequency domain. Specifically, the MEMS filter

passes the OFDM frequency bins that align with the filter passbands while

suppressing all other frequency bins. The resulting output from the filter

is a sparse spectrum as shown in Fig. 6.2(b). This sparse signal is then

subsampled by the narrowband IoT device significantly below the Nyquist

rate (16× lower) which results in aliasing the remaining subcarriers into

the narrowband as shown in Fig. 6.2(c). We co-design the filter hardware

with the recovery algorithm to easily reconstruct the wideband OFDM

subcarriers as we describe in section 6.5.

2. Super-Resolution CIR Estimation: Using the recovered wideband channel

measurements, ISLA then reconstructs a high resolution Channel Impulse

Response (CIR) by leveraging its super-resolution algorithm which es-

timates the off-grid positions of the propagation paths as described in

section 6.6. This high-resolution CIR allows ISLA to filter out the LoS

path from the multipath in the channel for high resolution time-of-flight

estimation as shown in Fig. 6.2(e).

3. Localization Algorithm: Since the IoT node is not synchronized with the
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base station, the measured ToF will be corrupted by a timing offset. To

address this, ISLA leverages two antennas on the IoT device and computes

the differential CIR across the antennas to eliminate the synchronization

offsets. This results in the locus of the IoT device to lie on a circle that is

defined by the locations of the base stations and the angle subtended by

the base stations at the IoT device’s location, as we explain in section 6.7.

Thus, by looking at the intersection of such circles, we can accurately infer

the position of the IoT device as shown in Fig. 6.2(f). Finally, we show

how to integrate ISLA with the 5G-NR standard by addressing additional

system challenges in section 6.8.

6.5 Capturing 5G Signals Using Spike-Train Filter

In chapter 5, we have demonstrated using the MEMS spike-train filters for

wideband spectrum sensing. However, S3 can only detect signal power at

different frequencies and cannot recover complex I and Q samples needed

for estimating the CIR. Furthermore, S3 deals with collisions resulting from

aliasing by using co-prime sub-sampling rates. Such approach does not apply

in the context of 5G OFDM signals, since, as we show in section 6.5 the

sub-sampling factor can only be a power of 2. ISLA instead co-designs the

hardware filter together with sampling rate to avoid collisions.

ISLA leverages the MEMS spike-train filters to capture the wideband chan-

nel measurements on a narrowband receiver. We explain this sensing process

through Fig. 6.2. Consider a preamble OFDM symbol transmitted from

the base station with N subcarrier frequencies at {f0, . . . , fN−1}, shown in

Fig. 6.2(a). Let the received time domain symbol be x(t) and its frequency

domain representation be X(f). We have X(f) =
∑N−1

n=0 cnhnδ(f − fn),

where cn are the data bits modulated onto the subcarriers and hn are the

channel values at fn. We want to extract this channel information to com-

pute the Channel Impulse Response CIR(τ). Since the preamble bits cn are

known, we can compensate for cn and compute the CIR(τ) by taking an

IFFT of the channel values hn. However, this requires capturing the entire

bandwidth of the 5G OFDM signal. Our goal is to recover the CIR using a

narrowbandwith. To do so, we leverage the MEMS spike-train filter.

The spike-train filter response is made up of uniformly spaced passbands as
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shown in Fig. 6.2(b). The spike-train filter serves to sparsify the OFDM sym-

bol by selectively passing subcarriers that fall inside the MEMS passbands,

while suppressing all other frequencies. Let the set of frequencies passed by

the spike-train be indexed by M . Then, the frequency domain of the signal

X̃(f) (x̃(t) in the time domain) after passing through the spike-train filter

will be X̃(f) =
∑

i∈M cihiδ(f − fi).
This sparse spectrum is shown in Fig. 6.2(b). Next, the IoT receiver

subsamples the signal x̃(t) using a low-speed ADC that samples at a rate

R = B/P , where B is the bandwidth of the transmitted symbol and P is

an integer corresponding to the subsampling factor. Let y(t) be the subsam-

pled signal, that is, y(t) = x̃(P × t), and let Y (f) be its frequency domain

representation. Then Y (f) is an aliased version of X̃(f):

Y (f) =
P−1∑
i=0

X̃(f + iR) (6.2)

Y (f) will cover a narrow bandwidth equal toRMHz as depicted in Fig. 6.2(c).

The process of aliasing is as follows. Any frequency fj, j ∈M , that falls out-

side the narrowband of the IoT device, will alias onto the frequency bin f̃j

inside the narrowband after subsampling, such that fj − f̃j = z × R, where
z is some integer. Note that for every fj, we have a unique f̃j. So given

the measurement at the aliased frequency f̃j, we can potentially recover the

channel value hj at the corresponding unaliased frequency fj.

However, recovering these channel values from the aliased spectrum is non-

trivial because multiple of the frequency subcarriers passed by the spike-train

filter may collide by aliasing on top of each other and summing up. This is

unfavorable since now we are unable to extract the channel values for any

of the colliding frequencies. Past work addresses this by leveraging multiple

co-prime subsampling factors, which ensures that the same frequencies don’t

collide repeatedly.

Unfortunately, we do not have such flexibility to choose any sub-sampling

factor here. This is because in order to recover the channel value hj from

the aliased frequency f̃j, we need to ensure that the complex scaling factor

cj × hj encoded on subcarrier fj remains preserved upon aliasing. This

is crucial because the wireless channel information is contained inside this

scaling factor. The following lemma states the condition that ensures this:
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Lemma 6.1. For a sub-sampling factor P and N OFDM subcarriers, the

complex valued scaling factors for each subcarrier will be preserved upon alias-

ing if N = z×P , for some integer z, given the aliasing results in no collisions.

Proof. Assume that x[n] is a discrete signal from 0 to N − 1, and we are

sub-sampling (or decimating) it by a factor of P , meaning y[n] = X[n × P ]
for some integer P . Then the Discrete Fourier Transform of y[n], denoted by

Ŷ [k] is

Ŷ [k] =

⌊N/P ⌋−1∑
n=0

x[nP ]e−j2 2π
⌊N/P⌋kn

=
1

P

N−1∑
n=0

x[n]
P−1∑
m=0

ej
2π
P

mne−j2 2π
⌊N/P⌋

kn
P

=
1

P

P−1∑
m=0

(N−1∑
n=0

x[n]e−j( 2π
N

n)(k
N/P

⌊N/P⌋−
N
P
m)).

Now if P divides N , in other words N = Pz for some integer z, the above

simplifies to

Ŷ [k] =
1

P

P−1∑
m=0

(N−1∑
n=0

x[n]e−j( 2π
N

n)(k−zm)
)

=
1

P

P−1∑
m=0

X̂[k − zm],

where X̂ is the DFT of x[n]. This proves that, as long as there is no collision,

meaning that there is at most one index m in the above equation for which

X̂[k− zm] ̸= 0, then the complex values of X̂[k] will be fully preserved upon

sub-sampling. This proves the lemma.

We also point out that if P does not divide N , then the complex values

are not preserved. Specifically, if N/P is not a proper integer, Ŷ [k] will be

in terms of X̂[k N/P
⌊N/P ⌋ −

N
P
m] where inside the argument, k N/P

⌊N/P ⌋ −
N
P
m, is

not necessarily an integer. As a result, the original information of X̂[k] is

never repeated in any of the Ŷ indices. In fact, Ŷ would closely relate to an

interpolated version of X̂ with the Dirichlet kernel.
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Thus, to be able to recover channel values, we are restricted to subsample

the signal by an integer factor of N . Further, since the OFDM subcarriers in

the 5G standard are set to powers of 2, we can only subsample the wideband

signal by powers of 2.

Due to this lack of choice in subsampling factors, we instead shift our

focus on designing the spike-train filter such that the frequencies passed by

the filter do not collide upon aliasing. We achieve this by leveraging the

structured periodic sparsity of the spike-train, and design a filter that ensures

no collisions for the given subsampling factor P .

Doing so significantly simplifies our recovery algorithm. In particular,

given that (1) the frequency response of the spike-train filter and its collision-

free aliasing patterns are known, and that (2) the scaling factors at the

frequency subcarriers remain preserved upon aliasing, we can now simply

rearrange the frequencies in Y(f) to their corresponding unaliased frequency

positions as shown in Fig. 6.2(d). Further, we can extract the channel values

at these unaliased frequencies by dividing the complex scaling factor cj×hj by
the known preamble bit cj. Thus, by leveraging the spike-train filter, ISLA

is able to extract wideband channel values on a narrow band IoT device.

Next, we discuss the design parameters of the spike-train filter that ensures

no collisions.

6.5.1 Spike-Train Filter Hardware Co-Design

We explain the spike-train filter design with a specific example, shown in

Fig. 6.3. Let the wideband transmitted OFDM signal (B MHz bandwidth)

be comprised of 32 frequency subcarriers, indexed from -16 to 15, with 0 de-

noting the carrier frequency bin. From Lemma 6.1, we want the subsampling

factor P to divide N = 32. So we choose P = 4, that is, the IoT receiver sub-

samples the signal by 4×. This implies that the IoT receiver is only able to

capture N
P
= 8 frequency bins centered around the carrier frequency as shown

by the shaded region in Fig. 6.3. Let this narrow band set of frequencies be

denoted as fNB.

Recall that when you subsample a B MHz signal by P×, then all frequency

subcarriers spaced by R = B
P
MHz will alias onto the same frequency bin in

the narrow band spectrum. Here, this translates into all frequencies spaced
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Figure 6.3: Desired Spike-Train Filter Parameters. MEMS Filter
Parameters that ensure zero collisions while recovering maximum channel
information.

by 8 subcarriers aliasing onto the same narrowband bin. This is depicted in

Fig. 6.3 through the color coding scheme. For instance, the subcarriers at

{−9,−1, 7, 15} (represented as purple colored) would all appear at frequency

bin -1 in the narrow band spectrum upon aliasing. For a given subcarrier k

in the narrow band spectrum, that is, k ∈ {−4, . . . , 3}, let us denote the set

of subcarriers that would alias into k as Ik. So we have I−1 = {−9,−1, 7, 15}.
The spike-train filter will selectively pass frequency subcarriers in the wide-

band OFDM signal, which after aliasing can be recovered from the narrow

band signal at the receiver. Let the set of frequency subcarriers passed by

the spike-train filter be denoted by fM , where M ∈ [−15, . . . , 16]. We want

the following conditions to hold:

1. No Collisions: To ensure that we can successfully recover the wideband

channels, no two subcarriers in fM should alias and collide in the same

narrowband frequency bin upon subsampling. To achieve this, the spike-

train filter must satisfy: For any set Ik where k ∈ {−4, . . . , 3}, fM must

contain at most one subcarrier from Ik.

2. Extract Maximum Possible Channel Values: Given that the narrowband

spectrum spans 8 frequency subcarriers, this means that the receiver can

successfully recover at most 8 channel values after subsampling. In the

presence of noise, we want to recover as many channel measurements as

possible for robustness. Hence, every narrowband subcarrier in fNB should

yield one channel measurement from the wideband signal. This translates
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to: For any set Ik where k ∈ {−4, . . . , 3}, fM must contain at least one

frequency subcarrier from Ik. The first two conditions together dictate

that the spike-train filter should pass exactly one frequency subcarrier

from each Ik.

3. Span the Wideband OFDM symbol: To retain the high ToF resolution, we

want the set of frequencies in fM to span the entire wideband signal.

The above conditions can be met leveraging the structured sparsity in the

spike-train filter response. Specifically, we can design three key parameters of

the spike-train filter: (1) spacing between consecutive spikes ∆F , (2) width

of the spikes ∆S, and (3) the starting frequency subcarrier f 0
M in the spike-

train, to follow Lemma 6.2. We prove that such a filter response satisfies the

above conditions.

Lemma 6.2. Consider an OFDM symbol with N frequency subcarriers, in-

dexed as {f−N
2
, . . . , 0, . . . , fN

2
−1} with inter-frequency spacing of ∆f , and a

narrowband receiver that subsamples by P×. If P 2 divides N , then the ideal

filter parameters that meet all three requirements are: (1) f 0
M = f−N

2
, (2)(

N
P 2 − 1

)
×∆f < ∆S < N

P 2 ×∆f , and (3) ∆F = N
P
(1 + 1

P
)×∆f .

Proof. First, we show that no two frequencies collide after aliasing. Let

q = N
P
, and assume that two frequencies fα and fβ collide. Let fα be k-th

subcarrier (for 0 ≤ k < P ) covered at the i-th passband (0 ≤ i <
⌈
∆S
∆f

⌉
),

and let fβ have k′ and i′ as corresponding indices. To collide after aliasing,

fα − fβ = (k − k′)∆F + (i − i′)∆f must be an integer multiple of q∆f .

However, |k − k′| ≤ P − 1 and |i− i′| < N
P 2 . Thus

|fα−fβ |
∆f

< (P−1
P

+ 1
P
)q = q,

meaning we must have fα − fβ = 0, proving the first design requirement.

Second, we note that P passbands that do not overlap (since ∆S < ∆F ),

and each passband covers exactly N
P 2 subcarriers. We therefore have a total of

P × N
P 2 = q subcarriers that, as we just showed, do not overlap after aliasing.

Therefore, after aliasing, each of the q subcarriers is covered exactly once,

ensuring the second design requirement. Finally, we note that the smallest

bin index is covered by the filter is min fM = −N
2
, and the largest bin index
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is the last bin of the last passband, whose index can be computed as follows:

max fM =
−N
2

+ (P − 1)×∆F +

⌈
∆S

∆f

⌉
− 1

=
−N
2

+ (P − 1)× N

P
(1 +

1

P
) + (

N

P 2
)− 1

= −N
2

+N − 1 =
N

2
− 1.

Thus, the entire bandwidth (including f−N
2

and fN
2
−1) is covered, ensuring

the last design requirement.

In Fig. 6.3, we show the ideal frequency response of the spike-train filter

designed with the above parameters as the red dotted line. In theory, such a

filter should allow us to leverage all fNB subcarriers to recover the wideband

channel measurements from the aliased signal. However, in practice, MEMS

spike-train filters are non-ideal i.e., the roll-off of the passband boundaries

are not as sharp as perfect rectangular functions, the spikes are not perfectly

equally spaced, and the passband widths are not identical. These imper-

fections can be observed in the frequency response shown in Fig. 6.4. As

a result of these non-idealities, there will still be collisions at the boundary

regions of the spikes after aliasing, as shown in Fig. 6.5. To avoid collisions

from polluting our CIR estimates, we only consider the subcarriers that do

not collide as shown in Fig. 6.5. However, this results in non-uniform sam-

pling of the OFDM subcarriers across the wideband channel. In section 6.6,

we show how to leverage ISLA’s super-resolution algorithm to recover high

resolution CIR estimates from these non-uniform channel measurements.
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Figure 6.4: Spike-Train Filter Frequency Response
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6.5.2 MEMS Spike-Train Filter Architecture

Following Lemma 6.2, we can derive the desired frequency response of the

spike-train filter, and design MEMS resonators topology accordingly. For ex-

ample, in our experiment, we used a 100 MHz 5G-like OFDM waveform with

N=2048 subcarriers and a subcarrier spacing ∆f = 49 kHz, and we down-

sample the filtered waveform by a factor of P=16. According to Lemma 6.2,

the desired filter should 16 spikes with a spike spacing of 6.64 MHz spanning

the 100 MHz bandwidth and each spike should have a width around 400 kHz.

We can design a spike-train filter leveraging the periodic resonance fre-

quencies of a type of MEMS LOBAR resonators. As shown in Fig. 6.6, the

LOBAR resonator consists of 12 electrodes on the top of a thin film made

of the piezoelectric material LiNbO3. And we combine seven resonators in

a ladder filter topology [139] to build a filter circuit. As a result, the LO-

BAR resonator architecture determines the spike frequencies, whereas the

slight difference between different resonators determines the width of the

spikes. For simplicity, here we only focus on these two key parameters of the

spike-train filter response, since they are restricted by our channel recovery

algorithm.

(1) The width of the film: the spacing between spikes ∆f is determined by

the width of the thin film W as ∆f = v/W , where v is the acoustic velocity

in the piezoelectric material, which is ∼ 4 km/s in our design. Therefore,

to achieve the 6.6 MHz spike spacing, we design the film width W to be

∼ 660 µm.
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Figure 6.6: MEMS Spike-Train Filter Architecture

(2) The film width difference between different shunt and series resonators:

the spike width ∆F of the spike-train filter equals to the resonant frequency

difference between shunt and series resonators in the ladder filter, which

is determined by the difference ∆W between shunt and series resonators:

∆F = fc∆W
W

. We design with piezoelectric film width to be 660 µm for

series resonators and 660.26 µm for shunt resonators, which leads to ∆W =

0.26µm, so that the widths of the spikes are around 400 kHz.

6.5.3 Tradeoff Between Range and Resolution

Recall from section 6.3 that the resolution in ToF depends on bandwidth,

whereas the maximum unambiguous ToF (range) depends on the inter-frequency

spacing between channel measurements. In the 5G OFDM signal with band-

width B = 100 MHz and subcarrier spacing ∆f = 60kHz, ISLA is able to

retain the high ToF resolution of 10 ns (3 m) by collecting wideband channel

measurements that span the entire 100 MHz. However, in doing so, the fre-

quency spacing between the channel measurements in ISLA increases, thus

reducing the maximum ToF range. Specifically, the frequency spacing in-

creases by P = 16× in ISLA, thus reducing the maximum range from 5 km

to 312 meters. This is an issue since now it becomes difficult to identify the

LoS path from the CIR for localization. You could have the case where the

LoS path is at 200 meters but a reflected path at 400 meters aliases and

appears at the bin corresponding to 88 meters in the CIR. Thus, you cannot

simply pick the first peak as LoS.

To address this, ISLA combines the wideband channel measurements from
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the spike-train filter, hM , with the narrowband channel measurements hNB

collected at the subcarriers fNB, and formulates a joint optimization with

both these channels to estimate the CIR. Since the narrowband channel

measurements hNB retain the same subcarrier spacing of ∆f = 60kHz, it

increases the effective maximum ToF range back to 5 km, thus resolving the

LoS ambiguity in the CIR.

6.6 Super-Resolution CIR Estimation

Here we describe our super-resolution algorithm that can retrieve high reso-

lution ToF estimates τl’s along with the associated complex attenuations al

for the L multipath components in the channel. As discussed in section 6.5,

the IoT device can recover channel measurements htot = hM ∪ hNB at the

subcarriers ftot = fM ∪ fNB where fM are recovered from the spike-train

filter and fNB without the filter. Since these channel values are sampled at

non-uniformly spaced frequencies, we cannot apply standard super-resolution

algorithms like MUSIC with spatial smoothing [208, 4] as they require uni-

form measurements. Instead, we optimize for the channel impulse response

in the continuous time domain by leveraging an off-grid estimation technique

that can estimate high resolution ToF values from the channel information.

We begin by framing this as an inverse problem. We start by modeling

the forward operator F : htot = F(τ1, . . . , τL, a1, . . . , aL), which maps physical

path parameters to the wireless channel. F comprises of the following distinct

transformations, as illustrated in Fig. 6.7:

1. CIR in Continuous Domain (Fig. 6.7(a)): Given path parameters

{τ1, . . . , τL, a1, . . . , aL}, the continuous domain CIR can be written as:

CIRcont =
∑L

l=1 alδ(τ − τl), with each path represented as an impulse

positioned at its respective ToF τl, and scaled by its complex attenuation

al.

2. Off-Grid Estimation (Fig. 6.7(b)): The OFDM symbol spans a band-

width B MHz and comprises of N subcarriers. Due to this discretization

and truncation in the frequency domain, the observed CIR at the receiver

will also be discretized, and computed on the grid defined by τg, where

τg = { 0
B
, . . . , (N−1)

B
}. However, as with most natural signals, the ToFs of
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Figure 6.7: Signal Paths to Measured Channel Forward Function

the physical propagation paths τl will rarely align with this discretized τg

grid, that is, the τl’s will lie at an off-grid position. As a result, the leakage

from the continuous off-grid CIR component from path l to the discrete

CIR grid positions at τg can be computed as CIRl(τg) = alψN(τg − τl),
where ψN is the discretized sinc function defined as:

ψN(τ) =
sin (πτ)

sin
(
πτ
N

) exp(−πj (N − 1

N

)
τ

)
(6.3)

3. Superposition (Fig. 6.7(c)): With multiple propagation paths in the

channel, the net observed CIR at the receiver is the sum of the CIR profiles

contributed by each propagation path: CIRnet(τg) =
∑L

l=1 alψN(τg − τl).

4. Discrete Fourier Transform (Fig. 6.7(d)): Finally, the channel htot

can be computed by sampling the corresponding frequencies ftot from the

DFT of the superposed CIR. Let us denote the N ×N Fourier matrix as

FN , and let V be the matrix that chooses the rows corresponding to ftot

from FN . Then we have: htot = V FN CIRnet where CIRnet is a N × 1

dimension vector.

Putting the above four transformations together, the forward operator F
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can be expressed as:

htot = F({τl, al}Ll=1) = V FNΨa⃗ (6.4)

where Ψ is a N ×L matrix with Ψi,j = ψN(τi− τj), and a⃗ is a L× 1 vector

comprising the complex attenuations al for each path. Now that we have the

forward operator, the inverse problem to retrieve the path parameters from

observed channel vector h
′
tot can be formulated as a L-2 minimization:

{τ ∗l , a∗l }Ll=1 = argmin
τ1,...,τL,a1,...,aL

∥h′

tot −VFNΨa⃗∥2 (6.5)

6.6.1 Solving the Optimization

Note that if we are given Ψ, then Eq. 6.5 becomes a linear optimization

problem in a⃗. Thus, given Ψ, the closed form solution for a⃗ that minimizes

Eq. 6.5 is a⃗ = (VFNΨ)†h
′
tot, where † represents the pseudo-inverse. Thus the

objective function in Eq. 6.5 can be rewritten as:

{τ ∗l }Ll=1 = argmin
τ1,...,τL

∥h′

tot −VFNΨ(VFNΨ)†h
′

tot∥2

s.t. τl ≥ 0 ∀ l ∈ {1, 2, . . . , L}
(6.6)

The objective function is now reduced to just the ToF variables τl’s. This

optimization problem is non-convex and constrained, and we use the well-

known interior-point method to solve this [230]. For the initialization point

to the optimization algorithm, we use approximate ToF values from the CIR

computed by taking the inverse FFT of the observed channel h
′
tot. While

these ToF estimates are distorted by the discretization and superpositioning

artifacts described previously, it gives a good starting point for the optimiza-

tion.

Also, note that the number of paths N in the wireless channel is not known

a priori. As we keep increasing the number of paths N that the algorithm

is initialized with, it keeps finding a better and better fit to the channel

data, and after a point, starts overfitting to the noise. In order to avoid

overfitting and yet yield accurate estimates for the path parameters, we run

the optimization problem multiple times, each time increasing the number

of paths it is initialized with by 1. We terminate the algorithm when the
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decrease in the value of the objective function falls below some threshold ϵ,

and set the current value of N to be the number of paths in the channel.

6.7 ISLA’s Localization Algorithm

The above off-grid estimation algorithm gives us highly precise ToF estimates

for the propagation paths. However, since the 5G base stations are not time

synchronized with the IoT device, there is going to be an offset between the

sampling clocks in their RF chains. As a result, the measured ToF at the IoT

node also includes delays from the sampling time offset (STO) between the

different base stations and the IoT node, and hence cannot provide accurate

distance estimates.

To address this, ISLA leverages two antennas on the IoT node to compute

the differential ToF rather than the absolute. The key idea here is that while

the absolute ToF measurements are corrupted by synchronization offsets,

these offsets are constant across the two antennas on the IoT node. Hence,

the offsets can be eliminated by differencing the two measurements. Let

the ToF values to the two antennas be τ1 and τ2, and their corresponding

distances be d1 and d2, as denoted in Fig. 6.8(a). Then the locus of the

base station from the IoT device’s frame of reference is a hyperbola with the

two antennas being the foci, and the difference in distances to the two foci

equaling d2 − d1. At large distances, this hyperbola can be approximated as

two rays along the asymptotes of the hyperbola, depicted by the red dashed

lines in Fig. 6.8(a).

By overhearing packets from different base stations, the IoT device can

infer the locus of each base station to lie on approximated rays originating

from the IoT device’s location. This is shown in Fig. 6.8(b), where base

station 1 can lie on the rays at angles θ1 or −θ1, and similarly the base

station 2 can lie on the rays at angles θ2 or −θ2. Both θ and −θ are possible

since there is the ambiguity that the signal might have arrived from the front

or the back of the device. Given this, we can see that the angle subtended by

the two base stations at the location of the IoT device will be ∥θ2− θ1∥, and
this is going to be constant irrespective of the orientation of the IoT node

(there is ambiguity in that the angle subtended can also be ∥θ2 + θ1∥, and
we will address this shortly).
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Figure 6.8: ISLA’s Localization Algorithm

Given the angle subtended by the base stations and the known locations

of the base stations, according to the Inscribed Angle Theorem, we can de-

termine the locus of the IoT device to lie on the arc of a circle, where the line

segment connecting the two base stations is the chord and the corresponding

inscribed angle is equal to the angle subtended by the base stations. This

is illustrated in Fig. 6.8(b) as the green dashed arc. Leveraging different

pairs of base stations, ISLA can draw multiple such arcs and the intersection

points of these arcs will give us the IoT device’s location.

6.7.1 Sources of Ambiguity

There are some sources of ambiguity that need to be resolved. First, the angle

subtended by the two base stations in Fig. 6.8(b) could also be ∥θ2 + θ1∥,
and second, the arc drawn with the base stations at the end points could also

be pointing towards the north rather than south, as depicted in Fig. 6.8(b).

These ambiguities can be resolved easily by leveraging 4 base stations as

anchor points. Keeping one base station common, we have three base station

pairs which yields three unique arcs. Only the right configurations of angles

subtended and arcs drawn will give us a common intersection point for all

three arcs. ISLA’s localization algorithm tries all configurations and picks

the one where all arcs coincide at the same point.
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6.8 Integrating ISLA with 5G-NR Standard

The 5G-NR packet consists of 10 subframes, each of duration 1 ms [231].

To allow for coherent packet demodulation, the 5G frame appends known

preamble bits on each subframe which enables channel estimation and cor-

rection across the entire bandwidth of the 5G channel. Additionally, in the

first subframe of the packet, the base station also includes all information

required by devices to associate with the network, which comprises of the

synchronization signals (PSS and SSS frames) for CFO correction and frame

timing, and the base station ID. To allow every device in the network to

receive this critical information, it is always encoded in the narrowest sup-

ported bandwidth of the wideband packet, which is 4.32 MHz in the 5G

standard [231].

ISLA’s hardware circuit, discussed in section 6.9, is designed such that it

can switch between capturing the 6.25 MHz narrowband spectrum, or the

wideband spectrum via the spike-train filter. ISLA begins by capturing the

first subframe of the 5G packet through its narrowband RF path, and extracts

the synchronization frames and base station ID encoded in the narrowband

subcarriers of the wideband packet. Using publicly available databases [232],

ISLA can retrieve the location of the Base Station given its ID. The synchro-

nization frames help eliminate coarse CFO and SFO. From the subsequent

subframes, ISLA first estimates the narrowband channel, and then switches

to the RF path with the spike-train filter to sense wideband channel. Note

that ISLA does not need to meet tight timing constraints to switch since each

subframe lasts 1 ms and there are multiple such subframes in each packet

that can be leveraged for channel estimation. Thus, ISLA can simply skip a

subframe while switching.

However, because ISLA captures the narrowband channel and wideband

channel from different subframes, there is going to be an additional phase ac-

cumulation between the two measurements due to residual CFO. To address

this, we slightly modify Eq. 6.6.

6.8.1 Updated Objective Function to Account for Residual
CFO

ISLA captures the narrowband channel and wideband channel from different
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subframes. Thus, there is going to be an additional phase accumulation

between the two measurements due to residual CFO. To address this, we

slightly modify Eq.6.6 where we split the objective function into two separate

L-2 norm minimizations, with the first term containing only the wideband

channel h
′
M , and the second term containing only the narrowband channel

h
′
NB. This objective function is given below:

{τ ∗l }Ll=1 = argmin
τ1,...,τL

(
∥h′

M − VMFNΨ(VMFNΨ)†h
′

M∥2

+ ∥h′

NB − VNBFNΨ(VNBFNΨ)†h
′

NB∥2
)

s.t. τl ≥ 0 ∀ l ∈ {1, 2, . . . , L}

(6.7)

The modified objective function is now invariant to phase offsets between

the two channels, and ISLA can solve this updated optimization using the

same technique described in section 6.6.

6.9 System Implementation

6.9.1 System Design

We have built a prototype ISLA device by combining our MEMS spike-train

filter with commodity, off-the-shelf, low-power components. Figure 6.9 shows

the circuit diagram, and Fig. 6.10 shows the actually prototype. It receives
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Figure 6.9: ISLA Prototype Circuit Diagram
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ambient 5G transmissions with two antennas followed by identical RF chains.

Depending on whether the IoT devices wants to receive the full 100 MHz

spectrum using the spike-train filter or the narrowband spectrum, the RF

chains can switch between two paths: (1) the received wideband spectrum

first be filtered by the MEMS spike-train filter, and then down-converted

and sampled without using the anti-aliasing filter. (2) the MEMS spike-train

filter is bypassed but the down-converted signal will first go through an anti-

aliasing filter before sampling. We select between the two paths using RF

switches controlled by a single microcontroller.

6.9.2 Implementation

We fabricated a MEMS spike-train filter at 400 MHz center frequency. How-

ever, due to the strong interference from the amateur radios in this band, we

were not able to run experiments outdoor using this filter. Hence, the above

prototype was only used indoors. In the outdoor experiments, we transmit-
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ted in a vacant 100 MHz wide spectrum between 950 and 1050 MHz, and

we emulate the IoT radio front-end described above with the MEMS spike-

train filters in digital using an X310 USRP software-defined radio (SDR).

We would like to note that in practical deployments we do not expect inter-

ference to play a major issue since ISLA will be deployed in the proprietary

frequency bands licensed by cellular companies, which in turn will have lim-

ited interference.

The X310 SDR has two identical RF chains and can sample the full

100 MHz bandwidth with UBX160 daughterboards. To emulate the MEMS

spike-train in digital, we first measure the spike-train filter frequency re-

sponse once using a vector network analyzer (VNA), and we apply this filter

frequency response to the received signals sampled at 100 MHz. Then, we

downsample the filtered signal by simply keeping every 16th sample. This

is equivalent to filtering the RF signal in analog and sample it below the

Nyquist sampling rate. We also used a bandpass filters between the an-

tenna and SDRs to remove out-of-band interferences and synchronized the

two RF chains in time and phase through the GNU Radio Python API. In

section 6.10.7, we present mircobenchmarks demonstrating the equivalence

between applying the filter in digital and the above hardware prototype.
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Figure 6.12: Ourdoor Experiment Testbeds: (a) Campus testbed
surrounded by buildings. (b) Parking lot testbed. (c) Agricultural farm testbed.

6.9.3 Testbed

Additionally, we also built 5G base station TX prototypes to transmit am-

bient 5G communication signals. As shown in Fig 6.11, the base station

prototype consists an X310 USRP SDR with a UBX160 daughterboard, a

9 dBi Yagi directional antenna, and an RF Bay MPA-22-30 30 dB power

amplifier. The base stations transmit 100 MHz OFDM packets. Using five

base station prototypes, we created three testbeds with different dimensions

and at different locations to conduct our experiments. Figure 6.12 shows

the satellite images of our testbeds with the base stations and clients loca-

tions marked. The first testbed is 85 m long and 52 m wide on a university

campus, surrounded by buildings on all sides. We designated 11 basestation

locations in this testbed and chose five of them for each experiment. The

second testbed is a 400 m by 240 m parking lot with 27 base station locations.

The third testbed is at a 102 acre farmland with 860 m length 480 m width.

We selected five out of the 17 potential locations to place the base stations

in each experiment. For ground truth locations, we used differential GPS

RTK with real-time RTCM correction data, which provides centimeter-level

positioning accuracy.

6.10 Evaluation

6.10.1 Baselines

1. Spot-Fi [208] proposes a 2D MUSIC algorithm with spatial smoothing,

which can localize clients by separating the multipath components jointly

along the ToF and AoA domains.
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2. mD-Track [209] separates propagation paths by leveraging multiple dimen-

sions of the wireless signal (ToF, AoA, AoD and Doppler), and proposes

an iterative algorithm that goes through multiple rounds of error compu-

tation and path re-estimation. In our experimental setup, leveraging the

AoD and Doppler dimensions provides little benefit since the base station

is equipped with a single antenna and the IoT device does not have high

mobility relative to the base station.

Note that, systems like Spot-Fi and mD-Track were not designed for am-

bient localization, and thus need to be adapted here. Specifically, we

leverage the ToF estimates provided by these baselines for the LoS path,

and in turn self-localize the client by computing the relative ToF, as de-

scribed in section 6.7.

3. RSSI: Past work leverages RSSI measurements to localize clients in out-

door cellular networks, by either using approximate path loss models for

trilateration, or by using the known locations of nearby cells as coarse

estimates. We implemented one recent RSSI baseline [1].

4. Spike-train filter-adapted baselines: To provide a fair comparison against

ISLA, we modify Spot-Fi and mD-Track to leverage the spike-train filter

and utilize the wideband channel measurements for localization. It is

non-trivial to adapt Spot-Fi for the spike-train filter since the spatial

smoothing technique used in Spot-Fi requires uniformly spaced channel

measurements across frequency, whereas the spike-train filter samples the

OFDM frequency bins non-uniformly. To address this, we restructure the

spatial smoothing subarray from [208] that allows Spot-Fi to be applied

across the non-uniform frequencies sampled by the spike-train filter.

6.10.2 Localization Accuracy Comparison Against Baselines

We compare ISLA’s localization against the baselines in Fig. 6.13. Note that,

while ISLA is designed specifically to leverage the wideband channel sensed

by the MEMS filter, the baselines are implemented without modification and

thus utilize only the narrowband channel for localization. Unless otherwise

specified, for all results, we utilize 5 randomly chosen base stations as the

anchor points.
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Figure 6.13: ISLA’s localization accuracy compared against baselines
at: (a) Campus (b) Parking lot (c) Farm.
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From Fig. 6.13, ISLA achieves a median localization accuracy of 1.58 me-

ters in the campus testbed, 17.6 meters in the parking lot testbed, and 37.8

meters in the farm testbed. Across the same three testbeds, Spot-Fi achieves

median accuracies of 17.05 meters, 61.2 meters and 156.6 meters, whereas

mD-Track achieves 18.11 meters, 71.8 meters, and 183.1 meters respectively.

Thus, ISLA improves the localization accuracy over Spot-Fi and mD-track

by ∼ 11× in the campus testbed, and by ∼ 4× in the parking lot and farm.

ISLA is able to achieve such high gains since it leverages the spike-train filter

to sense wideband channel on the narrowband device, which allows for much

higher resolution compared to the baselines operating solely in the narrow-

band. Further, the localization improvement over the narrowband baselines

is most significant in the campus testbed, since it has the most multipath

from surrounding buildings, and thus ToF resolution is critical to separate

out the LoS path from reflections.

Lastly, the RSSI baseline achieves median accuracies of 64.54 meters, 120.7

meters, and 260.8 meters respectively across the three testbeds. RSSI based

methods generally have poor performance, as they tend to oversimplify path

loss models that map RSSI values to distance, which does not hold for real

world multipath channels.

6.10.3 Comparison Against Spike-Train-Adapted Baselines

Next, we evaluate how leveraging the spike-train filter would benefit the

performance of our narrowband baselines. Figure 6.14 shows the CDF of

localization accuracy comparing ISLA against the modified baselines that

utilize the wideband channel from the spike-train filter. The RSSI baseline

is not included here since its localization performance does not depend on

bandwidth. Compared to its narrowband implementation, Spot-Fi’s median

accuracy improves to 11.08 meters in the Campus testbed, 49.07 meters in the

Parking Lot, and 137.76 meters in the farm. Similarly, mD-Track’s median

performance improves to 15.48 meters, 51.45 meters and 103.78 meters in the

three testbeds respectively. Thus, Spot-Fi and mD-Track see improvements

in localization accuracy by up to 54% and 76% respectively. This shows that

other localization techniques can also benefit from the wide-band channel

sensing capabilities enabled by the spike-train filter.
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Figure 6.14: ISLA’s localization accuracy compared against MEMS
filter adapted baselines at: (a) Campus (b) Parking lot (c) Farm.
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Additionally, Fig. 6.14 shows that given the same channel information,

ISLA’s off-grid CIR estimation algorithm is able to better resolve and esti-

mate the relative ToF compared to Spot-Fi and mD-Track. This is because

these baselines were designed to leverage multiple information dimensions

to separate out the multipath components, with both baselines leveraging 3

or more antennas for separation in the AoA domain, and mD-Track further

using the additional dimensions of Doppler and AoD as well. In contrast,

here the IoT device has to separate out multipath in the ToF domain alone,

and ISLA is able to achieve very accurate localization owing to its off-grid

estimation algorithm.

6.10.4 ISLA Leveraging Different Amounts of Spectrum

In this experiment, we compare ISLA’s localization algorithm applied across

three different amounts of spectrum utilization — (1) ISLA applied only to

the wideband sparse channel sensed by the spike-train filter (without com-

bining with narrowband channel), (2) ISLA applied only to the narrowband

channel of IoT device, and (3) ISLA applied across the entire 100 MHz band-

width of the received 5G signal. Figure 6.15 plots the CDF of localization

accuracy achieved across the three testbeds.

ISLA applied on the narrowband channel performs the poorest, achiev-

ing median accuracies of 7.9 meters, 58.9 meters and 142.52 meters in the

campus, parking lot and farm testbeds. In contrast, ISLA along with the

spike-train filter can achieve corresponding median accuracies of 1.68 meters,

18.8 meters and 45.04 meters. Thus, ISLA along with spike-train achieves

an improvement in localization accuracy of 3.16×−4.7× compared to ISLA

applied in the narrowband spectrum, despite both baselines capturing the

same amount of channel measurements. The advantage of spike-train stems

from the fact that it enables the narrowband receiver to capture channel

measurements that span a much larger bandwidth, which results in much

higher ToF resolution.

On the other hand, ISLA’s localization algorithm applied on the full 100

MHz spectrum achieves median accuracies of 1.38 meters, 11.44 meters and

25.8 meters respectively on the three testbeds. Thus, ISLA with the spike-

train filter reduces the localization accuracy by only 1.21×, 1.64×, and 1.74×
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Figure 6.15: Comparison of ISLA’s localization accuracy when
leveraging different amounts of spectrum at: (a) Campus (b) Parking lot
(c) Farm.
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Figure 6.16: Localization error with different number of visible base
stations.

respectively compared to this upper bound. This demonstrates that the

spike-train filter can enable a narrowband device to achieve localization ac-

curacy within a factor of 2× compared to a broadband receiver, despite the

fact that it subsamples the signal by 16× below Nyquist.

6.10.5 Localization with Number of Anchor Base Stations

In Fig. 6.15(d), we compare ISLA’s localization performance with 5, 15 and

25 base stations used as anchor points respectively, in the parking lot testbed.

With 5 base stations, ISLA achieves a median accuracy of 17.6 meters, which

improves to 9.27 meters with 15 base stations, and 4.26 meters with 25

base stations. This improvement becomes even more significant at the tail,

with ISLA achieving 90th percentile accuracy of 73.16 meters with 5 base

stations, which improves to 10.9 meters accuracy with 25 base stations at

90th percentile. Thus, leveraging more base stations can significantly improve

the localization accuracy achieved by ISLA.

6.10.6 Tracking Objects

We move the IoT device across an L-shaped trajectory (160 meters in length

and 85 meters in width) in the parking lot testbed, and collect packet trans-

missions from the base stations at different points along this trajectory. In

this experiment, we pick 7 fixed base stations to utilize as anchor points, and
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Figure 6.17: Object Tracking Trajectory Accuracy

we show the ground truth trajectory and corresponding estimated trajectory

by ISLA in Fig. 6.17. As can be observed, ISLA’s high localization accuracy

allows to faithfully capture the shape of the ground truth trajectory.

6.10.7 Microbenchmark - CIR Estimation using Fabricated
MEMS Spike-train Filter

To verify the equivalence between our outdoor implementation and using

the prototype with the fabricated MEMS spike-train filter at 400 MHz, we

conduct indoor experiments at 400 MHz. Specifically, we evaluate the er-

ror in reconstructed CIR and estimated ToF values between the prototype

with the fabricated filter and ISLA with the digital filter implementation.

In Fig. 6.18, we show the CDF of the errors in ToF values (converted to

distance (meters)) recovered by the two approaches, for both LoS and NLoS

paths. We can see that the position of the LoS path in the CIR estimated

from both approaches are very close, with the median error between their

estimates being 0.075 meters. The error in the NLoS paths is higher, with

a median error of 1.05 meters. However, this will not affect the localiza-

tion performance between the two since localization only uses the LoS path.

This microbenchmark demonstrates that ISLA’s approach of applying the

filter and subsampling in digital is equivalent to using the fabricated filter

from a localization perspective and that the results shown in this chapter are

representative of a fully implemented system.
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Figure 6.18: ToF difference between ISLA’s prototype with fabricated
MEMS filter and digitally implemented MEMS filter.

6.10.8 Microbenchmark - Density of Deployed Base Stations

In section 6.10.2, we have shown that ISLA’s localization accuracy increases

substantially as we use more anchor base stations. Here, we study the distri-

bution of how many base stations can the client overhear at a given location.

Using publicly available databases [232], we retrieved the locations of 4G LTE

base stations belonging to 4 major carriers in the United States. We chose

4G LTE for this analysis since 5G deployment is still in its nascent stage in

the USA, but we expect the target coverage for 5G networks to exceed the

4G deployment.

In Fig. 6.19, we show the scatter plot of the 4G base stations located in

Chicago downtown area. Using the cell coverage information provided in [232]

for the different base stations, in Fig. 6.20, we plot the CDF of the number of

base stations that the client can overhear at different locations on the map.

We can see that at the 10th percentile, the number of visible base stations is

11, thus implying that less than 10% of client locations see less than 11 base

stations. Further, the median number of base stations visible to the client is

29. This demonstrates that the cellular deployment is dense enough to allow

many anchor points, which in turn can achieves high localization accuracy.
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Figure 6.19: Deployment of 4G Base Stations in Chicago Downtown Area
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Figure 6.20: Number of Visible 4G Base Stations at Various
Downtown Locations

6.10.9 Microbenchmark - Invariance to Orientation

Here, we demonstrate that the localization performance is independent of the

orientation of the IoT device. This is because the arcs that define the locus

of the IoT node, depend only on the angle subtended by the base stations at

the IoT device’s location, which is invariant to device rotation. At a given

location in our campus testbed, we orient the IoT device along 4 different di-
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Table 6.1: Invariance of Localization Error to Orientation

Direction NW NE SE SW
Median 1.3535 m 1.3544 m 1.3267 m 1.3681 m
Std Dev 0.4948 m 0.6026 m 0.4908 m 0.512 m

rections and perform 100 localization experiments at each orientation. From

Table 6.1, we can see that the median and standard deviation in localiza-

tion error is almost the same across the 4 orientations, thus demonstrating

invariance to orientation.

6.11 Extending ISLA to mmWave

6.11.1 Motivation and Challenges

Our original implementation of ISLA is limited to sub-6GHz bands. However,

leveraging the mmWave bands 5G signals for localizing IoT nodes is even

more appealing, because of two characteristics of 5G mmWave networks: 1)

The small cell sizes lead to very dense deployments of base stations, up to

40 to 50 BS per square km [204], resulting in more potential anchor points

for accurate localization. 2) The unprecedentedly wide signal bandwidth, up

to 400 MHz in mmWave eMBB channels, provides high-resolution Time of

Flight (ToF) estimation and, hence, high localization accuracy.

However, adapting ISLA’s coordination-free localization protocol to mmWave

bands would be impractical, because ISLA avoids coordination with the

gNBs by measuring the Time Difference of Arrival (TDoA) between two

antennas on the IoT node. Such IoT design requires two antenna front-

ends with tightly synchronized RX chains, which is infeasible in mmWave

frequencies because of the expensive and power-consuming mmWave front-

ends. Therefore, mm-ISLA abandons the dual front-end IoT design and the

TDoA-based localization algorithm of ISLA. Instead, mm-ISLA overcomes

the coordination-free challenge by leveraging the additional degree of free-

dom provided by the MIMO antenna arrays at the 5G gNBs. mm-ISLA first

resolves channels from multiple TX antennas at the gNBs leveraging a unique

5G-NR waveform – DeModulation Reference Signal (DMRS) in the Physical

Downlink Shared Channel (PDSCH). The unique resource allocation pattern
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in the DMRS waveforms allows mm-ISLA to distinguish the OFDM subcar-

riers allocated to each antenna in the gNB MIMO antenna array. Therefore,

mm-ISLA can then leverage the channel differences across the antennas to

estimate the Angle of Departure (AoD) of the Line-of-Sight (LoS) path from

the gNB to the IoT node. Finally, with the AoD measurements of three

gNBs, an mm-ISLA node can localize itself using the standard triangulation

localization algorithm.
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Figure 6.21: mm-ISLA pipeline. (a) Wideband 5G PDSCH-DMRS Spectrum
Allocated to 2 Antenna Ports. (b) MEMS Spike-Train Filter Frequency
Response. (c) Filtered Sparse Spectrum. (d) Sub-Nyquist Sampled Spectrum
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6.11.2 LoS AoD Estimation with PDSCH-DMRS Waveform

Figure 6.21 illustrates mm-ISLA’s system pipeline. mm-ISLA adopts the

same super-resolution CIR reconstruction method as mm-ISLA by formulat-

ing an inverse optimization problem. Towards solving the coordination-free

challenge, mm-ISLA however, takes a completely different approach than

ISLA. The TDoA-based localization algorithm of ISLA is abandoned, be-

cause it requires two tightly synchronized RF front-ends, RF chains, and

ADCs. The additional RF circuitry and ADC doubles the cost and power-

consumption of the IoT nodes, which is even more infeasible in the mmWave

frequencies than in the sub-6GHz bands. Restricted to a single antenna

front-end, mm-ISLA enabled IoT nodes still manage to localize themselves

without any coordination with the gNBs. To do so, mm-ISLA leverages

another unique opportunity in 5G networks – the spatial diversity of the

MIMO antenna arrays at the 5G gNBs. mm-ISLA tries to measure the ToF

differences across antennas in the gNB MIMO antenna array, from which

mm-ISLA can infer the AoD of the LoS path from the gNB to the IoT node.

With AoD estimates of three or more gNBs along with the gNB locations

and antenna array orientations, mm-ISLA enabled IoT nodes will be able to

apply the standard triangulation algorithm to localize themselves. However,

to do so, mm-ISLA has to first be able to estimate the CIR from each gNB

MIMO antenna separately.

The question becomes how can mm-ISLA isolate concurrent transmissions

from TX MIMO antennas at the 5G gNB and estimate them correspond-

ing CIR separately? Note that signals from different TX antennas have to

be transmitted at the same time; otherwise, the transmitting time offset will

corrupt the AoD estimation. To overcome this challenge, mm-ISLA leverages

another unique opportunities in the 5G-NR standards, that is the resource

allocation pattern in the 5G-NR PDSCH-DMRS waveforms. PDSCH-DMRS

is a specific type of 5G-NR waveform used for decoding the PDSCH data, so

it’s a preamble-like waveform one can leverage to estimate the channel. When

MIMO is enabled at the gNB, to decode the channels from the MIMO anten-

nas, different antenna ports are allocated with a different set of interleaved

subcarriers in the resource block [233], as shown in Fig. 6.21(a). Therefore,

we can identify the DMRS subcarriers corresponding to each TX antenna

and estimate their channels separately. Since the interleaved subcarrier al-
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location pattern ensures that the DMRS waveform from all TX antennas

covers the entire bandwidth of the resource block, we can still achieve wide-

band CFR estimations for all TX antennas. Therefore, we can estimate the

super-resolution CIRs corresponding to each TX antenna with a small mod-

ification to the inversion optimization problem to incorporate the subcarrier

allocation in the PDSCH-DMRS waveform. Finally, we compare the ToF

differences across the TX antennas to estimate the AoD of the LoS path.

6.12 Limitations and Discussion

� Power Footprint: To enable ambient localization, ISLA leverages a second

antenna and RF chain, which increases the power footprint of the IoT

device. However, we would like to note that the power overhead of an

additional RF chain is going to be lower than that of a GPS module, which

is the likely alternative for localization. This is because the additional RF

chain on the IoT device is going to operate in the narrowband with very low

sampling rates, whereas GPS incurs high operational power since it needs

to receive and correlate long sequences to get the signal power above the

noise floor for GPS lock acquisition. Hence, while ISLA’s design does lead

to an increased power footprint, it is still a better alternative compared to

GPS.

� Loss of SNR: Since the MEMS spike-train filter is a passive device, the

signal suffers from insertion loss when passed through the filter, thus re-

sulting in loss of SNR. This is further exacerbated by the fact that, in

practice, the out-of-band rejection of the spike train filter is finite, which

results in further loss of SNR. It is possible to reduce the impact of this

SNR loss at the circuit level by improving impedance matching and the

isolation between input and output ports. We can also compensate for the

SNR loss by averaging the channel measurements across multiple OFDM

symbols.

� Line-of-sight: Similar to many localization systems, ISLA assumes the

availability of line-of-sight (LoS) paths to the base stations which might

not hold under occlusion. This, however, can be addressed by potentially

selecting a subset of base stations with LoS paths using similar techniques
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demonstrated in [208]. With the dense deployment of 5G base stations, we

expect a significant subset of base stations to have LoS path to the node.

� Fast Mobility: The current design of ISLA is not suitable for highly dy-

namic applications with fast mobility such as tracking cars. This is be-

cause the localization algorithm must receive wideband 5G packets from 4

or more base stations before it can self-localize.

� Multiple Providers: ISLA can benefit from capturing signals from multiple

different providers since the IoT node does not need to associate with the

base stations. However, different providers operate in different frequency

bands which would require different spike-train filters. This could poten-

tially be addressed by having multiple filters and switching between them

similar to our design in section 6.9.
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Chapter 7

Conclusion

In this thesis, we introduce new software and hardware primitives that ad-

vance wireless technologies towards fulfilling the vision of ubiquitous percep-

tion in next-generation wireless networks.

Towards this goal, we first demonstrate AI-enhanced wireless imaging that

is able to extract the underlying perceptual and conceptual information in

wireless signals to achieve high-resolution imaging and accurate object de-

tection. On this front, one possible future research direction is to combine

HawkEye and Radatron into a hierarchy of neural network models to recon-

struct holistic scenes with various types of objects. The blueprint of this

complete system is as follows: It first parses the mmWave radar heatmap

using a semantic scene understanding network, which can propose regions in

the scene where the reflections from each object are and what type of object

it is. Hence, we can zoom into each object and image it using a specialized

GAN that is trained for that type of object. Finally we merge images of

individual objects into a holistic scene.

Besides, this thesis also tries to facilitate the integration of enhanced wire-

less perception systems into next-generation wireless networks. Towards this

goal, we present two approaches.

The first approach is to facilitate the coexistence of perception and com-

munication by allowing perception applications to opportunistically access

idle spectra that are not occupied by communication services. To enable

such dynamic spectrum sharing spectrum access paradigm, we leverage a

novel MEMS spike-train filters to design a efficient wideband spectrum sens-

ing mechanism. However, the coexistence of many wireless services can lead

to interference between different users and applications. Therefore, another

future direction for me is to design interference avoidance and mitigation

schemes for wireless perception systems and especially radars.

The other approach we demonstrate is to reuse the communication network
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foundations for perception. We develop a passive IoT self-localization tech-

nique by reusing ambient 5G cellular signals. On this front, I plan to leverage

opportunities in the antenna beam space provided by mmWave phased array

radio front-ends for joint communication and perception design.

Last but not least, there could also be spoofing and even adversarial at-

tacks towards the more ubiquitous wireless perception systems that leads to

security issues, so I am also interested in speculating potential spoofing and

attack models towards wireless perception systems, as well as prevention and

control design.
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dataset: camera and automotive radar with range-angle-doppler anno-
tations,” in 2020 25th International Conference on Pattern Recognition
(ICPR). IEEE, 2021, pp. 5068–5075.

[86] M. Bijelic, T. Gruber, F. Mannan, F. Kraus, W. Ritter, K. Dietmayer,
and F. Heide, “Seeing through fog without seeing fog: Deep multi-
modal sensor fusion in unseen adverse weather,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 682–11 692.

[87] X. Dong, P. Wang, P. Zhang, and L. Liu, “Probabilistic oriented ob-
ject detection in automotive radar,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
2020, pp. 102–103.

158



[88] Y. Wang, Z. Jiang, X. Gao, J.-N. Hwang, G. Xing, and H. Liu, “Rod-
net: Radar object detection using cross-modal supervision,” in Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), January 2021, pp. 504–513.

[89] X. Gao, G. Xing, S. Roy, and H. Liu, “Ramp-cnn: A novel neural net-
work for enhanced automotive radar object recognition,” IEEE Sensors
Journal, vol. 21, no. 4, p. 5119–5132, Feb 2021.

[90] K. Qian, S. Zhu, X. Zhang, and L. E. Li, “Robust multimodal vehi-
cle detection in foggy weather using complementary lidar and radar
signals,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2021, pp. 444–453.

[91] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference
on computer vision and pattern recognition. IEEE, 2012, pp. 3354–
3361.

[92] Texas Instruments Inc., “mmWave cascade imaging radar RF
evaluation module,” 2022, [Online]. [Online]. Available: https:
//www.ti.com/tool/MMWCAS-RF-EVM

[93] Uhnder Inc., “Uhnder - Digital Automotive Radar,” 2022. [Online].
Available: https://www.uhnder.com/

[94] S. Cho and S. Lee, “Fast motion deblurring,” in ACM SIGGRAPH
Asia 2009 papers, 2009, pp. 1–8.

[95] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring
from a single image,” Acm transactions on graphics (tog), vol. 27, no. 3,
pp. 1–10, 2008.

[96] K. Bansal, K. Rungta, S. Zhu, and D. Bharadia, “Pointillism: Accurate
3d bounding box estimation with multi-radars,” in Proceedings of the
18th Conference on Embedded Networked Sensor Systems, ser. SenSys
’20, 2020, p. 340–353.

[97] X. Gao, G. Xing, S. Roy, and H. Liu, “Experiments with mmwave auto-
motive radar test-bed,” in 2019 53rd Asilomar Conference on Signals,
Systems, and Computers. IEEE, 2019, pp. 1–6.

[98] F. E. Nowruzi, D. Kolhatkar, P. Kapoor, F. Al Hassanat, E. J. Heravi,
R. Laganiere, J. Rebut, and W. Malik, “Deep open space segmentation
using automotive radar,” in 2020 IEEE MTT-S International Confer-
ence on Microwaves for Intelligent Mobility (ICMIM). IEEE, 2020,
pp. 1–4.

159

https://www.ti.com/tool/MMWCAS-RF-EVM
https://www.ti.com/tool/MMWCAS-RF-EVM
https://www.uhnder.com/


[99] A. Zhang, F. E. Nowruzi, and R. Laganiere, “Raddet: Range-azimuth-
doppler based radar object detection for dynamic road users,” arXiv
preprint arXiv:2105.00363, 2021.
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mentation on radar point clouds,” in 2018 21st International Confer-
ence on Information Fusion (FUSION), 2018, pp. 2179–2186.

160



[108] M. Meyer, G. Kuschk, and S. Tomforde, “Graph convolutional net-
works for 3d object detection on radar data,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
3060–3069.

[109] A. Ouaknine, A. Newson, P. Perez, F. Tupin, and J. Rebut, “Multi-
view radar semantic segmentation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2021,
pp. 15 671–15 680.

[110] M. Shah, Z. Huang, A. Laddha, M. Langford, B. Barber, S. Zhang,
C. Vallespi-Gonzalez, and R. Urtasun, “Liranet: End-to-end trajectory
prediction using spatio-temporal radar fusion,” 2020.

[111] B. Yang, R. Guo, M. Liang, S. Casas, and R. Urtasun, “Radarnet: Ex-
ploiting radar for robust perception of dynamic objects,” in European
Conference on Computer Vision. Springer, 2020, pp. 496–512.

[112] T.-Y. Lim, A. Ansari, B. Major, D. Fontijne, M. Hamilton,
R. Gowaikar, and S. Subramanian, “Radar and camera early fusion
for vehicle detection in advanced driver assistance systems,” NeurIPS
Machine Learning for Autonomous Driving Workshop, 2019.

[113] J. Kim, Y. Kim, and D. Kum, “Low-level sensor fusion network for 3d
vehicle detection using radar range-azimuth heatmap and monocular
image,” in Proceedings of the Asian Conference on Computer Vision
(ACCV), November 2020.

[114] S. Chadwick, W. Maddern, and P. Newman, “Distant vehicle detection
using radar and vision,” 2019.

[115] Y. Long, D. Morris, X. Liu, M. Castro, P. Chakravarty, and
P. Narayanan, “Radar-camera pixel depth association for depth com-
pletion,” 2021.

[116] R. Nabati and H. Qi, “Centerfusion: Center-based radar and camera
fusion for 3d object detection,” in Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision (WACV), January
2021, pp. 1527–1536.

[117] Y. Kim, J. W. Choi, and D. Kum, “Grif net: Gated region of interest
fusion network for robust 3d object detection from radar point cloud
and monocular image,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 10 857–
10 864.

[118] C. Iovescu and S. Rao, “The fundamentals of millimeter wave sensors,”
Texas Instruments, pp. 1–8, 2017.

161



[119] T. Zeng, C. Mao, C. Hu, X. Yang, and W. Tian, “Multi-static mimo-sar
three dimensional deformation measurement system,” in 2015 IEEE
5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR),
2015, pp. 297–301.

[120] F. Robey, S. Coutts, D. Weikle, J. McHarg, and K. Cuomo, “Mimo
radar theory and experimental results,” in Conference Record of the
Thirty-Eighth Asilomar Conference on Signals, Systems and Comput-
ers, 2004., vol. 1, 2004, pp. 300–304 Vol.1.

[121] J. Bechter, F. Roos, and C. Waldschmidt, “Compensation of motion-
induced phase errors in tdm mimo radars,” IEEE Microwave and Wire-
less Components Letters, vol. 27, no. 12, pp. 1164–1166, 2017.

[122] A. Manikas, Beamforming: Sensor Signal Processing for Defence Ap-
plications. World Scientific, 2015, vol. 5.

[123] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
2019. [Online]. Available: https://github.com/facebookresearch/
detectron2

[124] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

[125] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

[126] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[127] Stereolabs Inc., “Zed Stereo Camera,” 2022. [Online]. Available:
https://www.stereolabs.com/zed/

[128] Waymo, “A fog blog,” 2021. [Online]. Available: https://blog.waymo.
com/2021/11/a-fog-blog.html

[129] O. Sorkine, “Least-squares rigid motion using svd,” Technical notes,
vol. 120, no. 3, p. 52, 2009.

[130] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

162

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://www.stereolabs.com/zed/
https://blog.waymo.com/2021/11/a-fog-blog.html
https://blog.waymo.com/2021/11/a-fog-blog.html


[131] T.-Y. Lim, S. A. Markowitz, and M. N. Do, “Radical: A synchronized
fmcw radar, depth, imu and rgb camera data dataset with low-level
fmcw radar signals,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 15, no. 4, pp. 941–953, 2021.

[132] S. Gong, Y. Song, T. Manzaneque, R. Lu, Y. Yang, and A. Kourani,
“Lithium niobate mems devices and subsystems for radio frequency sig-
nal processing,” in 2017 IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS), 2017, pp. 45–48.

[133] M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Ultra-thin super
high frequency two-port aln contour-mode resonators and filters,” in
TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Ac-
tuators and Microsystems Conference, 2009, pp. 577–580.

[134] C. Zuo, N. Sinha, and G. Piazza, “Very high frequency channel-select
mems filters based on self-coupled piezoelectric aln contour-mode res-
onators,” Sensors and Actuators A: Physical, vol. 160, no. 1, pp. 132 –
140, 2010.

[135] Y. Song and S. Gong, “Wideband spurious-free lithium niobate rf-
mems filters,” Journal of Microelectromechanical Systems, vol. 26,
no. 4, pp. 820–828, 2017.

[136] R. Lu, T. Manzaneque, Y. Yang, A. Kourani, and S. Gong, “Lithium
niobate lateral overtone resonators for low power frequency-hopping ap-
plications,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS),
2018, pp. 751–754.

[137] R. Lu, T. Manzaneque, Y. Yang, J. Zhou, H. Hassanieh, and S. Gong,
“Rf filters with periodic passbands for sparse fourier transform-based
spectrum sensing,” Journal of Microelectromechanical Systems, vol. 27,
no. 5, pp. 931–944, 2018.

[138] M. Bao and H. Yang, “Squeeze film air damping in mems,” Sensors
and Actuators A: Physical, vol. 136, no. 1, pp. 3 – 27, 2007, 25th
Anniversary of Sensors and Actuators A: Physical.

[139] M. Kadota, S. Tanaka, Y. Kuratani, and T. Kimura, “Ultrawide band
ladder filter using sh0 plate wave in thin linbo3 plate and its applica-
tion,” in 2014 IEEE International Ultrasonics Symposium, 2014, pp.
2031–2034.

[140] Federal Communications Commission, “Fcc adopts new rules for the
6 ghz band, unleashing 1,200 megahertz of spectrum for unlicensed
use,” https://www.fcc.gov/document/fcc-opens-6-ghz-band-wi-fi-and-
other-unlicensed-uses, Apr. 2020.

163



[141] Federal Communications Commission, “3.5 ghz band overview,”
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/35-
ghz-band/35-ghz-band-overview, Jan. 2020.

[142] Federal Communications Commission, “White space,”
https://www.fcc.gov/general/white-space, Jan. 2020.

[143] Y. Ghasempour, C. R. C. M. da Silva, C. Cordeiro, and E. W. Knightly,
“Ieee 802.11ay: Next-generation 60 ghz communication for 100 gb/s
wi-fi,” IEEE Communications Magazine, vol. 55, no. 12, pp. 186–192,
2017.

[144] Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt,
P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S. Wang, “A
40gs/s 6b ADC in 65nm CMOS,” in 2010 IEEE International Solid-
State Circuits Conference - (ISSCC), 2010, pp. 390–391.

[145] B. Murmann, “A/d converter trends: Power dissipation, scaling and
digitally assisted architectures,” in 2008 IEEE Custom Integrated Cir-
cuits Conference, 2008, pp. 105–112.

[146] DigiKey, “Data acquisition - analog to dig-
ital converters (ADC).” [Online]. Available:
https://www.digikey.com/products/en/integrated-circuits-ics/
data-acquisition-analog-to-digital-converters-adc

[147] 12-Bit, 2.6 GSPS/2.5 GSPS/2.0 GSPS, 1.3 V/2.5 V Analog-to-Digital
Converter AD9625 Data Sheet, Analog Devices, Norwood, MA, USA.

[148] R. T. Yazicigil, T. Haque, M. R. Whalen, J. Yuan, J. Wright, and
P. R. Kinget, “Wideband rapid interferer detector exploiting com-
pressed sampling with a quadrature analog-to-information converter,”
IEEE Journal of Solid-State Circuits, Dec 2015.

[149] A. A. Cheema and S. Salous, “Digital fmcw for ultrawideband spectrum
sensing,” Radio Science, vol. 51, no. 8, pp. 1413–1420, 2016.

[150] S. Subramaniam, H. Reyes, and N. Kaabouch, “Spectrum occupancy
measurement: An autocorrelation based scanning technique using
usrp,” in 2015 IEEE 16th Annual Wireless and Microwave Technol-
ogy Conference (WAMICON), 2015, pp. 1–5.

[151] U.S. Government, “CFR title 47 section 96.67 environmental sensing
capability,” Jan. 2020.

[152] S. K. Sharma, E. Lagunas, S. Chatzinotas, and B. Ottersten, “Appli-
cation of compressive sensing in cognitive radio communications: A
survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 3, pp.
1838–1860, 2016.

164

https://www.digikey.com/products/en/integrated-circuits-ics/data-acquisition-analog-to-digital-converters-adc
https://www.digikey.com/products/en/integrated-circuits-ics/data-acquisition-analog-to-digital-converters-adc


[153] J. N. Laska, W. F. Bradley, T. W. Rondeau, K. E. Nolan, and
B. Vigoda, “Compressive sensing for dynamic spectrum access net-
works: Techniques and tradeoffs,” in 2011 IEEE International Sympo-
sium on Dynamic Spectrum Access Networks (DySPAN), 2011.

[154] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-nyquist
sampling of sparse wideband analog signals,” IEEE Journal of Selected
Topics in Signal Processing, Apr. 2010.

[155] H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi, “Ghz-wide
sensing and decoding using the fourier transform,” in IEEE INFOCOM
2014 - IEEE Conference on Computer Communications, Apr. 2014.

[156] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candes, and A. Emami-
Neyestanak, “A 100mhz–2ghz 12.5 x sub-nyquist rate receiver in 90nm
cmos,” in 2012 IEEE Radio Frequency Integrated Circuits Symposium.
IEEE, 2012, pp. 31–34.

[157] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi,
“Sample-optimal average-case sparse fourier transform in two dimen-
sions,” in 2013 51st Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2013, pp. 1258–1265.

[158] Y. Guddeti, R. Subbaraman, M. Khazraee, A. Schulman, and
D. Bharadia, “Sweepsense: Sensing 5 ghz in 5 milliseconds with low-
cost radios,” in 16th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19), Feb. 2019.

[159] M. Rashidi, K. Haghighi, A. Panahi, and M. Viberg, “A nlls based sub-
nyquist rate spectrum sensing for wideband cognitive radio,” in 2011
IEEE International Symposium on Dynamic Spectrum Access Networks
(DySPAN). IEEE, 2011, pp. 545–551.

[160] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G.
Baraniuk, “Beyond nyquist: Efficient sampling of sparse bandlimited
signals,” IEEE transactions on information theory, vol. 56, no. 1, pp.
520–544, 2009.

[161] J. Yoo, C. Turnes, E. B. Nakamura, C. K. Le, S. Becker, E. A. Sovero,
M. B. Wakin, M. C. Grant, J. Romberg, A. Emami-Neyestanak, and
E. Candes, “A compressed sensing parameter extraction platform for
radar pulse signal acquisition,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 2, no. 3, pp. 626–638, 2012.

[162] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling:
Analog to digital at sub-nyquist rates,” IET Circuits, Devices Systems,
Jan. 2011.

165



[163] L. Shi, H. Hassanieh, and D. Katabi, “D-bigband: Sensing ghz-wide
non-sparse spectrum on commodity radios,” in Proceedings of the 6th
Annual Workshop on Wireless of the Students, by the Students, for the
Students, ser. S3 ’14, 2014, p. 13–16.

[164] O. Abari, F. Chen, F. Lim, and V. Stojanović, “Performance trade-offs
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