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Abstract

Accelerators like Graphics Processing Units (GPUs) have become popular

compute devices for HPC, cloud, and machine learning applications because

of their compute capabilities and high memory bandwidth. However, GPUs

and other accelerators still live within the confines of their modest memory

capacity and rely on the inefficient software stack running on the CPUs to

orchestrate access to data storage. This CPU-centric data orchestration is

well-suited for GPU applications with parallel computation patterns that are

flat and regular in nature, like dense neural network training. Unfortunately,

many emerging workloads, such as graph and data analytics, recommender

systems, or graph neural networks require fine-grain, data-dependent sparse

access to storage. The CPU-centric data orchestration of storage accesses

is unsuitable for these applications due to high CPU-GPU synchronization

overhead, I/O traffic amplification, and excessive CPU software bottlenecks.

To overcome these limitations, this work analyzes and shows the feasi-

bility of using GPUs to orchestrate high-throughput fine-grain direct access

to storage for emerging workloads. We propose, implement, and evaluate

the design of a cost-effective system architecture called BaM (Big Accel-

erator Memory). BaM capitalizes on the recent improvements in latency,

throughput, cost, density, and endurance of solid-state storage devices and

systems to realize another level of the accelerator memory hierarchy. BaM is

an accelerator-centric approach where GPU threads can identify and orches-

trate on-demand access to data where it is stored, be it in memory or storage,

without the need to synchronize with the CPU. This significantly decreases

the CPU-GPU synchronization overhead, avoids CPU software stack ineffi-

ciency, minimizes I/O amplification, and enables GPU programmers to treat

storage as memory.

However, naively running applications on BaM does not result in perfor-

mance and efficiency benefits. As BaM essentially extends the accelerator
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memory hierarchy to the storage, favorable access patterns are needed for

BaM to reach its full potential. This is because, on the one hand, BaM

requires coalesced accesses for extracting high-throughput out of its cache,

while on the other hand, the BaM I/O stack requires many concurrent I/O

requests to hide the storage access latency. These conflicting requirements

create a design dilemma, motivating the set of sophisticated optimization

techniques and application adaptation strategies that allow applications to

achieve peak performance on BaM.

The proposed techniques, cache-line aware parallel work assignment, and

on-demand implicit tiling methods are generalizable across a wide range of

data structures and emerging applications. Using these optimizations and ap-

plication adaptations, we show that BaM is a viable, much less expensive al-

ternative to the existing DRAM-only and other state-of-the-art CPU-centric

solutions. Overall, this dissertation proposes a design of a system capable of

performing GPU orchestrated storage access to extend the GPU’s effective

memory capacity and provides a set of generalizable application adaptations

that enables application developers to maximize the performance, cost, I/O

efficiency, capacity scalability, and simplified software development for emerg-

ing workloads, even without additional hardware support. With BaM, the

user gets the teraflops of GPU compute capability and terabytes of GPU

accessible memory at a low cost.
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Chapter 1

Introduction

After more than a decade of phenomenal growth in the compute throughput

and memory bandwidth [1, 2], GPUs have become popular compute devices

for HPC and machine-learning applications and are proving to be effective

general-purpose accelerators. Emerging high-value data-center workloads

such as graph and data analytics [3–9], graph-neural networks (GNNs) [10,

11], and recommender systems [12–16] can potentially benefit from the com-

pute throughput and memory bandwidth of GPUs. These applications access

massive datasets organized into array data structures whose sizes typically

range from tens of GBs to tens of TBs today and are expected to proliferate

in the foreseeable future.

Storing these datasets as in-memory objects enables applications to natu-

rally and efficiently process the data. However, GPUs and accelerators still

primarily live within the confines of their modest memory capacity and are

still controlled by the bulky software stack of the CPUs. The memory capac-

ity of GPUs, despite a 53× increase from that of G80 to A100, is only 80GB,

far smaller than the required capacity to accommodate the entire datasets

of these workloads. Several alternatives have been introduced to address the

GPU memory capacity problem.

First, some current state-of-the-art approaches rely on the CPU user/OS

code to proactively partition the datasets into chunks and orchestrate the

storage access and data transfers of these chunks into the GPU memory for

application processing [14–24]. Second, some prior work relies on memory-

mapped files and GPU page faults to reactively transfer data on demand

whenever the application attempts to access data not present in GPU mem-

ory [25–28]. This thesis refers to both proposals as a CPU-centric approach.

The CPU-centric approach of computing works well for classical GPU ap-

plications with parallel computation patterns that are flat and regular in

nature, like, dense neural network training or matrix multiplications. Un-
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fortunately, for emerging workloads, where the data lookups are increasingly

becoming on-demand, data-dependent, and sparse, neither of these CPU-

centric approaches provide meaningful performance, efficiency, and cost ben-

efits. Our in-depth analysis of these CPU-centric approaches shows that they

cause excessive CPU software bottlenecks and CPU/GPU synchronization

overheads, resulting in poor performance (See §4).
To overcome such inefficiencies in the CPU-centric approaches, some state-

of-the-art solutions use the host memory [5], whose capacity typically ranges

from 128GB to 2TB today, or pool together multiple GPUs’ memories [16]

to host the entire datasets of emerging workloads. We will refer to the use

of host memory or pooling of multiple GPUs memory to extend the GPU

memory capacity as the DRAM-only solution. While DRAM-only solution

has become a common practice in industry and academia, extending the

host memory or memory pooling from multiple GPUs to the level of tens

of TBs is a costly proposition. For instance, an application requiring 10TB

memory capacity would require 128 NVIDIA A100-80GB GPUs. Regardless

of which memory, CPU DRAM expansion, or the pooled GPU is used to host

these datasets, data must still be pre-loaded from storage into the extended

memory, and not all data might be used due to conditions only known during

run-time computation.

In this dissertation, we analyze and prove the feasibility of performing high-

throughput fine-grain direct access from accelerators to storage for emerging

workloads. We propose, implement, and evaluate the design of a cost-effective

solution called BaM (Big Accelerator Memory). BaM capitalizes on the re-

cent improvements in latency, throughput, cost, density, and endurance of

solid-state storage devices and systems to realize another level of the ac-

celerator memory hierarchy. BaM moves the needle in accelerator-initiated

storage access significantly and comprises a storage driver stack to provision

storage I/O queues and buffers in the GPU memory, a high-throughput cache

for exploiting data reuse, and equips with a high-level abstraction to enable

GPU self-orchestrated storage access.

BaM distributes and parallelizes the cache management across GPU threads

and enables application threads in userspace to find data in parallel with-

out relying on the traditional centralized authorities like operating system

page-fault handlers. In BaM, GPU threads can identify and orchestrate on-

demand accesses to data where it is stored, be it in memory or storage,
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without the need to synchronize with the CPU, significantly minimizing I/O

amplification and enabling GPU programmers to think of storage as memory.

However, naively running applications on BaM does not result in perfor-

mance and efficiency benefits. As BaM essentially extends the accelerator

memory hierarchy to the storage, favorable access patterns are required for

BaM to reach its full potential. This requires embracing two fundamental

yet conflicting requirements. Essentially, on the one hand, we need coalesced

accesses to conserve the available bandwidth of the BaM cache, while on

the other hand, the BaM I/O stack and storage requires many overlapping

concurrent I/O requests to hide the storage access latency. However, having

coalesced accesses in the BaM cache minimizes the number of I/O requests

submitted to the storage and thus cannot hide the latency!

To address this design dilemma, a set of sophisticated optimization tech-

niques and application adaptation strategies are proposed to achieve peak

performance out of BaM. The ideal access pattern should make use of BaM

resources perfectly and should adhere to the following set of guidelines: (1)

it should generate a large number of overlapping concurrent I/O requests

to tolerate the long latency of storage access, (2) it should maximize the

achievable bandwidth from BaM cache and the available I/O bandwidth, (3)

it should be general and applicable to a class of applications and yet not

degrade the performance when the application data fit in the GPU memory

and (4) it should ultimately achieve good application level performance.

To this end, we propose the cache-line aware work assignment, a simple

generalizable work assignment-based optimization that meets the above goals

for all studied emerging workloads. The key idea of cache-line aware work

assignment is to map each warp (or a thread block) to work on cache-line data

in a manner that minimizes the contention when accessing BaM metadata

and also generates a sufficiently large number of concurrent I/O requests to

saturate the BaM storage stack.

Although the cache-line aware work assignment provides a remarkable per-

formance boost over naively BaM implementation, it may not be able to se-

cure peak performance out of BaM. Thus, we discuss the limitations of this

optimization in the context of graph analytics workload and then propose

a novel application adaptation technique called “on-demand implicit tiling

(ODT )” to perform efficient computation on Compressed Sparse Row (CSR)

data-structure. In the ODT technique, each warp works on a tile of data in-
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stead of the traditional vertex-centric approach such that each loaded tile

is optimally reused while also exploiting the GPU’s massive parallelism to

generate many concurrent I/O requests to hide the memory access latency.

We show that the ODT technique regularizes the irregular accesses pattern

of CSR data structure and maximizes the performance achievable out of the

BaM system.

We then apply these optimizations and application adaptations to several

emerging workloads across multiple datasets, SSD types, and I/O sizes and

show that BaM is a viable, much less expensive alternative to the existing

DRAM-only and other state-of-the-art CPU-centric solutions. For example,

for graph analytics workloads, known to be notoriously hard to achieve good

performance due to random memory access, BaM, with these optimizations,

provide on-par or better performance over the current state-of-the-art host-

DRAM only solution and is only 4.27× slower than the GPU-HBM solution.

We also show that the proposed optimizations are universal and improve

or retain the same level of performance when the dataset fits within the

GPU-HBM memory. And these performance benefits are extendable to other

data-dependent workloads like the data-analytics where BaM can achieve

up to 5.3× speed up over the host DRAM-only solution. Lastly and more

importantly, BaM is the only system that can scale beyond 100TB capacity

at a reasonable cost and yet provide simplistic abstractions for programmers

to work with large datasets.

Overall, this dissertation proposes a design of a system capable of perform-

ing GPU orchestrated storage access to extend the GPU’s effective memory

capacity and provides a set of generalizable application adaptations that

enables application developers to maximize the performance, cost, I/O effi-

ciency, capacity scalability and simplified software development for emerging

workloads, even without any additional hardware support. With BaM, the

user gets the teraflops of GPU to compute capability and terabytes of GPU

accessible memory at a low cost. We believe BaM is the significant step

in building accelerator-initiated access to storage and opens up a pandora’s

box of research questions to answer, both in hardware and software. We

also hope BaM enables ground-breaking research ideas and applications that

cannot execute with current systems.
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Chapter 2

Background

This chapter provides a comprehensive overview of the technologies and con-

cepts needed to understand the thesis. This chapter covers a high-level

overview of the GPU programming model and architecture, GPUDirect tech-

nology, and relevant details of NVMe specifications.

2.1 GPU Programming Model and Architecture

In this section, we briefly describe the relevant aspects of the GPU archi-

tecture and the NVIDIA CUDA programming model that are required to

understand this thesis. Although this section discusses assuming the CUDA

programming model, the fundamentals of GPU architecture and program-

ming model remain consistent across different vendors. The GPU architec-

ture consists of many streaming multiprocessors (SMs) connected to tens of

gigabytes of high bandwidth global memory. Each SM supports up to 2048

threads, tens of kilobytes of fast registers, and tens of kilobytes of scratchpad

memory. With CUDA, a GPU programmer can launch a compute kernel on

the GPU with thousands to millions of threads organized into thread blocks.

The GPU schedules thread blocks on the SMs as the resource constraints

permit. Once a thread block is scheduled on an SM, it remains there until

all threads in the thread block have finished their execution. Threads in

a thread block can synchronize and share data through a fast scratchpad

memory, referred to as shared memory.

An SM further divides a thread block into warps, consisting of 32 threads.

The SM uses the threads in a warp as the unit of work to schedule on the cores

of the SM. An SM can coalesce the memory accesses of a warp if its threads

access the same cache-line. This enables the SM to generate larger and fewer

memory requests, optimizing the memory bandwidth utilization of the GPU.
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The SM hides the latency of memory and computes operations in warps by

preempting them with other warps on the SM that are ready to execute.

Threads executing on parallel SMs help hide the latencies experienced by

anyone SM. As a result, GPUs have the hardware resources needed to provide

high throughput for applications that exhibit a massive amount of fine-grain

data parallelism.

2.2 GPUDirect Technology

GPUDirect is a set of features available in modern GPU architecture that

allows peer-to-peer communication between two mapped device memory

regions. NVIDIA introduced the GPUDirect RDMA technique in 2011 with

Kepler architecture and CUDA 3.1 to accelerate data movement between the

third-party PCIe devices and the GPU [29, 30]. With GPUDirect RDMA,

the data transfer between a peer device and the GPU does not have to

go through bounce buffers in the host memory, thus reducing latency and

CPU overhead. Several prior works have used this technique to implement

efficient data transfer from storage to the GPU [18–20, 22, 31]. The most

recent attempt in this segment that is noteworthy is GPUDirect Storage [17]

product from NVIDIA and similar efforts from AMD in the RADEON-SSG

product lines [32].

However, the GPUDirect RDMA feature does not provide triggering con-

trol path modifications to the GPU. To address this, GPUDirect Async, a

new feature introduced in CUDA 8.0 (2017), enables the GPU to trigger

and synchronize with the peer devices by memory-mapping the third-party

device BAR space within the CUDA address space. Transactions occurring

with GPUDirect Async trigger memory-mapped I/O (MMIO) requests to the

peer device enabling reduced involvement of the CPU in the critical path in

application execution. Prior work has used this technique to interface with

the network cards and communicates with remote GPU or storage [29,30].
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2.3 NVMe Queues

The NVMe [33] protocol is the latest standard defined by the industry to

enable high-throughput access and to provide virtualization support for both

server and consumer-grade SSDs. NVMe protocol allows up to 64K parallel

submission (SQ) and completion (CQ) circular serial queues, each with 64K

entries per device. In practice, today’s NVMe SSDs support much fewer (∼
128) and smaller (∼ 4K entries) queues. The NVMe device driver allocates

a pool of buffers in the memory for use by the DMA engine of SSD devices

for read and write requests. These queues and buffers traditionally reside in

the system memory in the CPU-centric model.

An application requesting storage accesses causes the driver to allocate

a buffer from the I/O buffer pool for the request and enqueue an NVMe

I/O command at the tail of an SQ with a unique command identifier. The

driver then writes the new tail value to the specific SQ’s write-only register

in the NVMe SSD’s BAR space, i.e., it rings the queue’s doorbell. For

improved efficiency, a driver can ring the doorbell once after enqueueing

multiple requests into an SQ.

For a read request, the SSD device controller accesses its media and delivers

the data into the assigned buffer using its DMA engine. For a write request,

the SSD device controller DMAs the data in the buffer into its media. Once

a request is serviced, the SSD device controller inserts an entry into the CQ.

When the host driver detects that the CQ entry for a command identifier is

in place, it retires the request, frees up the space in the queue, and buffers for

the request. The CQ entry also notifies the driver of how many entries in the

SQ are consumed by the NVMe controller. The driver uses this information

to free up space in the SQ. The driver then rings the CQ doorbell with

the new CQ head to communicate forward progress. An SSD device can

efficiently insert CQ entries for multiple requests in one transaction.
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Chapter 3

Emerging Large Scale Applications

We discuss the key trends witnessed in the high-value data center applications

and the system requirements for their efficient execution. This chapter covers

three main types of workloads: graph analytics, GPU accelerated databases,

and recommender systems. However, BaM can provide performance and

cost benefits for several emerging applications such as graph neural network

workloads but are not covered in this thesis.

3.1 Graph Analystics

Graph workloads are becoming increasingly common in various analytics ap-

plications such as social network analysis, recommender systems, financial

modeling, bio-medical applications, graph database systems, web data, geo-

graphical maps, and many more [3, 7–9,34–41]. A recent survey by the Uni-

versity of Waterloo [34] finds that many organizations use graphs for various

applications that usually consist of billions of edges and consume hundreds

of gigabytes of storage. Figure 3.1 shows the trends in memory required for

executing graph analytics workload over time based on one dataset collec-

tion: Suite sparse dataset [35]. For efficient storage and access, graphs are

stored in a compressed sparse row (CSR) data format as it has low memory

overhead. In the CSR format, a graph is stored as the combination of a

vertex list and an edge list, as shown in Figure 3.2. Even with CSR data

format, significant graph datasets can far exceed the capacity of today’s GPU

memory.

Graph traversal algorithms are fundamental primitive operations performed

on a graph to understand its properties. The most common graph traversal

algorithms are bread-first-search (BFS), connected components (CC), page

rank (PR), and single source shortest path (SSSP). These algorithms form
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the basis of many higher-level algorithms and libraries [5,42–45]. Because of

the massive parallelism available in graphs algorithms, these graph traversal

algorithms are often accelerated using GPU [3,5, 39,40,46–49].

In an optimized GPU implementation [5] of these algorithms for external

I/Os, each GPU warp is assigned to a node being visited in the current iter-

ation, where all threads in the warp collaboratively walk through the node’s

neighbor list. This is particularly true for applications such as BFS and SSSP.

In the case of CC and page rank implementations, a similar assignment as

BFS is followed, except that the application starts by examining all the nodes

in the graph. Irrespective of the algorithm, each thread accesses a fine-grain

data value (usually 4B or 8B, depending on the data type used to represent

the graph) from the edge list for a given vertex. Since these accesses are

data-dependent in nature, the access pattern becomes unpredictable.
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3.2 Recommender Systems

Recommender systems are ubiquitous across online retailers and social media

companies as they drive their sales [12,14,15,50]. Recommender systems aim

to predict the user’s interests, determine to rank and click through-rates and

recommend product items that are likely interesting to the users.

Typical deep learning-based recommendation models (DLRM) comprise

sets of fully connected layers and embedding tables. Figure 3.3 shows a

high-level architecture of a DLRM system. The system takes two sets of

inputs: dense and sparse feature vectors. Dense feature vectors represent

continuous or numerical features extracted from the user-specific profile. Ex-

amples of dense feature vectors are embedding vectors extracted for user age,

name, or gender. On the other hand, sparse feature vectors or categorical

features are a collection of embedding tables describing user interaction with

different entities in the platform. Some examples of these entities are a list

of movie names, their genre, and production companies. Each entity has a

unique embedding table, and each entry in the embedding table has a unique

embedding vector extracted using natural language processing models.

Dense feature vectors are directly fed into various types of multi-layer per-

ceptron (MLP) such as Fully Connected (FC) layers, CNNs, and RNNs, as

shown in Figure 3.3. To handle categorical features, embedding is mapped

to form a dense representation in abstract space (reduction operation). Dur-

ing this step, each embedding lookup can be either a one-hot vector or a

weighted combination of multiple embedding vectors [12]. This is followed

by a second-order interaction computation across different features by taking

a dot product between all pairs of embedding vectors and processing dense

feature vectors in a batch. The interaction layer captures the cross relation-

ship between two distinct dense and sparse feature vectors in latent space,

avoiding the cold start problem1. The output of the pairwise interaction layer

is fed to a top-level MLP or fully connected layer to compute the likelihood

of a click between the user and the item.

DLRMmodels are fundamentally limited by the memory capacity available

in the GPUs [14, 16]. The total number of parameters in DLRM models

1Traditional matrix factorization techniques cannot capture unseen data points causing
cold start problem. For example, a new movie that has not been rated by anyone yet,
cannot be recommended to the user.
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Figure 3.3: Model architecture of modern DLRM recommender systems.

tends to be very large, going up to trillions. This is because large embedding

tables help disambiguate the effect of different entities, thus increasing the

accuracy of prediction in recommendation models [51]. During the data-

dependent lookup operation, visibility to entire embedding tables is needed

as it is not possible to determine what data will be accessed when. Moreover,

these models are trained frequently, usually every day, to capture the latest

trending articles on the platform. This adds new entries in the embedding

table over time, increasing the model capacity requirement. As new entities

get created to capture new relationships between entities, additional sparse

embedding tables are created and added to the model, further increasing the

model capacity. Because of these, the number of parameters in the DLRM

model is growing at an unprecedented rate as shown in Figure 3.42. A trillion

scale DLRM model constitutes up to 4TB of memory capacity requirement,

assuming each parameter is a four-byte data type.

Besides memory capacity requirements, DLRM models exhibit sparse ac-

cess patterns to the categorical embedding tables during the lookup opera-

tion. A visited bit vector is stored per entity to capture user interactions

as the user may not have interacted with all the available entities on the

platform. This bit vector is later used while performing sparse embedding

lookup for the specific user in the DLRM model. Although the access pattern

2The analysis assumes each parameter consumes four bytes for data representation.
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workload across different companies.

is sparse, they exhibit power-law distribution when accessing the tables in

memory [16]. This is because certain items are highly connected or occur-

ring, resulting in frequent access. In addition, the access granularity of each

request can vary depending on the DLRM model. The access granularity is

equal to the embedding vector size of the given table and varies from 4B to

up to 2KB in existing DLRM models [16, 52].

3.3 GPU Accelerated Data Analytics

Data analytics is the third most popular emerging workload of interest. The

datasets used in data analytics typically consist of billions of records and

tens or hundreds of metrics per record collected over a period of time. Data

scientists analyze this massive amount of raw data to understand trends and

metrics that would otherwise be lost in the mass of information. Data ana-

lytic workflows that rely on CPUs to load, filter, and manipulate data and

perform analysis are slow and cannot exploit the massive data-level paral-

lelism in these workflows. To address this, GPU accelerated analytic data

pipelines such as NVIDIA RAPIDS framework [6] are used to execute queries

on large datasets to generate meaningful insights from the data.

In RAPIDS, the GPU operates on DataFrames that provide a tabular view

of the data, where there is a row per data record and columns for the various
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metrics per record. Figure 3.5 shows an example DataFrame representation

of the NYC taxi ride dataset with RAPIDs [53]. The dataset consists of

200GB of encoded data organized as 1.7B rows and 49 columns stored in the

Optimized Row Columnar (ORC) format [54] supported by RAPIDS [6]. The

rows are trip records from 2009 to 2021, and the columns specify aspects of

the trip such as pickup location, drop location, payment type, trip distance,

taxi company, start and end times, etc. As Todd Schneider puts in his

blog [55], “Taken as a whole, the detailed trip-level data is more than just a

vast list of taxi pick up and drop off coordinates: it’s a story of New York.”

This is because the dataset addresses several questions a data scientist might

have with respect to trip data for NYC.

Suppose we ask the question “Q1: What is the average total cost per

mile for trips with at least 30 miles?”. As the dataset has almost two billion

rows and exceeds the GPU memory capacity, the programmer must process

the data in smaller row groups that fit in GPU memory by (1) finding and

loading each row group (i.e., tile) into the GPU memory, (2) performing the

query on the GPU over the row group, and (3) aggregating results across

row groups. During query computation over the row group, the trip distance

column of the row group is scanned, and for trips that meet the criteria with

a trip distance of at least 30miles, the total amount of the corresponding

total amount array element must be aggregated. This results in sparse data

access to various locations in the dataset.

Moreover, the query can be extended to answer more complex questions

such as: “Q5: What is the average $/mile the driver makes for trips with at

least 30 miles?”. To answer this query, we need four more data-dependent

metrics from the dataset, and for each metric added, we can create a new

intermediate query. We have to add the surcharges (Q2), hail fee (Q3), tolls

(Q4), and taxes (Q5) metrics to get the penultimate query. To generate the
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final result, the query must perform selective column filtering with each new

data-dependent metric.

Thus, the queries executing data analytics applications are data-dependent,

requiring fine-grain access to the dataset. As the user dictates the sparsity

(in this example, controlled by the condition criteria of 30 miles), different

sparsity will result in a different result. Thus these requirements require

data-dependent accesses, and what data requires to be fetched can only be

determined at the query-execution time.

3.4 Summary

To summarize, emerging high-value data-center workloads such as graph

and data analytics [3–6, 53], and recommendation systems [12–16] can po-

tentially benefit from the compute throughput and memory bandwidth of

GPUs. However, these workloads must work with massive data structures

accessed in array format and with sizes ranging from tens of GBs to tens of

TBs today and are expected to proliferate in the foreseeable future. How-

ever, the maximum memory capacity available in these accelerators, as of

2022, is only 128GB and remains significantly below the emerging workloads

memory requirements. Moreover, in these workloads, data lookups are in-

creasingly becoming on-demand, data-dependent and sparse, making it diffi-

cult to determine which part of the data is needed when. Intuitively, the key

to efficiently analyzing a massive data set in these workloads is strategically

touching as little data as possible for each application-level query. How-

ever, as we discuss in the next chapter, the traditional CPU-centric model

where the CPU performs data orchestration severely limits the performance

of existing systems.
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Chapter 4

Issues with Current State-of-the-Art and
Motivation

To address the memory capacity wall, application developers and system de-

signers use fast NVMe solid-state-drives (SSDs) and rely on the application

and operation system (OS) running on the CPU to orchestrate the data move-

ment between the GPUs, CPU memory, and SSDs while supporting standard

abstractions such as memory-mapped files [14–18,20,22–24,26,27,31]. In this

chapter, we present three approaches, namely proactive tiling (§ 4.1), reac-

tive page faults (§ 4.2) and leveraging pooled memory (§ 4.3), used by the

state-of-the art CPU-centric systems to alleviate memory capacity limitation

and also motivate the BaM design.

4.1 I/O Amplification Problem With Proactive Tiling

Proactive tiling is a CPU-centric solution that requires the programmer to

explicitly decompose and partition the data into tiles that fit into the GPU

memory. The CPU application code orchestrates data movement between the

storage and the GPU memory to proactively preload tiles into GPU memory.

It also launches compute kernels for each tile and combines the results from

processing the individual tiles. Proactive tiling is effective for traditional

GPU applications with predefined, regular, and dense access patterns, but it

is difficult for emerging applications with dynamic, data-dependent, irregular

access patterns, like data analytics. The developers are forced to use coarse-

grain tiles due to the synchronization and CPU orchestration’s execution

time overhead, which exacerbates I/O amplification.

Consider running data analytics queries on the NYC taxi dataset described

in §3.3. For executing Q1, the programmer must process the data in smaller

row groups that fit in GPU memory as explained in §4.1 as the dataset has

almost 1.7 billion rows and exceeds the GPU memory limit. The program-
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Figure 4.1: Execution time breakdown and I/O amplification in GPU
accelerated data analytics application with the proactive tiling used in the
state-of-the-art RAPIDS [6] system.

mer’s responsibility can be described in three steps: (1) find and load each

row group (i.e., tile) into the GPU memory, (2) perform the query on the

GPU over the row group, and (3) aggregate results across row groups. Dur-

ing query computation over the row group, the trip distance column of the

row group is scanned, and for trips that meet the criteria with a trip distance

greater than 30miles, the amount value of the corresponding total amount

array element must be aggregated. Assuming all data is present in the host

OS page cache (or host DRAM-only), Figure 4.1 displays the profiling result

for running the Q1 query on the cutting-edge GPU-accelerated data analyt-

ics platform, NVIDIA RAPIDS framework. Even without storage access, the

CPU code to initialize the row group, which entails finding, allocating mem-

ory for, and loading each row group of the columnar metric arrays into GPU

memory, accounts for more than 73% and the CPU code to clean up the row

group account for up to 23% of the end-to-end application time, reflecting

the high driver and synchronization overhead.

Furthermore, since accesses to the total amount column are dependent on

values in the trip distance column, the CPU cannot determine which total

amount rows are required without explicit synchronization with the GPU. To

address this, the state-of-the-art GPU accelerated data analytics framework,

RAPIDS [6], trades off the cost of serialization with the storage bandwidth

and fetches all rows of both columns from storage or host memory to GPU.

As only 511K trips have their trip distance greater than 30miles, and thus

16



only 0.03% of the second column will be used1. As a result, the proactive

tiling approach results in 2.02× I/O amplification for this query.

Figure 4.1 shows the I/O amplification in the RAPIDs framework for the

rest of the queries described in §3.3. The I/O amplification is computed as the

ratio of bytes RAPIDS reads into the GPU over the minimum bytes needed to

execute each query. Furthermore, the CPU-centric approach results in gross

I/O amplification with additional data-dependent metrics added on top of

Q1. This is mainly because the CPU cannot determine which parts of each

data-dependent column are required and ends up moving entire columns to

the GPU memory. Hence, I/O amplification suffered by the CPU-centric

model linearly scales to over 6× as the number of data-dependent metrics in-

creased, as shown in Figure 4.1. The fine-grained, on-demand storage access

capability in BaM mitigates such I/O amplification problems.

4.2 Software Overhead With Reactive Page-faults

Some applications, such as graph traversal, can not cleanly partition their

datasets and thus prefer keeping whole data structures in the GPU’s address

space [5]. For example, assume that a graph is represented in the popular

compressed sparse row (CSR) format, where the neighbor-lists of all nodes

are concatenated into one large edge-list array. An array of offsets accom-

panies the edge-list, where the value at index i specifies the starting offset

for the neighbor-list of node i in the large edge-list. Since any node, and its

corresponding neighbor-list, can be visited while traversing a graph, traversal

algorithms prefer to keep the entire edge-list in the GPU’s address space [5].

Starting with the NVIDIA Pascal architecture, GPU drivers and program-

ming model allow the GPU threads to implicitly access large virtual memory

objects that may partly reside in the host memory using Unified Virtual

Memory (UVM) abstraction [28]. Prior work shows that the UVM driver

can be extended to interface with the file system layer to access a memory-

mapped file [25]. This enables a GPU to generate a page fault for data, not

in GPU memory which the UVM driver reactively services by making I/O

request(s) for the requested pages on storage.

However, this the approach introduces significant software overhead in

1It is impossible to avoid transferring trip distance column.
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Figure 4.2: UVM page fault overhead for BFS graph traversal application
across different datasets.

page fault handling mechanisms when the accessed data is missing from GPU

memory. Figure 4.2 shows the measured host-memory-to-GPU-memory data

transfer bandwidth for an NVIDIA A100 GPU in a PCIe Gen4 system exe-

cuting BFS graph traversal on six different datasets (See Table 7.2) where the

edgelists are in the UVM address space and initially in the host memory. In

these experiments, there is no storage access, and measured data bandwidth

is an upper bound of what a page-fault-based approach might potentially

achieve.

From Figure 4.2, the average PCIe bandwidth achieved by the UVM page

faulting mechanism is ∼14.52GBps which is only 55.2% of the measured peak

PCIe Gen4 bandwidth, 26.3GBps. Profiling data shows that the UVM fault

handler driver on the CPU is 100% utilized, and the maximum UVM page

fault handling rate saturates at ∼500K IOPs. Such a rate is only half the

peak throughput of a consumer-grade SSD like the Samsung 980 pro SSD,

as noted in Table 5.3.

With these limitations, even if we integrate the file system layer into the

UVM driver and assume no additional overhead, the UVM page fault han-

dling mechanism cannot generate requests at a sufficiently high rate to fully

utilize even one consumer-grade SSD for page sizes of 8KB or smaller. Thus

the page-fault-based approach is a no-go for the targeted applications.
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4.3 Cost Effectiveness With Pooled Memory

Applications can leverage CPU memory or even pool the memory of multiple

GPUs to host large data structures. In the graph traversal example, the

programmer allocates pinned (or zero-copy) buffers in these memories, loads

the edge-list data from storage into the buffers, and maps the buffers into the

address space of the GPU(s) executing the computation. The GPU threads

can then access these buffers in cache-line granularity, and the GPU provides

sufficient memory-level parallelism to saturate the interconnect between the

GPU and these memories. Thus, these solutions can out-perform the UVM

solution for critical graph traversal applications, as shown in Figure 4.2 and

by previous works [5].

However, regardless of which memory, CPU or pooled GPU, is used to host

these data structures, this approach suffers from two major pitfalls. First,

data must still be loaded from the storage to the memory before any GPU

computation can start. Often this initial data loading can be the main per-

formance bottleneck as the dataset sizes are in GBs while the computation

kernel requires only a few milliseconds to execute. Later in the evaluation

(§ 7.1.1) we shall compare the proposed system with this Target (T) sys-

tem). Second, hosting the dataset in CPU or pooled GPU memory requires

scaling the available memory, by either increasing the CPU DRAM size or

the number of GPUs in the system with the dataset size. Either of these

two approaches is prohibitively expensive in terms of dollar cost for massive

datasets. Moreover, there is a limit to the dataset sizes these systems can

scale beyond which it is physically infeasible.

4.4 NVIDIA GPUDirect Storage And Challenges

NVIDIA GPUDirect Storage (GDS) [17] and several similar CPU-centric

prior work [18, 20, 22, 23, 29, 31, 56–59] propose to enable peer-to-peer direct

data transfer using GPUDirect RDMA. For storage access, the driver running

on the CPU creates a direct data path for direct memory access (DMA) trans-

fer between GPU and storage and avoids a bounce buffer through the CPU

memory. The control plane lies squarely in the CPU in all these prior works.

Thus, this is excellent if the application access pattern requires loading a
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large chunk of data, like in the case of the “proactive tiling approach”. But

these systems pose several challenges for emerging applications that require

fine-grain data-dependent access to small request granularities (512B-16KB).

Programming model problem: NVIDIA GDS and other proactive-

tiling-approach-based systems require the CPU application code (basically,

the burden is on the developer) to orchestrate the data movement between

the storage and the GPU memory by proactively pre-loading tiles, launch-

ing computes kernels for each tile, and hoping it provides good performance.

This programming model is excellent for workloads with heavy data re-use

within the tile. However, as we studied in this chapter, proactive tiling ex-

hibits significant drawbacks for emerging workloads, including I/O traffic

amplification, frequent memory allocation and deallocation, constant inter-

action between GPU and CPU for synchronization, and, most importantly,

a complex programming interface for developers.

Performance problem: Our microbenchmark study using NVIDIA GDS

on an NVIDIA DGX system using single NVMe SSD, shows the NVIDIA

GDS can saturate the storage bandwidth when the block size is above 64KB

for random access read microbenchmark. However, for accesses at 4KB or

lower, the random access read bandwidth is less than 500MBps, far lower

than the storage capabilities. These bandwidth numbers are insufficient for

providing performance benefits for the emerging workloads.

4.5 Little’s Law: Leveraging Parallelism To Amortize

Storage Access Overhead

Modern storage devices like SSDs provide very high performance, and their

performance is growing yearly. Latest SSDs like Intel P5800X [60] can provide

10µs latency and maintain more than 1M IOPs for random 4KB accesses. As

the storage device latency is reduced due to technological advancements like

Optane or Z-NAND media, the software overhead is becoming a significant

fraction of overall I/O access latency. Figure 4.3 shows the latency breakdown

of an I/O request from a highly optimized CPU software stack, io uring,

to three NVMe SSDs: a high-end consumer grade SSD (Samsung 980 Pro)

and two high-end ultra low latency data-center grade SSDs (Samsung DC

1735 and Intel Optane P5800X). As device latency decreases, the software
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overhead becomes a significant fraction, up to 36.4%, of the total storage

access latency.

To address this shift, emerging storage systems allow applications to make

direct user-level I/O accesses to storage [61–69]. The storage system allocates

user-level queue pairs, akin to NVMe I/O submission (SQ) and completion

(CQ) queues, which the application threads can use to enqueue requests and

poll for their completion. Using queues to communicate with storage sys-

tems forgoes the userspace to kernel crossing of traditional file system access

system calls. Instead, isolation and other file system properties are pro-

vided through trusted services running as trusted user-level processes, kernel

threads, or even storage system firmware running on the storage server/con-

troller [61, 62,66,69].

In such systems, the parallelism required to tolerate access latency and

achieve full throughput of the device is fundamentally governed by Little’s

Law: T × L = Qd, where T is the target throughput, L is the average

latency, and Qd is the minimal queue depth required at any given point in

time to sustain the throughput. If we want to achieve the full potential of

the critical resource, i.e., PCIe ×16 Gen4 connection providing ∼26GBps

of bandwidth, then T is 26GBps/512B = 51M/sec and 26GBps/4KB =

6.35M/sec for 512B and 4KB access granularities, respectively. The average

latency, L, depends on the SSD devices used, and it is 11µs and 324µs for

the Intel Optane and Samsung 980pro SSDs, respectively. From Little’s

Law, to sustain a desired 51M accesses of 512B each, the system needs to

21



accommodate a queue depth of 51M/s×11µs = 561 requests (70 requests for

4KB) for Optane SSDs. For the Samsung 980pro SSDs, the required Qd for

sustaining the same target throughput is 51M × 324µs = 16, 524 (2057 for

4KB). Note that Qd can be spread across multiple physical device queues.

To sustain T over a computation phase, there needs to be a substantially

higher number of concurrently serviceable access requests than Qd over time.

GPUs provide not only the hardware features needed to hide such latencies,

e.g., a massive number of threads and hardware scheduling but also the

programming interface, e.g., CUDA, enabling applications to easily express

massive parallelism and the high number of concurrently serviceable storage

access requests. Thus, by exploiting a sufficient amount of parallelism, GPUs

can hide the application storage access latency.

4.6 Summary

We discussed existing three approaches, namely proactive tiling (§ 4.1), re-

active page faults (§ 4.2) and leveraging pooled memory (§ 4.3), used by the

state-of-the-art CPU-centric systems to alleviate memory capacity limitation.

We showed the limitations of current state-of-the-art systems like NVIDIA

GDS [17] and discussed why enabling direct access from GPUs can amortize

the storage access overhead. In the next chapter, we discuss how BaM ad-

dresses the memory capacity problem by enabling fine-grain high-throughput

direct access to storage.
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Chapter 5

BaM: Enabling Fine-grain High Throughput
GPU-Orchestrated Access to Storage

5.1 BaM Vision And Design Goals

BaM addresses the insufficient GPU memory capacity problem by effectively

increasing the memory capacity to terabyte-scale with the storage and uses

high-bandwidth memory (HBM) as a software-managed cache. BaM pro-

poses an accelerator-centric computing model in which threads in GPU can

access data where it is stored, be it memory or storage, without relying on

the CPU or the operating system (OS) to orchestrate the data movement.

Using high-level abstractions like arrays, BaM enables accelerators to make

on-demand, high-throughput access to storage. BaM uses storage as mem-

ory, and this enables BaM to scale to hundreds of TBs of memory capacity

at a reasonable cost and yet be performant across applications.

BaM’s userspace software-managed cache enables application threads to

find data in parallel without relying on the traditional centralized authori-

ties like the page-fault handlers in the operating system. BaM distributes

and parallelizes the cache management across GPU threads and takes full

advantage of the modern GPU’s massive parallelism, memory bandwidth,

and high atomic operation throughput. This makes BaM’s cache scalable

to thousands of threads and provides high throughput for applications when

data resides in the GPU memory.

Unlike traditional memory mapped objects, BaM does not allocate a range

of addresses within the virtual address space of a process for a BaM data ob-

ject. Rather, BaM assigns an ID to each BaM data object and allows appli-

cations to access its elements using an offset which alleviates the problem of

requiring a consecutive range of virtual addresses to host a memory-mapped

storage object in a process’ available virtual address space. For example,

when two or more processes share a BaM data object, as long as they use
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Figure 5.1: High level overview of BaM software stack.

the same BaM object ID, the BaM caches can manage the coherence between

the BaM caches of these processes without the need to find a common range

of locations in all the virtual address spaces of these processes1.

While the CPU-centric storage access orchestration suffers from a low de-

gree of CPU thread-level parallelism available to the OS page-fault handlers

and device drivers, there is currently a lack of mechanisms for orchestrating

storage accesses from GPUs. To address this issue, BaM provides a user-level

library of highly concurrent submission/completion queues in GPU memory

that enables GPU threads whose on-demand accesses miss from the software

cache to make storage accesses in a high-throughput manner. This user-level

approach removes the page fault handling bottleneck, incurs little software

overhead for each storage access, and supports a high degree of thread-level

parallelism.

Figure 5.1 summarizes the overall block diagram of BaM. BaM provisions

storage I/O queues and buffers in the GPU memory and maps the storage

doorbell registers to the CUDA address space (see §5.3). As storage devices

have relatively low bandwidth and GPUs have limited memory capacity, BaM

uses a high-throughput cache for optimal usage of these resources for appli-

cations (see §5.3.2). Also, since the existing GPU kernels generally do not

expect to make storage accesses, BaM must provide high-level abstractions

that hide BaM’s complexity and make it easy for the programmer to inte-

1Supporting multiple data objects and sharing data objects across processes is under
active development, goes beyond the scope of the thesis, and is part of our future work.
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Figure 5.2: Life of a thread in BaM.

grate BaM into their GPU kernels (see §5.3.3). Lastly, emerging applications

require high memory capacity for large data structures today. We show that

it is possible to build a cost-effective prototype BaM system using existing

off-the-shelf hardware components (see §5.3.4).

5.2 BaM System Overview

Figure 5.2 shows a programmer’s view of the BaM system architecture. BaM

presents bam::array high-level programming abstraction for easy integration

with the existing application. An application can call BaM APIs to initialize

the bam::array with data backed by storage, akin to mmap’ing a file.

Each GPU thread uses the abstraction to determine the cache-line offset

(or virtual byte range) for the data being accessed 1 . The thread then

uses the offset 2 to probe the BaM software cache 4 in GPU memory.

The abstraction also has warp-level coalescer 3 that can detect if multiple

threads in warp access the same cache-line. If so, only one of these threads

requires probing the cache on behalf of the rest and thus effectively increases

the efficiency of accesses.

The thread can directly access the data in GPU memory if access hits the

cache. If the access misses 4 , the thread must fetch data from the backing

memory. The BaM software cache is designed to optimize the bandwidth

utilization to the backing memory in two ways: (1) by eliminating redundant

simultaneous requests to the backing memory and (2) by allowing users to
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have fine-grain control of cache residency for their data.

If the storage system or device is backing the data, the GPU thread enters

the BaM I/O stack to prepare a storage I/O request 5 , enqueues it to a

submission queue 6 , and then waits for the storage controller to post the

corresponding completion entry 7 . BaM exploits the massive thread-level

parallelism offered by the GPU to amortize long latency accesses to the SSD

and enables low-latency batching of multiple submission/completion queue

entries to minimize the cost of expensive doorbell register updates in the

storage protocol. On receiving the doorbell update A , the storage controller

fetches the corresponding submission queue entries B and processes the

command C to transfer the data between SSD and the GPU memory D .

At the end of the transfer, the storage controller posts a completion entry

in the CQ E . After the completion entry is posted, the thread updates

the cache state 8 for the key, updates the SQ/CQ state 9 , and then can

access the fetched data in GPU memory.

5.2.1 Comparison With The CPU-Centric Design

A comparison between the BaM approach and the traditional CPU-centric

model, as shown in Figure 5.3a, highlights three main advantages of BaM.

The first is proactive tiling; as the CPU manages the storage data transfer

and GPU compute, it copies data between the storage and GPU memory,

launching compute kernels multiple times to cover a large dataset. This is

done with driver code with very limited thread-level parallelism and thus lim-

ited performance. Furthermore, each kernel launch and termination incurs

costly synchronization between the CPU and the GPU. Since BaM allows

GPU threads to compute and fetch data from storage, as shown in Fig-

ure 5.3b, the GPU doesn’t need to synchronize with the CPU as frequently

and can do more work in a single GPU kernel. Furthermore, the storage

access latency of some threads can also be overlapped with the compute of

other threads, thus improving the overall performance.

Second, because the compute is offloaded to the GPU and the data or-

chestration is managed by the CPU in the proactive tiling, it is difficult for

the CPU to determine which parts of the data are needed and when they are

needed; thus, it fetches many unneeded bytes. With BaM, a GPU thread
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Figure 5.3: Comparison between the traditional CPU-centric and BaM
computation model is shown in (a) and (b). BaM enables GPU threads to
directly access storage enabling compute and I/O overlap at fine-grain
granularity.

fetches the specific data it needs only when required, reducing the I/O am-

plification overheads that the proactive tiling approach suffers.

Third, in the proactive tiling, programmers expend effort to partition the

application’s data and overlap compute with data transfers to hide storage

access latency. BaM enables the programmer to naturally harness GPU

thread parallelism across large datasets to hide the storage access latency.

5.3 The Design Of A BaM Prototype

We discussed the design philosophy and high-level working of BaM system.

We use off-the-shelf hardware, including NVIDIA GPUs and arrays of NVMe

SSDs, to construct a BaM prototype. We show the benefits of allowing GPUs

to directly access storage with enough random access bandwidth to take full

advantage of a GPU’s PCIe Gen4 x16 link. Once this level of data access

bandwidth is achieved, a storage-based solution is as good as a host memory

accessed through PCIe in terms of performance but significantly cheaper. For

simplicity, we describe the prototype assuming bare-metal, direct access to

the NVMe SSDs.
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5.3.1 Enable Direct NVMe Access From GPU Threads

For simplicity, we will use the NVMe SSD controllers as a simple example of

storage controllers to explain the key features of the BaM. To enable GPU

threads to access data on storage devices directly, we need to: 1) move the

storage queues, i.e., NVMe queues and I/O buffers from CPU memory to

GPU memory and 2) enable GPU threads to write to the queue doorbell

registers in the NVMe SSD’s BAR space. To this end, we create a custom

Linux driver that creates a character device per NVMe SSD in the system, like

the one by SmartIO [70]. Applications use BaM APIs to open the character

device for each SSD they wish to use.

In the custom Linux driver, BaM leverages GPUDirect RDMA features

discussed in § 2.2 to pin and map NVMe queues and I/O buffers in the GPU

memory. BaM uses the nvidia p2p get pages kernel API to pin the pages

of NVMe queues, and I/O buffers pre-allocated in the GPU memory and then

maps these pages for DMA access from another third-party PCIe device, like

NVMe SSDs, using nvidia p2p map pages kernel API. This enables the SSD

to perform peer-to-peer data reads and writes to the GPU memory.

We leverage GPUDirect Async, discussed in § 2.2, to memory-map the

NVMe SSD doorbells to the CUDA address space so that the GPU threads

can ring the doorbells on demand. We use cudaHostRegister API with

the cudaHostRegisterIoMemory flag to memory-map the SSD’s BAR space

into the application’s address space. Using cudaHostGetDevicePointer, the

application gets the virtual address that the GPU threads can use to ring

the NVMe SSD doorbell registers. We note that other storage systems can

be enabled similarly.

Next, we need to implement the storage I/O queues in the GPU memory

and allow thousands of threads to synchronize and submit I/O requests to

the device. BaM leverages the GPU’s massive thread-level parallelism and

fast hardware scheduling to maintain the queue depths needed to hide stor-

age access latency and saturate the storage throughput. However, ringing

doorbells, say after enqueueing commands or cleaning up SQ entries, in the

existing storage I/O protocols require serialization. When a thread rings a

doorbell, say to enqueue an I/O request, it must make sure that no other

thread is writing to the same register and that the value it is writing is valid

and is a newer value than any value written to that register before.
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A naive solution for the serialization problem would be to acquire a lock

before enqueueing a command to the submission queue and ring the doorbell.

However, with the thousands of parallel threads on the GPU, such a design

can lead to high latency and, more importantly, low throughput, as all I/O

requests can get serialized. To address this, BaM exploits the CUDA memory

consistency model (Volta architecture or later) and implements fine-grain

memory synchronization enabling many threads to enqueue I/O requests

in the SQ, poll the CQ, or mark queue entries for cleanup in parallel and

without any locks. Threads only enter critical sections for moving the SQ’s

tail and CQ’s head and ringing the doorbell. Since threads that enter a

critical section move the head or tail as far as possible, most threads that

make an I/O request never need to enter any critical section. This enables

BaM to submit many concurrent I/O requests to the SSDs.

5.3.2 BaM’s Software Cache

The BaM software cache is designed to enable optimal use of the limited GPU

memory and off-GPU bandwidth. Traditional cache design used a centralized

cache controller to manage cache entries and data buffers. Instead, BaM

focuses on using each GPU thread as a software cache controller and uses

atomic operations on the global state to manage cache metadata and data

buffers. This enables BaM’s cache to scale to thousands of threads and

provides very high throughput for applications when data resides in the GPU

memory.

Furthermore, traditional kernel-mode memory management (allocation and

translation) implementations must support diverse, legacy application/hard-

ware needs. As a result, they contain large critical sections that limit the

effectiveness of multi-threaded implementations. BaM addresses this bot-

tleneck by pre-allocating all the virtual and physical memory required for

the software cache when starting each application. This approach allows the

BaM software cache management to reduce critical sections, only requiring

a lock when inserting or evicting a cache-line, which helps the BaM cache to

support many more concurrent accesses.

BaM implements a reference counter based write-back cache. Each cache-

line in the BaM cache has information about its mapping and it’s current
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cache state. Each cache-line can be in either (a) Invalid (I), (b) Valid

(V), and (c) Valid Dirty (D) state. BaM manages the cache state of each

cache-line using atomic operations. BaM encodes the state and reference

counts in a 32-bit unsigned word where three most-significant bits repre-

sents the cache states and the least-significant 29 bits of the word represent

the reference count. This encoding helps manage the state and reference

count using one fused atomic operation. For instance, a thread can just ex-

ecute cur state = state[i].fetch add(1, acquire) to increment both

the cache-line reference count by one and read the cache-line’s state.

When a thread probes the cache with an offset, it directly checks the

corresponding cache-line’s state with the fetch add atomic operation and

increments the reference count. If the cache-line is invalid, the thread tries

to set the cache state to Busy state to lock the cache-line using fetch or

operation. This locking prevents multiple requests to the backing memory

for the same cache-line, exploiting spatial locality in the data and minimizing

the number of requests to the backing memory. If the returned state from the

fetch or operation has the Busy bit unset, then the thread was successful in

moving the state to Busy, and it can proceed with finding a victim to evict

and requesting the data from the backing memory. If the returned state has

the Busy bit set, then the thread must wait for the cache-line to become not

Busy. After the cache-line is brought into the cache, the thread obtained

the lock must move the cache state from Busy to Valid. This can be done

using a fetch xor operation. Once the cache state is in the Valid state, the

thread can use the data in the cache-line. When the thread is done using the

cache-line, its reference count is decremented.

When the thread probes the cache, it increments the reference count and

checks if the state is in the Valid state. If the state is Valid, then the

thread can directly use the data from the cache-line. Reference counting

helps to determine if threads expect the data to be available in the cache

and ensure no other thread evicts the cache-line until the thread has copied

the data to its registers. This is important, especially working with concur-

rent cache accesses, as there is no guarantee in ordering from the hardware

when the operations will get scheduled. Thus, it is crucial to ensure that

when the thread accesses the data, it gets the correct data. The use of

reference count provides such guarantees for the thread accessing the data

by providing some notion of pinning of cache-line until the thread copies
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the data into its registers. Reference count increment occurs when the

higher level API such as bam::array<T> performs a probe operation using

cache->coalesced acquire() (see Listing 5.1 line 8) to read the data into

its thread’s register. The reference count is decremented when the thread suc-

cessfully calls the cache->coalesced release() operation ((see Listing 5.1

line 10). If the thread is writing to the cache-line, it will also set the cache-

line’s dirty bit.

The BaM cache uses a clock replacement algorithm proposed by F.J. Cor-

bató [71] to enable concurrent evictions at different cache-lines and avoid

contentions among concurrent evictions. The cache has a global counter

that gets incremented when a thread needs to find a cache slot. The re-

turned value of the counter tells the thread which cache slot to attempt to

use. As BaM implements a concurrent cache, the cache state can have both

the Valid and Busy bit set simultaneously with a non-zero reference count;

it is essential to ensure the suitable victim is evicted out. For instance, when

a thread probes the cache to find a slot to evict, the cache-line state can be

Valid with a reference count equal to zero. When the thread tries to evict

this cache-line, it needs to ensure the reference count does not change until

the cache state transitions to the Busy state. This can happen as another

thread in the GPU could increment the reference count observing the Valid

bit in the state. If the evicting thread finds the victim to have a non-zero

reference count or change in reference count or has the Busy bit set by an-

other thread, the evicting thread will abort, resetting the Busy bit if it was

the one that set it and find another victim by incrementing the counter and

attempt to take the next cache slot.

5.3.3 BaM Abstractions And Software APIs

BaM’s software stack provides the programmer an array-based high-level

API (bam::array<T>), consistent with array interfaces defined in modern

programming languages (e.g. C++, Python, or Rust). As GPU kernels op-

erate on such arrays (see § 3.4), BaM’s abstraction minimizes the program-

mer’s effort to adapt their kernels. Listing 5.2 shows a random access GPU

kernel code representative of graph analytics workload. To port the kernel to

use BaM, only the data structures that require to be mapped with BaM (i.e.,
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1 template <typename T>

2 struct array {

3 ...

4 T operator []( size_t i){

5 size_t clid = get_cl_id(i);

6 size_t cl_sub_idx = i % (cache ->cl_size/sizeof(T));

7
8 T* cl_addr = cache ->coalesced_acquire(cl_id);

9 T val = cl_addr[cl_sub_idx];

10 cache ->coalesced_release(cl_id);

11 return val;

12 }

13
14 private:

15 BamCache* cache;

16 ...

17 }

Listing 5.1: High level overview of bam::array<T> abstraction design with warp
coalescing.

1 __global__ void kernel(float *data ,

2 size_t n, float *out , unsigned* randidx) {

3 size_t tid = blockIdx.x * blockDim.x + threadId.x;

4 for(; tid < n; tid += (blockIdx.x * blockDim.x))

5 *output += data[randidx[tid]];

6 };

Listing 5.2: Random access GPU kernel code representative of graph analytics
application access pattern.

1 __global__ void kernel(bam::array <float > data ,

2 size_t n, bam:: arrray <float> out , unsigned* randidx) {

3 bam:: array_ref ref(&data);

4 size_t tid = blockIdx.x * blockDim.x + threadId.x;

5 for(; tid < n; tid += (blockIdx.x * blockDim.x))

6 *output += ref[randidx[tid]];

7 };

Listing 5.3: BaM GPU kernel code with bam::array<T> abstraction for random
access. With BaM’s bam::array<T> abstraction, base GPU code requires
minimal changes to the baseline codebase to support accessing data from storage.

data and out) need to be changed to bam::array<T> type, and the rest of

the kernel can remain intact, as shown in Listing 5.3. The bam::array<T>’s
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overloaded subscript operator enables the accessing threads to coalesce their

accesses, query the cache, makes I/O requests on misses, and return the ap-

propriate element of type T to the calling function. In contrast, the proactive

tiling CPU-centric model requires complete, non-trivial application rewrites

to decompose the compute and data transfers into tiles that fit within the

limited GPU memory.

BaM initialization requires allocating a few internal data structures that

are reused during the application’s lifetime. These data structures are used

to instantiate storage devices, allocate memory for cache and I/O buffers, and

map data ranges and layouts. Initialization can happen implicitly through

a library construction if no customization is needed. Otherwise, the appli-

cation specializes in the memory through template parameters to BaM ’s

initialization call, a standard practice in C++ libraries. BaM also provides

four memory implementations for bam::array<T>: (1) storage with BaM’s

cache (default), (2) pinned CPU memory with BaM’s cache, (3) pinned CPU,

and (4) GPU memory. However, in most cases, specialization and fine-tuning

are unnecessary, as shown later in § 7 where only BaM ’s default parameters

are used.

The bam::array<T> abstraction implements two additional optimizations:

warp coalescing and cache-line reference reuse to improve the performance

further when accessing the data from the cache. Warp coalescing improves

the spatial reuse of cache-line metadata while the cache-line reference reuse

exploits the temporal reuse of the cache-line metadata. More in depth design

and implementation discussions on of these optimization can be found in [72].

Warp Coalescing: Even though BaM ’s software cache minimizes the

number of requests to the backing memory, it can add additional overhead

on each access in the form of cache-line state management. Threads in a

warp often contend themselves in accessing the BaM software cache, espe-

cially when consecutive threads try to access contiguous bytes in memory.

This contention incurs significant overhead when the needed cache-line is al-

ready in the fast GPU memory. To overcome this, BaM ’s cache implements

warp coalescing in software using warp-level primitives. Warp coalescing

helps reduce the number of accesses to the cache metadata by up to 32× (or

the number of threads in a warp). In Listing 5.1, lines 8 and 9 implement

the warp coalescing method within the bam::array<T> abstraction. When

threads access the cache, the match any sync warp primitive is used to
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synchronize with other threads in the warp, and a mask is computed, let-

ting each thread know which other threads in the warp are accessing the

same offset. From that group, the threads decide on a leader, and only the

leader manipulates the requested cache-line’s state. The threads in the group

synchronize using the shfl sync primitive, and the leader broadcasts the

address of the requested offset in the GPU memory to the group.

Cache-line Reference Reuse: In addition to coalescing, another com-

mon access pattern is to traverse a contiguous chunk of data where each

element in the chunk is accessed multiple times. With this access pattern, a

single thread can probe the cache-line repeatedly, causing significant cache-

line metadata traffic. Each cache probe requires calling coalesce acquire

and coalesce release methods which can expose cache access latency to

the application. To this end, BaM provides bam::array ref reference ab-

straction that enables each thread to keep a local copy of the cache-line

reference in its registers. Unlike the coalescing optimization, where the spa-

tial reuse of cache-line metadata was exploited, this optimization exploits

the temporal reuse of the cache-line metadata within a thread. As shown

in Listing 5.3 line 3, a thread can construct bam::array ref reference with

bam::array<T> instance. Underneath the abstraction, the overloaded sub-

script operator checks if the new index falls within the current cache-line

reference. If yes, the operator returns the data from the GPU memory us-

ing the cache-line reference address without accessing the cache. If not, a

new cache-line reference is acquired, replacing the previous one. When the

instance goes out of scope, the destructor releases the cache-line reference

within the thread.

Usage of bam::array ref is not strictly necessary if the GPU kernel does

not allow temporal reuse of the cache-line metadata. This is because with

cache-line reference reuse, the abstraction is forced to do additional checks to

determine if the index being accessed is within the cache-line reference range.

Moreover, the cache-line reference reuse optimization adds five registers per

thread and can increase register spilling. However, if the application can

exploit the temporal reuse of the cache-line metadata, this optimization can

provide significant performance benefits.
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Table 5.1: BaM prototype system specification

BaM Configuration Specification

System Supermicro AS-4124GS-TNR

CPUs 2× AMD EPYC 7702 64-Core Processors

DRAM 1TB Micron DDR4-3200

GPU NVIDIA A100-80GB PCIe

PCIe Expansion H3 Platform Falcon-4016

SSDs Refer to Table 5.3

Software Ubuntu 20.04 LTS, NVIDIA Driver 470.82, CUDA 11.4

PCIe 
Switch

1 SSD

1 SSD

1 SSD

1 SSD

PCIe 
Switch

1 SSD

1 SSD

1 SSD

A100

A100
Host 

Bridge
x16

H
3 Falcon 4016

Supermicro 
4124GS-TNR

CPU

Figure 5.4: Logical view of prototype implementation of BaM using
off-the-shelf components with seven SSDs.

5.3.4 BaM Hardware Design

As we initially set our design goals § 5.1, BaM needs to be built using the

existing off-the-shelf hardware components. In this section, we discuss how

we accomplish this goal. Scaling BaM using the PCIe slots available within

a data-center grade 4U server comes with several challenges. The number of

PCIe slots available in these machines is limited. For instance, the Super-

micro AS-4124 system has five PCIe Gen4 ×16 slots per socket. If a GPU

occupies a slot, it can only access four ×16 PCIe devices without crossing the

inter-socket fabric. Furthermore, due to the chiplet design of modern multi-

core CPUs, even when the five PCIe devices per socket access each other,

they must cross the intra-CPU fabric. Crossing these different interconnects

results in severe performance degradation as packets must be translated for

each interconnect, increasing latency and limiting throughput. However, as

no single NVMe SSD can provide the throughput to saturate a PCIe x16

Gen4 link, BaM hardware must scale to many NVMe devices to provide the

necessary throughput to saturate the ×16 PCIe Gen4 GPU bandwidth.
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Figure 5.5: BaM Hardware (a) and drawers with marking (b)

Table 5.2: Comparison of different types of SSDs with DRAM DIMM

Technology Sources Product $/GB

DRAM multiple DIMM (DDR4, 1 TB) 11.3

Optane [60] single Intel P5800X (1.6 TB) 2.54

Z-NAND [73] single Samsung P1735 (800 GB) 2.56

NAND Flash [74] multiple Samsung 980pro (1 TB) 0.51

To address this, we built a custom prototype machine for the BaM ar-

chitecture using the off-the-shelf components as shown in Figure 5.4 and

Figure 5.5. Table 5.1 provides the specification of the major components

used for the prototype. BaM prototype uses a PCIe expansion chassis with

a custom PCIe topology for scaling the number of SSDs. The PCIe switches

support low-latency and high-throughput peer-to-peer access between PCIe

devices. The expansion chassis has two identical drawers, which are currently

independently connected to the host. Each drawer supports 8 ×16 PCIe slots

(as shown in Figure 5.4). We use one ×16 slot in each drawer for an NVIDIA

A100 GPU, and the rest of the slots are populated with different types of

SSDs. Each drawer can only support 10 U.2 (Optane or Z-NAND) SSDs as

the U.2 form factor takes up significant space. As the PCIe switches support

PCIe bifurcation, a PCIe multi-SSD riser card enables more than 16 M.2

NAND Flash SSDs per drawer. Further increase in the number of SSD per

GPU can be done by cascading drawers.

SSD Technology trade-offs: Table 5.2 and Table 5.3 lists the metrics

that significantly impact the design, cost, and efficiency of BaM systems for

three types of off-the-shelf SSDs. The RD IOPS (512B, 4KB) and WR IOPS

(512B, 4KB) columns show the measured random read and write through-

put of each type of SSD at 512B and 4K granularity respectively. The $/GB

column presents the cost per GB for each SSD type, based on the current

list price per device, the expansion chassis, and the risers needed to build

the system. For DRAM-only system, the storage cost is excluded when com-
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Table 5.3: Comparison of different types of SSDs with DRAM DIMM.

Technology Read IOPs
(512B, 4KB)

Write IOPs
(512B, 4KB)

Latency (µs) DWPD

DRAM >10M >10M O(0.1) >1000

Optane [60] 5.1M, 1.5M 1M, 1.5M O(10) 100

Z-NAND [73] 1.1M, 1.6M 351K, 351K O(25) 3

NAND Flash [74] 750K, 7500K 172K, 172K O(300) 0.3

puting $/GB value. The Latency column shows the measured average device

latency in µs. Comparing these metrics across SSD types shows that the

consumer-grade NAND Flash SSDs are inexpensive with more challenging

characteristics, while the low-latency drives such as Intel Optane SSD and

Samsung Z-NAND are more expensive with more desirable characteristics.

For example, for write-intensive applications using BaM, Intel Optane drives

provide the best write IOPs and endurance.

Irrespective of the underlying SSD technology, as shown in Table 5.2, BaM

provides at least a 4.4-21.8× advantage in cost per GB, even with the ex-

pansion chassis and risers, over a DRAM-only solution. Furthermore, this

advantage grows with additional capacity added per device, which makes BaM

highly scalable as SSD capacity and application data size increase.

5.4 BaM I/O Stack Performance

This section will evaluate the throughput and bandwidth provided by the

BaM I/O stack. We disable BaM cache for these experiments and map the

entire SSD capacity to the GPU address space.

5.4.1 Raw Throughput Of BaM

We establish that BaM I/O stack can generate sufficient I/O requests to

saturate the underlying storage system by measuring the raw throughput of

BaM using microbenchmarks with Intel Optane SSDs and an NVIDIA A100

GPU. We allocate all the available SQ/CQ queue pairs into GPU memory

with a queue depth of 1024 (max supported by the SSDs). We then launch

a CUDA kernel with each thread requesting a random 512-byte block from

the SSD via a designated queue. The intuition behind using a 512-byte block
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Figure 5.6: 512B random read and write benchmark scaling with BaM on
Intel Optane P5800X SSDs. BaM’s I/O stack can reach peak IOPs per SSD
and linearly scale for random read and write accesses.

size is to measure the capability of BaM I/O stack to issue many requests to

saturate the storage device in the smallest access granularity. The requests

are uniformly distributed across all queues with round-robin scheduling. We

vary the number of threads and SSDs mapped to the GPU. For multiple

SSDs, the requests are uniformly distributed across SSDs using round-robin

scheduling. We measure I/O operations per second (IOPs) as a metric defined

as the ratio of the number of requests submitted by the GPU and the kernel

execution time.

Results: Figure 5.6 presents the measured IOPs for 512B random read

and write benchmark. BaM can reach peak IOPs per SSD and linearly scale

with additional SSDs for both reads and writes. With a single Optane SSD,

BaM only requires about 16K-64K GPU threads to reach near peak IOPs (see

Table 5.3). With ten Optane SSDs, BaM achieves 45.8M random read IOPs

and 10.6M random write IOPs, the peak possible for 512B accesses to the

Intel Optane SSDs. This is 22.9GBps and 5.3GBps of random read and write

bandwidth, respectively. Further improvements in read bandwidth, which is

about 90% of the measured peak bandwidth for Gen4 ×16 PCIe links, can

be achieved by optimizing storage I/O queue implementations while scal-

ing to more SSDs can improve the write bandwidth. Similar performance

and scaling are observed with Samsung SSDs and not reported for brevity.

These results validate that BaM’s infrastructure software can match the peak

performance of the underlying storage system.

Going over host: Figure 5.7 shows the measured IOPs for 512B random
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(b) Using Drawer GPU

Figure 5.7: 512B random read benchmark scaling with BaM on Intel
Optane P5800X SSDs when the GPU is in host and drawer. Crossing the
CPU I/O subsystem interconnects introduces severe performance scaling
issues as shown in (a) and saturates at 20MIOPs. Moving the GPU to the
drawer removes such scaling issues and continues to scale, saturating
underlying storage.

read benchmark when GPU is in the host and SSDs are in a drawer without

any changes to the topology. As we discussed in § 5.3.4, crossing the CPU

I/O subsystem interconnects introduces extreme performance scaling issues

as shown in Figure 5.4.1(a) and can only achieve up to 20MIOPs, even with

seven Optane SSDs. Moving the GPU to the drawer removes such scaling

issues and easily saturates underlying storage. A similar observation is made

for write and larger access granularities and is not discussed for conciseness.

5.4.2 Bandwidth Achieved by BaM I/O Stack

Random I/O Access: We next evaluate the bandwidth achieved by the

BaM I/O stack for random and sequential I/O access benchmarks using

microbenchmarks. We first evaluate if the BaM I/O stack can be saturated

at 4KB random read and write request. The experiment is run with four

Intel Optane SSDs. We aim to understand if we can saturate the underlying

storage stack bandwidth with random I/O operations. Figure 5.8 shows the

bandwidth achieved by the BaM I/O stack for 4KB random read and write

operations. The x-axis is the number of requests, and the y-axis shows the

achieved bandwidth in GBps. Each line corresponds to how many SSDs are
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Figure 5.8: 4KB random read and write bandwidth with BaM on four Intel
Optane P5800X SSDs. BaM’s I/O stack can saturate the underlying
storage bandwidth with ease.

in the system. Each SSD can provide 6.2GBps of random read and write

bandwidth. The dark green dots show the intercepting point when the BaM

I/O stack saturates the SSDs. The BaM I/O stack can quickly saturate 1

SSD bandwidth of 6.2GBsp with 2K requests and then linearly saturate all

SSDs and peak storage bandwidth in the system with additional I/O requests

for both random read and write operations. Thus as long as requests are

submitted, BaM I/O stack can achieve peak storage bandwidth. A similar

observation is also made for other I/O granularities and Samsung SSDs but

not reported.

Sequential I/O Access: Figure 5.9 shows the measured sequential I/O ac-

cess bandwidth with different I/O granularities. Like the random I/O access

benchmark, we launch a CUDA kernel with each thread requesting a consec-

utive block from the SSD via a designated queue. For the experiment, we

keep the number of SSD at 4 (Intel Optane 5800X drives) and vary the num-

ber of threads and I/O granularities to measure the achieved bandwidth from

the system. For 512B accesses, each SSD can provide 2.5GBps of bandwidth,

and hence 4 Intel Optane drives can provide 10GBps peak storage bandwidth.

Similarly, for 1KB, 2KB, 4KB, and 8KB, the peak achievable bandwidth by 4

Intel Optane drives are 15GBps, 20GBps, 24GBps, and 24GBps, respectively.

From Figure 5.9 BaM I/O stack can achieve near peak bandwidth provided

by the storage drives for each of the I/O granularities. A similar observation

is found for write benchmark and for Samsung SSDs and not reported for
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Figure 5.9: Sequential read bandwidth observed by BaM I/O stack for
various I/O granularities.

brevity. These results further validate that BaM’s infrastructure software

can match peak performance even with sequential I/O access patterns.

5.5 BaM Cache Study Using Microbenchmark

In the previous section, we established that BaM I/O stack could quickly

saturate the underlying storage bandwidth. However, the BaM cache was

designed to amortize the relatively low storage bandwidth and to exploit the

locality present in the application. In this section, we evaluate the perfor-

mance of BaM cache. We measure several important metrics: (a) variation

of miss latency depending on cache-line usage (see §5.5.1) (b) cache hit and

miss throughput as a function of sequential and random access pattern (see

§5.5.2).

5.5.1 Latency Of Accessing A Cache-line

First, we measure the access latency cost when accessing a cache-line in BaM

as a function of cache-line usage. To measure this, we launch a CUDA kernel

with one warp, and each thread in the warp reads 8B (uint64 t) element

from the BaM cache-line. We then vary the total number of elements to

be read from one element to all elements in the cache-line and report it as a
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Figure 5.10: BaM cache access latency variation as a function of cache-line
and its usage.

percentage used in Figure 5.10. Thread coarsening and loop unrolling are also

performed when the number of elements exceeds the warp size. Lastly, as the

access latency is significantly short, instead of measuring the kernel execution

time, we measure time within the kernel using GPU SM clock instructions

and averaged over one-hundred iterations. These experiments are conducted

with single Intel Optane SSDs where a GPU kernel does a read operation

through the BaM software stack while accessing bam::array<T>.

Figure 5.10 shows the measured access latency cost when accessing a cache-

line in BaM as a function of the percentage used. To fetch the first element,

BaM suffers a latency of 22-25µs. Recall that the device latency is around

7-10µs [60, 75] for 4KB access. Despite significantly lower single thread per-

formance of GPU threads compared to CPU and with the complex BaM

software stack, BaM latency is only about 2-2.5× the device latency for the

fastest drive in the market. Massive parallelism in the GPU can easily hide

this overhead in applications. We also note that the cache-line size of 4KB

has the same miss latency as 512B. This is because, despite lower access I/O

size in the case of 512B, the storage devices are optimized for 4KB access.

After the first element is fetched, the rest of the access hits in the cache.

Depending on the cache-line size and usage percentage, the effective cost of

accessing a Byte from the BaM when all data resides in the GPU memory

varies from 0ns to 140ns.
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Figure 5.11: BaM cache hit and miss bandwidth for linear and random
patterns. Naive usage of BaM provides meager hit performance.

5.5.2 BaM Cache Hit and Miss Throughput

We next evaluate BaM cache effective hit and miss throughput2 for linear

and random accesses benchmarks described next:

1. Linear(Linear): In this setup, consecutive thread reads consecutive

eight byte (uint64 t) elements in the bam::array<T>. This results in

coalesced accesses to the bam::array<T>.

2. Random(Random): Here, consecutive thread reads uniformly distributed

random eight byte (uint64 t) elements in the bam::array<T>. This

results in random accesses to the bam::array<T>.

For both benchmarks, we will use four Intel Optane drives with 4KB cache-

line size as it provides sufficient storage throughput to saturate the storage

bandwidth. We fix the cache capacity to 8GB and the dataset range to 1TB.

Although we use 4KB cache-line size, a similar trend is observed for cache-line

sizes from 512B to 32KBs. We then vary the number of threads and measure

the cache’s effective hit and miss bandwidth. Miss bandwidth is measured

with the cold cache, while the hit bandwidth is measured after loading all

the data to the cache and ensuring there are no misses. All experiments are

executed several times, and the average bandwidth is reported.

Hit Bandwidth: Figure 5.11a shows the measured hit bandwidth of the

BaM cache for linear and random access benchmarks. For linear access, the

2Effective throughput or bandwidth because it is as observed by the threads when
accesses with bam::array<T> API.
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system can only provide up to 46.62GBps of bandwidth, while for the random

access case, the system barely crosses 2.20GBps of hit bandwidth. There are

several reasons why the performance is so low. First, these two benchmarks

severely limit the reuse of cache metadata and variables across warps and sig-

nificantly increases the contention to manage these metadata using atomics

resulting in poor performance. Second, as the hardware scheduler initially

assigns consecutive thread blocks to consecutive SMs while executing, the

total number of concurrent accesses is minimal and cannot hide the cache

access overheads. In the next chapter, we will describe in detail the root

cause of these issues and the steps to take to address them.

Miss Bandwidth: Figure 5.11b shows the measured miss bandwidth of

the BaM cache for linear and random access benchmarks. Like the hit band-

width case, both linear and random saturate at 11.2GBps and 0.58GBps of

bandwidth. Intuitively, the random access benchmark should have generated

more I/O requests, but as the cache-line sizes are significant, it only gener-

ates an I/O request. This is because BaM cache is designed to maximize the

reuse within the cache-line and only submit an I/O request if no other threads

have already submitted it. This conflicts with the goal of generating parallel

I/O requests to the storage to hide the storage access latency and achieve

high throughput from the BaM I/O stack. Despite the storage stack being

capable of providing high throughput for storage access, because of the lim-

itations mentioned above, these two benchmarks cannot generate sufficient

I/O requests to saturate BaM I/O stack and thus ends up exposing the long

storage access latency. This results in a long execution time and hence poor

effective bandwidth observed by these benchmarks. A similar performance

trend is observed with Samsung SSDs and at the various cache-line size.

5.6 Summary

In this chapter, we discussed the design of BaM and compared it with the

state-of-the-art CPU-centric model. We discussed the software and hardware

design choices needed to make BaM performent. Using microbenchmarks,

we showed BaM I/O stack can saturate the underlying storage devices with

ease and linearly scale with the addition of more storage drives. Using mi-

crobenchmark, we showed BaM provides the least latency when the cache-
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line size is less than 4KB. Using linear and random access benchmarks, we

showed BaM cache introduces significant performance degradation if naively

used in the applications. To address this fundamental problem, in the next

chapter, we discuss in depth the root cause of the problem and provide sim-

ple optimization techniques to incorporate in the application to enable BaM

to provide on-par or better performance compared to the state-of-the-art

systems.
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Chapter 6

BaM’s Design Dilemma: Access Coalescing vs.
Latency Tolerance

The premise behind the design of BaM is to extend the GPU memory ca-

pacity to that of the storage to accommodate the programmatic access to

massive datasets by emerging applications. With BaM, we essentially add

a slow memory hierarchy to the system. As in any new memory hierarchy

design, access patterns for the system need to be optimized for best perfor-

mance. It becomes even more interesting in systems like BaM as one needs

to optimize the application access pattern with two fundamental yet con-

flicting requirements. On the one hand, we need to coalesce accesses to the

BaM cache to minimize the consumption of its limited access bandwidth. On

the other hand, the BaM I/O stack and storage require many overlapping

I/O requests to hide the latency. Unfortunately, coalescing accesses to the

BaM cache implies the reduction in the number of concurrent I/O requests

submitted to the storage and thus exposes storage access latency! This is

essentially a battle between the number of concurrent I/O requests versus

the BaM cache throughput for exploiting the performance of each access with

re-use. Hence the title of the chapter is BaM’s design dilemma, where we

discuss the steps and methods a developer can use to optimize the applica-

tions to circumvent this adversity and achieve the balance required for high

throughput from the BaM system.

This chapter briefly describes BaM’s design dilemma using a linear ac-

cess benchmark workload. The linear access benchmark is vital for BaM

because the data access patterns of BaM’s target applications can be ap-

proximated with piece-wise linear accesses. We propose a cache-line aware

optimization, a generalizable optimization that addresses the problem asso-

ciated with the baseline linear access pattern and shows how simple changes

can make a huge performance difference for the studied microbenchmarks.

Although cache-line aware optimization provides significant performance im-

provement, it may not be able to reach the peak performance for BaM for all
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(a) Linear access pattern (b) Scheduling in toy GPU

Figure 6.1: Work assignment and scheduling of linear access benchmark in
modern GPUs when using BaM. The example assumes the cache-line size
has 8 elements and describes using a toy GPU with two SMs with two warp
schedulers each with four threads.

studied workloads. Thus we discuss the limitations in the cache-line aware

optimization in the context of graph analytics workload and then propose

a novel application adaptation technique called “on-demand implicit tiling”

(ODT ) to perform efficient computation on CSR graph data structures in

the BaM system. We show that ODT technique regularizes irregular accesses

patterns and maximizes the performance achievable out of BaM system.

6.1 BaM’s Design Dilemma: The Problem

We will illustrate BaM’s design dilemma using linear access pattern where

consecutive threads read consecutive elements in the bam::array<T>. We

showed in Chapter §5.5.2 that this sort of access pattern is not performant

for BaM systems. To understand this in-depth, it is essential to recall the

modern GPU scheduling strategies discussed in § 2.1.

A GPU programmer launches a compute kernel on the GPU with thou-

sands to millions of threads organized into thread blocks. The GPU sched-

ules thread blocks on the SMs as the resource constraints permit. The GPU

hardware scheduler prefers to schedule the blocks in sequential order based

on their blockIDs which is observable by microbenchmarks [2]. An SM fur-

ther divides a thread block into warps, each consisting of 32 threads. The

SM uses the threads in a warp as the unit of work to schedule on the cores

of the SM. Inside an SM, initially, SMs assign each warp to a warp scheduler

in a round-robin fashion. The SM then hides the latency of memory and

compute operations in warps by preempting them with other warps on the

SM that are ready to execute.
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1 __global__ void kernel(bam::array <uint64_t > data ,

2 size_t n, uint64_t *out) {

3 size_t tid = blockIdx.x * blockDim.x + threadId.x;

4 bam:: array_ref ref(&data);

5 ...

6 for(auto i=tid; i < n; tid += blockDim.x*gridDim.x)

7 val += ref[i];

8 ...

9 out[0] = val; // dummy

10 };

Listing 6.1: Linear access pattern in BaM kernel code.

Listing 6.1 and Figure 6.1 shows an example of the linear access bench-

mark. Figure 6.1b describes the associated scheduling with BaM system. The

example assumes a cache-line size of 8 elements and uses a toy GPU with

two SMs with two warp schedulers in it, and each warp has four threads. As

the linear access benchmark requires consecutive threads to read consecutive

elements, only one thread in the even warps will submit an I/O request to

the BaM I/O stack, while the rest of the threads will wait for the previous

I/O request to complete as shown in the Figure 6.1b. This is because from

the BaM cache, there can only be one request pending for a given cache-line.

Let us assume the cost of generating a read request from BaM software

cache is 10µs, storage time is 30µs, and no time is spent for computation,

as shown in Figure 6.4. To better understand the problem associated with

the linear access benchmark, let us assume warps in the toy GPU work in

lockstep when accessing the data from storage, and in each wave, each warp

has to read a cache-line, wait for the storage data and then compute on the

elements of the cache-line.

So, to compute four cache-lines worth of data, as shown in Figure 6.4a,

the linear access pattern would require two waves where in each wave, four

warps will look up the cache to generate a read request and wait for the data

from the storage and then compute on the read elements. Thus, the linear

access pattern will consume 80µs of total execution time for this toy example.

Furthermore, only 50% of the eligible warps submitted I/O requests in this

toy GPU when using the linear access pattern. However, when we expand

this to real-world GPU like NVIDIA A100, the linear access pattern results

in 93.5% of executable warps waiting for the data from storage.
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Figure 6.2: First principle model for the linear access pattern when running
with BaM using four Intel Optane P5800X SSD at 4KB cache-line size.

6.1.1 First-Principle Modeling For Linear Access Pattern

We built a first-principle model to understand further the limitation associ-

ated with the linear access pattern when used in BaM. The model follows a

similar methodology as the widely used roofline modeling technique [76] but

is fine-tuned for BaM system. The model assumes the system has four Intel

Optane SSDs, and the cache-line size is 4KB. The model also assumes the

usage of NVIDIA A100 GPU. Figure 6.2 shows the first principle model for

BaM with linear access pattern. The x-axis shows the number of overlapping

cache-lines in flight to the storage stack, while the y-axis is the effective band-

width observed by the computational threads. The ridge point for storage

bandwidth is determined empirically using microbenchmarks.

The model greatly helps to understand the performance expectations from

the BaM system for linear access patterns with no reuse. We note that with-

out enough overlapping cache-line requests to the storage, the entire system

becomes bounded by the storage access latency. This implies that the appli-

cation and the BaM software stack are not submitting enough I/O requests

to saturate storage. Limited I/O requests from the application and software

stack could result from poor cache-line reference reuse in the application,

contention on the cache metadata as multiple neighboring warps content on

the same cache-line, or even GPU LLC port contention or all the above.

If the access pattern ensures the number of overlapping I/O requests is

above the ridge point, from the model, we know that the application is purely

bounded by the storage bandwidth. Thus, how many active cache-line are
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in-flight in each GPU wave determines whether the application is storage

access latency or bandwidth bound. An ideal application would maximize

the bandwidth from both storage and cache and lie near the max access

bandwidth line, as shown in Figure 6.2.

Next, let’s see where the linear access benchmark lies in this model. With

the linear access benchmark, the BaM cache filters out many of the concur-

rent I/O requests to maximize the throughput to the cache while trading off

storage access latencies. Thus for this benchmark, it is quantitatively possi-

ble to calculate the maximum number of concurrent I/O requests (Qd) that

can be outbound from the BaM cache as:

Qd =
S ∗W ∗WS ∗ sizeof(element)

sizeof(CL)
(6.1)

where S is the number of SMs in the GPU, W is the maximum number of

warps that can be resident in an SM, WS is the number of threads in the

warp, and CL is a cache-line size in bytes.

For NVIDIA A100 GPUs, the number of SMs is 108, each SM can have

up to 64 warps, and each warp can have up to 32 threads in it [2]. Thus the

total number of active warps at any given time is 6912, while the total active

threads are 221K. Assuming each element is of size 8B and cache-line size is

4096B, the maximum number of concurrent I/O requests that can outbound

is only 432 requests. This assumes the BaM stack and the entire system do

not add any overhead, and the GPU does perfect scheduling of work with no

divergence, be it thread or memory. In reality, it is far from the truth, and

with limited concurrent overlapping I/O requests, BaM cannot amortize the

overhead from the software stack and exposes entire storage access latency

to the application.

Of course, the next question is why the hit bandwidth in the linear access

benchmark can only reach up to 47GBps. The rationale behind low through-

put is quite simple: with the linear access benchmark, the work assignment

leads to contention for a small number of cache-lines resulting in performance

degradation, results in severe GPU LLC port contention, and the overhead

of accessing the cache-line reference for the data in the GPU memory is not

amortized as there is never reuse of it as each warp loads the reference and

discards it after use. Because of these reasons, the achieved instructions per

cycle (IPC) in the GPU thread is low, and profiling results show that in-
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structions get issued only every 8.4 cycles in each warp scheduler with the

linear access benchmark.

6.1.2 Summary

Thus far, we have shown that we need to increase the number of overlapping

I/O requests to get the best out of the BaM system. However, this is not

an easy task, especially for a system like BaM where the access pattern

needs to be optimized with two conflicting requirements. We need coalesced

access to extract high performance from the cache, while the storage requires

large overlapping I/O requests to hide the latency. Having coalesced access

reduces the number of concurrent overlapping I/O requests submitted to the

storage and thus cannot hide the latency! So this creates the BaM’s design

dilemma. Thus, naively porting applications does not result in performance

and efficiency benefits from BaM. To address this, in the next section, we

propose a set of application adaptation and optimization techniques that try

to maximize achievable performance out of BaM.

6.2 Cache-line Aware Optimization: The Solution

The ideal access pattern obtained by optimizations and application adapta-

tion should perfectly make use of BaM resources and adhere to the following

set of guidelines. It should quickly generate many overlapping concurrent

I/O requests to tolerate the long storage access latency. It should maximize

the achievable bandwidth from BaM cache by increasing the reuse of the

data and metadata. The adaptation and optimization should be generaliz-

able, implying it should be applicable with or without BaM and should work

for a class of workloads and not be dataset-specific. And lastly, it should

provide good end-to-end application-level performance benefits.

If the goal was to generate many overlapping I/O requests to the storage,

then assigning each thread to work on a cache-line of data would have been

perfect. However, this results in poor performance due to significant thread

and memory divergence. Moreover, this sort of access pattern can further

amplify thread and memory divergence in BaM software stack due to exces-

sive GPU hardware cache misses as each thread touch too much BaM cache
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Figure 6.3: Different warp-level coarsening strategies that can be
implemented on linear access pattern. Far-away coarsening does not make
any changes to the baseline linear access pattern and fails to provide
performance benefit while the cache-line aware warp-coarsening makes best
use of BaM resources.

metadata and thrash the GPU Last-level Cache (LLC).

Thus, it is required for the application to access the bam::array<T> in a

(piece-wise) linear manner to extract high performance from the BaM cache

and minimize the divergence but also generate just enough I/O requests to

the BaM I/O stack and storage to amortize the high cost of accessing storage.

To this end, we propose a set of application adaptation and optimizations

that provide favorable access patterns to reach BaM’s full potential.

First, cache-line aware optimization is a generalizable optimization that

works for all studied workloads. Recall to get the best performance out of

BaM, we need to amortize the cost of accessing the software-managed BaM

cache and generate the necessary I/O requests concurrently and as early as

possible. An intuitive way to do that is to perform warp-level coarsening.

However, applying warp coarsening can be done in many ways. First is

the far-away coarsening technique, as shown in Figure 6.3a. In the far-

away coarsening technique, each warp loops over grid dimensions or a large

stride and is trivial to implement in any application. However, far-away

coarsening does not increase the number of I/O requests generated or assist

with amortizing the cache accesses overhead as it does not change anything

compared to the baseline linear access pattern.

Instead, if the coarsening is done on consecutive warp-elements in the

cache-line, as shown in the Figure 6.3b, it amortizes the BaM cache access

overhead and also widens the window of data being computed at any given

time. In addition, we must also constrain the coarsening factor as a function

of cache-line size to get the best performance out of BaM. Doing so enables

the cache-line aware linear access pattern to generate more I/O requests to
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(b) Cache-line aware

Figure 6.4: An example illustrating the computation of four cache-line
worth of data in BaM using the baseline and cache-line aware linear access
pattern. The example assumes a toy GPU with 2 SMs and 2 warps per SM
and considers no other component in the system adds additional latency
apart from the latencies stated.

hide the storage access latency.

Listing 6.2 provides an example of a GPU kernel with cache-line aware op-

timization for the linear access pattern. The user prepares the contents of the

assignment array. The contents of the assignment array determine if the

cache-lines are accessed in linear, strided, random, and any particular per-

mutation order determined by the user. The assignment array is only used

for generating various microbenchmark access patterns, and the application

would not need it. In this listing, the cache-line aware optimization fixes

the worker size to warp-size, i.e., a single warp is responsible for traversing

entire cache-line data. The specific implementation of cache-line awareness

is shown in lines 9-12 and lines 18-25.

Like the baseline linear access pattern, let us assume the exact cost for

reading the request from BaM software cache is 10µs, storage time is 30µs

but 10µs of additional time is spent for computation due to additional work

added by the cache-line aware optimization. As each warp works on a unique

cache-line in the cache-line aware optimization, each warp can submit a read

request to the BaM I/O stack concurrently, as shown in Figure 6.4b and

does not have to stall. This significantly increases the number of overlapping

cache-line accesses in-flight. Thus, to compute four cache-line worth data,
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1 #define WARP_SIZE 32

2
3 __global__ void kernel(bam::array <uint64_t > data ,

4 uint64_t *assignment , size_t n, size_t n_warps ,

5 uint64_t *out) {

6 size_t tid = get_thread_id ();

7 bam:: array_ref ref(&data);

8
9 //Cache -line aware: Generate warp mapping

10 size_t oldwarpid = tid / WARP_SIZE;

11 size_t laneid = tid % WARP_SIZE;

12 size_t n_elems_per_cl = CL_SIZE/sizeof(uint64_t);

13 ...

14
15 if(warpid < n_warps ){ // boundary conditions

16 // Cache-line aware determine start location

17 auto start_cl = assignment[warpid];

18 auto start_idx = start_cl*n_elems_per_cl + laneid;

19
20 // Cache-line aware warp coarsening

21 for(auto j=0; i < n_elems_per_cl; j += WARP_SIZE ){

22 auto idx = start_idx + j;

23 if(idx < n_elems)

24 val+= ref[idx];

25 }

26 }

27 ...

28 out[0] = val; // dummy

29 };

Listing 6.2: Cache-line aware optimization example.

as shown in the Figure 6.4b, a cache-line aware linear access pattern would

compute in a single GPU wave and consume 50µs. Compared to the baseline

linear access pattern, for this toy example, this results in 1.6× speedup.

Besides the faster execution, cache-line aware optimization for linear ac-

cess patterns provides multiple additional benefits. First, unlike the baseline

access pattern (❶ in Figure 6.4), there are no warps in the GPU that are

stalled, waiting for the data from another warp. With the cache-line aware

optimization, each warp is eligible to submit a read request to a unique cache-

line. This is critical enablement in the cache-line aware optimization as this

enables the generation of many more overlapping I/O requests to move the

application from storage latency bound to storage bandwidth bound.
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Figure 6.5: First principle model with the cache-line aware optimization for
linear access pattern when running with BaM using four Intel Optane
P5800X SSD at 4KB cache-line size. For NVIDIA A100 GPU, the
cache-line aware implementation generates 6912 number of overlapping
requests and becomes bounded by the storage bandwidth.

Second, as each warp works on an entire cache-line, each warp reads an

entire cache-line worth of data, and as there are many concurrent warps,

a large working set is loaded in each GPU wave. This enables CL-aware

optimization to require significantly fewer GPU waves to process the same

amount of data compared to the baseline linear access implementation (❷

in Figure 6.4). Although more work implies an additional computational

burden on each warp, as the computation is done on the data already in

the GPU memory, the increase in computational overhead is insignificant

compared to the exposure to the storage access latency.

Third, as each warp works on a unique cache-line, cache-line aware op-

timization increases the cache-line reference and metadata reuse within the

warp and reduces the contention between warps (❸ in Figure 6.4). With this

optimization, each warp using the bam::array<T> abstraction requires prob-

ing the BaM cache once and reusing the obtained cache metadata to read

data from the GPUmemory. This is because, underneath the bam::array<T>

abstraction, a pointer to the cache-line in the GPU memory is captured and

stored in registers. This helps to amortize the cache lookup overheads when

accessing the data in the BaM cache.
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6.2.1 First-Principle Modeling For Cache-line Aware Linear
Access Pattern

Figure 6.5 shows the updated first-principle model with the cache-line aware

linear access pattern. The baseline linear access pattern was bounded by

the storage access latency as the number of overlapping requests in-flight

was limited to 432 requests. After applying the cache-line aware optimiza-

tion, the linear access pattern becomes limited by the storage bandwidth, as

shown. We can also measure the maximum number of concurrent I/O request

outbound in the cache-line aware linear access pattern and is equal to the

maximum number of resident warps in the GPU as shown in Equation 6.2

Qd = S ∗W (6.2)

Where S is the number of SMs in the GPU, andW is the maximum number

of warps that can be resident in an SM.

Taking NVIDIA A100 GPU as an example, it has 108 SMs, and each SM

can have up to 64 warps. Thus the maximum number of concurrent cache-

line I/O requests outbound at any time is 6912. Compared to the baseline

access pattern, the proposed access pattern generates 16× more cache-line

requests to the BaM storage stack. This significant increase in concurrent

cache-line I/O requests allows the application to tolerate the storage access

latency better. Next, let us measure the hit and miss bandwidth using this

optimized linear access pattern and see if we can indeed saturate storage.

6.2.2 BaM Cache Hit And Miss Throughput With Cache-line
Aware Optimization

Figure 6.6 shows the hit (or access) and miss throughput obtained by the

cache-line aware linear access pattern. The x-axis in this figure shows the

number of threads that are launched. One can compute the number of I/O

requests generated as the total number of threads launched over warp size

(32 threads). The proposed optimization can achieve up to 379.54GBps of

hit bandwidth when all data reside in the GPU memory. Compared to the

linear access benchmark implementation, the hit bandwidth is improved by

up to 8.14×, thanks to the reduction in the contention, improved coalescing,

and increased reuse of the references. Profiling shows that compared to
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Figure 6.6: BaM cache hit (or access) and miss bandwidth with cache-line
aware optimization for linear access pattern. With the optimization, BaM
can easily reach near peak storage bandwidth while the BaM cache hit
bandwidth is an order of magnitude more than the storage bandwidth
enabling high throughput for the data that is reused in the cache.

the baseline linear access pattern, the cache-line aware optimization reduces

the contention on the atomic hardware unit by 50%, increases instruction

executed per cycle by 1.8×, reduces the stall by 52.9%, hence improves the

memory bandwidth throughput by 8.5×.

However, BaM access bandwidth is 4× lower when compared with the na-

tive raw GPU memory bandwidth (1.5TBps). This degradation is mainly due

to the additional memory look-up to determine if it’s a hit or miss. Despite

these overheads, ∼380GBps observed application level bandwidth is decent.

BaM implements software cache-controller in each GPU thread, enabling the

building more scalable, robust high throughput cache design. Furthermore,

BaM cache hit bandwidth is at least 15.9× more than the storage bandwidth

over PCIe. Thus, if the application exhibits reuse, BaM cache can provide

significant performance benefits by exploiting GPU memory bandwidth effi-

ciently.

Figure 6.6b shows the updated miss bandwidth observed by the linear ac-

cess pattern with the cache-line aware optimization. The proposed optimiza-

tion quickly saturates the storage access bandwidth and achieves 23.8GBps

with just a 512K number of threads. As we show later, such a level of par-

allelism is easily achievable in emerging applications. Similar performance

trend changes are also observed in the case of Samsung SSDs at various cache-
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line sizes and are not shown in brevity. This makes the proposed cache-line

aware optimization agnostic of SSD types.

6.2.3 Extensions To Cache-line Aware Optimization

The cache-line aware optimization discussed previously assumes each warp

works on all elements of the cache-line. However, this is strictly not neces-

sary. If the application is storage latency bound after assigning each warp to

a cache-line, the application can be fine-tuned to support sub-warp optimiza-

tion. This enables exploiting even more parallelism offered by the modern

GPUs, hence submitting more I/O requests to the storage. A sub-warp can

be a half-warp, a quarter-warp, or even smaller but must have at least two

consecutive threads. Sub-warp optimization extends the cache-line aware

optimization to a group of threads, i.e., each sub-warp maps to work on a

cache-line or group of cache-line data, and consecutive sub-warps work on

consecutive cache-lines.

Sub-warp optimization increases the maximum number of concurrent I/O

requests out-bound from the GPU as follows:

Qd = S ∗W ∗ WARPSIZE

P
(6.3)

where S is the number of SMs in the GPU, W is the maximum number

of warps that can be resident in an SM, and P is the number of cache-

lines mapped to a single warp resulting in the generation of concurrent I/O

requests. For example, for half-warp implementation on NVIDIA A100 GPU

results in the generation of maximum concurrent I/O requests to be Qd =

108 ∗ 64 ∗ 32
2
= 13824.

The only reason why the developer has to go down the route of sub-warp

optimization is to exploit the I/O parallelism further to hide the storage

access latency in their application. Otherwise, it is recommended to avoid

this optimization as this requires complex changes to the program. As the

GPU streaming multiprocessor schedules a minimum warp size of 32 threads

concurrently for non-divergent coalesced access, the sub-warp access results

in both thread and memory divergence if not carefully handled in the pro-

gram. However, sub-warp implementation such as half-warp can still provide

performance benefits for long latency drives or smaller cache-line sizes where
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we require more overlapping I/O requests to hide the storage access latency.

Instead of mapping each warp or sub-warp working on a cache-line, we

can have a group of warps or a thread block to work on cache-line elements.

This increases the parallelism when working on the data that is read from

the storage. Alternatively, we can assign multiple cache-line to a single warp

to increase the cache-line reference reuse and improve the cache access band-

width. Cache-line coarsening enables efficient prefetching of the following

cache-line metadata to the GPU L1 cache from LLC. This enables the opti-

mization to enhance the instructions executed per cycle and thus helps in-

crease the cache access bandwidth. Cache-line coarsening does not reduce the

number of I/O requests generated to the I/O stack and retains the rest of the

properties. However, having multiple cache-lines assigned to a single warp

can limit the occupancy when using with BaM and hamper performance.

This is because, with multiple cache-lines assigned to a single warp, we also

increase the kernel resource usage, like registers. As the BaM software stack

already adds much pressure on the kernel resources, multiple cache-lines can

result in an aggressive spill of registers to the cache, reducing occupancy, and

polluting the hardware LLC and hence hampering the overall execution time

significantly.

6.3 Regularizing Irregular Workloads In BaM

Modern analytics and recommender systems place great emphasis on an-

alyzing and extracting relational information from large datasets [5]. This

relational information is often stored in a graph structure, a sparse format, as

it provides a compact representation of the data. However, practical graphs

come in huge sizes and offer massive parallelism that can be used to per-

form analytics. Because of the massive parallelism in these graph analytics

algorithms, GPUs are widely used to perform the computation to extract

meaningful insights. However, the ability to process large graph datasets

in GPU is currently severely hampered by the limited accelerator memory

capacity (see §3.1). To address this, we can potentially use the BaM system

and host large sparse graph datasets in the storage and enable GPU threads

to perform on-demand access to the storage during computation. However,

accessing large graph datasets stored in storage poses an important problem:
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sparse graph dataset accesses often result in highly irregular memory access

patterns and can severely degrade the performance achievable by BaM.

Several alternative techniques have been introduced in the literature [77–

80] to address this problem, where they either: (1) partition the graph and

transfer a large chunk of data from storage to the GPU memory and hope

to exploit spatial locality or (2) propose various new sparse data format

representations for reducing the irregular access either by padding or tiling

and improving the memory access efficiency [81,82] or (3) pre-processing the

graph to create active sub-graphs to compute at run-time [79]. Unfortu-

nately, all these techniques cause significant overhead and require constant

interactions with the CPU for computation which goes against the design

philosophy of BaM.

To this end, we discuss how to port graph traversal algorithms to BaM

with the goal to provide competitive performance against the host-memory-

based DRAM-only graph analytics solution on large graphs. We start by

evaluating the current state-of-the-art graph traversal framework EMOGI [5]

that allows efficient graph traversal computation by performing optimized

zero-copy access to the host-memory to BaM system. Next, we examine

the limitations present in a naive port of two graph traversal algorithms to

use BaM for accessing storage and discuss how applying various application

adaptation techniques can improve the overall performance. We then propose

a novel “on-demand implicit tiling” technique to perform graph computation

on CSR data structure. We show “on-demand implicit tiling” technique

when used in BaM can regularize irregular access patterns and hence help

in maximizing the bandwidth to the BaM cache while exploiting the GPU’s

massive parallelism to generate many overlapping concurrent I/O requests

to hide the long storage access latency.

6.3.1 Baseline

We study two popular graph analytics algorithms: Breadth-first-search (BFS)

and Connected Components (CC), and port them from EMOGI [5] frame-

work to the BaM. Doing so requires minimal code changes as shown in List-

ing 6.3. EMOGI adopts a vertex-centric graph traversal algorithm and imple-

ments graph traversal in a manner to maximize PCIe bandwidth efficiently.
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1 #define WARP_SIZE 32

2
3 template <typename T>

4 __global__

5 void baseline_assignment(bam:: array<T> edgeList ,

6 T *vertexList , ...) {

7 bam:: array_ref edgeListRef (& edgeList);

8 thread_id = get_thread_id ();

9 // Group by warp

10 lane_id = thread_id % WARP_SIZE;

11 warp_id = thread_id / WARP_SIZE;

12 ...

13 start = vertexList[warp_id] & ~0xF; // memory aligned

14 end = vertexList[warp_id + 1];

15 ...

16 // Every thread in a warp traverses the edgelist

17 for (i = start+lane_id; i < end; i += WARP_SIZE) {

18 if(i>=start){// prevent underflow

19 edgeDst = edgeListRef[i];

20 ...

21 }

22 } ...

23 }

Listing 6.3: Baseline work assignment in graph traversal with BaM

For the BFS algorithm, EMOGI maps each GPU warp to work on a node

that is being visited in the current iteration, and all threads in the warp col-

laboratively walk through the node’s neighbor list as shown in Figure 6.7a.

For the CC implementation, EMOGI follows a similar work assignment as

BFS except that the application starts by examining all the nodes in the

graph, thus exhibiting a more bursty access pattern than BFS.

Let us consider the case where we must process all the graph vertices. This

can occur in many graph analytics algorithms, like the first few iterations in

the CC workload. Figure 6.7a shows the baseline work assignment, and

Figure 6.7b shows the associated scheduling with the BaM system. The

example assumes the cache-line size of six elements and uses the same toy

GPU previously described. GPU hardware scheduler schedules the blocks

in order of their blockIds. Because of this, all warp on GPU accesses a

contiguous subset of edgelist stored in the storage. This work assignment

was excellent for the baseline implementation as it enables perfectly coalesced
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accesses, but for BaM, a single cache-line can have multiple neighbor-list of

neighboring vertices. When the GPU scheduler schedules the warps, warp0

and warp2 will submit a read request to the storage while the warp1 and

warp2 will wait for the previously submitted request to finish, akin to the

baseline linear access benchmark previously studied in §6. Thus, in this work

assignment, the storage access latency gets exposed and hence cannot achieve

full throughput of the BaM system.

As the access pattern in graph analytics workload depends on the input

graph, unlike the linear access benchmark, it is not easy to determine the

maximum number of concurrent I/O requests outbound from BaM at any

time. However, it is possible to speculate the best and worst case scenarios.

The best case occurs when the size of the neighbor list for every vertex is

equal to the BaM cache-line size. This enables each warp to submit one

cache-line I/O request to the storage and then traverse over the cache-line,

closely resembling the cache-line aware optimization. Unfortunately, while

such an input graph could exist in theory, its probability of existence is

practically zero in reality.

The worst-case scenario occurs when the neighbor list size is tiny, say one

element. As most social graphs follow a power-law distribution, the neighbor

list size of many vertices inside a given graph is likely to be tiny. Let us

assume each edge is of eight bytes to accommodate graphs larger than four

billion vertices. The worst case occurs when every neighbor list has only one

edge. Thus, a single cache-line contains 512 vertices’ neighborlist assuming

4KB cache-line size. As each warp works on a vertex id with the baseline

assignment, 512 warps would contend on a cache-line in BaM, resulting in

severe performance regression. Thus the worst case overlapping I/O request

using NVIDIA A100 GPU would be #MaxResidentWarps
#WarpsPerCL

= 108∗64
512

= 14 requests,

far lower than the number of requests required to hide the storage access

latency.

6.3.2 Transposed Work Assignment Adaptation

We can address the limited number of I/O requests generated in the baseline

work assignment with a straightforward two-line change as shown in List-

ing 6.4 (Line 13 and 14 are new lines added). Instead of each warp working
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1 #define WARP_SIZE 32

2
3 template <typename T>

4 __global__

5 void transposed_assignment(bam:: array<T> edgeList ,

6 T *vertexList , stride , vertex_count , ...) {

7 thread_id = get_thread_id ();

8 bam:: array_ref edgeListRef (& edgeList);

9 // Group by warp

10 lane_id = thread_id % WARP_SIZE;

11 oldwarpid = thread_id / WARP_SIZE;

12 ...

13 // transposed work assignment

14 pivot = ceil(vertex_count/stride);

15 warp_id = (oldwarpid/pivot)

16 + (( oldwarpid % pivot)* stride);

17 ...

18 start = vertexList[warp_id] & ~0xF; // memory aligned

19 end = vertexList[warp_id + 1];

20 ....

21 // Every thread in a warp traverses the edgelist

22 for (i = start+lane_id; i < end; i += WARP_SIZE) {

23 if(i>=start){// prevent underflow

24 edgeDst = edgeListRef[i];

25 ...

26 }

27 } ...

28 }

Listing 6.4: Transposed work assignment in graph traversal.
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Figure 6.7: Example illustration of work assignment in state-of-the-art
graph traversal algorithms.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stride = 4
w0      w4      w8       w12    w1      w5       w9     w13      w2      w6    w10    w14      w3      w7      w11    w15

VertexIDs
w0      w1      w2       w3      w4      w5      w6      w7       w8      w9      w10    w11     w12    w13     w14    w15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VertexIDs

Initial assignment

Transposed assignment with stride=4

Figure 6.8: Example illustration of transposed work assignment using
vertex-centric graph analytics approach.

on a vertex that has the same id as the warp, we can assign each warp to work

on certain stride-away vertex ID. Picking the proper stride enables each warp

to work on a unique cache-line edgelist. Say, the stride size is 4 as shown in

the Figure 6.8, then warp0 works on vertex0, warp4 works on vertex1, warp8

works on vertex2. The assignment circles back after four vertices and start

with warp1 working on vertex4, and so on and so forth. This work assign-

ment is akin to the corner-turning or transposition technique widely used

in matrix multiplication computation [83]. The transposed work assignment

addresses the limited I/O access issue by widening the window of data being

accessed, which allows the cache-lines to be touched earlier than the original

work assignment.

However, there are several challenges associated with this transposed work

assignment optimization. First, the best stride value is input graph depen-

dent, and the programmer must sweep the parameter manually to determine

the optimal stride manually. Second, optimal stride size is crucial for achiev-

ing good performance. This is because if the stride size is too tiny, multiple

warps can still contend on the same cache-line resulting in poor performance.

If the stride size is too large, then we might bring in a lot more data than

64



needed to the BaM cache and result in BaM cache thrashing. Although

thrashing is a problem even observed by the baseline implementation, it is

more aggravated with the transposed work assignment. As the BaM cache

implements a clockwork replacement algorithm, a new cache-line that was

recently brought in can be evicted to make space for another cache-line re-

quested by another warp. This leads to thrashing in the BaM cache and can-

not be avoided with the transposed work assignment. Third, the transposed

work assignment does not maximize the cache-line reference and metadata

reuse. Thus, this optimization may not provide the best performance despite

increasing the number of in-flight requests to the storage.

6.3.3 Applying Cache-line Aware Warp Coarsening

Alternative to transposed work assignment adaptation is to perform cache-

line aware warp-level coarsening where a single warp works on two or more

vertex ids. This reduces the amount of contention that occurs in the given

cache-line. Moreover, as each warp works on more than one vertex id, de-

pending on the neighborlist size of the input graph and coarsening factor,

the number of I/O requests submitted to storage can significantly increase

and hence help to amortize the storage access latency. The coarsening factor

should be a function of cache-line size and the average degree distribution of

the input graph. Of course, like the transposed work assignment, the best

coarsen factor is input graph dependent and can only be determined at run-

time by manually fine-tuning. However, warp-level coarsening can require

substantial changes to the kernel code to support and may not be easy to

implement in all cases. Moreover, the contention issue is unresolved as the

neighbor lists are likely of varying sizes, and it is impossible to enforce full

cache-line awareness.

6.3.4 On-Demand Implicit Tiling Technique

The key to gaining optimal throughput out of the BaM design is to have the

warps touch as many required cache-lines as early as possible to saturate the

interconnect bandwidth and maximize the reuse of each cache-line with the

most negligible overhead. This implies that we need to generate sufficient
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CL0 CL1 CL2 CL3 CL4 CL5 CL6 Captures the vertex id of first Edge List 
element for the given tile

First
Vertex
List

0 2 3 6 8 9 9

Size = #tiles or #cache-lines

Figure 6.9: Example illustration of on-demand implicit tiling technique for
graph algorithms where the graph is represented with a CSR
data-structure. The example assumes the tile size is equal the cache-line
size to keep the illustration simple.

concurrent overlapping I/O requests to saturate the interconnect bandwidth,

and each cache-line should only be brought in once from the storage, and

all computation for that cache-line must be completed as early as possible.

This application modification would essentially exploit the full throughput

of the BaM cache and leverage the full throughput of the BaM I/O stack

simultaneously.

However, this requires us to move away from the traditional vertex-centric

approach of graph traversal and propose a novel access pattern called “On-

demand Implicit Tiling (ODT)” designed for CSR-like data-structures stored

in BaM. The ODT technique is designed with the same spirit of cache-line

aware optimization but with a critical constraint that it should only bring

each cache-line or tile once from the storage, and all computation for that

tile must be completed. Thus, each warp in the ODT technique reads a tile

of data from the backing memory and computes it on each element of the

tile irrespective of the number of vertices or neighborlists mapped to it.

The ODT technique can be illustrated with the example graph shown

in Figure 6.9. The graph contains 11 vertices and 27 edges and is repre-

sented in a CSR data structure (edgelist and vertexlist) as shown in the

Figure 6.91. For simplicity, let us assume the tile size equals the cache-line

size of 4 elements. In BaM system, the edgelist of the graph is mapped to the

bam::array<T> abstraction. This essentially implies that the edgelist spans

six cache-lines stored in storage, as shown in Figure 6.9.

1The above example CSR data structure is synthetically created to test various com-
ponents of ODT technique and should not be confused as a real-world graph. The specific
example sufficiently explains the ODT technique discussed in this thesis.
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In the vertex-centric implementation, each warp works on a vertex and

traverses the neighborlist. Each warp indexes the vertexlist to determine the

start and end points, and then uses them to index the edgelist to do the

traversal. If the neighborlist size is small, multiple warps contend on the

same cache-line reducing throughput. This results in inefficient use of BaM

resources.

Instead, the ODT technique takes an entirely different approach and en-

ables each warp to work on a cache-line as shown in Figure 6.9. That is,

warp0, warp1, warp2, and so on works on CL0, CL1, CL2 and so on respec-

tively. This enables ODT technique to minimize the lookup cost, maximizes

the reuse of data once loaded from the storage to the GPU memory, and

generates many overlapping I/O requests to the storage. The ODT tech-

nique captures the maximum possible reuse of a cache-line in the CSR data

structure.

Enabling ODT technique for any graph algorithm requires some additional

data structure support. Each warp will read the entire cache-line and com-

pute all elements in it. This requires each warp to know the corresponding

mapping of vertexids for each cache-line. If we know the first vertex that

maps to the given cache-line, then we can compute on elements of the cache-

line very efficiently. To do this, we need to generate a temporary metadata

structure called firstvertexlist (FVL) and use this FVL to traverse the CSR

data structure. Firstvertexlist array captures the vertex id of first edgelist el-

ement for a given cache-line. For example, the first edgelist element’s vertex

id of CL0, CL1, CL2 and so on are 0, 2, 3 and so on respectively becomes the

first few elements in FVL array as shown in Figure 6.9. The firstvertexlist

array’s size equals the total number of cache-lines in the edgelist.

Listing 6.5 shows the pseudo-code for performing graph traversal using the

proposed ODT technique. Using the graph example shown in Figure 6.9 and

the ODT algorithm shown in Figure 6.10, we will explain how to perform

graph traversal with ODT technique. Initially, as each warp works on the

cache-line, we need to precompute the cache-line start and cache-line end

index values of the given cache-line. This can easily be computed by know-

ing the number of elements in the cache-line (line 5-7 in Listing 6.5). For

example, warp0 works on CL0 and hence the clstart and clend are 0 and 4

respectively. Another example, warp3 works on CL3 and hence the clstart

and clend are 12 and 16 respectively.
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1 void odt_technique(bam:: array<T> edgeList ,

2 T *vertexList , T *fvl , num_elems_per_cl , ...) {

3 warpIdx = get_warp_id ();

4 bam:: array_ref edgeListRef (& edgeList);

5 ...

6 // calculate cache-line start & end indexes

7 clstart = warpIdx*num_elems_per_cl;

8 clend = (warpIdx +1)* num_elems_per_cl;

9 ...

10 // look up the fvl array to get current vertexid;

11 cur_vertexid = fvl[warpIdx];

12 // start is always clstart in ODT technique

13 start = clstart;

14 // initialize the end

15 end = vertexList[cur_vertexid + 1];

16 stop = false;

17 ...

18 while(!stop) {

19 // clend is reached , terminate

20 if(end >= clend ){

21 end = clend;

22 stop = true;

23 }

24 ...

25 // do warp-wide compute of the algorithm

26 for(i=start+laneIdx; i< end; i+=WARPSIZE)

27 do_compute ();

28 ...

29 // determine if more vertices are

30 // part of the cache-line.

31 // if yes , update start and end.

32 if(end < clend) {

33 cur_vertexid = cur_vertexid + 1;

34 if(cur_vertexid <vertex_count ){

35 start= vertexList[cur_vertexid];

36 end = vertexList[cur_vertexid +1];

37 }

38 else {

39 stop = true;

40 }

41 }

42 }

43 ...

44 }

Listing 6.5: Pseudo-code for performing graph traversal using the proposed ODT
technique in each warp. Some of the boundary conditions are skipped for space.
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Determine first element in CL’s verterid i.e, cur_vertexid = firstvertexlist[clid] 

Calculate start and end for cur_vertexid

Terminate end to clend if end crosses cl boundary

Do parallel traversal computation

CL has more 
neighborlist?

Increment cur_vetexid

Done

Yes

No

Figure 6.10: ODT algorithm for performing graph traversal using CSR data
structure.

Now, the traversal operation requires two necessary operands: start and

end indices of the vertexlist for which the warp is performing the computa-

tion. The start of the traversal in ODT technique is quite simple to calculate

as it is equal to the clstart. If the neighborlist of a given vertex is shared

between two cache-lines, as in the case of vertex6 whose neighborlist spans

CL2 and CL3, the start value is still equal to clstart. This is because, in

the ODT technique, a warp is only allowed to work on the elements of the

given cache-line, and no other cache-line data can be fetched or computed.

However, computing end of the traversal requires us to determine the ver-

texid of the first edgelist in the given cache-line. This is because each cache-

line can map to neighborlists of multiple vertices, or a single neighborlist can

span multiple cache-lines. Thus, the end of traversal for the given vertex can

be either before the clend or the clend itself.

One can quickly determine if the cache-line maps to one or more neigh-

borlist of vertices by looking up the firstverterlist array, as shown in line 14.

The returned value, cur vertexid tells the current vertexid of the first ele-

ment of the cache-line. Thus, to determine if multiple vertices are mapped

to the cache-line, one can look up the vertexlist with cur vertexid+1 value.

If the returned value, end is equal to or greater than the clend, then there

is only one or partial neighborlist of the cur vertexid (line 19-22). If end is

less than the clend, this implies more than one vertices are part of the given

cache-line.

If multiple vertices are mapped to the given cache-line, at run-time, we
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need to perform the traversal for the given neighborlist and then update the

cur vertexid, start and end variable to compute the traversal of the next

vertex that is mapped to the cache-line to do the traversal (line 29-37). This

requires us to add a loop that stops after processing all the elements in the

cache-line (lines 15, 17, 21, 39). Listing 6.5 shows the implementation of ODT

algorithm described in Figure 6.10 including the computation at line 24-27.

Furthermore, if the neighborlist of a vertex spans multiple cache-lines, like

in the case of vertex9, there will be more than one warp working on behalf

of that vertex. Thus, there may need to be atomic operations to avoid race

conditions between the warps that work on the same vertex’s neighborlist.

6.3.5 Generation of FirstVertexList

Now that we have figured out how to perform the computation using the

ODT technique, the next important question to answer is how to generate

firstvertexlist or fvl for any graph. As previously mentioned, fvl is an array

that captures the vertexid of the first edgelist element for a given cache-line,

and the size of the fvl is equal to the number of cache-lines in the dataset.

The fvl is generated by pre-processing the vertexlist and does not come in

a critical path. Although there are many ways one can compute the fvl, in

this thesis, we propose an offline creation using an embarrassingly parallel

implementation.

The fvl is generated in two steps as shown in Figure 6.11. The first step

takes vertexList as input and generates a temporary winnerList whose

size is equal to the number of cache-lines in the dataset. The winnerList

contains a speculative vertexid (or winner vertex) of the first edgelist el-

ement for the given cache-line. Initially the output winnerList is set to

maximum unsigned integer value (max). Then, winnerList generation ker-

nel is launched where each thread first computes the cache-line index (clid)

corresponding to each element in the vertexList. As the vertexList contains

the start and end points of a neighborlist, the clid computation provides a

speculative estimate on which cache-line index this neighborlist may belong

to. Using the clid as an index, the winnerList generation kernel then in-

serts the minimum threadIdx as a value into the winnerList as shown in

Figure 6.11. As this operation can result in a data race, an atomicMin op-
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Figure 6.11: Firstvertexlist (fvl) generation algorithm with the example
illustration.

eration is used. This step creates a speculative reverse map of the vertexids

corresponding to the first edgelist element for the cache-line.

The top part of the Figure 6.11 shows an example of creating a winnerList.

After the winnerList is created, a device synchronization is called before

moving to the second step in generating fvl. A device-wide synchronization

is needed to ensure a winner vertex is picked for all cache-line in the dataset.

The second step takes the created winnerList and generates the fvl. Ini-

tially the fvl is set to zero and then fvl generation kernel is launched where

each thread works on a valid winnerList entry to generate one or more entries

in the fvl array.

The generation of fvl using the winnerList can be described using four

different cases as shown in the second half of the Figure 6.11. First, if the

thread in the fvl generation kernel determines the value of winner is equal

to max by looking up the winnerList, then the thread terminates without

adding any element to the fvl (❶). Some other thread in the fvl generation

kernel is responsible for inserting the value for this entry. This is because an

entry in the winnerList with max value essentially implies that the cache-

line is part of a large neighborlist spanning more than one cache-line and

hence does not contain any start or endpoints. CL5 is an excellent example

of this situation for the example graph.
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Second, if the thread in the fvl generation kernel determines the value

of winner is less than the max value, then using the winner value (wid),

the thread will index the vertexList to obtain winval. If the winval is

a perfect multiple of the number of elements in the cache-lines, then the

vertex’s neighborlist starts precisely at the cache-line boundary; hence the

wid is the vertex id of the first edgelist element for the given cache-line.

Thus, the thread goes ahead and inserts wid into the fvl as shown by green

lines (❷) in the Figure 6.11 (CL0,CL1, CL2 and CL4 are excellent examples

of this). After inserting the wid to fvl, the thread checks if the previous

entry in the winnerList was max and if yes, then it inserts wid-1 to the fvl

until it finds a valid entry in the winnerList. This step is represented by

the function backtrackUpdate()) in the Figure 6.11.

Third, if the winval is not a perfect multiple of the number of elements

in the cache-lines, then the cache-line has a partial neighborlist. CL3 and

CL6 in the Figure 6.11 are excellent examples of this case. Here, the winner

vertex must be decremented by one so that the fvl has the correct value of

the vertex id for the first edgelist element. Then the thread goes ahead and

inserts the decremented value to the fvl as shown by ❸ in Figure 6.11.

Fourth, after inserting the correct value to the fvl, the thread requires

to check if the previous entry in the winnerList was max and if yes, then it

inserts the decremented value to the previous entry in the fvl as shown by the

❹ in Figure 6.11. This step is represented by the function backtrackUpdate()

in the figure. Once all the elements in the fvl is filled, the fvl generation

process is complete and winnerList can be freed.

The generation of fvl can be done in an embarrassingly parallel manner,

and thus, it does not add significant overhead during ODT technique-based

graph analytics. Although the current implementation has not been opti-

mized and has uncoalesced memory accesses and thread divergence, the ODT

library API can generate fvl list in less than 10ms for a 134M node graph

on an NVIDIA A100 GPU. Moreover, the fvl can be reused multiple times

after generating it once, further amortizing the pre-processing overhead.
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6.3.6 Discussions and Limitations

The best part of the ODT technique is that it regularizes the irregular access

at run-time. Before the ODT technique, one needed to look up the vertex

list in the CSR data structure to determine the index in the edgelist and then

issue a read operation to the edgelist. This introduced an irregular access

pattern. However, after the ODT technique, each cache-line is implicitly

read in a perfectly coalesced manner, maximizing the cache-line usage and

then fetching the next cache-line on-demand. Another way to look at this

is that each cache-line we are bringing in is equivalent to a tile of data in a

sparse matrix! This enables a very powerful abstraction for computing with

sparse data structures, which traditionally were impossible.

Furthermore, most prior work in literature [81,84] working on sparse data-

structures preprocess the large graph to create tiles and optimize access pat-

terns for the given loaded tile. These prior works propose to optimize the

access to the sparse matrix by modifying the underlying CSR data struc-

ture with an optimized zero-padding technique or representing the data in

a memory-efficient manner for coalesced memory accesses. However, they

incur significant overhead requiring additional metadata or expensive pre-

processing stage consuming already constrained hardware resources.

Compared to these, the ODT technique requires a metadata array whose

size is equal to number of tiles in the dataset and the metadata array is

generated dynamically at run-time in an embarrassingly parallel manner.

This enables ODT technique to generate tiles on-demand and loaded when

needed. This reduces the programmer burden significantly and enables the

freeing up of compute resources for other tasks. Moreover, ODT technique

maps each warp to work on a tile of edgelist, enabling coalesced access to

the memory without the need for explicit optimizations. Although in the

previous section, we kept the tile size as the cache-line size. However, for all

practical purposes, this does not require to be the case. The ODT technique

works perfectly for any tile size: smaller or more significant than the cache-

line. These make ODT technique an up-and-coming candidate to study in

the future to apply to algorithms such as sparse-matrix vector, sparse matrix-

multiplication, or any other algorithm that work on CSR data structures.

The current implementation of the ODT technique has much room for op-

timization. For instance, we can enable shared memory to keep the elements
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from firstvertexlist to reduce the lookup cost overhead or even load the tile

of data from the backing memory and store it in the shared memory. We

plan on supporting shared memory optimization as part of future work. If

we are storage latency bound, we can further enable sub-warp optimization

techniques to increase the overlapping I/O requests to the storage. We could

also optimize the BaM cache exclusively for the ODT technique and obtain

even more performance and space efficiency. Third, it is entirely possible to

create firstvertexlist dynamically. However, supporting such modifications

and abstraction using the ODT technique is left as future work.

The ODT technique has a critical limitation at present. The ODT tech-

nique assumes concurrency within the traversal is handled by lock-free al-

gorithms or by atomic operations, but if there is a critical section, then a

complex locking scheme might require implementation, which can severely

degrade performance. However, we have yet to come across a workload that

requires such complex concurrency and is left as future work.

6.4 Summary

Naively enabling BaM may not provide any performance benefit out of BaM

for many emerging workloads. This is because to utilize BaM best, one

needs to perform coalesced accesses to the BaM cache and yet generate a

sufficiently large number of I/O requests to BaM I/O stack. To this end, in

this chapter, we proposed a set of BaM optimization techniques to achieve

peak performance of BaM. We proposed a novel first principle-based mod-

eling technique for the root cause of the performance limitation. We then

proposed cache-line aware optimization, a simple generalizable optimization,

capable of maximizing the bandwidth achieved from the BaM cache and stor-

age. We discussed the limitations in the cache-line aware optimization when

applied to the graph analytics workload. We then proposed a novel ODT

technique, a CSR data-structure specific optimization whose ultimate goal is

to maximize the reuse of the cache-line once loaded from the storage while

exploiting the GPU parallelism to generate many concurrent overlapping I/O

requests to hide the storage access latency. In the next chapter, we will eval-

uate how these techniques performed on respective emerging workloads.
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Chapter 7

End-to-end Application Case Studies

Now that we have a better understanding of the BaM system and its char-

acteristics for various access patterns, we can talk about how to use BaM

effectively for end-to-end workloads. We start by studying the applications

that have data-dependent accesses patterns. Data-dependent access patterns

are extensively used in popular applications, e.g., graph analytics, recom-

mender systems, and in frameworks, e.g., RAPIDS for accelerating analytical

queries. As shown in Chapter 3 and Chapter 4, many of these applications

have data structures that cannot fit within the available memory, and using

current state-of-the-art techniques provide poor performance due to I/O am-

plifications, complex tiling strategies, and overheads from memory and I/O

management.

This chapter shows that BaM excels on applications with data-dependent

execution. We study two emerging workloads in depth: graph analystics (see

§ 7.1) and data analytics (see § 7.2) with variety of large datasets. We apply

the optimization discussed in §6 to these workloads and study the contri-

bution of each component of BaM for overall execution. We also show that

the proposed ODT technique can reach peak performance out of BaM for

graph analytics workload while the transposed work assignment and cache-

line aware optimization reach near optimal performance with simple modifi-

cations to the existing implementations. We then extend the cache-line aware

work assignment optimization to data analytics workload and show that it

can provide up to 5× performance boost over the baseline implementation.

Lastly, we also evaluate BaM on two regular workloads: vectorAdd and re-

duction algorithms (see § 7.3) and show that BaM provides on-par or slightly

lower performance compared to the complex tiling strategy used in the state-

of-the-art implementations. Although BaM does not excel on regular work-

loads, it greatly simplifies the programmer’s burden when accessing the data

stored in the storage.
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Overall this application level end-to-end evaluation shows that

• proposed optimization techniques greatly help with maximizing the

performance of each application and achieving peak performance out

of BaM system.

• BaM’s performance is either on-par with or outperforms the state-of-

the-art solutions for all types of studied workloads.

• BaM’s design is agnostic to the type of storage used, enabling application-

specific cost-effective solutions.

• BaM reduces I/O amplification and CPU orchestration overhead sig-

nificantly for data-analytics workloads (see § 7.2).

7.1 Performance Benefit Of BaM For Graph Analytics

In this section, we evaluate the performance benefit of BaM for graph an-

alytics workload. Graph analytics is a complex emerging workload and no-

toriously hard to get good performance. Because of this, graph analytics

also make a good test vechicle to evaluate and understand various design

implications of BaM. Table 7.1 summarizes the key description and insights

obtained from various experiments performed with BaM on graph analytics

workload.

7.1.1 General Setup

The goal of the BaM is to provide competitive performance against the host-

memory-based DRAM-only graph analytics solution. To this end, a highly

optimistic target baseline T allows the GPU threads to directly perform coa-

lesced fine-grain access to the data stored in the host-memory during graph

analytics execution [5]1. We use a CPU with a large DRAM capacity to host

the input graphs and make a direct comparison of the performance between

BaM and T.

1This is a highly optimistic baseline as the data is assumed to be preloaded to the
host-memory and no time is spent on accessing the data from storage.
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Table 7.1: List of experiments and key insight obtained from BaM on graph
analytics workload.

No Experiment Description (D) and Insight (I)

1
Comparison with the Target
(T) system, scaling and cost
benefit (§7.1.2)

D: Comparison of BaM performance with the state-of-the-art
baseline target system. The baseline system assumes an ideal
storage bandwidth and peak throughput out of PCIe interface
after loading the data to the host memory. BaM performance
is compared with two configuration: with single and four Intel
SSD at 4KB cache-line size. Four SSD configuration provides

ISO bandwidth between the Target system and BaM.

I: BaM can saturate one Intel SSD with ease and then
linearly scale to four Intel SSD. Overall BaM achieves 1.00×
and 1.49× performance benefit over an highly optimistic

target system. Also, BaM offers upto 4.45× and 6.63× perf/$
cost benefit over the target baseline system using expensive
four Intel Optane SSDs. Compared to the all in GPU-HBM

memory solution, BaM is upto 4.27× slower.

2
BaM performance
breakdown (§7.1.3)

D: Slices up the overall execution time of the BaM to
understand the breakdown of time from various components

I: With BaM four SSD configuration, compute time
constitute to 10-44%, BaM cache-access API constitutes to
4-45% and storage access constitutes to 18-80% of overall
execution time based on type of workload and datasets

3 Impact of SSD type (§ 7.1.4)

D: BaM evaluation with Samsung datacenter grade DC1735
and consumer grade Samsung 980 pro SSDs

I: For Samsung DC 1735 SSDs, BaM provides similar
performance as the Intel Optane SSDs as both have similar

SSD performance characteristics. For consumer grade
Samsung 980pro SSDs, compared to the Intel Optane SSDs

(datacenter grade), BaM is only upto 3.21× slower.

4
Impact of cache-line size
(§ 7.1.5)

D: Evaluate the impact of cache-line on BaM performance on
various graph workloads with different datasets.

I: 4KB cache-line size provides the best performance for all
applications tested. At 512B cache-line size, the application is
only 1.86× and 2.36× slower compared to the 4KB cache-line

size.

5
Impact of various
optimizations (§ 7.1.6)

D: Captures and discusses several trade-offs associated with
various optimizations and how they affect performance in the

context of the BFS and CC workloads.

I: ODT technique provides the best performance across most
workloads and dataset. However for 8GB BaM cache,

transposed work assignment and cache-line aware coarsening
provides slightly lower performance and can be enabled with

few lines of modifications in the GPU kernel code.

6 Impact of cache size (§7.1.7)

D: Measures the impact of cache-size on the BaM
performance

I: ODT technique performance is not dependent on cache size
and can work with cache size as small as 16-32MB for all

workloads providing peak performance out of BaM.

7
Impact of number of queues
and queue depth(§ 7.1.8)

D: Sensitivity study to evaluate the impact of number of
queues and queue depth on BaM system

I: ODT technique requires less than 512 CQ/SQ entries to
reach peak performance with 4 Intel Optane SSDs at 4KB

access granularity.

Because the access patterns and performance characteristics of graph traver-

sal applications can vary significantly across different types of graphs, the

experiments should cover a diverse set of graphs. We use the graphs listed in
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Table 7.2: Graph Analytics Datasets.

Graph Num. Nodes Num. Edges Size (GB)

GAP-kron (K) [38] 134.2M 4.22B 31.5

GAP-urand (U) [38] 134.2M 4.29B 32.0

Friendster (F) [3] 65.6M 3.61B 26.9

MOLIERE 2016 (M) [4] 30.2M 6.67B 49.7

uk-2007-05 (Uk) [39,40] 105.9M 3.74B 27.8

Table 7.2 for the evaluation. K, U, F, and M are the four largest graphs from

the SuiteSparse Matrix collection [35] while the Uk is taken from LAW [36].

These graph datasets cover diverse domains, including social networks, web

crawls, bio-medicine, and synthetic graphs.

We run two graph analytics algorithms, Breadth-first-search (BFS) and

Connected Components (CC), with the target system and BaM with different

SSDs listed in the Table 5.3. For both systems initially, the edgelist is stored

in the storage. For target system T, we load the entire edgelist to the CPU

memory and pin it. We calculate the storage I/O time for the target system T

with the assumption that the CPU and the operating system do not add any

overhead and can achieve peak storage bandwidth when loading the edgelist

to the CPU memory. Thus, to calculate storage access time, we divide the

edgelist size in bytes over the peak achievable theoretical storage bandwidth

in gigabytes per second. Although this is a theoretical and highly optimistic

assumption, we want to compare BaM to the best possible baseline out there.

We apply the optimization discussed in §6 for both target baseline system

and various BaM configurations. For BFS, we report the average run time

after running at least 32 source nodes with more than two neighbors. We

do not execute CC on the Uk dataset since CC operates only on undirected

graphs. We also use the best performing optimization for BaM unless explic-

itly specified (in most cases it is the proposed ODT technique; see § 7.1.6

for more details). By default, unless explicitly stated, we run experiments in

the target (T) baseline system and BaM with four Intel Optane SSD and one

NVIDIA A100 GPU. Also, unless explicitly stated, the cache size for BaM is

set to 8GB, and the cache-line size is set to 4KB.
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Figure 7.1: Graph analytics performance of BaM with cache-line of 4KB
and the Target (T) system using Intel Optane SSD. End-to-end execution
time is reported in the Y-axis (lower is better). On average, BaM’s is 1.00×
and 1.49× faster than the Target system with 4 SSD configuration for BFS
and CC workload respectively. Even with single Optane SSD, BaM is only
slow by 1.4× and 1.27× (Execution time lower is better).

7.1.2 Overall Performance With Intel SSDs

Figure 7.1 shows the performance of both the target system (T) and BaM

with single (B 1I) and four (B 4I) Intel Optane SSDs. The single SSD BaM

configuration (B I) is upto 8.54× slower than the target T system without

considering the initial file loading time for the T system. However, if we

include initial file loading time for the T system, BaM is on average slow by

1.43× and 1.27× for BFS and CC workload respectively. This is because

BaM’s B I is limited by the throughput of the single SSD’s ×4 Gen4 PCIe

interface while the target system T greatly benefits from full ×16 Gen4 PCIe

bandwidth between the host and GPU.

We now scale the number of SSDs to four (P 4I) and replicate data across

SSDs to increase the BaM’s aggregate bandwidth. With four SSDs and 4KB

cache-line size, the underlying BaM infrastructure provides similar band-

width as ×16 Gen4 PCIe interface as in the target system. Compared with

the target system T with file-loading time, BaM with four Intel Optane SSDs

provides on average 1.0× and 1.49× speedup on BFS and CC applications

respectively. This is mainly because in the case of BaM, the storage and

compute operations are fully overlapped, can saturate PCIe Gen4 ×16 band-

width, and observes much less I/O amplification. In contrast, the target

system T needs to wait until the file is loaded into host memory before it can

offload the compute to GPU. The superior host-memory bandwidth of the
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datasets and workload, measured IOPs with BaM is with-in 0-9.2% of the
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T system cannot overcome the initial file loading latency. As a result, BaM

achieves either on-par or higher end-to-end performance.

Scaling and Measured IOPs: Figure 7.1 also shows the speed up ob-

tained by the BaM with the additional number of Intel Optane SSD compared

to the single SSD configuration. As expected, both the target T system and

BaM gain scaling benefit with additional number of SSDs. The target T

system sees 2.4× and 1.96× theoretical2 scaling speed up for BFS and CC

workload when the number of SSDs is increased from one to four. On the

other hand, BaM observes a scaling speed up of 3.48× and 4× (geomean) for

BFS and CC workload, respectively. The main reason why the BFS workload

scaling is worse than CC in the case of BaM is due to the BFS algorithm’s

poor performance with the Uk dataset. To understand what is happening,

let us measure the storage IOPs obtained by these workloads on BaM and

see if it saturates the storage stack.

Figure 7.2 shows the measured IOPs from BaM I/O stack across various

datasets and graph analytics workloads. From Table 5.3, each Intel Optane

SSD is capable of providing ∼1.5M IOPs and four Intel Optane SSD con-

figuration should provide ∼6 MIOPs. BaM can nearly saturate all SSDs

2We used this term for target T system mainly because we assume RAID0 [85] config-
uration can achieve a linear performance scaling and can reduce the storage I/O time by
4× when the number of SSDs is increased from one to four.
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across most of the workloads with ease, except with the BFS algorithm on

the Uk graph. This is because Uk graph has a varying degrees of depth across

random sample iterations, and many nodes have a tiny neighborlist. With

tiny neighborlist and deep depths (>100+), the total number of overlapping

concurrent I/O requests that are indeed submitted in each iteration of BFS

to the BaM I/O stack is deficient. Out of 100+ BFS kernel executions, less

than 10 have enough I/O requests to saturate the storage, while the rest

accesses a few 10s of cache-lines. This exposes cache access overhead to the

application, and further addition of SSDs to the system does not provide

additional performance benefits.

Compared to the T baseline system, for BFS on Uk graph, BaM with

four SSD configuration is 1.54× slower. One way to address this issue is

to use a frontier-based BFS algorithm. With a naive BFS frontier-based

approach [83], BaM achieves 1.54× the speedup over the target (T) base-

line system with 4 SSD configuration and is able to hit upto 3.9M IOPs.

Further optimization in the BFS frontier-based implementation can provide

additional speedup but is left as future work.

With this, we have shown that the BaM performance for these applications

(except Uk graph as it is still bounded by the concurrent I/O requests) is

bounded by storage access bandwidth.

Cost benefit: What is more exciting is the cost benefit provided by BaM

system when compared to the baseline target system. To do this, instead of

taking absolute prices, we will use $/GB metric used in Table 5.2 to discuss

perf/$ achieved by BaM when compared to the host-DRAM only solution

assuming constant memory capacity. Note that this is a system-cost com-

parison and not a media cost comparison, and SSD cost reduces with the in-

creased capacity. BaM with Intel Optane SSD is at least 4.45× cost-effective

when compared to the DRAM-only solution for the same memory capacity.

Thus, with the single Intel Optane SSD, BaM offers a minimum of 0.69× and

1.13× perf/$ (geomean) compared to the host-DRAM only solution without

the initial file loading time for BFS and CC workloads respectively. With the

initial file-loading time, BaM offers a minimum of 3.1× and 3.48× (geomean)

perf/$ compared to the target baseline system for BFS and CC workloads,

respectively, despite using the most expensive SSD out there.

With four Intel Optane SSD, the BaM perf/$ further improves. BaM can

provide 2.32× and 4.48× (geomean) perf/$ compared to the host-DRAM
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Figure 7.3: Setup description for BaM performance breakdown.

only solution without the initial file loading time for BFS and CC workloads,

respectively. And with the file reading time included, BaM perf/$ offers

a minimum of 4.45× and 6.63× (geomean) perf/$ compared to the target

baseline system for BFS and CC workloads, respectively. And this perf/$
benefit will undoubtedly increase with the additional storage capacity added

to the system or by changing the storage to a less expensive drive. Further

cost benefits from BaM solution are available such as reduced total cost-of-

ownership (due to lower power consumption) and are not considered in these

measurements.

Comparison with the GPU-HBM solution: We now compare the per-

formance of BaM when all the datasets fit in the GPU-HBM memory. We

assume the edgelist is preloaded into the GPU-HBM memory for this evalu-

ation. In the case of all GPU-HBM solutions, the entire HBM bandwidth of

1.55TBps is at the application’s disposal. On the other hand, BaM with four

Intel Optane SSDs and only 24GBps of external bandwidth, BaM see only

3.21× and 4.27× slowdown compared to the all-in GPU-HBM memory. This

is exciting because even for a complex workload like graph analytics, BaM

with the cache-line aware optimization can maximize the access bandwidth

when accessing the data stored in the storage stack. Moreover, BaM provides

a much faster, economical, and more practical method to scale GPU’s effec-

tive memory capacity when compared to the fixed small size HBM memory

capacity increase seen in each generation.

7.1.3 BaM Performance Breakdown

We now slice up the overall execution time of the BaM to understand how

each component in BaM contributes to the overall execution time.

Setup: Figure 7.3 shows the overall setup of the experiment. Initially, we
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load the entire dataset in the GPU-HBM memory and measure the execution

time. This captures the best possible performance that one can achieve if all

data is the GPU-HBM memory and is represented as Tcompute (or Compute

in blue color). Next, we measured the total execution time when the data

is in the GPU-HBM memory, but each application access must go through

the BaM cache API. This is the best case performance one can achieve if

all accesses were hit in the BaM cache and is represented as TBaMbest.

In the figures, this is represented as BaM Cache API in orange. Next, we

constrain the BaM cache size to 8GB and measure the total execution time

which is shown as Ttotal. Using these three execution time measurements,

we can compute the overhead introduced by the BaM cache very quickly.

We can subtract the compute time from TBaMbest to capture the cache

API overhead. Similarly, we can measure the time spent for storage access

(Storage I/O) by subtracting the cache overhead and compute time from the

total execution time. We acknowledge this methodology is not perfect and

does not consider overlapping accesses but is sufficient to understand the

average distribution of time spent in each component of the BaM system.

Figure 7.1 shows the absolute execution time breakdown across different

layers in BaM while Figure 7.4 shows the relative distribution of time across

three key components in the BaM system. First, these two figures show an

overhead when accessing the data via BaM cache. For a single SSD, the cache

overhead is about 2-15% of overall execution time. For four SSD, the cache

overhead varies from 4-45% of overall execution time. With a single SSD, the
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application was bounded by the storage throughput, and adding additional

SSD helped improve the bandwidth, thus minimizing the storage access over-

head significantly. The cache overhead mainly comes from contention when

managing the metadata, load imbalance, limited hardware cache capacity

resulting in GPU LLC thrashing, long latency atomic operation, and warp

scheduling in the face of polling threads. Some of this cache-overhead can be

resolved with the modern GPUs using cache-hints to pin specific commonly

accessed metadata in the GPU-LLC. Modifying the BaM cache implementa-

tion to replicate the cache state can reduce the cache contention overheads

and provide a performance benefit. We leave this optimization as future

work.

Second, an upper limit exists on scaling the number of SSDs to saturate

the application performance irrespective of type and number of SSDs. This

upper limit is bounded by the rate at which the GPU threads can submit

I/O requests and how efficiently the applications utilize the cache. For most

workloads, with the ODT technique, current BaM implementation is near

its peak performance.

Third, with the optimal access pattern, cache design, and sufficient num-

ber of SSDs, it is possible to hide the storage access latency in application

execution by exploiting the massive parallelism offered by the GPU. Cur-

rently, from Figure 7.2, BaM is bounded by the storage throughput from the

storage system, and as long as the storage system can provide the same level

of performance, it is possible to achieve peak performance out of BaM.

7.1.4 Impact Of SSD Type

We now evaluate BaM with different types of SSDs: datacenter grade Sam-

sung DC 1735 and consumer grade Samsung 980pro. Figure 7.5 shows the

slowdown observed by the BaM prototype configured with four Samsung DC

1735 and Samsung 980pro SSDs compared with four Intel Optane SSDs.

Samsung DC 1735 and the Intel Optane SSD have similar performance for

almost all workloads. This is because these SSDs provide similar random

read IOPs for 4KB transfers. Despite the latency of Samsung DC 1735 being

more than 2× that of Intel Optane, the BaM performance does not change

much. Samsung 980pro SSDs have more than 30× more latency and 2 ×
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Samsung DC 1735 and Samsung 980pro SSDs when compared with four
Intel Optane SSDs. (Slowdown lower is better)

lower throughput per SSD when compared to the Intel Optane SSDs, and

yet BaM prototype with the Samsung 980pro SSD is on average 3.21× and

2.68× slower for BFS and CC workload compared to the BaM with the same

number of Intel SSDs. Increasing the number of consumer-grade SSDs in

the system and fine-tuning further can reduce this gap. Despite that, these

are very encouraging results for consumer-grade SSDs as they provide the

best value among all the SSD technologies. One can also afford to increase

the number of consumer SSDs used and keep the cost much lower than data

center-grade SSDs as long as the workload is read-intensive.

7.1.5 Impact Of Cache-line Size

We vary the cache-line size of the BaM software cache from 512B to 8KB to

understand the impact of access granularity on graph analytics workloads.

Recall that the BaM cache-line size determines the granularity of access to

the storage. The evaluation is done using sta four Intel Optane SSDs shown

in Figure 7.6.

From Figure 7.6a and Figure 7.6b, as we decrease the cache-line size from

4KB to 512B, BFS and CC workloads on average slow down by 1.86× and

2.361× respectively. This is because graph workloads exhibit spatial locality

within their neighbor lists and can benefit from larger accesses. The 4K

granularity takes advantage of the spatial locality of large neighbor lists in
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some of the graphs, and the extra bytes transferred for smaller neighbor lists

don’t deteriorate performance as the PCIe bandwidth is not over-saturated.

Increasing the number of SSDs in the case of 512B cache-line size access does

not help further improve the performance (not shown). This is because at

512B cache-line sizes, the BaM is bounded by the throughput of the cache

and its ability to generate concurrent I/O requests to the BaM I/O stack.

Improvements in BaM cache design can address this problem and be left as

future work.

Furthermore, BaM’s fine-grain access reduces I/O amplification, thereby

improving the effective bandwidth. Otherwise, the application would have

had up to an 8× slowdown upon reducing the cache-line size from 4KB to

512B. Increasing the cache-line size from 4KB to 8KB barely impacts the

overall performance. This is because at 4KB with four Intel Optane drives,

the application is near its peak performance and saturating the storage. In-

creasing the cache-line size further does not improve the already saturated

storage.

7.1.6 Impact Of Various Optimization

We next evaluate the contribution of various optimization on the overall

execution time of graph workload when running with BaM. Description of

each of these optimizations are described next:

1. Initial: This captures the baseline implementation discussed in $6.3.1.
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Here, the initial graph algorithms are ported directly to BaM, and the

edgelist is moved to the storage and accessed via bam::array<T> API.

Initial implementation uses a vertex-centric approach where each warp

works on the vertex that is being visited in the current iteration, and

all threads in the warp collaboratively walk through the neighborlist.

2. Trans+optstride: Transposed with optimal stride follows a vertex-

centric approach where each warp works on vertexid and consecutive

warps work on optimal stride away. More details on the design is

discussed in §6.3.2. A parameter sweep on stride is performed to obtain

an optimal stride giving the best performance. For most graphs, the

optimal stride is 128 except for M graph, which has the optimal stride

of 512.

3. Coarsen: This implements cache-line aware warp coarsening technique

using vertex-centric approach discussed in §6.3.3. Here each warp work

on eight consecutive neighboring vertices’ neighborlist. The coarsening

factor of 8 gives the sum of neighborlist size nearest to the cache-line

size in these workloads.

4. ODT: This implementation follows the design principles laid out in

§6.3.4. Instead of a vertex-centric approach, each warp works on a tile

of data. The ODT technique tries to maximize each cache-line reuse

and generate as many concurrent I/O requests as possible from the

given system. The tile size is equal to the cache-line size.

We evaluate the above designs on NVIDIA A100 GPU with four Intel

Optane SSD. The cache-line used is 4KB, and the cache capacity is 8GB.

For all experiments, we will be picking the max NVMe CQ/SQ queue depth

and the max number of queues supported by the device. We report total

execution time, the breakdown of each component, and its variation with

respect to various optimizations. The breakdown is calculated in the same

manner as the BaM performance breakdown discussed in § 7.1.3.

Figure 7.7 and Figure 7.8 shows the overall execution time with breakdown

of each component across various optimizations when running with BaM

on BFS and CC workload with different datasets respectively. For both

algorithms, the initial baseline only achieves up to 1.43 MIOPs (geomean)

and 0.92 MIOPs (geomean) for BFS and CC workload, respectively. This
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Figure 7.7: Overall execution time breakdown for BFS algorithm with
various optimization in BaM using one NVIDIA A100 GPU and four Intel
Optane SSDs with 8GB BaM cache. The grey color numbers above each
bar graph represent the measured IOPs in millions. (Time lower is better,
IOPs higher is better.)

is far lower than the achievable ∼6MIOPs of BaM. This is because, across

both algorithms, the initial implementation provides deficient performance

as multiple warps contend on the same cache-lines increasing the cache-access

overhead and reducing the number of concurrent overlapping I/O requests

submitted to the storage. The cache-overhead constitutes 53% and 59% of

the overall execution time of BFS and CC workloads, respectively. Thus the

initial baseline implementation cannot saturate the BaM I/O stack.

The Transposed work assignment, although improving the performance by

1.28× and 1.40× for BFS and CC workload, respectively, is still far from sat-

urating the storage (not reported in the graph). With the optimal stride, the

transposed work assignment (Trans+optstride) when compared to the initial

implementation provides 2.90× and 5..68× performance benefits. Significant

reduction in the cost of accessing cache-access API (3.45× and 7.7× for BFS

and CC workload compared to the initial) is helping the Trans+optstride

optimization to achieve such performance. The transposed work assignment

can generate significantly higher IOPs but falls short of saturating the stor-

age. This is because this optimization still suffers from the contention for

metadata in the cache and suffers cache thrashing. Yet transposed work

assignment sees 4.10MIOPs and 4.79MIOPs for BFS and CC workloads, re-

spectively.

The Coarsening optimization provides a similar performance benefit as the
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Figure 7.8: Overall execution time breakdown for CC algorithm with
various optimization in BaM using one NVIDIA A100 GPU and four Intel
Optane SSDs with 8GB BaM cache. The grey color numbers above each
bar graph represent the measured IOPs in millions. (Time lower is better,
IOPs higher is better.)

Trans+optstride work assignment. Compared to the initial implementation,

this optimization is 3.31× and 4.58× better for BFS and CC workload re-

spectively. This optimization tries to maximize the cache-line reference reuse

within a cache-line and generates many concurrent overlapping I/O requests

to the storage. Because of this, Coarsening optimization provides up to 4.73

MIOPs and 4.10 MIOPs for BFS and CC workload, respectively. Although it

does not saturate like the Trans+optstride work assignment, it shows the fact

that cache-line aware optimization is equally applicable to these workloads

with minimal code changes.

Lastly, across both workloads, as expected, ODT technique on-average

(geo-mean) provides speed up of 3.07× and 6.65× compared to the initial

implementation. This is because ODT tries to maximize the reuse of the

cache-line once brought into the cache, thus maximizing the use of BaM cache

bandwidth and launching a sufficiently large number of warps to hide the

storage access latency. Across both workloads, ODT technique has the least

cache-access API overhead (constituting 40% and 10% of overall execution

time). ODT technique can achieve peak throughput out of the storage,

reaching up to 6.22M IOPs for some workloads, with geo-mean being 5.34M

IOPs and 6.18M IOPs for BFS and CC workloads, respectively.

The average (geomean) IOPs is slightly lower for BFS workload with ODT

technique is mainly because of Uk graph. As we previously stated in § 7.1.2,
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Figure 7.9: Overall execution time for BFS and CC algorithm with various
optimization when the entire dataset fits in the GPU-HBM memory. The
optimization maintains on-par or provides slightly better performance when
the dataset is in the GPU-HBM memory. (Time lower is better.)

Uk graph has varying depth across random sample iterations, and many of

the nodes have a tiny neighborlist. With tiny neighborlist and deep depths

(>100+), the total number of overlapping I/O requests that are indeed sub-

mitted in each iteration of BFS to the BaM I/O stack is significantly less.

With a low number of concurrent I/O requests, the BaM stack cannot amor-

tize the cache and storage access latency and hence sees lower performance.

One way to address this issue is to use a frontier-based BFS algorithm.

With a naive BFS frontier-based approach [83], BaM achieves 2× the speedup

over the ODT technique for this specific dataset. This tells us that the

work efficiency, essential merit of the frontier-based BFS algorithm, plays an

important role when the graph is deep and has a tiny neighborlist. The ODT

technique can be enabled with work efficiency in mind and is discussed in

detail on how to enable it in the future work chapter.

Overall, ODT technique provides the best performance across most work-

loads and datasets. However, for an 8GB BaM cache, transposed work as-

signment and cache-line aware coarsening technique provides slightly lower

performance (about 7-15% lower) and can be enabled with few lines of mod-

ifications in the GPU kernel code. Similar performance variations are also

observed with Samsung SSDs and are not reported. Even more interesting

is that the proposed optimization in most cases also helps improve the per-

formance when the dataset fits in the GPU memory, as shown in Figure 7.9.

This implies the optimizations done for BaM are generalizable across memory
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Figure 7.10: Impact of cache capacity on two optimization with four Intel
Optane SSD and cache-line size of 4KB for K dataset on BFS and CC
workload respectively. ODT technique requires a very little BaM cache
capacity, infact only 16-32MB to provide same performance as the 8GB
cache capacity required by transposed work assignment implementation
(Slowdown lower is better, Hit rate higher is better)

hierarchies and do not degrade baseline performance. This meets one of the

key goals when designing the BaM adaptation and optimization techniques.

7.1.7 Impact Of Cache Capacity

Next, we measure the sensitivity of cache capacity on the two best-performing

optimizations: transposed with optimal stride size and ODT technique. For

this evaluation, we use K dataset and run both BFS and CC workload with

four Intel Optane SSDs at 4KB cache-line size. We vary the cache capacity

from 1GB to 64GB and measure the slowdown when compared to 8GB BaM

cache.

Increasing the cache as expected provides performance benefits for both

optimizations and is nothing surprising. This is because large cache sizes can

support loading the entire dataset to the GPU memory and can exploit higher

cache bandwidth. However, for all practical purposes, requesting a cache

capacity above 8GB is untenable as GPU memory is a very scarce resource,

and most often, the application requires the local GPU memory for hosting

workload-specific data structures. Decreasing the cache capacity reduces

transposed work assignments with the optimal stride drastically. This is

because the cache hit rate reduces significantly, as shown in Figure 7.10.
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Figure 7.11: Impact of NVMe CQ/SQ queue depth on overall execution of
BFS and CC workload with K dataset. BaM requires a minimum of 48
queue pairs with two entries to provide unwavering performance for the
applications. (Slowdown lower is better.)

On the other hand, ODT technique does not see any performance degra-

dation with the reduction in cache capacity. For the ODT technique to

work, it only requires 32MB of BaM cache-capacity at 4KB cache-line size

and still provides the best performance. This is because ODT technique

reads a cache-line from storage and computes all elements in the cache-line.

This maximizes the reuse of the cache-line once brought in, and hence, hit

rates remain constant. Thus, for a given GPU, with ODT technique, it is

possible to determine the minimum cache capacity needed to get the best

performance and can be computed as cachesize = SM ∗W ∗ CLsize where

SM is the number of SMs in the GPU, W is the number of warps per SM,

CLsize is cache-line size. For NVIDIA A100 GPU with BaM cache-line of

4KB, this comes to 108 ∗ 64 ∗ 4KB = 27MB.

Thus, if the application developer is highly constrained by the available

memory for executing graph workloads, ODT technique provides the best

performance with the minor memory requirement for cache, enabling expo-

sure to substantial GPU memory capacity using storage. If not, the trans-

posed implementation provides near optimal performance with straightfor-

ward changes to the codebase.
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7.1.8 Impact Of Number Of Queues and Queue Depth

In §4.5, we mentioned based on Little’s law that as long as the application

running on BaM can generate sufficient concurrent requests, GPUs can hide

the storage access latency. For BaM with 4KB cache-line size, the Little’s

law provides T × L = Qd, where T is the throughput of the storage system,

L is the average latency of accessing a 4KB cache-line using BaM stack and

Qd is the minimal queue depth required at any given point in time to sustain

the throughput. With four Intel Optane SSDs at 4KB access size, T is

24GBps/4KB = 6MIOPs. From §5.5.1, the average latency of accessing

a 4KB cache-line using BaM is 31µs for Intel Optane SSDs through BaM

stack. Thus, from Little’s law, to sustain a desired 6M IOPs at 4KB, the

BaM system needs to accommodate a minimum number of queue entries of

6MIOPs ∗ 31µs = 186 requests. However, for all practical purposes, this

number should be more than 186 entries.

In this evaluation, we want to determine the minimum number of queue

entries needed to provide the same performance as the nearly unlimited queue

entries. To do this, we evaluate the impact of the number of queues and their

depth using the BFS and CC graph traversal workload on the K dataset. We

use the ODT technique optimization with 32MB cache-size and 4KB cache-

line size with four Intel Optane SSDs. Each Intel Optane P5800X SSDs

supports up to 135 SQ/CQ pairs, and each queue can be 1024 deep. With four

Intel Optane SSDs, the BaM system has 135∗1024∗4 = 540K available entries

and significantly exceeds the required queue entries for efficient execution in

BaM. We use this configuration as a baseline and compute the slowdown

when we reduce the queue depth and the number of queues, as shown in

Figure 7.11.

Figure 7.11a shows the impact of queue depth, keeping the SQ/CQ pairs

(CP) equal to 128. As the queue depth is reduced from 1024 entries to

two entries (minimum is two) for each SSDs, the application observes no

difference in the overall execution time. Keeping the queue depth constant

at two and varying the queue pairs from 128 to 32, we see a drastic slowdown

in the application as shown in Figure 7.11b. The slowdown starts when the

number of queue pair is equal to 64, with each with two entries. This results

in effective entries of 64 ∗ 4 ∗ 2 = 512 entries. With only 512 entries, BaM

provides similar performance as the nearly unlimited queue entries. Similar
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results are also measured in the case of other datasets but not reported.

7.2 I/O Amplification Benefit Of BaM For Data

Analytics

We assess the performance advantage of the BaM prototype for enterprise

data analytics workloads in addition to graph analytics. These new data

analytics workloads are frequently employed to decipher, identify, or suggest

significant patterns in data that has been gathered over time or from unstruc-

tured data lakes. The workload specifics can be found in §3.3. The purpose

of this case study is to demonstrate the advantages of the BaM approach for

lowering I/O amplification and software overhead when working with large

structured datasets (see § 4.1).

7.2.1 General Setup

We discussed the I/O amplification issue in § 4.1 using the NYC taxi ride

dataset [53] as an example. The dataset consists of 200GB of encoded data

structured into 1.7B rows and 49 columns per trip using the Optimized Row

Columnar (ORC) format [54]. We run five data-dependent queries within

a user-specified bound described in § 3.3 to compare the performance of

BaM against state-of-the-art GPU accelerated RAPIDS framework [6]. We

use RAPIDS v21.12 version in the evaluation. All accessed metrics during

the query execution, including trip distance, are stored as 8-byte double-

precision floating-point values. The user can change the bound to vary the

sparsity of the queries that determine how many data-dependent accesses

occur over the entire dataset. We evaluate the queries with two bounds,

one where the trip distance is at least 20 miles and the other where the

trip distance is at least 30 miles. Changing the bound from 20 miles to

30 miles changes the sparsity of data from 0.47% to 0.03%. Furthermore, we

pin the entire ORC file in the Linux CPU page cache, enabling RAPIDS to

read the file contents directly from the CPU DRAM without issuing an I/O

request to the storage. When all data is stored in the host DRAM alone,

one can consider this to be the maximum performance modern systems can

achieve. Lastly, for evaluating BaM, we replicate the data across SSDs,
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Figure 7.12: Performance of BaM with and without cache-line aware
optimization. The cache-line aware optimization provides at least 1.7×
performance benefit over the initial implementation.

using up to four Intel Optane P5800X SSDs with 4KB cache-line size and

8GB cache capacity.

7.2.2 Applying Cache-line Aware Optimization

Naively implementing data analytics kernels of RAPIDS in BaM results in

poor performance as it follows classical linear access pattern. Each thread

in the GPU kernel is assigned to a row in the naive implementation, and

it determines whether the value in the trip distance column satisfies the

requirement of being at least 20 or 30 miles depending on the input sparsity.

If it is, the thread then accesses the other needed metrics, performs local

computations and accumulates the results into a global shared variable using

CUDA atomics. As each thread works on consecutive row elements, this

access pattern closely resembles the linear access pattern discussed in §6.1.
Because of this, only a limited number of overlapping concurrent I/O requests

are issued to the storage resulting in exposure to the storage access latency

to the application. To address this, we can apply the proposed cache-line

aware optimization where each warp works on 512 consecutive rows in the

data. In these queries, each value is of eight byte data type and mapping

each warp to work with 512 rows of data enables generation of requests in

cache-line granularity for the trip distance column. Thus, the cache-line

aware optimization loads a much larger working set and is able to issue a lot
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Figure 7.13: Performance of BaM and RAPIDS for data analytics queries
on NYC Taxi dataset. BaM is up to 2.92× and 5.30× speed up over the
CPU-centric RAPIDS framework for 0.47% and 0.03% sparsity.

more number of overlapping I/O requests to the storage.

Figure 7.12 shows the performance benefit provided by the cache-line aware

optimization with two different sparsity with four Intel Optane SSD. The x-

axis shows the different queries described in §3.3. The y-axis shows the

end-to-end application execution time observed by the initial and optimized

implementation. Irrespective of the sparsity in the input query, the cache-line

aware optimization provides at least 1.7× speed up over the initial implemen-

tation. This improvement is mainly coming from better usage of the storage

bandwidth during the query computation.

7.2.3 Performance Over RAPIDS

The performance benefit of BaM compared to RAPIDS with two different

input query sparsities is shown in Figure 7.13. The x-axis shows the various

queries described in §3.3. The left y-axis shows the total execution time

for baseline RAPIDS and BaM systems in seconds. The right y-axis shows

the I/O amplification factor observed by baseline RAPIDS and BaM systems.

The I/O amplification factor is computed as the ratio of bytes the application

reads into the GPU over the minimum bytes needed to execute each query.

Figure 7.13 includes a baseline query, “Q0: What is the average trip dis-

tance for trips with at least 20 (or 30) miles ?”. This query only requires load-

ing trip distance column and then generating the result based on the given

sparsity criteria. No additional data-dependent columns need to be fetched
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for this query. Thus, this query helps in isolating the overhead of the data-

dependent accesses. Since both systems must read the entire trip distance

column to the GPU memory before executing the query, neither RAPIDS nor

BaM experience any I/O amplification overhead for Q0. Yet, BaM with the

four Intel Optane SSD configuration sees a speed up by 2× over the state-of-

the-art RAPIDS implementation. This is because, despite having the entire

dataset preloaded into the CPU page cache, RAPIDS experiences software

overheads on the CPU to find and move data and manage GPU memory.

Additionally, as shown in Figure 7.13, the baseline RAPIDS execution

time linearly increases with the addition of a data-dependent metric over the

initial query. Furthermore, the RAPIDS execution time is independent of the

input query’s sparsity. This is primarily because the query takes up less than

3.6 percent of the total execution time in RAPIDS, with the remaining time

being used for row group initialization and clean-up. With additional data-

dependent metrics, the baseline experiences even more I/O amplification and

software and operating system overheads on the CPU.

In contrast, BaM outperforms RAPIDS in all configurations even with

a single Intel Optane SSD, as shown in Figure 7.13. With the sparsity of

0.47%, BaM is mainly limited by the storage bandwidth with the single

Intel Optane drive. BaM sees a speedup up to 2.52× when the number of

SSDs is increased from one to four. The speedup is mainly from reduced

memory management overhead enabled by fixed BaM cache size. Even then,

BaM scaling gets limited by the set-up and clean-up overhead incurred by

allocating and pinning storage queues, allocating cache memory, and cleaning

up memory after query execution. With four Intel Optane drives, these

overheads constitute up to 75% of the total execution time. Note that these

overheads scale with the number of SSDs in the BaM system. This is because

the I/O buffers and queues must be mapped for DMA with each SSD to allow

any SSD to perform DMA to any I/O buffers in the GPU memory.

Increasing the sparsity to 0.03% and with four Intel Optane drives, BaM

provides up to 5.30× speed up compared to the baseline RAPIDS implemen-

tation. The performance gain is attributed to BaM’s reduced I/O amplifica-

tion due to on-demand data fetching while the baseline must transfer entire

columns to the GPU memory. BaM’s ability to make on-demand access to

data and overlap compute, cache management, and many I/O requests help

it handle multiple data-dependent columns nearly as efficiently as the single
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data-dependent column. This is clearly visible when the sparsity is varied

from 0.47% to 0.03% in Figure 7.13. However, scaling the SSDs from one

to four with the reduced sparsity queries, BaM’s overall execution time, in-

cluding the overheads, improves up to 1.76×. This is because the set-up

and clean-up overhead cost increases and determines the achievable speedup

when scaling the number of SSDs in the BaM system. Similar performance

variations are also observed with Samsung SSDs and are not reported.

7.3 Programming Simplicity Of BaM For Regular

Workloads

We evaluated the performance benefit of BaM and its optimization for work-

loads with self-referencing data structures and/or data-dependent access pat-

terns. Now in this section, we evaluate two regular workloads: vectorAdd

and segmented reduction kernels on large arrays and show the simplicity of

programming these applications in BaM. We will also apply the cache-line

aware optimization to these regular workloads and discuss the achieved per-

formance benefits.

Baseline: VectorAdd application takes two input vectors, A and B, and

generates an output vector C, where each element in the C vector is an

element-wise sum from the vectors A and B. A simple GPU implementation

of vectorAdd kernels maps each element computation to a GPU thread and

assumes the input/output vector to be present in the GPUmemory. However,

if the length of the vectors is very large, the proactive tiling approach is used

to perform vectorAdd computation. Here, a tile of the vector A and vector

B elements are loaded from storage to the GPU memory, and a kernel is

launched to partially compute the vectorAdd on the elements on input tiles

to generate a partial result in the C vector in the GPU memory, and then

transferred back to storage after computation. The process is then repeated

with the next set of data tiles until all vector computation is completed.

To hide the cost of access storage, overlapping reading of the next tile with

writing results of previous tile computation can be performed.

A similar problem exists for the segmented reduction algorithm when the

input array is large. Reduction is an algorithm that reduces the number of

elements in a vector or array into one element. It is an important category of
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collective operations widely used in parallel computing [83]. In a segmented

reduction, an array of elements is split into multiple sub-arrays, and a re-

ducing operator is performed on the inner arrays to get a vector of reduced

elements [83]. The segment size usually governs the size of the segment. An

excellent example of a segmented reduction kernel is computing an average

of columns in a matrix to get a vector of average column values.

In a parallel implementation, each thread block works on a segment to

generate a partial result. The segment size is equal to twice the thread

block size, and each thread block loads two segments, the current working

segment and a strided away segment of the elements, into shared memory

before performing a parallel reduction to generate a partial result. The final

result can be performed by launching another reduction kernel or in the

CPU [83]. If the input array is massive and cannot fit in the GPU memory

like vectorAdd, a proactive tiling approach is used to perform the segmented

reduction. However, it is essential to note that when the input is enormous,

even for a simple task like vectorAdd and reduction operation, it requires

a ninja programmer to make it efficient by carefully enabling the CPU to

orchestrate the operations hiding the storage access latency.

BaM Implementation: BaM’s simplistic abstraction bam::array<T>

eases the life of programmers when working with very large arrays. The

bam::array<T> API eliminates the complex tiling operation required by the

baseline implementation when accessing the extensive input data. As long

as the input data is accessed by bam::array<T> API within the kernel, the

threads can access the elements as if they were in the global memory of GPU

without worrying about data transfer between the storage and GPU memory.

To port vectorAdd and reduction algorithm to BaM, one needs to make

only minimal changes to the codebase as described in § 5.3.3. If required, we
can apply cache-line aware optimization discussed in § 6.2 to gain additional

performance out of BaM. We next evaluate the performance of BaM against

the baseline system.

Setup: For this evaluation, we use two regular workloads, vectorAdd and

reduction algorithms, described above, to work with four billion elements

with each element of size eight bytes. For the baseline implementation, we

will use a proactive tiling approach and split the four billion elements into

four tiles, each consisting of one billion. For BaM implementation, the GPU

kernel works on an entire dataset (no tiling) and uses cache-line aware im-
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Figure 7.14: Performance of BaM on vectorAdd and reduction kernel. Two
version of vectorAdd is shown: one with the output in the GPU memory
(read-only) and other output written to the storage using BaM.

plementation for vectorAdd algorithm while segmented reduction algorithm

from [83] without any optimizations. For the baseline, we will assume the

data is stored in the SSD and loaded proactively to the GPU. For vectorAdd

workload, we assume the baseline can perfectly overlap write operation with

reading (although, in practice, this is very hard to achieve). We will also

assume the number of SSDs in the system is set to four Intel Optane SSD.

We will assume the cache size for BaM is set to 8GB, and the cache-line size

is set to 4KB. The compute time for both implementations is negligible and

is completely hidden.

Figure 7.14 shows the performance of BaM on vectorAdd algorithm when

compared with the baseline implementation. * T 4I represents the base-

line with four Intel Optane SSD (4I), * B 4I represents the BaM without

cache-line aware optimization, * BO 4I represents the BaM with the cache-

line aware optimization. From Figure 7.14, we note that the naive vectorAdd

implementation in BaM is upto 2× slower compared to the baseline imple-

mentation. Although the cache-line aware implementation improves the BaM

performance by 1.39 ×, it is still slow by 1.5× when compared to the baseline.

To better understand what is causing the performance regression in the

case of BaM, we implemented the second version of BaM where the output is

written to the GPU memory (ReadOnly or RO). In the case of the baseline,

the writes to the output in the storage can be completely hidden with the

reads of the next tile operation; while the BaM despite the overlap between

the reads and writes, the write latency is exposed to the application execution

as shown in the Figure 7.14. One way to address this issue is to enable
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asynchronous writes in the BaM system, which we leave as future work.

In the case of the reduction algorithm, BaM performance is 1.06× slower

than the baseline even without any optimization. The segmented reduction

kernel [83] is a well-optimized kernel to maximize the memory bandwidth

utilization avoiding divergence, and hence continues to perform well even in

the case of BaM. This tells us that not all workloads may require unique

optimization, and it is entirely possible for regular workloads that have well-

optimized memory access patterns may work just nicely out of the box with

the BaM. This makes BaM an easy framework to enable programmers to

work on massive arrays even for regular workloads.

7.4 Summary

To summarize, we showed BaM’s performance is either on-par with or out-

performs the state-of-the-art solutions for all types of studied workloads. We

discussed in-depth the performance breakdown from each component in BaM

system and how they contribute to overall execution. We then discussed the

impact of various optimizations and how they greatly help with maximizing

the performance of each application and achieving peak performance out of

the BaM system. We also showed that the optimizations proposed for BaM

improve or retains the same level of performance when the dataset fits within

the GPU-HBM, making these optimizations universal. Lastly, we showed

that using these optimizations, BaM performance for existing applications

like graph analytics, which are notoriously hard to achieve good performance

because of random access behavior, BaM is on-par or better than the cur-

rent state-of-the-art host-DRAM only solution and is up to 4.27× slower

than the GPU-HBM solution. And this performance benefit is extendable

to other data-dependent workloads like data analytics, where we can achieve

even better performance with four SSDs. Lastly and more importantly, BaM

is the only system that can scale beyond 100TB capacity at a reasonable

cost and yet provide a simplistic abstraction for the programmer to work

with large datasets. Using end-to-end application evaluation, we concluded

that overall BaM is the only system that can offer performance, cost, capacity

scaling, and simplification benefits for emerging workloads.
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Chapter 8

Future Work And Expected Impact

We discussed the design philosophy of BaM and showed that BaM could pro-

vide performance and cost benefits for various emerging applications. Next,

we cover some of the design considerations to take when enabling BaM on a

cloud environment and discuss immediate future work that can propel BaM

in the right direction for long-lasting impact.

8.1 BaM Virtualization And Sharing For The Cloud

BaM addresses the limited memory capacity of accelerators by enabling

accelerator-orchestrated access to the storage. However, until now, we as-

sumed the storage devices are bare metal and available in entirety. This may

not be true in the case of a cloud computing setup where the storage devices

are typically virtualized. Storage virtualization enables sharing of the stor-

age devices across multiple virtual machines (VM) and users. Thus, to this

end, the next step in the BaM design is to enable isolation and virtualization

capabilities to support hybrid-cloud infrastructures.

There are various models of storage virtualization in the cloud. These mod-

els differ in performance, bandwidth utilization, quality of service, security,

resource flexibility, and many more aspects critical for enhancing efficiency.

Here, we cover three widely used models to enable BaM in a hybrid cloud.

Local raw SSDs: In this model, the raw locally attached NVMe SSDs

are exposed as bare-metal SSDs over PCIe. The entire SSD is exposed to the

VM and assumed to be private to the VM. Figure 8.1a shows the bare-metal

instance with raw NVMe SSDs connected to the GPU using BaM. The blue

dotted line represent the resources (GPU and SSDs) dedicated to a specific

virtual machine or an application as determined by the administration or

hypervisor. Making BaM work on a bare-metal instance is straight-forward
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Figure 8.1: Design of BaM in hybrid cloud setup. Depending on the
provider, one can enable BaM with any or all of these combinations.

without current implementation. We only require to bring up BaM software

stack on a VM connected with bare-metal SSDs. With this, the instance

should achieve peak performance out of storage when the GPU threads access

the data stored in the SSD.

Local virtualized SSDs: In this model, there are two ways to enable

sharing for a single SSD: hardware-assisted virtualization or using names-

paces. In the hardware-assisted virtualization, an SR-IOV (Single-Root In-

put/Output Virtualization) capable SSD is used. SR-IOV allows sharing de-

vices across different guest VMs, as shown in Figure 8.1b. SR-IOV-enabled

devices provide multiple virtual functions (VFs) that can be mapped to dif-

ferent VMs by the trusted service provider. Enabling BaM in this model

follows a similar procedure as mapping the raw SSD, where instead of phys-

ical functions, virtual functions of each SR-IOV capable SSD get mapped to

the applications, and the I/O queues and buffers are DMA-mapped to the

virtual SSD (vSSD). This model also requires the enablement of IOMMU

in the host to provide memory protection and to mitigate potential DMA
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attacks. From the application point of view, there should be no change as

only the lower-layer in the BaM stack requires a change with this setup.

In terms of performance, BaM with hardware virtualization should provide

similar performance as the bare-metal model as the hardware virtualization

has proven to provide negligible performance overhead (assuming no loss in

network bandwidth).

Alternatively, we can also enable locally shared SSDs with the help of

namespaces, a technique provided by the NVMe specification [33]. An NVMe

namespace is part of an NVMe device that consists of a group of logical

blocks. The controller in the NVMe devices manages these namespaces and

the NVMe protocol provides the required APIs to create, delete, and pro-

vide access controls. A trusted service provider uses these APIs to map

each namespaces to each VMs or application allowing sharing of storage de-

vices. BaM can be enabled even in this setup by DMA-mapping I/O queues

and buffers to each namespace to specific virtual functions. Like SR-IOV,

IOMMU must be enabled to avoid potential DMA attacks and can use the

same GPU stack to issue I/O requests to the virtualized SSDs. However,

in terms of performance, BaM with namespaces based sharing should see

performance degradation as management of namespaces can come in the

critical path (assuming no loss in network bandwidth).

Remote private/shared SSDs: In this model, the storage devices are

accessed via a network fabric and are not locally present. A remote stor-

age/file system server like Lustre or S3 manages the low-level storage devices

and can provide file system services such as journaling, logging, and meta-

data tracking. Each compute node has an accelerator device like GPU has to

interact with a SmartNIC like Bluefield DPU or FPGA that runs a trusted

service exposing a communication channel between the node and the storage

server as shown in the Figure 8.1c. The channel is a network fabric that can

be either Infiniband, ethernet, or similar protocols based on the provider.

To enable BaM in such a system, the SmartNIC should reserve some of the

BAR space for the application to ring doorbells for the storage I/O queues.

This BAR space is then mapped to the application. Then, the I/O queues

and buffers in the GPU memory can be DMA-mapped to the SmartNIC

service, allowing it to perform Remote Direct Access Memory (RDMA) op-

erations. This enables each application using BaM to communicate with

the trusted service in the SmartNIC using the storage I/O queues to sub-
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mit I/O commands. As the BaM applications are written with the help of

bam::array<T> abstractions, the application does not require any changes,

and they can use the same GPU software stack and allow each GPU thread to

make I/O requests to the SmartNIC trusted service. These requests submit-

ted to the SmartNIC are then processed to check authentication and other

required operations before communicating with the remote storage server to

grab the data and write it to the accelerator memory. The performance of

an application using BaM with a remote storage server depends entirely on

the implementation choices and the latency and throughput of the Smart-

NIC and remote storage server and cannot be speculated without an actual

implementation which we leave as future work.

Other considerations: BaM is designed to enable access to storage ser-

vices over a communication interface. However, in a cloud environment, this

network interface is typically shared; hence, the available bandwidth per VM

can directly impact the overall performance of BaM. For example, we have

two graph analytics VMs working on two separate datasets but mapped to

the same storage device via remote SSDs. If the workloads are time-shared,

both workloads get full network bandwidths out of the system, but their ex-

ecution latency still can increase. If the workloads are spatially shared, the

available bandwidth per VM depends on the isolation guarantees governed

by the SmartNIC and hypervisor. Assuming both workloads get equal dis-

tribution of the bandwidth, then, if the workload is bandwidth bound, then

likely the performance of BaM can be degraded by at least 2×. One way

to address this issue is to increase the number of SmartNICs per VM and

effectively increase the available bandwidth.

8.2 Work Efficiency Optimization for ODT technique

The current implementation of ODT technique optimization does not ad-

dress work efficiency, which can cause performance regression, especially

with a dataset with deep depths. As the ODT technique works on edge-

list directly, it is unaware of whether the cache-line requires to be processed

or not. Because of this, a work-efficient kernel like the frontier-based de-

signs can provide additional performance when the dataset fits in the GPU

memory. Fundamentally, ODT technique lacks additional information that
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a work-efficient kernel knows. For example, in the case of BFS workload

with ODT technique, each iteration launches a kernel with the same number

of warps, i.e., the number of cache-lines in the dataset. Inside the kernel,

the current ODT technique implementation determines if the launched warp

should perform any compute or terminate. The assumption here is that the

cost of checking if the warp has work to do will be negligible compared to

storage access. However, this creates an implementation that is not work

efficient and can become a performance inhibitor if many small kernels are

working on tiny neighbor lists like in the case of BFS on Uk dataset.

To address this problem, we need to add a temporary list called “Ac-

tiveCachelineID” that captures only the unique cache-line ids for the next

iteration that requires to be active in an iterative algorithm like BFS. When-

ever a node is added to the frontier list, unique cache-lines corresponding to

the node’s neighborlist must be added to the “ActiveCachelineID”, and an

atomic unique cache-line counter needs to be incremented. It is imperative

to ensure the “ActiveCachelineID” list contains only the unique cache-line

ids. This can be ensured in multiple ways: a) before inserting a cache-line ID

to the list, check if its already present, b) use sorting and remove duplicates,

or c) have a bit array to determine if the given cache-line ID is already part

of the “ActiveCachelineID” list or not.

Using the “ActiveCachelineID”, the workload like BFS can become work

efficient. For example, in the next iteration, one needs to launch the number

of warps equal to the total number of active unique cache-lines in the “Ac-

tiveCachelineID”” list, and each warp should read only the data using this

“ActiveCachelineID”” and perform the required traversal computation as it

would have done with regular ODT technique. This would address the work

efficiency problem and provide similar performance as the frontier-based ap-

proach. Theoretically, this technique should provide the same work efficiency

asymptotically as the frontier-based approach but with the capability of a

piece-wise cache-line aware linear access pattern that provides the best per-

formance for the system like BaM. Although, it is unclear at the moment

to the degree to which this will help when all data fits in the GPU-HBM.

When compared to the frontier design, the “ActiveCacheLineID” approach

may achieve lower performance because of additional comparison inside the

tile. However, for the BaM, it should also help reduce the launch overhead

and provide performance gains for a dataset with a tiny neighborlist. The
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implementation of work-efficient ODT technique will be added in the next

version of BaM.

8.3 Future Of BaM System Software Stack

GPU-Accelerated Storage Server: We focused on the design of BaM as a

consumer of data from the storage. The GPU threads pull the data from the

storage and perform computation here. For this use case, we showed BaM

software stack can quickly scale to achieve peak 45M random read IOPs

with nine Intel Optane P5800X SSDs at 512B access granularity without

contending on precious CPU-only resources. Alternatively, it is possible to

make BaM a producer of the data from the storage. In this model, when a

request arrives, the GPU threads pull the data from the storage with very

high random read/write throughput from storage and then aggregate the

results and push the data chunk back to the requesting process or node.

This would enable BaM to become a GPU-accelerated storage server pro-

viding extremely high random IOPs even at very small access granularities.

This would address many performance limitations present in current storage

server designs in modern data centers where they cannot keep up with the

request rates from compute nodes and become a critical performance lim-

iter. This opens up a new system design methodology where accelerators are

used to accelerate and optimize system software and can change how future

heterogeneous systems are designed.

Byte-addressable SSD and Persistent Memory Support: Although

the design of BaM discussed with the assumption of using SSD as memory,

the BaM can be extended to support emerging byte-addressable SSDs and

persistent memory technology. To enable persistent memory, the bottom

layer of the BaM stack that interfaces with the storage must be updated to

support the persistent memory interface, and the rest of the component can

remain the same. Supporting these emerging memory technologies are left

as future work.

Caches and abstractions: Compared to the traditional cache design

with a centralized cache controller, BaM implements a more robust high

throughput cache design by enabling each GPU thread to act as a software

cache controller. This creates a more scalable solution, especially with the
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emerging memory technologies like high-bandwidth memories (HBM), whose

bandwidth is approaching 3-5TBps [86]. Furthermore, the current cache de-

sign can be exported as a standalone library and generalized as a go-to library

for accessing data from the remote memory or storage over RDMA. However,

the design of BaM cache is an unresolved research problem. For example, the

current BaM cache design trades-off metadata size for fast lookup operation.

However, with optimization techniques like cache-line aware optimization, it

is not clear which cache design and algorithms would provide optimal per-

formance for GPUs. This is because a prior study has not evaluated the

various trade-offs associated with the design of software-only cache in the

GPU memory. We envision future works would consider exploring these as-

pects and discuss the impact of different associativity, search algorithms, and

replacement policies for software-only cache on GPUs.

The goal of the BaM abstractions was to minimize the programmer and

application developer effort when integrating BaM into their applications.

The current abstraction bam::array<T> supports a general array-like ab-

straction. However, one can add more applications specific, even higher-level

abstractions like data columns in tables for data analytics applications to

gain additional performance and flexibility. This would enable leveraging

application-specific information to lessen the cost of accessing the data from

the cache and storage.

Multi-GPU: The current BaM implementation and evaluation only con-

sider using SSDs to expand the effective memory capacity of a single GPU

device. However, modern data center systems have multi-GPUs, and many

applications use them. Although technically, it is possible to enable BaM

and share the same set of SSDs across multiple GPUs, it opens up a new set

of challenges that are not addressed in this thesis. First, designing a perfor-

mant high-throughput software-only cache across multi-GPU to avoid going

to storage is a problem unstudied. Fundamentally, it is required to deter-

mine how to efficiently share cache states between GPUs using system-wide

atomics to maintain coherence. However, this can also result in excessive co-

herence traffic between GPUs and reduce the overall performance. Thus, how

we enable coherence across GPU fast so that the cache access cost does not

become a bottleneck when accessing the data from the storage needs to be

studied. We believe ideas such as directory-based cache-coherence similar to

the IEEE scalable cache coherence protocol [87–89] can be used as a baseline
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in this context, but designing directory-based cache-coherence with massive

parallelism of GPU is uncharted territory. Second, with sharing SSDs across

multiple GPUs, we could contend on the same SSD and PCIe interconnect,

which can result in performance regressions. Thus, it is required to study

cache-line placement and data layout and provide application-level guidelines

for optimal performance in this multi-GPU system design with shared cache

and SSDs. This requires further in-depth study before it can be incorporated

in a future version of BaM.

8.4 Hardware Changes For BaM

Specifying and defining an interface between the hardware and software is

critical to system and computer architecture. As much as this interface de-

pends on the underlying hardware, it also depends on how the software uses

it. In this work, we showed a novel usage model of an architectural storage

interface, i.e., NVMe, to make such devices accessible to compute accelerators

GPU using BaM. We discussed how to enable a single GPU to execute com-

plex applications over massive datasets efficiently. However, we can further

enhance the performance of BaM with several hardware modifications.

Before BaM, hardware architects only considered the design and imple-

mentation of NVMe and storage protocols for CPUs, where software stack

overhead and limited application parallelism reduce the pressure on the stor-

age protocols. However, with BaM, the speed and efficiency of the storage

protocol are critical for the application performance. For instance, the widely

used storage interface NVMe queues are inherently sequential and can hinder

BaM’s performance, especially for long latency devices. After requests are

enqueued into an NVMe SQ, the queue’s doorbell must be rung with the

updated queue tail to notify the storage controller of the new request(s). As

these doorbell registers are write-only in the current NVMe specification [33],

when a thread rings a doorbell, it must make sure that no other thread is

writing to the same register and that the value it is writing is valid and is

newer than any value written to that register before. Implementing queue

insertion as a critical section, while simple, imposes significant serialization

latency, which might be fine for the CPU’s limited parallelism but can cause

substantial bottleneck for thousands of GPU threads. To address this, the
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hardware architects can consider implementing efficient protocols exclusively

to exploit massive GPU parallelism and avoid this serialization cost.

We can further improve the performance of BaM by adding hardware sup-

port to the BaM cache. This would reduce the cache API overhead sig-

nificantly, helping improve the overall performance. With the hardware-

enhanced cache, register usage within a thread for managing cache state can

be avoided, enabling the GPU threads save more of the resources for appli-

cation’s work. Moreover, a hardware-enhanced cache can avoid the overhead

associated with additional memory lookups for managing cache metadata as

they can occur implicitly without software intervention. Coupling with the

cache-line aware optimization, a hardware-enabled cache would provide per-

formance benefits even for fine-grain access granularity like 512B or lower.

Although the hardware-enhanced BaM cache is complex to implement and

might require a lot of hardware resources and changes, we can enable a near-

term benefit by increasing the size and banking of L1 and LLC caches in

modern GPUs. This is because the modern GPUs like NVIDIA A100 have

only 40MB of LLC cache, which is significantly tiny to hold the metadata for a

software cache and often exhibits port contention and thrashing on the cache

metadata. Run-time modification using a learned technique to determine

which memory regions should be pinned to avoid LLC cache thrashing can

alleviate this problem to a certain extent. Improvement in IPC, increasing the

pool of schedulable threads per SM, polling aware warp scheduling, increasing

the size of register file per SM, and new ways to perform fast warp-level or

thread block-level communication can significantly help in improving the

overall performance of BaM system.

Performance of BaM has a more direct impact on the available intercon-

nect bandwidth. This is understandable given the limited interface band-

width currently BaM lives in. Exploring the benefit of newer interconnects

such as CXL, ethernet, and NVLink can help address the limited interface

bandwidth problem. Even increasing the PCIe interconnect bandwidth by

2× can significantly improve the overall BaM performance and provide even

more cost-benefit for the systems.

Another lesser studied topic is the data placement and topology design

between the GPU and SSDs and their impact on the overall application per-

formance. We already saw significant performance implications based on
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where the GPU is placed in the system topology when building the BaM

prototype using the off-the-shelf components. However, as the system be-

comes more disaggregated and heterogeneous, mapping data computation

and placement can become crucial for overall end-to-end performance effi-

ciency. For instance, to reduce the I/O amplification when reading the data

from storage, we could perform part of scatter-gather computation using the

in-storage computing [90] and reduce the overall data transfer to the GPU.

This would significantly benefit workloads like data analytics and recommen-

dation system and is currently left as future work to study.

We can provide an even more immediate impact by increasing the through-

put of each SSDs in the system. Currently, each SSD only provides 1.5M

IOPs at 4KB read/write access which is very low compared to the available

PCIe Gen4 bandwidth. This is meager compared to what systems enabled

with BaM require. Doubling or quadrupling this would greatly help with the

performance. Moreover, because of low IOPs per SSD, each GPU requires a

minimum of four SSDs to saturate the ingress bandwidth. As each of these

SSDs has a storage capacity-oriented form factor, four SSDs consume four

PCIe ×16 slots in systems that are designed for performance. Thus changing

the form factor or enabling ×16 SSDs capable of providing 4× the IOPs per

SSD can greatly help BaM design.

Moreover, while prototyping with the actual hardware, we discovered that

the SSDs offer different throughput at various I/O granularities. For instance,

Samsung DC1735 SSD provides 1.6M IOPs for 4KB while only 1.1M IOPs for

512B random read I/O access sizes. This results in 6.4GBps and 0.55GBps

of bandwidth from one SSD for 4KB and 512B granularities, respectively.

An ideal storage device should provide the same throughput irrespective of

I/O access granularities, which will significantly help simplify the software

stack design.

Apart from these above-listed changes, system level changes and enhance-

ments to virtualization capabilities both in SmartNIC, CPU, and acceler-

ators can greatly benefit BaM. Furthermore, BaM also opens up exciting

changes to the software ecosystems like moving storage services to trusted

storage devices or enhancing the throughput of storage services in the era of

accelerator-initiated access to storage. It is fair to say that the BaM design

philosophy opens up a new research frontier for designing hardware acceler-

ators, SSD, and system design and software altogether.
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8.5 Additional Applications

BaM provides exceptional performance for applications with data-dependent

accesses and/or self-referencing data structures. Self-referencing data struc-

tures are data structures where one needs to be able to access the entire

data structure for computation. Data dependent access patterns and self-

referencing data structures are present in many emerging applications. In

this §7 section, we discussed the performance benefit of BaM for graph and

data analytics workloads in-depth. However, while building BaM, two ad-

ditional workloads: graph neural networks [10, 50] and recommender sys-

tems [14,16] were extensively studied but not reported as part of the evalua-

tion. This is because the publicly available datasets create tiny models, and

mapping these small models to the storage stack does not make much sense

as these workloads exhibit a Zipfian access pattern. This is in sharp contrast

to the industry where the embedding tables for these workloads are gigan-

tic [10, 14, 16, 50]. To address this gap, we are actively working on creating

new large-scale datasets and models for these workloads and will be made

public in the future.

8.6 Expected Impact

There has been a phenomenal growth in the accelerator compute throughput

in the recent decade, and their easy accessibility has drastically impacted

the progress of fundamental scientific discoveries and applications, like deep

neural network training and inference. In fact, in many emerging applications

demanding high compute throughput, the computation has shifted from CPU

to accelerators like GPUs. Yet, the accelerators are treated as second-class

citizens where the CPU off-loads operations to them to perform computation

and manages the data movement. This CPU-centric model where the CPU

manages the data orchestration works well for classical GPU applications like

training dense deep neural network models. However, with the development

of complex applications requiring data-dependent accesses, rapid increase in

the size of the datasets, and the slow scaling in GPU memory capacity and

GPU external bandwidth, the traditional CPU-centric model has failed to

live up to the application expectations.

112



BaM tackles the problems with the CPU-centric model head-on by enabling

an accelerator-centric computing model where the accelerator-like GPUs can

orchestrate high-throughput, fine-grain accesses into the NVMe SSDs. With

high-level abstractions like bam::array<T>, BaM brings in a new layer to the

accelerator’s memory hierarchy and directly addresses the memory capacity

problem. By building a hardware prototype using off-the-shelf hardware com-

ponents and then optimizing the access pattern to access bam::array<T>, we

showed it is possible to achieve peak performance out of the system even on

graph analytics workloads that are deemed to be notoriously hard to achieve

good performance because of random access behavior. We showed BaM ’s

performance is on-par or better than the current state-of-the-art host-DRAM

only solution and is only 4.27× slower than the GPU-HBM solution. Among

the three, only BaM can scale beyond 100TB capacity at a reasonable cost,

opening up new frontiers in building cost-effective large memory systems for

accelerators.

Although BaM uses GPUs as prototype hardware, any accelerator man-

ufacturer with capabilities like GPUDirect can build BaM and integrate it

into their ecosystems. We believe BaM opens up a Pandora’s box of research

questions to answer, design, and develop in the face of building large-scale

memory systems to address the memory wall problem. Despite being in an

early stage of design, it is already showing promising results in addressing

the memory wall problem. With BaM, the user gets the teraflops of GPU

to compute capability and terabytes of GPU accessible storage in a box. As

the number of cores and threads in CPUs increases, we expect that the CPU

storage accesses will also benefit from adopting the BaM software stack. We

believe that such capabilities will foster discussion on how to best implement,

use, and optimize BaM and enable new ground-breaking research, ideas, and

applications that are infeasible or impractical today.
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Chapter 9

Related Work

9.1 Optimized CPU-centric Model

Most GPU programming models and applications were designed with the

assumption that the working dataset is smaller than the GPU memory. If the

dataset does not fit within the GPU memory, application-specific techniques

like tiling or data partitioning is employed to enable the processing of large

data on GPUs [17,18,20,22,23,29,31,56–59].

SPIN [18] and NVMMU [19] propose to enable peer-to-peer (P2P) direct

memory access using GPUDirect RDMA from SSD to GPU and exclude the

CPU from the data path. SPIN integrates the P2P into the standard OS file

stack and enables page cache and read-ahead schemes for sequential reads.

GAIA [20] further extends SPIN’s page cache from CPU to GPU memory.

Gullfoss [31] provides a high-level interface that helps in setting up and using

GPUDirect APIs efficiently. Hippogriffdb [22] provides P2P data transfer

capabilities to the OLAP database system. GPUDirect Storage [17] is the

most recent product that migrates the data paths from CPU to GPU in the

NVIDIA CUDA software stack using GPUDirect RDMA technology. Similar

efforts from AMD are seen in RADEON-SSG product lines [32]. As we

discussed in detail in §4.4, all of these works still employ a CPU-centric design

where the CPU is responsible for data orchestration. In the proposed work,

we migrate both control and data paths to the GPU, allowing any threads

in GPUs to initiate, read and write data in a high-throughput fine-grain

manner directly to SSD. This fundamentally allows application developers to

rationalize SSD as an extended memory hierarchy and enables GPU-centric

design on modern systems.
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9.2 Prior Attempts Of The Accelerator-centric Model

We acknowledge that ActivePointers [27], GPUfs [26], GPUNet [29] and

Syscalls for GPU [21] have pioneered the efforts to enable accelerator-centric

model for data orchestration. GPUfs [26] and Syscalls for GPU [21] first

allowed GPUs to request file data from the host CPU. GPUfs provides a file

abstraction for accessing the data from the storage from the GPU threads.

ActivePointers [27] adds a memory-map-like abstraction on top of GPUfs to

allow GPU threads to access file data like an array. Both these prior work

uses the CPU as a proxy for executing storage I/O requests on behalf of

the GPU threads, often translating the file access to POSIX system calls.

As files can handle inter-process communication in UNIX, this enables GPU

to access contents from the storage and other system services. However, in

doing so, this method incurs significant overheads when accessing data from

storage. For example, it must keep the data and OS page cache consistent

for the abstraction to work correctly. Moreover, GPUfs and other prior work

on this segment fall short on several other aspects and cannot provide the

required performance for the emerging workloads.

First, the publicly available implementation of GPUfs [26] (and Active-

Pointers [27]) is prone to dead-locking, specifically the buffer cache update.

The copy operation design implemented is not guaranteed to make forward

progress resulting in dead-locks. Second, the performance offered by these

prior works [26, 27] is too low to saturate PCIe bandwidth despite using

large pages, prefetching, and a pre-filling Linux page cache to keep the data

and practically eliminate any real I/O access to storage. This is because

the abstraction proposed in these prior work imposes strict restrictions on

synchronization barriers limiting their applicability to particular application

access patterns.

Third, despite using host memory to cache all data, GPUfs [26,27] requires

much larger I/O sizes to provide meager bandwidth out of the system. For

sequential access benchmark, GPUfs [26] provides the best performance at

64KB I/O sizes. However, for the emerging real-world applications discussed

in §3, 64KB access granularity is too big, and at such large granularities, one

may as well use the NVIDIA GDS [17] in a CPU-orchestrated solution rather

than enabling accelerator-initiated storage access.

Dragon [25] is the most recent work that enables accelerator-initiated
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storage access. Dragon [25] proposed to incorporate storage access to the

UVM [28] page faulting mechanism, and when a requested data is missed

in the CPU host page cache, a read operation is performed to bring the

data from storage to the CPU and then is copied to the GPU address space.

However, as discussed in §4.2, this reactive page fault-based mechanism relies

significantly on less-parallel GPU to handle the data demands of massively

parallel GPUs and cannot provide a performance benefit. Moreover, all these

prior works focused only on functional enablement and thus ended up with

gross under-utilization of hardware resources and poor overall performance.

In contrast, BaM redesigns accelerator-initiated storage access from scratch

with the ultimate goal of achieving peak performance of the system even at

small granularities by innovating the cache and queue designs and optimizing

the application access patterns. BaM provides a memory-like abstraction to

enable any GPU threads to read or write any part of the data from BaM.

BaM memory abstraction is consistent with the current memory model to

access data from the GPU memory. Because of this, integrating BaM to

GPU kernels becomes trivial. BaM implements a highly scalable cache design

where all accessing threads also contribute to the lookup and miss handling

efforts, and all of BaM performance numbers and benefits are measured with

a cold BaM cache. Using microbenchmarks and application case studies,

we show BaM achieves peak storage bandwidth, on-par with a much more

expensive state-of-the-art DRAM-only solution widely used in industry and

academia. The design of BaM is open sourced [91], and an early version of

the BaM is released to public [92] along with BaM vision [93].

9.3 Hardware Extensions

Extending the support of non-volatile memories for GPUs has been proposed

by directly replacing the global memory with flash memory or closely inte-

grating it with the GPU memory system [94–98]. DCS [99] proposed enabling

direct access between storage, network, and accelerators with the help of a

dedicated hardware unit like an FPGA providing the required translation

for coarse-grain data transfers. Enabling persistence within the GPU has

recently been proposed [100]. We acknowledge these efforts and further vali-

date the need to enable large memory capacity for emerging workloads. More
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importantly, some of these ideas can be potentially used further to enhance

future versions of BaM.

9.4 Using SSDs As CPU Memory

Several prior works have proposed to leverage memory-mapped interface and

swapping mechanism of operating systems to extend the CPU memory with

SSDs [101–107]. Most of these work, treat the SSD as a block device and

rely on a paging mechanism to migrate data from the SSD to the CPU

memory. The paging mechanism is in-efficient if the application exhibit data-

dependent fine-grain data access to the dataset. To address this limitation,

FlatFlash [108] proposed to exploit the byte-accessibility of SSD and bypass

the storage software stack, focusing on fine-grain I/O operation to reduce

I/O amplification. Our proposal is similar in spirit to of FlatFlash approach,

and we extend the concepts of fine-grain accesses to GPUs. Compared to

the CPUs, GPUs offer massive parallelism that can be leveraged to hide the

long latency SSD accesses.
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Chapter 10

Conclusion

Emerging workloads like graph and data analytics demand large memory ca-

pacity. However, accelerators like GPUs have limited memory far lower than

the required memory capacity to accommodate emerging workloads. Thus,

the state-of-the-art systems use CPU-orchestrated data movement strate-

gies between the accelerator and storage to execute emerging workloads and

struggle to perform well.

To this end, we examined the requirement of a system capable of support-

ing modern high-value emerging workloads and discussed the issues associ-

ated with the current CPU-centric state-of-the-art implementations. Based

on these insights, we made a case for enabling accelerators like GPUs to or-

chestrate high-throughput, fine-grain accesses into storage devices like NVMe

solid state drives. We proposed, implemented, and evaluated a design of a

cost-effective system architecture called BaM, capable of supporting the ever-

growing need for large memory capacity in accelerators for these workloads.

In BaM, GPU threads can read/write data on-demand without the need to

synchronize with the CPU, significantly reducing software stack overhead,

minimizing I/O amplification, and enabling GPU programmers to think of

storage as memory. BaM’s array abstraction is extremely powerful, and en-

ables easy application porting to support BaM with a few lines of changes.

However, naively running applications on BaM does not provide perfor-

mance and efficiency benefits. As BaM essentially extends the GPU memory

hierarchy to the storage, favorable access patterns are needed for BaM to

reach its full potential. Nevertheless, this requires embracing two fundamen-

tal yet conflicting requirements. BaM requires coalesced accesses for extract-

ing high-throughput out of its cache, while the BaM I/O stack and storage

requires large overlapping I/O requests to hide the long latency of storage

access. These conflicting requirements create a design dilemma, motivating

the set of sophisticated optimization techniques and application adaptations
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to achieve peak performance on BaM.

The proposed techniques in the thesis are: cache-line aware optimization

and on-demand implicit tiling. The cache-line aware optimization is a sim-

ple generalizable technique that addresses the above problem for all studied

workloads. The key idea of this optimization is to map each warp to work

on cache-line data that minimizes the contention when accessing BaM meta-

data and generates a sufficiently large number of concurrent I/O requests

to saturate the BaM storage stack. And the second optimization is a CSR

data-layout specific method called the on-demand implicit tiling technique

(ODT ). The ODT technique maps each warp to work on a tile of data in-

stead of the traditional vertex-centric approach and maximizes reuse on the

loaded tile while also exploiting GPU’s massive parallelism to generate many

overlapping I/O requests to hide the storage access latency.

We applied these optimization techniques to several emerging workloads

and showed on multiple datasets, SSD types, and access granularities that

BaM with optimizations is a viable alternative to the DRAM-only and other

state-of-the-art CPU-centric solutions. For example, for graph analytics

workload, notoriously known to be hard to achieve good performance due

to random access behavior, BaM is on-par or better than the current state-

of-the-art host-DRAM only solution and is only 4.27× slower than the GPU-

HBM solution. We also show that the proposed optimizations are universal

and improve or retain the same level of performance when the dataset fits

in the GPU-HBM memory. And these performance benefits are extendable

to other data-dependent workloads like the data-analytics, where BaM can

achieve up to 5.3× speed up over a host-DRAM only solution. Lastly and

more importantly, BaM is the only system that can scale beyond 100TB ca-

pacity at a reasonable cost and provide simplistic software abstractions for

programmers to work with large datasets.

Overall, this dissertation proposes a design of a system capable of perform-

ing GPU orchestrated storage access to extend the GPU’s effective memory

capacity and provides a set of generalizable application adaptations that

enables application developers to maximize the performance, cost, I/O effi-

ciency, capacity scalability, and simplified software development for emerging

workloads without additional hardware support. With BaM, the user gets

the teraflops of GPU to compute capability and terabytes of GPU accessible

memory at a low cost.
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