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Abstract

A salient factor behind the success of Bitcoin and other cryptocurrencies is the security of its

underlying consensus engine: the longest-chain protocol. Recent literature has given us an excellent

theoretical understanding of this protocol’s behavior in the synchronous (bounded communication

delay) model. One principle that emerges from this work is that the protocol’s security degrades

as the bound on the communication delays increases. It is therefore natural to investigate further

the protocol’s robustness to network delays and how one might enhance it further. This thesis

studies the security of the longest-chain protocol in network models that relax the synchronous

assumption. In particular, we answer the following two questions in the affirmative:

1. In a network with random, possibly unbounded delays, is the longest-chain protocol secure?

This work shows that the protocol is robust to sporadic, large delays, as is wont to happen

in real-world networks. Moreover, it sheds light on the dual role of delays on security: they

have both a local effect and a global effect.

2. In a network with more adverse conditions, i.e., occasional periods with arbitrary delay, How

can the longest-chain protocol be made secure? This work designs a finality gadget with

provable security properties that ensures the security of the longest-chain protocol even un-

der arbitrary delay. It also reveals some nuances about the CAP theorem, a fundamental

impossibility result in blockchains and distributed systems.

In addition, Bitcoin suffers from poor transaction throughput. This is a fundamental limitation of

the longest-chain protocol. Layer-two solutions provide a means to offload most of the transactions

from the blockchain, using the consensus mechanism only when disputes arise. Payment channel

networks are a class of layer-two solutions that have already been deployed in practice. In this

dissertation, we model these networks mathematically, explore the benefits of dynamic routing

and flow control, and present a network protocol that jointly performs these actions to steer the

network to an optimal operating point. The protocol is derived as a method of solving a network

optimization problem. It makes use of channel prices to co-ordinate the actions of the nodes in a

decentralized fashion.
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Chapter 1

Introduction

1.1 Blockchains: A New Paradigm of Decentralized Internet Services

The internet is a modern engineering marvel that has influenced many spheres of our lives. At

its core, it is a medium for exchanging digital information across devices in a seamless fashion.

A salient feature of the internet is that it is, by design, a decentralized system. This means that

there is no authority controlling what information gets shared on the internet and who has access

to information. For example, any individual (or corporation/entity) is free to host a webpage

with whatever content they please on the World Wide Web, provided they have secured rights

to the domain name. Similarly, any user (or client) is free to access the content on any such

webpage, at whatever time and frequency they choose to, provided they meet the appropriate

terms and conditions set by the webpage, e.g., creating an account or paying a fee. Arguably, the

decentralized aspect of the internet has allowed many creative enterprises to flourish around it.

Since the early 2010s, an increasing fraction of the internet usage has revolved around web-based

platforms. For example, consider the case of hotel bookings. In principle, each hotel is free to host

a webpage of its own, offering rooms to any customer willing to pay the price. Users are free to

access webpages of any hotel they know of. However, it is more convenient for users to access all

possible options via single platform such as Hotels.com or Expedia, where different lodging options

are offered by the individual hotels themselves. The success of web-based platforms can be seen

from the fact that they are found across various domains. Some examples of popular web-based

platforms are Uber for ride-seeking, AirBnB for home-based lodging, Amazon for e-commerce,

Spotify for music, etc.

The growing influence of web-based platforms has actually led to the centralization of control over

the internet, especially with regard to financial transactions that take place over it. For example,

consider the case of web search, the avenue through which most webpages are accessed. As of

2022, an overwhelming fraction of web searches are made through Google (see here); this has been

the case for the past decade. A search engine company has the power to tweak its algorithms in

a non-transparent manner, promoting some pages and suppressing others. Thus, a search engine

behemoth can unilaterally influence the information that a large fraction of the population has

access to. A monopoly in this space also means that the company has the power to monetize

search results arbitrarily, leading to high prices for clients. The same principle carries over to more
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specific platforms, too. For example, platforms like Amazon, AirBnB, Uber, Spotify, etc. can claim

a large fraction of the transaction value between service provider and consumer, simply because

they control a large share of the market in their respective segment. Broadly speaking, in today’s

world dominated by internet behemoths, service/content providers (e.g., drivers, artists, etc.) have

limited control and ownership of their product. Thus, the internet world is not a very democratic

one.

What are the key features that a decentralized internet platform should have? For one, the

platform should be operated by a collection of individual entities (say, stakeholders) rather than

one single entity. The rules of the operation, the data used by the platform, should be accessible

to all. Any change in the operations of the platform would have to be agreed upon by all, or at

least a majority of the stakeholders. The system should be fair: all parties should have roughly the

same responsibility in maintaining the system, accruing benefits in proportion to the effort (say,

storage/computation) they put into the system. For it to be truly decentralized, parties should be

allowed to enter and leave the system at will.

Such a decentralized platform would necessarily be a distributed system. Indeed, stakeholders (or

rather, their computers) who are geographically distributed need to communicate and cooperate to

provide a seamless service to clients. Today’s web-based platforms are also powered by a distributed

system of servers; not all the data is stored and processed on a single computer. This is done for

greater fault-tolerance and ease of scaling. However, despite being distributed, these systems are

not decentralized. This is because all the computing nodes are controlled by a single agent and they

can be programmed to run according to pre-specified rules. There is no notion of nodes acting of

their own free will. In contrast, in a decentralized system, the participating nodes are independent

entities. Thus, the prescribed protocol should incentivize nodes to correctly follow the prescribed

protocol, and punish users for deviating from it (or make it incredibly hard to do so). The protocol

must also be robust to arbitrary behaviors of the participating nodes and a faulty communication

process. In particular, it should be hard for any one participating node to take control of the

system.

The first such independent, decentralized, internet system that addressed the above challenges

was Bitcoin, which started its operation in 2009. Bitcoin is a decentralized monetary transaction

platform. It provides the service of a bank without requiring a single trusted party to monitor the

transactions. Rather, the role of the bank is played by the participants at large. Any user is free to

join Bitcoin as an active participant in keeping records of the transactions made in an ever-growing

ledger, and ensuring that these transactions are not fraudulent. There are two salient aspects in

such a decentralized system that differentiate it from a centralized banking system. First, the rules

of the system are transparent and publicly known; in particular, users and observers know what

constitutes a valid transaction as well as the monetary policy (when more money is injected in the

system). Thus, in such a system, a client’s assets cannot be arbitrarily frozen, nor can the liquidity

in the system be arbitrarily changed. Second, the cost of making a transaction gets decided in an

open market, instead of having a transaction fee set unilaterally by the bank/credit-card company.
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Thus, such a system is fair from an economic point-of-view.

A key feature in the design of Bitcoin is the blockchain data-structure, or more simply, the

blockchain. The blockchain is the ledger in which all transactions are recorded. At any given point

in time, there are a set of active ledger maintainers in the system, called miners. These miners store

a copy of the blockchain in their local memory; moreover, they make this ledger publicly accessible,

which is essential to have a decentralized system. To extend the ledger, a miner creates a block

(some reasonable number) of new transactions, appends this new block to the existing blockchain

ledger, and then broadcasts this new block to the other miners. Miners take turns in adding new

blocks to the blockchain, thereby streamlining the process. As the ledger is publicly verifiable,

honest participants (miners and clients) can simply ignore those miners that add faulty blocks to

the ledger. Security measures are also put in place to ensure that each miner has a fair chance

at extending the ledger. Thus, no one party can censor transactions from reaching the ledger. In

addition, miners are incentivized to remain active and to follow the protocol. We elaborate on the

design of Bitcoin in Section 1.2 below.

Soon after the advent of Bitcoin, it materialized that such a publicly verifiable decentralized

ledger could serve as the backbone for a much wider variety of services. Account balances could be

replaced by more complex state information and transactions could be replaced by more complex

programs that operate on the state variables and record changes in them. Thus, a blockchain-based

system could actually power a decentralized computer that could perform much more complex tasks.

Founded in 2013, Ethereum was the first system to implement this idea in practice. It allows clients

to host their own programs (called smart contracts) on a decentralized computer (called Ethereum

Virtual Machine). Moreover, the decentralized mature of the platform meant that clients have

a greater sense of ownership of their smart contracts; they could tweak it whenever they pleased

and charge money for other clients to use their smart contract according to whatever policy they

decided. The sole job of the miners is to co-operate and maintain the basic infrastructure of the

ledger. Moreover, their remuneration is decided by an open market where the miners are the sellers

and the clients are the buyers.

The basic idea of a blockchain, introduced in the design of Bitcoin, is now used as a building

block of many decentralized electronic transaction systems, called cryptocurrencies. Moreover, the

study of blockchain-based systems has blossomed into an active area of research today. The major

thrust of the research and development is on two fronts: building new decentralized systems using

blockchains and improving the fundamental properties of a blockchain. The vision for blockchain-

based systems is that they could be pivotal in scenarios where trusted third party is needed for data-

exchange, monitoring, making negotiations, and enforcing regulations. For example, supply chain

management often requires coordination and regulation among various independent agencies across

borders, which could be cumbersome. A blockchain-based platform for supply chain management

could ease these processes. On the more fundamental front, the major focus has been on improving

the privacy guarantees and the transaction processing capacity of blockchains. Improvement on

both these fronts is essential for blockchains to be adopted more widely.
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We now turn to describe the design of Bitcoin in more detail. This description provides a context

for stating the main contributions of this dissertation.

1.2 Bitcoin: The First Blockchain System

In 2008, Satoshi Nakamoto released the design of Bitcoin in a whitepaper titled “Bitcoin: A Peer-

to-Peer Electronic Cash System” [1]. A few months later, on 3rd January 2009, the Bitcoin system

officially began to operate. As the title of the paper suggests, Bitcoin provides an internet-based

monetary transaction service. From a client’s (i.e., user’s) perspective, the service provided by

Bitcoin is comparable to online banking or using apps such as PayPal. However, unlike traditional

electronic payment systems, Bitcoin is a decentralized, peer-to-peer system. This means that there

is no single agent (or entity) that controls or owns Bitcoin. Any person or entity could contribute

in maintaining this electronic transaction service, joining and leaving whenever they pleased. Thus,

a group of peers plays the same role as a bank or a credit card company would in a traditional

transaction-processing system.

We first highlight the components of Bitcoin that are similar to any other electronic transaction

system. Our description here is highly simplified. For a more comprehensive description, we

refer the reader to the textbook by Narayanan et al. [2]. One salient feature of Bitcoin, which

is common in nearly all electronic transaction systems, is the usage of digital signatures (See

any introductory cryptography textbook, e.g., [3], for a description of digital signatures). Just

like physical signatures, their digital counterpart allow any verifier to authenticate the source of

messages. In Bitcoin, a transaction is a message indicating the transfer of money from the payer to

the payee. Transactions are always signed by the the payer. Digital signatures cannot be forged.

Thus, Bitcoin offers the basic security property that a client cannot spend (or steal) another’s client

money from their account.

A second salient feature of Bitcoin that is shared by all (electronic) transaction systems is that

all transactions are recorded into a ledger. A ledger is simply an ordered list of pertinent items;

these could be transactions, events, etc. As new transactions are made, they are continuously

added to the ledger. The ledger helps keep track of the state of the system, i.e., the balances of

(funds held by) the different users. Based on the state, a transaction can be deemed to be valid or

not, in the sense, whether the payer has sufficient funds to make the transaction. Thus, a secure,

tamper-proof ledger provides another basic guarantee: that a client’s money does not disappear

from the system.

We now take a look at the key factors differentiating Bitcoin from other electronic transaction

systems. In a centralized system, the ledger resides on the servers of the controlling authority.

Transactions are sent by clients to this central authority, which then verifies that these transactions

are valid before adding them to the ledger. The entire ledger is not publicly accessible; a client can

only see their own account details. In a decentralized system like Bitcoin, all miners store a copy
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of the ledger in their local memory (recall that a miner is a peer maintaining the ledger). Clients

send their transactions to some of the peers, who in turn broadcast the transaction to all of the

other peers via a gossip protocol [2]. Each miner then individually validates transactions before

considering them to be added into the ledger. Finally, nodes add new transactions to their ledger

by participating in the longest-chain protocol.

To underscore the role of the longest-chain protocol, we take a look at two simple scenarios

where such a protocol is not used. First, consider what would happen if miners added transactions

to their ledger immediately upon hearing of them for the first time. Since every peer hears of

different transactions at different times, the order of transactions could vary from one peer’s ledger

to another. Next, consider an alternative system where one peer decides on the list of transactions

and communicates this ordered list to others. This one party would have complete control of writing

into the ledger; in particular, they could censor out certain transactions according to their whims.

Thus, this option is not a good one as well. Clearly, we need a protocol where each party has a

fair chance of adding transactions to the ledger. Moreover, every party must agree on the order of

transactions. Such a protocol is called a consensus protocol, of which the longest-chain protocol is

an example. We describe this protocol in the following praragraphs.

Let us imagine, for the moment, that the Bitcoin system has a leader election oracle, which

periodically selects one miner among the set of miners as a leader. The leaders are chosen at

random and each leader is chosen independent of the past. Once a miner is elected as a leader, it

creates a new block of transactions; here, a block is an ordered list of a moderate number (around

a thousand) of transactions. Only those transactions that the leader has heard of, but are not yet

recorded in the ledger, are included in the new block. Having created this new block, the leader

appends this block to the end of its ledger. These blocks, when chained together, one after the other,

naturally form a ledger of transactions. The term blockchain, which today has grown to represent

the whole system, was originally used to refer to this particular linked-list-like representation of

a ledger. Lastly, the leader broadcasts this block to all other miners. Upon hearing of the new

block, each miner individually validates the block and includes it in their ledger. Grouping the

transactions into blocks helps streamline the ledger-update process.

In Bitcoin, the leader election oracle is implemented through a clever use of the proof-of-work

idea. The term proof-of-work (or PoW) arises in the context of solving hash puzzles, or more

generally, computational problems that are hard to solve but easy to verify. These hash puzzles

are built using cryptographically secure hash functions, which are computationally hard to invert.

By extension, this means that it is also hard to find an input whose output string meets some

particular condition. In Bitcoin, the hash puzzle is to find an input whose hash is less than a

certain threshold. Equivalently, the bit string representation of the output must begin with a

certain number of zeroes (say, twenty). The best (and effectively, only) method of solving the

hash puzzle would be to sample numbers at random and compute this random number’s hash.

On average, after 220 such attempts, one can find an input whose hash meets the aforementioned

criterion. Thus, performing this task requires a fair amount of computational work. Crucially, a
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party that has performed this computational task can provide to a verifier party this hard-to-find

input. This input is called the proof-of-work. The verifier can compute its hash (fairly quickly)

and verify that the original party has indeed performed a fair amount of computational work.

In Bitcoin, miners are constantly competing with each other, trying to solve a particular hash

puzzle the fastest. The first miner to solve the hash puzzle is considered the leader and has the

right to propose a new block. The lucky miner includes the proof-of-work along with the block and

broadcasts it to other miners. Those receiving a block can verify that the proof-of-work is valid, and

are therefore assured that the leader is bonafide. Note that the miner who solves the hash puzzle

first is chosen at random, since each miner is trying to solve the hash puzzle independently. Thus,

the proof-of-work mechanism gives rise to a decentralized, randomized leader election mechanism.

The precise puzzle that the miners are trying to solve is to create a block whose hash is less than

a certain threshold. Among the contents of the block is a special field called the nonce, which is

exclusively meant to be a parameter that can be varied to adjust the hash. The hash puzzle for

every new block is a fresh puzzle. Therefore, its winner is independent of the previous hash puzzles.

The term miner itself originates in this proof-of-work setting: those seeking to solve the hash puzzles

are mining for a precious resource (a valid nonce) by spending valuable (computational) energy.

We summarize our description of Bitcoin so far in the following points.

1. New transactions are continuously generated by clients in the system, and are broadcast to

the miners.

2. Miners collect all new transactions that they have heard of, but are not yet included in the

ledger, into a block.

3. Miners continuously work on finding an appropriate nonce such that the hash of their entire

block is less than a certain threshold. Upon finding such a nonce, they broadcast the block

to all other miners.

4. Miners accept a new block only if all transactions in it are valid and the block also includes

a valid nonce. Once they accept a block, they begin working on creating the next block in

the chain.

We now examine some aspects of the protocol’s robustness and security. For one, each transaction

that is made must be signed by the payer. Thus, no user can spend any other user’s money. Suppose

a user tries to cheat by creating a transaction that spends more money than they own. Such a

transaction can easily be caught by the miners when they validate the transaction. In fact, no

honest miner would include such a transaction in the block they are mining on. Suppose a corrupt

miner does include such a transaction in its block and produces a valid proof-of-work for it as well,

all other miners would ignore such a block. Thus, fraudulent transactions are easily discarded from

the ledger.

The protocol is robust against communication delays as well. For instance, at any given point in

time, the new block that miners are mining on possibly differs from one party to another. This is

6



because a transaction may have made its way to some miners but not to others. However, as long

as the transaction is valid, it is bound to be recorded in the ledger eventually. The protocol also

accounts for the fact that there are communication delays in sending a block from one miner to the

others. Suppose, before a certain newly mined block reaches others, another miner is successful

in finding a nonce and broadcasts its block. These two blocks will both be pointing to the same

parent block. Sooner or later, all miners will hear of both these blocks. Miners treat the block with

the lower hash as the valid block and continue building on it; the other block is simply ignored.

More generally, due to network delays, it is possible that there are forks in the blockchain. The rule

that miners follow is to pick the chain with the largest amount of ‘work’. This essentially means

picking the longest chain, and breaking ties among equally long chains by choosing the one with

the smallest sum of hashes. This rule gives the longest-chain protocol its name. The longest-chain

rule is also applicable for any party who wants to merely view the ledger or perhaps wants to newly

get started with mining. As such, such a user could be presented with many different chains. The

longest-chain rule guides the choice of the chain in this case. It also resolves the dilemma of what

is the authentic copy of the blockchain.

In our description of Bitcoin, we have omitted a description of the monetary policy of Bitcoin

(how new coins are introduced in the system), as well as the incentives for miners to participate

in the system. These aspects, although very important, are somewhat orthogonal to the focus of

this dissertation, which is on the security and transaction-processing efficiency of blockchains. We

refer the reader to the book “Bitcoin and Cryptocurrency Technologies” by Narayanan et al. [2]

for a detailed discussion on these aspects.

1.3 The Longest-Chain Protocol: Security and Efficiency

1.3.1 Security From a Consensus Viewpoint

Arguably, the most important problem of study in the Bitcoin system is that of security. Assuming

that standard cryptographic constructs are secure (and are correctly implemented), the question of

security boils down to whether the longest-chain protocol truly provides consensus. To elaborate,

the question of interest here is to under what conditions does the Bitcoin system provide one

consistent view of the blockchain to all the miners and the clients in the system. We illustrate

the importance of having consensus among the miners by describing what is known as the private

attack. In this attack, an adversary aims to obtain some real-world good without actually paying

for it. In the example that follows, the adversary cheats a car dealer by obtaining a car without

paying for it. Therefore, this attack is also known as the double-spend attack.

The sequence of events in this attack are as follows. First, the adversary issues a transaction Tx1

paying a Bitcoin to a car dealer in order to buy a car. The transaction is legitimate, and so is picked

up by some honest miner and included in a block B1 which becomes part of the main blockchain.
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Once this happens, the car dealer assumes that the transaction is permanently recorded on the

ledger and hands over the car. Meanwhile, the adversary creates a second transaction Tx2 that

pays the same Bitcoin to itself, but to a different account. It does not broadcast Tx2; rather, it

includes this transaction in a new block B2 and tries to find a valid proof-of-work for this block.

B2 is purposely created to be in a chain parallel to B1; i.e., they both have the same parent.

The adversary continues to work privately on building a chain of blocks that extend B2. The

honest miners, unaware of block B2 and its descendants, continue extending the chain containing

B1. Suppose a moment comes where the adversary’s privately held chain grows longer than the

chain held by the honest miners. At such a moment, the adversary broadcasts its privately held

chain to all other miners. All honest miners, following the longest-chain rule, adopt the chain sent

by the adversary, which contains block B2, and continue extending it. Block B1 thus falls off the

longest chain. The transaction paying the car dealer is no longer recorded on the ledger. Moreover,

this transaction will never be included below block B2 as it is now an invalid transaction; the coin

in question is already spent.

With careful consideration, we see that the security threat stems from a lack of consensus.

Indeed, the attack is successful because at some point in time, honest miners are presented with a

chain that is viable (i.e., long enough) and differs substantially from the one they held until that

point. More succinctly, there were two equally long chains among the peers that forked back quite

some distance. Roughly speaking, the presence of multiple equally long chains implies that the

miners cannot agree on any one chain by following the longest-chain rule. Thus, for the protocol

to be secure, there must be one unanimous longest chain in the system at all times. Moreover, the

longest chain at any time must be an extension of the previous longest chain. In other words, the

longest chain must be strictly growing with time. The early works analyzing blockchain security,

e.g., Garay et al. [4], Sompolinsky and Zohar [5], and Pass et al. [6], clearly make the connection

between security of the underlying consensus mechanism and the security of the blockchain as a

whole.

Whether the adversary is able to successfully execute a double-spend attack depends on whether

it is able to privately build a chain that eventually grows longer than the honest miners’ chain. This,

in turn, depends on the fraction of mining power the adversary controls, i.e., on the computational

resources the adversary can deploy towards this attack. Intuitively, if the adversary controls more

than half the mining power in the system, then it can mine blocks at a faster rate than all the

honest miners put together. In such a scenario, the adversary would be able to easily execute

the attack. Conversely, if the adversary controls less than half of the computational resources, it

would be hard to execute such an attack. Thus, the system is secure as long as the computational

power of the adversary remains appropriately bounded. Assuming that there are many miners in

the system with considerable computational power each, it is unlikely that a malicious party can

muster the resources that exceed that of all the honest parties combined. This argument is the

crux of the security properties of the longest-chain protocol.

In the original Bitcoin whitepaper [1] itself, Nakamoto made the following important securit

8



observation. Even with a small fraction of the mining power (say, ten percent), it is possible for the

adversary to carry out a short-range private attack. This means that the adversary can create a

short private chain, say of three blocks, which is momentarily longer than the honest miners’ chain.

This happens purely as a matter of chance; the adversary could get lucky and mine three blocks

in quick succession. In this case, the private attack would eliminate two honest blocks. However,

by incurring some latency, clients can guard against being cheated. With respect to the example

above, suppose the car-dealer decides to wait for five more blocks to be built on top of B1 before

treating the transaction paying itself as confirmed. Before the transaction is confirmed, it would

not hand over the car to the adversary. Thus, even if the adversary performs a short-range private

attack, the net effect would be that the car dealer and the adversary did not make any transaction

at all. However, if the adversary is able to build a chain of six blocks or more, and moreover, at

some point, have it longer than the honest miners’ chain, then it would be able to successfully carry

out the attack.

The Bitcoin whitepaper [1] showed that for as long as the adversary has less than half the mining

power, the probability with which it would be able to carry out a private attack overturning k

or more blocks decreases exponentially with k. Smaller the adversarial fraction, the faster the

decay rate in the adversary’s chance of success. Thus, clients can get progressively better security

guarantees by waiting for their transactions to be buried deeper before confirming them. However,

this wait increases the latency of the transaction. Thus, the longest-chain protocol suffers from a

latency-security trade-off.

1.3.2 Security Results: The Effect of Network Delay

Nakamoto’s calculations were based on the assumption that all blocks are delivered instantaneously

from the successful miner to all other miners. Under such an assumption, each honest miner hears

of the block mined by the previous honest miner. Thus, the later miner creates a block extending

the previous one’s chain. Thus, the chain held by honest miners grows at the same rate as the

creation of new blocks in the system. On the other hand, when there are network delays, forks

emerge, and the honest miners’ chain growth slows down. This is because network delays cause

honest blocks to be built in parallel to each other, which means that not all blocks contribute to

the blockchain’s growth. This drop in the growth rate gives the adversary an advantage in the

private attack. To be successful, the adversary only needs to mine a chain longer than the longest

of the honest miners’ chain, which is smaller than the number of honest blocks mined. The larger

the delays, the slower is the growth rate of the honest miners, and the easier it is for the adversary

to break consensus. Thus, security guarantees decrease with network delay.

In addition to reducing the growth rate of the honest chain, network delays are be detrimental

to consensus in other ways as well. For example, due to delays, it is possible that an honest miner

has not heard of the last few honest blocks. Thus, its chain is shorter than the longest chain in the

system. This makes it easier for the adversary to attack such a miner. In fact, in the presence of
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network delays, the adversary can do better than simply mine blocks in private and releasing them

all at once. It can exploit the forks in the chain naturally caused by delays to propagate the fork

it is trying to create. Put differently, the adversary can use some honest blocks to its own benefit.

Accounting for all these factors makes it challenging to analyze the security of the protocol under

network delays.

Over the years, a number of works in the literature have taken steps towards sharply charac-

terizing the protocol’s security properties under network delays. Nearly all of these works assume

the synchronous communication model. Under this model, all messages among honest miners are

delayed by no more than some known constant ∆. Beyond this, the adversary has complete control

of the message delays. All works provide security guarantees of a similar flavor, which can be

described as follows. For any given delay bound ∆ and mining rate f , let the fraction of adver-

sarial mining power be less than some β(f∆). Then the probability with which a block buried

k-deep in the longest chain ever gets removed from the longest chain decreases exponentially with

k. A similar guarantee can also be given for blocks in the longest chain that were created at least

k time units ago. These guarantees hold independent of the actions of the adversary, i.e., they

hold irrespective of where the adversary chooses to mine and when and to whom it chooses to

send its blocks. The term β(f∆), the maximum tolerable adversarial fraction given the system’s

parameters, is called the security threshold.

The security threshold obtained in initial works [4, 6] were not tight. From simple calculations

in [5], it was known that the private attack would be unsuccessful (with high probability) if β <

(1−β)/(1+(1−β)f∆). However, security was proven to hold only for a smaller value of β. In 2020,

two sets of reserachers, namely Dembo et al. [7] and Gaži et al. [8], proved that the longest-chain

protocol is secure if and only if beta is less than the private attack threshold. Thus, these works

showed that asymptotically, the private attack was as good as any other attack. Since these works

focused on the security threshold, their security guarantees were given in terms of order notation

(exp(−Ω(k))). These guarantees did not translate into pracitcal latency bounds for clients with

a given tolerance for failure probabilities. The work of Li et al. [9] sought to address this gap.

Recently Gaži et al. [10] provided practical finite-time security guarantees that are very close to

lower bounds, and are thus nearly optimal.

1.3.3 Efficiency Limitations and Layer-Two Solutions

The security analysis of the longest-chain protocol reveals that the protocol has a very low trans-

action throughput. The transaction throughput is defined as the number of new transactions the

system is able to process per unit time. The throughput of the protocol is given by the product of

the number of blocks mined per unit time, i.e., the mining rate, and the number of transactions per

block. Indeed, the throughput of Bitcoin is around five to ten transactions per second. In compari-

son, traditional payment systems like Visa or Mastercard process tens of thousands of transactions

per second. The poor throughput of the longest-chain protocol has hindered the widespread adop-
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tion of Bitcoin and other blockchain-based systems for payments. Naively, the throughput of the

protocol could be improved by increasing the mining rate, the number of transactions per block, or

both. However, increasing either of these parameters compromises on security. The security results

mentioned in the previous section tell us that the security threshold decreases with the mining rate

for a fixed network delay ∆. Thus, increasing the mining rate is ruled out. Increasing the block

size leads to an increase in the communication delays, which also adversely affects security. Thus,

the limited throughput is a fundamental drawback of the longest-chain protocol.

In recent years, the blockchain community has proposed a variety of methods to address the

challenge of improving a blockchain’s throughput. The proposed improvements can be broadly

classified into two distinct categories: layer-one solutions and layer-two solutions. Layer-one solu-

tions propose a new consensus mechanism that does not suffer the aforementioned drawbacks of

the Nakamoto consensus protocol. In contrast, layer-two solutions use the existing framework of a

Nakamoto consensus-based blockchain to provide users a tool to transact without recording all of

the transactions on the blockchain itself. Hence, they are also termed as off-chain mechanisms. By

reducing the transaction load on the underlying blockchain, layer-two solutions address the issue

of low throughput. Further, some mechanisms have the following property: when both nodes act

honestly, the mechanism provides a faster transaction confirmation guarantee than the consensus

layer. Only when there are disputes, the transactions are broadcast to the whole network, and the

history as recorded by the blockchain is treated as final. The recent survey paper by Gudgeon et

al. [11] gives an overview of popular layer-two scalability solutions. They say that “the promise

of layer-two protocols is to complete off-chain transactions in sub-seconds rather than minutes or

hours while retaining asset security, reducing fees and allowing blockchains to scale” [11].

1.4 Contributions of This Dissertation

This dissertation studies three theoretical problems in the space of blockchains. The first two

problems concern the security of the longest-chain protocol, especially under atypically large com-

munication delays. In Chapter 2, we extend the security results for the longest-chain protocol

from the constant delay setting to a network setting where delays are random and potentially un-

bounded. Our work illustrates how the proof techniques from the constant delay setting can be

generalized to handle random delays. Next, in Chapter 3, we present a consensus protocol that

can be viewed as augmenting the longest-chain protocol with a finality gadget. This gadget secures

the consensus protocol under arbitrary network delays. The last chapter, Chapter 4 focuses on

payment channel networks, a tool to improve the transaction throughput of blockchains. We show

that such networks cannot serve arbitrary transaction requests over a long time. We then present

a protocol that meets as large a fraction of the transaction requests made as possible.
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1.4.1 The Longest-Chain Protocol Under Random Delays

In Section 1.2, we established that network delays play an important role in the security of the

longest-chain protocol. For a given mining rate, larger the network delays, poorer the security

threshold of the protocol. Consider a network where delays are typically small but are sporadically

large. What would be the security threshold of the longest-chain protocol in such a network? Going

by the chain-growth rate intuition, the threshold should be similar to what would be the case if all

delays were the typical delay; perhaps a little worse. This is because if most blocks are delivered

from one miner to the next with a small delay, then the growth rate of the chain would be nearly

as high as the case if large delays never occurred. However, to apply the guarantees obtained

from the analysis in the synchronous model, one would have to account for the worst-case delay.

This would yield much poorer security guarantees than what the intuitive argument suggests.

The reason for this is that although the synchronous network model allows for arbitrary delays

within the prescribed delay upper bound, the security analysis considers the worst-case scenario,

which is essentially the case that all messages are delayed by the maximum possible value. Thus,

security guarantees from the synchronous model do not capture the distribution of delays within the

prescribed range. In particular, these guarantees may be too pessimistic if the delay distribution

has a large weight far lesser than the upper bound. A pessimistic security guarantee also translates

to a poor choice of the mining rate for the system, which can be detrimental to the blockchain’s

throughput.

In order to obtain better security guarantees under inhomogenous network delays, it is important

to model the network accordingly and simultaneously, build a security analysis that explicitly

accounts for these inhomogeneous delays. In this work, we model the network by assigning message

delays to be random variables, that are independent and identically distributed. The distribution

can be set to be equal to the network’s delay statistics that can be empirically measured. This

communication model is a strict generalization of the synchronous model. It also allows for delay

distributions with unbounded support. Within this network model, we derive safety and liveness

guarantees that hold for infinite-horizon executions. We provide simple, explicit bounds on the

failure probabilities that decay exponentially with the security parameter. We analyze the protocol

in both the proof-of-work and proof-of-stake variants. Thus, our security guarantees are of the

same flavor as existing results in the synchronous network model. The main takeaway is that

the theoretical results in this work reinforce a belief that has been borne out by practice: the

longest-chain protocol has good security properties in real-world network conditions.

The main technical challenge in this work is to extend the proof technique from the synchronous

setting to the more inhomogenous network setting. One of the key insights from earlier works that

we retain is the intuition that the longest-chain produced by the honest miners must outgrow the

longest-chain by the adversarial users. We note that in calculating the growth rate, the precise

delays do not matter; the only event of significance is whether a new miner has heard of the block(s)

currently at the tip of the blockchain or not. Moreover, in the network model we propose, there is
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a certain renewal structure in the occurence of these events; in other words, successive events are

independent of each other. Thus, the growth rate of the honest longest-chain is dictated by the

probability of an honest block hearing of a previously mined block; this, in turn, depends on the

relation between the typical delay and the mining rate. Moreover, we also account for the fact that

different honest users may have different versions of the longest-chain; this is also a consequence of

inhomogenous delays. Under the random-delay assumption, we show that the chain held by any

one party is not shorter than the longest-chain by too large a factor with high probability. This

guarantee allows us to make security guarantees similar to that in the synchronous model.

1.4.2 Finality Gadgets and the Blockchain CAP Theorem

The longest-chain protocol is not secure in network conditions where the delays could be arbitrarily

large. Consider, for example, the case where the communication network suddenly develops a

partition, splitting the parties into two halves that cannot communicate with each other. These

two sets of parties will build two separate blockchains that grow in parallel which fork off from the

point where the network was last connected. When the network heals after a considerable period

of time, the parties will have to choose one of the two chains to extend forward; the parties that

were building on the other chain lose out on safety.

As such, no consensus protocol can make progress in a secure way during periods of arbitrary

network delays. Classical consensus protocols like PBFT [12] are designed to remain secure under

such adverse network conditions essentially by stalling. This behavior is encoded within the protocol

itself by means of a vote-counting step: the protocol does not make progress unless each party

receives a certain number of votes from other parties. Under network partition, this condition

is not met, so the protocol does not confirm new blocks. In contrast, the longest-chain network

continues to make progress even if communication is disrupted. There is no inbuilt mechanism that

allows for the protocol to stall if communication with other peers cannot be established.

However, it is this very property that works as an advantage for the longest-chain protocol in

environments with a varying number of participants. In scenarios where some honest parties may

temporarily drop out of the protocol (or go to sleep), the longest-chain protocol continues to make

progress in a secure fashion, while other permissioned consensus protocols stall. The mechanisms

that safeguard the protocol in times of network asynchrony prove to be a hindrance in a setting

with sleepy users. Indeed, in a decentralized system, it is impossible for a single party to distinguish

whether other parties have gone to sleep or are active but cut-off from communication; in both

cases, communication between parties is lost. Thus, this dichotomy between choosing security in

a partially synchronous environment and making progress even when some parties are sleepy is a

fundamental one. This trade-off is captured by the blockchain CAP theorem [13]. To be precise,

the theorem suggests that a blockchain protocol by design must choose between finality (offering a

deterministic security guarantee in the presence of network partitions) and adaptivity (remaining

live and available in a setting with variable number of users).
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In Chapter 3, we propose a new blockchain protocol, called the checkpointed longest chain,

that offers individual users the choice between finality and adaptivity instead of imposing it at a

system-wide level. This protocol’s salient feature is that it supports two distinct confirmation rules:

one that guarantees adaptivity and the other finality. The more optimistic adaptive rule always

confirms blocks that are marked as finalized by the more conservative rule and may possibly confirm

more blocks during variable participation levels. Clients (users) make a local choice between the

confirmation rules as per their personal preference, while miners follow a fixed block proposal rule

that is consistent with both confirmation rules. The proposed protocol has the additional benefit

of intrinsic validity: the finalized blocks always lie on a single blockchain, and therefore miners can

attest to the validity of transactions while proposing blocks. Our protocol builds on the notion of

a finality gadget, a popular technique for adding finality to longest-chain protocols.

1.4.3 Pricing and Routing in Payment Channel Networks

Juxtaposed with the grand vision of bringing about a decentralized internet is the limitation that

Bitcoin cannot support more than tens of transactions (or instructions) per second. This limitation

stems from the longest-chain protocol itself. The transaction throughput of the protocol is given

by the product of the mining rate (new blocks per unit time) and the number of transactions that

can fit into a block. The latter parameter influences the size of the block and, consequently, the

communication delay in sending the block from one miner to another. To increase the throughput,

one could increase either the mining rate or the size of the block, or both. However, any of these

actions increases the chances that the a block cannot be communicated from its miner to the others

before the next one is mined. An increase in the frequency of this event leads to poorer security

guarantees for the protocol. Thus, any instantiation of the longest-chain protocol is bound to have

limited throughput, which would not suffice for modern-day applications.

Recent blockchain literature has sought to address this limitation of blockchains via a myriad of

proposed solutions. Broadly, the approaches can be categorized into two: layer-one solutions and

layer-two solutions. Layer-one solutions seek to replace the Nakamoto consensus protocol with an

altogether different consensus mechanism that does not suffer from these limitations, e.g., Prism

[14]. Sharded blockchains are another broad class of scaling solutions, where different sets of parties

process a different set of transactions. However, a drawback of these solutions is that they cannot

be implemented on existing blockchain systems.

Layer-two solutions address this drawback by providing backward compatible scalability solu-

tions. At a high level, layer-two solutions operate by offloading transactions from the blockchain

ledger. At its initialization, a certain portion of the blockchain’s state is locked by the layer-

two mechanism by recording an appropriate transaction on the blockchain. Then, the parties

involved can transact via a different protocol as dictated by the layer-two protocol. This protocol

can typically process transactions much faster than the Nakamoto consensus protocol. Finally, the

layer-two mechanism releases funds by recording the state at the culmination of all the transactions

14



that took place off the blockchain. Thus, only the net effect of multiple transactions is recorded on

the blockchain, thereby effectively increasing the number of transactions it can process.

A popular layer-two scalability solution is that of a payment channel. It is an escrow fund between

two parties, created by the deposit of funds by the involved parties into a special account. The two

parties then transact by exchanging messages with each other. These messages note how the escrow

fund shall be ultimately split between the transacting parties. Thus, each message effectively marks

the transfer of funds from one party to another The blockchain is used only to create and close the

channel, or to handle disputes. The functionality of a payment channel is significantly enhanced

when many of them join to form a payment channel network (PCN). Here, any party can transact

with any other party as long as they are connected by a path of payment channels. A PCN saves

on the amount of collateral locked in escrow, apart from time and transaction fees. The Lightning

Network, a popular PCN, powers many of the apps used to transact in Bitcoin [15].

For a payment channel network to function efficiently, it is vital to have a principled protocol

to route transactions across it. Varma and Maguluri [16] show that a dynamic, state-dependent

routing protocol can help the network serve all transactions up to its capacity. At the same time,

they also show that for the network to meet all the demands, the demand structure must satisfy

the following stringent balance criterion: the net demand out of each node equals the net demand

into each node. If this condition is not satisfied, the network is bound to have a non-zero net flow of

money on at least some channel in the network, eventually skewing the balances completely. When

this happens, the imbalance-causing flows naturally become infeasible, and the network continues

to serve only a portion of the demands that satisfy the balance criterion. However, it is possible

that certain deadlocks arise: demands that could have been served by the network without altering

channel balances are infeasible because of the skewed channels. This phenomenon was first studied

by Sivaraman et al. [17].

Motivated by these considerations, we ask the question: is it possible to extend the protocol of

Varma and Maguluri [16] so that transacting nodes also make flow-control decisions, i.e., hold back

on their transactions if routing them are leading to a deadlock? In Chapter 4, we present a joint

flow-control and routing protocol, answering this question in the affirmative. Under stationary

demand conditions and with channels of sufficiently large capacity, the protocol serves as large

a fraction of transactions requests as possible without skewing the balances of the channels. The

protocol is derived in the following steps. We first state the objective of the network as a constrained

optimization problem. Next, we derive the dual of this optimization problem. The protocol is then

derived as a gradient-descent method to solve this dual problem. The Lagrange multipliers, i.e.,

the variables in the dual problem, play a key role in the protocol. They can be interpreted as

prices that the channels quote to the transacting nodes for routing a flow through it. For each

transaction, its source-destination pair makes routing and flow-control decisions by optimizing for

their personal utility with the routing costs subtracted. The channels then update their prices in a

manner such that ultimately, the network approaches the desired state. We illustrate the behavior

of the protocol via simulations.
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Chapter 2

The Longest-Chain Protocol Under Random Delays

2.1 Introduction

Blockchains are peer-to-peer systems that maintain an ever-growing ledger. The term blockchain

refers to the linked-list-like data structure that forms the ledger in these systems. Over the past

decade, blockchains have proved useful in enabling decentralized payment systems, i.e., cryptocur-

rencies. In all such systems, the peers (or parties) participate in a consensus protocol to ensure

that they maintain consistent copies of the ledger. While the blockchain data structure itself has

remained fairly standard, associated consensus protocols have proliferated (see [18, 19] for surveys

on consensus protocols). The longest-chain protocol, also known as the Nakamoto consensus pro-

tocol, is one such consensus mechanism. It was proposed in the design of Bitcoin [1], and is used

by many cryptocurrencies today.

The longest-chain protocol has a simple description. Periodically, a party is elected as a leader

via a randomized mechanism. The mechanism may be Proof-of-Work mining, as in Bitcoin [1], or

some Proof-of-Stake mechanism, as in Ouroboros [20, 21, 22]. Once elected, a leader creates a new

block at the end of its blockchain and broadcasts the block to other parties, who receive the block

after some delay. Each party builds upon the longest blockchain it has heard of thus far. The

protocol ensures that no one peer can single-handedly manipulate the ledger.

A fundamental problem is to study the conditions under which the protocol is secure, despite

the presence of malicious parties who can deviate from the protocol arbitrarily. Starting from the

pioneering work of Garay et al. [4], many works have analyzed the protocol under a variety of

modeling assumptions [6, 20, 23, 7, 8]. From this literature, some basic principles emerge that hold

irrespective of the model.

One fundamental principle is that the protocol’s security can be distilled down to two properties:

a safety property, namely settlement, and a liveness property, namely chain quality. The settlement

property (aka persistence, consistency or common prefix) states that blocks in the blockchain that

were built more than some k time units ago become settled, i.e., remain in the blockchain forever

after or remain out. The chain quality property states that every k time units, at least one block

built by an honest leader will appear in the blockchain. In essence, settlement states that all parties

have consistent blockchains and liveness states that they keep including new transactions. When

both properties hold, the protocol is said to be secure.
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A second principle is that the longest chain protocol is secure when the fraction of adversarial

parties (more specifically, adversarial representation power) is below a certain threshold and is

insecure otherwise. The threshold depends on the mining rate, i.e., the leader election rate f , and

the network delays ∆. In the synchronous network model, a message sent at time τ will be delivered

by time τ +∆, where ∆ is a known constant. In such a network, the protocol is secure if and only

if

β <
1− β

1 + (1− β)f∆
, (2.1)

where β is the fraction of adversarial power [7, 8]. Moreover, if the tuple (β, f,∆) satisfies (2.1),

the probability that security is broken decreases exponentially with the wait time k [8, 10].

Note that the security threshold, i.e., the supremum of β for which the protocol is secure,

decreases with f∆ (set the inequality in (2.1) to equality). In other words, network delays have a

detrimental effect on security. This phenomenon can be understood as follows. If a leader does not

hear of the most recent block, its block does not extend the blockchain and is wasted. If network

delays are large, this happens frequently, and the rate at which the blockchain grows slows down.

Effectively, the honest participation reduces, giving the adversary an advantage.

In a real-world network, the worst-case message delays may be much larger than typical delays

(see, e.g., the empirical study by Decker and Wattenhofer [24]). Often, these are due to random

factors such as network traffic or noise in the channels. In such a scenario, the only guarantees

from the synchronous model are obtained by setting ∆ to the maximum possible delay in (2.1).

However, this may yield pessimistic guarantees: the fraction of honest blocks wasted would typically

be less than that suggested by the worst-case delay. We posit that better security guarantees may

be obtained by studying the protocol under a new communication model that allows for random

delays.

2.1.1 Our Contributions

The main contribution of this chapter is to analyze the security of the longest-chain protocol in a

network with random, possibly unbounded, delays. Briefly, the network model we consider is as

follows. Each peer-to-peer communication is subject to an independent and identically distributed

(i.i.d.) delay. Thus, different recipients of a broadcast may receive the same broadcast message

at different times. This model generalizes the synchronous model and has not been studied in

prior work on blockchain security. For this model, we obtain security results that are qualitatively

similar to those in the synchronous model. For ease of exposition, this work focuses on the simpler

Proof-of-Work setting instead of the more general Proof-of-Stake setting (see the work of Blum et

al. [25] for a comparison between Proof-of-Work and Proof-of-Stake).

A secondary contribution of ours is that we explicitly state and distinguish between two forms

of security properties: intensive and extensive. These terms are borrowed from statistical physics.

Intensive properties capture the security of localized portions of blockchains, whereas extensive
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properties provide global security guarantees. Prior works typically state properties in either one

of these forms; those that state properties in both forms do not formally distinguish them. We

show that guarantees for the intensive forms imply guarantees for the extensive forms.

Our main result, Theorem 2.1, states that the longest-chain protocol is secure in the random delay

model, except with probability that decays exponentially in the wait-time (or security parameter)

k. The condition for security is the following: the probability with which the miner of a block

is honest and has heard the block broadcast by the previous miner must be greater than a half.

Note that this condition allows for delay distributions with a long, possibly unbounded, tail. When

delays are zero, this reduces to the honest majority condition. The result addresses the settlement

and the chain quality property jointly. We provide simple, explicit error bounds. The guarantees

hold for infinite-horizon executions.

On a finer note, our work shows that communication delays have both global and local effects.

Delays from past leaders to future ones have a global effect: they influence the growth of the longest

chain and impact the security of all honest parties. We incorporate these delays in our definition of

the characteristic string (Section 2.4.2). In contrast, delays from leaders to a given honest party h

have local impact: they affect the length of the chain held by h, and, therefore, h’s security alone.

We account for these delays in the term Unheardh (Section 2.4.3). This dual role is reflected in

Theorem 2.1, where the error bounds have two terms. One is a bound on atypical behavior of the

characteristic string, while the other is a bound on atypical behavior of Unheardh for every honest

party h.

2.1.2 Comparison with Prior Work

Communication Model The random delay model of this chapter is a relaxation of the syn-

chronous network model. There are two other relaxations that are popular in the literature: the

partially synchronous model [26] and the sleepy model [23]. Both models relax the synchronous

assumption by allowing the adversary to arbitrarily delay some messages. This adversarial power

is localized–to select time periods in the partially synchronous model and to select parties in the

sleepy model. More formally, the partially synchronous model assumes that message delays are

unbounded until an adversarially chosen time GST and are bounded thereafter. In this model, the

protocol is secure only after O(GST) time [27]. In the sleepy model, the adversary has the power

to set honest parties to sleep for arbitrarily long; these sleepy parties suffer unbounded delay. The

longest-chain protocol is secure in the sleepy model, provided the fraction of awake honest parties

always exceeds the fraction of corrupt parties [23].

A key point in the above models is that for those parties suffering from unbounded delay, it is

impossible to provide any security guarantees. In comparison, for the random delay model, we are

able to provide security guarantees that hold for any (finite set of) parties at all times. This is

possible precisely because delays are random; it is unlikely that a given party suffers large delays

for a long period of time. In conclusion, each of these models capture different facets of sub-optimal
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network behavior. For a real-world network, the appropriate model may be any one of these, and

may even change over time. Moreover, these models are not exclusive; e.g., in the sleepy model,

the awake parties can be modeled as having random delays.

Two other works [28, 29] study the longest-chain protocol under random, unbounded delay. These

works model the network as a graph of inter-connected nodes, and assume that delays between two

neighboring nodes in the network are exponentially distributed and i.i.d. In this work, we only

model point-to-point communication (equivalently, we assume the network is a complete graph).

However, we allow for arbitrary delay distributions. More importantly, these chapters do not

consider the security of the protocol against an adversary. They are thus different in scope.

Security Statements Many chapters on the security analysis of the longest-chain protocol con-

sider both a safety property and a liveness property. However, there are minor differences in the

precise statements used. The settlement (safety) property is inspired from that of Blum et al.

[25]. Moreover, following Blum et al. [25], we state this property in both intensive and extensive

forms, and show that guarantees for the former lead to guarantees for the latter. The chain quality

(liveness) property, in its extensive form, is the same as the existential chain quality property of

Badertscher et al. [22]. Compared to them, we obtain tighter bounds for the same property, be-

cause of our proof technique of obtaining bounds for intensive properties and then deriving bounds

for the extensive ones.

Security Analysis At a high level, our security analysis follows that of other works analyzing

the PoW longest-chain protocol [4, 6, 30, 8, 9, 10]. I.e., we first use deterministic, combinatorial

arguments to map events concerning chains to events concerning some random processes, and then

use probabilistic analysis to bound their atypical behavior. The novelty of this chapter lies in

constructing random objects that, on the one hand, give sufficient conditions for security in the

random delay model, and on the other hand, are amenable to probabilistic analysis.

The security threshold obtained in this work is not tight, as can be seen by comparing our

security threshold with (2.1) for the special case of a constant ∆. The works of Dembo et al. [7]

and Gaži et al. [8] give a tight characterization of the security regime in the synchronous model.

Extending the results of [7, 8] to the random delay model is a direction of future research.

2.2 The System Model

This section contains the mathematical model for a PoW blockchain system. This includes the

protocol specifications (Section 2.2.2), adversarial powers (Section 2.2.2), the leader election mech-

anism (Section 2.2.3) and the communication network model (Section 2.2.4). The novel aspects

of the model are the random network delays and the one-time leader election model, described in

Sections 2.2.4 and 2.2.3 respectively. The other elements of our model are similar to those studied

in earlier work.
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2.2.1 Preliminaries

The longest-chain protocol is run by a set of parties that aim to achieve consensus (or agreement) on

an ever-growing sequence of blocks. The protocol proceeds in discrete time slots that are indexed by

N and runs for an infinite duration. We assume that clocks of all parties are perfectly synchronized.

Blocks are treated as abstract data structures containing an integer timestamp, a hash pointer to

a parent block with a smaller timestamp, a cryptographic signature of the block’s proposer, some

transactions and other relevant information. A special genesis block, with timestamp zero and no

parent, is known to all parties at the start of the protocol.

Parties in the protocol The parties in the protocol comprise of multiple honest ones and a

single adversary A. (Replacing all corrupt parties by a single one is done for simplicity). The set

of honest parties is represented by H and may be finite or infinite. Arbitrary honest parties are

denoted by h, h1, h2, etc. In our model, the adversary can never corrupt an honest party and the

honest parties never go offline. Honest parties follow the longest-chain protocol, while the adversary

can deviate from the protocol in certain ways. The prescribed behavior for honest parties and the

powers of the adversary are described in Section 2.2.2.

Blockchains From any block, a unique sequence of blocks leading back to the genesis block can

be identified via the hash pointers. We call this sequence a blockchain, or simply a chain. A generic

chain is denoted by C. The convention is that the genesis block is the first block of the chain, and

the terminating block is called the tip. The timestamps of blocks in a blockchain must strictly

increase, going from the genesis to the tip. At any given slot, honest parties store a single chain

in their memory. We use Chi to denote the chain held by an honest party h at (the end of) slot i.

We use C[i1 : i2] to represent the portion of a chain C consisting of blocks with timestamps in the

interval {i1, . . . , i2}. The length of a chain C, denoted by |C|, is defined to be the number of blocks

in the chain, excluding the genesis block. Likewise, |C[i1 : i2]| denotes the number of blocks in C
that are mined in the interval {i1, . . . , i2}.

Blocktrees The set of all blocks generated up to a given slot i forms a directed tree. Let Fi be

the directed graph (V,E), where V is the set of blocks generated up to slot i and E is the set of

parent-child block pairs. These edges point from parent to child, in the opposite direction of the

hash pointers. The genesis block is the root of the tree, with no parent. In addition, the timestamp

of block v is denoted by ℓ(v). Every blockchain Chi is a directed path in Fi that begins at the

genesis block and ends at any other block. Fi also includes blocks held privately by the adversary.

The adversary stores the entire blocktree Fi in its memory.
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2.2.2 Details of a Slot

Within a slot, the following events occur in the given order. This describes the prescribed protocol

for honest parties. It also specifies the adversary’s powers.

• (Leader Election Phase) The leader election mechanism chooses at most one party, either

honest or adversarial, as the leader of the slot. The choice of the leader is made at random,

independently of the past. All parties know whether or not they are the leader of the slot.

• (Honest Send Phase) If an honest party is chosen as a leader, it creates a new block with

the timestamp of the current slot, appends it to its chain, and broadcasts this new chain to all

parties. The communication network assigns an independent random delay for this message’s

delivery to each honest recipient.

• (Adversarial Send Phase) A receives the chain sent (if any) in the Honest Send Phase,

and also learns of the delays assigned by the network for each recipient. If A is the leader

of the slot, it creates a single new block, extending any chain in Fi. It may then send the

new block (along with the preceding blockchain) to an arbitrary subset of honest parties, or

hold it privately. It can also choose to send blocks it mined in the past, which it has held

privately, to some honest parties.

• (Deliver Phase) Messages from honest parties slated for delivery in the current slot and A’s
messages from the current slot are delivered to the appropriate honest parties. A can also

choose to deliver any honest messages ahead of schedule.

• (Adopt Phase) Each honest party updates its chain if it receives any chain strictly longer

than the one it holds. It chooses the longest one among the ones it receives, with A breaking

any ties. These actions give the protocol its name.

2.2.3 Leader Election Mechanism

The leader election mechanism is an idealized model of the PoW mining process (see Garay et al. [4]

for more details about mining). In each slot, the mechanism chooses at most one leader among the

parties at random, whose role is to propose a new block. This random process can be described as

follows. Whether or not a slot is empty forms a Bernoulli process, i.e., a sequence of independent and

identically distributed (i.i.d.) Bernoulli random variables. Let f be the probability of a nonempty

slot. In particular, this implies that the interval between two nonempty slots is geometrically

distributed with parameter f (which we denote by geom(f)). In PoW parlance, f is the mining

rate of the protocol. Further, among the nonempty slots, the sequence of honest and adversarial

leaders also forms a Bernoulli process. Given that a slot is nonempty, let α be the probability that

the leader is honest; the leader is A with probability β = 1− α. Thus, α is akin to the fraction of
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honest mining power in the system. Such a leader election process is also considered by Gaži et al.

[8].

Within this framework, we consider two slightly different leader election models, namely the

i.i.d. leader election model and the one-time leader election model. The difference is in terms

of the identities of the honest leaders. In the former, the sequence of honest leaders is i.i.d. In

particular, it is possible that the same honest party is elected twice in a row. In the latter, each

honest party can be a leader at most once. In particular, this implies that there are infinitely many

honest parties. The model is the asymptotic limit of a system with a large number of miners with

similar mining powers.

Arguably, the i.i.d. leader model is more realistic than the one-time leader model. However, the

security analysis of the former has some subtleties. These arise from the possibility that the same

honest party is elected a leader multiple times in close succession. Therefore, we prove our results

for the one-time leader model in the main text, and mention the necessary additional arguments

for the i.i.d. leader model in the appendix. Interestingly, the model with random delays forces us

to pay attention to the identities of the honest leaders. In contrast, these identities do not appear

in the analysis in the synchronous model [25, 8]. Finally, note that we only consider the possibility

of zero or one leader per slot; this is for simplicity’s sake. Strictly speaking, a discretized version

of the continuous-time mining process should allow for multiple leaders to be elected in a slot, but

this event can be made negligibly rare by taking the slot duration to be small enough.

2.2.4 The Communication Model

The communication network is modeled as follows. Every message sent by one honest party to

another is subject to a random delay, which can take any value in Z+. We consider a broadcast

to be a set of different point-to-point messages, each of which is subject to an independent delay.

We adopt the convention that the minimum possible delay is zero; in this case, a message sent in

a time slot is received by the end of that slot. The delays of different messages are i.i.d. Let ∆

denote a random variable with the common distribution, which we call the delay distribution. The

synchronous model is a special case with a constant ∆.

In the i.i.d. leader election model, we require that the delay distribution has a nondecreasing

failure rate function. The failure rate function for the delay distribution ∆ is defined as

FailureRate[s] =

P(∆ = s|∆ ≥ s) if P(∆ ≥ s) > 0

1 if P(∆ ≥ s) = 0

Roughly speaking, the requirement implies that the longer one has waited for a message, the sooner

it is likely to arrive. A geometric random variable has a constant failure rate. A constant ∆ has a

failure rate function that is zero up to the constant and one thereafter. Therefore, they are both

admissible. However, the condition precludes heavy-tailed distributions. This technical condition
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is required to handle the subtlety mentioned in Section 2.2.3 above–the case where the same leader

is elected multiple times in close succession. Note that the one-time leader model does not require

these conditions. It even permits distributions with positive probability for ∆ = ∞, i.e., where

messages are not delivered.

Given that messages in a blockchain network are spread via gossip protocols, the point-to-point

delay distribution is likely to have a geometric tail. Thus, we argue that the non-negative failure

rate assumption is not too unrealistic. Moreover, given the power of the adversary to deliver honest

messages earlier than scheduled, a system with a given delay distribution ∆ can be emulated by a

system that has a different delay distribution ∆̃, provided the latter stochastically dominates the

former. If ∆̃ satisfies the nondecreasing failure rate restriction, guarantees for a system with delay

∆ can be given in terms of the distribution ∆̃.

2.3 The Desired Security Properties

This section contains the formal definitions of our security properties, the condition under which

the properties hold (with high probability), and the main theorem which bounds the probability

that these are violated. The two security properties are the safety property (settlement/common-

prefix) and the liveness property (chain quality). Both are stated in intensive and extensive forms,

and these forms are compared. The security properties and the guarantees for them hold for both

models introduced in Section 2.2: the i.i.d. leader model with delays having a non-decreasing

failure rate function and the one-time leader model with general delay distributions.

Each security property refers to a desirable condition over an execution. An execution of the

protocol refers to a particular instantiation of the random components (i.e., leader election and

communication delays) and the actions of the adversary. Whether a certain property holds or not

in an execution depends on both these factors. The adversary’s actions can be arbitrary and our

theorems are stated for the worst-case scenario of all possible adversarial actions.

2.3.1 Property Definitions

We first define the settlement property and then the common prefix property. These are intensive

and extensive forms of safety respectively, and are borrowed from Blum et al. [25].

Definition 2.1 (Settlement). In an execution, the settlement property with parameters s, k ∈ N
and I ⊆ H holds if, for any pair of honest parties h, h′ ∈ I and slots i, i′ such that s+ k ≤ i ≤ i′,

it holds that Chi [1 : s] = Ch′
i′ [1 : s].

We refer to the settlement property with parameters s, k, and I as the (s, k, I)-settlement prop-

erty for brevity. A similar convention is used for other properties too. The (s, k, I)-settlement

property states that parties in I will agree on the order of blocks mined up to slot s after k more

slots.
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Definition 2.2 (Common Prefix). In an execution, the common prefix property with parameters

T, k ∈ N and I ⊆ H holds if, for any pair of honest parties h, h′ ∈ I and slots s, i, i′ such that

s ≤ T and s+ k ≤ i ≤ i′, it holds that Chi [1 : s] = Ch′
i′ [1 : s].

The intensive and extensive forms of safety have a subtle difference, which is illustrated with

the following example. Let T be some large number. The (T, k, I)-settlement property means the

parties in I agree forever after slot T + k about the chain up to slot T . This immediately implies

that all parties in I agree forever about the chain up to slot s, after slot T +k, for any s ≤ T . This

does not, however, imply that all parties in I agree forever about the chain up to time s, after slot

s + k, for all s with s ≤ T . This latter statement, which is stronger, is captured by the extensive

form given by the common prefix property. The following lemma relates the two forms of safety.

Lemma 2.1. Fix a set of honest parties I ⊆ H and parameters T, k ∈ N. The (T, k, I)-common

prefix property holds if and only if the (s, k, I)-settlement property holds for all s ≤ T .

Proof. Pick any pair of honest parties, h, h′ ∈ I and any slot s ≤ T . Pick any i, i′ satisfying

s + k ≤ i ≤ i′. Consider the chains held by h, h′ at slots i, i′ respectively: Chi , Ch
′

i′ . The proof

follows from the definitions of the common prefix and settlement properties, and the following

equivalences: (T, k, I)-common prefix property holds ⇔ ∀ s ≤ T , Chi [1 : s] = Ch′
i′ [1 : s] ⇔ ∀ s ≤ T ,

(s, k, I)-settlement property holds.

We next state the chain quality property, first in its intensive form and then in its extensive form.

In some works, e.g., [22], (the extensive form of) this property has been called the existential chain

quality property, while chain quality refers to a more general form of the property. We present the

simpler form in this chapter.

Definition 2.3 (Intensive Chain Quality). In an execution, the intensive chain quality property

with parameters s, k ∈ N and I ⊆ H holds if, for any honest player h ∈ I and slot i ≥ s + k,

Chi [s+ 1 : s+ k] contains at least one honestly mined block.

Definition 2.4 (Extensive Chain Quality). In an execution, the extensive chain quality property

with parameters T, k ∈ N and I ⊆ H holds if, for any honest player h ∈ I and slots s, i such that

s ≤ T and i ≥ s+ k, Chi [s+ 1 : s+ k] contains at least one honestly mined block.

The relation between the intensive and extensive versions of chain quality parallels that between

the settlement and common prefix property noted in Lemma 2.1, and is stated next (without proof).

Lemma 2.2. Fix a set of honest parties I ⊆ H and parameters T, k ∈ N. The (T, k, I)-extensive
chain quality property holds if and only if the (s, k, I)-intensive chain quality property holds for all

s ≤ T .

Note that the subset of honest parties I is explicitly mentioned in the security properties. This is

because the probability with which the properties are violated increases with the size of this set (see
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Theorem 2.1). This is inevitable in the random delay model with unbounded delay distributions.

Consider a setting with infinitely many honest parties in a system with geometrically distributed

delays. Then, for any fixed T , there will almost surely exist an honest party that has not heard of

any honest message up to slot T (this can be shown by the second Borel-Cantelli Lemma). Clearly,

such a party cannot be guaranteed to have any security results. This issue does not arise if delays

are bounded. Therefore, in earlier works that deal with the constant ∆ setting [4, 20], the subset

of honest parties I is implicitly taken to be the entire set H.

2.3.2 Main Result

The main result of this chapter, Theorem 2.1, is a bound on the probability that either of the

intensive security properties are violated. Naturally, such a security result can be proven only

under the condition that the fraction of honest mining power is large enough (at least a half), and

that the typical delay is small enough compared to the mining rate. In this work, the security

results hold under the ϵ-honest majority condition, which is defined next.

Definition 2.5 (ϵ-honest majority). Consider a blockchain protocol where the leader election pro-

cess has parameters α and f ; and the network’s delay is represented by a random variable ∆. Let

G ∼ geom(f) be a random variable that is independent of ∆, which denotes the typical interval

between nonempty slots. Let p ≜ αP(∆ < G). Suppose the system’s parameters are such that

p > 0.5. Let ϵ be such that p = (1 + ϵ)/2. We say that such a protocol has ϵ-honest majority.

Theorem 2.1 (Main Result). Consider a blockchain protocol with ϵ-honest majority. Then for

any I ⊆ H, s ∈ N and k ∈ N,

P((s, k, I)-settlement property is violated OR

(s, k, I)-intensive chain quality property is violated) ≤ pchar−string + |I|punheard (2.2)

where

pchar−string = 4 exp(−(3/32)ϵ2fk) punheard = (8/ϵ) exp(−(1/32)ϵfk).

As a corollary, we get the following result about the extensive safety and liveness properties.

Corollary 2.1. Consider a blockchain protocol with ϵ-honest majority. Then for any I ⊆ H,
T ∈ N and k ∈ N,

P((T, k, I)-common prefix property is violated OR

(T, k, I)-extensive chain quality property is violated)) ≤ T (pchar−string + |I|punheard)

The key difference between intensive and extensive properties can be seen by the guarantees

on them. The probability of the intensive properties being violated is bounded independently of
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T (Theorem 2.1). The bound on the probability of an extensive properties being violated grows

linearly with T (Corollary 2.1). Corollary 2.1 follows from Theorem 2.1, Lemmas 2.1 and 2.2, and

the union bound. We omit a formal proof.

Theorem 2.1 and its corollary prove security properties under the ϵ-honest majority condition for

some ϵ > 0. By setting ϵ = 0, we get a lower bound on the security threshold of a system param-

eterized by (f,∆). (We get a lower bound since the ϵ-honest majority condition is sufficient, but

not necessary, for security.) Recall that the security threshold is the supremum of the adversarial

power that can be tolerated as the function of the system’s mining rate and delay parameters.

Note that for any random ∆ such that P(∆ < ∞) = 1, one can choose f small enough such that

P(∆ < G) is very close to one, which means that the security threshold can be made arbitrarily

close to one-half (which is optimal).

While the results are stated for discrete time, they imply corresponding results in continuous

time by taking a limit, as described in [8]. Also, in continuous time, the probability of more

than one party mining at a time is zero. Leaders are elected at times of a Poisson process of

rate f , with a leader being the adversary with probability β and honest with probability 1 − β.

The honest majority condition reduces to (1 − β)P(∆ < Exp(f)) > 1
2 , where Exp(f) denotes an

exponentially distributed random variable with rate parameter f (mean 1/f). In case ∆ has the

Exp(1/η) distribution (with mean η), the honest majority condition becomes β < 1−ηf
2 .
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Figure 2.1: Comparison of the security threshold guaranteed by this work for exponentially
distributed delays with the tight threshold for deterministic delays (i.e., (2.1)).

Figure 2.1 displays the security threshold from this work for delays being exponentially dis-

tributed random variables ∆ ∼ Exp(1/η), and for comparison, the boundaries of the security region

guaranteed for bounded delay by (2.1) for ∆ ≡ η, ∆ ≡ 4η, and ∆ ≡ 16η. The figure shows that the

adversarial tolerance guarantees provided by this work with Exp(1/η) delays are better than the

best possible guarantees with constant delays 16η in the range fη < 0.8. Consider, for the sake

of illustration, a system whose delays are random with a distribution that is identical to Exp(1/η)

from [0, 16η], and concentrates the rest of the mass at 16η. Such a distribution is stochastically

dominated by both Exp(1/η) and the constant delay 16η, and, thus, guarantees for both models

apply. Thus, for such a system, the security region of the protocol as guaranteed by Theorem 2.1
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is greater than what can be established via the synchronous model alone.

2.3.3 Proof Sketch

The basic intuition guiding the security analysis in this work is the following. The security prop-

erties are likely to be violate if the adversary can build two equally long chains that fork far back

in time. There are two factors that contribute to long forked chains, namely, adversarial blocks

and network delays amongst honest parties. To elaborate, the adversary can purposely deviate

from the longest-chain rule and use its blocks to extend the shorter of two competing chains. In

addition, due to network delays, it is possible that some honest parties extend the shorter of two

forked chains, simply because they have not heard of the latest block(s) on the longer chain. If

the number of adversarial blocks and the number of forked (or parallel) honest blocks are small

relative to the length of the blockchain, the protocol remains secure.

To distinguish between honest blocks that grow the chain from those that do not, we introduce the

notion of special honest slots. These are recursively defined as follows. Given a special honest slot

s, the first honest slot after s whose leader hears of the block mined at s is termed special honest. It

immediately follows that blocks from special honest slots are always built at ever-increasing heights

on the blockchain, contributing to the blockchain’s growth. All other honest blocks are treated as

adversarial, as they could be placed arbitrarily in the blocktree.

Whether or not a given honest slot s is special honest is determined by two random entities: the

time passed since the last special honest slot, and the delay in conveying that block to the leader

of s. Both these factors are beyond the adversary’s control; they depend solely on the mining rate

f and the delay distribution ∆. The ϵ-honest majority condition required for security (Definition

2.5) is simply the requirement that every new block is special honest with probability at least a

half. If this condition holds, then over any considerable interval, the number of special honest slots

exceed the number of adversarial slots with high probability. We show that this is sufficient to

guarantee security.

The rest of the chapter is devoted to the proof of Theorem 2.1. Section 2.4 introduces some key

notation and the definition of special honest slots. The proof is split into two main components.

First, via a deterministic, combinatorial analysis, we obtain a sufficient condition for security, Esecure
(Section 2.5). Second, we provide an upper bound on the probability of Ecsecure occurring, which in

turn provides the desired security guarantee (Sections 2.6 and 2.7).

2.4 Definitions of Key Random Processes

All random processes in our model are discrete-time processes, indexed by N, Z+ or Z (the relevant

indexing will be specified when the process is defined). For a random process Process, the notation

for the ith variable is Process[i]. Denote an interval of slots {i1, . . . , i2} by [i1 : i2]. The portion of
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the process over such an interval is denoted by Process[i1 : i2]. If i2 < i1, [i1 : i2] (and by extension,

Process[i1 : i2]) denotes an empty interval (or string).

2.4.1 LeaderString as a stationary renewal process

We start by defining LeaderString, a random process which represents the sequence of leaders in

each slot without the leader identities. We then extend this process to negative time and note that

it has a stationary renewal structure. LeaderString takes values in {⊥, 0, 1}. For i ≥ 1,

LeaderString[i] =


⊥ if slot i has no leader

0 if slot i has an honest leader

1 if slot i has the adversary as leader

(2.3)

LeaderString is an i.i.d. process with P(LeaderString[i] =⊥) = 1 − f , P(LeaderString[i] = 0) = αf

and P(LeaderString[i] = 1) = (1 − α)f (see Section 2.2.3). Extend this process to negative time

by defining (LeaderString[i] : i ≤ 0) to be a sequence of i.i.d. random variables with the same

probabilities as noted above. Call all slots with LeaderString[i] ̸=⊥ as nonempty slots and those

with LeaderString[i] = 0 as honest slots. Let 1 ≤ T1 < T2 < . . . denote the indices of the nonempty

slots of LeaderString from slot 1 onward. Similarly, let 0 ≥ T0 > T−1 > T−2 > . . . index the

nonempty slots before or up to slot zero, going backwards in time. For any interval [i1 : i2], define

N [i1 : i2] to be the number of nonempty slots in that interval.

With the above extension, LeaderString is endowed with a stationary renewal structure. A

stationary process is one whose distribution is invariant under any time shift. A renewal process

is an arrival process (a sequence of events or arrivals) where the interval between two arrivals are

i.i.d. The times of the arrivals are called renewal points, and the gap between renewal points is

called the lifetime. Such a process is characterized entirely by the lifetime distribution.

The set of nonempty slots forms a stationary renewal process with lifetime distribution geom(f).

Given the locations of all the renewal points, the labels at the renewal points are i.i.d. Bernoulli

random variables with P(0) = α. For any j ̸= 1, Tj − Tj−1 has distribution geom(f), while

T1 − T0 = T1 + (1 − T0) − 1, so that T1 − T0 is the sum of two independent geom(f) random

variables minus one. In the terminology of renewal theory, T1− T0 is the sampled lifetime sampled

at time 0. In the Ouroboros line of works [20, 21, 22], the process LeaderString is called the

characteristic string. We reserve that term for a slightly different process, which is defined next.

2.4.2 Special Honest Slots and CharString

We now introduce a new concept called special honest slots, which can be thought of as a general-

ization of ∆-isolated slots from [21]. Special honest slots are a subset of slots with honest leaders,

defined in a recursive manner, such that the leader of each special honest slot must have heard of
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the block broadcast in the previous special honest slot. Simultaneously, we also define the notion

of the characteristic string, denoted by CharString. The process CharString is a process indexed by

Z, taking values in {⊥, 0, 1}. In CharString, special honest slots are marked with symbol 0, other

non-empty slots with symbol 1, and empty slots with the symbol ⊥. Thus, CharString is obtained

from LeaderString, by converting a few 0 symbols to 1 (those honest slots that are not special).

The precise definition of CharString for the one-time leader model is given in the remainder of this

subsection. (The construction in the i.i.d. leader model is given in Appendix 2.8). We introduce

some notation for convenience. For all j > 0 where Tj is an honest slot, let hj denote the leader of

the slot. Let delay(Tj → h) denote the delay in the message sent by hj in slot Tj to an honest party

h ∈ H. Finally, let delay(Tj → h) be dummy random variables with the same distribution as ∆ for

all honest slots Tj < 0. In the construction of CharString, consider the entire process LeaderString

(in particular, {Tj : j ∈ Z}) and all the above defined quantities as given.

For all i ∈ Z such that LeaderString[i] ∈ {1,⊥}, let CharString[i] = LeaderString[i]. For j ≤ 0, if

LeaderString[Tj ] = 0, let CharString[Tj ] be 0 with probability P(∆ < Tj − Tj−1|Tj − Tj−1), and let

CharString[Tj ] be 1 otherwise. The aforementioned choices are conditionally independent across all

j ≤ 0. For j ≥ 1, let Tj∗ denote the last special honest slot strictly before Tj . Let CharString[Tj ] = 0

if slot Tj is honest and Rj < Tj − Tj−1, where Rj ≜ delay(Tj∗ → hj). Note that the CharString

process for negative time was used to define the first special honest slot in positive time. This

concludes the construction of CharString, given LeaderString, the identities of the honest leaders hj ,

and the delays amongst all honest parties delay(Tj → h). Later, in Section 2.6.2, we characterize the

distribution of CharString. The definition given here endows it with a stationary renewal structure,

which is useful in our security analysis.

Special honest slots are the slots Tj where CharString[Tj ] = 0. Those nonempty slots that are

not special honest are defined to be adversarial. Note that this includes those slots that are honest,

but not special honest. For any interval [i1 : i2], define Nspl[i1 : i2] to be the number of special

honest slots, and let Nadv[i1 : i2] denote the number of adversarial slots, in that interval. It follows

that N[i1 : i2] = Nspl[i1 : i2] + Nadv[i1 : i2]. Special honest slots have the following key property:

blocks mined in successive special honest slots are built at strictly increasing heights. Note that

hj receives the message from the previous special honest slot at time Tj∗ + Rj . If Tj is special

honest, thenTj∗ + Rj < Tj∗ + Tj − Tj−1 ≤ Tj . Thus, the condition for Tj to be a special honest

slot is sufficient, but not necessary, for hj to have received the message from the previous special

honest slot. From this, the aforementioned property follows. This property is used to lower bound

the length of the portion of chains in Lemmas 2.3 and 2.4. It is also used in Lemma 2.5 to derive

a necessary condition for settlement violation.
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2.4.3 The Unheard process

For an honest party h and i ≥ 1, let LatestHeardh[i] denote the special honest slot with greatest

index whose broadcast h has heard by the end of slot i. That is,

LatestHeardh[i] = max{Tj : 1 ≤ Tj ≤ i,CharString[Tj ] = 0, Tj + delay(Tj → h) ≤ i}. (2.4)

We use the convention that the maximum of an empty set is zero. Thus, 0 ≤ LatestHeardh[i] ≤ i.

Let Unheardh[i] denote the number of consecutive special honest slots that party h has not heard

of by slot i, counting backwards from i. That is, Unheardh[i] is the number of special honest slots

in the interval [LatestHeardh[i] + 1, i]. Mathematically,

Unheardh[i] = Nspl[LatestHeardh[i] + 1 : i]. (2.5)

For example, Unheardh[i] = 2 means that by the end of slot i, h had not heard the last two special

honest slots occurring before or at i; it either heard the third most recent special honest slot before

slot i or there were only two special honest slots during [1 : i]. Looking ahead, Unheardh[i] is used

to lower bound the length of the chain Chi , as shown in Lemma 2.4. In turn, this lower bound is

used to derive necessary conditions for settlement and chain quality violation in Lemmas 2.5 and

2.6.

Finally, given a set of honest parties I, let

LatestHeardI [i] = min
h∈I

LatestHeardh[i], UnheardI [i] = max
h∈I

Unheardh[i].

I.e., UnheardI [i] is an upper bound for Unheardh[i] for all h ∈ I.

2.5 Lemmas on Deterministic Properties

This section gives some necessary conditions for the settlement property and the chain quality

property to be violated. The conditions are expressed in terms of the CharString and Unheard

processes: they must hold if the adversary has violated the security properties. The necessary

conditions for both the security properties turn out to be identical. It can be worded as follows: over

some sizable interval, the number of non-special honest blocks must exceed the number of special

honest blocks, barring a term of Unheard (see (2.7) for the exact condition). This analysis factors

out the arbitrary actions of the adversary, or equivalently, considers the worst-case adversarial

actions. With this analysis, the proof of Theorem 2.1 is reduced to bounding the probability of

some event concerning the random processes CharString and Unheard.

Before formally proving these reductions, we introduce the notion of the latest special honest chain

(at slot i), and use this notion to give two forms of the chain growth property. Such a property

has been used by other works that analyze PoW blockchains [4, 6] in their security analysis.
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Definition 2.6 (Latest Special Honest Chain). For any slot i ∈ N, let C∗i denote the chain broadcast

by the leader of the last special honest slot at or before slot i. Call this the latest special honest

chain at slot i. In Fi, C∗i is the longest chain that ends in a special honest block. C∗0 is the genesis

block.

Two simple facts follow immediately from the definition. First, if i is a special honest slot, then

C∗i is the chain that is broadcast by the leader of slot i. Second, if a chain C contains a block mined

in a special honest slot s, then C[1 : s] = C∗s . These facts are used frequently in the following proofs.

The following chain growth lemma is also easily proven.

Lemma 2.3 (Chain Growth–Special Honest).

|C∗i′ | ≥ |C∗i |+Nspl[i+ 1 : i′], ∀ i ≤ i′. (2.6)

Proof. The property of special honest slots implies that the chains broadcast in successive special

honest slots must have strictly increasing lengths. This implies (2.6).

As it stands, the above lemma only lower bounds the growth of latest special honest chains, C∗i .
However, it is useful in bounding the chain growth of any honestly held chain, as shown next.

Lemma 2.4 (Chain Growth–Honest). For any i ∈ N and any h ∈ H, suppose Chi contains a special

honest block mined in slot r, or let r = 0. Then

|Chi | ≥ |C∗r |+Nspl[r + 1 : i]− Unheardh[i].

Equivalently,

|Chi [r + 1 : i]| ≥ Nspl[r + 1 : i]− Unheardh[i].

Proof. By the definition of LatestHeard (see Section 2.4.3), the honest party h must have heard of

the chain C∗l by slot i, where l ≜ LatestHeardh[i]. Therefore, the chain it holds at slot i must be at

least as long as C∗l , i.e., |Chi | ≥ |C∗l |. By Lemma 2.3, |C∗l | ≥ |C∗r |+Nspl[r + 1 : l], provided l ≥ r. We

know that Unheardh[i] = Nspl[l + 1 : i] (by (2.5)). Putting the above inequalities together, we get

|Chi | ≥ |C∗l | ≥ |C∗r |+Nspl[r + 1 : l]

= |C∗r |+Nspl[r + 1 : i]−Nspl[l + 1 : i]

= |C∗r |+Nspl[r + 1 : i]− Unheardh[i].

This proves the first statement, under the condition l ≥ r. If l < r,

Nspl[r + 1 : i] ≤ Nspl[l + 1 : i] = Unheardh[i].

Under this condition, the lemma is trivially true: Chi must be at least as long as C∗r , as it contains
the block mined in slot r.
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The second statement can be obtained from the first, as follows. Observe that Chi [1 : r] = C∗r ,
and therefore

|Chi | = |Chi [1 : r]|+ |Chi [r + 1 : i]| = |C∗r |+ |Chi [r + 1 : i]|.

The remainder of this section shows that if either the (s, k, I)-settlement or the (s, k, I)-intensive
chain quality is violated, then the event Ecsecure must occur, where

Esecure = {Nadv[r + 1 : i] < Nspl[r + 1 : i]− UnheardI [i] ∀ r ≤ s, i ≥ s+ k, }

Ecsecure = {Nadv[r + 1 : i] ≥ Nspl[r + 1 : i]− UnheardI [i] for some r ≤ s, i ≥ s+ k.} (2.7)

The analysis for the settlement property is given in Section 2.5.1 and that for the chain quality

property is given in Section 2.5.2. Both analyses have a similar outline. First, the chain growth

properties (Lemmas 2.3 and 2.4) are used to lower bound the length of a certain portion of a chain,

namely C[r+1 : i]. Next, the fact that the settlement (or chain quality) property is violated is used

to upper bound the same quantity with the number of adversarial blocks mined in that interval,

Nadv[r + 1 : i]. These bounds give us the lower bound on Nadv[r + 1 : i] as stated in (2.7).

2.5.1 Settlement Violation Condition

Recall, from Definition 2.1, that the settlement property with parameters s, k ∈ N and I ⊆ H holds

in an execution if the following event occurs:

Esettlement ≜ {∀ h, h′ ∈ I, ∀i, i′ ≥ s+ k, Chi [1 : s] = Ch′
i′ [1 : s]}.

As such, if the property is violated, it implies that at two (possibly) different points in time (i, i′),

two honest users held different chains. It is more convenient to argue in terms of events that are

more local in time. To this end, define the event:

Ei−settlement ≜ {∀ h, h′ ∈ I, Chi [1 : s] = Ch′
i [1 : s]} ∩ {∀ h ∈ I, Chi [1 : s] = Chi+1[1 : s]} (2.8)

From (2.8), it follows that

Eci−settlement = {∃ h, h′ ∈ I such that Chi [1 : s] ̸= Ch′
i [1 : s]}

∪ {∃ h ∈ I such that Chi [1 : s] ̸= Chi+1[1 : s].} (2.9)

Ei−settlement states that honest nodes agree with each other at slot i, and with themselves across

slots i and i + 1. If Ei−settlement occurs for all slots i ≥ s + k, then all nodes in I agree with each
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other from slot s+ k onward. This can be shown by induction on i. Therefore,

Esettlement =
⋂

i≥s+k

Ei−settlement, or equivalently, Ecsettlement =
⋃

i≥s+k

Eci−settlement. (2.10)

We now have all the ingredients to prove a necessary condition for settlement violation.

Lemma 2.5 (Settlement Violation-Necessary Condition). Suppose, in an execution, the settlement

property with parameters (s, k, I) is violated (i.e., Ecsettlement occurs). Then, for some r < s and

i ≥ s+ k,

Nadv[r + 1 : i] ≥ Nspl[r + 1 : i]− UnheardI [i] (2.11)

which implies that Ecsecure occurs.

Proof. Suppose Ecsettlement occurs. Then, by (2.10), there exists i ≥ s + k such that Eci−settlement

occurs. Therefore, it suffices to show that the event Eci−settlement implies (2.11) for some r < s.

By (2.9), Eci−settlement implies one of two events: either there are two different honest users that

have disjoint chains at slot i, or the same honest user has disjoint chains at slot i and i + 1. The

arguments for both cases are presented together, as they are very similar.

In the first case, let C1 ≜ Ch
i , C2 ≜ Ch′

i , and assume, without loss of generality, that |C2| ≥ |C1|.
In the second case, let C1 be Ch

i and C2 be Ch
i+1[1 : i]. Here too, |C2| ≥ |C1|, as the following

argument shows. In slot i+1, party h must have adopted a new chain; otherwise, settlement would

not be violated. This new chain (Ch
i+1) must be strictly longer than the chain it held at slot i (Ch

i ,

i.e., C1). Since C2 is shorter than Ch
i+1 by at most one block, it follows that |C2| ≥ |C1|.

In both cases, C1 and C2 are disjoint from slot s or before. Put differently, all blocks on the

common prefix of C1 and C2 are mined strictly before slot s. Let r be the slot of the last special

honest block in the common prefix of C1 and C2. Similarly, define r′ be the slot of the last block

in the common prefix of C1 and C2. In general, r ≤ r′, with equality holding if and only if the last

common block of C1 and C2 is special honest.

Keeping the definitions of r and r′ in mind, note that C1[r + 1 : r′] contains only adversarial

blocks, which implies |C1[r + 1 : r′]| ≤ Nadv[r + 1 : r′]. Moreover, observe that for every block

on C1[r′ + 1 : i], there is a different block on C2 at the same height. Consider a pair of blocks at

the same height, one each on C1 and C2. Between these blocks, at least one must be adversarial,

because two special honest blocks can never be at the same height on the blocktree. Therefore,

|C1[r′ + 1 : i]| ≤ Nadv[r
′ + 1 : i]. Putting these inequalities together gives:

|C1[r + 1 : i]| = |C1[r + 1 : r′]|+ |C1[r′ + 1 : i]| ≤ Nadv[r + 1 : r′] +Nadv[r
′ + 1 : i] = Nadv[r + 1 : i].

Recall that for any h ∈ I, UnheardI [i] ≥ Unheardh[i]. Using this fact along with Lemma 2.4 gives

a lower bound for |C1[r + 1 : i]|:

|C1[r + 1 : i]| ≥ Nspl[r + 1 : i]− Unheardh[i] ≥ Nspl[r + 1 : i]− UnheardI [i].
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Together, the upper and lower bounds for |C1[r + 1 : i]| lead to (2.11):

Nadv[r + 1 : i] ≥ |C1[r + 1 : i]| ≥ Nspl[r + 1 : i]− UnheardI [i].

We have proven that settlement violation implies (2.11) holds for some r < s and i ≥ s + k.

This, in turn, implies Ecsecure occurs. In defining Ecsecure, we have allowed for the possibility of r = s

as well, so as to include chain quality violation within the same event.

2.5.2 Chain Quality Violation

The necessary condition for the chain quality property to be violated is identical to that of the

settlement property begin violated, and the analysis has a similar flavor as well.

Lemma 2.6 (Intensive Chain Quality Violation – Necessary Condition). Suppose, in an execution,

the (s, k, I)-intensive chain quality property is violated. Then, for some r ≤ s and i ≥ s+ k,

Nadv[r + 1 : i] ≥ Nspl[r + 1 : i]− UnheardI [i],

i.e., Ecsecure occurs.

Proof. Consider an execution where the intensive chain quality with parameters s, k and I is

violated. This means that for some honest party h ∈ I and i′ ≥ s+ k, there are no special honest

slots in Chi′ [s+1 : s+k]. Let r ≤ s, i ≥ s+k be chosen such that Chi′ [r+1 : i] is a maximal portion of

the chain Chi′ without any special honest blocks. Thus, r is the slot of the last special honest block

on the portion of the chain Chi′ [1 : s], or 0 if there is no such block. In either case, Chi [1 : r] = C∗r .
Similarly, if the portion of the chain Chi′ [s+k+1 : i′] contains at least one special honest block, then

i+1 is the slot of the first such block; else, i = i′. We know that all blocks in Chi′ [r+1 : i] must be

adversarial blocks, mined in the interval {r + 1, . . . , i}. Therefore, |Chi′ [r + 1 : i]| ≤ Nadv[r + 1 : i].

To prove the lemma, it thus suffices to show:

|Chi′ [r + 1 : i]| ≥ Nspl[r + 1 : i]− Unheardh[i]. (2.12)

The proof of (2.12) is divided into the cases i < i′ and i = i′.

(i < i′). In this case, we know that i + 1 is a special honest slot, and the block mined in that

slot is part of the chain Chi′ . This implies the following facts:

• Chi′ [1 : i+ 1] = C∗i+1. Moreover, |Chi′ [1 : i]| = |C∗i+1| − 1.

• Nspl[r + 1 : i+ 1]− 1 = Nspl[r + 1 : i].

Also note that Chi′ [1 : r] = C∗r . Using these facts, we get |Chi′ [r + 1 : i]| = |Chi′ [1 : i]| − |Chi′ [1 : r]|
= |C∗i+1| −1 −|C∗r | ≥ Nspl[r + 1 : i + 1] − 1 = Nspl[r + 1 : i]. The previous inequality follows from

Lemma 2.3. This implies (2.12), as Unheardh[i] is always nonnegative.

(i = i′) In this case, (2.12) follows immediately from the second statement of Lemma 2.4.
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2.5.3 Reach

We conclude this section by introducing the notion of Reach, which allows us to write a reformulate

Ecsecure that is easier to analyze.

Definition 2.7 (Reach). Let Reach[0] = 0, and for any i ∈ N, let

Reach[i] = max
j:0≤j≤i

Nadv[j + 1 : i]−Nspl[j + 1 : i]

In the above definition, Nadv[i+1 : i], Nspl[i+1 : i] are zero, since the interval [i+1 : i] is empty.

Thus, Reach is a random process that is a function of CharString and it takes values in Z+.

The Ouroboros line of works [20, 21, 22, 25] define Reach[i] as an upper bound on the extent

to which an adversarial chain can ‘reach’ beyond any honest chain in the block-tree Fi. The two

definitions can be shown to be equivalent. With this definition in place, we can rewrite Ecsecure as:

Ecsecure = {Nadv[s+ 1 : i]−Nspl[s+ 1 : i] + UnheardI [i] + Reach[s] ≥ 0 for some i ≥ s+ k}. (2.13)

This can be proved by first splitting Nspl[r + 1 : i] as (Nspl[r + 1 : s] + Nspl(CharString[s + 1 : i])

(and likewise for Nadv[r + 1 : i]), and then noting that for any value x,

{Nadv[r + 1 : s]−Nspl[r + 1 : s] ≥ x for some r ≤ s} ⇔ {Reach[s] ≥ x}.

The remaining chapter is devoted to finding a bound on P(Ecsecure).

2.6 Lemmas on Probabilistic Properties

Consider the expression of Ecsecure in (2.13). To bound P(Ecsecure), we need to bound the three terms

Nadv[s + 1 : i] −Nspl[s + 1 : i], UnheardI[i] and Reach[s]. The first two terms should be viewed as

processes, i.e., functions of i. These processes need to be bounded for all time (beyond slot s+ k).

To obtain such bounds, we work with compressed versions of these processes, obtained by sampling

them at nonempty slots alone. Section 2.6.1 defines the necessary terms and results to perform

this mapping between time scales. Sections 2.6.2, 2.6.3, and 2.6.4 analyze the distribution of the

processes CharString, Unheard, and Reach respectively. The results of this section are combined to

give an upper bound on P(Ecsecure) in Section 2.7.

2.6.1 Reduction to compressed time scale

Define a new time scale driven by the arrival of nonempty slots: the clock ticks by one whenever

a new nonempty slot occurs. Call this event-driven time scale the compressed time scale. The

following notation is used to define the processes CharString and Unheard on the compressed time
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scale. For s ≥ 0 and j ≥ 1, let

T s
j = min{i : N [s+ 1 : s+ i] = j} (2.14)

In other words, T s
j is the jth nonempty slot strictly after time s. Clearly, T 0

j = Tj . Note that, for

any s ≥ 0, T s
1 and the random variables {T s

j − T s
j−1}j≥2 are i.i.d. with distribution geom(f). Let

CompressedCharStrings denote the time-shifted, compressed version of relative to reference slot s:

CompressedCharStrings[0] = CharString[s],

CompressedCharStrings[j] = CharString[s+ T s
j ] for j ≥ 1. (2.15)

CompressedUnheardh,s and CompressedUnheardI,s, which are the compressed versions of Unheardh

and UnheardI respectively, are also defined in a similar manner. Finally, let N s
spl and N s

adv be

time-shifted, compressed versions of Nspl and Nadv respectively. Specifically,

N s
spl[1 : j] = Nspl[s+ T s

1 : s+ T s
j ] = Nspl[s+ 1 : s+ T s

j ].

N s
adv[1 : j] is defined similarly. We now state the main result of this subsection.

Lemma 2.7. Given k′ ≥ 1, let:

F0 = {T s
k′ > k} and

F1 = {N s
adv[1 : j]−N s

spl[1 : j] + CompressedUnheardI,s[j] + Reach[s] ≥ 0 for some j ≥ k′}.

Then, the event Ecsecure satisfies Ecsecure ⊆ F0 ∪ F1, which implies P(Ecsecure) ≤ P(F0) + P(F1).

Proof. First, note that both Nadv[s + 1 : i] and Nspl[s + 1 : i], as functions of i, are constant over

intervals of the form [T s
j : T s

j+1 − 1]. Second, the process UnheardI [i] is nonincreasing over such

intervals. This is because UnheardI [i] only increases at special honest slots. Now, suppose the event

Ecsecure holds. If j is such that s+ T s
j is the last renewal time less than or equal to i, then

N s
adv[1 : j]−N s

spl[1 : j] + CompressedUnheardI,s[j] + Reach[s] ≥ 0.

If F0 does not hold, then s + T s
k′ ≤ s + k. This implies that j ≥ k′, and hence F1 is true. This

completes the proof of the first claim. This claim implies that P(Ecsecure) is bounded above by

P(F0 ∪F1). This, by the union bound, is bounded above by P(F0) + P(F1). This shows the second

claim.

The following lemma gives a bound on P(F0) = P(T s
k′ > k).

Lemma 2.8. Suppose k′ = ⌈rkf⌉ such that 0 < r < 1. Then P(T s
k′ > k) ≤ exp(−kf(1− r)2/2).

Proof. Note that {T s
k′ > k} = {N [s + 1 : s + k] ≤ k′ − 1}, and N [s + 1 : s + k] has the binomial
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distribution with parameters k and f. Thus

P(T s
k′ > k) = P(binom(k, f) ≤ k′ − 1)

≤ P(binom(k, f) ≤ rkf) ≤ exp(−kf(1− r)2/2).

Here, we use the bound P(binom(n, p) ≤ rnp) ≤ exp(np(1− r)2/2).

The results in the following subsections are used to bound P(F1).

2.6.2 On CharString

The main result of this subsection, Lemma 2.9, characterizes the distribution of CharString. In

essence, it specifies how to construct a process with identical distribution to CharString. First,

generate a stationary renewal process on Z with lifetime distribution geom(f). At all slots except

the renewal points, set the symbol to ⊥. Let the renewal points be indexed by j ∈ Z. At each

renewal point j, set the symbol to 0 with probability αP(∆ < gj) and to 1 otherwise, and do so

independently for every renewal point; here, gj is the gap between the jth and (j − 1)th renewal

point. Here, we give the proof for the one-time leader model. The identical statement for the i.i.d.

leader model is proven in Appendix 2.8.

Lemma 2.9 (The Distribution of CharString). The sequence of nonempty slots, (Tj : j ∈ Z),
forms a stationary renewal process with lifetime distribution geom(f). Conditioned on (Tj : j ∈ Z),
the random variables (CharString[Tj ] : j ∈ Z) are independent and Bernoulli with the following

distribution:

P(CharString[Tj ] = 0|Tj′ : j′ ∈ Z) = αP(∆ < Tj − Tj−1|Tj − Tj−1) ∀ j ∈ Z.

In particular, CharString is a stationary process.

Proof. The first claim is already established in Section 2.4.1; it follows from the distribution of

LeaderString. The second claim is true for j ≤ 0 by construction, as shown in Section 2.4.2. We now

show the second claim for j ≥ 1. Recall, from Section 2.4.2, CharString[Tj ] = 0 if LeaderString[Tj ] =

0 and Rj < Tj − Tj−1, where Rj is the delay from the last special honest slot before Tj to hj .

The sequence (LeaderString[Tj ] : j ∈ Z) is a Bernoulli process with probability of zero being α.

Moreover, it is independent of the sequence (Tj : j ∈ Z). It therefore suffices to show that given

LeaderString, the sequence of random variables (Rj : j ∈ N, LeaderString[Tj ] = 0) are i.i.d. with the

same distribution as ∆.

The last statement can be shown in three steps. First, given LeaderString, the message delays

are mutually independent with the same distribution as ∆. Second, the sequence (Rj : j ∈ N,
LeaderString[Tj ] = 0) is a subset of all the delay random variables, and whether a delay variable is

in this sequence or not is independent of its value. Third, as a consequence of the one-time leader
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model, each Rj represents a different message’s delay. This is because the recipient hj is always

different, even if the sender hj∗ may be the same for different j’s.

The fact that the nonempty slots form a stationary process with independent lifetimes, together

with the fact that the value of CharString at the nonempty slots is determined by the immediate

lifetime, implies that CharString is a stationary process.

From Lemma 2.9, we get the following result, which states that the process CompressedCharStrings

is nearly a Bernoulli process, and in fact, can be stochastically dominated by one.

Lemma 2.10 (The Distribution of CompressedCharString). For any s ≥ 0,

P(CompressedCharStrings[1] = 0|CharString[ : s]) ≥ p.

Further, for any s ≥ 0 and j ≥ 2,

P(CompressedCharStrings[j] = 0|CharString[ : s+ T s
j−1]) = p.

Here, p = αP(∆ < G) is the parameter defined in Definition 2.5, and CharString[ : s] denotes the

portion of CharString indexed by j ∈ Z : j ≤ s.

Proof. By the stationarity of CharString (from Lemma 2.9), it suffices to prove the lemma for s = 0.

The desired result follows from Lemma 2.9 and carefully arguing about conditional probabilities.

Pick any j ∈ N. Lemma 2.9 implies the following: if we condition on (Tj′ : j′ ≤ j) and

(CharString[Tj′ ] : j
′ ≤ j − 1), the conditional probability of CharString[Tj ] = 0 is αP(∆ < Tj −

Tj−1|Tj − Tj−1). Now consider taking out Tj from the conditioned variables. In other words,

restrict the information being conditioned on to (Tj′ : j
′ ≤ j − 1) and (CharString[Tj′ ] : j

′ ≤ j − 1).

The conditional probability of CharString[Tj ] = 0 is now αP(∆ < Tj − Tj−1), where Tj − Tj−1 is

independent of ∆.

If j ≥ 2, Tj − Tj−1 has the lifetime distribution, geom(f). Thus, the conditional probability

above is simply p. For j = 1, T1 − T0 has the sampled lifetime distribution, which is the sum

of two independent geom(f) random variables minus one (see Section 2.4.1). This distribution

stochastically dominates the geom(f) distribution. Therefore, the conditional probability above

is lower bounded by p. Finally, note that CharString[ : Tj−1] is a deterministic function of the

sequences (Tj′ : j′ ≤ j − 1) and (CharString[Tj′ ] : j
′ ≤ j − 1). Therefore, the statements of the

lemma follow.

The last result of this subsection gives a bound on the process (N s
adv[1 : j] − N s

spl[1 : j], j ≥ 1).

It states that the process eventually remains below a line whose slope is greater than its drift.

Lemma 2.11. For any c < ϵ,

P(N s
adv[1 : j]−N s

spl[1 : j]) ≥ −cj for some j ≥ k′) ≤ 2 exp(−k′(ϵ− c)2/3)
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Proof. Let W denote a simple integer valued random walk with a drift −ϵ, where 0 < ϵ < 1. In

other words, W[0] = 0 and

W[j + 1] =

W[j] + 1 w.p. 1−ϵ
2

W[j]− 1 w.p. 1+ϵ
2

(2.16)

Note that, for any s ∈ N, Lemma 2.10 implies

(N s
adv[2 : j]−N s

spl[2 : j], j ≥ 2)
d.
= (W[j]−W[1], j ≥ 2).

Moreover, the same lemma implies (N s
adv[1 : j] − N s

spl[1 : j], j ≥ 1) is stochastically dominated

by (W[j], j ≥ 1), because the former has value zero at j = 1 with probability greater than p.

Thus, for this proof, it suffices to show that the same bound holds for (W[j], j ≥ 1) instead of

(N s
adv[1 : j]−N s

spl[1 : j], j ≥ 1). For any c < ϵ, for any k ∈ N,

P(W [j] ≥ −cj for some j ≥ k) ≤ 2 exp
(
−k(ϵ− c)2/3

)
(2.17)

Let b > 0, to be determined below. Observe that the event on the left-hand side of (2.17) is

contained in G1∪G2 where G1 = {W [k] ≥ −ck− b} and G2 = {maxi≥0(W [i+k]−W [k]+ ci) ≥ b}.
Since W [k] + kϵ is the sum of k i.i.d. random variables with 0 mean, each taking values in an

interval of length two, Hoeffding’s inequality implies that for any δ > 0, P (W [k] + kϵ ≥ kδ) ≤
exp(−kδ2/2). Setting δ = ϵ− c− (b/k) yields P (G1) ≤ exp(−kδ2/2).
Let Y be a random variable such that

Y =

 1 + c w.p. 1−ϵ
2

−1 + c w.p. 1+ϵ
2 ,

and let Y1, Y2, . . . be i.i.d. copies of Y . Kingman’s tail bound [31] is that, for θ∗ = sup{θ > 0 :

E
[
eθY
]
≤ 1},

P

(
max
i≥0

i∑
i′=1

Yi′ ≥ b

)
≤ e−θ∗b

To obtain a bound on θ∗, note that Hoeffding’s lemma for bounded random variables [32] implies

that E
[
eθ(Y−(c−ϵ))

]
≤ eθ

2/2. Taking θ = −2(c − ϵ) shows that E
[
e2(ϵ−c)Y

]
≤ 1. Therefore θ∗ ≥

2(ϵ− c), Thus, for any b ≥ 0,

P

(
max
i≥0

i∑
i′=1

Yi′ ≥ b

)
≤ e−θ∗b ≤ e−2(ϵ−c)b, (2.18)

For any k ∈ N, we note that the random processes (
∑i

i′=1 Yi′ : i ≥ 0) and (W [i+k]−W [k]+ci : i ≥ 0)

have the same distribution. Therefore, (2.18) implies P(G2) ≤ exp (−2(ϵ− c)b) .
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Thus P(G1 ∪ G2) ≤ exp
(
−kδ2/2

)
+ exp (−2(ϵ− c)b) . Setting b = k(ϵ − c)

(
1−

√
2
3

)
gives

δ2/2 = (ϵ− c)2/3. Using 2
(
1−

√
2
3

)
≥ 1/3 yields

P(G1 ∪G2) ≤ 2 exp
(
−k(ϵ− c)2/3

)
which proves (2.17), and thus proves the lemma.

2.6.3 On Unheard

The main result of this subsection, Lemma 2.12, states that the marginal distribution of both

Unheardh and CompressedUnheardh,s are stochastically dominated by a geometric distribution with

an appropriate parameter. The statement is easy to foresee through the following understanding.

A given honest party h receives a fresh new message at every special honest slot. Therefore,

Unheardh[i] has the interpretation of the number of consecutive failed trials until the first success;

here, each trial corresponds to a different special honest slot and success implies the message from

that special honest slot being heard by slot i. These trials are independent. By upper bounding

the probability of failure away from one, we obtain a geometric bound on Unheardh[i].

Lemma 2.12 (The Distribution of Unheard). Let q ≜ P(∆ ≤ geom(f)). The following statements

hold:

(a) For any i ≥ 1, P(Unheardh[i] > a) ≤ (1− q)a for all integers a ≥ 0.

(b) For any s, j ≥ 1, P(CompressedUnheardh,s[j] > a) ≤ (1− q)a for all integers a ≥ 0.

Proof. Fix i ≥ 1. It is possible that i itself is a special honest slot and h has not heard it by slot i.

In any case, Unheardh[i] is less than or equal to one plus the number of consecutive special honest

slots from strictly before slot i that h has not heard by slot i. The nonempty slots form both a

Bernoulli process with parameter f and a renewal process. Let D1, D2, . . . denote the lifetimes of

the renewal process going backwards from slot i. Thus, i−D1 − · · · −Dj is the jth nonempty slot

before i. The random variables Di are independent with the geom(f) distribution.

The last special honest slot before slot i must be at least D1 slots before slot i, so the probability

h has heard that special honest slot is at least q. In general, for j ≥ 1, the jth from the last special

honest slot before slot i must be at least Dj slots before slot i. (Here Dj is used as a lower bound on

D1 + · · ·+Dj .) Thus, no matter which of the last j− 1 special honest slots before slot i that h has

heard, the probability h hears the jth from last special honest slot before i is at least q. Therefore,

Unheardh[i] can be viewed as at most one plus the number of consecutive failures in a sequence of

trials, such that each successive trial is successful with probability at least q. Thus, Unheardh[i] is

stochastically dominated by the geom(q) distribution, which is the conclusion of (a).
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The proof of (b) is obtained in a similar fashion by replacing i with s + T s
j , for a fixed s ≥ 1

and j ≥ 1. There is just one subtlety which we note here. If we consider the renewal process

from the perspective of slot s + T s
j , which is the jth renewal point after slot s, the jth lifetime

going backwards has the sampled lifetime distribution; all the other lifetimes have the geom(f)

distribution. The sampled lifetime distribution is equivalent to the sum of two independent geom(f)

random variables minus one and is stochastically greater that the typical lifetime distribution,

geom(f). Thus, the arguments in the proof of (a) continue to hold. Importantly, these lifetimes are

mutually independent.

The next lemma follows from the above result and the union bound.

Lemma 2.13. For any k′ ∈ N, b ≥ 0 and c > 0,

P(CompressedUnheardh,s[j] ≥ b+ 1 + c(j − k′) for some j ≥ k′) ≤
[

1

(1− (1− q)c)

]
exp(−bq).

Proof. Lemma 2.12 (b) implies

P(CompressedUnheardh,s[j] ≥ t) ≤ (1− q)t−1 for t ∈ R+.

Substituting b+1+ c(j− k′) for t and using the union bound by summing over the possible values

of j − k′ implies that the left-hand side of (2.13) is bounded from above by

∞∑
d=0

(1− q)b+cd =

[
1

(1− (1− q)c)

]
(1− q)b.

Since (1− q)b ≤ exp(−bq), the bound in equation (2.13) follows.

2.6.4 On Reach

In this section, we show that the distribution of Reach has a geometric tail. From Definition 2.7,

it follows by induction on i that Reach satisfies the following recursion:

Reach[i] =


Reach[i− 1] if CharString[i] =⊥

Reach[i− 1] + 1 if CharString[i] = 1

max(Reach[i− 1]− 1, 0) if CharString[i] = 0

(2.19)

The initial condition of the recursion, Reach[0] = 0, is given in Definition 2.7 itself.

Next, define B to be the backwards residual lifetime process for the locations of the non-empty

slots in CharString, counting from zero. Mathematically,

B[i] = min{i′ ≥ 0 : CharString[i− i′] ̸=⊥}.
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The next lemma characterizes the joint process (B,Reach).

Lemma 2.14. The process (B[i],Reach[i]) is a discrete-time Markov process with equilibrium prob-

ability mass function given by

π(b, r) = f(1− f)b
(
1− 1− p

p

)(
1− p

p

)r

.

In other words, under the equilibrium distribution, B[i] is independent of Reach[i], B[i] has the

geom(f)− 1 distribution and Reach[i] has the geom
(
1−p
p

)
− 1 distribution.

Proof. The Markov property follows from

1. the recursion (2.19) for determining Reach from CharString and

2. the renewal structure of CharString described in Lemma 2.9.

The nonzero transition probabilities out of any given state (b, r) ∈ Z2
+ are given by (with Fb =

P(∆ ≤ b)):

P((b, r)→ (b+ 1, r)) = 1− f

P((b, r)→ (0, (r − 1)+)) = fαFb

P((b, r)→ (0, r + 1)) = f(1− αFb)

To verify π is the equilibrium distribution, it suffices to check that if the state of the process at

one time has distribution π, then in one step of the process, the probability of jumping out of any

given state is equal to the probability of jumping into the state. For a state of the form (b, r) with

b ≥ 1, the probability of jumping into the state is π(b− 1, r)(1− f), which is equal to π(b, r), the

probability of jumping out of the state. For a state of the form (0, r) with r ≥ 1, the probability

of jumping into the state satisfies the following:

∞∑
b=0

π(b, r − 1)f(1− αFb) +
∞∑
b=0

π(b, r + 1)fαFb

= π(0, r)

[ ∞∑
b=0

p

1− p
(1− f)bf(1− αFb) +

∞∑
b=0

1− p

p
(1− f)bfαFb

]
= π(0, r),

where we used the fact α
∑∞

b=0(1 − f)bfFb = p. Thus, the probability of jumping into the state

(0, r) is equal to π(0, r), which is the probability of jumping out of state (0, r). It remains to show

probabilities of jumping into and out of state (0, 0) are the same, but that follows from the fact it

is true for all other states.

This result gives us a handle on the marginal distribution of Reach[i], as shown below.
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Lemma 2.15 (The Distribution of Reach). For all i ∈ Z+, a ∈ R+, P(Reach[i] ≥ a) ≤
(
1−p
p

)a
.

Proof. The initialization of Reach is Reach[0] = 0. Consider a comparison system such that Reach[0]

is a random variable independent of CharString with the geom
(
1−p
p

)
− 1 distribution. Then in the

comparison system, ((B[i],Reach[0]) : i ≥ 0) is a stationary Markov process, and in particular,

Reach[i] has the geom
(
1−p
p

)
− 1 distribution for all i. Now note that, for CharString fixed, all the

variables ((B[i],Reach[i]) : t ≥ 0) are nondecreasing functions of the initial state (B[0],Reach[0]),

as can be readily shown by induction on i. Since the actual initial state of the original system is

less than the initial state of the comparison system, it follows that Reach[i] in the original system

is stochastically dominated by the geom
(
1−p
p

)
− 1 distribution.

2.7 Proof of Theorem 2.1

Theorem 2.1 provides an upper bound on the probability that either settlement or intensive chain

quality is violated in an execution. In Section 2.5, we showed that if either security property

is violated, then Ecsecure must necessarily occur. Further, Lemma 2.7 shows that P (Ecsecure) ≤
P(F0) + P(F1) for appropriately defined events F0 and F1. Thus, to prove Theorem 2.1, it suffices

to show

P(F0) + P(F1) ≤ pchar-string + |I|punheard. (2.20)

By Lemma 2.8, for any r ∈ (0, 1),

P(F0) ≤ exp(−kf(1− r)2/2) ≤ exp(−kfϵ2(1− r)2/2). (2.21)

Recall from Lemma 2.7 that

F1 = {N s
adv[1 : j]−N s

spl[1 : j] + CompressedUnheardI,s[j] + Reach[s] ≥ 0 for some j ≥ k′}.

Consider the following bounds on the terms that appear in the expression of F1 above:

P(N s
adv[1 : j]−N s

spl[1 : j]) ≥ −ϵcj for some j ≥ k′) ≤ 2 exp(−k′ϵ2(1− c)2/3), (2.22)

P(CompressedUnheardh,s[j] ≥ ϵc(j − k′) + ϵ(c− a)k′ + 1 for some j ≥ k′)

≤
[

1

1− (1− q)ϵc

]
exp(−(c− a)qϵk′), (2.23)

P(Reach[s] ≥ ϵak′) ≤ exp(−2aϵ2k′). (2.24)

The first bound follows from Lemma 2.11 (replace c by ϵc), the second from Lemma 2.13 (replace

b by ϵ(c − a)k′ and c by ϵc), and the third from Lemma 2.15 (replace a by ϵak′ and use the fact

that log((1 + ϵ)/(1 − ϵ)) ≥ 2ϵ). Here, a, r, and c are free parameters belonging to the set (0, 1),
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while k′ = ⌈rkf⌉. By the union bound, (2.22), (2.23), and (2.24) give the following result:

P(F1) ≤ 2 exp

(
−(1− c)2

3
ϵ2k′

)
+ exp(−2aϵ2k′) +

[
|I|

1− (1− q)ϵc

]
exp(−(c− a)qϵk′). (2.25)

In obtaining this bound, we use the following fact: for three discrete terms x, y, z, the condition

x+ y+ z ≥ 0 implies either x ≥ 0, y ≥ 0, or z ≥ 1. We also use the fact that CompressedUnheardI,s

is the maximum of CompressedUnheardh,s for all h ∈ I.
With bounds on F0 and F1 (namely, (2.21) and (2.25)), it remains to set the free variables. Let

r = 1/2, c = 1/4 and a = 1/8. This implies k′ ≥ fk/2. Also use the fact that q ≥ p ≥ 0.5 (see

Lemma 2.12 for q). Lastly, use the bound
[

1
1−(1/2)ϵ/4

]
≤ (8/ϵ), which follows from 1

1−(1−x)y ≤ 1/xy

for x, y < 1. The above steps show that (2.20) holds for

pchar-string = 4 exp
(
−(3/32)ϵ2fk

)
and punheard = (8/ϵ) exp(−(1/32)ϵfk).

This concludes the proof of Theorem 2.1.

2.8 CharString for the I.I.D. Leader Model

In this section, we give the precise construction of CharString for the i.i.d. leader model, show that

it implies the property of increasing heights of special honest blocks, and prove Lemma 2.9 for

this construction. All other properties of CharString follow from these. Before we give the precise

construction, we need to develop some notation.

2.8.1 Internal representation and refreshed residuals

The definitions in this section are used in the following to define special honest slots for the i.i.d.

leader model. Consider a probability mass function (pmf) f on Z+, and let X be a random variable

with this pmf (P(X = i) = f[i]). The failure rate function of the distribution, FailureRate, is defined

by

FailureRate[i] ≜
f[i]∑
j≥i f[i]

=
P(X = i)

P(X ≥ i)
for each i ≥ 0

with the convention that FailureRate[i] = 1 if P(X ≥ i) = 0.

A random variable D with pmf f can be constructed as follows. Let D = min{i ≥ 0 : U[i] ≤
FailureRate[i]}, where U = (U[0],U[1], . . .) is a sequence of independent random variables that are

each uniformly distributed on the interval [0, 1]. We call (FailureRate,U) the internal representation

of D. If D1 and D2 are random variables with independent internal representations, then D1 and

D2 are independent as well.

Given d ≥ 0, define the refreshed residual of D at elapsed time d by refreshd(D) = min{i ≥ 0 :

U[i + d] ≤ FailureRate[i]}. Although refreshd(D) depends on the internal representation of D, the
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internal representation is suppressed in the notation.

Lemma 2.16. Let D be a Z+-valued random variable with an internal representation and let d ≥ 0.

The following hold.

(a) refreshd(D)
d.
= D.

(b) The random variable min{d,D} is independent of refreshd(D). More generally, if 0 = d0 <

d1 < · · · < dn, then ∀j ∈ [n], min{dj , refreshdj−1
(D)} and refreshdn(D) are mutually indepen-

dent.

(c) If D has a non-decreasing failure rate function, D ≤ d+ refreshd(D).

Proof. Statement (a) follows from U
d.
= U[d : ]. The first statement in (b) follows from the facts

that min{d,D} is determined by U[0 : d − 1] and refreshd(D) is determined by U[d : ]. The

generalization in (b) similarly follows: the indicated random variables are functions of disjoint

subsets of the random variables in U. (c) is proved as follows.

D ≤ min{i ≥ d : U[i] ≤ FailureRate[i]}

= d+min{i ≥ 0 : U[i+ d] ≤ FailureRate[i+ d]}

≤ d+min{i ≥ 0 : U[i+ d] ≤ FailureRate[i]}

= d+ refreshd(D).

The non-decreasing failure rate condition is used in the second inequality.

2.8.2 Defining CharString

In this section, we define CharString in the i.i.d. leader model. Without loss of generality, we

assume all message delays have independent internal representations. The definition of CharString

is the same as in the one-time leader model except for the way in which special honest slots are

defined in positive time. In particular, the variables Rj are defined differently. For each j ∈ N such

that LeaderString[Tj ] = 0, let

Rj = refreshTj−1−Tj∗ (delay(Tj∗ → hj)).

Just as before, Tj is a special honest slot (i.e., let CharString[Tj ] be 0) if and only if LeaderString[Tj ] =

0 and Rj < Tj − Tj−1. When Tj∗ = Tj−1 (i.e., the latest nonempty slot was special honest),

Rj = delay(Tj∗ → hj). Recall that this is precisely the definition of Rj in the one-time leader

model. This modified definition of Rj allows us to prove Lemma 2.9 even if the sequence of Rjs is

not i.i.d. (see the proof given below).

Next, we show that the property of increasing heights of special honest blocks holds for the i.i.d.

leader model as well. Note that hj receives the message from the previous special honest slot at
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time Tj∗ + delay(Tj∗ → hj). If Tj is special honest, then Rj < Tj − Tj−1. By Lemma 2.16(c),

delay(Tj∗ → hj) ≤ (Tj−1 − Tj∗) +Rj . Put together, we get

Tj∗ + delay(Tj∗ → hj) ≤ Tj∗ + (Tj−1 − Tj∗) +Rj < Tj−1 + Tj − Tj−1 = Tj .

Thus, just as for the one-time leader model, the condition for Tj to be a special honest slot is

sufficient, but not necessary, for hj to have received the message from the previous special honest

slot.

The final step is to show that the distribution of the random process CharString for the i.i.d.

leader model is the same as it is for the one time leader model. In other words, we prove that

Lemma 2.9 holds in the i.i.d. leader case as well.

Proof. It suffices to show the second claim for j ≥ 1; all other statements follow from iden-

tical arguments as in the one-time leader case. Recall that CharString[Tj ] = 0 if and only if

LeaderString[Tj ] = 0 and Rj < Tj − Tj−1. Consider the conditional probability distribution of the

sequence (Rj : j ∈ N, LeaderString[Tj ] = 0) given LeaderString. Statements (a) and (b) of Lemma

2.16 imply that, given LeaderString,

• each Rj has the same distribution as ∆ and

• the random variables R̃j = min{Rj , Tj − Tj−1} are conditionally mutually independent.

Next, note that Rj < Tj−Tj−1 if and only if R̃j < Tj−Tj−1. Finally, the sequence (LeaderString[Tj ] :

j ∈ N) is a Bernoulli sequence.

From these observations, the conditional independence of (CharString[Tj ] : j ≥ 1) follows, and so

does the equation in the lemma. Thus, we have shown the second claim holds for j ≥ 1.
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Chapter 3

Finality Gadgets and Blockchains with Dual Ledgers

3.1 Introduction

The longest-chain protocol, introduced by Nakamoto in Bitcoin [1], is the prototypical example of

a blockchain protocol that operates in a permissionless setting. Put differently, the longest-chain

protocol is adaptive: it remains safe and live irrespective of the number of active participants

(nodes) in the system, as long as the fraction of adversarial nodes among the active ones is less

than a half. Adaptivity (also known as dynamic availability) is a desirable property in a highly

decentralized system such as a cryptocurrency. The downside of this protocol is that they are

insecure during prolonged periods of network partition (asynchrony). This is unavoidable; miners

in disconnected portions of the network keep extending their blockchains separately, unaware of

the other chains. When synchrony resumes, one of the chains wins, which implies that blocks on

the other chains get unconfirmed. These features are present not just in the longest-chain protocol,

but also in other protocols that are derived from it, e.g., Prism [14].

In stark contrast, committee-based consensus protocols like PBFT [12] and Hotstuff [33] offer

strong finality guarantees. These protocols remain safe even during periods of asynchrony, and

regain liveness when synchrony resumes. Finality is also a desirable property for blockchains, as

they may operate under conditions where synchrony cannot be guaranteed at all times. However,

all finality-guaranteeing protocols come with a caveat: they are built for the permissioned setting.

These protocols make progress only when enough number of votes have been accrued for each block.

If a significant fraction of nodes become inactive (go offline), the protocol stalls completely. This

prevents them from being adaptive.

We posit that the two disparate class of protocols is a consequence of the CAP theorem, a famous

impossibility result in distributed systems. The theorem states that in the presence of a network

partition, a distributed system cannot guarantee both consistency (safety) and availability (liveness)

[34, 35]. The theorem has led to a classification of system designs, on the basis of whether they

favor liveness or safety during network partitions. Blockchains, being distributed systems, inherit

the trade-offs implicated by the CAP theorem. In particular, we see that the longest-chain class of

protocols favor liveness while the committee-based protocols favor safety.

Recently, Lewis-Pye and Roughgarden [13] prove a CAP theorem for blockchains that highlights

the adaptivity-finality trade-off explicitly. They show that “a fundamental dichotomy holds between
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protocols (such as Bitcoin) that are adaptive, in the sense that they can function given unpredictable

levels of participation, and protocols (such as Algorand) that have certain finality properties.” The

essence of this impossibility result is the following: it is difficult to distinguish network asynchrony

from a reduced number of participants in the blockchain system. Therefore, a protocol is bound to

behave similarly under both these conditions. In particular, adaptive protocols must continue to

extend blockchains during asynchrony (thereby compromising finality), while finality-guaranteeing

protocols must stall under reduced participation (which means they cannot have adaptivity).

In this chapter, we investigate whether the aforementioned trade-off between adaptivity and

finality can be resolved at a user level, rather than at a system-wide level. In particular, we seek to

build a blockchain system wherein all (honest) nodes follow a common block proposing mechanism,

but different nodes can choose between two different confirmation rules. Under appropriate bounds

on adversarial participation, one rule must guarantee adaptivity, while the other must guarantee

finality. When the system is operating under desirable conditions, i.e., a large enough fraction of

nodes are active and the network is synchronous, the blocks confirmed by both rules must coincide.

Protocols with such a dual-confirmation rule (aka dual-ledger) design are termed as “Ebb-and-flow”

protocols [27]. Such a design would be of interest in blockchains for many reasons. For example,

for low-value transactions such as buying a coffee, a node may prefer liveness over safety, whereas

for high-value transactions, it is natural to choose safety over liveness. Moreover, such a trade-off

allows each node to make their own assumptions about the state of the network and choose a

confirmation rule appropriately.

At a high level, we are inspired in our formulation from analogous designs to adapt the CAP

theorem in practical distributed system settings (see Section 4 of the review by Gilbert and Lynch

[35]). More concretely, dual-ledger designs do not fall under the purview of the CAP theorem

[13]; the formulation assumes a single confirmation rule. A second motivation is that a variety

of finality gadgets (in combination with a blockchain protocol) may also be viewed as providing a

user-dependent dual ledger option. We elaborate on some recent proposals [36, 37, 38] in Section

3.2.

3.1.1 Our contributions

Our main contribution is to propose a new protocol, called the checkpointed longest chain protocol,

which offers each node in the same blockchain system a choice between two different confirmation

rules that have different adaptivity-finality trade-offs.

• Block Proposal. Just as in the longest chain protocol, honest miners build new blocks by

extending the chain that they currently hold. In addition, some honest users participate in a

separate checkpointing protocol, that marks certain blocks as checkpoints at regular intervals.

An honest user adopts the longest chain that contains the latest checkpoint.
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• Confirmation rules. The protocol’s adaptivity-guaranteeing confirmation rule is simply the

k-deep rule. An honest user confirms a block if it sees k blocks below it, for an appropriate

choice of k. The protocol’s finality-guaranteeing rule is for honest users to treat all blocks in

its chain up to the last checkpointed block as confirmed.

The protocol is designed such that new blocks continue to be mined at increasing heights even if the

participation level is low, but new checkpoints appear only if there is sufficient participation. This

illustrates the adaptivity-guaranteeing property of the k-deep rule. On the other hand, checkpoints

are guaranteed to be on a single chain irrespective of network conditions, while the longest chain

containing the latest checkpoint may keep alternating between divergent chains. This implies the

finality property of the checkpointing rule.

Below, we highlight the key design principles of our protocol, followed by the security guarantees.

Validity of Blockchains

Our protocol keeps intact the intrinsic validity of blockchains. Roughly, validity means that the

set of blocks that are confirmed all lie on a single, monotonically increasing chain. Thus, the

validity of a transaction can be inferred from just the blockchain leading up to the particular block.

More precisely, an honest user that is constructing the block has the assurance that if the block is

confirmed, all transactions in the block are confirmed, which means it accrues all the transaction

rewards. Moreover, a user can infer that a certain transaction is confirmed simply by knowing

that the transaction was included in a particular block and that the block was confirmed (as per

either rule), without knowledge of the contents of other blocks. These properties are recognized to

be important for the blockchain to be incentive-compatible and to enable light clients respectively.

Further, validity of blockchains offers spam-resistance and is compatible with existing sharding

designs. Although validity of blockchains is a common feature of a majority of protocols, recent

high performance designs crucially decouple validation from consensus [14, 39]. The Snap-and-Chat

design for the same problem [27] also does not have this feature.

Figure 3.1: The Checkpointed Longest Chain
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Interaction between Checkpointing and Longest Chain Protocol

In our design, the longest chain rule (i.e., the block proposal rule) and the checkpointing rule satisfy

some constraints with respect to each other. The interlocking structure of constraints between the

checkpointing protocol and the longest chain protocol is illustrated in Figure 3.1 and detailed below.

• P1: Consistency with previous checkpoints. The sequence of checkpoints must be on

a chain. This places a self-consistency condition on the checkpointing protocol.

• P2: Checkpointed longest chain rule. The longest chain protocol respect the previous

checkpoints. Honest users build adopt the longest chain that contains the latest checkpoint

and mine new blocks at the tip of this chain.

• P3: Checkpoints are deep enough. The checkpointing protocol should only checkpoint

blocks that are sufficiently deep in some honestly held chain. Furthermore, such a chain

should be made available along with the checkpoint message.

All these three conditions are required to achieve our goals. Condition P1 is a requisite for a

validity preserving protocol (in particular, a validity preserving, finality-guaranteeing confirmation

rule). The condition P2 says that honest nodes should adopt the longest checkpointed chain,

rather than the longest chain. Given P1, the condition P2 is required to ensure new checkpoints

are produced after a period of asynchrony. Without this condition P2, the block proposal rule

is simply the longest chain rule. During asynchrony, the longest chain may be one that does not

include some of the checkpoints, and there is no correction mechanism to ever bring the longest

chain downstream of the last checkpoint. Condition P3 ensures that during synchrony, any block

that is eventually checkpointed would be a part of all honestly held chains. Thus, the dynamics

of the protocol would be as if nodes are simply following the longest chain rule, and the known

security guarantees would apply. If no such condition is placed, the checkpointing protocol could

checkpoint an arbitrary block that possibly forks from the main chain by a large margin. The rule

P2 would force honest nodes to switch to this fork, thereby violating safety of the k-deep rule.

The Checkpointing Protocol

The checkpointing protocol in our design is a BFT consensus protocol. It is a slight modification of

Algorand BA [40]. The protocol is extended from a single-iteration byzantine agreement protocol to

a multi-iteration checkpointing protocol. In each iteration, nodes run the checkpointing protocol

to checkpoint a new block, and P1 guarantees that the sequence of checkpoints lie on a single

chain. Coupled with the chain adoption rule (longest checkpointed chain), these checkpoints offer

deterministic finality and safety against network partitions.

We state the safety guarantee of the checkpointing protocol as a basic checkpointing property

(CP) as below:
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• CP0: Safety. All honest users checkpoint the same block in one iteration of the checkpoint-

ing protocol, even during network partition. This checkpoint lies on the same chain as all

previous checkpoints.

While one might consider different protocols for the checkpointing mechanism, the protocol must

further satisfy some key properties during periods of synchrony.

• CP1: Recency condition. If a new block is checkpointed at some time, it must have been

in a chain held by an honest user at some point in the recent past.

• CP2: Gap in checkpoints. The interval between successive checkpoints must be large

enough to allow CP1 to hold.

• CP3: Conditional liveness. If all honest nodes hold chains that have a common pre-

fix (all but the last few blocks are common), then a new checkpoint will appear within a

certain bounded time (i.e., there is an upper bound on the interval between two successive

checkpoints).

CP1 helps in bounding the extent to which an honest user may have to drop honest blocks in its

chain when it adopts a new checkpoint. Without this condition, (i.e., if arbitrarily old checkpoints

can be issued), honest users may have to let go of many honestly mined blocks. This causes a loss

in mining power, which we refer to as bleeding. Our choice of Algorand BA was made because it

has this property. Other natural candidates such as PBFT [12] and HotStuff [33], do not have this

property. We discuss this in detail in Section 3.9. CP2 ensures that the loss in honest mining

power due to the above mechanism is limited. This condition can be incorporated by design. CP3

is a liveness property of the checkpointing protocol. It ensures new checkpoints appear at frequent

intervals, leading to liveness of the finality-guaranteeing confirmation rule.

Security Guarantees (Informal)

We show the following guarantees for proof-of-work longest chain along with Algorand BA (aug-

mented with the appropriate validity condition).

1. The k-deep rule is safe and live if the network is synchronous from the beginning and the

fraction of adversaries among online users is less than a half.

2. The checkpointing protocol, which is safe by design, is also live soon after the network par-

tition is healed under the partially synchronous model.

3. The ledger from the checkpoint rule is a prefix of the ledger from the k-deep rule from the

point of view of any user.
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Proof Technique

We prove these security guarantees using the following strategy. First, we show that if all honest

users hold chains that obey the k-common prefix condition for an extended period of time, then

new blocks get checkpointed at regular intervals, and these blocks are part of the common prefix of

the honestly held chains. This tells us that under conditions in which the vanilla longest chain rule

is secure, the checkpointed longest chain rule has exactly the same dynamics. Therefore, it inherits

the same security properties of the longest chain rule. Secondly, we show that once sufficient

time has passed after a network partition is healed, the chains held by the honest user under the

checkpointed longest chain rule are guaranteed to have the common prefix property. Coupled with

the first result, we infer that new checkpoints will eventually be confirmed thereby proving liveness

of the checkpoint-based confirmation rule under partial synchrony.

Outline

We review related works in Section 3.2 and place our results in the context of several recent works

on the same topic as this chapter. The similarities and differences in the techniques in our work

with closely related works is pictorially illustrated in Figure 3.2. We state our network and security

models formally in Section 3.3. In Section 3.4, we describe the checkpointed longest chain protocol,

highlighting the roles of the miners and precisely stating the two confirmation rules. For clarity,

we describe the checkpointing protocol as a black box with certain properties here; we give the

full protocol in Section 3.6. We state our main theorem, concerning the security guarantees of our

protocol, in Section 3.5. In the rest of the section, we give a proof sketch of the theorem. The

formal proofs are given in Appendices 3.7 and 3.8. We conclude the chapter with a discussion and

pointers for future work in Section 3.10.

3.2 Related Work

CAP Theorem The formal connection between the CAP theorem and blockchains was recently

made by Lewis-Pye and Roughgarden [13]. They provide an abstract framework in which a wide

class of blockchain protocols can be placed, including longest chain protocols (both Proof-of-Work

based [4] and PoS based [41]) as well as BFT-style protocols [42]. The main result of Lewis-

Pye and Roughgarden [13] says that a protocol (containing a block “encoding” procedure and a

block confirmation rule) which is adaptive (i.e., which remains live in an unsized setting) cannot

offer finality (i.e., deterministic safety, even under arbitrary network conditions) and vice-versa.

However, the same chapter is mute on the topic of whether different block confirmation rules could

offer different guarantees, which is the entire focus of this work. We are inspired in our formulation

from analogous designs to adapt the CAP theorem in practical distributed system settings (see

Section 4 of Gilbert and Lynch [35]).
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User-Dependent Confirmation Rules The idea of giving users the option of choosing their

own confirmation rule, based on their beliefs about the network conditions and desired security level

was pioneered by Nakamoto themself, via choosing the value of k in the k-deep confirmation rule.

A recent work [43] allows users the option of choosing between partially synchronous confirmation

rule and a synchronous one. However, neither of the confirmation rules are adaptive, as the block

proposal rule itself is a committee-based one and cannot make progress once the participation is

below a required level. Therefore, they do not “break” the CAP theorem as proposed by Lewis-Pye

and Roughgarden [13]. In contrast, our protocol offers users the choice of an adaptive system.

Hybrid Consensus Hybrid consensus [44] is a different technique of incorporating a BFT proto-

col into the longest-chain protocol. In a nutshell, the idea in this design is to use the longest-chain

protocol to randomly select a committee, which then executes a BFT protocol to confirm blocks.

The committee consists of the miners of the blocks on the longest chain over a shifting interval of

constant size, and is thus re-elected periodically. Hybrid consensus addresses the problem of build-

ing a responsive protocol (i.e., latency proportional to network delay) in a PoW setting. It does

not, however, address the adaptivity-finality dilemma. In fact, as we illustrate here, the protocol

offers neither adaptivity nor finality. Once a miner is elected as a committee member, it is obliged

to stay active until the period of its committee is over, which compromises on the adaptivity prop-

erty. As for finality, although the blocks are confirmed by a finality-based protocol, the committee

election mechanism compromises the finality guarantee. During asynchrony, nodes cannot achieve

consensus on who belongs to the committee; thus, the whole protocol loses safety.

Checkpointing Checkpointing is a protocol run on top of the longest chain protocol (run by

largely honest parties) that deterministically marks certain blocks as finalized; a simple form of

checkpointing was pioneered, and maintained until 2014, by Satoshi Nakamoto (presumably hon-

est). In the context of our work, checkpointing provides finality (essentially by fiat) while the

longest chain rule ensures adaptivity. We can interpret our chapter as an attempt to provide ap-

propriate conditions on the interaction between the checkpointing and the longest chain protocol,

and also to show how to realize such checkpointing in a distributed manner. We note that [38]

is a recent work that studies the checkpointed ledger when the longest-chain protocol has super-

majority adversaries; this regime is different from that studied in the present chapter, where we

assume that the longest-chain protocol has majority honest and the checkpointing protocol has 2/3

honest users. For completeness, we have included the architecture of checkpointed ledger in the

comparison in Figure 3.2.

Casper FFG and Gasper Casper FFG (Casper: the Friendly Finality Gadget) [45] pioneered

the study of finality gadgets. Casper FFG also introduced the notion of “economic security”. The

finality gadget allows cryptographic proofs of malicious behavior which can be used to disincentivize

such behavior. We do not explore this aspect of finality gadgets in our chapter. Casper FFG is
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not a completely specified protocol [45]. A recent follow-up chapter called Gasper [46] provides

a complete protocol. Gasper can be viewed as a checkpointed longest chain protocol, with the

longest chain rule replaced by the Latest Message Driven Greediest Heaviest Observed Subtree

(LMD GHOST) rule and the checkpointing protocol being Casper FFG. Gasper does not provide

formal security guarantees; in fact, the work by Neu et al. [27] shows a liveness attack on Gasper.

Afgjort Afgjort [36] is a recent finality gadget proposed by Dinsdale et al., which formally de-

scribes the desirable properties that a finality gadget must have, some of them are similar to the

ones we require as well. Afgjort has a two-layer design: it takes an off-the-shelf longest chain

protocol and adds a finality layer to it. Such a system can work as desired when the network is

synchronous, including when the participation levels are variable. However, it is destined to fail in

one of two ways in a partially synchronous setting: either the finality gadget stops finalizing new

blocks (i.e., violates liveness), or it finalizes “conflicting” blocks, i.e., blocks in two different chains

(i.e., violates validity). Thus Afgjort does not provide the guarantees we seek in this work. More

generally, any layer-two finality gadget on top of an adaptive protocol would not meet the desired

objectives for the same reason; they would be missing rule P2 (see Figure 3.2).

GRANDPA GRANDPA [37] is another recent finality gadget, proposed by Stewart et al. Just as

in our protocol (and unlike Afgjort), GRANDPA alters the underlying block production mechanism

to respect blocks that has been finalized by the finality gadget. GRANDPA’s security relies on the

assumption that the block-production mechanism (longest-chain rule/GHOST) provides a type of

“conditional eventual consensus”. I.e., If nodes keep building on the last finalized block and don’t

finalize any new blocks, then eventually they have consensus on a longer chain. This argument,

though presumably true, is not a rigorous security analysis; in our work, we prove security for a

completely specified model and protocol.

More importantly, comparing Figures 3.1 and 3.2, we see that GRANDPA does not have property

P3. This leads to a security vulnerability in the variable participation setting. The issue arises due

to the following subtlety: in the variable participation setting, a particular block could be ‘locked’

onto by the checkpointing protocol, but could be checkpointed much later (this does not happen

under full participation). A block at the tip of the longest chain could soon be displaced from it

by the adversary. If this block is locked while it is on the chain, but checkpointed only when it is

out of the chain, the safety of the k-deep rule will be violated. A more detailed description of this

attack is given in Section 3.9.

Snap-and-Chat protocols A concurrent work by Neu et al. [27] also solves the adaptivity vs

finality dilemma posed by the CAP theorem. (Their work appeared online a few weeks prior to

ours). They introduce a technique, called Snap-and-Chat, to combine a longest chain protocol with

any BFT-style one to obtain a protocol that has the properties we desire. More specifically, their

protocol produces two different ledgers (ordered list of transactions), one that offers adaptivity and
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the other that offers finality. A user can choose to pick either one, depending on its belief about

the network condition. These ledgers are proven to be consistent with each other (the finality

guaranteeing ledger is a prefix of the adaptive one).

While the outcomes of the Snap-and-Chat design are analogous to ours, the approach adopted

and the resulting blockchain protocol are quite different. A major advantage of this approach is its

generality: unlike other existing approaches, it offers a blackbox construction and proof which can

be used to combine a variety of adaptive and finality preserving protocols. However, the Snap-and-

Chat design has an important caveat: the sequence of blocks that are confirmed in their protocol

do not necessarily form a single chain. Indeed, in the partially synchronous setting, the finality-

guaranteeing confirmation rule can finalize blocks on two different forks one after the other. The

Snap-and-Chat protocol overcomes this apparent issue by constructing a ledger after the blocks

have been finalized, and “sanitizing” it at a later step.

The sanitization step implies that not all transactions in a confirmed block may be part of

the ledger: for example, if it is a double spend relative to a transaction occurring earlier in the

ledger, such transaction will be removed. Put differently, the validity of a particular transaction

in a particular block is decided only once the block is confirmed, and not when the block is

proposed. Most practical blockchain systems are designed with coupled validation, i.e., an honest

block proposer can ensure that blocks contain only valid transactions. Our approach maintains

coupled validity of blockchains and does not have this shortcoming, as highlighted in Section 3.1.

Many of these related works can be placed in a common framework, as illustrated in Figure 3.2.

In Ebb-and-Flow [27], previous checkpoints are not respected by either the longest chain protocol

or the checkpointing protocol. Hence checkpoints may not form a single chain and the final ledger

is constructed by sanitization, which makes it impossible to have validation before block proposal.

Afgjort [36] takes an off-the-shelf longest chain protocol and keeps checkpointing blocks on it.

Due to lack of interaction between the longest chain protocol and the checkpointing protocol, the

protocol may fail in a partially synchronous setting when the security of the blockchain is broken.

The Checkpointed Ledger [38] and GRANDPA [37] are very similar to our design; the difference is

that the checkpoints don’t need to be buried deep enough in the longest chain. This minor change

makes their protocols become insecure under the variable participation setting.

Figure 3.2: A comparison of related work
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3.3 Security Model

Environment. A blockchain protocol Π is directed by an environment Z(1κ), where κ is the

security parameter, i.e., the length of the hash function output. This environment (i) initiates

a set of participating nodes N ; (ii) manages a public-key infrastructure (PKI) and assigns each

node with a unique cryptographic identity; (iii) manages nodes through an adversary A which

corrupts a subset of nodes before the protocol execution starts; (iv) manages all accesses of each

node from/to the environment including broadcasting and receiving messages.

Network model. The nodes’ individual timers do not need to be synchronized or almost synchro-

nized. We only require they have the same speed. In our network, we have a variety of messages,

including blocks, votes, etc. The following message delay bounds apply to all messages. Secondly,

all messages sent by honest nodes are broadcast messages. Thirdly, all honest nodes re-broadcast

any message they have heard. The adversary does not suffer any message delay. In general, we

assume that the adversary controls the order of delivery of messages, but the end-to-end network

delay between any two honest nodes is subject to some further constraints that are specified below.

We operate under either one of the two settings specified below:

• M1 (Partial synchrony model): A global stabilization time, GST, is chosen by the ad-

versary, unknown to the honest nodes and also to the protocol designer. Before GST, the

adversary can delay messages arbitrarily. After GST, all messages sent between honest nodes

are delivered within ∆ time. Moreover, messages sent by honest nodes before GST are also

delivered by GST + ∆.

• M2 (Synchrony model): All messages sent from one honest node to another are delivered

within ∆ time.

Participation model. We introduce the notion of sized/unsized number of nodes to capture the

notion that node network activity (online or offline) varies over time. It is important to note that

we allow for adversarial nodes to go offline as well. A node can come online and go offline at any

time during the protocol. An online honest node always executes the protocol faithfully. An offline

node, be it honest or adversarial, does not send any messages. Messages that are scheduled to be

delivered during the time when the node is offline are delivered immediately after the node comes

online again. We consider two different scenarios:

• U1 (Sized setting): All nodes stay online at all times.

• U2 (Unsized setting): Nodes can come online and offline at arbitrary times, at the discre-

tion of the adversary, provided a certain minimal number of nodes stay online.

Abstract protocol model. We describe here our protocol in the abstract framework that was

developed by Lewis-Pye and Roughgarden [13]. In this framework, a blockchain protocol is specified

as a tuple Π = (I,O,C), where I denotes the instruction set, O is an oracle that abstracts out
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the leader election process, and C is a confirmation rule (e.g., the k-deep confirmation rule). The

bounds on adversarial ratios are also specified through O. The rationale for adopting this framework

is to point out precisely how we circumvent the CAP theorem for blockchains [13].

The theorem states that no protocol Π = (I,O,C) can simultaneously offer both finality (safety in

the partially synchronous setting) and adaptivity (liveness in the unsized setting). Our checkpointed

longest chain protocol is a 4-tuple ΠCLC = (I,O,C1, C2), with two confirmation rules C1 and C2.

This entire protocol can be split at a node level into two protocols: Πfin = (I,O,C1) and Πada =

(I,O,C2). The protocol Πfin guarantees (deterministic) safety and (probabilistic) liveness under

network assumption M1 and participation level U1, just as many BFT-type consensus protocols

do. It therefore guarantees finality. Πada guarantees safety and liveness under network assumption

M2 and participation level U2, just as longest chain protocols do. It thereby guarantees adaptivity.

Finally, both Πfin and Πada are safe and live under conditions M2 and U1; moreover, the set of

blocks confirmed by Πfin at any time is a subset of those confirmed by Πada. A similar property is

proven by Neu et al. [27].

Each node can choose one of the two confirmation rules according to their demands and assump-

tions. We specify the exact specifications of I,O,C1 and C2 and the associated security properties

in the next section.

3.4 Protocol Description

Nodes in the protocol. In our protocol, let N denote the set of all participating nodes. Among

these, there are two subsets of participating nodes N1 and N2. We call nodes in N1 miners, whose

role is to propose new blocks. We call nodes in N2 checkpointers, whose role is to vote for blocks

on the blockchains they currently hold and mark them as checkpoints. Note that we allow for any

relation among these sets, including the possibility that all nodes play both roles (N1 = N2 = N ),

or the two kinds of nodes are disjoint (N1 ∩ N2 = ϕ). The instruction set I and the oracle O

is different for miners and checkpointers, and is specified below. Note that in the sized/unsized

setting, both N1 and N2 are sized/unsized.

Before we specify the protocol, we introduce some terminology pertaining to checkpoints. A

checkpoint certificate is a set of votes from at least 2/3 of the checkpointers for a certain block, that

certifies that the block is a checkpoint. When an honest node receives both a checkpoint certificate

and a chain that contains the block being checkpointed, we say that the honest node has heard of

a checkpoint. We say that a checkpoint appears at time t if the t is the first time that an honest

node hears of it.

I for all nodes. Every honest node holds a single blockchain at all times, which may be updated

upon receiving new messages. They all follow the checkpointed longest chain rule, which states that

a node selects the longest chain that extends the last checkpointed block it has heard of so far. Ties

are broken by the adversary. To elaborate, a node keeps track of the last checkpoint it has heard
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of so far. If a node receives a longer chain that includes the last checkpoint, it adopts the received

new chain. A node ignores all chains which do not contain the last checkpoint block as per their

knowledge.

I,O for miners. An honest miner adopts the tip of its checkpointed longest chain as the parent

block. The miner forms a new block with a digest of the parent block and all transactions in

its buffer, and broadcasts it when it is chosen as a leader by the oracle. The oracle O chooses

miners as leaders at random intervals, that can be modeled as a Poisson process with rate λ. This

joint leader election process can be further split into two independent Poisson processes. Let the

fraction of online adversarial miners be β < 1/2. The honest blocks arrive as a Poisson process of

rate (1− β)λ, while the adversarial blocks arrive as an independent Poisson process of rate βλ.

I,O for checkpointers. The checkpointers run a multi-iteration Byzantine Agreement (BA)

protocol ΠBA to checkpoint blocks, with each iteration checkpointing one block. Our protocol is

a slight variant of the Algorand BA protocol [40]. The complete protocol is described in Section

3.6 with a minor modification from Algorand, which is highlighted in red. This modification is

made so as to enable a consistency check across iterations without losing liveness (i.e., to get a

multi-iteration BA from a single iteration one).

Briefly, the protocol works as follows. Each iteration is split into periods. Each period has a

unique leader chosen by the oracle. Nominally, the values on which consensus is to be achieved

amongst all checkpointers are the blockchains held by the checkpointers. In practice, the values

may be the hashes of the last block of the blockchain. A key difference from the Algorand protocol

is that we allow the checkpointers to change their values at the beginning of each period. The

checkpointers aim to achieve consensus amongst these values. The final chain that has been agreed

upon is broadcast to all honest nodes (not just checkpointers) together with a certificate. The

block that is exactly k-deep in this chain is chosen as the checkpoint block in current iteration.

Here, k is a parameter of the protocol ΠCLC, and is chosen to be Θ(κ). We call it the checkpoint

depth parameter.

Confirmation rules

We propose the following two confirmation rules for ΠCLC, which have different security guarantees

under different assumptions. Either rule can be adopted by any node in the protocol

• C1: Confirm the chain up to the last known checkpoint.

• C2: Confirm all but the last k′ blocks in the checkpointed longest chain, i.e., in the chain

that is currently held, where k′ = Θ(κ)

Note that every honest node may choose any value of k′ that they wish.
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Intuition behind the checkpointing protocol

The checkpointing protocol is designed such that under optimistic conditions, a checkpoint is

achieved within one period. These optimistic conditions are that the leader of a period is hon-

est, the network is synchronous, and all chains held by honest checkpointers satisfy the common

prefix property. The sequence of leaders for this protocol is guaranteed to be chosen in an i.i.d.

fashion amongst online checkpointers by the oracle O. We assume that the fraction of adversarial

checkpointers is β′ < 1/3. Thus, the probability of selecting an adversarial leader at any round is

< 1/3.

We now state some key properties of the checkpointing protocol. These properties, CP0, CP1,

CP2, CP3 were introduced in Section 3.1 and are elaborated upon below.

• CP0: Safety. All honest nodes checkpoint the same block in one iteration of the check-

pointing protocol, even during network partition. This checkpoint lies on the same chain as

all previous checkpoints. This is a safety property of the checkpointing protocol, which will

be essential in guaranteeing the safety of Πfin.

• CP1: Recency condition. If a new block is checkpointed at some time t by an honest

node for the first time, it must have been in a chain held by an honest node at some time

t′ ≥ t− d. Here, d is the recency parameter of the protocol, and is of the order O(
√
κ∆).

• CP2: Gap in checkpoints. If a new block is checkpointed at some time t by an honest

node for the first time, then the next iteration of the checkpointing protocol (to decide the

next checkpoint) will begin at time t+e. Here, e is the inter-checkpoint interval and is chosen

such that e≫ d.

• CP3: Conditional liveness. If all honest nodes hold chains that are self-consistent (they

satisfy k-common prefix property), during an iteration of the checkpointing protocol, then

the checkpointing protocol finishes within O(∆) time. Thus, in a period where all honest

nodes hold chains that are self-consistent, checkpoints appear within e+ O(∆) time of each

other.

In Section 3.7, we prove that the checkpointing protocol we use (modified Algorand BA) satisfies

these properties. As such, any protocol that satisfies CP0 - CP3 can be used in our design.

3.5 Main Result

To state the main security result of our protocol, recall the notations set in Section 3.3. The

complete protocol is denoted by ΠCLC = (I,O,C1, C2) and its two user-dependent variations are

Πfin = (I,O,C1) and Πada = (I,O,C2). We also recall the notation M1,M2 for the partially

synchronous and synchronous network model, and U1, U2 for the sized and unsized participation
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models. Clearly, M1 is a more general setting than M2 and U2 is a more general setting than U1.

In Theorem 3.1, a result stated for a general setting also applies to the more restricted setting, but

not vice-versa. We first define the notion of safety and liveness that we use for our protocols.

Definition 3.1 (Safety). A blockchain protocol Π is safe if the set of blocks confirmed during

the execution is a non-decreasing set. Put differently, Π is safe if a block once confirmed by the

confirmation rule remains confirmed for all time thereafter.

Definition 3.2 (Liveness). A blockchain protocol Π is live if there exists constants c, c′ > 0 s.t.

the number of new honest blocks confirmed in any interval [r, s] is at least ⌊c(s− r)− c′⌋.

We now state our main theorem, concerning the safety and liveness of Πfin and Πada.

Theorem 3.1. Assume the fraction of adversarial mining power among total honest mining power

is bounded by β < 1/2. Further, assume the fraction of adversarial checkpointers is always less

than 1/3. Then, the protocol ΠCLC has the following security guarantees for an execution that runs

for a duration of Tmax = O(poly(κ)) time, where κ is the security parameter, :

• Security of Πfin: The protocol Πfin is safe, and is live after O(GST+ κ) time in the setting

(M1,U1), except with probability negligible in κ.

• Security of Πada: The protocol Πada is safe and live in the setting (M2,U2), except with

probability negligible in κ.

• Nested Protocols: At any time t, the set of blocks confirmed by Πada is a superset of the

set of blocks confirmed by Πfin in all settings.

We provide a proof sketch for Theorem 3.1 below. A detailed proof is relegated to Appendices

3.7 and 3.8.

Proof sketch

Our proof for Theorem 3.1 can be split into two parts. First, Section 3.7, we show that our

checkpointing protocol ΠBA satisfies the four checkpointing properties given in Section 3.4, namely

CP0, CP1, CP2, CP3. Then, in Section 3.8, we show that our complete protocol ΠCLC satisfies

the desired security properties if it uses any sub-protocol for checkpointing that satisfies the above

properties. We first highlight some aspects of Theorem 3.1 that are straightforward to deduce,

assuming that ΠBA does satisfy the aforementioned properties.

Firstly, the safety of Πfin under setting (M1,U1) can be deduced from two facts: 1) (CP0) safety

of ΠBA holds under setting (M1,U1), and 2) (P1) the checkpointed longest chain rule respects all

previous checkpoints (see Fig. 3.3). Specially, CP0 of ΠBA ensure that all checkpoints are uniquely

decided by all honest nodes and they lie on a single chain by P1, while the checkpointed longest
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Figure 3.3: Flowchart for proving the security property of Πfin under setting (M1,U1)

Figure 3.4: Flowchart for proving the security property of Πada under setting (M2,U2)

Figure 3.5: Flowchart for proving the nesting property of Πfin and Πada
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chain protocol instructs honest nodes to always adopt the longest chain with the last checkpoint

block. Therefore, an honest node will always keep every checkpoint block it has seen forever.

Secondly, the security of Πada under setting (M2,U2) are deduced by two facts: 1) security of

pure longest chain rule; 2) (P3) the checkpointing protocol respects the k-deep rule (see Fig. 3.4).

P3 ensures that every checkpoint must be at least k-deep in the chain of some honest node when

it is decided by ΠBA, while a block that is k-deep should remain in the longest chain of all honest

nodes forever with high probability under synchrony [6, 30, 7]. Therefore, every checkpoint will

already be present in all honest nodes’ chains when it appears. Thus, the chains held by the nodes

of the protocol are indistinguishable from the case where they are following the pure longest chain

protocol. Given that the confirmation rule is also the same for both protocols (k-deep rule), Πada

inherits the safety and liveness properties of the pure longest chain protocol.

Thirdly, the nesting property of the confirmed blocks also follow immediately by design, given

that any checkpointed block must have been already k-deep in a node’s chain (P3) and the check-

pointed longest chain is defined as the longest chain that contains the latest checkpoint (P2), (see

Fig. 3.5).

It remains to prove the liveness guarantee of Πfin under setting (M1,U1). In Section 3.7, we

evaluate the safety and liveness of our checkpointing protocol ΠBA – a modified version of Algo-

rand BA. We show that it satisfies the desired checkpointing properties listed in Section 3.1. A

distinguishing property of ΠBA is the recency condition (CP1). This property states that ΠBA

only outputs checkpoints that are recently contained in some honest node’s chain. Without this

property, the adversary could make all honest nodes waste a long time mining on a chain that will

never be checkpointed.

In Section 3.8, we prove an important result of Πada under partial synchronous model: the safety

and liveness property will hold after O(GST) time. This is essential to guarantee the liveness of

Πfin as a block can be only checkpointed when it lies in the k-common prefix of the checkpointed

longest chains of all honest nodes. Finally, combining all these results (see Fig. 3.3), we show that

Πfin is live after O(GST) time with high probability, thereby completing the proof of the main

theorem.

3.6 Algorand BA is a Checkpointing Protocol

We outline the full Algorand Byzantine Agreement (BA) protocol below for completeness. A minor

modification (marked in red), adding validation, is the only addition to the original protocol. Honest

checkpointers run a multi-iteration BA to commit checkpoints. The goal of the i-th iteration is to

achieve consensus on the i-th checkpoint. Each iteration is divided into multiple periods and view

changes will happen across periods.

All checkpointers start period 1 of iteration 1 at the same time (time 0). Checkpointer i starts

period 1 of iteration n after it receives 2t+ 1 cert-votes for some value v for the same period p of
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iteration n − 1 and waits for another fixed time e, and only if it has not yet started an iteration

n′ > n. Checkpointer i starts period p ≥ 2 of iteration n after it receives 2t+1 next-votes for some

value v for period p−1 of iteration n, and only if it has not yet started a period p′ > p for the same

iteration n, or some iteration n′ > n. For any iteration n, checkpointer i sets its starting value for

period p ≥ 2, stpi , to v (the value for which 2t + 1 next-votes were received and based on which

the new period was started). For p = 1, st1i =⊥. The moment checkpointer i starts period p of

iteration n, he finishes all previous periods and iterations and resets a local timer clocki to 0. At

the beginning of every period, every honest checkpointer i sets vi to be the checkpointed longest

chain in its view at that time.

Each period has a unique leader known to all checkpointers. The leader is assigned in an i.i.d.

fashion by the permitter oracle O. Each checkpointer i keeps a timer clocki which it resets to 0

every time it starts a new period. As long as i remains in the same period, clocki keeps counting.

Recall that we assume the checkpointers’ individual timers have the same speed. In each period,

an honest checkpointer executes the following instructions step by step.

Step 1: [Value Proposal by leader] The leader of the period does the following when clocki =

0; the rest do nothing. If (p = 1) OR ((p ≥ 2) AND (the leader has received 2t+ 1 next-votes for

⊥ for period p− 1 of iteration n)), then it proposes its value vi. Else if ((p ≥ 2) AND (the leader

has received 2t+1 next-votes for some value v ̸=⊥ for period p− 1 of iteration n)), then the leader

proposes v.

Step 2: [The Filtering Step] Checkpointer i does the following when clocki = 2∆. If(p = 1)

OR ((p ≥ 2) AND (i has received 2t + 1 next-votes for ⊥ for period p − 1 of iteration n)), then i

soft-votes the value v proposed by the leader of current period if (it hears of it) AND (the value

is VALID OR i has received 2t+ 1 next-votes for v for period p− 1). Else if ((p ≥ 2) AND (i has

received 2t+1 next-votes for some value v ̸=⊥ for period p− 1 of iteration n)), then i soft-votes v.

Step 3: [The Certifying Step] Checkpointer i does the following when clocki ∈ (2∆, 4∆). If

i sees 2t+ 1 soft-votes for some value v ̸=⊥, then i cert-votes v.

Step 4: [The Period’s First Finishing Step] Checkpointer i does the following when clocki =

4∆. If i has certified some value v for period p, he next-votes v. Else if ( (p ≥ 2) AND (i has seen

2t + 1 next-votes for ⊥ for period p − 1 of iteration n)), he next-votes ⊥. Else he next-votes his

starting value stpi .

Step 5: [The Period’s Second Finishing Step] Checkpointer i does the following when

clocki ∈ (4∆,∞) until he is able to finish period p. If i sees 2t+ 1 soft-votes for some value v ̸=⊥
for period p, then i next-votes v. If ((p ≥ 2) AND (i sees 2t+ 1 next-votes for ⊥ for period p− 1)

AND (i has not certified in period p)), then i next-votes ⊥.
Halting condition: Checkpointer i HALTS current iteration if he sees 2t+ 1 cert-votes for some

value v for the same period p, and sets v to be his output. Those cert-votes form a certificate for

v. The block that is exactly k-deep in v is chosen as the checkpoint in current iteration.

A proposed value v (with block B being exactly k-deep in it) from period p of iteration n is

VALID for checkpointer i (in the same period and iteration) if:
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• Value v is proposed by the leader of that period;

• Block B is a descendant of all previously checkpointed blocks with smaller iteration number;

• Block B is contained in the checkpointed longest chain that the checkpointer i holds when

entering period p.

The only modification to the protocol is in Step 2, in the first condition, where the notion of

validity is introduced. This is the only place where new proposals are considered. The validity

notion helps transform the Algorand BA protocol into the multi-iteration checkpointing protocol

that we desire. In Section 3.7, we show that this protocol indeed satisfies properties CP0-CP3,

as mentioned in Section 3.4.

3.7 Checkpointing Properties

In this section, we prove several important properties of our modified Algorand BA protocol. We

assume throughout that the number of adversarial checkpointers is strictly less than one-third

the total number of checkpointers; this is necessary to achieve any security results for a partially

synchronous consensus protocol such as Algorand BA.

• It is safe even under asynchronous network conditions(CP0, proved in Lemma 3.1). Moreover,

it remains deadlock free, in the sense that it can always proceed as long as messages will be

delivered eventually (Lemma 3.2).

• It is live after GST if the local checkpointed longest chains of all honest nodes satisfy common

prefix property (CP3, proved in Lemma 3.3).

• It only outputs recently inputted values after GST (CP1, proved in Lemma 3.4).

We first define some useful notations according to the BA protocol described in Section 3.6.

Definition 3.3 (Potential starting value for period p). A value v that has been next-voted by t+1

honest nodes for period p− 1.

Definition 3.4 (Committed value for period p). A value v that has been cert-voted by 2t+1 nodes

for period p.

Definition 3.5 (Potentially committed value for period p). A value v that has been cert-voted by

t+ 1 honest nodes for period p.

Although we slightly altered Algorand BA protocol (which is highlighted in red in Section 3.6),

we note that our modification does not break the safety of the protocol or cause any deadlock in

Lemma 3.1 and Lemma 3.2. At a high level, the validity check only causes less soft-votes from

honest nodes, which is indistinguishable with the case where the leader is malicious and no value
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receives at least 2t+ 1 soft-votes in some period. Therefore, the safety and deadlock-free property

remain.

Lemma 3.1 (Asynchronous Safety, CP0). Even when the network is partitioned, the protocol

ensures safety of the system so that no two honest nodes will finish one iteration of the protocol

with different outputs.

Proof. The following properties hold even during a network partition.

• By quorum intersection, as each honest node only soft-votes one value, then at most one

value is committed or potentially committed for each period p in one iteration.

• If a value v is potentially committed for period p, then only v can receive 2t + 1 next-votes

for period p. Thus, the unique potential starting value for period p+ 1 is v.

• If a period p has a unique potential starting value v ̸=⊥, then only v can be committed for

period p. Moreover, honest nodes will only next-vote v for period p, so the unique potential

starting value for period p+ 1 is also v. Inductively, any future periods p′ > p can only have

v as a potential starting value. Thus, once a value is potentially committed, it becomes the

unique value that can be committed or potentially committed for any future period, and no

two honest nodes will finish this iteration of the protocol with different outputs.

Lemma 3.2 (Asynchronous Deadlock-freedom). As long as messages will be delivered eventually,

an honest node can always leave period p, either by entering a higher period or meeting the halting

condition for the current iteration.

Proof. We first prove that there can never exist 2t + 1 next-votes for two different non-⊥ values

from the same period p by induction.

Start with p = 1. Note that every honest node sets st1i =⊥ and at most one value (say v) could

receive more than 2t + 1 soft-votes. Therefore only value v and ⊥ could potentially receive more

than 2t + 1 next-votes in period 1. Note that it is possible that both v and ⊥ receive more than

2t+ 1 next-votes: all the honest nodes could next-vote for ⊥ in Step 4 and then next-vote for v in

Step 5 after seeing the 2t+ 1 soft-votes for v.

Assume that the claim holds for period p − 1 (p ≥ 2): there exist at most two values each of

which has 2t+1 next-votes for period p−1, and one of them is necessarily ⊥. Then there are three

possible cases:

• Case 1: Only ⊥ has 2t+1 next-votes for period p−1. This is the same as the induction basis

p = 1.

• Case 2: Only v has 2t + 1 next-votes for period p − 1. Then in period p, every honest node

will have starting value stpi = v, so only v could receive soft-vote and next-vote.
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• Case 3: Both ⊥ and v have 2t + 1 next-votes for period p − 1. Suppose a new value v′ ̸= v

receives 2t + 1 next-votes for period p, then v′ must have 2t + 1 soft-votes for period p and

at least t+ 1 soft-votes are from honest nodes, which means that at least t+ 1 honest nodes

have received 2t + 1 next-votes for ⊥ for period p − 1 when they enter Step 2. Hence when

they enter Step 4, they will next-vote v′ or ⊥ instead of v. And they will not next-vote v

in Step 5 either. Then v can have at most t next-votes from honest nodes and at most 2t

next-votes from all nodes for period p.

Therefore, we proved the claim for period p. Then we prove the lemma. Note that a node will

stuck in period p if and only if no value receives at least 2t + 1 next-votes for period p. Then by

the previous claim we proved, there are only two possible cases:

• Case 1: ⊥ has 2t + 1 next-votes for period p − 1. If no value has at least 2t + 1 soft-votes

for period p, then every honest node will just next-vote ⊥ in Step 4 or Step 5 (since 2t + 1

next-votes on ⊥ for period p− 1 will eventually reach every honest node). Otherwise if some

value v has at least 2t+ 1 soft-votes for period p, then every honest node will next-vote v.

• Case 2: Only some value v has 2t + 1 next-votes for period p − 1. Then in period p, every

honest node will have starting value stpi = v, so only v could receive soft-vote and next-vote.

And every honest node will next-vote v in Step 4.

The original Algorand BA guarantees fast recovery from network partition: after GST, an agree-

ment is reached in O(∆) time. However, our protocol does not have such a strong liveness property

as honest nodes may disagree on what is the longest chain for some time right after GST. Here in

Lemma 3.3, we prove that our protocol is live and each iteration takes O(∆) time to finish once the

common prefix property of all honest nodes’ longest chains is recovered, which may take O(GST)

time as we will see in Section 3.8.

Lemma 3.3 (Conditional Liveness After GST, CP3). Suppose after time T , all honest nodes

always have the same values, i.e., their local checkpointed longest chains satisfy common prefix

property, then after max{GST, T}, each iteration of Algorand BA will finish within O(∆) time.

Moreover, all honest nodes finish the same iteration within time ∆ apart.

Proof. Let N be the largest iteration number such that some honest node has committed some

value v before GST. Then all honest nodes will receive the certificate for v within time ∆ after

GST and they will all enter iteration N +1 after some time. If such N does not exist, i.e., no value

has been committed by any honest node before GST, then we set N = 0.

Further, let p be the highest period that some honest node is working on in iteration N +1 right

before GST is. Then after time ∆, all honest nodes will also start period p as they receive 2t + 1

next-votes for period p− 1. Soon after, some value v (which may be ⊥) will receive at least 2t+ 1

for period p by Lemma 3.2, and all honest node will all start period p+ 1 within time ∆ apart.
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Once all honest nodes start the same period p within time ∆ apart, the network partition seems

to have never happened. Without partition, if all honest nodes have the same value, i.e., after

max{GST, T}, the following facts hold:

• By Lemma 3.2, there exist at most two values each of which has 2t+ 1 next-votes for every

period, and one of them is necessarily ⊥ if there exist exactly two.

• If a period p is reached and the leader is honest, then all honest nodes finish the current

iteration in period p by their own time 6∆, with the same output v ̸=⊥. Moreover, all honest

nodes finish within time ∆ apart. Indeed, if there exists a potentially committed value v for

period p− 1, then v will be the unique potential starting value for period p. In period p, the

honest leader proposes v in Step 1 and all honest nodes soft-vote v in Step 2. In Step 3, by

their own time 4∆, all honest nodes have cert-voted v. Thus all of them finish the current

iteration by their own time 6∆, with output v. Otherwise if there is no potentially committed

value in period p− 1, then the leader of period p may propose its private input v′ or a value

v ̸=⊥ for which it has seen 2t + 1 next-votes from period p − 1. In the first case, all honest

nodes will soft-vote v′ in Step 2 as they all see 2t+ 1 next-votes for ⊥ from period p− 1; in

the second case, all honest nodes will soft-vote v in Step 2 either by condition 1 or condition

2. In both cases, all honest nodes will cert-vote the same value in Step 3 by their own time

4∆ and finish the current iteration with that value by their own time 6∆.

• If a period p is reached and there is no committed value for period p (which only happens if

the leader is malicious), then all honest nodes move to period p + 1 by their own time 8∆,

and they move within time ∆ apart. Note that the honest nodes may start period p not at

the same time but within time ∆ apart. Indeed, if no honest node has cert-voted in Step 3,

then all honest nodes next-vote a common starting value v in Step 4 if no one has seen 2t+1

next-votes for ⊥ for period p− 1, or else all honest nodes next-vote ⊥ in Step 4 or Step 5. In

both cases, they all see these next-votes and move to period p+ 1 by their own time 8∆. If

at least one honest node has cert-voted a value v in Step 3, then v must have received 2t+ 1

soft-votes and no other value could have these many soft-votes by quorum intersection. Thus

only v could have received cert-votes. Since those honest nodes have helped rebroadcasting

the soft-votes for v by their own time 4∆, all honest nodes see 2t+1 soft-votes for v by their

own time 6∆. Thus all honest nodes next-vote v either in Step 4 or Step 5 by their own time

6∆, and all see 2t + 1 next-votes for the same value by their own time 8∆. Note that some

honest nodes may have next-voted for ⊥ in Step 4 as well, thus there may also exist 2t + 1

next-votes for ⊥.

• Combining the above facts together, since the leader in each period is honest with probability

> 2/3, one iteration takes in expectation at most 1.5 periods and at most 10∆ time. Moreover,

all honest nodes finish within time ∆ apart.
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The liveness property showed in Lemma 3.3 conditions on the assumption that all honest nodes

will have the same values after some time T . However, this assumption may not hold right after

GST as the adversary could have a bank of private blocks that can be used to break the common

prefix property. During this stage, Algorand BA may still output some values in favor of the

adversary (eg., the adversary sends its favorite chain to all honest nodes). But if the output value

is too old in the sense that no honest node has that checkpointed block in its local longest chain for

a long time, then all honest blocks mined during this time interval could be potentially wasted as

they are not extending the last checkpoint. However, we show that Algorand BA with our cautious

modification won’t let this happen in the following lemma.

Lemma 3.4 (Recency Condition After GST, CP1). After GST, if one honest node commits a

value v in one iteration at time t, then v must have been the input value held by at least one honest

node at time no earlier than t− 8D∆, where D ∼ Geo(p) with p > 2/3 being the fraction of honest

nodes.

Proof. For a fixed iteration, We define Vp to be the set of potential starting values for period p.

Then V1 = {⊥} and also by Lemma 3.2, we have 1 ≤ |Vp| ≤ 2, and ⊥∈ Vp if |Vp| = 2 for all p. Note

that Vp = {v,⊥} is an bad set as v may be an outdated value. Then we show that the state won’t

remain in {v,⊥} for the same v for a long time.

Suppose the leader of period p is honest and no honest node has value v for period p, then we

have the following two cases.

• Case 1: if the leader of period p has received 2t+ 1 next-votes for ⊥ for period p− 1 at the

beginning of Step 1, then it will propose v′ ̸= v. Further no honest node will soft-vote or

next-vote v. Therefore, the state of period p+ 1 will be {⊥}, {v′}, or {v′,⊥}.

• Case 2: if the leader of period p has received 2t+ 1 next-votes only for v for period p− 1 at

the beginning of Step 1, then it will propose v. Further every honest node will soft-vote v in

Step 2 either by condition 1 or condition 2. Therefore, v will be committed in period p.

Therefore, after GST, the state won’t remain in {v,⊥} for the same v from period p to period

p+ 1, if the leader of period p is honest and no honest node has value v for period p. By Lemma

3.3, we know that after GST each period (even with a malicious leader) will finish in 8∆ time.

Combining these facts together, we can conclude the lemma.

We say the i-th checkpoints committed at some time t by an honest node after GST is Di-recent

if it has been held at depth exactly k in the chain of an honest node at some time t′ ≥ t−Di. Then

by Lemma 3.4, we have Di is stochastically dominated by 8D∆, where D ∼ Geo(p) with p > 2/3.

Let us define event E to be the event that all checkpoints committed after GST and before Tmax

are d-recent, where d is called the recency parameter of the protocol. Then we have the following

corollary directly from Lemma 3.4.
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Corollary 3.1. There exists d = O(
√
κ∆) such that P(E) ≥ 1 − e−Ω(

√
κ), where κ is the security

parameter.

Proof. Recall that there can be at most Tmax/e checkpoints by CP2. By the union bound, we have

P(Ec) ≤
∑
i

P(Di > d) ≤ Tmax

e
P(Geo(p) >

d

8∆
) =

Tmax

e
(1− p)

d
8∆ = e−Ω(

√
κ).

Thus we conclude that the modified Algorand BA, given in Section 3.6, provides the desired

checkpointing properties CP0-CP3.

3.8 Checkpointed Longest Chain Properties

3.8.1 Comparison With Longest Chain Protocol

The security properties of the longest chain protocol have been intensely studied in recent years.

The strong security properties have been demonstrated in increasing sophistication (both network

models as well as tightness of security threshold): the pioneering work on the round by round

network model [4] has been extended to discrete and finely partitioned network model [6] and to

a continuous time network model [30]. The tightness of the security threshold has been improved

to the best possible in [7]. Despite this wealth of technical background, the checkpointed longest

chain protocol has seemingly subtle differences with the vanilla longest chain protocol, but impact

the analysis significantly. We discuss two of these issues next.

Synchrony versus Partial Synchrony

The security analyses of the longest chain protocol require that synchronous network conditions

hold from the beginning of the protocol [4, 6, 7]. In the partially synchronous model, where

messages may be arbitrarily delayed until some unknown time GST, the protocol’s security breaks

down. More precisely, even after (a bounded time beyond) GST, safety and liveness may fail. We

describe a possible attack scenario in Figure 3.6. The aforementioned works do not provide any

security guarantees in the partially synchronous model. However, the method of analysis suggests

that it is possible to provide some security guarantees after O(GST) time. This should hold for

any adversarial power β in which the protocol is secure in the synchronous regime. Consider the

feasibility of a private attack, in which the adversary must mine a longer chain than that mined

by the honest nodes. The adversary has some initial advantage immediately after GST by means

of some private blocks (see Figure 3.6), but it will eventually lose out to the honest chain as the

latter’s growth rate is strictly larger. The work of Dembo et al. [7] shows that the private attack
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adversary’s private chain

longest honest chain

at GST at GST + C1
at C2*GST

at GST at GST + C1 at C2*GST

forked honest chains prior to GST

Figure 3.6: An illustration of the private attack by an adversary in a partially synchronous
system. The private chain is longer than the longest honest chain for a short while after GST, but
not indefinitely after.

is the worst-case attack. To the best of our knowledge, only Neu et al. [27] analyze a longest chain

protocol (in particular, the sleepy consensus protocol [23]) in the partially synchronous setting,

and they show desirable properties hold after O(GST) time, with the constant being approximately

1/(1− 2β).

Non-Monotonic Chain Growth

The checkpointed longest chain protocol can behave very differently compared to the classical

longest chain protocol when checkpoints appear. In the classical version, the chain length of each

honest node grows monotonically. In contrast, in our protocol, the chain held by an honest node

may reduce in length once it hears of a new checkpoint. This could happen if its current chain does

not contain the new checkpoint. This has important ramifications for security. A key property used

in analyzing the classical protocol is that (after GST), two honest blocks that appear more than

∆ time apart must be at different heights [30]. This property needn’t hold for the checkpointed

longest chain protocol; in fact, it can be violated if the adversary chooses to do so. In effect, this

causes a bleeding (or wastage) of honest mining power. An instance of this is illustrated in Figure

3.7. The analysis by Neu et al. [27] uses many properties of longest chain protocols ‘off the shelf’

from the work of Pass and Shi [23]. However, for reasons highlighted above, we must establish

new properties that hold deterministically for our protocol, irrespective of the adversary’s actions.

These properties are weaker analogs of those satisfied by the longest chain protocol. This is to

be expected, since the checkpointed longest chain protocol may behave just as the longest chain

protocol irrespective of GST, if the adversary so wishes.
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Figure 3.7: An illustration of a reduction in chain length due to the appearance of a checkpoint.
Consequently, two honest blocks may be at the same height, even if they are mined more than ∆
time apart.

3.8.2 Definitions

We first define the notion of common prefix and chain quality, which are now standard in the

literature [4].

Definition 3.6 (k-Common Prefix). For a chain C, let C⌊k denote the new chai nobtained by

dropping the last k blocks from C. We say that the k-common prefix property holds if for any two

chains C1, C2 held by honest nodes at times t1 ≤ t2 respectively, it holds that C1⌊k ⪯ C2.

Definition 3.7 ((k, s)-Chain Quality). We say that the (k, s)-chain quality property holds if for

all honestly held chains C, every portion of C with k consecutive blocks mined after time s contains

at least one honest block.

Our definition of k-common prefix is identical to the one given by Garay et al. [4]. Our definition

of (k, s)-Chain Quality with s = 0 is identical to their definition of chain quality with parameter

µ = 1/k. We introduce the extra parameter s to emphasize that the chain quality property holds

only for the portion of the chain consisting of blocks mined after time s = O(GST). In the partially

synchronous model, we cannot hope to do better. Garay et al. [4], show that common prefix is

identical to safety (also called persistence) and chain quality is identical to liveness for the k-deep

confirmation rule. Thus, to prove security of Πada after O(GST), it suffices to show that k-common

prefix and (k, s)-chain quality hold after time O(GST), for s = O(GST).
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3.8.3 Proof Sketch

In this section, we analyze the security of the protocol by discretizing time into slots. Note that

this is purely a proof strategy; we do not change any assumptions about the behavior of the nodes,

nor of the message timings. Our proof is structured similar to that of Garay et al. [4]. It has three

major parts that we describe below.

• First, we define the notion of a typical execution (Definition 3.8). A typical execution is one

in which the number of mined honest and adversarial blocks over a sufficiently large period

do not deviate from their mean by a large fraction. We introduce the notion of a convergence

opportunity here [6]. We show that a typical execution occurs with high probability (Corollary

3.2).

• Next, we show necessary conditions for common-prefix violation and chain quality violation in

terms of the mining process. These conditions are analogous to the condition in the classical

longest chain protocol, which are roughly as follows: the number of adversarial blocks over

an interval is more than the number of honest blocks over the same interval.

• Third, we show that these necessary conditions won’t happen after O(GST + κ) time in a

typical execution (Lemma 3.10). Hence, with high probability, the common prefix property

and the chain quality property of the checkpointed longest chain will hold after O(GST+ κ)

time (Corollary 3.3).

The first part is similar to existing works. Our main novelty lies is the second and third parts.

As hinted above, we can at best hope to obtain weaker necessary conditions for common prefix

violation and chain quality violation than those for the classical protocol. At the same time, a

condition that is too weak may not be rare in a typical execution. We show that the necessary

conditions are very similar for both k-common prefix violation and (k, s)-chain quality violation.

Moreover, we show that these conditions are impossible in a typical execution after O(GST + κ)

time. Our analysis relies heavily on the properties of the checkpointing protocol proved in Section

3.7. For clarity, we further split this part of the proof into four steps.

• We reduce all common-prefix violation instances to a special case where two diverging chains

are held by honest nodes at the same slot.

• We establish a lower bound on the lengths of honestly held chains in terms of convergence

opportunities in an interval, with some slack to account for the possibility of bleeding.

• We establish the desired necessary condition for k-common prefix violation by analyzing the

common portion and the forked portion of the two diverging honestly held chains.

• We establish the desired necessary condition for (k, s)-chain quality violation by comparing

the chain growth for honest chains in an interval with the number of adversarial blocks in

the same interval.
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In this section, whenever we refer to a block B being k-deep in a chain C, we mean there are k or

more blocks that are descendants of B in C.

3.8.4 Typical Execution

From Section 3.4, we know that the block mining process is a Poisson process with rate λ. This

can be further split into an adversarial block mining process of rate βλ and an independent honest

block mining process of rate (1− β)λ, with β < 1/2. Therefore the number of honest/adversarial

blocks mined in any interval is a Poisson random variable. By the Chernoff bound, we know that

a Poisson random variable is tightly concentrated around its mean. However, we would like to

obtain such a result for all intervals of length bigger than O(κ). Hence, for the sake of applying

the union bound, we discretize time into slots: the ith slot is the time interval ((i− 1)∆, i∆]. The

total number of slots in the entire execution of the system is tmax = ⌈Tmax/∆⌉ = O(poly(κ)). We

abuse notation to let GST denote the first slot that begins after the global synchronization time.

All our analysis henceforth will be in the form of slots, but the protocol remains a continuous time

one as described in Section 3.4.

We define the following random variables for slot i.

• Yi = 1 if there is exactly one block that is mined by honest nodes in slot i and there is no

block that is mined by honest nodes in slot i−1 and i+1, otherwise 0. We follow the notation

in [6] to call such slots as a convergence opportunity (such a block is also called loner in [30]).

• Zi is the number of adversarial blocks plus the number of honest blocks that are not a

convergence opportunity, in slot i.

Let

ȳ ≜ E[Yi] = (1− β)λ∆ e−3(1−β)λ∆.

Further, E[Yi + Zi] = λ∆, and hence

z̄ ≜ E[Zi] = λ∆− ȳ.

For any t1 ≤ t2, we define Y [t1, t2] =
∑t2

i=t1+1 Yi and Z[t1, t2] =
∑t2

i=t1+1 Zi. With some abuse

of notation, we let Y [S] denote
∑

i∈S Yi for any set of slots S ⊂ N. As we are now in discrete time,

the notation [t1, t2] denotes the set of slots {t1, . . . , t2}. We have that

EY [t1, t2] = ȳ(t2 − t1), EZ[t1, t2] = z̄(t2 − t1).

We note that for any β < 1/2 and any ∆, there exists ε > 0 and λ > 0 s.t.

ȳ(1− 3ε) > z̄.
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In particular, this implies ȳ > z̄, and (1−ε)ȳ > z̄+εȳ. We shall operate under this regime. We also

assume that λ∆ < 1. This condition implies ȳ = Ω(λ∆), where the constants hidden by Ω(λ∆) do

not depend on β, λ,∆.

With these notations in place, we can now define the notion of a typical execution.

Definition 3.8 (Typical execution). An execution is (ε, τ)-typical for a β-corrupt system, for

ε ∈ (0, 1) and τ ∈ N, if the following events hold for any t1, t2 s.t. t2 − t1 ≥ τ :

|Y [t1, t2]− EY [t1, t2]| ≤ εEY [t1, t2];

|Z[t1, t2]− EZ[t1, t2]| ≤ εEY [t1, t2];

|Y [t1, t2] + Z[t1, t2]− (EY [t1, t2] + EZ[t1, t2])| ≤ ε(EY [t1, t2] + EZ[t1, t2]).

Proposition 3.1. For any t1 ≤ t2, the following events hold with probability at least 1 −e−Ω(ε2λ∆|t2−t1|):

|Y [t1, t2]− EY [t1, t2]| ≤ εEY [t1, t2];

|Z[t1, t2]− EZ[t1, t2]| ≤ εEY [t1, t2];

|(Y [t1, t2] + Z[t1, t2])− (EY [t1, t2] + EZ[t1, t2])| ≤ ε(EY [t1, t2] + EZ[t1, t2]).

Proof. The Chernoff bound for a binomial or a Poisson random variable X gives us

P(|X − EX| ≥ δEX) ≤ 2e−δ2EX/3

We first prove the concentration bound on Y [t1, t2]. We cannot directly apply standard concen-

tration inequalities on Y [t1, t2] since Yi’s are not independent random variables. However, for any

i, Yi and Yi+3 are independent. Each Yi is Bernoulli(ȳ). Hence, Y [t1, t2] can be written as the sum

of three binomial random variables.

Y [t1, t2] =
∑
i

Yt1+3i +
∑
i

Yt1+3i+1 +
∑
i

Yt1+3i+2.

Using the Chernoff bound and the union bound, we get that each of these three binomial random

variables are within a factor of ε/3 from their mean, except with probability with probability

e−Ω(ε2λ∆(t2−t1)). When this happens, the desired bound on Y [t1, t2] follows.

Next, we note that Y [t1, t2] + Z[t1, t2] is a Poisson random variable. Using the Chernoff bound

for Poisson random variables, and the fact that E(Y [t1, t2]+Z[t1, t2]) = λ∆(t2− t1), we obtain that

Y [t1, t2] + Z[t1, t2] is within a factor of ε from its mean except with probability e−Ω(ε2λ∆(t2−t1)).

It remains to bound Z[t1, t2]. For this, we need a slightly tighter bound on Y [t1, t2] and Y [t1, t2]+

Z[t1, t2] than the one in the statement of the proposition; we replace ε by ε/3. Both these bounds

also hold except with probability e−Ω(ε2λ∆(t2−t1)). From these bounds, and the relation ȳ > z̄, we

can the desired bound on Z[t1, t2].

There are at most t2max choices of t1, t2. The following corollary follows from Proposition 3.1 and
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the union bound.

Corollary 3.2. The protocol executes with (ε, τ)-typical execution with probability at least 1 −
e−Ω(ε2κ).

Proof. From Proposition 3.1 and the union bound, we get that the probability of a typical execution

is at least 1 − t2maxe
−Ω(ε2λ∆τ). We can choose τ large enough such that λ∆τ = Θ(κ). We know

that tmax = poly(κ). From this, the stated result follows.

3.8.5 Necessary Conditions for Common Prefix/Chain Quality Violation

We begin by noting some basic properties of the checkpointing protocol and also introduce some new

notation that is useful for this subsection. Our first result is a chain growth lemma (Lemma 3.6).

The chain growth lemma highlights the extent of bleeding that can take place in the checkpointing

protocol. Next, we focus on the common prefix property. We show that without loss of generality,

we can assume that common-prefix violation occurs between two chains at the same slot (Lemma

3.7). Following this, we show that in the forked portion, the number of adversarial blocks over

the forked portion must be at least half the total number of blocks. This gives us the desired

necessary condition comparing the number of convergence opportunities and adversarial blocks

over a sufficiently large period (Lemma 3.8). Finally, we analyze the chain quality property in

Lemma 3.9.

Basic properties of checkpoints

Let us recall some properties of the checkpointing algorithm, re-stated in terms of slots instead of

discrete time.

1. We say that a checkpoint appears in slot t if the first time an honest node marks the checkpoint

is in slot t. If a checkpoint appears at slot t, all honest nodes mark the checkpoint by the

beginning of slot t+ 2.

2. Let d′ ≜ ⌈d/∆⌉. Any checkpoint that appears at slot t > GST + d′ was at least k-deep in a

chain held by an honest node in some slot t′ ∈ {t− d′, . . . t}.

3. Let e′ = ⌊e/∆⌋. If two consecutive checkpoints appear at slots t, t′, then t′ ≥ t+ e′.

Let GST + d′ < t∗1 ≤ t∗2 ≤ . . . be the sequence of slots at which checkpoints appear after

slot GST + d′. Let the corresponding checkpoint blocks be B∗
1 , B

∗
2 , . . .. Let t∗0 ≜ GST. Define

Sl ≜ {t∗l + 2, . . . , t∗l+1 − d′ − 2} for all l ≥ 0 and let S ≜ ∪l≥0Sl. We refer to each Sl as an

inter-checkpoint interval.
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Chain growth results

Lemma 3.5 (Chain Length Lower Bound). Let t1, t2 be two slots such that t1 ∈ S and and

t2 ≥ t1 + 2. Let C be a chain held by some honest node in slot t1. Then all honest nodes will hold

a chain of length at least |C| in slot t2.

Proof. Let h be an honest node that holds chain C in slot t1, and let h′ be an arbitrary honest

node (possibly h) that holds a chain C′ in slot t2. Since t1 ∈ S, we know that t ∈ Sl for some l.

Therefore B∗
l is the last checkpoint that is marked in C. Clearly, all honest nodes will hear of C

by the beginning of slot t2, and would also have marked B∗
l as a checkpoint. We aim to show that

|C′| ≥ |C|. There are now two cases to consider.

• Node h′ has not marked any new checkpoint at the time it holds C′. In this case, it will

hold a chain at least as long as C, as it is a chain that it has heard of that contains all the

checkpoints that it has marked.

• Node h′ has marked at least one new checkpoint at the time it holds C′. In particular, it has

marked B∗
l+1. Note that B

∗
l+1 must be exactly k-deep in some honestly held chain C∗ at some

slot in the interval [t∗l+1−d′, t∗l+1] in which B∗
l+1 was not marked as a checkpoint. By the first

case, C∗ must be at least as long as C, since t1 ≤ t∗l+1− d′− 2. Further, all honest nodes must

hold a chain at least as long as C∗ at the time of marking B∗
l+1. Arguing inductively, we see

that all honest nodes that have marked at least one new checkpoint compared to C also hold

a chain at least as long as C.

Lemma 3.6 (Chain Growth). Consider a chain C held by an honest node in a slot t ≥ GST + 1.

Suppose C contains an honest block B mined in slot s at height ℓ. Then |C| ≥ ℓ+Y [S∩ [s+2, t−2]].

Proof. From Lemma 3.5, we can deduce three useful facts. Firstly, the first converge opportunity

block in S ∩ [s+2, t− 2] will be built at a height ≥ ℓ+1, since all honest nodes by that slot would

have adopted a chain at least as long as ℓ. Secondly, we see that all convergence opportunities in

S are mined at distinct heights. This is because all convergence opportunities are spaced at least 2

slots apart. Thirdly, all honest nodes will adopt a chain that is at least as long as the chain mined

by the last converge opportunity in S ∩ [s + 2, t − 2]. Together, these two statements prove the

desired statement when s ∈ S.

To prove the same result when s ̸∈ S, we consider the following two cases:

• Suppose s /∈ S, and s ≥ GST. This implies s ∈ {t∗l − d′− 1, . . . t∗l +1} for some l ≥ 1. then in

slot t∗l + 2 all honest nodes will see both block B and checkpoint Bl. Moreover, block B and

checkpoint Bl are on the same chain C∗, hence all honest nodes should hold a chain of length

at least ℓ in slot t∗l + 2, simply because C∗ contains B. The rest of the proof is identical to

the case s ∈ S.
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• Suppose s /∈ S and s < GST. Let B be the set of checkpoints with appearance time <= GST,

i.e, for a block B∗ ∈ B, at least one honest node marks B∗ before GST. Then in slot GST+1,

all honest nodes will see a chain C∗ that contains block B and all checkpoints in B. Hence

all honest nodes should hold a chain of length at least ℓ in slot GST + 1, simply because C∗

contains B. The rest of the proof is identical to the case s ∈ S.

Analysis of Common Prefix Property

Let us first note a simple fact about the checkpointed longest chain rule. In what follows, we say a

chain C was held by an honest node in slot t if it was held by the node at any time in the interval

((t− 1)∆, t∆].

Proposition 3.2. If a block B is k-deep in a chain C held by an honest node h in slot t, then it

either remains k-deep in C′ or is not present in C′, where C′ is an chain held by h in slot t′.

The above statement is trivially true for the longest chain rule, since the chain length held by an

honest node is monotonically increasing. It is not so immediate for the checkpointed longest chain

rule, since the length of the chain held by a particular honest node may reduce upon adopting a new

checkpoint block. A crucial point in the proof of this statement is the property that a checkpoint is

always k-deep in all honest nodes’ chains. The statement is illustrated in Figure 3.8, and is proven

below.

Proof. As remarked above, the property holds trivially as long as the honest node h adopts suc-

cessive chains of increasing length. Consider the case when at some slot t′ ≥ t, h adopts a new

checkpoint block and truncates its chain in the process. Suppose block B is present in both C and

C′. Then it must be an ancestor of the new checkpoint block. Since the new checkpoint block is at

least k-deep in the new chain, so is block B.

Lemma 3.7 (Common Prefix Reduction). Suppose the common prefix property is violated after

slot t0, i.e., there exist slots t1 and t2: t0 ≤ t1 ≤ t2, honest nodes h1, h2 (possibly the same), and

chains C1, C2, s.t. C1 is held by h1 at slot t1, C2 is held by h2 at slot t2, but C1⌊k ⪯̸ C2. Then the

following event happens at some slot t ∈ [t1, t2]: there exists chain C and C′ such that C′⌊k ⪯̸ C
while both C′ and C are held by honest nodes in slot t.

We refer to this events as common prefix violation at slot t, and the pair of chains C′ and C as a

certificate of the violation. Lemma 3.7, stated for the checkpointed longest chain rule, is also true

for the longest chain rule. The proofs are identical as well, given that the statement of Lemma 3.2

holds for both protocols. We provide the proof for completeness.
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Figure 3.8: Illustration of Lemma 3.2. Both B1, B2 are k-deep in C. B1 gets ousted in C′, while
B2 remains k-deep.

Proof. Let t ≥ t1 be the earliest slot at which there exists some chain C held by an honest node h

(possibly h1) s.t. C1⌊k ⪯̸ C. Let B be the block that is exactly k-deep in C1; clearly, it is not present
in C. We now claim that there must be a chain C′ held by node h1 at some time in slot t that

contains B. Note that C and C′ satisfy the relation C′⌊k ⪯̸ C, thus proving the desired statement.

It remains to show the claim.

Suppose h1 never holds a chain containing B in slot t. Then it must have adopted a chain that

does not contain B in an earlier slot. However, we have defined t to be the earliest slot such that

some chain held by an honest node does not contains B. Thus, we have shown the claim to be

true. A technical point to note is that if an honest node adopts a new chain Cnew at time s in slot

t, it must have held the older chain Cold at some time (s− ϵ) in slot t itself.

blocks≥ 𝑘

𝐵

𝐶

𝐶′
𝐶"

𝐶)

Figure 3.9: Illustration of Lemma 3.7. Block B is k-deep in C1. It remains so in C′. However, it is
absent from C. In this case, C′ and C form a certificate of k-common prefix violation.

Lemma 3.8 (Necessary condition for common prefix violation). Suppose k-common prefix violation

occurs at slot t. Then there exist t∗ < t such that Z[t∗, t] + Y [t∗, t] ≥ k and Z[t∗, t] ≥ Y [S ∩ [t∗ +

2, t− 2]]− 1.
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Proof. The first condition Z[t∗, t] + Y [t∗, t] ≥ k is trivial, as a certificate of k-common prefix

violation contains at least k blocks. Then we focus on the derivation of the second condition. From

Lemma 3.7, we know that there exists two honestly held chains C, C′ such that C′⌊k ⪯̸ C. Let ℓ be

the height of the shorter of the two chains. Consider the last block on the common prefix of C, C′

that is a convergence opportunity. Denote it by B, let its height be ℓ and let t be the slot at which

it was created. If there is no convergence opportunity in the common prefix, let B be the genesis

block and t = 0. From Lemma 3.6, we know that ℓ ≥ ℓ∗ + Y [S ∩ [t∗ + 2, t − 2]], which implies

ℓ− ℓ∗ ≥ Y [S ∩ [t∗ + 2, t− 2]]. We now show that Z[t∗, t] ≥ ℓ− ℓ∗ − 1.

Firstly, we note that any adversarial blocks in C, C′ that are descendants of B must be mined in

the interval [t∗, t]. Let B̃ denote the last block on the common prefix of C, C′, let its height be ℓ̃.

The portion of the common prefix from block B (excluded) to B̃ (included) is composed entirely

of adversarial blocks. This accounts for ℓ̃− ℓ adversarial blocks.

We now consider two possibilities regarding the number of checkpoints on the chains C, C′. In the

first case, both chains have the same number of checkpoints marked. In this case, all checkpoints

must be on the common prefix of C, C′. In the second case, one of the chains has one extra

checkpoint. This checkpoint must have appeared in slot t or slot t − 1, for otherwise, it would be

adopted by the other chain too. In both cases, let B̂ denote the last common checkpoint of the

two chains. We now analyze the forked portion of the chains in both cases.

For the first case, we show that all convergence opportunity blocks that are descendants of B̂

must be at distinct heights. Note that every chain ending at each such convergence opportunity

blocks contain all checkpoints that appear until slot t. Thus, at the time when any honest node

would have received such a chain (say C̃), it would adopt C̃ or a chain of at least |C̃|. This is because
C̃ would contain all the checkpoints that this node would have marked until then. Since the miner

of every convergence opportunity hears of broadcasts from all previous convergence opportunities

before mining, the claimed result follows. For the second case, a slightly modified statement holds:

all convergence opportunities that are descendants of B̂ mined in slots ≤ t− 2 must be at distinct

heights. This can be proven by arguing in the same manner as above. Since the latter is a weaker

claim than the former, we use the latter claim in the general case.

Note that all blocks in the forked portion are descendants of B̃, and are therefore descendants

of B̂. Therefore, all convergence opportunity blocks in the forked portion mined in slots ≤ t − 2

must be at distinct heights. Since they can be on at most one of the chains, they must be paired

with either an adversarial block or a convergence opportunity from slot t− 1 or t. There can be at

most one convergence opportunity from slots {t − 1, t}. From this, we conclude that the number

of adversarial blocks in the forked portion is at least ℓ− ℓ̃− 1.

In summary, we can say that the number of distinct adversarial blocks in chains C, C′ combined

that are descendants of block B∗ is at least ℓ − ℓ̃ − 1 + ℓ̃ − ℓ = ℓ − ℓ − 1. All these blocks are

mined in slots in the range [t∗, t]. Thus, Z[t∗, t] ≥ ℓ − ℓ∗ − 1. Combined with the inequality

ℓ− ℓ∗ ≥ Y [S ∩ [t∗ + 2, t− 2]], we get the inequality: Z[t∗, t] ≥ Y [S ∩ [t∗ + 2, t− 2]]− 1.
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Analysis of Chain Quality Property

With some abuse of notation, we use the term (k, s)-chain quality to refer to a slot s instead of

some time s.

Proposition 3.3 (Chain Quality Reduction). Suppose at some slot t, (k, s)-chain quality is vio-

lated, i.e., there exists an honestly held chain C in slot t that contains k-consecutive blocks mined

after slot s and there is no honest block amongst them. Then at some slot t′ ∈ (s, t], there exists a

chain C′ held by an honest node such that the last k blocks of C′ are all adversarial blocks.

Proof. Suppose, at some slot t, (k, s)-chain quality is violated. Clearly, t > s, else it is not possible

for C to contain blocks mined at slots > s. There are two cases to consider. First, we consider the

case where there are no more honest blocks in C after the string of k consecutive adversarial blocks.

Then the claim trivially follows with t′ = t, C′ = C. Next, consider the case where there exists an

honest block in C after the string of k consecutive adversarial blocks. Let the block be B and let

its mining time be t′. Since these k blocks are all mined after slot t0, so is B (i.e., t′ > s). Then

the portion of C up to B (but not including it) was held by the honest miner of block B. Call this

sub-chain C′. From the condition on C, it is immediate that the last k blocks of C′ are adversarial.

Thus, we have our claim.

If there exists an honestly held chain C at slot t such that the last k blocks of C are all adversarial
blocks mined after slot s, we say that (k, s)-chain quality violation occurs at slot t. From Proposition

3.3, we assume without loss of generality that all violations of (k, s)-chain quality are such that

(k, s)-chain quality violation occurs at slot t, for some t > s.

Lemma 3.9 (Necessary Condition for Chain Quality Violation). Suppose, for any slot t ≥ GST+1,

(k, s)-chain quality is violated at slot t. Then there ∃ t∗ < t s.t. Z[t∗, t] ≥ k and Z[t∗, t] ≥
Y [S ∩ [t∗ + 2, t− 2]].

Proof. Let C be the honestly held chain at slot t for which chain quality is violated. Let t∗ be the

time of mining of the last honest block in C. Let this block be called B and let its height be ℓ. By

Lemma 3.6, we have |C| ≥ ℓ+ Y [S ∩ [t∗ + 2, t− 2]]. We know that the portion of C from height ℓ

onward is composed only of adversarial blocks. These must be mined at or after slot t∗. Therefore,

|C|−ℓ ≤ Z[t∗, t]. This implies Z[t∗, t] ≥ Y [S∩ [t∗+2, t−2]]. Furthermore, we know that Z[t∗, t] ≥ k

by the condition that the last k blocks do not contain any convergence opportunity.

3.8.6 Probabilistic guarantee

We begin with a proposition that transforms the necessary conditions from Lemmas 3.8 and 3.9 to

a more convenient form for analysis.

Proposition 3.4. Suppose k-common prefix violation or (k, s)-chain quality violation occurs at

slot t. Then there exist t∗ < t such that Z[t∗, t]+Y [t∗, t] ≥ k and Z[t∗, t] ≥ Y [max(GST, t∗)+2, t−
2]− (1 + (t− t∗)/e′)(d′ + 3)− 1.
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Proof. By comparing the necessary conditions in Lemma 3.8 and Lemma 3.9, it suffices to show that

Z[t∗, t] ≥ Y [S∩[t∗+2, t−2]]−1 implies Z[t∗, t] ≥ Y [max(GST, t∗)+2, t−2]−(1+(t−t∗)/e′)(d′+3)−1.
Indeed, Z[t∗, t] ≥ Y [S ∩ [t∗ + 2, t− 2]]− 1 implies

Z[t∗, t] ≥ Y [max(GST, t∗) + 2, t− 2]− n(d′ + 3)− 1,

where n is the number of checkpoints that appear in the interval [t∗, t]. We now show a upper

bound on n: n ≤ (t − t∗)/e′ + 1. Indeed, a block mined in slot t∗ cannot be checkpointed at

a slot earlier than t∗. Of course, at slot t, we only see checkpoints that appear until slot t.

No more than ⌈(t − t∗)/e′⌉ ≤ (t − t∗)/e′ + 1 checkpoints can appear over such an interval, as

consecutive checkpoints are separated at least e′ slots apart. Thus, n ≤ (t− t∗)/e′ + 1. Therefore,

Z[t∗, t] ≥ Y [max(GST, t∗) + 2, t− 2]− (1 + (t− t∗)/e′)(d′ + 3)− 1.

We conclude the proof in this section by showing that the in a typical execution, the condition

of Proposition 3.4 does not occur after slot t > C · GST for some appropriate C > 0. Therefore

k-common prefix property and (k, s)-chain quality property hold after slot t > C · GST.

Lemma 3.10. For τ large enough, under (ε, τ)-typical execution, there exist a constant C > 0

such that k-common prefix property and (k, s)-chain quality property holds after slot t > s, where

k = 2λ∆τ and s = C · GST.

Proof. Suppose k-common prefix property or (k, s)-chain quality property is violated at slot t >

C · GST, then by Lemma 3.8 we have that there exists r < t such that

Z[r, t] + Y [r, t] ≥ k, (3.1)

and

Z[r, t] ≥ Y [r̄ + 2, t− 2]− (1 + (t− r)/e′)(d′ + 3)− 1, (3.2)

where r̄ ≜ max(r,GST). We only need to show that this event won’t happen under typical execu-

tion. If t− r < k
2λ∆ = τ , then under typical execution we have

Y [r, t] + Z[r, t] ≤ Y [r, r + τ ] + Z[r, r + τ ] ≤ (1 + ε)λ∆τ < 2λ∆τ = k,

which contradicts Eqn. (3.1). Hence we have t− r ≥ k
2λ∆ = τ .

Further we can rewrite Eqn. (3.2) as

Z[r, t] ≥ Y [r̄ + 2, t− 2]− (t− r)d1/e
′ − d2, (3.3)

where d1 = d′ + 3 and d2 = d′ + 4. Eqn. (3.3) describes a random walk with drift. Note that the

extra terms on the right side of Eqn. (3.3) are small by the fact that d2 = O(
√
κ) = O(

√
τ) and e′

can be chosen arbitrarily large.
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As we have seen t− r ≥ τ , then under typical execution we have

Z[r, t] ≤ (t− r)z̄ + ε(t− r)ȳ < (1− 3ε)(t− r)ȳ + ε(t− r)ȳ = (1− 2ε)(t− r)ȳ.

Case 1: r > GST, i.e., r̄ = r. Then we have

Y [r + 2, t− 2] ≥ (1− ε)(t− r − 4)ȳ.

Therefore, we can always choose e′ to be large enough such that (1−2ε+d1/e
′)(t− r)ȳ+d2 < (1−

ε)(t−r−4)ȳ, given that τ , as well as t−r, is large. Therefore, Z[r, t] < Y [r̄+2, t−2]−(t−r)d1/e′−d2,
which contradicts Eqn. (3.3).

Case 2: r ≤ GST, i.e., r̄ = GST. Then we have

Y [r̄ + 2, t− 2] ≥ (1− ε)(t−GST− 4)ȳ > (1− ε)(
C − 1

C
t− 4)ȳ.

Again we can always let e′ and C to be large enough such that (1 − 2ε + d1/e
′)sȳ + d2 < (1 −

ε)(C−1
C t−4)ȳ, given that τ , as well as t, is large. Then we have Y [r̄+2, t−2] > Z[0, t]+d1t/e

′+d2 ≥
Z[r, t] + d1(t− r)/e′ + d2, which contradicts Eqn. (3.3).

Then we have the following corollary, which states that the common prefix property and the

chain quality property of the checkpointed longest chain will hold after O(GST) time with high

probability.

Corollary 3.3. If we choose k to be large enough such that k = Θ(κ), then there exist a constant

C > 0 such that k-common prefix property and (k,C · GST)-chain quality property hold after slot

C · GST with probability at least 1− e−Ω(
√
κ).

Proof. All the analysis in this section conditions on that event E occurs (CP1 holds), and we have

P(E) ≥ 1 − e−Ω(
√
κ) by Corollary 3.1. Then combine it with Corollary 3.2 and Lemma 3.10, and

apply the union bound, we can conclude the proof.

3.9 Discussion

In this section, we elaborate on some of the finer details pertaining to our work.

Choice of Algorand as the Checkpointing BFT Protocol We chose Algorand BA as our

checkpointing protocol because it satisfies the desired properties CP0-CP3 as listed in Section 3.4.

However, some other well-known BFT protocols fail to meet all these properties, and, therefore, we

don’t use them as a candidate checkpointing protocol. Generally, BFT protocols can be categorized

into two classes: 1) Classic BFT protocols, such as PBFT [12] and Hotstuff [33]; 2) Chained BFT

protocols, such as Streamlet [47] and Chained Hotstuff [33].
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PBFT and Hotstuff don’t satisfy the CP1 (the recency condition). The adversary could poten-

tially lock on a block B privately when it becomes the leader of one view, and then the adversary

finalizes B as a checkpoint after a long time when B is no longer in the best chain (B is a descen-

dant of the last checkpoint but not in the longest chain). In this attack, all honest blocks mined

during this time period could be potentially wasted as they are not extending B. Further, this

resource-bleeding attack could be turned into a perpetual liveness attack in the partial synchronous

model. One simple way to fix this bug is by introducing randomness into the protocol: when a new

honest leader does not hear any locked block from previous views, it will propose an empty block ⊥
to refresh the privately locked block, with a certain probability. However, this simple fix introduces

unnecessary latency in the normal path when there is no attack and the network is synchronous,

as it may need more views with honest leaders to ensure progress.

On the other hand, for Streamlet and Chained Hotstuff, the finalization of one block is supported

by its descendants, therefore it is hard to design a checkpointed longest chain protocol such that all

finalized checkpoints lie on a single blockchain. Therefore, finding or designing a good checkpointing

protocol is non-trivial, and it would be interesting to see whether there is any other BFT protocol

that fits our need and perhaps has better latency and lower communication cost.

Checkpointing protocol properties The finality gadget in GRANDPA [37] and the finality

layer of Afgjort [36] are also checkpointing protocols. The desired checkpointing properties in

GRANDPA are very similar to ours: it has CP0, CP1 and CP3, but CP2 (gap in checkpoints)

is missing. Without CP2, the mining bleeding could happen frequently, which leads to security

vulnerabilities. (Note that GRANDPA also does not have property P3, as discussed in Section

3.2).

Afgjort only requires CP0, but it has two other desired properties: The “∆-updated” property

guarantees that the chains held by honest nodes are at most ∆ blocks beyond the last finalized

block; “k-support property” ensures that any finalized block must have been on the chain adopted

by at least k honest nodes. The “∆-updated” property is in the opposite direction of our CP2; our

protocol satisfies n/3-support. We defer a full comparison of all these properties and identifying

the minimal set of desired properties to future work.

Attack on GRANDPA In Section 3.2, we claimed that in the GRANDPA design, the k-deep

rule is insecure in the synchronous but unsized setting. Here, we describe a possible “roll-back”

attack, using some notations from GRANDPA chapter [37]. Let h be the number of online honest

voters and we assume f + 1 ≤ h ≤ 2f . Suppose at the beginning of round 1, the genesis block B0

has two children B1 and B2 (they are siblings), where B1 is an honest block and B2 is a private

block. Then all h honest voters prevote for B1 in step 3 of round 1. However, all honest voters will

get stuck in step 4 if the adversary doesn’t send any prevotes, because g(V1,v) = nil and E0,v = B0

hence g(V1,v) ≥ E0,v is not satisfied. However, all honest miners will mine on B2 (assuming tie

breaking in favor of the adversary). When B2 becomes k-deep, the adversary casts enough prevotes
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and precommits on B1 to make B1 finalized in round 1. Now B2 is deconfirmed, and all honest

miners switch to mine on B1, creating a safety violation. Further if the adversary has mined some

private blocks on B1, then he can continuous this attack in all rounds and all the finalized block

will be adversarial block, leading to a liveness violation.

3.10 Conclusion

In this chapter, we presented the design of a new finality gadget to be used with Proof-of-Work

blockchains. The proposed gadget provides each user a choice between an adaptivity guaranteeing

confirmation rule and a finality guaranteeing one. This chapter underscores the fact that it is

possible to circumvent the impossibility result suggested by the CAP theorem by appropriately

combining the longest-chain protocol with a committee-based BFT protocol. However, this chapter

is only a first step towards designing a viable protocol. Several interesting directions of research

remain open, which we highlight below.

In our protocol, we used Algorand BA as our checkpointing protocol since it satisfies properties

CP0-CP3. Other natural candidates, such as PBFT [12], Hotstuff [33] and Streamlet [47] do not

satisfy these properties. In particular, they do not satisfy the recency condition CP1 (we elaborate

on this in Section 3.9). It would be interesting to see whether these conditions are necessary, or

merely required for the proof. In the latter case, many more BFT protocols could be used for

checkpointing.

We have shown that our protocol is essentially a finality gadget, just as Afgjort [36], GRANDPA

[37] and Gasper [46]. Through Figure 3.2, it we have shown how some of these protocols could

be tweaked to enhance their functionality to the level of the protocol we have designed. Formally

analyzing the security of GRANDPA, and tweaking Gasper to make it secure (with a formal proof)

are interesting open problems that could be tackled using the tools of this chapter.

Finality gadgets/checkpointing could potentially offer many more properties. For example, they

could protect against a dishonest mining majority [38]. They could potentially also be used to have

lower latency, and even responsive confirmation of blocks. Designing a protocol that achieves these

properties in addition to the ones we show is an exciting research problem. Designing an incentive-

compatible finality gadget also remains an open problem. Finally, a system implementation of such

protocols could lead to newer considerations, such as communication complexity or latency, which

would pave the way for future research.
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Chapter 4

Pricing and Routing in Payment Channel Networks

In this chapter, we turn our attention to payment channel networks, which is a tool to enhance a

blockchain’s transaction throughput. As discussed in Section 1.3.3, the longest-chain protocol has

inherently poor throughput and consequently has high transaction fees. We also discussed how

layer-two blockchain mechanisms overcome this limitation by allowing users to transact securely

without recording their transactions on the blockchain. A payment channel network (PCN) is one

such layer-two mechanism that is already being used in practice [15]. In recent years, there has

been considerable research interest on PCNs, with a focus on improving their security as well as

their efficiency. This chapter studies the long-term transaction processing efficiency of payment

channel networks.

Motivated by the rich literature on communication networks [48, 49], we seek to understand

PCNs better by studying a mathematical model of such a system. As the name suggests, a PCN

is a network composed of multiple payment channels. A transaction flows through a path in the

payment channel network in a manner similar to the flow of water in a network of pipes or the flow

of bits in a communication network. Nodes in a PCN make transactions requests constantly over

time. For each such request, the network decides whether to serve (i.e., execute) it or not, and if

so, which path to route it along. Our mathematical model reveals that PCNs have fundamental

capacity limitations, and, thus, they cannot serve transaction requests arbitrarily. This observation

highlights the need for a principled protocol to handle transaction requests that arise in the network.

The main contribution of this work is a joint flow-control and routing protocol for PCNs, which

we call the DEBT (detailed Balance Transaction) control protocol. The key ingredient of this

protocol is the notion of channel prices, which is a price quoted by each channel to the network

for routing transactions through it. The sum of channel prices along a path is interpreted as the

price of the path. Based on these path prices, transacting pairs of nodes make flow-control and

routing decisions for every transaction request that arises between them. Channels keep updating

their prices over time based on the transactions that flow through them. Under stationary demand

regimes, the protocol steers the prices and the transaction flows towards a stable, efficient operating

point. We demonstrate this via mathematical analysis and simulations.

We begin this chapter by elaborating on payment channels and their basic operation in Sec-

tion 4.1. We highlight that transactions in a payment channel must satisfy some basic feasibility

conditions. This requirement translates into the following limitation for a payment channel: over
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long periods of time, the net flow of money in one direction must equal the net flow of money in

the opposite direction. Naturally, this constraint carries over to a PCN as well (Section 4.2): for

transaction flows to be sustained indefinitely, the flows must satisfy detailed balance constraint.

Because of this constraint, a PCN in general cannot serve every transaction request that arises

from its users. Therefore, we focus on studying how a PCN can serve the maximum number of

transactions over a long time, subject to the aforementioned constraint. We illustrate, via simple

examples, that there are two different actions that can help achieve this objective: flow-control and

dynamic routing. Flow-control refers to users regulating their rate of transactions by holding back

on certain transactions as dictated by the protocol. Dynamic routing refers to a pair of transact-

ing users switching between different paths over time in order to utilize the network’s resources

efficiently.

In Section 4.3, we present a discrete-time model of a payment channel network. The model

specifies, among other things, the order of events in a time slot, the constraints imposed by the

PCN, and the possible actions that transacting users can take. Section 4.4 is devoted to the

design of the DEBT control protocol. We begin by posing the protocol’s objective as solving the

following constrained optimization problem: find the set of flows in the network that maximizes the

fraction of transactions served while respecting the detailed balance constraint. Invoking convex

optimization theory, we relax the constraint using Lagrange multipliers and obtain an equivalent,

unconstrained form of the original problem. An iterative gradient-based algorithm to solve this

unconstrained problem naturally follows. We then observe that this algorithm can be implemented

as a network protocol. Interpreting the Lagrange multipliers associated with the dual problem as

channel prices gives an intuitive understanding of the protocol. The protocol’s convergence follows

under some additional standard assumptions; this is presented in Section 4.5. Simulation results

of the protocol are presented in Section 4.6 to illustrate the protocol’s properties.

4.1 Payment Channels: Basic Principles

Construction and Basic Operation The idea of a payment channel was born at least as early

as 2013 and has since undergone considerable evolution. We refer the interested reader to Section

3 of [11] and Chapter 5 of [50] for a historical survey of payment channels. Here, we describe the

construction and operation of a payment channel at a level of generality that encompasses several

designs. A payment channel is created by means of a special funding transaction, with two nodes

depositing some money into a new two-node account (the channel). Money can be spent from this

special account only when both nodes agree to do so. At the time of creation, both nodes also

create and privately hold a commitment transaction which disburses the money held in the channel

back to their personal accounts. This serves as a guarantee for each node that they can get their

money back whenever they wish to.

Once a channel is created between two nodes, they can transact by exchanging messages between
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themselves. Each message is simply a new commitment transaction, i.e., an agreement between

the two nodes to split the escrowed fund in a certain portion between the two nodes. Thus, each

transaction is reflected as a readjustment of the total value between the two nodes. None of these

transactions need to be broadcast to the blockchain network. A channel is closed by recording

one such commitment transaction on the blockchain, which effectively returns the appropriate

balances to the two nodes’ individual accounts. A payment channel also includes some inbuilt

safety mechanisms by which an honest node can withdraw its funds even if the other node goes

missing or acts maliciously.

One-directional Payment Channels The first payment channels invented were one-directional

by nature; payments could only be made by one node to the other, but not the other way around.

Such payment channels are analogous to gift-cards, as illustrated by the following example. Suppose

a customer buys a gift-card for a certain coffee chain for a hundred dollars, paying for it with their

credit card. This transaction gets recorded on the credit card’s server. Subsequently, when the

customer buys a coffee for five dollars each time using the gift-card, these transactions are solely

between the store and the customer; in particular, they are not recorded by the credit card company

or the customer’s bank.

In the blockchain world, a customer may create a unidirectional payment channel by depositing

some money into it and subsequently use this deposited money to make multiple small payments.

Each payment consumes some of the escrowed amount, eventually depleting the entire fund, just as

in a gift-card. At this stage, the payment channel must be closed and a new one opened if further

transactions are to be made. The channel may also be closed before exhausting the entire amount,

if either of the two nodes decide they do not wish to transact further.

Bidirectional Payment Channels The pioneering work of Decker and Wattenhofer [51] as well

as Poon and Dryja [52] introduced bidirectional payment channels, i.e., channels that can support

payments from either node to the other one. To visualize these payment channels, it is useful to

think of a beaded wire, with the beads split among the two ends of the wire, similar to an abacus.

Each bead represents a unit of money. Thus, the total number of beads is proportional to the

total amount deposited, while the number of beads at each end denote the amounts owned by each

node. A payment across a channel can be visualized as a movement of beads from the payer to

the payee. From this point onward, the term payment channel is used to refer to a bidirectional

payment channel.

Channel Capacity and Balances The total amount of money escrowed in a channel is called

the capacity of the channel. The amount of money each node owns within the channel depicts the

balances of the two nodes. While the capacity remains constant over time, the balances change

with every transaction. The sum of the balances always equals the capacity. It is useful to think

of the individual balances as the channel’s state. In fact, a channel’s state can be represented by
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just one of the nodes’ balances; the balance of the counter-node can be calculated by subtracting

this number from the capacity.

Single-Shot Transaction Feasibility At any given point in time, a channel’s balances impose

a bound on the maximum value of a single transaction that can be made in either direction. To

elaborate, consider a channel between two nodes A and B, and let their balances be xA and xB

respectively. Then A cannot pay B more than xA amount of money and B cannot pay A more than

xB amount of money in a single transaction. Usually, in a payment channel, transaction values

are much smaller than the channel’s capacity. Therefore, if the channel is fairly well-balanced, i.e.,

the balances are close to half the capacity, then the aforementioned feasibility considerations do

not pose any restriction. However, if a channel’s balances are skewed, certain transactions may be

infeasible. For instance, if xB is very small, it may not be feasible for B to pay A via the channel.

Flows Consider a scenario where a customer purchases two cups of coffee every day from a cafe,

paying five dollars for every purchase. More so, the customer pays the cafe over a payment channel.

This long-term transaction pattern can be represented as a flow of money across the channel. The

rate of flow, in this case, is ten dollars per day. More generally, a flow through a channel is a concept

that represents a steady transfer of money from one node to another over some considerable period

of time. We can use the notion of a flow to represent a broader set of transaction patterns as

well, such as a series of transactions whose values fluctuate randomly or periodically around some

average value. In all cases, a flow represents a long-term sequence of transactions made at regular

intervals.

A payment channel can support two flows in parallel, one in either direction. In a payment

channel A−B, let fA,B be the flow rate from A to B and let fB,A be the flow rate in the opposite

direction. The total flow through the channel is the sum of the flow rates, fA,B + fB,A. The net

flow through the channel is the difference between the flow rates, fA,B − fB,A; here, we assume

that each each channel has some implicit direction for computing the net flow. Throughout our

discussion on flows, we assume there is some implicit unit of time to define flow rates.

The notion of flows also sheds some light on the choice of the term channel capacity. In the

context of communication networks, this term denote the maximum rate of communication that

the channel can support, i.e., the maximum number of bits (or information) that the channel

can carry per unit time. For a payment channel too, there is a similar interpretation; its capacity

(defined as the total escrowed fund) is proportional to the maximum possible total flow through the

channel. Indeed, the total flow is maximized if each node sends its complete balance to the counter-

node immediately after the previous transaction is completed. The resulting flow is proportional

to the total escrowed fund. The precise flow rate depends on the duration of a time slot, which

is implementation-specific. With some abuse of notation, we use the term capacity to denote the

total escrowed fund, ignoring the time scale.

88



The Balance Condition for Flows In addition to a bound on the total flow rate, a payment

channel also imposes the following balance constraint. A payment channel can sustain flows forever

only if the net flow through the channel is zero. Put differently, a non-zero net flow cannot be

sustained indefinitely. This fact is illustrated by the following example. Suppose, for instance, that

on average, A pays B ten dollars per day and B pays A five dollars per day. When this happens,

A’s balance in the channel decreases continuously. Whatever be the channel’s capacity, eventually

A’s balance gets completely exhausted. When this happens, the channel will not be able to support

further payments from A to B.

In such a scenario, A could wait for B to make some payments to A. These transactions would

replenish some balance on A’s side. However, this replenishment occurs at a rate of five dollars

per day. Since A’s payments are ten dollars each day, A will only be able to pay B once in two

days. Effectively, the flow rate from A to B drops by half to five dollars per day. At this stage,

the channel has zero net flow. The above example illustrates how a channel naturally enforces the

balance constraint on flows through it. As this example shows, it is helpful to distinguish between

the demand (or request) for flows and the flows served.

On-Chain Rebalancing The above example assumes that the demand for flows are elastic, i.e.,

A is willing to tolerate a smaller flow rate (five dollars per day) than its original demand (ten

dollars per day). However, if flows are inelastic, i.e., the entire demand must be served through

the channel, then the channel can reset its balances via an on-chain transaction. With periodic

on-chain rebalancing, a channel can support imbalanced flows (non-zero net flows).

On-chain rebalancing can be done in one of the following ways. One option is that A pays B

some amount via an on-chain transaction, with B paying A back the same amount on the channel.

If this amount is half the channel capacity, the entire operation would rebalance the channel.

Alternatively, the nodes may open a new, perfectly balanced channel between themselves (and

possibly close their older channel). Either of these methods incur the transaction cost of at least

one on-chain transaction.

4.2 Long-Term Operations in Payment Channel Networks

Having sketched out the basic properties of a payment channel, we now turn our attention to the

main object of interest in our work, namely, payment channel networks. The concept of a payment

channel network was born with the design of the Bitcoin Lightning Network [52]. Such a network

is formed among a collection of nodes with bidirectional payment channels among them. These

nodes coordinate with each other to support multi-hop transactions through their channels. Thus,

nodes that do not share a channel can transact by routing the payment through a path of channels.

Intermediary nodes receive money from one channel and send money along a different channel.

Creating a network of inter-operable payment channels allows nodes to transact with a large
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number of others without creating a channel with every one of them. This saves costs on two

fronts: the large transaction fee spent on opening and closing a channel and the opportunity cost

of locking up funds in channels. A payment channel network allows users to make transactions with

high volume and with very low transaction fees. It is particularly useful for micro-transactions,

i.e., transactions whose value is much smaller than the blockchain transaction fees itself.

4.2.1 Routing

One of the most challenging aspects of executing transactions in a payment channel network is the

task of routing, i.e., finding a path in the network along which the transaction can be sent from

its source to its destination. Broadly speaking, there are two classes of routing paradigms: source

routing and hop-by-hop routing (also called as local routing [11]). In source routing, the source

specifies the entire path from itself to the destination. The path information is encoded in the

messages that accompany any transaction; intermediate nodes simply follow the prescribed path.

Source routing requires nodes to know the topology of the network. In hop-by-hop routing, each

node simply passes the transaction on to an appropriate neighbor; this neighbor then forwards the

transaction on as it deems fit. This process continues until the transaction reaches its destination.

This style of routing does not require knowledge of the complete network topology, and may be

beneficial in scenarios with rapidly varying network topology.

In this work, we assume that all transactions are source routed. Further, we assume that each

pair of transacting nodes have a fixed set of paths between them. Every transaction between a

given source-destination pair is routed along one of these paths. These paths could be arbitrary; we

do not delve into the graph-based algorithms (such as shortest-path algorithms) that are used to

find such paths. In practice, new channels are added and old channels removed from the network.

However, this happens on a slower time scale. If a channel is removed, nodes simply discard all

paths that use that channel from their consideration. When new channels are added and other

nodes become aware of it, they may bring new paths that use these channels into their purview.

In this work, we assume that the topology of the network remains unchanged over time. Thus, the

issue of updating the paths does not arise.

The rationale behind these assumptions is as follows. Firstly, the popular Bitcoin Lightning

Network implements source routing rather than hop-by-hop routing; thus, our assumptions reflect

this system better. Secondly, the topology of the system is usually public knowledge, so it is not

unrealistic to assume that nodes have enough knowledge to compute paths among themselves.

Thirdly, the topology changes on a much slower time scale than the rate at which transactions take

place. Moreover, our paradigm of fixing a small set of paths and switching among them captures

a variety of routing schemes.

Just as in a single channel, feasibility considerations come into play while routing transactions

through the network. For a transaction to be feasible along a path, the balance of all channels in

the path (on the appropriate side) must be at least as large as the transaction value. One of the
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most basic goals of any routing protocol is to find a feasible path for every transaction. If nodes do

not have access to the state information of the network (i.e., the channels’ balances), it is possible

that they might choose a path that is infeasible. Without any state information, routing essentially

boils down to trial and error: try a certain path, if infeasible, try a different path, and repeat until

successful or all paths have been exhausted. Thus, it is imperative to have some state information

for routing efficiently.

Even with state information, a routing protocol may not always be successful in finding a feasible

path. Indeed, if all channels leading out of a node have no balance left on the source’s side, then

no feasible path exists for transactions made by this node. Even in a less extreme scenario, if

the transactions are of large value, a feasible path may not exist. Another possibility is that

multiple transactions at the same time clog a single channel. Although each transaction by itself is

feasible, all of them together are infeasible. Last but not the least, if nodes have partial, inaccurate,

or delayed state information, any routing protocol is likely to choose infeasible paths. When an

infeasible path is chosen, the network immediately drops the transaction.

4.2.2 Detailed Balance Condition For Flows

We begin with extending the notion of flows, introduced in Section 4.1, to payment channel net-

works. As before, a flow represents a steady movement of funds from a payer (source node) to

a payee (destination node) over some considerable period of time. However, in the context of a

payment channel network, a flow is also associated with a fixed path. Thus, we speak of a flow of

rate fp along a path p in the network. As we are interested in studying the long-term transaction

processing efficiency of PCNs, our description of transactions will largely be in terms of flows.

In certain scenarios, it is possible that a given pair of nodes transact over multiple paths. In

this case, it is appropriate to associate a flow with a multi-path. To elaborate, a multi-path flow is

a collection of single-path flows, (f1, . . . , fk), each of which represent transactions executed over a

particular path from the same source to the same destination. In some PCNs, a single transaction

can be split along multiple paths [53]. However, even if this is not the case, a multi-path flow can

represent a scenario where a pair of nodes rotate their routing choices among different paths such

that each path carries a steady flow on the average.

So far, we have considered flows from one source node to one destination node. However, in a

PCN, many nodes transact in parallel. Therefore, we are led to consider scenarios where multiple

flows move through the network simultaneously. Thus, the set of all flows in the network can be

described by a collection of multi-path flows, with each multi-path flow representing transactions

between a unique source-destination pair. As mentioned above, each multi-path flow is further

composed of some single-path flows. At times, it is more suitable to represent the flows as simply a

collection of single-path flows, treating flows among the same source-destination pair independently.

With this viewpoint, we can represent all flows in a PCN by a vector f , indexed by the set of all

paths carrying flows in the network. As mentioned in Section 4.2.1, we only consider a subset of
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all possible paths for routing.

Next, we turn our attention to the cumulative effect of multiple flows on an individual channel.

Just like currents in an electrical network or water in a network of pipes, transaction flows in a PCN

add up to form a combined flow through each payment channel. The flow in a channel, along one

particular direction, is the sum of all flows along paths that traverse the channel in that direction.

The flow in the opposite direction can be computed likewise. The total flow in a channel is the

sum of these quantities, while the net flow is their difference. These notions naturally carry over

from the case of a single channel. The net flow (or the total flow) can be represented as a vector

f̃ , indexed by the channels in the network.

As we saw in Section 4.1, a non-zero net flow through a channel skews the channels balances and

thus cannot be sustained indefinitely. Thus, for a payment channel network to be able to serve

transactions over a long period of time, the flows must be routed such that the net flow on each

channel is zero. We call this condition the detailed balance constraint ; flows that obey this condition

are called detailed balance flows. Some small fluctuations over time can be accommodated; in other

words, over a short time frame, it is possible that there is a non-zero net flow across a channel.

However, over moderately long time frames, the total flow in one direction must equal the total

flow in the opposite direction for every channel.

The detailed balance condition has an important consequence: in general, a payment channel

network cannot serve arbitrary transaction requests for a long period of time (assuming they do

not perform periodic on-chain rebalancing). Indeed, we observed this for the trivial case of a single

payment channel in Section 4.1: if the flow rate requested (or demanded) in the two opposite

directions of a payment channel were unequal, then the channel could not serve the entire demand.

In the case of a single channel, the only option available was to drop transaction occasionally

from the flow with the higher demand such that the flow rates in the two directions matched.

The demand not served is thus equal to the difference of the requested flow rates. In a network,

routing smartly can maximize the fraction of demand served while maintaining the detailed-balance

condition. However, in general, it cannot serve the complete demand. In the following subsection,

we characterize the conditions under which a PCN can serve all the entire demand.

4.2.3 Detailed Balance Flows and Circulations

For a PCN, a circulation is a demand pattern which satisfies the following condition: the total

incoming demand is equal to the total outgoing demand for every node in the network. For

example, in a network with three nodes, A, B, and C, if A wants to pay B , B wants to pay C, C

wants to pay A, and all of them want to transact at a rate of ten dollars per day, the demands form

a circulation. However, if the demand from A to B is raised to twenty dollars per day while the

other demands remain the same, this demand pattern is not a circulation. Note that a circulation

imposes a constraint on flows at each node, whereas the detailed-balance condition imposes a

constraint at each edge. The following result establishes the equivalence between circulations and
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detailed-balance flows.

Proposition 4.1. Consider a payment channel network whose underlying graph topology is con-

nected, i.e., there is at least one path from every node to every other node. Let each pair of nodes in

the network have some fixed demand for transaction flows, possibly zero. Then, the entire demand

can be served by detailed balance flows if and only if the demands form a circulation.

Proof. By definition, if flows satisfy the detailed balance condition, the net flow on each channel

must be zero. As a consequence, for each node, the net flow into the node is equal to the net flow

out of the node. This can be seen by fixing a particular node and adding up the total incoming

and outgoing flows along each of the channels incident on it. Since these flows satisfy the complete

demand, the demands must be a circulation.

To prove the converse, suppose we know that the demands form a circulation. Since the network

is connected, there is at least one spanning tree in the network. Consider any fixed spanning tree;

such a tree contains a unique path from every node to every other node. Assume that the entire

demand is routed along the paths of this spanning tree. Then, each channel in the tree carries a zero

net-flow. This can be argued as follows. Consider any one edge in the spanning tree. It partitions

the set of nodes in the network into two, based on which side of the edge they lie on. Since the net

flow into each of these two sets of nodes is zero (because the demands form a circulation and the

entire demand is being served), the edge in question must carry a zero net flow. This argument

holds for each edge in the spanning tree. Since other channels do not carry any flow, the flows in

the entire network satisfy the detailed balance condition. Thus, we have shown that there exists a

way to serve the entire demand via detailed balance flows.

Note that for a circulation demand to be successfully served entirely by a routing scheme, there

are a couple of other conditions that must be met. For one, the channel capacities must be large

enough to carry the total flow requested through it. Second, the above result only shows the

existence of a set of paths that can serve the entire demand; finding such a set of paths in a

decentralized fashion is a different problem altogether. At the very least, the routing protocol

must operate with a sufficiently diverse set of paths to work with; otherwise, it is possible that no

spanning tree exists among the paths considered. The following section highlights the importance

of considering multiple paths and illustrates a decentralized state-dependent protocol to route

transactions optimally.

4.2.4 The Benefits of State-Dependent Routing

To illustrate the benefits of state-dependent routing, let us consider the following example where

the demands form a circulation. As per Proposition 4.1, there should exist a routing scheme to

satisfy the complete demand in this case. We illustrate how state-dependent routing discovers such

a routing scheme.
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Example 4.1 (Circulation). The payment channel network consisting of three nodes A,B, and

C. Each pair of nodes have a channel between them. Each channel containing a balance of one

hundred coins with each node (the capacity of each channel is two hundred). The demand for flows

is as follows:

• A wants to pay B ten coins per unit time.

• B wants to pay C ten coins per unit time.

• C wants to pay A ten coins per unit time.

For Example 4.1, suppose each source routes payments to its chosen destination only via the

shortest path, i.e., via the link directly connecting the two nodes. Then, after 10 units of time,

all channels will clearly get imbalanced. All the balance in the A−B channel will be on B’s side,

the balance on the B − C channel will be on C’s side, and the balance on the C − A channel will

be on A’s side. With the channels being imbalanced in such a manner, the nodes cannot continue

transacting along these paths. However, a careful look reveals that even in this imbalanced state,

the nodes could continue transacting by routing their transactions via the longer path. E.g., A can

pay B by routing a transaction along the path A → C → B. Likewise, the two other transacting

pairs, B → C and C → A, can also route their transactions via a longer path.

In this example, routing along the longer path once rebalances the channels to some extent,

allowing transactions to flow along the shortest path again twice. Thus, the requested flows can

be served perennially, provided each transacting pair chooses the longer route once every three

times they transact; in other words, choose the shorter path twice as often as the longer path.

Effectively, each transacting pair splits its flow along the shorter and longer path in the ratio 2 : 1.

Considering the flows among all transacting nodes together, we see that this arrangement leads to

detailed balance flows. The example underscores the importance of each source-destination pair

considering multiple paths for routing transactions and switching among them dynamically.

In a larger network, how can transacting node pairs discover a suitable routing scheme in a

decentralized manner? To address this challenge, Varma and Maguluri [16] propose a decentralized,

state-dependent routing protocol for a payment channel network. In their protocol, channels quote

prices for routing a unit of flow through in either direction. The price of a channel in any given

direction could be positive or negative. Positive prices discourage further flows through the channel

in that direction, while negative prices encourage more flow. The price for a path is the sum of

prices on the channels in the path. A node routes its transactions along the path with the minimum

price. Each edge updates its prices based on the net flow through it. The protocol is decentralized

in the sense that each transacting node-pair makes its routing decisions without coordinating with

the others, and each edge updates its prices based only on the flow through it. Moreover, the

channels do not need to know the demand patterns ahead of time. The term state-dependent

reflects the fact that the routing decisions are made based on the prices, which in turn depends on

the state of the system. The protocol is shown to be throughput-optimal [16]. This means that
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as long as the demands form a circulation, they can be routed such that the corresponding flows

satisfy detailed balance and thus, be supported perennially.

The routing scheme we described in the beginning of this section can be viewed as a rudimen-

tary decentralized, state-dependent protocol. Here, the state refers to the channel’s balances, in

particular, whether a path is feasible or not. Nodes would naturally have a preference for the

shorter path, but would switch to the longer path if the shorter path was infeasible. In contrast, a

state-independent scheme would be one where nodes always route one in every three transactions

along the longer path, or split each transactions along the shorter and longer path in the ratio

2 : 1. A centralized scheme would be one where A,B, and C coordinate their routing decisions,

with C → A transactions always being routed via the path C → B → A, while A → B and

B → C route along the shortest path. Any of these schemes would maintain detailed balance

flows in the given example. However, the protocol in [16] has the advantage of being decentralized,

robust to random perturbations in the demand, implementable on arbitrary network topologies

with arbitrary demands, and provably optimal as long as demands are circulations.

4.2.5 Deadlocks: Motivation for Flow-Control

The protocol proposed by Varma and Maguluri [16] always routes every transaction request along

some path or the other. When the demands form a circulation, it is able to serve the entire demand.

What happens when the demands are not a circulation? We explore this question with the help of

the following two examples.

Example 4.2. The payment channel network consisting of three nodes A,B, and C. Each pair of

nodes have a channel between them. Each channel containing a balance of one hundred coins with

each node (the capacity of each channel is two hundred). The demand for flows is as follows:

• A wants to pay B twenty coins per unit time.

• B wants to pay C ten coins per unit time.

• C wants to pay A ten coins per unit time.

Example 4.2 is a small modification of Example 4.1, where the rate of flow requested from A to

B is higher. Thus, the demands no longer form a circulation.

Suppose that, initially, all transaction requests are served. Then, node A receives coins at a rate

of ten coins per unit time, while it spends at a higher rate. Therefore, it will eventually run out

of coins, whatever routing strategy the network adopts. To elaborate, the network will eventually

reach a stage where both the channels A−B and A−C will have no balance left towards A’s side.

At this stage, it would be infeasible to route transactions further from A to B along either of the

two paths, forcing A→ B transactions to be dropped.

Meanwhile, transactions from B to C and from C to A continue to flow. These transactions will

eventually replenish balances on the two imbalanced channels, allowing A to resume transacting
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with B. However, the net flow from A to B would be limited to ten coins per unit time; once again,

this can be argued on the basis of the net flow at node A. In other words, at least half of A→ B

transactions would have to be dropped, irrespective of the routing strategy. Note that the net flow

of transactions served is identical to the flows in the Example 4.1.

In general, whenever the demands do not form a circulation, routing every transaction request

is bound to lead to flows that do not satisfy detailed balance, and are therefore bound to lead

some channels to get imbalanced. Because of these, some paths can no longer route transactions.

Transactions that are attempted to be routed along any path that use the imbalanced links are

usually dropped. Sometimes, there are flows in the opposite direction that replenish the balances

along these links. In such a case, transactions can continue to flow through this channel, but at a

reduced rate, so as to match the rate of replenishment. We saw this in the case of a single channel

in Section 4.1 as well as in the above example.

In some scenarios, it is possible that no flow in the PCN can replenish the balances of the

channel, which mean the channel remains imbalanced forever. In this case, all flows using that

path are permanently stalled. It is possible that some of these flows could have been part of a

detailed balance flow had the channel not been imbalanced. This phenomenon is called a deadlock.

When the network goes into a deadlock, the total flow served in steady state is less than the what

can potentially be served if channels were perfectly balanced. Deadlocks were first identified by

Sivaraman et al. [54] and studied in more detail in a follow-up paper [17]. We now illustrate the

phenomenon of deadlocks with the following example [17].

Example 4.3 (Deadlock). The PCN consisting of three nodes A,B, and C. It has two channels,

A − B and B − C. Each of the channels has a balance of a hundred coins on each side. The

demands for flows are as follows:

• A→ C at a rate of ten coins per unit time

• C → A at a rate of ten coins per unit time

• B → A at a rate of ten coins per unit time

• B → C at a rate of ten coins per unit time

In Example 4.3, there is only one path between every pair of nodes, so the question of routing

does not arise. The only decision each node needs to make is whether to actually route a transaction

request through the network, or drop it (equivalently, execute it by some other means). From the

demand patterns, we see that only the transactions between A and C can be supported in the

long run without rebalancing, since these flows would leave the channel balances untouched. The

transactions from B must eventually stop because they are not matched by transactions flowing in

the opposite direction.

Suppose, initially, all transactions are served by the network. After some time, both the channels

get imbalanced, with all the balance being on the side of A and C and no balance left on B’s side.
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At this stage, the transactions from B are forced to stop because it is infeasible for the network

to route them. However, note that it is also infeasible for the network to route transactions from

A → C and C → A. For an A → C transaction to be feasible, there must be sufficient balance

on both channels: in channel A − B, on the side of A, and in channel B − C, on the side of B.

However, the B − C channel is imbalanced in the wrong direction; thus, it is unable to carry the

A→ C transaction. Similarly, C → A transaction also cannot be served by the network. Thus, the

imbalance in some channels blocks out transactions that could otherwise be served in steady-state.

Moreover, the network is stuck in this scenario, unless some channels rebalance externally. This

phenomenon is called a deadlock [54, 17].

Note the difference between Examples 4.2 and 4.3. Both examples have demands that cannot

be sustained in stead-state. In Example 4.2, nodes could continue sending transactions through

one path or the other until it was infeasible to send through both; however, this ‘greedy’ action

of the nodes did result in optimal long-term throughput. In contrast, in Example 4.3, we see that

greedy actions led to zero steady-state throughput, which is sub-optimal. Note that the deadlock

was caused because of the imbalanced channels, which in turn was caused by the transactions from

B to C and A.

Now suppose B held back its transactions, even when the channels had sufficient balance to route

its transactions. In other words, the flows from B to A and B to C are preemptively stifled. In

such a scenario, the flows from A to C and C to A become feasible, and these can be sustained

forever. This would lead to the optimal steady-state throughput. Note that stifling the flows from

B does not reduce the long-term throughput because these flows could not have been supported

by the network anyway. This action, where transaction requests among nodes are not passed on

to the network, despite them being feasible, is called as flow-control.

Can flow-control be used to avoid deadlocks in arbitrary payment channel networks? The main

challenge is to stifle only those flows that remain unbalanced, allowing the rest to pass through.

Moreover, this selective flow control must be done in a decentralized fashion. In Section 4.4, we

show that the routing protocol proposed by Varma and Maguluri [16] can be extended to perform

flow-control as well. In particular, a transacting node-pair decides the rate of flow based on the

price of the cheapest path between themselves. If the cheapest price itself is too high, they do not

request transactions to be carried out over the network.

4.2.6 Possible Objectives for a PCN Protocol

Based on the examples above, we conclude that, for arbitrary transaction arrival processes, a PCN

cannot serve all transaction requests without periodically performing on-chain rebalancing. As

on-chain re-balancing is an expensive operation, the network is incentivized to reduce the extent

of this action as much as possible. If channels are to avoid doing so, they must decline to serve

certain transaction requests. Thus, there is a trade-off between maximizing the rate of transactions

served and minimizing the rate of on-chain transactions. There are two possible objectives that
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the network could try to achieve:

• Minimize the rate of on-chain rebalancing transactions while routing all transaction requests.

• Maximize the rate of transactions served on the network while ensuring there are no on-chain

rebalancing transactions.

Here, the word rate of transactions refer to the total monetary value of the transactions involved

per unit time. In this work, we focus on the latter design criterion. In other words, we aim to

design a network protocol that serves only those transactions that can be routed without requiring

on-chain rebalancing. Based on the examples seen in this section, we see that such a protocol must

perform both routing and flow-control. Although the importance of routing is clearly illustrated

in many works [11], the notion of flow-control is new in payment channel networks. Indeed, on the

surface, it seems unreasonable for transacting nodes to hold back their transactions even if it is

feasible to serve them. However, as we show in the discussion above, flow control is beneficial in

avoiding deadlocks.

Finally, note that a transaction that is not served on the payment channel network can be served

in various other ways. For example, nodes could record their transaction directly on the blockchain,

or they could create a new channel between them and route the transaction through it. The network

protocol we present naturally allows for different possibilities on how to serve the transactions

dropped by the network. Arguably, a more holistic design of the network behavior would involve

minimizing the total cost of serving all transaction requests, allowing for the aforementioned options

of serving a transaction. However, factoring in the cost of these options is nontrivial. For example,

the cost of opening a new transaction would depend on the capacity of the channel, which in turn

is dictated by the opportunity cost of keeping funds locked in a channel.

4.3 A Discrete-Time Model of a PCN

In this section, we present a mathematical model of a payment channel network. This model serves

as the bedrock for the routing and flow-control protocol that we present in Section 4.4. Our model

incorporates many important ideas from the models proposed by Varma and Maguluri [16] and

Sivaraman et al. [17]. The model described here is not intricately tied to the protocol we propose

next. In fact, it can be used in future work to study the behavior of PCNs under different modeling

assumptions and other protocols. In Section 4.5, we make additional assumptions on the model in

order to prove convergence.

The model presented here includes a description of the arrival of transaction requests to the PCN.

We assume these transaction requests are determined by factors external to the system. Given a

transaction request, the corresponding source and destination node need to decide whether or not

to have it served by the network. This distinction between transaction requests and transactions

served is crucial in understanding payment channel networks. Lastly, we typically assume that
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these transaction requests form a stationary process. Focusing on the stationary regime allows us

to meaningfully define the notion of an optimal flow, as well as convergence of a protocol to this

optimal flow. However, this assumption is not necessary to describe a mathematical model of a

PCN.

We model the PCN as a discrete-time system. In each time slot, the following actions take place

in the given order:

1. Transaction requests arise among nodes in the network. Each transaction is has a source,

a destination, and a value. Multiple transaction requests can arise in the same slot. The

arrival of transactions to the network is controlled by exogenous factors, independent of the

happenings in the network; we treat the process as given.

2. The nodes make routing and flow-control decisions. For every transaction request, the cor-

responding source-destination pair decides what fraction of the amount to route, and along

which path (or multi-path). We assume the nodes have access to some information regarding

the state of the system; the precise information used is protocol dependent.

3. The payment channel network serves the transaction requests. If a channel cannot serve

the requested transactions by virtue of being imbalanced, it rebalances itself. We assume

conditions are such that all transaction requests that are passed on from the nodes to the

network are actually served. After the transactions are served, channel balances are updated.

4.3.1 Key Components of the System

The PCN as a graph The network consists of a set of nodes V and a set of channels E between

pairs of nodes. The nodes are numbered 1, 2, . . . , |V |. A channel connecting nodes u and v is

denoted (u, v). We use the convention that the lower index vertex is written first; e.g., in the

channel (u, v), u < v. Each channel has a certain capacity, which refers to the total amount of

money escrowed in the channel. Let cu,v denote the capacity of channel (u, v) and let c ∈ RE
+ be a

vector denoting the capacities of all the channels in the network. Thus, the tuple (V,E, c) specifies

a weighted, undirected graph with numbered nodes. We assume this graph remains unchanged

throughout the period of operation.

Paths Each transaction request that is passed on to the network needs to be routed from its

source to its destination along a path in the PCN. A path may have cycles, but we assume that it

traverses each edge at most once. Any such path can be represented by a vector r ∈ {−1, 0, 1}E as

follows:

• let ru,v = 1 if the path traverses the channel (u, v) in the direction u→ v,

• let ru,v = −1 if the path traverses the channel (u, v) in the direction u← v, and
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• let ru,v = 0 if the path does not traverse the channel (u, v) in either direction.

In any graph, there could be multiple paths from a source node i to a destination node j. We

assume that every node pair has a fixed set of paths between them that they consider for routing

transactions; this set need not include all possible paths between i and j. Denote these paths by

pi,j,1, . . . , pi,j,k, and the set of such paths by Pi,j . Let P denote the set of all paths, ∪i,jPi,j . Let R

denote the routing matrix indexed by P ×E with entries in {−1, 0, 1}, where each row corresponds

to a particular path, and each column corresponds to a particular channel.

Balances The term balance refers to the distribution of the escrowed fund in a channel between

the two nodes involved. At the beginning of slot t, let the balance of node u in channel (u, v) be

xu,v[t]. It follows that the balance of v in the same channel is cu,v − xu,v[t]. Let x[t] ∈ RE
+ denote

the vector of balances. By convention, we always denote the balance of the lower-indexed node of

each channel in x, and the balance of the opposite end is inferred from the capacity vector. The

balance vector always satisfies 0 ≤ x[t] ≤ c, where the vector inequalities are to be interpreted as

the inequalities holding component-wise. The vector x[t] denotes the state of the PCN at time t.

4.3.2 Transaction Requests

In every slot t, multiple transaction requests arrive, with arbitrary sources, destinations, and

amounts. In general, there could be multiple transaction requests from source i to destination

j in slot t; let Ai,j [t] denote the set of such transactions. Note that Ai,j [t] is distinct from Aj,i[t].

In particular, we shall frequently consider one of the two following cases:

• Atomic: Ai,j [t] consists of one transaction of value ai,j [t], which must be processed as a

whole (either served, queued, or dropped).

• Infinitely divisible: Ai,j [t] consists of infinitely many infinitesimal transactions of total

value ai,j [t]. Any fraction of this value can be served, with the rest being dropped. We treat

this as a single transaction request of amount ai,j [t], but allows for fractional amounts to be

served.

The atomic regime and infinitely divisible regime denote two extremes; in general, there are a finite

number of transaction requests, of which any subset can be served depending upon the conditions

prevailing.

Demand Distribution Throughout this work, our focus will be on stationary demand regimes.

To be more specific, for any pair of nodes (i, j), we assume that the demands as a function of time

are independent and identically distributed (i.i.d.). In particular, this means that (ai,j [t] : t ∈ N).
is an i.i.d. process. Moreover, the demand processes across different nodes are also independent.

A special case here is the regime of constant demands, where ai,j [t] = ai,j ∀ t, ∀(i, j). The vector
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a = (ai,j)(i,j)∈V×V is called the demand vector. Note that the stationarity assumption allows for

both atomic as well as infinitely divisible transactions.

4.3.3 Flows

Once a pair of nodes decide to have a transaction served by the network, they also specify one or

more paths for the transaction to flow along. Thus, each transaction that is served is associated

with a certain amount and a path (or multi-path). Define a flow to be a transaction amount coupled

with a path. Since there are many transactions being requested and served in a single time slot,

there are multiple flows in parallel. The set of flows in slot t is represented as a vector f [t] ∈ RP
+.

The components of this vector, denoted by fi,j,k[t], represent the amount of money sent along path

pi,j,k in slot t. The total flow from node i to node j along all possible paths is denoted by fi,j [t].

Thus,

fi,j [t] ≜
∑

k:pi,j,k∈Pi,j

fi,j,k[t]

We clarify on the usage of the term flow. Here, we have used this term to denote the one

particular transaction (in one particular time slot) coupled with one particular path. We denote

such flows by f [t], explicitly mentioning the time slots. Earlier, in Section 4.2, the term flow had

the interpretation of a steady movement over transactions along a path over a long period of time.

In this case, we use the notation f (without t) to denote the vector of long-term flow rates. The

precise meaning of the term will be made clear from the context. Naturally, the two concepts are

related. Under stationary demand regimes, we expect instantaneous flows f [t] to converge to (or

oscillate around) some fixed flow rates f .

Feasible Flows In any slot t, nodes request a set of flows f [t] to be routed by the network. It

is possible that it is infeasible for some channels to route the requested flows through them due to

insufficient balance. A set of flows can be served entirely if and only if there is sufficient balance

on each side of each edge to route all the flows through in that direction simultaneously. Given a

balance vector x[t], a flow vector f [t] is feasible if:

R+f [t] ≤ x[t]; R−f [t] ≤ c− x[t].

Here, R+ is the matrix obtained by turning all −1s to 0s in R and R− is the matrix obtained by

turning all 1s to 0s and −1s to 1s in R. Thus, R = R+ − R−. Suppose a feasible flow vector has

been requested. Then, after the flow is routed, the balances are updated as:

x[t+ 1] = x[t]−Rf [t].

A feasible flow vector ensures that x[t+ 1] satisfies 0 ≤ x[t] ≤ c.

Next, we elaborate on how the network handles scenarios where the requested flows are infeasible.
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On-Chain Rebalancing When a certain flow is infeasible, there are one of two possibilities. One

possibility is that some channels have skewed balances, and are therefore unable to serve the flows.

The other possibility is that the flow rates requested exceed the channel’s capacity. Of course, it

is possible to have both scenarios as well. We elaborate on both of these cases, and describe what

the channel does in either of the scenarios.

• One possibility is that the channel (u, v) is unable to route flows f [t] because its balances are

highly skewed. However, if the channel was evenly (x[t]u,v = cu,v/2), then it would be able

to satisfy the flows requested. This means that either (R+f [t])u,v > x[t]u,v or (R−f [t])u,v >

x[t]u,v, but not both. Let us assume, without loss of generality, that it is the former. In such

a case, channels reset themselves with node u paying node v an amount of cu,v/2−x[t]u,v via

an on-chain transaction. node v then transfers the same amount to u via the channel, which

brings back parity in the balances. Having performed the balancing operation, channels route

the flows requested. We assume that all of these operations happen within one slot.

• A second possibility is that the channel channel (u, v) is not able to route the requested

flows f [t] because the total flow requested exceeds its capacity. Mathematically, this means

(R+f [t])u,v + (R−f [t])u,v > cu,v. Such a flow vector would be infeasible to route, irrespective

of the channel balances. In such a scenario, channels do not rebalance. Instead, each channel

drops some subset of flows being routed through it such that the remainder can be routed.

In the following sections, we assume that channel capacities are sufficiently large such that if

channels were indeed evenly balanced, they will be able to route arbitrary transaction requests.

Thus, the second of the two scenarios listed above does not arise. We discuss this point further in

Section 4.3.4.

Detailed Balance Flows In Section 4.2, we discussed the notion of detailed balance flows. Math-

ematically speaking, a flow vector f is said to satisfy the detailed balance condition (equivalently,

said to be a detailed balance flow) if

Rf = 0.

For any flow vector f , the term (Rf)u,v represents the net flow in the direction u → v along the

channel (u, v); a negative value would mean that the net flow is in the direction u← v. A detailed

balance flow is such that the amount of money flowing through each channel is equal in the two

opposite directions. Thus, after a detailed balance flow has been served, the balances on all the

edges remain the same as before. Note that for a detailed balance flow to be routed, the flow must

also satisfy the feasibility conditions noted above. The set of feasible, detailed balanced flows is

maximal when all edges are perfectly balanced (x = c/2).
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4.3.4 Large Capacity Regime

In the protocol presented below, it will be useful to consider a regime where the channel capacities

are, roughly speaking, sufficiently large compared to the transaction values. Large capacities allow

the protocol some room to steer the network’s operating point from an undesirable state to a

desirable one. Below, we make this notion precise.

Consider a payment channel network where some pairs of nodes wish to transact. This set of

transacting nodes may be arbitrary, but is typically much smaller than the set of all pairs nodes.

Among these transacting nodes, let there be a fixed set of paths along which transactions may

possibly flow. Here too, the set of paths may be arbitrary, but is typically much smaller than

the set of all possible paths between a given source-destination pair. Further, assume that any

transaction that arrives to the network is bounded above by a constant B. Lastly, assume that all

the channels are perfectly balanced to begin with.

Suppose that each transacting pair of nodes receives a transaction of value B. Let F be the set

of flow vectors obtained by considering every possible routing assignment of paths to transactions.

The PCN is said to have large capacity with respect to B if all flow vectors f ∈ F are feasible. Note

that it suffices to consider transactions of value exactly B in the above definition, as it ensures

feasibility of any lower valued transactions. The above notion also makes sense in scenarios where

transaction values are random, and may exceed some reasonable bound B very rarely; in this

case, the network can decide to not serve any transaction of value exceeding B, thereby retaining

the ability to serve most of the transactions. When we make the statement that a given PCN

is operating in the large capacity regime (without reference to a specific value B), we mean that

the transaction values are bounded above by some appropriate constant, much smaller than the

capacities of the channels.

A stronger notion of the large-capacity regime can be defined as follows. Let k ∈ N be a

parameter. Then, the PCN is said to have k-fold large capacity (with respect to B) if every

sequence of k flows (f1, f2, . . . , fk : fi ∈ F ∀ i) is feasible, starting from the perfectly balanced

state. For k = 1, we get back the original definition.

4.4 A DEBT (DEtailed Balance Transactions) Control Protocol for PCNs

The model described in the previous section provides a framework for discussing network protocols

for PCNs. In this section, we present a joint flow-control and routing protocol that can be im-

plemented on such networks. The goal of the protocol is the following: under stationary demand

conditions, the protocol should serve as large a portion of the transaction requests as possible, while

ensuring that the flows satisfy the detailed balance condition. We call this protocol the DEBT (DE-

tailed Balance Transactions) control protocol. Thus, the protocol seeks to serve as large a fraction

of transactions as possible without incurring the high cost of periodic on-chain rebalancing. We

refer the reader to Section 4.2 for the motivation behind this protocol.
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The key idea of the protocol is that channels quote prices to nodes for routing flows through

them. The price of a path is the sum of the prices of the channels along the path. Nodes choose

their flows depending on the path prices. A large path price signals the nodes to reduce the flow

along the path, while a low path price provides an incentive to increase the corresponding flow. If

all path prices between a pair of nodes is large, they hold back on their transactions. The channel

prices are adjusted in a manner such that eventually, only a detailed balance flow circulates through

the network, while all other flows are stifled off. Crucially, the protocol allows channel prices to be

negative as well.

The DEBT control protocol is an iterative one. Initially, all channel prices are zero; consequently,

the path prices are zero as well. Therefore, all transaction requests are served and routing choices

are made arbitrarily. As flows move through the network, channels adjust their prices based on the

net flow through them. For a channel (u, v), a net flow in the direction u→ v leads to an increase

in the price for further flow in that direction. Thus, it dissuades further flow in that direction.

The price in the opposite direction is simply the negative of the forward price. Imbalanced flows

eventually cause channels prices along their paths to become large enough that they get stifled.

However, balanced flows continue to see moderate path prices (possibly negative), and, therefore,

continue to flow.

During transient periods, it is possible that flows along channels are not balanced; indeed, without

an imbalanced flow, prices would not move at all. These transient imbalanced flows skew the

channels’ balances. If the channel capacities are large enough, they will not have to undergo any

rebalancing. If they are more moderate in value, some channels may undergo rebalancing during

the transient phase. However, the rate of rebalancing gradually reduces as the flows converge to

the detailed balance condition.

The DEBT control protocol is derived in the following steps:

1. We begin by assuming that each pair of nodes that wish to transact has some desired flow rate,

but is willing to accept a smaller flow rate as well. In other words, the transaction demands

are elastic. To indicate a preference for a larger flow rate, we assign each transacting node-pair

with a certain utility that is an increasing function of the flow rate obtained.

2. The goal of the protocol is to solve the following constrained optimization problem: maximize

the sum of all the node-pair’s utilities, subject to the constraint that flows satisfy the detailed

balance condition and the flow rates served do not exceed the desired flow rate.

3. The constraints are relaxed by introducing Lagrange multipliers. An equivalent dual problem

and a saddle point problem are derived.

4. An iterative algorithm is proposed to solve the dual problem. The algorithm updates both

flow variables (primal variables) and the Lagrange multipliers (dual variables).

5. The above algorithm is shown to have a decentralized implementation. The Lagrange mul-

tipliers are interpreted as prices quoted by channels. Based on these prices, transacting
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node-pairs make routing and flow-control decisions in a rational fashion.

6. The optimality of the protocol is argued based on the conditions at stationary points of the

protocol and the equivalence between the primal, dual and saddle-point formulations.

We elaborate on each of these steps next.

4.4.1 An Optimization Problem

To precisely formulate the protocol’s objective, we make the following assumptions regarding the

transaction demands made to the PCN. Firstly, we assume that each pair of nodes demands a

constant flow of transactions. Put mathematically, for each node pair (i, j), we assume that user i

wants to pay user j at a rate of ai,j per unit time, with ai,j ∈ R+. If ai,j = 0 for some node-pair

(i, j), it means that i does not wish to send any money to j. We do not make any assumptions

on the values of {ai,j : (i, j) ∈ V × V }. Secondly, we assume that transacting at a slower rate

than what they requested is acceptable to the nodes, although a faster rate is preferable. We

model this preference by means of a utility function. We assume that a pair of nodes (i, j) gains a

certain utility Ui,j(fi,j) when being served a flow of rate fi,j ∈ [0, ai,j ]. We assume that the utility

function Ui,j(·) concave, continuous and non-decreasing. We also assume that Ui,j(0) = 0 for all

(i, j). The utility functions may be different for different node-pairs. Often, we shall consider one

of two special cases:

• linear utility functions, with Ui,j(fi,j) = νfi,j , with ν being some positive constant.

• strongly concave, twice continuously differentiable utility functions with a curvature bounded

away from zero on the interval [0, ai,j ]. Mathematically, this means U ′′
i,j(·) ≤ −α < 0.

The DEBT control protocol’s objective is to determine a set of flows f in steady state that max-

imizes the sum of utilities of all pairs of transacting nodes, subject to the transaction demand

patterns and the detailed balance flow requirement. To elaborate, the goal of the protocol is to

maximize
∑

(i,j)∈N Ui,j (fi,j), subject to the following constraints.

• The total flow from i to j, fi,j , is less than or equal to ai,j . We call this the demand constraints.

• The net flow along any channel in the network is zero, i.e., (Rf)u,v = 0 for all channels (u, v).

We call this the detailed balance constraint.

More succinctly, the problem of our interest can be written as:

max
f≥0

∑
(i,j)∈N

Ui,j (fi,j)

s.t. Rf = 0

fi,j ≤ ai,j ∀ (i, j) ∈ V × V

(P)
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The equation Rf = 0 represents the detailed balance constraint and the inequalities fi,j ≤
ai,j ∀ (i, j) represents the demand constraints. For brevity, we denote the set of non-negative

flows satisfying the demand constraints by the symbol A.

A ≜ {f : f ≥ 0, fi,j ≤ ai,j ∀ (i, j) ∈ V × V } (4.1)

The symbol (P) denotes that the optimization problem presented above is the primal (or original)

problem.

4.4.2 The Dual Problem

We now present an alternate, equivalent form of the primal problem that do not explicitly have

the detailed balance constraint. The technique of relaxing constraints using Lagrange multipliers,

which we now present, is a standard technique in the field of optimization (see the book, Nonlin-

ear Programming, by Bertsekas [55]). Let λu,v denote the Lagrange multiplier for the constraint

(Rf)u,v = 0; let λ ∈ RE denote the vector of all such terms. Define the Lagrangian of the problem

(P) by

L(f, λ) ≜
∑

(i,j)∈N

Ui,j (fi,j)− λTRf. (4.2)

Using the Lagrangian function, we can formulate an equivalent form of the problem (P) as

follows:

max
f∈A

min
λ∈RE

L(f, λ)

=max
f∈A

min
λ∈RE

∑
(i,j)∈N

Ui,j (fi,j)− λTRf (4.3)

Let us denote the inner optimization problem by (P∗(f)):

min
λ∈RE

∑
(i,j)∈N

Ui,j (fi,j)− λTRf. (P∗(f))

To see why (4.3) is equivalent to (P), consider the problem (P∗(f)). Unless Rf = 0, the value

of (P∗(f)) is −∞. Therefore, to solve (4.3), f must be chosen such that Rf = 0. However, under

this constraint, the value of (P∗(f)) is equal to the objective function in (P).

The dual of the optimization problem (P) (or equivalently, of (4.3)) is obtained by changing the

106



order of the minimization and maximization in (4.3):

min
λ∈RE

max
f∈A

L(f, λ)

= min
λ∈RE

max
f∈A

∑
(i,j)∈N

Ui,j (fi,j)− λTRf

= min
λ∈RE

D(λ), (D)

where D(λ) is called the dual function, and is defines as follows:

D(λ) ≜ max
f∈A

L(f, λ) ∀λ ∈ RE . (4.4)

Note that (P) is a convex optimization problem with linear equality constraints and a bounded,

polyhedral domain (composed of linear inequality constraints). Thus, there is a strong relation

between the primal problem (P) and its dual (D) (see [56], Appendix C). In particular, we note

the following theorem, which will be useful later in relating the optimal solutions of (D) and (P).

Theorem 4.1 (Saddle Point Theorem (adapted from [56])). For f∗ to be an optimal solution of

(P) and λ∗ to be an optimal solution of (D), it is necessary and sufficient that f∗ ∈ A and

L(f∗, λ) ≥ L(f∗, λ∗) ≥ L(f, λ∗) ∀ λ ∈ RE , ∀ f ∈ A. (S)

Equation (S) is the definition of a saddle-point of L(f, λ). Thus, the above statement says that f∗

is primal optimal and λ∗ is dual optimal if and only if (f∗, λ∗) is a saddle-point for the Lagrangian.

4.4.3 A Dual Algorithm

The dual algorithm we now present is essentially a gradient-descent algorithm to solve the dual

problem (D). As a first step, we obtain an expression for the gradient of D(λ); we do so by invoking

Danskin’s theorem.

Theorem 4.2 (Danskin’s Theorem; from [55], Appendix B and [57]). Suppose ϕ(x, z) is a contin-

uous function of two arguments

ϕ : Rn × Z → R

where Z ⊂ Rm is a convex, compact set. Further, assume ϕ(x, z) is convex in x for every z ∈ Z.

Define f(x) and Z0(x) as:

f(x) = max
z∈Z

ϕ(x, z),

Z0(x) = arg max
z∈Z

ϕ(x, z).

Then the following statements are true:

• f(x) is convex in x.
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• If Z0(x) consists of a single element z, then f(x) is differentiable at x, with

∇f(x) = ∇xϕ(x, z).

• If ϕ(x, z) is differentiable with respect to x for all z ∈ Z, and if ∇xϕ(x, z) is continuous with

respect to z for all x, then the subdifferential set of f(x) is given by:

∂f(x) = conv {∇xϕ(x, z) : z ∈ Z0(x)}

where conv {·} denotes the convex hull of a set.

Lemma 4.1 (Properties of D(λ)). Let D(λ) be the dual function of the optimization problem (P)

as defined in (4.4). Then D(λ) is a convex function over the entire domain RE, and is, therefore,

continuous on RE. Moreover, the subdifferential set of D(λ) is given by

∂D(λ) = conv {−Rf : f ∈ F (λ)} ,

where

F (λ) ≜ argmax
f∈A

L(f, λ) (4.5)

Proof. The claims follow immediately from Danskin’s theorem quoted above (Theorem 4.2). Re-

place x by the Lagrange multipliers λ, z by the flow variables f , and ϕ(x, z) by the Lagrangian

L(f, λ). The set Z corresponds to A, the domain of f ; in our setting, this is a compact, convex

set.Then f(x) corresponds to the dual function D(λ) and Z0(x) is the set argmaxf∈A L(f, λ). Since

L(f, λ) is linear in λ for all f , it is also convex; thus, the convexity requirement is satisfied. Lastly,

∇xϕ(x, z) corresponds to ∇λL(f, λ), which is equal to −Rf . It immediately follows that ∇λL(f, λ)

is continuous with respect to f . Thus, all conditions for applying Danskin’s theorem are met.

Lemma 4.1 highlights the fact that D(λ) is differentiable only at those values of λ where the set

F (λ) has a unique value. This uniqueness condition may not be met at all points, which means that

D(λ) may not be differentiable everywhere. However, even in this case, −Rf(λ) is a subgradient

of D(λ), where f(λ) is an arbitrary element of F (λ).

We now present the algorithm as follows.

λ[0] = 0

f [t] ∈ argmax
f∈A

L(f, λ[t])

λ[t+ 1] = λ[t] + ϵRf [t]

(A)

Here, ϵ is a strictly positive step-size parameter in the algorithm. The algorithm is an iterative,

discrete-time one. The iterations continue for all t ∈ N. In each iteration, the flows f are set so as

to maximize the Lagrangian, given the current values of λ, while the Lagrange multipliers λ take a
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step in the direction towards minimizing the Lagrangian L. Under conditions where the set F (λ[t])

is unique everywhere, algorithm (A) is exactly the gradient descent of D(λ). Otherwise, it can

be interpreted as a subgradient algorithm. In either case, we expect λ[t] to approach an optimal

solution of (D), and consequently, f [t] to approach an optimal solution of (P). We analyze the

convergence of the algorithm (A) in Section 4.5

4.4.4 From a Dual Algorithm to a Network Protocol

We now illustrate how (A) can be implemented in a distributed way on a payment channel network.

In addition, we show how the Lagrange multiplier λu,v can be interpreted as the price quoted by

channel (u, v) to route a unit of flow in the direction u → v. For ease of exposition, we split this

discussion into two parts:

• the flow-control and routing decisions by the node-pairs, and

• the price updates by the channels.

To understand how the routing and flow-control decisions are decentralized, consider the opti-

mization problem that describes how flows are set in (A):

f [t] = argmax
f∈A

L(f, λ[t])

= argmax
f∈A

∑
i,j

Ui,j(fi,j)− λ[t]TRf

= argmax
f∈A

∑
i,j

Ui,j(fi,j)− µ[t]T f
(
µ ≜ RTλ

)

= argmax
f∈A

∑
i,j

Ui,j(fi,j)−
|Pi,j |∑
k=1

µi,j,k[t]fi,j,k

 (4.6)

First, note that in (4.6), the optimization problem is separable into non-interacting components.

To elaborate, each pair of transacting nodes (i, j) can solve the following problem independently

of the other transacting node-pairs:

(fi,j,1[t], . . . , fi,j,|Pi,j |[t]) = argmax Ui,j(fi,j)−
|Pi,j |∑
k=1

µi,j,k[t] fi,j,k, where (4.7)

µi,j,k[t] =
∑

u→v∈pi,j,k

λu,v[t]−
∑

v→u∈pi,j,k

λu,v[t] (4.8)

Let λu,v be interpreted as the price per unit flow for routing flows in the direction u → v. Let

the price for routing flows in the opposite direction of the same channel be −λu,v. Then, µi,j,k can

be interpreted as the price along the path pi,j,k. It is equal to the sum of the prices along each of
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the links in the path with the appropriate direction incorporated (see (4.8)). Each of these price

terms are evolving with time.

With this interpretation, fi,j,kµi,j,k is the total cost of routing an amount fi,j,k along the path

pi,j,k, so
∑|Pi,j |

k=1 fi,j,kµi,j,k is the total cost incurred by the node-pair (i, j) for splitting the total

flow fi,j along different paths. It is natural then to see that this cost is subtracted from the total

utility gained by the node-pair (i, j). Thus, the interpretation of (4.7) is that each node pair tries

to maximize its net utility, i.e., the utility with the cost subtracted. This is a rational decision from

the nodes’ point of view.

Next, we show how solving (4.7) leads to joint flow-control and routing. The structure of the

optimization problem in (4.7) is such that it is optimal to route flows only along the path that

has the minimum price. To elaborate, each node pair (i, j) calculates the minimum value and

the minimizer of the set (µ[t]i,j,k : k = 1, 2, . . . , |Pi,j |); denote these quantities as µ∗
i,j [t] and k∗i,j [t]

respectively. If there are ties, let k∗i,j [t] be chosen according to some fixed preference order among

the paths (say, preferring the shortest path). Then, for each (i, j), the path from i to j indexed by

k∗i,j [t] carries the entire flow fi,j [t], and all other paths from i to j carry zero flow; here, fi,j [t] is

the solution of

max
f∈[0,ai,j ]

Ui,j(f)− fµ∗
i,j [t].

This is a one-dimensional optimization problem, whose solution can be explicitly computed as

follows. The interpretation of (4.9) is given below.

fi,j [t] =


0 if U ′

i,j(0) ≤ µ∗
i,j [t]

U ′−1
i,j (µ∗

i,j [t]) if U ′(0) > µ∗
i,j [t] > U ′(ai,j)

ai,j if µ∗
i,j [t] ≤ U ′(ai,j)

(4.9)

It is possible that Ui,j(·) is not differentiable everywhere. However, since Ui,j(·) is a concave

function, a subdifferential set exists at each point. For a one-dimensional function such as Ui,j(·),
the sub-differential is a range of values at points where the function is non-differentiable, and is a

single point otherwise. Thus, we can define U ′
i,j(·) on the entire interval [0, ai,j ], with U ′

i,j(·) taking
a range of values at points where Ui,j is not differentiable.

Defined this way, U ′
i,j(·) is guaranteed to be a decreasing function. When U ′

i,j(·) is a strictly

decreasing function, U ′−1
i,j (·) is well defined. Even if the function is not strictly decreasing (but

simply non-increasing), we define U ′−1
i,j (·) to be a set and set f∗

i,j [t] to be the maximum value

within that set. Note that when Ui,j(·) is linear, the optimal solution is to either route the entire

requested amount ai,j or none of it. Thus, linear utility functions, automatically lead to atomicity

of the transactions.

Next, we turn our attention to the updates of the Lagrange multipliers in (A). The updates for
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each variable can be written out explicitly as

λu,v[t+ 1] = λu,v[t] + ϵ(Rf)u,v[t] ∀ (u, v) ∈ E (4.10)

Here, ϵ is a step-size for the Lagrange multiplier increments; it’s a parameter of the algorithm.

Note that the price λu,v is updated at time step t based only on the net flow through the channel

(u, v) in slot t. Thus, the price updates are based on local information alone. In fact, channels

need not know the source or the destination of the flows that they are serving to calculate prices.

The term λu,v tends to increase if the net flow through the channel (u, v) is in the direction from

u→ v, and tends to decrease if the net flow is in the opposite direction. This change is consistent

with the interpretation of λu,v as a price that penalizes or encourages flows in order to maintain

detailed balance. Indeed, a sustained net flow in either direction is bound to increase the price for

any future flow in that direction. It also decreases the price for any flow in the opposite direction,

thereby encouraging such flows. The prices keep adjusting until the net flow through each channel

converges to zero.

We now show how algorithm (A) can be overlaid on the model of the payment channel network

presented in Section 4.3. Firstly, each iteration of algorithm (A) corresponds to a single time step

of the payment channel network. f [t] denotes the flow requests made in time step t, while λ[t]

denotes the prices quoted by the channels at the beginning of time step t. Within a time step t,

transacting node-pairs make flow-control and routing decisions based on the prices quoted by the

channels at the beginning of the time step; i.e, f [t] is computed from λ[t]. The prices are updated

at the end of a time slot, after the flows have been routed. Thus, λ[t + 1] is computed after f [t]

has been routed.

We have already noted that each node-pair solves its own optimization problem to decide its

flow, without interacting with the other node-pairs. Having made their decisions, node-pairs route

their flow requests on the network. If the flow vector is feasible, all transaction requests go through,

and channels update their balances as well as their prices. If some channels are unable to route

the flows that have been requested through them, they rebalance themselves and allow the flows

to pass through. Under the assumption that the PCN is in the large capacity regime (see Section

4.3.4), the requested flows will be feasible after this rebalancing step. Note that the price updates

does not depend on whether channels rebalance or not. Each channel updates its own price and

makes the price publicly available at the end of each slot.

Assuming that the protocol converges to a detailed balance flow, the frequency with which a

channel needs to rebalance reduces, eventually approaching zero. If the protocol converges fast

enough, the number of times a channel would need to rebalance is finite. In fact, if the channel

capacities are large enough, the channels would not need to rebalance at all. Moreover, the protocol

never runs into deadlocks. This is because, in the transient phase, the channels rebalance themselves

if they get imbalanced, while in steady-state, the protocol stifles out deadlock-causing flows.
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4.5 Convergence Analysis

4.5.1 Preliminary Results

As the first step in the convergence analysis, we specify conditions under whichD(λ) is differentiable

everywhere.

• Assumption 1: For every pair of nodes (i, j), there is exactly one path along which trans-

actions may be routed from node i to node j.

• Assumption 2: For every pair of nodes (i, j), the utility function Ui,j(·) is strictly concave

and continuously differentiable in the interval [0, ai,j ].

Lemma 4.2 (Gradient of D(λ)). Under Assumption 1 and Assumption 2, the following state-

ments hold:

• For all λ ∈ RE, the set F (λ) has exactly one element f(λ) (F (λ) defined in (4.5)).

• f(λ) is a continuous function of λ.

• D(λ) is continuously differentiable with ∇D(λ) = −Rf(λ).

Proof. Recall the discussion on the flow updates in Section 4.4.4. We already know that the flows

for each (i, j) pair are set independently of the others. By Assumption 1, only the value of fi,j

needs to be decided; the question of splitting the total flow along multiple paths does not arise.

Assumption 2 implies that the function U ′
i,j(·) is strictly decreasing over the interval [0, ai,j ].

This, in turn, implies that U ′−1
i,j (·) is a well-defined (i.e., single-valued) function over all real values.

The first claim then follows from (4.9).

Under Assumption 2, the functions U ′
i,j(·) are continuous. Thus, so are the functions U ′−1

i,j (·).
These are the functions that map the path prices to the flows. The path prices are simply the

sum of a few channel prices. Thus, the flows are a continuous function of the channel prices, i.e.,

f(λ) is a continuous function of λ. This proves the second statement. For the third statement, the

differentiability of D(λ) and the expression of ∇D(λ) follows immediately from Lemma 4.1, while

the continuity of its derivative follows from the second statement.

Lemma 4.2 establishes that under Assumption 1 and Assumption 2, the iterates of λ in (A)

are identical to the iterates of the gradient descent method on D(λ). Note that even without these

assumptions, the iterates perform sub-gradient descent; however, we shall not analyze this general

case here.

4.5.2 Convergence in the Continuous-Time Limit

In this section, we analyze the algorithm under the limit ϵ → 0, while speeding time by a factor

γ/ϵ for some fixed γ > 0. In this limiting regime, algorithm (A) can be described by the following
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differential equation system:

f(t) = f(λ(t)) = arg max
f∈A

L(f, λ(t)) (4.11)

λ̇(t) = γRf(t) ; γ > 0 (4.12)

A shorthand representation of the above dynamical system is given by

λ̇ = γRf(λ) (4.13)

We would like to show that λ(t) converges to an optimal solution of (D), and consequently, f(t)

converges to an optimal value of (P). The main tool we shall use to prove such a convergence

result is LaSalle’s invariance principle.

Theorem 4.3 (La Salle’s Invariance Principle; from [58] and [59]). Consider a system with the

dynamics ẋ = f(x). Let Ω be a compact positively invariant set with respect to the system dynamics.

Let V be a real-valued continuously differentiable function such that V̇ (x) ≤ 0 in Ω, where V̇ (x) ≜

[∇V (x)]T f(x). Let E be the set of all points in Ω where V̇ (x) = 0. Let M ⊆ E be the largest

invariant set in E. Then every trajectory starting in Ω approaches M as t→∞, i.e.,

lim
t→∞

{
inf
z∈M
∥x(t)− z∥

}
= 0.

For the problem at hand, D(λ) serves as a potential function, i.e., a function whose value is

decreasing (or non-increasing) with the dynamics of λ as given in (4.13). Indeed, we have:

Ḋ(λ) = ∇D(λ)T λ̇

= −(Rf(λ))TRf(λ)

= −∥Rf(λ)∥2 ≤ 0

The main challenge in applying La Salle’s invariance principle to the problem at hand is to find a

compact positively invariant set with respect to the dynamics (4.13). To circumvent this issue, we

work with a regularized version of the dual function. Let c > 0 be some large positive constant; we

will specify how large it should be shortly. Define

Dc(λ) ≜ D(λ) +
∑

(u,v)∈E

(|λu,v| − c)2+, (4.14)

where the notation x+ denotes max(x, 0). In addition, we modify the system dynamics such that λ

decreases along the gradient of Dc(λ), instead of following the gradient of D(λ). The new system

dynamics are given by

λ̇ = −∇Dc(λ) = Rf(λ)− sgn(λ)(|λ| − c)+, (4.15)
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where sgn(λ)(|λ| − c)+ denotes a vector indexed by the set of channels, E, whose (u, v) component

is sgn(λu,v)(|λu,v| − c)+. Note that the modified dynamics are identical to the original one over

the set {λ : ∥λ∥∞ ≤ c}. Only when some components of λ grow very large in magnitude, the

regularizer term kicks in, keeping them bounded.

Lemma 4.3. Let c > 0 be fixed. For any α > 0, the set {λ : Dc(λ) ≤ α} is a compact positively

invariant set under the evolution of λ under (4.15). Moreover, starting from λ(0) = 0 and evolving

according to (4.15), the trajectory of λ(t) converges to the set Mc as t → ∞, where Mc ≜ {λ :

∇Dc(λ) = 0}.

Proof. For any α > 0, call the set {λ : Dc(λ) ≤ α} a level set of Dc(λ). Since Dc(λ) is a continuous

function of λ, its level sets are closed sets. Thus, to show that the level sets are compact, it suffices

to show that it is bounded. Firstly, note that D(λ) ≥ 0. This is because D(λ) is the maximum

value of L(f, λ) over f ∈ A (see (4.4)) and L(0, λ) = 0 for all λ. Secondly, the level sets of the

regularizer alone,
∑

(u,v)∈E(|λu,v| − c)2+, are bounded. Adding a non-negative term, D(λ), would

only shrink the level sets. Thus, the level sets of Dc(λ) are bounded.

The positive invariance property of the level sets follows from the fact that Dc(λ) monotonically

decreases with the system dynamics. This is shown below:

Ḋc(λ) = ∇Dc(λ)
T λ̇ (by the chain rule)

= −∥∇Dc(λ)∥2 (by (4.15))

≤ 0

We now have all the ingredients to invoke LaSalle’s invariance theorem (Theorem 4.3). The

function Dc(λ) serves as the Lyapunov (or potential) function. Let α ≜ Dc(0) (which is also equal

to D(0)). Then Ωα ≜ {λ : Dc(λ) ≤ α} is a compact, positively invariant set. We know that

λ(0) ∈ Ωα, which implies λ(t) ∈ Ωα ∀ t→∞. We also know that the set {λ : Ḋc(λ) = 0} is equal
to Mc. Moreover, every λ ∈ Mc is also a stationary point of the dynamics. Thus, by LaSalle’s

invariance principle,

λ(t)
t→∞−−−→Mc ∩ Ωα ⇒ λ(t)

t→∞−−−→Mc

So far, we have shown that, under the regularized dynamics of (4.15), λ converges to Mc, the

set of minimizers of the regularized dual function Dc(λ). Let us summarize the assumptions and

approximations that we have made in proving this result:

• We assume that each pair of nodes route transactions on a single path and that they have

strictly concave, twice differentiable utility functions (see Section 4.5.1)

• We approximate the updates of the variables under algorithm (A) by the corresponding

continuous-time dynamics (4.13).
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• We modify the dynamics to ensure that λ does not grow too large (4.15).

By making an additional assumption, namely, a (finite) minimizer of D(λ) exists, we can obtain

more meaningful convergence guarantees. We elaborate on this below.

Assumption 3: The function D(λ) achieves its minimum for some (finite) value of λ.

Define Λ∗ to be the set of minimizers of D(λ), i.e.,

Λ∗ ≜ arg min
λ∈RE

D(λ).

Further, define c∗ to be the least possible norm of a minimizing λ, i.e.,

c∗ ≜ inf{∥λ∥∞ : λ ∈ Λ∗}.

Clearly, under Assumption 3, Λ∗ is non-empty and c∗ is finite.

The following lemma refines the statement of Lemma 4.3 with the additional condition that

Assumption 3 is true.

Lemma 4.4. Suppose Assumption 3 is true. Let c be chosen s.t. c > c∗. Then, Mc ⊆ Λ∗.

Further, λ(t)→ Λ∗ under the dynamics of (4.15).

Proof. The function D(λ) is a convex function of λ (see Lemma 4.1). The regularization term,∑
u,v(|λu,v| − c|)2+, is also a convex function of λ. Thus, Dc(λ) is a convex function. We know that

for convex functions defined over the whole space, a particular point is a minimizer of the function

if and only if the gradient at that point is zero. Recall that the set Mc consists of all λ such that

∇Dc(λ) = 0. Therefore, Mc is the set of minimizers of Dc(λ).

Under Assumption 3, we can choose some λ∗ ∈ Λ∗ with ∥λ∗∥∞ ≤ c (since c > c∗). Therefore,

the dual function is equal to its regularized counterpart at λ∗, i.e., D(λ∗) = Dc(λ
∗). Combining

this with the fact that λ∗ is a minimizer of D(λ), we see that λ∗ is also a minimizer of Dc(λ).

Indeed, any other choice of λ cannot reduce the value of either D(λ) or the regularizer term any

further.

Extending the same argument, we can make the stronger claim that, under Assumption 3 and

for every c > c∗, every minimizer of Dc(λ) is also a minimizer of D(λ). Thus, Mc ⊆ Λ∗. By Lemma

4.3, λ(t)→Mc. Therefore, λ(t)→ Λ∗.

Lemma 4.4 tells us that, under appropriate conditions, the prices, lambda(t), converge to the

set of optimal solutions of the dual problem (D). Building upon this result, we can show that the

flows, f(t), converge to the set of optimal solutions of the original network optimization problem

(P). Let F ∗ denote the set of solutions to (P).

Lemma 4.5. Suppose Assumption 3 is true and suppose c is chosen such that c > c∗. Then,

under the regularized dynamics, (4.15), f(λ(t))→ F ∗.
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Proof. Let λ∗ be any optimal solution of (D). Let f∗ denote f(λ∗), i.e., the flow that maximizes

the Lagrangian given, given the prices are λ∗. Since D(λ) is a convex function, it must be the case

that ∇D(λ∗) = Rf∗ = 0. This implies that L(f∗, λ) does not depend on λ at all. In other words,

L(f∗, λ) =
∑
i,j

Ui,j(f
∗
i,j)− λTRf∗ = L(f∗, λ∗) ∀ λ ∈ RE

In addition, since f∗ is the best flow in response to λ, i.e., f∗ = argmaxf∈A L(f, λ), we get:

L(f∗, λ∗) ≥ L(f, λ∗) ∀f ∈ A

Putting these equations together, we have

L(f∗, λ) = L(f∗, λ∗) ≥ L(f, λ∗) ∀ λ ∈ RE , ∀f ∈ A

Thus, (f∗, λ∗) form a saddle point. By the saddle point theorem (Theorem 4.1), f∗ must be an

optimal solution of the primal problem (P).

Under Assumption 3 and the condition c > c∗, Lemma 4.5 tells us that λ(t)→ Λ∗. The above

analysis shows that {f(λ) : λ ∈ Λ∗} ⊆ F ∗. Since f(λ) is a continuous function of λ (shown in

Lemma 4.2), we obtain the stated convergence result, i.e., f(λ(t))→ F ∗.

A key limitation of our convergence results, namely Lemmas 4.4 and 4.5, is that we need to explic-

itly assume the existence of a solution to the dual problem (D) (Assumption 3). We conjecture

that this assumption is true for all instances of the primal problem (P) and the corresponding (D).

Proving (or disproving) this conjecture is left for future work. Proving similar convergence results

without the regularized dynamics would be an additional improvement of our current results.

4.5.3 Convergence with non-zero step-sizes

To establish convergence of the algorithm under step-sizes bounded away from zero, we need to

have that D(λ) has Lipschitz gradients. This condition is obtained when strengthen Assumption

2 to require that the functions Ui,j(·) are strongly concave. In other words, we require that the

curvature of the utility functions is bounded away from zero: U ′′
i,j(·) ≤ −α < 0. Here, we sketch

the analysis by Low and Lapsey [60], which studies a network optimization algorithm that is very

similar to the one posed here. The only difference is that in their work, the constraints on the flows

are capacity constraints instead of detailed balance constraints, i.e., they are inequality constraints

instead of equality constraints. The protocol proposed and analyzed by Low and Lapsey [60] is

otherwise identical to the one proposed here. In particular, they obtain a Lipschitz constant for

the gradients of D by bounding the matrix norm of its Hessian. The expression for the Hessian

and the bounds that follow are identical to our setting. From Lemmas 2 and 3 in their paper, it

follows that D(λ) has Lipschitz gradients.
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It is a well-known result that if a differentiable, convex function has Lipschitz gradients, then for

small enough step-sizes, the gradient-descent method converges in the sense limt→∞∇D(λ[t]) =

−Rf [t] = 0 (see the book Parallel and Distributed Computing by Bertsekas and Tsitsiklis [56],

Chapter 3, Proposition 2.1). In general, the above convergence result does not imply that the

sequence (f [t], λ[t]) converges. In particular, unlike in [60], the level set {λ : D(λ) ≤ D(λ[0])} is

unbounded. However, if (f [t], λ[t]) does converge, its converges to (f∗, λ∗) that satisfies (S), and

is, therefore, primal-dual optimal.

4.6 Simulation Results

4.6.1 Dynamic Routing Example

First, we run algorithm (A) on the PCN described in Section 4.2.4. Due to the symmetric nature

of the set-up, we only describe the flows from A → B and the corresponding path prices. Recall

that there are two possible paths to route such flows: a short path directly along the channel

A − B, and a longer path via C. According to algorithm (A), nodes choose to route flows along

the cheaper path at all times. If the prices are identical, they choose the shorter of the two paths.

We see in Figure 4.1 that the protocol follows a periodic pattern, choosing the shorter path twice

in succession followed by choosing the longer path once. The prices vary accordingly. The step-size

for the prices is set to be ϵ = 0.1. Linear utility functions are used. The choice of the utility

function is somewhat immaterial in this example, because the need for flow-control does not arise.
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Note that although the long-term average of the flows satisfy the detailed balance on each of

the edges (accounting for the B → C and C → A flows as well), the same cannot be said for

the instantaneous flows. In order to get the flows (and the prices) to converge, one can adopt the

following heuristic modification of (A). Instead of routing the entire flow amount on the path with

the minimum cost, one could weigh the paths according to the softmin weights of the path prices,
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and split the flows on the various paths accordingly. This smoothens the vector of optimal flows,

f(λ), as a function of the price vector λ. This in turn helps smoothen D(λ), which is a sufficient

condition for the gradient descent method with constant step-sizes to converge. We illustrate this

point in Figure 4.2. The protocol is run with a step-size of ϵ = 0.01. Softmin is taken using the

transformation x→ exp(−10x).
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4.6.2 Deadlock Example

We now examine the behavior of algorithm (A) on the deadlock example presented in Section

4.2.5. In this example, there is no question of routing. The only control exercised by the protocol

is that of flow-control. Consequently, the utility function that we choose becomes important. Here,

the utility functions are linear with a coefficient of 3. This means that for any path, if the price

is strictly above 3, the flow on the path drop to zero. The step-size for the prices is set to be

ϵ = 0.1. The simulation results are given in Figure 4.3. We see that with every time step, the path

price for the B− > A and B− > C keeps increasing, until at time-step four, the price exceeds the

threshold. At this point, the corresponding flows drop to zero, which, in turn, keeps the prices

stable. The prices for the flows from A → C and C → A remain zero throughout. Consider the

path A→ B → C. The channel price for A−B in the A→ B direction is negative, and for B−C

in the B → C direction is positive. Due to the symmetry of the set-up, the prices add up to zero

at all times. The same holds true for flows in the opposite direction. Thus, A → C and C → A

flows continue throughout, as desired.

4.6.3 Six-Node Network Example

We now consider a payment channel network with six nodes and six payment channels. The

topology is that of a ring, as shown in Figure 4.4. The channel capacities are roughly two hundred

each. There are demands between many pairs of nodes: these demands are also illustrated in Figure
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Figure 4.4: Six-Node Network Example

In the simulation, we consider two possible paths for every transacting node-pair: the shortest

path, and the shortest path that goes through a randomly chosen node (we allow for cycles here).

The choice between paths is made using a softmin function, which is implemented using the trans-

formation x→ exp(−x). The utility functions are described implicitly by specifying the response of

the flows to the path prices (see (4.9)). The response is characterized by two threshold parameters

τ0 and τ1 with τ0 < τ1.

fi,j [t] =


0 if µ∗

i,j [t] ≥ τ1

ai,j
τ1−µ∗

i,j [t]

τ1−τ0
if τ1 > µ∗

i,j [t] > τ1

ai,j if µ∗
i,j [t] ≤ τ0

The softmin choice of paths and a smooth, strongly concave utility function together provide

conditions for the protocol to converge for small enough step-sizes (see Figure 4.6). However, as we
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see by comparing Figures 4.5 and 4.6, it may be more desirable to choose a slightly bigger step-size

so as to approach the optimal point faster; oscillations around the optimal operating point do not

matter.
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Figure 4.5: ϵ = 0.05. The flows are shown with a moving-average filter with a window of size 10.
Note that all the flows do not converge; some of them oscillate around a particular value. The
figure on the right illustrates that three channels require rebalancing, once each.
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