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ABSTRACT

Recent developments in deep learning have motivated the use of deep neural networks

in Internet-of-Things (IoT) applications. But the performance of the deep neural network

models for IoT applications, like those in other areas, largely depends on the availability of

large labeled datasets, which in turn entails significant training costs. Such training costs

mainly come from the burden of data labeling whereas the collection of the unlabeled data

is a relatively easier process. Motivated by this observation, the self-supervised learning

technique which could efficiently utilize the unlabeled data, has been widely studied and got

great success in areas of computer vision and natural language processing (NLP). In IoT

applications, however, self-supervised learning has not gotten enough attention. Consider-

ing the unique characteristics of IoT applications compared with computer vision or NLP

tasks, customizing the self-supervised learning frameworks to IoT applications would be an

interesting and important topic.

Different from computer vision or NLP applications, IoT applications often measure phys-

ical phenomena, where the underlying processes (such as acceleration, vibration, or wireless

signal propagation) are fundamentally a function of signal frequencies and thus have sparser

and more compact representations in the frequency domain. In this dissertation, we build

self-supervised learning frameworks for IoT applications by carefully taking the frequency

domain characteristics into consideration. We first studied the self-supervised contrastive

learning framework, which demonstrated outstanding performance in areas of computer vi-

sion or NLP, on IoT applications from a time-domain perspective, and then re-designed the

self-supervised contrastive learning framework from the frequency domain. After that, we

designed two approaches to: 1) efficiently utilize both of the labeled and unlabeled data, and

2) reduce the dependency on the data augmentation strategies in the self-supervised learning

frameworks. We evaluated the performance of our frameworks on public datasets with sens-

ing data like radio signals, measurements of accelerometer and gyroscope, and WiFi signals.

Next, we designed a seismic and acoustic signal based target detection system and deployed

our self-supervised learning framework on it to study its performance on the real system.

In the context of IoT, our customized self-supervised learning frameworks for IoT applica-

tions demonstrated obvious performance gain compared with the original ones designed for

computer vision and NLP, which shows the effectiveness of our customization.
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CHAPTER 1: INTRODUCTION

The Internet of Things (IoT) describes physical objects (or groups of such objects) that

are embedded with sensors, processing ability, software, and other technologies that connect

and exchange data with other devices and systems over the Internet or other communi-

cations networks1. Due to the development of ubiquitous computing, embedded systems,

wireless sensor networks, control systems, and machine learning, the field of IoT has got

great evolvement. Most of the current IoT applications measure physical phenomenas (e.g.,

acceleration, vibration, or wireless signal propagation) with corresponding sensors, and the

measurements can be used for different tasks including health and wellness [1, 2, 3], behavior

and activity recognition [4, 5, 6, 7], context sensing [8, 9, 10, 11], and object tracking and

detection [12, 13, 14, 15, 16, 17].

Motivated by the increasing popularity of deep neural networks [18] that have demon-

strated outstanding performance on various machine learning tasks, such as image classifica-

tion [19, 20], object detection [21, 22], and natural language processing [23]. Deep learning

techniques have also been widely studied in the field of IoT and got great success in IoT

applications. Compared with the traditional approaches which designed machine learning

models (such as SVM [24]) based on the manually designed features, the deep neural network

models directly take the sensing signals as input and demonstrate much higher performance.

Specific neural network models have been designed to fuse multiple sensory modalities and

extract temporal relationships for sensing applications. These models have shown signifi-

cant improvements on multiple IoT applications such as audio sensing[25, 26], tracking and

localization [27, 28], and human activity recognition [29, 30].

Deep neural networks are traditionally trained using supervised learning algorithms that

need a large amount of labeled training data. As deep learning techniques mature, the

underlying neural network models often become deeper, thereby exacerbating the need

for large-scale labeled datasets. Even when collecting the training data is not difficult,

labeling or annotating the datasets usually requires extensive human labor work. As a

result, self-supervised learning algorithms, which is a kind of unsupervised learning tech-

nique and build models only based on unlabeled data, have drawn more attention in recent

years [31, 32, 33, 34, 35]. These techniques obviate extensive labeling burden, while attain-

ing comparable performance with their supervised learning counterparts. In self-supervised

learning scenarios, an encoder (that maps original inputs into lower-dimensional latent fea-

tures or representations) is trained using unlabeled data. The learned latent feature can then

1https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
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be further used to accomplish a variety of downstream tasks, such as classification or regres-

sion by training a much simpler model (e.g., a linear model) that takes the latent feature

(instead of the original data) as input. Only a small amount of labeled data is needed to

train such (much simpler) models. As alluded to earlier, the big win lies in the fact that the

bulk of the training (to generate the underlying latent representation) uses unlabeled data.

Self-supervised learning has gotten outstanding performance in computer vision and NLP,

but still not got a lot of attentions in IoT applications. Considering the unique frequency

characteristics of sensing data for IoT applications, directly applying self-supervised learning

framework from computer vision or NLP to IoT context would not get the best performance.

My dissertation works on customizing the self-supervised learning frameworks to IoT ap-

plications by carefully taking the frequency domain characteristics into consideration. The

central design philosophy is inspired by the unique frequency domain characteristics that

exist in the sensing signals of the IoT applications. IoT applications often measure physical

phenomena, where the underlying processes (such as acceleration, vibration, or wireless sig-

nal propagation) are fundamentally a function of signal frequencies and thus have sparser

and more compact representations in the frequency domain. We believe that designing the

self-supervised learning frameworks for IoT applications from the perspective of frequency

domain would largely improve their performance. A general workflow for self-supervised

learning can be divided into two stages:

• Pre-training: Train the parameters of an encoder with large amount of unlabeled

training data. Then freeze the encoder.

• Downstream tasks: The encoder trained in the pre-training stage would map the

original inputs to their corresponding representations. A simple model can be built on

the representations and then a small labeled dataset can be used to train the model.

Our customization would mainly focus on the pre-training stage. However, before the cus-

tomization, we need to verify the feasibility of self-supervised learning frameworks on IoT

applications. This means that we need to answer the question: “Does those frameworks

designed for computer vision and NLP still work on dealing with sensing signals of the IoT

applications?” Hence, we begin with studying the performance of self-supervised learning

framework, which is a popular and widely-utilized self-supervised learning framework, on

sensing signals, and then carried out the customizations from different aspects:

• Frequency domain: We designed the data augmentation (an important part of the

self-supervised contrastive pre-training) and encoder from the frequency domain.
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• Labeled data: We observed that the labeled data, even through with a small amount,

can help to train a better encoder. And thus we proposed a semi-supervised (instead

of self-supervised) contrastive pre-training framework.

• Data Augmentation: The performance of self-supervised contrastive learning largely

rely on the choice of the data augmentation algorithm. A bad choice of data augmenta-

tion algorithm would reduce the quality of the trained encoder a lot. We thus designed

a self-supervised learning framework for IoT application that does not rely on data

augmentation.

In the following sections, we propose a brief introduction of how we customize the self-

supervised learning frameworks to IoT applications.

1.1 TIME-DOMAIN SELF-SUPERVISED CONTRASTIVE LEARNING

In order to learn whether the self-supervised contrastive learning framework , which

demonstrated outstanding performance in computer vision tasks, would perform well when

dealing with sensing data, we directly applied the self-supervised contrastive learning frame-

work to the sensing applications by designing time domain encoder and data augmentations,

and then evaluated its performance. In this work, we built a Semi -supervised Automatic

M odulation C lassification framework, namely, SemiAMC, to efficiently utilize unlabeled ra-

dio signals. SemiAMC consists of two parts: (i) self-supervised contrastive pre-training and

(ii) a downstream classifier. In self-supervised contrastive pre-training, we apply the design

of SimCLR [34], which is an effective self-supervised contrastive learning framework, to train

an encoder using a large amount of unlabeled training data. Then, we freeze the parameters

of the encoder and train a classifier, which takes the representations (output of the encoder)

as input, based on a small amount of labeled training data.

We evaluated the performance of SemiAMC on a widely-used modulation classification

dataset RadioML2016.10a[36]. The evaluation results demonstrated that SemiAMC effi-

ciently utilizes unlabeled training data to improve classification accuracy. Compared with

previous supervised neural network models, our approach achieves better accuracies given

the same number of labeled training samples. The evaluation results verified that the time

domain approach do work on sensing data. In this work, we get a basic version of self-

supervised contrastive learning framework for IoT applications, and in the next steps, we

would show how our customization strategies help to improve the performance of it.
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1.2 FREQUENCY-DOMAIN SELF-SUPERVISED CONTRASTIVE LEARNING

Existing self-supervised contrastive learning frameworks build their encoders with con-

volutional neural network (CNN) or recurrent neural network (RNN) which take the time

domain data as input. However, our recent work has shown that for many IoT applications,

the essential features of interest live in the frequency domain [37]. This insight calls for

adapting the existing contrastive learning frameworks to frequency domain. In this part,

we built the encoder from a time-frequency perspective using Short-Time Fourier Neural

Networks (STFNet) [37] as basic building block. STFNet is a new neural network model

specially designed for IoT applications. It operates directly in the frequency domain by map-

ping sensor measurements to the frequency domain with the Short-Time Fourier Transform

(STFT), and was shown to perform much better than CNNs in many physical applications.

We also design data augmentation operations from both time domain and frequency domain

that enrich the contrastive prediction tasks for (a category of) IoT applications.

We evaluated the performance of our STFNet-based contrastive self-supervised learning

framework on several human activity recognition (HAR) datasets, where the measurements

of multiple sensors collected by different devices are used to determine the activities of a

diverse group of participants. The experiments demonstrated obvious performance gains

when we build the contrastive self-supervised learning framework from a time-frequency

perspective instead of purely from the time-domain.

1.3 SEMI-SUPERVISED CONTRASTIVE LEARNING

From the label perspective, self-supervised learning is a special kind of unsupervised

learning algorithm, which means that no label is required while training a model under

self-supervised learning framework. A lot of NLP tasks are trained under this way. Not

like NLP tasks, most IoT sensing tasks are classification or recognition tasks which do need

labels. The labels here could provide extra information for the self-supervised contrastive

learning frameworks. If we can find a way to make use of the labels during the self-supervised

training, we would learn better latent features and hence improve the performance of the

whole system.

To leverage this insight, we proposed SemiC-HAR, a semi-supervised contrastive learning

framework for HAR. SemiC-HAR takes both labeled and unlabeled data into consideration.

The key challenge of this work lies in how to efficiently utilize both labeled and unlabeled

data in building the contrastive pre-training framework. To extract features from original

inputs, previous research has studied self-supervised contrastive learning [34] which uses
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only unlabeled data and supervised contrastive learning [38] which uses only labeled data.

In SemiC-HAR, we proposed a semi-supervised contrastive learning framework to efficiently

utilize both labeled and unlabeled data in the pre-training process by carefully re-designing

the contrastive loss function.

1.4 SPECTROGRAM MASKED AUTOENCODER FOR IOT APPLICATIONS

The performance of self-supervised contrastive learning highly relies on the choice of the

data augmentation strategy. Different data augmentation strategies would lead to very dif-

ferent qualities of the trained encoder. To make things worse, different from computer vision

(where the input is image or video) and NLP (where the input the natural language), the

inputs for IoT applications are very different because different applications use different type

sensors and thus yield different types of sensing signals, such as audio signals, seismic signals,

radio signals, and measurements of motion sensors. Considering the difference of the physi-

cal phenomena behind the sensing tasks, the strategies to augment different sensing signals

are very different. In this way, designing self-supervised contrastive learning frameworks

requires a lot of human expertise on data augmentation. Hence, it would be very helpful if

we could design a self-supervised learning framework for IoT applications that does not rely

on data augmentation.

In this work, we proposed a new self-supervised learning framework based on the masked

autoencoding approach [39], and re-designed the loss function to make it working in a better

way to deal with spectrograms instead of images. The evaluation on both of the human

activity recognition task and target detection task demonstrated the effectiveness of our

customization.

1.5 A CASE STUDY: SELF-SUPERVISED LEARNING ON IOBT-OS

Finally, we studied the performance of our self-supervised learning framework on a real

system instead of just running evaluations on different datasets. In this work, we built an

operating system for the Internet of Battlefield Things (IoBT-OS) where our self-supervised

learning framework plays an important role on improving decision accuracy and thus opti-

mizing the latency of the decision loop. Then, we use a case study of seismic and acoustic

based target detection to evaluate the performance of our proposed framework, and the

evaluation result verified the effectiveness of our self-supervised learning framework.
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1.6 DISSERTATION ORGANIZATION

The rest of this dissertation is organized as follows: In Chapter 2, we introduce the

self-supervised contrastive learning framework, and show its performance on dealing with

wireless radio signals from the time domain. We begin our customization by re-designing the

data augmentation and structure of encoder from the perspective of frequency domain. This

part of work is put in Chapter 3. After that, we propose our semi-supervised contrastive

learning framework in Chapter 4. In Chapter 5, we show the work we have done to reduce

the dependency on data augmentation. We then put the IoBT-OS case study in Chapter 6.

Finally, we summarize this dissertation in Chapter 7.
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CHAPTER 2: TIME-DOMAIN SELF-SUPERVISED CONTRASTIVE
LEARNING FOR IOT

2.1 OVERVIEW

In this chapter, we use the modulation classification problem as an example to study the

performance of the time-domain self-supervised contrastive learning framework. Automati-

cally recognizing or classifying the radio modulation is a key step for many commercial and

military applications, such as dynamic spectrum access, radio fault detection, and unau-

thorized signal detection in battlefield scenarios. The modulation classification problem has

gotten widely studied in the past few years. Two general types of algorithms, likelihood-

based (LB) and feature-based (FB), have been applied to solve the modulation classification

problem. Likelihood-based methods [40, 41] make decisions based on the likelihood of the

radio signal and achieve optimal performance in the Bayesian sense. However, they suffer

from high computational complexity. Feature-based methods [42, 43, 44], on the other hand,

make decision based on the manually-extracted features from the radio signal. Given the

input radio signal, various features related to phase, amplitude or frequency are manually

extracted and then used as inputs of the classification algorithms. Machine learning algo-

rithms, such as support vector machine (SVM) and decision trees, are popular candidates

for the classification algorithms.

Recently, with advances in deep learning techniques, deep neural networks achieves a

great success in multiple fields, such as image classification [20] and natural language process-

ing [23]. Deep neural network models, such as convolutional neural networks (CNNs) [45, 46]

and recurrent neural networks (RNNs) [47, 48], have also been applied to the modulation

classification problem. Such neural network models directly feed the raw signal data or

its transforms as input and generally achieve much better performance than previous ap-

proaches.

However, training a deep neural network model requires a large amount of training data.

In practice, it’s usually difficult to collect a large volume of high quality and reliable radio

signals as well as their modulations (labels) as training data. One common way to deal

with the lack of training data is data augmentation. Previous studies proposed several data

augmentation strategies [49, 50, 51] to avoid overfitting caused by the lack of training data.

Another way is to utilize unlabeled data. The difficulty in collecting a large training dataset

for radio modulation classification mainly comes from the labeling burden for radio signals.

It is much eaiser to collect the radio signals without labeling them. Hence, it would help a

lot if we could efficiently utilize unlabeled radio signals. As far as we know, the benefits of
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using unlabeled data have not yet been studied for the modulation classification problem.

Self-supervised learning, as a kind of unsupervised learning, obviates much of the labeling

burden by extracting information from unlabeled data. Self-supervised learning algorithms

have had great success in areas of computer vision [34], natural language processing [23], and

IoT applications [30]. The goal of self-supervised learning is to train an encoder to extract

useful intrinsic information (or features) from unlabeled data and use that information as the

inputs to a classifier or predictor in a downstream task. Since these features already store a

lot of intrinsic information about the original input, a simple classifier (e.g., linear classifier)

is enough for the downstream task. Using this approach, most training uses unlabeled data

to learn the intrinsic features. Only a small amount of labeled data is then needed to train

the downstream classifier.

In this chapter, we build a Semi -supervised Automatic M odulation C lassification frame-

work, namely, SemiAMC [52], to efficiently utilize unlabeled radio signals. SemiAMC consists

of two parts: (i) self-supervised contrastive pre-training and (ii) a downstream classifier. In

self-supervised contrastive pre-training, we apply the design of SimCLR [34], which is an

effective self-supervised contrastive learning framework, to train an encoder using a large

amount of unlabeled training data as well as data augmentation. Then, we freeze the pa-

rameters of the encoder and train a classifier, which takes the representations (output of the

encoder) as input, based on a small amount of labeled training data.

We evaluated the performance of SemiAMC on a widely-used modulation classification

dataset RadioML2016.10a[36]. The evaluation results demonstrated that SemiAMC effi-

ciently utilizes unlabeled training data to improve classification accuracy. Compared with

previous supervised neural network models, our approach achieved a better accuracy given

the same number of labeled training samples.

The rest of this chapter is organized as follows. We introduce related work in Section 2.2.

Section 2.3 is the signal model we used in this work. Section 2.4 and Section 2.5 describe

the detailed design and implementation of SemiAMC. We cover the evaluation results in

Section 2.6 and finally summarize this chapter in Section 2.7.

2.2 RELATED WORK

In this section, we briefly introduce related background on automatic modulation classi-

fication, self-supervised and semi-supervised learning techniques.
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2.2.1 Deep Learning in Automatic Modulation Classification

Motivated by the success of deep learning techniques in computer vision [20] and NLP [23],

deep neural network models, such as CNN [45], ResNet [46], and LSTM [47] have been ap-

plied to the automatic modulation classification task. Such neural network models directly

take radio signals as input and predict the type of modulation as output. To further im-

prove the performance of automatic modulation recognition, specific characteristics of the

modulated radio signals are considered. For example, Zeng et al. [53] used spectrograms,

generated from the radio signals through short-time discrete Fourier transform, as the input

to a CNN classifier. Perenda et al. [54] separated the amplitude and phase series of the

input and trained based on a parallel fusion method. Most of the previous works focused on

designing supervised models while we design a semi-supervised learning framework.

2.2.2 Semi-Supervised Learning

Semi-supervised learning is a learning paradigm that leverages both labeled and unlabeled

data to train machine learning models. With the development of deep learning techniques,

deep neural network models become deeper and deeper and we need more and more labeled

data to train such models. However, the collection of large datasets is very costly and time-

consuming as it requires a lot of human labor work to annotate the dataset. In order to

reduce the data labeling burden, a lot of semi-supervised learning algorithms [55] have been

designed to make use of large number of unlabeled data as well as a small number of labeled

data. In this work, our semi-supervised approach is based on self-supervised contrastive

learning, which has gotten great success in computer vision area. To our best knowledge,

we are the first who apply self-supervised contrastive learning to automatic modulation

classification problem.

2.2.3 Self-Supervised Learning

Self-supervised learning is a learning paradigm where the model is trained on unlabeled

data. Self-supervised contrastive learning is an typical self-supervised learning algorithm and

has achieved outstanding performance [34]. The supervision of self-supervised contrastive

learning comes from the user-designed pretext tasks which generate locally distorted data

samples. A loss function can thus be generated that prefers mapping such similar inputs to

nearby locations in the latent space.

Self-supervised learning can be used as the pre-training step in the semi-supervised learn-

9



ing algorithms [30, 34]. An encoder that collects intrinsic information from the original input

(and maps it to a latent space) is trained with a self-supervised learning algorithm based on

large amounts of unlabeled data. A small amount of labeled data can then be used to train

a model on these features.

2.3 SIGNAL MODEL

We consider a single-input single-output communication system where we sample the in-

phase and quadrature components of a radio signal through an analog to digital converter.

The received radio signal r(t) can be represented as

r(t) = c ∗ s(t) + n(t), (2.1)

where s(t) refers to the modulated signal from the transmitter, c refers to the path loss

or gain term on the signal, and n(t) is the Gaussian noise. The received radio signal r(t)

is sampled N times at some sampling rate to obtain a length N vector of complex values.

In this work, we treat the complex valued input as a 2-dimensional real-valued input. We

denote it as X, where X is a 2×N matrix containing the in-phase (I) and quadrature (Q)

components of the N received signal samples.

The goal of this chapter is to determine the modulation type for any given radio signal X.

2.4 OVERVIEW OF SEMIAMC

SemiAMC aims at training a classifier to accurately recognize the modulation type for

any given radio signal. As a semi-supervised framework, SemiAMC is trained with both

labeled and unlabeled data. We show the architecture of SemiAMC in Figure 2.1. The

illustrated workflow is as follows.

The first step is called self-supervised contrastive pre-training, where we train an encoder

to map the original radio measurements into low-dimensional representations. This is done

in a self-supervised manner, with unlabeled data only. The supervision here comes from

optimizing the contrastive loss function, that maximizes the agreement between the repre-

sentations of differently augmented views for the same data sample.

In step two, we freeze the encoder learned during the self-supervised contrastive pre-

training step, and map the labeled input radio signals to their corresponding representations

in the low-dimensional space. The classifier can be trained based on these representations

and their corresponding labels. Here a relatively simple classifier (e.g., linear model) usually

10
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Figure 2.1: Overview of SemiAMC. We first train an encoder with a self-supervised con-
trastive learning framework using only unlabeled data. And then, the learned encoder and
the corresponding features can be utilized to train the classifier with a small amount of
labeled data.

work well, because the latent representation has already extracted the intrinsic information

from the signal input. In this way, a small number of labeled data samples is enough to

train the classifier. When we have enough labeled data, we can also fine-tune the last one

or more layers of the encoder to further improve the performance of SemiAMC.

2.5 SELF-SUPERVISED CONTRASTIVE PRE-TRAINING

We applied SimCLR [34] as our self-supervised contrastive pre-training framework. As

shown in Figure 2.1, our self-supervised contrastive pre-training mainly consists of four

components.

2.5.1 Data Augmentation

The first component is a stochastic data augmentation module. Given any signal input

X, two views of X, that are denoted as X̂i and X̂j, are generated from the same family of
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data augmentation algorithms. The data augmentation algorithms are highly application

dependent. For example, in image related applications, random color distortion, cropping,

and Gaussian blur are commonly used data augmentation algorithms. In our approach, we

augment the I/Q signal with the rotation operation [49] which could keep the features for

classification. For a modulated signal X = [I,Q]T , where I and Q refer to 1 × N vectors

storing the in-phase (I) and quadrature (Q) signals, we rotate it with an angle θ randomly

selected from {0, π/2, π, 3π/2}. The augmented signal sample is

X̂ =

!
Î

Q̂

"
=

!
cos θ − sin θ

sin θ cos θ

"!
I

Q

"
. (2.2)

2.5.2 Encoder

The second part is a neural network based encoder E that extracts intrinsic information

from the augmented examples X̂i and X̂j, and stores them in the latent representations ri

and rj:

ri = E(X̂i), rj = E(X̂j). (2.3)

Various choices of the network architectures can be used to design the encoder. For example,

CNN-based encoders are widely utilized in learning representations of visual data and RNN-

based encoders are usually utilized to deal with time-series. Figure 2.2 shows the architecture

of the encoder we use in our approach. The I/Q signal input is first passed through a 1D

convolutional layer (32 kernels with size 24) to extract the spatial characteristics. The

following two LSTM layers (with 128 units) are used to extract the temporal characteristics.

In the end, the 1D convolutional layer (128 kernels with size 8) and the max pooling layer

are used to generate the representations.

Input

Conv1D (32,24)

LSTM128*2

MaxPooling

Conv1D(128,8)

Figure 2.2: The architecture of the encoder.
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2.5.3 Projection Head

The third part is a small neural network projection head P that maps representations to

the space where contrastive loss is applied. In our approach, we use a multilayer perceptron

(MLP) with one hidden layer as the projection head, which means

zi = P (ri) = W (2)σ(W (1)ri), (2.4)

where σ is the ReLU activation function. It has been proved that calculating the contrastive

loss on z′
is (instead of on the representations r′

is directly) improves the performance of

self-supervised contrastive learning [34].

2.5.4 Contrastive Loss

The last part is the contrastive loss function that is defined for a contrastive prediction

task aiming at maximizing the agreement between examples augmented from the same signal

input. We use the normalized temperature-scaled cross entropy loss (NT-Xent) [56] as the

loss function. For a given mini-batch of M examples in the training process, since for each

example X, we will generate a pair of augmented examples, there will be 2M data points.

The two augmented versions X̂i and X̂j of the same input X are called a positive pair. All

remaining 2(M−1) in this batch are negative examples to them. Cosine similarity is utilized

to measure the similarity between two augmented data samples. The similarity is calculated

on zi and zj:

sim(zi, zj) =
zT
i zj

‖zi‖‖zj‖
. (2.5)

Here, ‖zi‖ refers to the ℓ2 norm of zi. The loss function for a positive pair of examples (i, j)

is defined as

Li,j = − log
exp(sim(zi, zj)/τ)#2M

k=1 1[k ∕=i] exp(sim(zi, zk)/τ)
, (2.6)

where τ refers to the temperature parameter of softmax and 1[k ∕=i] ∈ {0, 1} is an indicator

function equaling to 1 iff k ∕= i. The loss for all positive pairs (i, j) is calculated and the

average is used as the final contrastive loss.

2.6 EVALUATION

In this section, we evaluated the performance of SemiAMC using a public dataset, Ra-

dioML2016.10a [36]. We first introduce the dataset we use and then show the experimental
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setup, including data preprocessing and detailed implementation. Finally, we analyze the

performance of SemiAMC.

2.6.1 Dataset

We use RadioML2016.10a to study the performance of SemiAMC. RadioML2016.10a is

a synthetic dataset including radio signals of different modulations at varying signal-to-

noise ratios (SNRs). It consists of 11 commonly used modulations (8 digital and 3 analog):

WBFM, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, 4-PAM, 16-QAM, 64-QAM, QPSK,

and 8PSK. For each modulation, there are 20 different SNRs from−20dB to +18dB and there

are 1000 signals under each SNR. Hence, the RadioML2016.10a has 1000×20×11 = 220, 000

signal examples in total. Each signal in RadioML2016.10a has 128 I/Q samples. In our

approach, we put each signal in a 2× 128 matrix X.

2.6.2 Experimental Setup

We split the dataset into three parts: training, validation, and testing by a ratio of 2:1:1.

Specifically, for each modulation type and SNR, we randomly divide the 1000 signals into

500 signals for training, 250 signals for validation, and 250 signals for testing. Normalized

signals are used as the input.

In the self-supervised contrastive pre-training part, we use a two-layer projection head.

The first layer is a fully connected layer with 128 hidden units and ReLU activation. The

second is a fully connected layer with 64 hidden units without an activation function. The

encoder, the output of which is 128, is trained under a batch size of 512, with a total of 100

batches, and initial learning rate 1e−4 with cosine decay. In the downstream task part, we

freeze the encoder and build a two-layer classifier on the representations. The first layer of

the classifier is a fully connected layer with 128 neurons and ReLU activation. The second

is a Softmax layer with 11 neurons, one for each modulation scheme. We apply droupout

and L2 regularization to mitigate over-fitting.

We first study the performance when all the training and validation data have labels. We

then study the performance when only part of the training and validation data have labels.

We also study the performance of our approach when different amounts of unlabeled data

are used to train the encoder. We further compute the classification accuracy separately for

each SNR and modulation scheme. We run five times with different random seeds and take

the average as the final performance.
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2.6.3 Comparison with Supervised Frameworks

In this part, we compare the performance of our semi-supervised learning framework

to that of previous supervised frameworks when we have enough labeled training data.

Specifically, here we assume that we have labels for all the training and validation data. We

first train the encoder with all signal samples in the training dataset. Then, we freeze the

encoder and train the classifier based on both of the signals and labels in the training set.

During this process, we also fine-tune the parameters of the encoder to get better result. We

stop the training process when the validation loss does not decrease for 30 epochs and use

the model with minimum validation loss to predict the classification accuracy on test set.

We compared the performance of SemiAMC against three supervised algorithms named

CNN2 [45], ResNet [46], and LSTM2 [47]. As shown in Figure 2.3, SemiAMC performs

the best even through there is no extra unlabeled data. The performance gain here mainly

comes from the architecture of our encoder design and the data augmentation while training

the encoder in self-supervised contrastive pre-training. SemiAMC clearly outperforms the

supervised baselines above −2dB SNRs and achieves a maximum accuracy of 93.45% under

12dB SNR.
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Figure 2.3: Comparison with other frameworks.

2.6.4 Performance under Different Amount of Labeled Data

In this part, we studied the performance of SemiAMC given a large amount of unlabeled

data and a small amount of labeled data. For each modulation type under each SNR,
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Figure 2.4: Accuracy under different amount of labeled data.

we have 500 signal samples for training, 250 signal samples for validation, and 250 signal

samples for testing. We assume that for each modulation type under each SNR, only n =

1, 2, 5(1%), 10, 20, 30, 40, 50(10%) signal samples have labels in the training set, and ⌈n/2⌉
signal samples have labels in the validation set. We train the encoder with all signal samples

(without labels) in the training set, then we train the classifier and fine-tune the encoder

with the labeled signal samples in the training set. The model with minimum validation loss

is used to predict the classification accuracy on the test set.

To study the effectiveness of the encoder learned in the self-supervised contrastive pre-

training, we directly train the encoder and classifier under a supervised way with the labeled

data in the training set, and then use the model with minimum validation loss to recognize the

signals in the test set. We denote this approach as “Supervised”. The classification accuracy

for test signals under all SNRs and SNRs larger than zero are shown in Figure 2.4. We can

see that SemiAMC outperforms its corresponding supervised version. This confirms the

effectiveness of the encoder trained with our self-supervised contrasive learning framework.

We also observed that the gap between SemiAMC and the supervised version becomes larger

with the decrease in labeled data. It suggests that our framework can effectively utilize

unlabeled data. Naturally, the impact of unlabeled data is larger when less data are labeled.

The performance gain of SemiAMC for SNRs larger than zero (Figure 2.4(b)) are larger

than those computed across all SNRs (Figure 2.4(a)). It illustrated improved effectiveness

of SemiAMC in dealing with higher SNR signals.

To further understand the classification accuracy under different SNR signals when dif-

ferent amounts of labeled data are given, we calculate the accuracy distribution under all

SNR signals when n=1,5,10. The results are shown in Figure 2.5. We observed that the
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Figure 2.5: Accuracy for different SNRs when n=1,5,10.
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Figure 2.6: Confusion matrix of SemiAMC and Supervised when n=1,10.

performance gain of SemiAMC compared with the supervised approach mainly comes from

the signals with high SNR while SemiAMC performs similarly with the supervised approach

when the SNRs are small. We also studied the performance of SemiAMC of each modulation

type when n = 1, 10 and the SNR is 10dB. We draw the corresponding confusion matrices

in Figure 2.6. We observed similar accuracy patterns for different modulation types between

SemiAMC and its corresponding supervised approach. For example, both of them would

incorrectly recognize WBFM modulated signals as AM-DSB.

2.6.5 Performance under Different Amount of Unlabeled Data

Finally, we studied the recognition accuracy when different amounts of unlabeled data are

given. Unlabeled data is used to train the encoder in the self-supervised pre-training part. In

this experiment, we have 500 samples per SNR per modulation type for training. We assume

that n = 10 of the samples have labels, and used u = 0, 10, 20, 50, 100, 200, 300, 400, 490 extra

unlabeled samples besides the n = 10 labeled samples to train SemiAMC. Figure 2.7 plots

the overall accuracy versus the change in the amount of unlabeled data. It is observed that

the classification accuracy increases with increasing amounts of unlabeled data (up to a

certain level).

17



� ��� ��� ��� ��� ���
X

�����

�����

�����

�����

�����

�����

�����

$
FF
XU
DF
\

$FFXUDF\

Figure 2.7: Accuracy under different amount unlabeled data.

2.7 CONCLUSION

In this chapter, we proposed a novel semi-supervised deep learning framework, called

SemiAMC, to accurately recognize the modulation types of radio signals. SemiAMC effi-

ciently utilizes unlabeled data by learning representations or features through self-supervised

contrastive pre-training. We conduct several experiments on a public data set to evaluate the

performance of SemiAMC. The evaluation results demonstrated a non-trivial performance

gain for SemiAMC compared with supervised approaches for the same amount of labeled

training data, thus verified the effectiveness of SemiAMC at utilizing unlabeled data.
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CHAPTER 3: FREQUENCY-DOMAIN SELF-SUPERVISED
CONTRASTIVE LEARNING FOR IOT

3.1 OVERVIEW

This chapter adapts the use of contrastive representation learning techniques to signals

whose essential features are best represented in the frequency domain. Contrastive repre-

sentation learning allows automatic extraction of essential features from complex signals by

projecting them in an unsupervised fashion onto appropriate lower-dimensional spaces. Such

projections can then be used for such purposes as signal classification, clustering, and entity

detection. Prior work focused on time-domain signals. Our recent work has shown that, for

many applications, the essential features of interest live in the frequency domain [37]. This

insight calls for adapting the existing contrastive learning framework to frequency domain

signals, which is the main contribution of this work.

This work is motivated by the increasing popularity of deep neural networks [18] that have

demonstrated outstanding performance on various machine learning tasks, such as image

classification [19, 20], natural language processing [23], and IoT applications [57, 58]. Deep

neural networks are traditionally trained using supervised learning algorithms that need a

large amount of annotated training data. As deep learning techniques mature, the underlying

neural network models often become deeper, thereby exacerbating the need for large-scale

annotated datasets. Even when collecting the training data is not difficult, annotating

the datasets usually requires extensive human labor. As a result, self-supervised learning

algorithms have drawn more attention in recent years [31, 32, 33, 34, 35]. These techniques

obviate extensive labeling, while attaining comparable performance with their supervised

learning counterparts. In self-supervised learning scenarios, an encoder (that maps original

inputs into lower-dimensional latent representations) is trained using unlabeled data. The

learned latent representation can then be further used to accomplish a variety of downstream

tasks, such as classification or regression by training a much simpler model (e.g., a linear

model) that takes the latent representation (instead of the original data) as input. Only a

small amount of labeled data is needed to train such (much simpler) models. As alluded to

earlier, the big win lies in the fact that the bulk of the training (to generate the underlying

latent representation) uses unlabeled data.

The key to successful latent representation learning is to ensure that the learned latent

representation captures the essential properties of the data, such as “similarity” in some

appropriate semantic space. Teaching the encoder the right notion of similarity is often

achieved by data augmentation, where input data samples are locally perturbed in a manner
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that does not substantially change their semantic interpretation. A cost function (used in

training) ensures that such local perturbations are projected to nearby locations in the latent

space. Designing the appropriate data perturbation for an application domain thus becomes

an interesting research problem.

Recently, self-supervised learning (using data augmentation) has seen great success in

computer vision [31, 33, 34, 59] and NLP [23, 35]. In IoT applications, however, the study of

self-supervised learning has not gotten enough attention. Compared with computer vision

or NLP tasks, the notion of “semantic similarity” in IoT applications is less clear. For

example, in vision, an upside-down or mirror-image picture of a dog is still a dog, but what

is a similarity notion in an accelerometer time-series or a backscatter signal received by a

WiFi radio or RFID reader?

In this work, we apply the design of SimCLR [34], an effective framework for contrastive

self-supervised representation learning (shown to perform well on the ImageNet dataset),

but carefully redesign the structure of the encoder and the data augmentation operations.

In lieu of using a convolutional neural network, we build the encoder using STFNet [37].

STFNet (or Short-Time Fourier Neural Networks) is a new neural network model specially

designed for IoT applications. It operates directly in the frequency domain by mapping sen-

sor measurements to the frequency domain with the Short-Time Fourier Transform (STFT),

and was shown to perform much better than CNNs in many physical applications [37]. We

also design data augmentation operations from both time domain and frequency domain

that enrich the contrastive prediction tasks for (a category of) IoT applications.

We evaluate the performance of our STFNet-based contrastive self-supervised learning

framework, we call STF-CSL, on several human activity recognition datasets, where the

measurements of multiple sensors collected by different devices are used to determine the

activities of a diverse group of participants. The experiments demonstrate obvious per-

formance gains when we build the contrastive self-supervised learning framework from a

time-frequency perspective (STF-CSL) instead of purely from time-domain (CNN-base ap-

proach).

The rest of this chapter is organized as follows. In Section 3.2, we introduce related work.

Section 3.3 is the details of STFNet. We describe the architecture of our self-supervised

learning model in Section 3.4. Section 3.5 covers the evaluation. Finally, Section 3.6 discusses

the limitations of the approach.

3.2 RELATED WORK

In this section, we briefly overview related background on learning paradigms, IoT appli-
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cations, self-supervision, and representation learning. These pieces, as we show later, serve

as the building blocks of our contrastive self-supervised representation learning framework.

3.2.1 Deep Neural Network for IoT Applications

The impressive success in using deep neural networks for image classification [20] precipi-

tated a reemergence of interest in deep learning. In recent years, deep neural networks have

achieved significant performance improvements in multiple areas, including computer vision

[19, 20], natural language processing [23, 60], and IoT applications [57, 58, 61].

In the context of IoT, researchers employed deep learning models to improve the predictive

accuracy when time-series measurements (from sensors, such as accelerometers, gyroscopes,

and magnetometers) generate inputs for various estimation and classification applications.

Examples include applications in health and wellness [62, 63] and human activity recog-

nition [64, 65, 66]. General frameworks were also proposed for integrating convolutional

and recurrent neural networks for sensing applications [57]. To improve system efficiency

at executing neural networks on low-end IoT devices, researchers have investigated means

to compress structures and/or parameters of the neural network model, while keeping the

accuracy almost the same [67, 68].

Inspired by the physics of measured processes, Yao et al. [37] addressed the customization

of learning machinery to the frequency domain, and proposed a new foundational neural

network building block, namely, the ShortTime Fourier Neural Network (STFNet). STFNet

integrates neural networks with traditional time-frequency analysis, and performs the inner-

layer operations in the frequency domain. STFNet outperformed previous CNN and/or

RNN based approaches on a category of IoT applications. In this chapter, we build our self-

supervised learning model based on STFNet, and evaluate its performance in self-supervised

scenarios.

3.2.2 Self-supervised learning

Self-supervised learning, where the model is trained on unlabeled data, has become an in-

creasingly popular framework for training deep neural networks. In a self-supervised learning

framework, self-supervised tasks, also known as pretext tasks, are designed to generate lo-

cally perturbed data samples (with labels that capture the notion of local similarity in the

perturbed unannotated data). A loss function can thus be generated that prefers mapping

such similar inputs to nearby locations in the latent space.

Self-supervised learning has been widely studied in computer vision and NLP, and many
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ideas have been proposed to design the pretext tasks. For example, in computer vision, tasks

such as predicting image rotations [31], solving jigsaw puzzles game [69], and colorful image

colorization [32] are used to generate the self-supervision. The pretext tasks can also be im-

plemented by a generative model. The generative modeling based self-supervised model can

be trained to reconstruct the original input to learn the meaningful representations. For ex-

ample, autoencoder [70] is trained to reconstruct the input images. The context encoder [33]

is designed to recover the missing part of the input image when a mask is applied. Another

commonly used framework in training self-supervised models is contrastive learning, where

the task is designed to discriminate positive and negative samples. Chen et al. [34] designed

a simple framework for contrastive learning of visual representations, namely, SimCLR and

got impressive performance results on ImageNet. SimCLR learns representations for the

input images by maximizing the agreement between the latent expression of two augmenta-

tions generated from the same input. Due to the simplicity and effectiveness of SimCLR, we

apply it as our fundamental framework when customizing self-supervised learning framework

to IoT applications.

In NLP research, self-supervised methods have also gotten widely studied. The original

Word2Vec paper [71] proposed two architectures to compute continuous representations

of words, where the pretext tasks are predicting the center word given the surrounding

words, or, conversely, predicting the surrounding words given the center one. Devlin et al.

proposed BERT [23] to pretrain deep bidirectional representations from unlabeled text by

predicting randomly masked words in the text. It achieves excellent performance in language

representation learning.

Customizing self-supervised learning models to the needs of IoT applications requires re-

searchers to carefully design the encoder and data augmentation algorithms that work well for

IoT applications. Existing work [4, 5, 6] implemented self-supervised learning frameworks for

human activity recognition tasks. They designed convolutional or recurrent neural-network-

based encoders that extract spatial and temporal properties of inputs, and applied data

augmentation on the time-domain time-series inputs. Saeed et al. [4] proposed a multi-task

self-supervised learning framework for sensory data and applied transformation discrimina-

tion as the pretext tasks. The model was trained to discriminate the transformed signals

from the original inputs. Haresamudram et al. [6] introduced a masked reconstruction based

self-supervised learning model for human activity recognition, where the self-supervision was

generated by predicting the randomly masked timestep of the input sensor signal based on

the remaining values. Tang et al. [5] explored the adoption and adaptation of SimCLR to

human activity recognition, and designed a contrastive learning framework to learn the rep-

resentations for sensor signal inputs. We advance this work by exploiting the conjecture that
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the underlying physics of measured phenomena in IoT applications are best expressed (e.g.,

are sparser and more compactly expressed) in the frequency domain [37], thus redesigning

SimCLR to work with both time domain and frequency domain data. To make the scope

of this work manageable, we focus on a subset of IoT applications exemplified by human

activity recognition tasks.

3.2.3 Representation Learning

Representation learning, also called feature learning, is a way to automatically learn in-

trinsic structure and extract useful information from raw data that can effectively support

impending machine learning tasks, such as regression and classification. The traditional

manual feature engineering, which is labor-intensive, extracts or organizes useful informa-

tion from data by relying on human ingenuity and prior knowledge. Representation learning

[72, 73], however, allows the features to be learned by machines in an automatic way.

Principal component analysis (PCA) [74] and linear discriminant analysis (LDA) [75] are

two early data representation learning algorithms. They learn low-dimensional representa-

tions of data with linear transformation techniques. In 2000, Roweis and Saul proposed lo-

cally linear embedding (LLE) [76], which is a nonlinear learning approach for generating low-

dimensional neighbor-preserving representations from the high-dimensional input. With the

development of deep learning, self-supervised neural networks have become widely utilized to

extract the intrinsic representations in many domains, including images [32, 33, 34, 69, 77],

video [78, 79, 80], audio [81, 82], and natural language processing [23, 83]. In this work, we

show how self-supervised learning is customized to extract representations of sensor data by

taking a frequency domain perspective.

3.3 DESIGN OF STFNET

In this section, we introduce the technical details of STFNets. We separate the technical

descriptions into six parts. In the first two subsections, we provide some background followed

by a high-level overview of STFNet components, including (i) hologram interleaving, (ii)

STFNet-filtering, (iii) STFNet-convolution, and (iv) STFNetpooling. In the remaining four

subsections, we describe the technical details of each of these components, respectively.

3.3.1 Background and STFNet Overview

IoT devices sample the physical environment generating time-series data. Discrete Fourier
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Figure 3.1: Overview design of STFNet block.

Transform (DFT) is a mathematical tool that converts n samples over time (with a sampling

rate of fs) into a n components in frequency (with a frequency step of fs/n). The more

samples are selected, the finer the component resolution is in frequency. We can always

transform the whole sequence of data with DFT, achieving a high frequency resolution.

However, we then lose information on signal evolution over time, or the time resolution. In

order to solve this problem, Short-Time Fourier Transform (STFT) divides a longer time

signal into shorter segments of equal length and computes DTF separately on each shorter

segment. By losing a certain degree of frequency resolution, STFT helps us regain the time

resolution to some extent. In choosing n, there arises a fundamental trade-off between the

attainable time and frequency resolution, which is called the uncertainty principle [84]. For

the purposes of learning to predict a given output, the optimal trade-off point depends on

the time and frequency granularity of the features that best determine the outputs we want

to reproduce. The goal of STFNets is thus to learn frequency domain features that predict

the output, while at the same time learn the best resolution trade-off point in which the

relevant features exist.

The building component of an STFNet is an STFNet block, shown in Figure 3.1. An

STFNet block is the layer-equivalent in our neural network. The larger network would

normally be composed by stacking such layers. Within each block, STFNet circumvents

the uncertainty principle by computing multiple STFT representations with different time-

frequency resolutions. Collectively, these representations constitute what we call the time-

frequency hologram. And we call an individual time-frequency signal representation, a holo-
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gram representation. They are then used to mutually enhance each other by filling-in missing

frequency components in each.

Candidate frequency-domain features are then extracted from these enhanced representa-

tions via general spectral manipulations that come in two flavors; filtering and convolution.

They represent global and local feature extraction operations, respectively. The filtering

and convolution kernels are learnable, making each STFNet layer a building block for spec-

tral manipulation and learnable frequency domain feature extraction. In addition, there’s a

new mechanism, called pooling, for frequency domain dimensionality reduction in STFNets.

Combinations of features extracted using the above manipulations then pass through acti-

vation functions and an inverse STFT transform to produce (filtered) outputs in the time

domain. Stacking STFNet blocks has the effect of producing progressively sharper (i.e.,

higher order) filters to shape the frequency domain signal representation into more relevant

and more fine-tuned features.

Figure 3.2 gives an example of an SFTNet block that accepts as input a two-dimensional

time-series signal (e.g., 2D accelerometers data). Each dimension is then transformed to the

frequency domain at four different resolutions using STFT, generating four different internal

nodes, each of which representing the signal in the frequency domain at a different time-

frequency resolution. Collectively, the four representations constitute the hologram. In the

next step, mutual enhancements are done improving all representations. Each representation

then undergoes a variety of alternative spectral manipulations (called “filters” in the figure).

Two filters are shown in the figure for each dimension. The parameters of these filters are

the weights multiplied by the frequency components of the filter input; a different weight

per component. These parameters are what the network learns. Note that, a filter does

not change the time-frequency resolution of the corresponding input. Filter outputs of

the same time-frequency resolution are then combined additively across all dimensions and

passed through a non-linear activation function (as in a conventional convolutional neural

network). An inverse STFT brings each such combined output back to the time domain,

where it becomes an input to the next STFNet block. (Alternatively, the inverse STFT

can be applied after dimension combination and before the activation function.) Hence,

each output time-series is produced by applying spectral manipulation and fusion to one

particular time frequency resolution of all input time-series. Once converted to the time

domain, however, the output time-series can be resampled in the next block at different

time-frequency resolutions again. The goal of STFNet is to learn the weighting of different

frequency components within each filter in each block such that features are produced that

best predict final network outputs.
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Figure 3.2: Data Flow within a block of STFNet.

3.3.2 STFNet Block Fundamentals

In this subsection, we introduce the formulation of the design elements within each STFNet

block. In the rest of this chapter, all vectors are denoted by lower-case letters (e.g., x and

y), while matrices and tensors are represented by bold upper-case letters (e.g., X and Y).

For a vector x, the jth element is denoted by x[j]. For a tensor X, the tth matrix along the

third axis is denoted by X[·,·,t], and other slicing denotations are defined similarly. We use

calligraphic letters to denote sets (e.g., X and Y). For set X , |X | denotes the cardinality.

We denote the input to the STFNet layer as X ∈ RT×D, where the input D-dimension

time-series are divided into windows of size T samples. We call T the signal length and D

the signal dimension. Since STFNet concentrates on sensing signals, we assume that all the

raw and internal-manipulated sensing signals are real-valued in time domain.

As shown in Figure 3.1, the input signal X first goes through a multi-resolution short-

time Fourier transform (Multi STFT), which is a compound traditional short-time Fourier

transform (STFT), to provide a time-frequency hologram of the signal. STFT breaks the

original signal up into chunks with a sliding window, where sliding window W(t) with width

τ only has non-zero values for 1 ≤ t ≤ τ . Then each chunk is Discrete-Fourier transformed,

STFT(τ,s)(X)[m,k,d] =
T$

t=1

X[t,d] ·W(t− s ·m) · e−j 2πk
τ

(t−s·m), (3.1)

where STFT(τ,s)(X) ∈ CM×K×D denotes the short-time Fourier transform with width τ and

sliding step s. M denotes the number of time chunks. K denotes the number of frequency

components. Since input signal X is real-valued, its discrete Fourier transform is conjugate
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symmetric. Therefore, we only need the ⌊τ/2⌋ + 1 frequency components to represent the

signal, i.e., K = ⌊τ/2⌋+ 1. STFNet uses sliding chunks with a rectangular window and no

overlaps to simplify the formulation, i.e., s = τ and M = T/τ . Therefore the short-time

Fourier transform can be denoted as STFT(τ)(X).

The Multi STFT operation is composed of multiple short-time Fourier transform with

different window widths T = {τi}. The window width, τi, determines the time-frequency

resolution of STFT. Larger τi provides better frequency resolution, while smaller τi provides

better time resolution. In STFNet, the window widths are set to be powers of 2, i.e., τi = 2pi

∀pi ∈ Z+
0 . We can thus formulate Multi STFT as:

Multi STFT(T ){X} =
%
STFT(τi)(X)

&
for 2pi ∈ T . (3.2)

Next, according to Figure 3.1, the multi-resolution representations go into the hologram

interleaving component, which enables the representations to compensate and balance their

time-frequency resolutions with each other. The technical details of the hologram interleav-

ing component are introduced in Section 3.3.3.

The STFNet layer then manipulates multiple hologram representations with the same set

of spectral-compatible operation(s), including STFNet-filtering, STFNet-convolution, and

STFNet-pooling. We will formulate these operations in Section 3.3.4, 3.3.5, and 3.3.6, re-

spectively.

Finally, the STFNet layer converts the manipulated frequency representations back into

the time domain with the inverse short-time Fourier transform. The resulting representations

from different views of the hologram are weighted and merged as the input “signal” for the

next layer. Since we merge the output representations from different views of the hologram,

we reduce the output feature dimension of STFNet-filtering and convolution operations by

the factor of 1/|T | to prevent the dimension explosion.

3.3.3 STFNet Hologram Interleaving

In this subsection, we introduce the formulation of an innovative time-frequency domain

operation proposed in STFNets: hologram interleaving. Due to the Fourier uncertainty

principle, the representations in time-frequency hologram either have high time resolution

or high frequency resolution. The hologram interleaving tries to use representations with

high time resolution to instruct the representations with low time resolution to highlight the

important components over time. This is done by two steps:

1. Revealing the mathematical relationship of aligned time-frequency components among
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Figure 3.3: The design of hologram interleaving.

different representations in the time-frequency hologram.

2. Updating the original relationship in a data-driven manner through neural-network

attention components.

We start from the definition of time-frequency hologram, generated by Multi STFT defined

in (3.2). Note that, the window width set T is defined as {2pi}, ∀pi ∈ Z+
0 . Without loss of

generality, an illustration of multi-resolution short-time Fourier transformed representations

with input signal having length 16 and signal dimension 3 as well as T = {4, 8, 16} are

illustrated in Figure 3.3.

In order to find out the relationship of aligned time-frequency components, we start with

the frequency-component dimension. Since different representations only change the window

width τi of STFT but not the sampling frequency fs of input signal, these frequency com-

ponents represent frequencies from 0 to fs/2 (Nyquist frequency) with step fs/τi. Then we

can first obtain the relationship of frequency ranging steps among different representations,

∀pi > pj ,
fs/τj
fs/τi

= 2pi−pj ∈ Z+
0 . (3.3)

Therefore, a low frequency-resolution representation (with window width 2pj) can find

their frequency-equivalent counterparts for every 2pi−pj frequency components in a high

frequency-resolution representation (with window width 2pi). The upper part of Figure 3.3

provides a simple illustration of such relationship. In the following analysis, we will use the

original index k and corresponding frequency k ·fs/τi interchangeably to recall the frequency

component from the time-frequency hologram STFT(τ)(X)[m,k,d].
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Next, we analyze the relationship over the time-chunk dimension, when two represen-

tations have frequency-equivalent components. Note that time chunks in STFT(τ)(X) are

generated by sliding rectangular window without overlap. Based on (3.1), for representations

having window widths τi = 2pi and τj = 2pj (pi > pj),

STFT(τi)(X)[m,2pi−pj k,d] =

2pi (m+1)!

t=2pim+1

X[t,d] · e−j 2π2
pi−pj k
2pi

(t−m·2pi ),

=

2pi−pj (m+1)−1!

mj=2pi−pjm

2pj (mj+1)!

t=mj+1

X[t,d] · e
−j 2πk

2
pj

(t−m·2pj )
,

=

2pi−pj (m+1)−1!

mj=2pi−pjm

STFT(τj)(X)[mj ,k,d].

(3.4)

Therefore, given the equivalent frequency component, a time component in low time-

resolution representation (with window width 2pi) is the sum of 2pi−pj aligned time compo-

nents of the high time-resolution representation (with window width 2pj). As a toy example

in Figure 3.3, the first row of the middle tensor is equal to the sum of first two rows of the

left tensor for frequencies 0, fs/4, and fs/2. The row of the right tensor is equal to the sum

of four rows of the left tensor for frequencies 0, fs/4, and fs/2. The row of the right tensor

is equal to the sum of two rows of the middle tensor for frequencies fs/8 and 3fs/8, etc.

According to the analysis above, the high frequency-resolution representations lose their

fine-grained time resolutions at certain frequencies by summing the corresponding frequency

components up over a range of time. However, the high time-resolution representations

preserve these information.

The idea of hologram interleaving is to replace the sum operation in high frequency-

resolution representation with a weighted merge operation to highlight the important in-

formation over time. For a certain frequency component, the weight of merging is learnt

through the most fine-grained information preserved in the time-frequency hologram. In

this work, we implement the weighted merge operation as a simple attention module. For

a merging input z ∈ CS×1, where S is the number of elements to be merged, the merge

operation is formulated as:

a = softmax(|Wmz|),

y = S × a⊺z,
(3.5)

where |·| is the piece-wise magnitude operation for complex-number vector; and Wm ∈ CS×S

is the learnable weight matrix. Notice that the final merged result is rescaled by the factor
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S to imitate the “sum” property of Fourier transform.

3.3.4 STFNet-Filtering Operation

Spectral filtering is a widely-used operation in time-frequency analysis. The STFNet-

filtering operation replaces the traditional manually designed spectral filter with a learn-

able weight that can update during the training process. Although the spectral filtering is

equivalent to the time-domain convolution according to convolution theorem1, the filtering

operation helps to handle the multi-resolution time-frequency analysis, and facilitates the

parameterization and modelling. We denote the input tensor as X ∈ CM×K×D, where M

is the number of time chunk, K is frequency component number, and D is input feature

dimension. The STFNet-filtering operation is formulated as:

Y[m,k,·] = X[m,k,·]Wf [k,·,·], (3.6)

where Wf ∈ CK×D×O is the learnable weight matrix, O the output feature dimension, and

Y ∈ CM×K×O the output representation. The function of STFNet-filtering operation is

providing a set of learnable global frequency template matchings over the time. However, it

is not straightforward to extend the matching operation to the representations with different

time-frequency resolutions. Although we can create multiple Wf with different frequency

resolutions K, it can introduce unnecessary complexity and redundancy. STFNet-filtering

solves this problem by interpolating the frequency components in weight matrix. As we

mentioned in Section 3.3.3, data in hologram with different frequency resolutions have the

same frequency range (from 0 to fs/2) but different frequency steps (fs/τ). Therefore,

STFNet-filtering operation has only one weight matrix Wf with K = ⌊τ/2⌋ + 1 frequency

components. When the operation input has K ′ = ⌊τ ′/2⌋ + 1 frequency components with

K ′ < K, we can subsample the frequency components in Wf . When K ′ > K, we interpolate

the frequency components of Wf . STFNet provides two kind of interpolation methods: 1)

linear interpolation and 2) spectral interpolation.

The linear interpolation generates the missing frequency components in extended weight

matrix W′
f ∈ CK′×D×O from the two neighbouring frequency components in Wf :

kl =
'
k′ τ

τ ′

(
kr = kl + 1,

W′
f [k′,·,·] = Wf [kl,·,·]

)
kr − k′ τ

τ ′

*
+Wf [kr,·,·]

)
k′ τ

τ ′
− kl

*
.

(3.7)

1https://en.wikipedia.org/wiki/Convolution_theorem
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Figure 3.4: The STFNet-filtering operation.

The spectral interpolation utilizes the relationship between discrete-time Fourier transform

(DTFT) and discrete Fourier transform (DFT). For a time-limited signal (with length τ),

DTFT regards it as a infinite-length data with zeros outside the time-limited range, while

DFT regards it as a τ -periodic data. As a result, DTFT generates a continuous function

over the frequency domain, while DFT generates a discrete function. Therefore, DFT can

be regarded as a sampling of DTFT with step fs/τ . In order to increase the frequency

resolution of Wf , we can increase the sampling step from fs/τ to fs/τ
′, which is called

spectral interpolation. Spectral interpolation can be done through zero padding in the time

domain [84],

W′
f [·,d,o] = DFT

)
ZeroPadτ ′−τIDFT

+
Wf [·,d,o]

,*
, (3.8)

where ZeroPadt denotes padding t zeros at the end of sequence, and IDFT(·) denotes the
inverse discrete Fourier transform. Please note that, if we pad infinite zeros to the IDFT

result, then DFT turns into DTFT. An simple illustration of STFNet-filtering operation is

shown in Figure 3.4.

3.3.5 STFNet-Convolution Operation

Other than the filtering operation that handles global pattern matching, we still need

the convolution operation to deal with local motifs in the frequency domain. We denote the

input tensor asX ∈ CM×K×D, whereM is the number of time chunk, K number of frequency

component, and D input feature dimension. The convolution operation involves two steps:

1) padding the input data, and 2) convolving with kernel weight matrix Wc ∈ C1×S×D×O,

where S is the kernel size along the frequency axis and O is still the output feature dimension.

Without the padding step, the output of convolution operation will shrink the number

31



Spectral PaddingSpectral PaddingSpectral Padding

fs/2fs/40 fs/20 fs/20fs/4 fs/4fs/8 3fs/8 fs/8 3fs/8

Dilated Convolution

Wc

STFNet-Convolution

Convolution Kernel

Figure 3.5: The STFNet-convolution operation with dilated configuration.

of frequency components, which may break the underlying structure and information in

the frequency domain. Therefore, we need to pad extra “frequency component” to keep

the shape of output tensor unchanged compared to that of the input data. In the deep

learning research, padding zeros is a common practice. Zero padding is reasonable for inputs

such as images and signal in the time domain, meaning no additional information in the

padding range. However, padding zero-valued frequency component introduces additional

information in the frequency domain.

Therefore, STFNet-convolution operation proposes the spectral padding for time-frequency

analysis. According to the definition of DFT, transformed data is periodic within the fre-

quency domain. In addition, if the original signal is real-valued, then the transformed data

is conjugate symmetric within each period.

Previously, we cut the number of frequency components of a τ -length signal to K =

⌊τ/2⌋ + 1 for reducing the redundancy. In the spectral padding, we add these frequency

components back according to the rule

X[·,τ−k,·] = X[·,−k,·] = X∗
[·,k,·], (3.9)

where X∗ denotes complex conjugation. In addition, the number of padding before and after

the input tensor is same as the previous padding techniques. Then we can define the basic

convolution operation in STFNet

Y = SpectralPad(X)⊛Wc, (3.10)

where SpectralPad(·) denotes our spectral padding operation, and ⊛ denotes the convolu-

tion operation.
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STFNet-Pooling
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Figure 3.6: The low-pass STFNet-pooling operation.

Next, we discuss the way to share the kernel weight matrix Wc with multi-resolution data.

Other than interpolating the kernel weight matrix as shown in (3.7) and (3.8), we propose

another solution for the STFNet-convolution operation. The convolution operation concerns

more about the pattern of relative positions on the frequency domain. Therefore, instead of

providing additional kernel details on fine-grained frequency resolution, we can just ensure

that the convolution kernel is applied with the same frequency spacing on representations

with different frequency resolutions. Such idea can be implemented with the dilated convo-

lution [85]. If Wc is applied to a input tensor with K = ⌊τ/2⌋ + 1 frequency components,

for a input tensor with K ′ = ⌊τ ′/2⌋+1 frequency components (τ ′ > τ), the dilated rate r is

set to τ ′/τ − 1.

r = τ ′/τ − 1. (3.11)

A simple illustration of STFNet-convolution with dilated configuration is shown in Figure 3.5.

3.3.6 STFNet-Pooling Operation

In order to provide a dimension reduction method for sensing series within STNet, we

introduce the STFNet-pooling operation. STFNet-pooling truncates the spectral informa-

tion over time with a pre-defined frequency pattern. As a widely-used processing technique,

filtering zeroes unwanted frequency components in the signal. Various filtering techniques

have been designed, including low-pass filtering, high-pass filtering, and band-pass filtering,

which serve as templates for our STFNet-pooling. Instead of zeroing unwanted frequency

components, STFNet-pooling removes unwanted components and then concatenates the left

pieces. For applications with domain knowledge about signal-to-noise ratio over the fre-

quency domain, specific pooling strategy can be designed. In this work, we focus on low-pass

STFNet-pooling as an illustrative example.

To extend the STFNet-pooling operation to multiple resolutions and preserving spectral

information, we make sure that all representations have the same cut-off frequency according

to their own frequency resolutions. A simple example of low-pass STFNet-pooling operation

is shown in Figure 3.6. We can see that our three tensors are truncated according to the
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same cut-off frequency, fs/4.

3.4 DESIGN OF STF-CLS

Below, we first give an overview of our STFNet-based contrastive self-supervised repre-

sentation learning framework, namely STF-CLS [30] , in section 3.4.1, and then provide the

details of our design. We introduce the contrastive self-supervised learning framework (Sim-

CLR) in section 3.4.2. Section 3.4.3 covers both of the time-domain and frequency-domain

data augmentation operations. Finally, in section 3.4.4, we describe the design of STFNet

and the corresponding encoders.

3.4.1 Overview

Our approach, STF-CSL, aims at learning good representations that store the intrinsic

information of sensor measurement inputs in the latent space. The learned representations

can be further utilized as the input of the target tasks such as classification or regression.

Figure 3.7 presents an overview of STF-CSL. The illustrated workflow is as follows.

As a first step, called contrastive self-supervised pre-training, we train an encoder to

map the original sensor measurements into a low-dimensional representation. This is done

in a self-supervised manner, with unlabeled data only. Here, the supervision comes from

optimizing a cost function, called contrastive loss , that aims at maximizing the agreement

between the representations learned from locally perturbed data examples that are randomly

generated by the same data augmentation operation.

We then freeze the parameters of the encoder learned during the contrastive self-supervised

pre-training. Given any sensor measurement input, the encoder maps it to a corresponding

low-dimensional representation. This representation facilitates downstream learning. A rela-

tively simple model (e.g., linear model) usually work wells, relating the latent representation

to various desired outputs. Thus, we only need a small labeled training dataset to train the

linear model. The last one or more layers of the encoder can also be fine-tuned during this

supervised training process.

Next we show how to customizes this contrastive self-supervised representation learning

framework to include frequency domain data.

3.4.2 Contrastive Self-Supervised Learning Framework

As shown in the contrastive self-supervised pre-training part of Figure 3.7, there are four
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Figure 3.7: Overview of our designed STFNet-based contrastive self-supervised representa-
tion learning approach (STF-CSL). We train an STFNet-based encoder with a contrastive
self-supervised learning framework using only unlabeled sensing data. And then, the learned
encoder and the corresponding representations can be utilized to train the target model (e.g.,
classification) with a small amount of labeled data.

major components.

The first part is a stochastic data augmentation module. Let X refers to the original

input, which is the time-series measured from one or multiple sensors. X̂i and X̂j are two

samples randomly generated from the same data augmentation family. Here, we define X̂i

and X̂j as a positive pair of examples since they are generated from the same input X.

In this work, we apply data augmentation operations from both of the time-domain and

frequency-domain. The details are shown in section 3.4.3.

The second part is a neural network based encoder E(·) that maps the augmented example

to the latent representations. Various choices of the network architectures can be used to

design the encoder. For example, CNN-based encoders like ResNet [86] are widely utilized in

learning representations of visual data. The encoder in our approach is built with STFNet

and maps the data samples generated by data augmentation X̂i and X̂j to the corresponding

representations ri = E(X̂i) and rj = E(X̂j).

The third part is a small neural network projection head P (·) that maps representations to
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the space where contrastive loss is applied. We use a multilayer perceptron (MLP) with one

hidden layer to obtain zi = P (ri) = W (2)σ(W (1)ri), where σ is ReLU activation function.

The reason we apply the projection head before calculating the contrastive loss is that it has

been proven that it is beneficial to define the contrastive loss on zi’s rather than ri’s [34].

The last part is a contrastive loss function defined for a contrastive prediction task. We

use the normalized temperature-scaled cross entropy loss (NT-Xent) [56] as the loss function.

For a given mini-batch of N examples in the training process. Since for each example X,

we will generate a pair of augmented examples, and there will be 2N data points. The two

augmented versions X̂i and X̂j of the same input X are called positive pair. All remaining

2(N − 1) in this batch are negative examples. Cosine similarity is utilized to measure the

similarity between two augmented examples X̂i and X̂j. The similarity is calculated on zi

and zj:

sim(zi, zj) =
zTi zj

‖zi‖‖zj‖
. (3.12)

Here, ‖zi‖ refers to the ℓ2 norm of zi. The loss function for a positive pair of examples (i, j)

is defined as

Li,j = − log
exp(sim(zi, zj)/τ)#2N

k=1 [k ∕=i] exp(sim(zi, zk)/τ)
, (3.13)

where τ refers to the temperature parameter of softmax and [k ∕=i] ∈ {0, 1} is an indicator

function

[k ∕=i] =

-
1 for k ∕= i,

0 for k = i.
(3.14)

The loss for all positive pair (i, j) would be calculated and the average of them is used as

the final loss functions.

3.4.3 Data Augmentation

Data augmentation plays an important role in our contrastive self-supervised learning

framework. Different data augmentation operations would lead to very different perfor-

mances in learning the representations.

Existing work applies different time-domain data augmentation operations in their self-

supervised learning frameworks for sensor measurements [4, 5, 6]. Frequency domain data

augmentation, however, has not been studied in self-supervised learning although it was

shown to be beneficial in a lot of time-series related applications such as time-series classifi-

cation [87] and anomaly detection [88]. We apply both time-domain and frequency-domain

data augmentation operations in our approach. Some data augmentation operations (e.g.,
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adding noise) can be used in many tasks, while others are more task-specific. In this work,

we use several wearable device based human activity recognition datasets to demonstrate

the effectiveness of our approach. Data augmentation operations are described below.

For the time-domain data augmentation, we use similar time-domain data augmentation

operations with previous work [4, 5, 6].

• Jitter: Add random Gaussian noise to the input signals. This simulates the hetero-

geneity of the sensor hardware.

• Rotation: Apply a rotation matrix to the multi-dimensional input. Rotation of the

input is related to differences in sensor placement with respect to measured objects,

which is label-invariant.

• Permutation: This transformation first slices the input data into multiple segments

along the time axis, and then permutes the segments to generate a new data example.

• Time-warping: This transformation generates a new data example with the same

label by stretching and warping the time intervals between the values of the input

time-series. Small changes on the temporal locations of the input would not change

its label.

• Scaling: This transformation multiplies the data with a random scalar.

• Inversion: This transformation multiplies the input data with −1.

• Horizontal flipping: This transformation reverses the input data along the time-

direction. Horizontally flipping generates a mirror version of the input data in the

opposite time direction.

• Channel-shuffling: This transformation randomly permutes the channels of the

multi-channel sensor input data.

Besides the time-domain data augmentation operations used by previous approaches, we

also study the performance of the following three frequency-domain data augmentation op-

erations in our contrastive self-supervised representation learning framework.

• Low-pass filter: This transformation is application specific, but for most physical sys-

tems with inertia, the key information in the sensor measurement time-series is stored

in the low frequency part. This is because system inertia attenuates high-frequency

signal components more so than low-frequency components. Thus, the presence of
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significant high-frequency components is often attributed to noise. The label of the

input should therefore not change if we pass the input through a low-pass filter (which

often increases signal-to-noise ratio). We randomly select the cutoff frequency in a rea-

sonable range that is related to (and slightly higher than) the rate at which significant

dynamics occur in the measured process.

• Amplitude and phase perturbation: For a given time series x = [x1, x2, ..., xn]
T ,

we first get its frequency domain expression by applying discrete Fourier transform on

it

F (ωk) =
1

n

n$

t=1

xte
−jωkt = R[F (ωk)] + jF[F (ωk)] = A(ωk) exp[jθ(ωk)] (3.15)

where A(ωk) is the amplitude spectrum and θ(ωk) refers to the phase spectrum. In this

transformation, the amplitude and/or the phase values of randomly selected segments

of the frequency domain data are perturbed by Gaussian noise.

• Phase shift: Similar to phase perturbation, where the phase spectrum values are per-

turbed by Gaussian noise, the phase shift augmentation adds a random value between

−π and π to the phase values.

3.4.4 Design of the STFNet-based Encoder

Our encoder is based on the STFNets architecture for learning in the frequency do-

main [37]. An STFNet block is equivalent to one layer in CNNs, and the encoder in our

approach is built by stacking multiple STFNet blocks. Each layer takes multi-dimensional

time-series data as input, and computes multiple Short Term Fourier Transform (STFT)

representations with different time-frequency resolutions that differ in the size of the input

sliding window in the time domain and correspondingly the frequency resolution produced

in the frequency domain. We set the multiresolution sliding window to {16, 32, 64, 128}.
Frequency-domain features are then extracted through spectral manipulations (STFNet-

Filtering, STFNet-Convolution, and STFNet-Pooling). The kernels of STFNet-Filtering and

STFNet-Convolution are learnable. Our encoder uses three STFNet layers. Each STFNet

layer is followed by a dropout layer with a keep-probability of 0.8. An 1D global average

pooling layer is put to follow the last STFNet layer.
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3.5 EVALUATION

In this section, we evaluate the STF-CSL system using several public datasets. We focus

on device-based and device-free human activity recognition with motion sensors (accelerom-

eter and gyroscope) and WiFi. We first introduce the datasets we use and then show the

experimental setup, including data preprocessing and detailed implementation. Finally, we

analyze the quality of representations studied by STF-CSL.

3.5.1 Datasets

We use human activity recognition data for the evaluation. We chose human activity

recognition not because of its application value (it’s an old application with existing off-

the-shelf systems that already do very well), but rather because it is a widely-researched

application with lots of available empirical data and many prior results that allow a compre-

hensive comparison of the proposed scheme to prior work. It allows us to demonstrate (using

apples-to-apples comparisons) that extending contrastive learning to the frequency domain

is a good idea. We use six human activity recognition datasets that cover a wide range of

sensing signals (accelerometer, gyroscope, WiFi), devices (smartphone, smartwatch, WiFi

transmitter and receiver), data collection protocols, and activity recognition tasks. Below,

we introduce these datasets:

HHAR HHAR [89] is a human activity recognition dataset devised to benchmark human

activity recognition algorithms in real-world context. The dataset is gathered with a variety

of different device models including different smartphones and smartwatches. In this dataset,

a total of six different activities are studied: biking, sitting, standing, walking, upstairs

and downstairs. Four smartwatches (2 LG watches, 2 Samsung Galaxy Gears) and eight

smartphones (2 Samsung Galaxy S3 mini, 2 Samsung Galaxy S3, 2 LG Nexus 4, 2 Samsung

Galaxy S+) are used by 9 users to record accelerometer and gyroscope readings under

different activities. The sampling rate of signals varied across phones and watches with

values between 50-200Hz.

MobiAct MobiAct [90] is a benchmark dataset for smartphone-based human activity

recognition. It collects signals from montion sensors (3D accelerometer, gyroscope, orienta-

tion) in a Samsung Galaxy S3 smartphone to perform fall detection and recognize activities

of daily living. It records 4 types of falls and 12 types of activities of daily living (ADL)

from a total of 66 participants of different age, height and weight. More than 3200 trials
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Table 3.1: A summary of the datasets

Dataset No. of Users No. of Activities
HHAR 9 6
MobiAct 66 10

MotionSense 24 6
UCI HAR 30 6
WISDM 29 6

EI 11 6

were collected, all captured by the same Samsung Galaxy S3 smartphone. The smartphone

was freely placed in the participants’ pockets with random orientation. In our evaluation,

we use the data related to 10 activities to evaluate the performance of our approach. The

considered activities are: standing (STD), walking (WAL), jogging (JOG), jumping (JUM),

stairs up (STU), stairs down (STN), standing to sitting on a chair (SCH), sitting on a chair

(SIT), car-step in (CSI) and car-step out (CSO).

MotionSense MotionSense dataset [91] includes time-series data generated by accelerom-

eter and gyroscope sensors. It is collected with an iphone 6, kept in the participants’s front

pocket. A total of 24 participants in a range of gender, age, weight, and height perform six

activities, including downstairs, upstairs, walking, jogging, sitting, and standing in the same

environment and condition.

UCI HAR UCI HAR [92] is a public dataset which studies human activity recognition

using smartphones. A total of 30 participants with ages from 19 to 48 years old were selected

in this dataset. Each participant wears a Samsung Galaxy S II smartphone on their waist.

Six activities were performed by the participant: standing, sitting, laying down, walking,

walking downstairs and walking upstairs. The readings of the accelerometer and gyroscope

were collected at a sampling rate 50Hz.

WISDM WISDM [93] dataset is released by the Wireless Sensor Data Mining Lab. It’s an

early dataset which studies human activity prediction with mobile devices. It contains data

collected from 29 participants. The participants take a smartphone including Nexus One,

HTC Hero, and Motorola Backflip and perform six different activities: walking, upstairs,

jogging, downstairs, sitting, and standing. The outputs of the accelerometers are collected

in a 20Hz sampling rate.
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EI EI [94] is a deep learning based device-free human activity recognition framework. It

made use of Channel State Information (CSI) to analyze human activity. The CSI data of 11

participants with different ages, height, and weight was collected from 6 different rooms in

two buildings. The CSI values of 30 OFDM subcarriers were recorded to analyze six different

types of human activities: wiping the whiteboard, walking, moving a suitcase, rotating the

chair, sitting, as well as standing up and sitting down.

We summarize the information of the datasets in Table 3.1.

3.5.2 Experiment Setup

In this part, we first introduce how we preprocess the datasets. Next, we show the detailed

implementation of our approach.

Data Preprocessing For HHAR, MobiAct, MotionSense, UCI HAR, and WISDM, we use

the accelerometer data. We use all the measured CSI when considering the EI dataset. We

linearly interpolate the reading to 50Hz and then segment the datasets into sliding windows

of size 512 with 50% overlap. For each dataset, we use the data from approximately 75% of

users as the training data and the remaining as the test set.

Implementation Details We follow the general architecture in Figure 3.7. The encoder

consists of three STFNet layers with {64, 64, 256} kernels. We set the sliding window for

multiresolution short-time Fourier transform to be {16, 32, 64, 128} for all the three layers.

Each STFNet layer is followed by a dropout layer with keep probability 0.8. A global average

pooling layer is put in the end of the encoder. We utilize a two-layer projection head. The

first layer is a fully connected layer with 256 hidden units and ReLU activation function.

The second is a fully connected layer with 64 hidden units without activation function. We

apply a combination of rotation and amplitude and phase perturbation as our default data

augmentation operation on HHAR, MobiAct, MotionSense, UCI HAR, and WISDM dataset.

For EI, we use the amplitude and phase perturbation as augmentation operation.

Our model was trained using an Adam optimizer [95] with learning rate 10−4 and decay

rate 0.9 and 0.99 for the first and second moment, respectively. We add L2 regularization

to the loss function in order to mitigate over-fitting. We use a batch size of 64, and train

the model for 50 epochs. In the evaluation, we run 5 times for each experiment and take the

average as the final performance.
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Linear Classification To evaluate the quality of the representations learned by our ap-

proach, we build a linear layer on the representations to do the classifications. After the

contrastive self-supervised pre-training, we freeze the parameters of the learned encoder, and

train the linear classifier to implement human activity recognition.

Models in Comparison In this evaluation, we are trying to show the superiority of

STFNet, compared with CNN, on contrastive self-supervised learning framework. Hence,

we build a three-layer CNN followed by a global average pooling layer. The CNN based

encoder has the same structure with our encoder. We summarize the models we used in

evaluation as follows:

• STF-CSL: In this model, we use our STFNet-based encoder in the contrastive self-

supervised pre-training and then freeze the parameters of the encoder. A linear layer

built on the output of the encoder, which means the representations we learned, is

used to do the classification. The labeled dataset is used to train the linear layer.

• CNN-CSL: This model uses CNN instead of STFNet to build the encoder. The

remaining parts are the same with STF-CSL. Tang et al. also applied this approach

in their work [5].

• Supervised: We compare with performance of our approach with supervised model.

In this way, we train the STFNet-based encoder and the linear layer directly in a

supervised way.

3.5.3 Results

We show the evaluation results in this part. We begin with the comparison between CNN

and STFNet, and then study the performance under different data augmentation operations.

At last, we show the visualization of the learned representations.

Comparison between CNN and STFNet We first compare the performance of CNN

and STFNet in the contrastive self-supervised learning framework. We train the CNN-based

encoder (CNN-CSL) and the STFNet-based encoder (STF-CSL) with the whole training

set (without labels) in a self-supervised way. And then we train the linear classifier when

1%, 2%, 5%, 10%, 20%, 50% and 100% labels are given, and calculate the corresponding F1

scores on the test sets. The results are shown in Figure 3.8. We can observe that STF-CSL

(orange curves) obviously outperforms CNN-CSL (green curves) on different datasets. This
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Figure 3.8: Comparison between CNN and STFNet.

means that STFNets could extract the intrinsic information from the inputs in a better

way that CNNs. To illustrate the effectiveness of the contrastive self-supervised learning

framework, we also compare STF-CSL with a supervised model. In the supervised model,

the inputs first pass through the STFNet-bases encoder, and then the linear classifier. We

train the whole model using the given labeled training data. The F1 scores of the supervised

model are shown as blue curves in Figure 3.8. We observed that STF-CSL performs better

than the supervised model when only a small number of labeled data items is given. This is

because self-supervised pre-training has already extracted the key information of the input

data. When there’re enough labeled training data items, STF-CSL performs on par with

the supervised model. STF-CSL usually performs not as well as the supervised model when

100% of the labels are given. Under this scenario, the performance of STF-CSL can be

further improved by fine-tuning the encoder with the labeled data. We do not cover this

part in our evaluation since we mainly focus on illustrating the advantages of STFNet over

CNN.

Performance under Different Data Augmentation Operations Data augmentation

is an important part of the contrastive self-supervised learning framework. Different data

augmentation operations would lead to very different performances. In this part, we study

the performance of STF-CSL under different data augmentation operations, including both

time-domain and frequency-domain data augmentations, on MontionSense, MobiAct, and

UCI HAR dataset. We perform the contrastive self-supervised pre-training with different

data augmentation operations mentioned in section 3.4.3 and then train the linear classifier
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Table 3.2: Performance under different data augmentation

Data Augmentation MotionSense MobiAct UCIHAR
Jitter 0.8448 0.8455 0.7084

Rotation 0.9485 0.9410 0.9367
Permutation 0.8885 0.8848 0.7490

Time-warping 0.8685 0.8661 0.7770
Scaling 0.8726 0.8612 0.8717

Inversion 0.9159 0.9015 0.8062
Horizontally flipping 0.8946 0.8281 0.8493

Channel-shuffling 0.8421 0.9020 0.7684
Low-pass filter 0.8854 0.8441 0.8773

Amp. and phase perturbation 0.9397 0.9441 0.9396
Phase shift 0.8360 0.8578 0.8898

with 100% of labels. The results are shown in Table 3.2. We found that the performance of

STF-CSL varies a lot under different data augmentation operations. For example, in Mobi-

Act dataset, rotation performs the best among time-domain data augmentations, leading to

a 0.9410 F1-score. For frequency-domain data augmentations, amplitude and phase pertur-

bation performs the best, leading to a 0.9441 F1-score. An interesting observation is that

perturbation on amplitude and phase values on the frequency-domain performs much better

than directly adding Gaussian noise on time-domain values. This is because perturbing the

amplitude and phase values could generate more diverse data samples with the same label,

which would improve the scalability of the encoder.

Visualization of the Learned Representation We visualize the representations learned

by STF-CSL through t-Distributed Stochastic Neighbor Embedding (t-SNE) [96]. t-SNE is

statistical technique for visualizing high-dimensional data. It embeds high-dimensional data

to a low-dimensional space of two or three dimensions by minimizing the KL divergence

between them. We run the self-supervised pre-training of STF-CSL on the six HAR datasets

using only unlabeled data and embed the 256-dimension output of the encoder (the activation

from the global average pooling layer) to a 2D space. Then we dye each node with different

colors according to their real label. The results are shown in Figure 3.9. We observe that

samples with the same label could group together. This means that the contrastive self-

supervised pre-training could extract the intrinsic information from the signal input without

the help of labels.
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Figure 3.9: Visualization of the learned representations.

3.6 DISCUSSION AND LIMITATIONS

The work presented in this chapter shows promise in using frequency domain knowledge for

contrastive learning. Improvements of up to 10% in classification accuracy are shown when

we build the contrastive learning framework from frequency domain compared to contrastive

learning solutions with encoders and data augmentation in the time-domain only. However,

the work is far from being a comprehensive frequency domain contrastive learning framework.

As such, it invites future work in multiple avenues as presented below.

Application domain limitations: The results presented in this chapter are computed

for activity recognition datasets. While many datasets are used, a significant similarity

exists in the time-scales of explored activities. This similarity makes it easier to tune data

augmentation to the needs of this application category. It is likely that the augmentation

solutions described in this work will not work out-of-the-box for other categories of IoT

applications. For example, a significantly broader application domain might be one that

uses RF-sensing to measure activities at different timescales from breathing and heartbeats

(e.g., with mm-wave radars) to various instances of vibrometry (using reflected WiFi, LoRa,
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ultrasonic, LiDAR, 5G, or other signals). This remains a rich avenue for future exploration.

Frequency-domain perturbation design: The frequency-domain perturbations described

in this work are far from generalizable across different IoT application categories. For ex-

ample, the phase shift perturbation operator essentially means that downstream AI tasks

cannot use phase as input since this the data augmentation will teach the encoder to put

signals of different phase shifts into the same latent cluster. For applications where phase

shift measurements are important (which indeed is the case in a large fraction of RF-sensing

applications), the phase shift operator should not be used for data perturbation. Alterna-

tive perturbations must be found. Similarly, the assumption that low-pass filters preserve

the gist of the input signal are only true when detecting activities that evolve much slower

compared to the sampling frequency used. For several categories of IoT applications, this

assumption is not true. For example, in compressive sensing, measurements occur at a much

lower frequency compared to the Nyquist frequency of the measured phenomenon. A low-

pass filter will likely substantially degrade signal representation. A different form of filter

needs to be designed for data augmentation purposes.

Time-domain perturbation design: The work inherits time-domain perturbations from

prior work. There is room for significant customization of time-domain perturbations. For

example, rotation and permutation operators do not really correspond to valid physical

transformations on the data. Changing sensor locations does not actually result in geomet-

ric signal rotation. Also, strong auto-correlations in sensor data make arbitrary permutations

invalid. For another example, reversing time by horizontal flipping often does not have a

meaningful physical interpretation. Humans will not walk backwards and shattered objects

will not self-reassemble. Understanding proper time-domain perturbations for IoT applica-

tions remains an open problem.

Limitations of contrastive learning: Not all local data perturbations are equally “simi-

lar” to the unperturbed signal. Understanding proper notions of similarity is very important

to the design of better cost functions to use for contrastive loss in the contrastive learning

framework. This work did not investigate different options for design of contrastive loss

functions.

STFNet limitations: The contrastive learning framework used in this work leverages

STFNet for encoder design. Different from the original STFNet approach, which works is

supervised, without data augmentation, our approach combines it with the self-supervised
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contrastive learning framework and data augmentation. STFnet uses the Short Time Fourier

Transform. Signal processing literature offers many other transforms, such as Laplace Trans-

form and Wavelet Transform. It is interesting to investigate which transform offers better

results.

Transfer learning: Self-supervised learning can be interpreted as a form of transfer learn-

ing. We can run the contrastive learning framework on a large domain-agnostic measurement

dataset to train the encoder, and then reuse the parameters of the encoder as the starting

point when training the downstream tasks with domain-specific labels. We leave this part

as future work.

The above discussion suggests that this work is more of a conversation starter. Initial

evidence suggests (using a limited study on human activity recognition applications) that

frequency domain data augmentation is helpful. Perhaps the impressive part is that, despite

all of the above limitations, we show accuracy gains of up to 10%. How much can be gained

further if the above items are addressed? The work suggests that frequency domain data

augmentation is a fertile area for future work, but such future work is beyond the scope of

this chapter.

47



CHAPTER 4: SEMI-SUPERVISED CONTRASTIVE LEARNING FOR IOT

4.1 OVERVIEW

In this chapter, we introduce another way we apply the customization to the self-

supervised contrastive learning framework for IoT applications. Specifically, we train the

encoder during the self-supervised contrastive pre-training using both labeled and unla-

beled data instead of only using unlabeled data as previous work did. We designed a

semi-supervised (instead of self-supervised) contrastive learning framework and evaluated

its performance on Human Activity Recognition (HAR) application. The evaluation shows

that our approach, namely SemiC-HAR [29], demonstrates better performance compared

with the original self-supervised contrastive learning framework.

The increasing number of smart phones and wearable devices yield large volumes of sen-

sory data which can be utilized for multiple applications, including behavior and activ-

ity recognition [4, 5, 6], health and well-being [97, 98, 99], and localization and tracking

[100, 101]. Specially, Human Activity Recognition (HAR) has been a popular application

since the introduction of motion sensors (such as accelerometers and gyroscopes) on smart

phones and wearable devices, offering an opportunity for understanding physical activities.

Human activity recognition aims at recognizing human physical activities, such as walking,

running, sitting, going downstairs, and going upstairs, based on the time-series sensory data

collected from the accelerometers and gyroscopes. Traditional approaches classify human

activities based on manually extracted features from the time-series data. Recent develop-

ments in deep learning demonstrated outstanding performance on various machine learning

tasks [19, 20, 23], thereby inspiring the application of deep neural networks for recognizing

human activities [102, 103, 104]. Novel learning paradigm emerged, such as STFNet [37]

that learns sensing signals in the frequency domain, proving to be more effective compared

with the traditional time-domain approaches.

Training a deep neural network to accurately recognize human activities requires a large

amount of labeled data. However, it is difficult to collect labeled data for human activity

recognition because the collection of the time-series sensory data and the corresponding

manual annotation with activity labels must happen at the same time. This makes the

HAR datasets usually laboratory-based. Although it needs a lot of human labor to label a

HAR dataset, collecting raw time-series measurements from motion sensors is much easier.

Hence, in order to reduce the labeling burden and effectively take advantage of the massive

unlabelled sensory data, semi-supervised deep learning frameworks [4, 5, 6, 105] for HAR
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have been widely studied in recent years.

The semi-supervised framework for HAR is a straightforward application of general self-

supervised learning techniques [106]. Self-supervised learning is a kind of unsupervised

learning technique that requires mostly unlabeled data. It aims at learning representations or

features that extract intrinsic structure (e.g., clusters) from the original inputs with no need

for labels. A downstream stage can then learn to map elements of that intrinsic structure

to output categories with minimal supervision. Self-supervised contrastive learning [34] is

a representative self-supervised learning framework that has gotten wide use in multiple

areas due to its outstanding performance and simplicity of implementation. Self-supervised

contrastive learning could help HAR applications to effectively utilize unlabeled sensory

data [5]. This framework first performs self-supervised contrastive pre-training to extract

intrinsic structure from the original sensory inputs, and then trains a simple (usually linear)

classifier on the learned features. The contrastive pre-training runs in a self-supervised

manner, where only unlabeled sensory data are used. A small amount of labeled data

are used to train the classifier. Previous research has shown that labeled data can help

improve the quality of features learned by contrastive learning [38]. Hence, we can get better

performance if we carefully utilize both labeled and unlabeled data during the contrastive

pre-training process.

To leverage this insight, we propose SemiC-HAR, a semi-supervised contrastive learning

framework for HAR. SemiC-HAR takes both labeled and unlabeled data into consideration.

The key challenge lies in how to efficiently utilize both labeled and unlabeled data in building

the contrastive pre-training framework. To extract features from original inputs, previous

research has studied self-supervised contrastive learning [34] which uses only unlabeled data

and supervised contrastive learning [38] which uses only labeled data. In SemiC-HAR, we

propose a semi-supervised contrastive learning framework to efficiently utilize both labeled

and unlabeled data in the pre-training process by carefully re-designing the contrastive loss

function. As far as we know, we are the first to design the semi-supervised contrastive

learning framework and apply it to HAR.

In SemiC-HAR, we first train the parameters of an encoder that extracts intrinsic structure

from sensory inputs to produce low-dimensional features, using the proposed semi-supervised

contrastive learning framework. In this process, the exploitation of both labeled and unla-

beled data and our design of the contrastive loss lead to a clear performance gain, compared

with purely supervised or self-supervised approaches. After the semi-supervised contrastive

pre-training, we build a linear classifier on the learned features to implement HAR. The

labeled data are used to train the classifier.

The contribution of this work can be thus summarized as follows:
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• We propose SemiC-HAR, a semi-supervised contrastive learning framework for HAR.

SemiC-HAR first extracts features from original sensory inputs in a semi-supervised

way, and then trains a classifier to recognize human activities with the labeled data.

As far as we know, SemiC-HAR is the first application of a semi-supervised contrastive

learning framework for HAR.

• We evaluate the performance of SemiC-HAR on six different HAR datasets, featuring

different numbers of participants, devices (including different smartphones and wear-

able devices), and activities. We demonstrate that our semi-supervised contrastive

learning framework outperforms supervised and self-supervised contrastive learning

frameworks in learning features for sensory data when limited amounts of labeled data

are available.

• We compared the performance of SemiC-HAR with previous supervised and semi-

supervised frameworks for HAR when different amounts of labeled data are given.

The evaluation results show that SemiC-HAR offers the best trade-off, compared with

the previous approaches, between the amount of labeled data and the quality of activity

recognition.

The rest of this chapter is organized as follows. We introduce some preliminary background

and motivation in Section 4.2. Section 4.3 covers the technical details of SemiC-HAR. We

describe our evaluation in Section 4.4. We finally summarize and conclude this chapter in

Section 4.5.

4.2 PRELIMINARY AND MOTIVATION

In this section, we first give a preliminary overview of self-supervised contrastive learning

and supervised contrastive learning, and then describe the motivation why we propose our

semi-supervised contrastive learning framework for HAR.

4.2.1 Self-Supervised Contrastive Learning

Self-supervised contrastive learning is an unsupervised learning framework that learns

representations or features from the inputs by maximizing agreement between differently

augmented views of the same data sample via a contrastive loss in the latent space. Sim-

CLR [34] is the representative and most commonly used self-supervised contrastive learning

framework that has gotten outstanding performance in different areas like computer vision,
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Figure 4.1: The framework of self-supervised contrastive learning (SimCLR).

automatic speech recognition, as well as IoT applications [5, 34, 107, 108]. The framework

of SimCLR is shown in Figure 4.1. SimCLR mainly consists of four components.

The first part is a stochastic data augmentation module, where different views of the

same data sample are generated from the same family of data augmentation operations. As

shown in Figure 4.1, x refers to the original input. Two views of x, here are x̃i and x̃j(i),

are generated through two separate operations (t and t′) from the same data augmentation

family. The data augmentation operations are highly application dependent. For example,

in image classification applications, random cropping, random color distortion, and Gaussian

blur are commonly used data augmentation operations; in IoT applications, instead, time-

warping, jitter, and channel-shuffling are popular augmentation operations when dealing

with sensory data.

The second part is an encoder, E, that extracts intrinsic structure from the augmented

views, leading to appropriate features or representations. Here ri and rj(i) refer to the

representations of x̃i and x̃j(i):

ri = E(x̃i), rj(i) = E(x̃j(i)). (4.1)

The third part is a projection head, G, that maps the representations to a latent space,

where the contrastive loss is calculated. A common choice for the projection head is mul-

tilayer perceptron (MLP) with one or two hidden layers. For example, SimCLR applies a

MLP with one hidden layer as the projection head, which means

zi = G(ri) = W (2)σ(W (1)ri), (4.2)

where σ refers to the ReLU activation function. It has been proved in [34] that calculating
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the contrastive loss on zi’s instead of on the representations ri’s directly could improve

the performance of contrastive learning. Hence most of the contrastive learning framework

would need the projection head, G.

The last part is the contrastive loss function. The contrastive loss is defined for the

contrastive prediction task which aims at maximizing the agreement between positive pairs

of examples (x̃i and x̃j(i)). Specifically, given a mini-batch of N data examples, the data

augmentation would generate 2N data points. The data points generated from the same

example are called a pair of positive examples. Let i ∈ I ≡ {1, 2, . . . , 2N} be the index of

an arbitrary augmented data sample, and let j(i) be the index of the corresponding positive

examples of i. The remaining 2(N − 1) augmented data points in the same mini-batch are

called negative examples. The aim of the contrastive task is to discriminate positive pairs of

examples from negative ones. The loss function for each augmented data sample i is defined

as

ℓselfi = − log
exp(sim(zi, zj(i))/τ)#

k∈K(i)

exp(sim(zi, zk)/τ)
, (4.3)

where τ refers to the temperature parameter that controls the strength of penalties on hard

negative samples and K(i) ≡ I \{i}. sim(zi, zj(i)) defines the similarity between zi and zj(i).

A common choice is the cosine similarity:

sim(zi, zj(i)) =
zT
i zj(i)

‖zi‖‖zj(i)‖
, (4.4)

where ‖zi‖ refers to the ℓ2 norm of zi. The final loss function is defined as the sum of the

contrastive loss across all positive pairs in a mini-batch:

Lself =
$

i∈I

ℓselfi . (4.5)

The parameters of the encoder can be trained by minimizing the contrastive loss function

in a self-supervised training process using unlabeled data. In this way, the encoder could

extract the intrinsic structure from the original inputs and store it in the corresponding

representations. After the self-supervised training, the parameters of the encoder are frozen.

In the downstream tasks, the original inputs would pass through the encoder and a classifi-

cation or regression model would build on the computed structured representations instead

of the original inputs.
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4.2.2 Supervised Contrastive Learning

The idea of self-supervised contrastive learning is pulling together an anchor and a single

positive example (an augmented version of the same input sample) in the latent space and

pushing apart the anchor from a set of negative examples consisting of the entire remainder

of the mini-batch. However, among such negative examples, there may exist data samples

which are in the same class as the anchor. Those samples from the same class should be

considered as positive examples instead of negative ones. The self-supervised contrastive

learning frameworks takes all of them as negatives because there’s no labeling information

and we do not know whether a data sample is from the same class with the anchor or

not. If labeling information is given, the contrastive loss can be re-designed in a better way

by carefully selecting the positive and negative examples for the anchor. This inspires a

supervised contrastive learning framework.

Prannay et.al. propose a supervised learning framework that builds on the self-supervised

contrastive learning literature by leveraging label information [38]. The contrastive loss in

their supervised learning framework considers many positive examples per anchor instead

of only a single positive in the self-supervised contrastive learning. Specifically, the positive

examples are those in the same class with the anchor, rather than the single one which is

augmented from the same input with the anchor, as done in the self-supervised contrastive

learning.

Supervised contrastive learning applies the same framework with self-supervised con-

trastive learning, which is shown in Figure 4.1, but re-designs the contrastive loss. The

contrastive loss proposed by [38], called SupCon loss, considers the scenario that more than

one sample is known to belong to the same class due to the existence of labels. SupCon loss

follows the following forms

Lsup =
$

i∈I

ℓsupi , (4.6)

where

ℓsupi =
−1

|P (i)|
$

p∈P (i)

log
exp(sim(zi, zp)/τ)#

k∈K(i)

exp(sim(zi, zk)/τ)
. (4.7)

Here, P (i) ≡ {p ∈ K(i) : ỹp = ỹi} refers to the set of indices of all positive examples in the

mini-batch which have the same label ỹp (= ỹi) with i. |P (i)| is the cardinality of P (i).

4.2.3 Motivation

In the HAR applications, we have a large amount of unlabeled sensory data and a limited
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amount of labeled sensory data. Early solutions used only labeled data to build supervised

models for HAR. To efficiently apply unlabeled data, semi-supervised and self-supervised

techniques were introduced, including contrastive learning [5]. Supervised contrastive learn-

ing has proven that labeled data could help to improve the quality of the representations

learned by the contrastive learning framework. This motivates us to combine both labeled

and unlabeled data in the contrastive pre-training process.

We cannot directly use the framework of supervised contrastive learning, since only a

part of the data (instead all of them) is labeled. The challenge lies in defining the positive

examples in a mini-batch for an anchor under a semi-supervised (instead of fully supervised)

scenario. In this work, we propose a semi-supervised contrastive learning framework with a

carefully designed contrastive loss to make it work in a semi-supervised scenario.

4.3 DESIGN OF SEMIC-HAR

In this section, we describe the design of our semi-supervised contrastive learning frame-

work for HAR, namely SemiC-HAR. We first give an overview of SemiC-HAR, and then

introduce the details.

4.3.1 Overview

SemiC-HAR focuses on HAR applications. Human activities can be accurately rec-

ognized through the time-series measurements of the motion sensors (e.g., accelerometer

and gyroscope) deployed on smartphones or wearable devices. The output of the mo-

tion sensors can be divided into segments with fixed time windows. To take advantage

of unlabeled data, we consider two parts of the dataset: (i) a small labeled HAR dataset

D = {(x1,y1), . . . , (xm,ym)} and (ii) a large unlabeled HAR dataset U = {xm+1, . . . ,xm+n},
where xi refers to the time-series motion sensor measurements with fixed window and yi

refers to the corresponding label. The goal of our approach is to build a function f(xi),

trained on both of the labeled and unlabeled data (i.e., D ∪ U), to accurately predict the

activity label of each window of the time-series data xi.

Figure 4.2 illustrates the framework of SemiC-HAR. There are mainly four components:

• Supervised Training: We first train a “temporal classifier” C based on the labeled

dataset D.

• Self-Labeling: The “temporal classifier” can be used to predict labels for the unla-

beled dataset U . The predicted labels and the raw time-series data in U can then form
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Figure 4.2: Overview of our designed semi-supervised contrastive learning framework for
HAR (SemiC-HAR). SemiC-HAR consists of four components: (1) Supervised Training, (2)
Self-Labeling, (3) Semi-Supervised Contrastive Learning, and (4) Downstream HAR Task.

a new labeled dataset U ′. We then merge the two datasets D and U ′ and put them

together to form the self-labeled dataset S.

• Semi-Supervised Contrastive Pre-Training: Based on S, we train the encoder

E, that maps the raw sensory data to low-dimensional representations, through our

semi-supervised contrastive learning algorithm. The encoder is then frozen and passed

to the downstream HAR task.

• Downstream HAR Task: Given the encoder trained by the semi-supervised con-

trastive pre-training, we pass the time-series data from the labeled dataset D to the

encoder and get the corresponding representations. Then, we train a simple classifier

on the representations under a supervised way.
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We will describe the details of the four components in the following subsections.

4.3.2 Supervised Training

We first train the temporal classifier C on the small labeled dataset, D. We apply

STFNet [37] as the basic building block of the temporal classifier. STFNet is the Short-

Time Fourier Neural Network, specially designed to deal with time-series inputs. An STFNet

layer is equivalent to one layer in CNNs but it processes the input in the frequency-domain

through Short-Time Fourier Transform instead of in the time-domain like CNNs. Since

many human activities have cyclical motion patterns, they have clear and distinct represen-

tations in the frequency domain. STFNet has therefore shown obvious performance gains in

HAR applications, compared to the traditional convolutional and recurrent neural network

approach .

The temporal classifier comprises three STFNet layers, each of which followed by a dropout

layer. A 1D global average pooling layer is used after the last STFNet layer. Finally, a

softmax output layer is put to follow the global average pooling layer.

4.3.3 Self-Labeling

Given the temporal classifier, we label the large unlabeled dataset U = {xm+1, . . . ,xm+n}.
Let yi denote the label of xi predicted by the temporal classifier, and wi ∈ [0, 1] be the

corresponding prediction confidence. After the self-labeling, we can get a labeled dataset

U ′ = {(xm+1,ym+1, wm+1), . . . , (xm+n,ym+n, wm+n)}. For each data sample xi in the the

labeled dataset D, we also give it a prediction confidence, wi = 1. We extend the dataset D

in a similar way to form D′ = {(x1,y1, w1), . . . , (xm,ym, wm)}, where wi|i=1...m = 1.

We merge the two datasets to generate a new one, which we call the “Self-labeled HAR

DataSet”:

S = D′ ∪ U ′. (4.8)

There are raw sensor measurements, labels, and the corresponding prediction confidences in

dataset S.

4.3.4 Semi-Supervised Contrastive Pre-Training

Given the self-labeled HAR dataset S, an intuitive way is to directly use the supervised

contrastive learning framework we introduce in Section 4.2.2 to train the encoder E. How-

ever, the labels in S are not 100% correct because some of them are predicted by our temporal
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classifier. The wrong labels, that are not correctly predicted by the temporal classifier, would

have side effects when designing the contrastive loss. Hence, in order to efficiently utilize the

correct labels to improve the performance of contrastive learning while eliminating the side

effect caused by wrong labels, we propose a modified semi-supervised contrastive learning

framework.

Our approach applies the same architecture as the supervised contrastive learning (Section

4.2.2) but a different design of the contrastive loss function. Recall that in the SupCon loss

function (Equation (4.6) and (4.7)) in supervised contrastive learning, all the data samples

in the mini-batch that have the same label with the anchor are considered positive examples

of the anchor, and the remaining data are considered negative. To eliminate the side effect

caused by wrong labels, we use a filter to separate the labels into two groups: labels with

high prediction confidence and labels with low prediction confidence. For those data samples

with high-confidence labels, we use both of the raw sensory measurements and the labels;

for those with low-confidence labels, we only use their raw sensory measurements.

Specifically, For each xi in a mini-batch of N data examples, two views of augmented data

examples, denoted by x̃i and x̃j(i), are generated from the same family of data augmentation

operations. The labels and prediction confidences of x̃i and x̃j(i) are the same with xi:

ỹi = ỹj(i) = yi, (4.9)

w̃i = w̃j(i) = wi. (4.10)

Let I ≡ {1, 2, . . . , 2N} be the index of the 2N augmented data examples, and x̃i (i ∈ I)

be an arbitrary augmented data example. After x̃i passing through the encoder E, we get

the representation ri = E(x̃i). The contrastive loss is calculated on the latent space of

zi = G(ri) after applying the projection head G. We consider two scenarios when designing

our contrastive loss, for each anchor x̃i (i ∈ I),

• If the prediction confidence w̃i of its label ỹi is less than or equal to a threshold TH,

then x̃i will be processed as an unlabeled data example. The contrastive loss for anchor

x̃i would be the same as the sefl-supervised contrastive learning where there is only

one positive example x̃j(i) which is augmented from the same data sample as x̃i.

• If the prediction confidence is larger than the threshold TH, x̃i would be considered

as a labeled data example. In this scenario, we apply a contrastive loss function

which is similar but not the same with the supervised contrastive learning. We choose

such data example p ∈ I that satisfies the following two conditions as the positive

examples: (i) x̃p in the same class with x̃i (ỹp = ỹi), and (ii) the prediction confidence
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w̃p is larger than the threshold TH. We also use w̃p as the weight for each component

corresponding to the positive example x̃p.

Our contrastive loss can then be defined as

Lsemi =
$

i∈I

ℓsemi
i . (4.11)

If w̃i ≤ TH,

ℓsemi
i = − log

exp(sim(zi, zj(i))/τ)#
k∈K(i)

exp(sim(zi, zk)/τ)
. (4.12)

If w̃i > TH,

ℓsemi
i =

−1

|P ′(i)|
$

p∈P ′(i)

log
w̃p exp(sim(zi, zp)/τ)#

k∈K(i)

exp(sim(zi, zk)/τ)
. (4.13)

Here, K(i) ≡ I \ {i}; P ′(i) ≡ {p ∈ K(i) : ỹp = ỹi and w̃p > TH} refers to the set of indices

of all positive examples for anchor i in the mini-batch, |P ′(i)| is the cardinality of P ′(i); and

sim(zi, zk) defines the cosine similarity between zi and zk.

By optimizing our contrastive loss Lsemi, we can get the parameters of the encoder, which

can be then used in the downstream HAR task. The details of our semi-supervised con-

trastive learning framework, including the data augmentation we used, the architectures of

the encoder and projection head, are described in more detail in the evaluation Section 4.4.1.

4.3.5 Downstream HAR Task

After the optimization of the semi-supervised contrastive learning, we freeze the param-

eters of the encoder. In the downstream HAR task, we first map the raw measurements

in the labeled dataset D to their representations, and then build a linear classifier on the

representations. Since the encoder has already extracted the intrinsic information of the raw

measurements, the linear classifier trained with the small labeled dataset could accurately

recognize human activities. In this way, a relatively simple model trained on a small labeled

dataset could accurately recognize human’s activities.

4.4 EVALUATION

In this section, we introduce the experiments we have done to evaluate the performance

of SemiC-HAR. We use the same datasets as mentioned in Section 3.5.1. We first describe
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the experiment setup including the data pre-processing and details of our approach, SemiC-

HAR, and then we show the evaluation results.

4.4.1 Experiment Setup

Data Pre-Processing For EI dataset, we use all the CSI data of 30 OFDM subcarriers as

the input. For the remaining 5 datasets, we apply the measurements from the accelerometers

as the input. For all sensing data, we linearly interpolate them to 50Hz and segment them

into sliding windows of size 512 with 50% overlap. Data from about 75% of the users in each

dataset is used to training our model and the remaining is used as the test set.

Model Details The temporal classifier consists of three STFNet layers with the same

kernel size 64. We set 4 resolutions {16, 32, 64, 128} for the short-time Fourier transform

of each layer. A dropout layer with a keep probability 0.8 is put after each STFNet layer.

After the last STFNet layer, we use a 1D global average pooling layer followed by a softmax

output layer. The encoder E has a similar structure with the temporal classifier except that

E has no softmax layer and the kernel sizes of the three STFNet in E are {64, 64, 256}.
This means that the representation has a length of 256. The projection head G comprises

two fully connected layers with {256, 64} hidden units. The first layer uses ReLU as its

activation function and the second layer has no activation function. We set the default

prediction confidence threshold to TH = 0.9. In the downstream HAR task, we build

a linear classifier on the learned representations. We also fine-tune the last layer of the

encoder when training the linear classifier. We apply a combination of rotation [4] and

frequency-domain perturbation [88] as the data augmentation operation for the 5 motion

sensor based datasets, and use frequency-domain perturbation when dealing with the WiFi

based dataset EI.

We train our semi-supervised contrastive learning model using an Adam optimizer [95]

with learning rate 10−4 and default decay rate. L2 regularization is added to the contrastive

loss function in order to mitigate over-fitting. We train our model with a batch size 64

and 50 epochs. We have 5 runs for each experiment and calculate the average as the final

performance.

4.4.2 Results

Comparison with Other HAR Frameworks We first compared SemiC-HAR with ex-

isting HAR frameworks. We consider two semi-supervised frameworks (SelfHAR[105], Trans-
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formation Discrimination[4]) and a supervised framework (STFNet[37]). Transformation

Discrimination is a semi-supervised frameworks for HAR which first trains an encoder to

learn the representations under a self-supervised learning model and then trains a simple clas-

sifier on the representations. Transformation Discrimination implements the self-supervision

by discriminating the data examples before and after the data augmentation. SeflHAR is

a semi-suerpvised HAR framework with a teacher-student model. STFNet learns sensing

signals from the Time-Frequency perspective and has shown in prior work to do better

for labeled time-series data. We keep 10% of the data labeled in the training set and the

remaining 90% unlabeled. We use both of the labeled and unlabeled data when training

semi-supervised models and use only the labeled data when training the supervised model,

STFNet. Then we compare the weight-average F1-score for each of them. The results are

shown in Table 4.1. We observe that SemiC-HAR performs the best compared with the

previous HAR models when only 10% of the training data are labeled.

Table 4.1: Comparison with existing models

Dataset STFNet SelfHAR
Transformation
Discrimination

SemiC-HAR

HHAR 0.8188 0.7739 0.7753 0.8510
MobiAct 0.9067 0.9138 0.8877 0.9479

MotionSense 0.8947 0.9312 0.9062 0.9393
UCI HAR 0.8985 0.8927 0.8915 0.9264
WISDM 0.8885 0.8809 0.8780 0.9006

EI 0.5611 0.6293 0.6049 0.6758

Comparison with Self-Supervised and Supervised Contrastive Learning We then

compare the performance of our semi-supervised contrastive learning framework with the ex-

isting supervised and self-supervised contrastive learning frameworks when different amounts

of the labeled data is given. For the self-supervised contrastive learning model, we train the

encoder E based on all the raw sensory measurements inD∪U . For the supervised contrasive

learning model, we train the encoder based on the small labeled dataset D. The remaining

parts, including the encoder, projection head, and the linear classifier, except the contrastive

loss function of those three models (self-supervised, supervised, and SemiC-HAR) are the

same.

The results are shown in Figure 4.3. We train the models when 5%, 10%, 20%, 50% and

100% of the data have labels, which means |D|
|D∪U | = 5%, 10%, 20%, 50%, 100%. We observe
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Figure 4.3: Comparison with Supervised and Self-Supervised Contrastive Learning.

that the self-supervised contrastive learning model performs better than the supervised one

when the size of D is small. This is because supervised contrastive learning can only use

the labeled data in D. When the size of D is larger, the supervised contrastive learning

model would outperform the self-supervised model. Our semi-supervised contrastive learning

framework perform better than both of them, because SemiC-HAR takes both of the labeled

(D) and unlabeled (U) data when training the encoder.

Performance of Self-Labeling The performance of SemiC-HAR is highly dependent on

the accuracy of the self-labeling, that is, whether the temporal classifier C trained on the

small labeled dataset D could accurately annotate the raw measurements in the unlabeled

dataset U . After annotating U , we can get a new labeled dataset U ′. U ′ can be divided

into two parts U ′ = U ′
+ ∪ U ′

− according to the prediction confidence. Here U ′
+ refers to a

subset of U ′ where the elements in U ′
+ have prediction confidence larger than the threshold.

U ′
− refers to the subset of U ′ with prediction confidence less than the threshold. Since U ′

+

(as well as D) provides the supervision while optimizing the contrastive loss, the size of U ′
+

and the accuracy of the predicted labels in U ′
+ would have impact on the performance of our

approach. If most of the elements in U can be annotated with high prediction confidence

(i.e., |U ′
+| ≈ |U ′|) and most of the highly confident elements are correctly annotated (i.e.,

labels of most elements in U ′
+ are correct), SemiC-HAR would perform well. We study the

size of U ′
+ and the accuracy of the predicted labels in U ′

+ under different values of threshold

(from 0.5 to 0.9) when 5%, 10%, 20%, and 50% of the training data have labels, which means
|D|

|D∪U | = 5%, 10%, 20%, 50%.
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The results of “MotionSense” dataset are shown in Tabel 4.2 and Tabel 4.3. Table 4.2

shows the size of U ′
+ under different thresholds when 5%, 10%, 20%, and 50% of the training

data have labels. Here we use the ratio between U ′
+ and U ′ (|U ′

+|/|U ′|) to describe the size of

U ′
+. We can observe that most of the elements in U can be annotated with high prediction

confidence even though we use a high threshold like 0.9. Table 4.3 shows the accuracy of

the predicted labels in U ′
+. We observe that the temporal classifier accurately annotate the

unlabeled dataset even though it is trained based on a small number of labeled dataset. The

performance of the temporal classifier is good because i) STFNet performs well when limited

labeled training data is given, ii) data in U and D belong to the same set of users.

A higher threshold would lead to higher accuracy but smaller size of U ′
+. So there’s a

trade-off here. In this work, we use a fix threshold 0.9. It would be an interesting future

work to study the selection of the threshold.

Table 4.2: MotionSense: Size of the high confident prediction set.

0.5 0.6 0.7 0.8 0.9
5% 0.9998 0.9904 0.9819 0.9735 0.9645
10% 0.9995 0.9971 0.9917 0.9871 0.9804
20% 0.9988 0.9962 0.9921 0.9866 0.9782
50% 0.9995 0.9981 0.9967 0.9926 0.9879

Table 4.3: MotionSense: Accuracy of the high confident predictions

0.5 0.6 0.7 0.8 0.9
5% 0.9456 0.9513 0.9558 0.9592 0.9652
10% 0.9757 0.9764 0.9789 0.9806 0.9834
20% 0.9913 0.9918 0.9932 0.9944 0.9951
50% 0.9935 0.9935 0.9935 0.9948 0.9953

4.5 CONCLUSION

In this chapter, we proposed SemiC-HAR, a semi-supervised contrastive learning based

human activity recognition framework. We build SemiC-HAR by carefully designing the

contrastive loss function which could efficiently utilize both of the labeled and unlabeled

data during the contrastive pre-training. We evaluate the performance of SemiC-HAR on six

62



different HAR datasets with different sensing signals (accelerometer, WiFi). The evaluation

results demonstrate that SemiC-HAR offers an obvious performance gain compared with

the existing HAR frameworks. We also compare the performance of supervised and self-

supervised contrastive learning with our semi-supervised learning framework, showing the

advantages of the latter.
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CHAPTER 5: SPECTROGRAM MASKED AUTOENCODER FOR IOT

5.1 OVERVIEW

In this chapter, we introduce our augmentation-free self-supervised learning framework

for IoT. The increasing number of smart sensing devices such as smart phones and smart

wearable devices yields a large amount of sensing data which can be used to build multiple

intelligent applications. Great processes have been made on studying such data, including

target detection [109, 110], health and well-being [97, 98, 99], activity recognition [4, 5, 6],

and localization[100, 101]. Inspired by the success gotten by the deep learning techniques

on various areas like image processing [19, 20] and natural language processing (NLP) [23],

a lot of deep neural network models have been designed to deal with sensing data.

As the development of deep learning techniques, deeper and deeper neural network models

were designed and applied to sensing tasks. However, training such deep models requires

a huge amount of labeled training data. Collecting a large dataset is not an easy job and

would require a lot of human labor work. But it’s observed that the workload of collecting

a training dataset mainly comes from the data annotation while collecting unlabeled data

is a relatively easier job. Facing this phenomenon, self-supervised learning, which is a kind

of unsupervised learning technique and builds models only based on unlabeled data, has

became more and more popular in dealing with sensing data.

Self-supervised learning technique was first studied in NLP and computer vision areas and

has gotten great successes [23, 34, 38, 39, 111]. The goal of self-supervised learning is to

learn an encoder which maps the inputs to the features or representations in some latent

space. This process is only based on the unlabeled data. The encoder is then freezed and

can be used in the downstream tasks like classification and regression. This means that

the downstream tasks are built on the learned features instead of the original inputs. The

self-supervised learning algorithms would let the features store the intrinsic information of

the original input, and thus training models based on the features would need much less

number of labeled training data.

Besides computer vision and NLP tasks, self-supervised learning techniques have also

gotten studied in sensing tasks [29, 30, 52, 105]. Most of the previous works customized the

self-supervised contrastive learning models (e.g., SimCLR [34]) to sensing tasks by carefully

the unique characteristics (e.g., frequency domain characteristics) of sensing time-series data.

The key idea of self-supervised contrastive learning is to pull together the similar samples

in the latent space while pushing apart the diverse samples. Data augmentation plays
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an important role on the self-supervised contrastive learning technique. And it has been

proved that the qualities of the features learned by the self-supervised contrastive learning

largely depends on the data augmentation algorithms [5, 29]. For the same task, different

data augmentation strategies would lead to very different performance. Hence, we have to

carefully design the data augmentation strategy when applying self-supervised contrastive

learning for a specific sensing task. What makes things worse is that different sensing tasks

with different sensors usually need different data augmentation strategies. Different from

computer vision and NLP tasks where the input data is image (video) or natural languages,

the sensing data can be very different for different tasks. They can be measurements from

accelerator, gyroscope, geophone, and microphone. Data augmentation for those data are

quite different considering the different background physical phenomenon. And those data

strategies that work for multiple sensing tasks, such as adding Gaussian noise, do not perform

well on self-supervised contrastive learning [5]. This makes the design of self-supervised

learning framework stuck in the chosen of data augmentation strategies. Hence, it would be

very helpful if we could design a self-supervised learning framework for sensing tasks that

does not depend on data augmentation. And that motivates this work.

The success of BERT [23] on NLP brought significant interest in the autoencoding method.

And recently, [39] presented a simple, effective and scalable form of a masked autoencoder

(MAE) for visual feature learning by carefully taking the difference of vision and language

into consideration. Unlike the previous contrastive learning models, the MAE model does

not rely on data augmentations. Hence, in this work, we built the MAE model for physical

sensing data. Since the underlying processes (such as vibration or acceleration) of physical

sensing are fundamentally a function of signal frequencies, the sensing data usually has a

sparser and more compact representation in the frequency domain. And hence, its a good

choice to use spectrograms as the input of the MAE model. The key difference between

spectrogram and vision data (such as image) is that we have some prior knowledge about

the spectrogram. We know that the high frequency components in the spectrogram are

usually noise in the physical sensing tasks while the information mainly stores in the low

frequency components. However, we do not have such information in images. In this way,

the MAE should be trained by carefully reconstructing the low frequency components of

the spectrograms while reconstructing the high frequency components would not help a lot.

We thus re-designed the loss function of MAE by assigning different weights on different

frequency components. That is, we use the weighted mean squared error (WMSE) between

the original and reconstructed spectrograms as the loss function of our version of MAE. This

is different from the loss function of vision based MAE which use the same weight for each

pixel while calculating the mean squared error. We believe that the encoder trained with our
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weighted mean squared error would extract the intrinsic information from the spectrograms

of sensing data in a better way, and our evaluation results confirm it.

The main contribution of this work can be summarized as follows:

• We proposed SMAE, which a Spectrogram Masked AutoEncoder framework that spe-

cially designed for physical sensing tasks. Different from the previous vision MAE, we

carefully re-designed the loss function by calculating the weighted mean squared error

between the original and reconstructed spectrograms. As far as we know, SMAE is the

first masked autoencoder framework that designed for physical sensing applications.

• We evaluated the performance of SMAE on different datasets, where measurements

of different physical sensors (such as accelerometer, gyroscope, gephpone, and micro-

phone) are used to implement different sensing tasks like vehicle detection and human

activity recognition. The experiments demonstrated the performance gain of SMAE

compared with previous vision MAE. We also compared the performance of SMAE

and self-supervised contrastive learning, which illustrated that SMAE does not rely on

the choice of data augmentations.

The rest of this chapter is organized as follows. In Section 5.2, we introduce the background

and related works. Then, we describe the detailed implementation of SMAE in Section 5.3.

After that, we show the evaluation results on Section 5.4. Finally, we summarize this chapter

in Section 5.5.

5.2 BACKGROUND AND RELATED WORKS

In this section, we introduce the related works. We begin with the study of deep learning

on physical sensing tasks, and then have a brief introduction of the two commonly studied

self-supervised learning techniques: self-supervised contrastive learning and masked autoen-

coder. We end this section with the self-supervised learning frameworks for sensing data.

5.2.1 Deep Learning for Physical Sensing

Inspired by the great success of deep learning techniques on computer vision and NLP [19,

20, 23, 86, 112], deep learning has gotten widely studied to deal with physical sensing data.

Considering the differences between sensing data and vision/language, a lot of work has been

proposed to customized deep learning techniques from vision/NLP to sensing applications

by carefully taking the sensing characteristics into consideration.
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Lots of illuminating works have applied deep neural network models on different sensing

applications. For example, Lane et al. proposed a deep neural network based smartphone

audio sensing framework, namely DeepEar [25]. Gadaleta and Rossi presented IDnet [113],

which is a smartphone-based gait recognition framework built with convolutional neural

networks. A smartwatch based activity recognition system was built in [114] using the Re-

stricted Boltzmann Machines (RBM). However, those early studies did not take the temporal

relationships in sensing time-series. In 2017, Yao et al. proposed DeepSense [57], which is a

unified deep learning framework for time-series mobile sensing data processing. DeepSense

integrates convolutional and recurrent neural networks, and exploits the interaction among

different modalities of sensors and the temporal relationships which models the signal dy-

namics. Later, rDeepSense [115] further studied the uncertainty estimation for deep mobile

sensing models.

In the study of deep learning on physical sensing, one important direction is compressing

the neural network in some manner before running in the embedded device in order to meet

the resource constrain of such devices. DeepIoT [58] is a commonly used compression strategy

which could reduce the network size by more than 90% while keeping almost the same

performance. FastDeepIoT [68] further took the non-linearity of neural network execution

time into consideration and reduce the execution time without impacting accuracy. Another

thing that we need to keep in mind is that the existence of enormous amount of unlabeled

sensing data. Several semi-supervised learning frameworks were proposed to utilized such

unlabeled sensing data [25, 116]. In this work, we design self-supervised learning framework

to utilized the unlabeled data in a more general way.

5.2.2 Self-supervised Learning

Self-supervised Learning is an kind of unsupervised learning which only requires unlabeled

data.The goal of self-supervised learning is to learn the representations (or features) of

the input data in some low-dimensional latent space. There are mainly two stages while

training a self-supervised model: pretext tasks and downstream tasks. Pretext tasks refer

to the tasks for the pre-training. In this step, an encoder, which maps the input data to

the representations, would be trained only based on the unlabeled data. The knowledge

learned from the pretext task can be then transferred to the downstream task through the

representations. Here, the downstream tasks are the target tasks which can be classification,

regression, or any other machine learning tasks. And the model for the downstream task

takes the representations (instead of the original input data) as input.

The supervision of self-supervised learning algorithms comes from the manually designed
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pretext tasks. In the early works, multiple pretext tasks, such as predicting rotation of

images [31], and predicting relative position of image patches [77], have been designed to

train the encoder during the pre-training process. Nowadays, there are mainly two categories

of pretext tasks: contrastive learning and masked autoencoding. In the contrastive learning

framework, the encoder is trained by minimizing the contrastive loss which aims at putting

together the similar samples and pushing apart the diverse samples. Two representative self-

supervised contrastive learning frameworks are SimCLR [34] and BYOL [117]. Both of them

got great success on computer vision. One weakness of self-supervised contrastive learning

is that performance of those models relies largely on the data augmentation strategies. The

masked autoencoding frameworks, instead do not rely on the data augmentations. In those

framework, part of the input sample is masked and the representation is learned by predicting

the missing part of the input. For example, BERT [23] learns the representation for words

with two pretext tasks: masked word prediction and next sentence prediction. In computer

vision area, He et al. [39] showed that masked autoencoder (MAE) are scalable self-supervised

learners for the image related tasks, and built a MAE model for image classification which

works really well.

5.2.3 Self-supervised Learning for Sensing Data

Although self-supervised learning techniques have been widely studied in computer vision

and NLP areas, the process of self-supervised leaning methods in sensing lags behind. In

2019, Saeed et al. proposed a multi-task self-supervised learning framework for human activ-

ity detection [4], which is, as far as we know, the first attempt of self-supervision for sensing

representation learning. Multiple pretext tasks were designed to learn the representations.

Self-supervised contrastive learning has also been applied to deal with sensing data such as

measurements from accelerometer and gyroscope [5, 29, 105] and WiFi signals [30].

However, the previous models highly rely on the design of data augmentations, and the

commonly used data augmentation (such as adding Gaussian noise) does not perform well.

This motivates our work based on the masked autoencoder model which does not rely on

the data augmentations. To the best of our knowledge, the work presented in this chapter

(SMAE) is the first study of mask autoencoder on physical sensing data.

5.3 DESIGN OF SMAE

In this section, we first give an overview of our spectrogram masked autoencoder (SMAE),

and then we present the detailed design including the masking, encoder, decoder, and the

68



loss function.

5.3.1 Overview of SMAE

In SMAE, we use a same architecture as MAE [39], which is shown in Figure 5.1. Different

from MAE, our model SMAE takes the spectrograms of sensing data as input. The goal

of SMAE is to reconstruct the original spectrogram given its partial observation. The first

step is masking, where we randomly mask part of the input spectrogram and get a partial

observation. Then, the encoder would take the partial observation as input and generate

the corresponding representations of the partial observation. After that, the decoder would

try to take the representations as input and then reconstruct the original input spectrogam.

The SMAE is trained by minimizing the difference between the reconstructed spectrogram

and the original one.

SMAE adopts a similar asymmetric design with MAE, where SMAE uses a deep and

complicated encoder and a lightweight decoder. After the training process, the decoder would

be dropped and only the encoder would be used in the downstream tasks such as classification

or regression. In the downstream tasks, the input spectrograms are first mapped to the latent

representations and then neural network models are built on the representations.

!"#$%!&
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Figure 5.1: The architecture of SMAE.

5.3.2 Masking

SMAE adopts a similar masking strategy with MAE. We first divide a spectrogram into
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several non-overlapping patches. Then, we randomly mask a subset of the patches, shown

as gray blocks in Figure 5.1. The remaining patches are kept as the input of the encoder.

In order to largely eliminate the redundancy in the input spectrogram, a large masking

ratio should be used (in this work 75%). In this way, the reconstruction task cannot be

easily solved by simply extrapolation from the nearby unmasked patches. This makes the

reconstruction task hard and thus would help the encoder to distill the intrinsic information

of the input.

Different masking strategies can be used to mask the input spectrogram. In our approach,

we adopt a uniform distribution to randomly mask the patches without replacement. Other

mask strategies can also be adopted. For a spectrogram, different frequency bands store

different information. For example, a female voice frequency range covers fairly from 350 Hz

upto 17k Hz, and male voice covers a frequency range of 100 Hz to 8k Hz1. The frequencies

of human activity are between 0 and 20 Hz [118]. This means that the information density at

different frequency bands are different and the redundancies of different frequency bands are

different. In this way, we may design a masking strategy that samples patches of different

frequency bands with different probabilities. This kind of masking strategy could eliminate

the redundancy of the spectrogram in a more fine-grained way and thus help to train an

efficient encoder. In this work, we focus on the design of the loss function of SMAE and

leave the design of mask strategy in the future work.

5.3.3 SMAE Encoder

In SMAE, we use vision transformer [119] as the encoder. The encoder takes the embed-

dings of the unmasked patches with added positional embeddings as input. The input would

be passed through several layers of transformer blocks and then generates the representa-

tions. In SMAE, only a small ratio of the patches is unmasked. Even through the encoder

is a very large network, it would not consume a lot of memory and computation resources.

For each unmasked patch of the input, the encoder would generate a representation vector.

After training SMAE, the parameters of the encoder would be freezed and be used in the

downstream tasks. In the downstream task, the encoder would take the full set of patches as

input and generate representation vector for the whole input spectrogram (without masking).

The target model can be built on those representation vectors.

1https://seaindia.in/sea-online-journal/human-voice-frequency-range/
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5.3.4 SMAE Decoder

The encoder in SMAE generate a representation vector for each of the unmasked spec-

trogram patch. For each of the masked patch, we define a mask token [23], which is shared,

learned vector that shows the presence of missing spectrogram patch. We concatenate the

mask tokens and the representation vectors for unmasked patches together, and then add

the positional embeddings of the full set to all of them. The decoder would take the sum

of tokens (as well as representations) and positional embeddings as input and generate the

reconstructed spectrogram.

SMAE adopts an asymmetric architecture where the designs of the encoder and decoder

can be independent. In SMAE, we use vision transformer block to build the decoder, which

is similar with the design of the encoder. However, the decoder is shallower and narrower

than the encoder. This is because that the input size of the decoder is larger than that of the

encoder. The decoder takes both of the masked tokens and unmasked representation vectors

as input, but the encoder only takes the unmasked patches. The design of lightweight decoder

would significantly reduce the pre-training time and computational resource consumption.

The decoder is only used in the pre-training process. After the pre-training, the decoder

would be dropped, and only the encoder would be used in the downstream tasks.

5.3.5 SMAE Loss Function

The output of the SMAE decoder is a set of vectors. Each vector represents a patch in the

input spectrogram. The vectors are reshape to the same size with the input spectrogram. In

this way, the goal of SMAE is to predict the values of the masked (missing) patches. In our

implementation, we designed weighted mean squared error (WMSE), and used it as the loss

function. Here, assumes that X and X̂ refer to the original and reconstructed spectrograms

with the same size m×n× c (c refers to the number of channels), the MAE between X and

X̂ can be computed as

MSE =
1

m× n× k

m$

i=1

n$

j=1

c$

k=1

(Xijk − X̂ijk)
2. (5.1)

In the MAE model, only the loss on the masked part of the input is computed. Let’s define

the mask as a tensor M which has the same size with the spectrogram. If the elements of

M are 0s, this means that the corresponding elements of the spectrogram are sampled and

1s in M means the corresponding elements in the spectrogram are masked. In this way, the
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Figure 5.2: Weighted Mean Squared Error.

MAE becomes

MSE =
1

m× n× k

m$

i=1

n$

j=1

c$

k=1

Mijk(Xijk − X̂ijk)
2. (5.2)

In SMAE, different from the original MAE implementation, we designed the weighted

MSE (WMSE) and use it as the loss functions. This design is inspired the observation that

different frequency components in a spectrogram store different information and have dif-

ferent importance. And the key difference between spectrogram and image is that we do

have the preliminary knowledge about which part is important and which part is not. This

is because of the characteristics of the physical sensing data. Minimizing the difference on

the “important” components would help to train the encoder while minimizing the differ-

ence on the components that are not so important would not improve the quality of the

encoder. For example, in most physical sensing tasks, such as human activity recognition

and target recognition, most of the useful information locates at the low frequency parts

of the spectrogram, and very high frequency parts are usually noise. Reconstructing those

noise would not help a lot while training the encoder in the pre-training process. Hence,

we can multiply smaller weights with those parts while calculating MSE. And for those low

frequency components, we multiply them with larger weights to emphasize their importance.

The WMSE thus can be defined as

WMSE =
1

m× n× k

m$

i=1

Wi

n$

j=1

c$

k=1

Mijk(Xijk − X̂ijk))
2, (5.3)

where i = 1, 2 . . . ,m refer to different frequencies in the spectrogram and Wi refers to the

corresponding weights. As shown in Figure 5.2, the weight for the highest frequency is the
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minimum and gradually increase as the decreasing of the frequency. In detail, we set

Wm = Wmin, (5.4)

W1 = Wmax, (5.5)

and the weights increase in a linear way, which means

Wi = Wmax −
(i− 1)(Wmax −Wmin)

m− 1
. (5.6)

In the evaluation sections, we illustrate that WMSE would help to train a better encoder in

the pre-training process.

5.4 EVALUATION

We show the evaluation results in this section. We study the performance of SMAE using

two datasets with different sensing data. We first introduce the dataset and then describe

the experiment setup. Finally, we show the evaluation results.

5.4.1 Datasets

We studied the performance of SMAE on different modalities of sensing data for two

commonly studied tasks: human activities recognition and vehicle recognition. For the

human activities recognition, the accelerometers and gyroscope measurements of smartphone

or wearable devices can be collected and used to recognize the activities (e.g., walking,

sitting, running) of human beings. For the vehicle recognition task, the acoustic data (from

microphone) and seismic data (from geophone) are collected and used to detect and recognize

the different types of vehicles. Studying the performance of SMAE on multiple types of

sensing data could demonstrate the scalability of SMAE. Now we introduce the two datasets

in the evaluation.

MotionSense: MotionSense [91] is a human activity recognition dataset which consists

of the measurements of accelerometer and gyroscope sensors of an iphone 6s. Different

activities of 24 participants, with an iphone 6s kept in their front pocket, were recorded,

and at the same time, the measurements of the two mentioned sensors were collected. To

make the dataset general, the participants vary from ages, genders, heights and weights. For

example, 14 males and 10 females were included in the dataset. A total of six activities were
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considered, including walking, jogging, sitting, standing, upstairs, and downstairs. All the

accelerometer and gyroscope data was collected in 50 Hz.

ACVR: The Acoustic and Seismic based Vechicle Recognition dataset (ACVR) is a dataset

collected by ourselves. It’s a commonly studied topic where the acoustic and seismic data

can be used to do vehicle detection and classification. To collect our detaset, we build the

sensor device using a Raspberry Pi connected with a microphone array and a geophone.

We deployed our sensor on the grounds and collected both of the acoustic and seismic data

while vehicles were driven around. We consider three types of vehicles with different engines,

shapes, weights, and tires: Warthog UGV, Chevrolet Silverado, and Polaris all-terrain vehi-

cle. The the acoustic data was collected by the microphone under 16k Hz and the seismic

data was collected by the geophone under a sampling rate of 100 Hz. The data collection

lasted for 115 minutes rough average split by the three types of targets.

5.4.2 Experiment Setup

In this part, we introduce the experiment setup including the data pre-processing and

the implementation details of SMAE.

Data Pre-processing For MotionSense dataset, we use both of the accelerometer and

gyroscope data. First, we segment the data using a sliding window of size 512 and step size

of 256. 75% of the data is used as training set and the remaining 25% is used as testing.

For the acoustic and seismic dataset, considering the difference in sampling rates of the

microphone and geophone, we first downsample the acoustic data to 100 Hz, which is the

same as the seismic data. We performance the downsampling in the follow way: we first

passed the acoustic data through a low-pass filter of 400 Hz to reduce the high frequency

noise and then passed it through a high pass filter of 25 Hz in order to reduce the influence

of wind. After that, we sample one point from every 160 points to get the 100 Hz acoustic

data. Similar with MotionSense, we use a segment length of 512 and the ratios of training

and testing sets are 75%, 25%.

We generate the spectrogram for each segment of sensing data through Short-Time Fourier

Transform (STFT) with a window size 64 and step 14, and then resize the spectrogram to

size 32 × 32. There are three dimensions for the accelerometer and gyroscope data, one

dimension for the seismic data, and two channels for the acoustic data. For each dimension

(or channel) of one segment sensing data, a spectrogram of size 32 × 32 × 2 is generated.

Here the channel size 2 refers to the real and imaginary parts of the spectrogram. Then
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the spectrograms of different dimensions and modalities are concatenated in the channel

dimension. We then normalize the content of the spectrograms to values between 0 and 1.

Implementation Details In our SMAE model, following the architecture in Figure 5.1,

we build the encoder with six layers of vision transformer and decoder with two layers. We

set the length of the representation vector as 128. In each layer of the encoder and decoder,

we use a same number of attention heads, which is four. In the pre-training, we use a batch

size of 128. We apply AdamW [120] with a basic learning rate 10−3 and weight decay 10−4

as the optimizer. We run the pre-training a total of 200 epoches and 15% of them are used

as warmup epoches.

5.4.3 Comparison with Previous Self-Supervised Approaches

We first study the performance of SMAE with previous self-supervised learning approaches

on the about mentioned two datasets. To study the advantage of our weighted mean squared

error, we compared the performance of SMAE with the original MAE approach which led

great performance on computer vision [39]. And we also compare the performance of SMAE

with the previous commonly used self-supervised contrastive learning approach SimCLR [34].

For completeness, we directly train the encoder with a linear classifier under a supervised way

and compare its performance with SMAE. For the self-supervised approaches SMAE, MAE,

and SimCLR, we first perform pre-training and then fine-tune the encoder as well as the

linear classifier. We use the classification accuracy as the metric to study their performance.

Data augmentation is an essential part of the self-supervised contrastive learning like

SimCLR. MAE and our SMAE can work without data augmentation. We can also add

the data augmentation part in MAE and SMAE and the performance would get slightly

improved. In this work, we use “rotation” [30] as the data augmentation algorithm for

MotionSense, and “timewarp” as the data augmentation algorithm for ASVR.

The results are shown in Table 6.1. We can observe that SMAE performs the best for

both of the two dataset, it shows a 95.55% accuracy for MotionSense and 95.61% accuracy

for ASVR. Specially, our SMAE performs better that the supervised approach with the same

structure of classifier, this means that the masked autoencoder approach can work well on

dealing with sensing data. And SMAE also perform better than directly applying the original

MAE approach, which designed for computer vision tasks, on sensing data (spectrogram),

this means that using our weighted mean squared error would help to train a better encoder

in the pre-training process.
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Table 5.1: Comparison with Previous Approaches

MotionSense ASVR
Supervised 94.38% 93.15%
SimCLR 95.25% 93.22%
MAE 95.10% 93.95%
SMAE 95.55% 94.61%

5.4.4 Performance under Different Number of Training Data

The goal of self-supervised learning is to efficiently utilize the unlabeled data. In this part,

we study the performance of SMAE when there are large amount of unlabeled data and only

a small part of them has labels. We assume that only 1%, 2%, 5%, 10%, 20%, 50%, 100%

of the training data has labels. The encoders of MAE, and SMAE were trained with all the

training data (without label), and the models as well as the encoder in the dowstream task

were fine-tuned using the labeled training data. To study the influence of unlabeled data,

we also train the encoder as well as the linear classifier only based on the labeled training

data and compared its performance with MAE and SMAE.

Figure 5.3 illustrates the results. We observed that both MAE and SMAE perform better

than the pure supervised approach under different number of labeled training data. And the

gaps between the self-supervised approaches and the supervised approach is larger when we

have smaller number of labeled training data. If we compare the performance between MAE

and SMAE, we found that SMAE always perform better than MAE under different number

of labeled training data. This verifies the effectiveness of our designed loss function, which

is weighted mean squared error between the original and reconstructed spectrograms..

Figure 5.3: Performance under different number of labeled data.

76



5.4.5 Performance under Different Augmentation Strategies

One reason that we study the masked autoencdoer based self-supervised learning frame-

works is that the performance of the previous commonly studied self-supervised contrastive

learning approaches (e.g., SimCLR) are highly dependent on the choice of data augmenta-

tion strategies. As an essential part of the contrastive learning, different data augmentations

would lead to very different performances. In this part, we compare the performance be-

tween SimCLR and SMAE under different choice of data augmentation strategies. We use

the MotionSense dataset in this part.

We study eight data augmentation strategies which have been widely utilized for ac-

celerometer and gyroscope based human activity recognition [4, 5, 30].

• Jitter: Add random Gaussian noise to the sensing data. Jitter simulates the noise

generated by the sensors.

• Time-warp: Time-warp operation could stretch or warp the time intervals between

the sensing time-series and generate new sensing data time-series with same label as

the original one.

• Scaling: Scaling operation generate new time-series by multiplying a random scalar

to the original time-series.

• Rotation: The accelerometer and gyroscope are three-dimensional sensors. Rotate

them should not change the labels of human activities. This data augmentation imi-

tates the rotation fo the sensors.

• Horizontal flipping: Reverse the sensing data along time direction.

• Channel-shuffling: Randomly shuffle the channels (dimenstions) of the multi-channel

sensor measurements.

• Inversion: Mulptiply the sensing data with -1.

• Permutation: First cut the sensing time-series into multiple segments along the time

direction, and then permute them.

We train SimCLR and our SMAE under the above eight data augmentation strategies and

compare the corresponding performance. Since data augmentation is not an essential part

of SMAE, we also study the performance of SMAE without any data augmentation. We

show the results in Table 5.2. We observe that the accuracies of SimCLR differ a lot under

different data augmentation strategies. However, the accuracies of SMAE keep almost the
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same under different data augmentations. This illustrates the advantage of SMAE that it

needs minimal or no data augmentation.

Table 5.2: Performance under different data augmentation

Data Augmentation SimCLR SMAE
No augmentation - 94.48%

Jitter 84.81% 95.10%
Time-warp 87.22% 94.98%

Scaling 87.71% 95.30%
Rotation 95.25% 95.55%

Horizontally flipping 89.79% 95.48%
Channel-shuffling 84.70% 94.82%

Inversion 92.08% 95.40%
Permutation 87.30% 95.01%

5.5 CONCLUSION

In this chapter, we proposed SMAE, which is a masked autoencoder framework specially

designed to deal with the spectrograms of physical sensing data. By carefully studying

the difference between spectrogram and image, we designed weighted mean squared error

(WMSE) and used it as the loss function during the pre-training process of SMAE. The

weighted mean squared error allows SMAE to focus on the “important” area of the spectro-

grams and learn a better encoder during the pre-training. We carried out a lot of experiments

to evaluate the performance of SMAE. The evaluation results verified the effectiveness of

our weighted mean squared error by comparing the performance of SMAE with the original

MAE model. The evaluation also demonstrated the performance gain of SMAE under dif-

ferent number of labels we have. Finally, the attribute that SMAE does not rely on data

augmentation makes it more convenient to design self-supervised learning models for sensing

data.
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CHAPTER 6: A CASE STUDY: SELF-SUPERVISED LEARNING ON
IOBT-OS

6.1 OVERVIEW

In this chapter, we studied the performance of our self-supervised learning framework

on a real system instead of just running evaluations on different datasets. In this work, we

built IOBT-OS, an operating system for the Internet of Battlefield Things where our self-

supervised learning framework plays an important role on improving decision accuracy and

thus optimizing decision latency. Then, we use a case study of seismic and acoustic based

target detection to evaluate the performance of our proposed framework, and the evaluation

result verified the effectiveness of our self-supervised learning framework.

Recent worldwide defense trends reflect an increasing investment in automating various

battlefield functions [121, 122, 123]. Initial indicators suggest that related applications have

already impacted the course of recent conflicts [124]. Computer communications and net-

works, paired with sensing and machine intelligence, are at the center of enabling technologies

for these applications, making the military domain a potential key focus for the intelligent

edge and Internet of Things (IoT) research. An important goal is to support performant

and resilient sensor-to-decision loops at the tactical edge [125, 126]. For example, one might

want to reduce latency in neutralizing threats in the battlefield. The Internet of Battle-

field Things (IoBT) [127] is an operating environment for future cyber-physical battlefields,

where physical and computational assets must collaborate to produce effects. Prior work

articulated IoBT challenges in resilience [128, 129], distributed computing [130], Bayesian

learning [131], uncertainty estimation [132] and intelligent data fusion [133, 134, 135], among

other areas [136, 137, 138]. This work focuses on optimizing the efficiency and efficacy of

the sensor-to-decision loop and offers an architecture, called IoBT-OS, to accomplish the

optimization goals.

The need for IoBT-OS arises from the increasing complexity of networked computational

resources in future battlefields. In general computing contexts, streamlining application

development and operation necessitates the introduction of operating systems to address

common performance and resilience challenges. Similarly, in a modern battlefield, where

mission success depends in large part on computational artifacts, a new operating-system-like

construct is in order. Its goal is to ensure that the execution of sensor-to-decision loops (that

involve multiple intelligent devices and systems) meet the challenges arising from spatial

distribution, accelerated mission-tempo, transient resources, and the potential presence of

adversarial activity. IoBT provides the underlying support for ensuring performance and
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resilience of the networked computational and sensing substrate for the envisioned cyber-

physical decision loops at the tactical edge.

The rest of this chapter is organized as follows. Section 6.2 describes a functional decom-

position of the sensing-to-decision loop. Section 6.3 overviews the IoBT-OS architecture.

Our experimental case-study and its evaluation are presented in Section 6.4. The chapter

concludes with Section 6.5.

6.2 BACKGROUND: THE DECISION LOOP

A central concept for organizing IoBT functions is the multi-domain operation effect loop,

proposed in prior work [125]. As mentioned in [125], it breaks down the data processing

workflow into stages; namely, (i) detect (targets or threats), (ii) identify, (iii) track, (iv)

aggregate (information), (v) distribute (to stakeholders), (vi) decide, and (vii) actuate. The

execution of the loop starts with sensors that measure different signal modalities. It continues

through communication components, and computational elements that execute appropriate

machine analytics on sensor data. These analytics furnish information for decision making,

such as detected target types and trajectories. The decisions usually involve selection of

appropriate means of actuation (called effects) whose purpose is often to neutralize the

identified threats. The success of IoBT support in executing this loop is measured against

three key goals:

• Tactical edge efficiency: Recognizing that time is a decisive factor in gaining advantage,

it is desired to accelerate the intelligent sensor-to-decision loops (ideally without loss of

inference quality) and push key functionality towards the edge (to reduce dependency

on large cloud-like infrastructure support). These advances allow pushing intelligent

data analytics closer to the point of sensor data collection, thereby significantly short-

ening decision chains, while offering intelligent mission-informed data filtering as early

as possible (at the edge) to reduce load on the possibly contested tactical network.

• Edge resilience: Recognizing that IoBT executes in adversarial settings, where new

attacks on machine intelligence are possible (to disrupt decision loops and foil intel-

ligent automation), it is important to develop foundations of resilience, especially in

contexts where neural-network-based solutions are used for implementing the edge an-

alytics. Such foundations must offer improved resilience to adversarial inputs, enhance

risk analysis, speed-up sensor attack detection, and bound worst-case neural network

outcomes in the presence of adversarial activity.
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• Tailored intelligence at the point of need: Novel capabilities are needed at the tacti-

cal edge to take better advantage of heterogeneity, exploit multimodal sensing, and

compute uncertainty. Examples include opportunistic exploitation of commodity ra-

dios as sensors, neural networks for inference in the frequency domain, distribution

of machine learning models across heterogeneous edge systems, and sensor fusion to

enhance target classification accuracy and reduce false positives (e.g., due to decoys)

while meeting latency constraints.

Below, we focus primarily on edge efficiency. Issues of resilience and novel tailored intelligence

services are beyond the scope of this work.

6.3 IOBT-OS

To support the above goals, the IoBT-OS architecture includes three types of modules: (i)

an edge AI efficiency library, (ii) mission-informed real-time data management algorithms,

(iii) digital twin support, and (iv) offline training support.

The edge AI efficiency library comprises modules that encapsulate different functions

for target/threat detection, identification, and tracking, using neural network components

that have been compressed and optimized to execute in resource-scarce environments, while

offering a controllable low latency to the application.

The mission-informed real-time data management algorithms segment and prioritize data

processing by the supported real-time edge AI components. A key challenge is to allocate

more resources to the processing of more critical stimuli, which requires a combination of

(i) data segmentation by some notion of data importance or urgency, and (ii) prioritized

allocation of capacity to process more important/urgent data first. These algorithms should

further maximize resource utilization.

Digital twin support features a set of value-added auxiliary capabilities implemented on

a high-end computing platform thereby allowing the system to exploit additional resources

when available (e.g., when a connection to the higher-end server can be established). A

primary capability of the digital twin is to replicate key IoBT system state and environmental

conditions for purposes of conducting various compute-intensive functions centrally, such as

search for an optimal system configuration, global anomaly detection, root cause analysis,

and model checking.

Offline training support features solutions that pre-train various models ahead of deploy-

ment. Pre-training includes execution-time profiling in order to develop accurate latency

models of different system components, as well as neural network training, especially in
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regimes where accurate data labeling of these data is very time-consuming. A challenge

is therefore to exploit mostly unlabeled data to train the neural networks involved in the

sensor-to-decision loop.

IoBT-OS builds upon earlier frameworks by the authors that describe a vision of edge

intelligence systems [139] and highlight challenges in applying machine intelligence to the

IoT edge [140, 141].

6.4 THE CASE STUDY

6.4.1 Hardware Set-up and Execution Loop

We use a vehicle detection and classification application to study the efficiency of IoBT-

OS. In our setup, a Geophone and microphone are used to collect seismic and acoustic

signals for preliminary vehicle detection and classification. The sensing devices consist of

a Raspberry Shake (Raspberry Pi + one vertical-axis geophone)1, a microphone array, and

a portable power bank. A camera is also used to take pictures of the targets for the final

visual confirmation on a separate edge server. We used a Jetson Nano as the server.

Visual based target detector

Visual confirmation on
server side

Remote Server

The Target Acoustic

Seismic

Microphone

Target Classifier

Seismic and acoustic
data collection

Geophone

Real time vehicle detection
and classification

Take a picture and send
to server

Local Sensor

With sufficient confidence

Camera

Figure 6.1: The Execution Loop.

The execution loop is shown in Figure 6.1. The Geophone and microphone collect the

seismic and acoustic signals from the environment. The seismic and acoustic data are then

processed to detect and classify targets in real time. The target classifier is a DeepSense [57]

neural network trained with our self-supervised contrastive learning framework. When the

target classifier becomes confident enough in its prediction that a given target is found (i.e.,

the confidence level is larger than a threshold), a message is sent to a camera that takes a

picture of the target for confirmation. In order to reduce the transmission delay, the picture

is first compressed by compressive offloading framework [142] and then sent to the edge

server. A vision-based object detector (based on YOLO [21]) on the server processes the

1https://raspberryshake.org/
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picture and confirm the target (or not). We use an object detector that was compressed

using our DeepIoT [58] framework to reduce its inference delay and computational resource

consumption.

6.4.2 Experimentation Results

To evaluate the performance of IoBT-OS, we deployed our devices on the grounds of the

DEVCOM Army Research Laboratory Robotics Research Collaboration Campus (R2C2)2

and collected seismic and acoustic signals, while different ground vehicles were driven around

the site. Data of three different targets: a Polaris all-terrain vehicle, a Chevrolet Silverado,

and Warthog UGV were collected. Each target repeatedly passed by the sensors. The total

length of the experiment was 115 minutes, spread roughly equally across the three targets.

The seismic data was collected at 100 Hz and the acoustic data was collected at 16k Hz. To

reduce overhead, the acoustic data was low-pass filtered at 400 Hz and high-pass filtered at

25 Hz, then down-sampled to 100 Hz. Based on the collected data, we study the decision

accuracy and delay of IoBT-OS. A camera was employed to simultaneously record video of

the target.

Decision Accuracy We first studied the accuracy of target classification based on seismic

and acoustic data. We applied the DeepSense neural network architecture [57] as the struc-

ture of the target classifier. Figure 6.2 illustrates its structure. Our previous work [37] has

shown that physical sensing signals have sparser and more compact representations in the

frequency domain. Thus, we used a spectrogram instead of time domain measurements as

the input to the classifier. We trained the target classifier with our self-supervised contrastive

learning framework.

We used roughly two thirds of the data for training and one third for testing. The seismic

and acoustic data were cut into segments of one second each using a sliding window without

overlap. We built a three-layers convolutional neural network (CNN) as a baseline and also

compared the accuracy of our target classifier with and without self-supervised contrastive

learning (SCL). The results are shown in Table 6.1. We observed that our target classifier

has much higher recognition accuracy than the CNN baseline (89.1% vs 73.6%). And the

that self-supervised contrastive learning further improves the accuracy from 89.1% to 91.2%.

2https://www.nab.usace.army.mil/Missions/Regulatory/Public-Notices/Article/492714/

pn13-68-us-army-apg-g-field-and-graces-quarters-aerostat-platforms-2013-61848-m/
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Figure 6.2: The Target Classifier.

Table 6.1: Decision Accuracy

Three-Layers CNN Target Classifier Target Classifier+SCL
73.6% 89.1% 91.2%

Performance under Different Data Lengths In the experiment, the seismic and acous-

tic signals were continuously fed into the target classifier. Given N consecutive windows (i.e.,

N seconds window of data) we took majority vote as the final classification result. We var-

ied N from 1s to 20s and studied the classification accuracy for different data lengths to

understand the trade-off between quality and delay. The results are shown in Figure 6.3. We

observed that our target classifier trained with self-supervised contrastive learning (the blue

curve) always performs the best, and shows a 99% classification accuracy given 20 seconds

of seismic and acoustic data.

Performance under Different Number of Labels We also studied the effectiveness of

the self-supervised contrastive learning framework at utilizing unlabeled data. Specifically,

we assumed that 1%, 2%, 5%, 10%, 20%, 30%, 40%, and 50% of the training data has labels

(and that the remaining training data is unlabeled). We then compared the performance

of the target classifier trained with supervised learning (i.e., with the labeled data only)

and the self-supervised contrastive learning (trained with both labeled and unlabeled data)

given the above ratios of labeled data. Figure 6.4 demonstrates the results. It can be seen

that the target classifier trained with our self-supervised contrstive learning (the blue curve)

performs much better than that trained in a supervised manner (the orange curve). This
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Figure 6.3: Different data lengths. Figure 6.4: Different # of labels.

illustrates the efficiency of our self-supervised contrastive learning framework in utilizing

unlabeled data.

Decision delay In this part, we study the performance of IoBT-OS on decision delay.

The decision delay consists of different parts including the detection delay, the network

transmission delay, as well as the delay of the virtual confirmation. Our self-supervised

learning framework helps to reduce the detection delay, and thus we focus on the detection

delay in this part. The detection delay comes from two parts: the time needed to get

confident-enough detection results, and the inference time of the classifier. According to the

results in Figure 6.3, our self-supervised learning framework as well as the DeepSense neural

network reduce the time needed to get confident-enough detection results a lot compared

with the CNN baseline. For the inference time of the target classifier based on acoustic and

seismic sensors, the target classifier runs on the local sensors and continuously takes the

seismic and acoustic data as input. It is required that the classifier’s inference speed should

be shorter than the interval at which seismic and acoustic data comes in. Otherwise, data

will back up. Table 6.2 demonstrates the inference time (for a one second data segment as

input) on different devices. We observed that the inference times of our target classifier are

slightly larger than those of the three-layers CNN baseline. However, they are much smaller

than one second. For example, on the Raspberry Pi 4, it takes only 17.7 ms to process the

1 second data window. This means that our classifier could generate its classification result

in time.
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Table 6.2: Inference Time for the Target Classifier

Three-Layers CNN Target Classifier (SCL)
Raspberry Pi 3B+ 10.6 ms 66.0 ms
Raspberry Pi 4 4.7 ms 17.7 ms

6.5 CONCLUSION

In this chapter, we introduced our IoBT-OS pipeline and studied the performance of

our self-supervised contrastive learning framework on a case-study of IoBT-OS. In the case

study, we built a detection and confirmation loop to detect different types of vehicles based on

the seismic and acoustic data collected by the low-power sensors. We collected a dataset for

three different types of targets. The evaluation results demonstrated that our self-supervised

learning framework can help to reduce the latency of the decision loop by improving the

accuracy of the target classifier.
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CHAPTER 7: SUMMARY AND FUTURE WORK

7.1 SUMMARY

In this dissertation, I studied the self-supervised learning techniques which demonstrated

outstanding performance on dealing with the lack of training labels, and then customized

those self-supervised learning techniques to the IoT applications. By carefully taking the

unique characteristics of the IoT sensing signals into consideration, we can significantly im-

prove the performance of self-supervised learning frameworks (originally designed for com-

puter vision/NLP) in IoT application contexts. My customization thus provided an effective

way to deal with the absence of sufficient labels in IoT applications. The work in this

dissertation are summarized as follows.

Time-Domain Self-Supervised Contrastive Learning for IoT We started the cus-

tomization by directly borrowing the self-supervised learning framework from computer vi-

sion and applied it to IoT applications. In this part, we applied the popular self-supervised

contrastive learning framework and built a model for IoT sensing signals from the time-

domain. We studied the performance of the self-supervised contrastive learning framework

on the radio modulation classification dataset, and the evaluation results demonstrated the

effectiveness of the self-supervised contrastive learning technique on IoT applications.

Frequency-Domain Self-Supervised Contrastive Learning for IoT We then re-

designed the self-supervised contrastive learning framework by carefully studying the frequency-

domain characteristics of the IoT sensing signals. We re-designed the encoder using STFNet,

which is specially designed for dealing with IoT sensing signals, instead of the commonly

used CNN or RNN models. Beside, we applied data augmentation from both time-domain

and frequency-domain. According to our evaluation results, studying on the frequency-

domain would largely improve the performance of self-supervised contrastive learning for

IoT applications.

Semi-Supervised Contrastive Learning for IoT After taking the frequency-domain

characteristics into consideration, we then proposed a semi-supervised contrastive learning

framework for IoT. Different from the original self-supervised contrastive learning, where

only unlabeled data is used in the pre-training process, our semi-supervised framework uses

both of the labeled and unlabeled data to train the encoder during the pre-training process.

We designed a novel way to combine the labeled and unlabeled data together, to train
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the encoder. Our experiments showed obvious performance gain of our semi-supervised

contrastive learning framework compared with the original one.

Spectrogram Masked AutoEncoder for IoT The self-supervised contrastive learning

demonstrated outstanding performance on IoT applications after our customization. How-

ever, data augmentation is an essential part of it and it requires a lot of human expertise to

design a proper data augmentation strategy. Our experiments also demonstrated that the

performance of the self-supervised contrastive learning framework would largely rely on the

choice of data augmentation. To reduce the dependency on data augmentation, we carefully

studied the masked autoencoder framework, which does not rely on the data augmentation,

and customized it to IoT applications by re-designing the loss function. The evaluation

results also verified the success of our customization.

A Case Study: Self-Supervised Learning on IoBT-OS We finally applied our self-

supervised learning framework to a real IoT system and studied its performance on IoBT-OS.

IoBT-OS is an architecture focusing on optimizing the efficiency and efficacy of the sensor-

to-decision loop. We used the seismic and acoustic based vehicle recognition application as

an example to evaluate our self-supervised learning framework on IoBT-OS. We carried out

a lot of experiments on IoBT-OS, and they demonstrated that our self-supervised learning

framework can help to reduce the sensor-to-decision latency. This shows the effectiveness of

our framework on real IoT systems.

7.2 LESSONS

Data labeling is one of the key logistic costs of machine learning pipelines and this

dissertation addressed the challenge of the lack of sufficient labeled data in the IoT space.

By carefully customizing the self-supervised learning frameworks from computer vision/NLP

to IoT applications, our self-supervised learning techniques achieved accuracy gains of up to

×1.5 for IoT applications in regimes when labeled data was sparse. During the study of self-

supervised learning and customizing them to IoT applications, we found some interesting

and useful lessons.

Self-Supervised Contrastive Learning Self-supervised contrastive learning is an ef-

fective and popular way to utilize the unlabeled data. If we have enough expertise with

application-specific data transformations that do not change data labels (i.e., data augmen-

tation), contrastive learning can get good performance. Here, a good data augmentation
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strategy for sensing signals is to simulate the data-distorting behavior of sensors. For the

same input, we can design multiple data augmentation strategies and different augmentation

strategies were proved to lead to very different performance on self-supervised contrastive

learning. Hence, the top challenge in applying contrastive learning is the need of human

expertise to design a good data augmentation strategy. We also found that some data aug-

mentations are generally not helpful. For example, adding Gaussion noise is generally a

bad choice because it does not exploit the underlying structure of the input data. Another

challenge is that the training process of contrastive learning is easy to overfit. We should

design the optimization process very carefully in oder to avoid overfitting.

Masked Autoencoding Masked autoencoding is another popular self-supervised learn-

ing architecture. Its success is based on the redundancy in the input data. If there is enough

internal redundancy in the data input, masked autoencoding is generally a good choice for

self-supervised learning framework. A key component of the masked autoencoding frame-

work is the masking ratio. The mask ratio should be designed very carefully. If we use

a very high mask ratio, then it would be very difficult to reconstruct the input and hence

the encoder can only learn very little knowledge. If we use a very small mask ratio, then

most of the input would be kept. This means that the reconstruction can be easily done by

predicting the missing values according to their neighbors and the latent structure of the

input could not be learned in this way. A proper mask ratio is another key point to make

masked autoencoder model successful.

7.3 FUTURE WORK

In the end of this dissertation, we introduce some possible future research directions.

In this dissertation, we studied the customization of self-supervised learning frameworks

to IoT applications. For the future works, we cover three interesting related topics: 1)

self-supervised learning frameworks for multi-modality inputs; 2) training/inferencing deep

neural network models with noisy data; and 3) model compression for self-supervised learning

frameworks.

Self-Supervised Learning Frameworks For Multi-Modality Inputs In this disser-

tation, we customized the self-supervised learning frameworks to IoT applications by taking

the frequency-domain characteristic into consideration. Beside learning in frequency-domain,

the IoT applications have another very unique and important characteristic, that is multi-

modalities. Different from the computer vision or NLP applications, the inputs of which are
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images, videos, or natural language, the inputs of IoT applications are usually from multiple

sensors. For example, the accelerometer and gyroscope can be collaboratively used to rec-

ognized the human activities. It would be an interesting topic to study the self-supervised

learning frameworks on multi-modality inputs. There exist close correlations among the

different modalities. Combining such correlations with the design of the encoder in self-

supervised learning would be a valuable research topic.

Training/Inferencing Deep Neural Network Models with Noisy Data In this dis-

sertation, we studied the self-supervised learning framework to address the challenge of the

lack of sufficient labeled data in the IoT space. This is motivated by the fact that data

labeling is very time-consuming and requires a lot of human labor work. It has been studied

that 25% of time spent for machine learning project is allocated on data labeling1. And at

the same time, another 25% of the time is spent on the data cleaning. Facing this obser-

vation, it would be an interesting topic to design neural network models which could deal

with noisy data. Specifically, the study can be divided into two stages: 1) training neural

network model with noisy data and 2) inferencing neural network models with noisy data.

Model Compression for Self-Supervised Learning Frameworks Model compression

is very important for deep neural network models in IoT applications. The IoT devices

usually have limited memory and computation power, and cannot support the running of

large and deep neural network models. A common way to solve this problem is to compress

the neural network models and then deploy the compressed models on the IoT devices.

However, the previous model compression techniques performed the compression along with

the supervised training process. In the future, the self-supervised learning would be more and

more popular and become the major training strategy. So, studying the model compression

along with the self-supervised training would be also an interesting topic.

Besides the future work mentioned above, I believe that there are a lot of other interesting

topics related to deep learning on IoT. By going deeper to the deep learning techniques and

designing proper customizations on IoT applications, I believe that the area of IoT would

get outstanding progress in the future.

1https://medium.com/whattolabel/data-labeling-ais-human-bottleneck-24bd10136e52
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