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ABSTRACT

In high performance computing (HPC) systems, the I/O demands of applications are

supported by parallel file systems such as Lustre and GPFS. Most general-purpose parallel

file systems (PFS) support the POSIX I/O interface and its consistency model. However,

the POSIX standard was defined decades ago for use by a single machine with a single

storage device. It is not fit for highly concurrent applications typically seen on modern HPC

systems.

The major impediment to the PFS performance is the strict adherence to POSIX con-

sistency semantics, which requires sequential consistency in general and atomicity for many

operations. The strict enforcement of these requirements impedes caching, generates sig-

nificant additional traffic, and results in congestion in situations of high sharing, especially

for small block reads and writes. The use of the POSIX consistency model for I/O has

plagued the HPC community for many years, but it is becoming more problematic due to

two key reasons: (1) the rapid increase in the scale of HPC systems; (2) the emergence of the

new storage techniques such as persistent memory. They make the overhead of maintain-

ing POSIX consistency relatively higher. Many efforts have been made toward PFSs with

relaxed consistency semantics. However, different applications have different consistency

requirements. A PFS providing a static consistency model will not work ideally for every

application. Moreover, the correctness is not guaranteed if the provided consistency model

is weaker than the desired one.

In this dissertation, we first propose a multi-level I/O and MPI tracing tool. We then

collect detailed traces from 17 representative HPC applications and I/O benchmarks. Next,

we employ a trace-driven analysis approach to study the consistency requirements of these

applications. And finally, based on this study, we propose and design a parallel file system

that provides tunable consistency models.
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CHAPTER 1: INTRODUCTION

High performance computing (HPC) systems host parallel applications composed of hun-

dreds to tens of thousands of tightly-coupled processes that typically run for hours or days.

The I/O needs of these applications are supported by parallel file systems (PFSs), such as

Lustre [1], BeeGFS [2], and GPFS [3]. These PFSs aggregate parallel data and metadata

servers to provide high capacity and high bandwidth, even for concurrent access to a single

file by the processes of a highly-parallel application, where the file data can be striped across

the data servers of the PFS.

HPC applications can access the PFS directly via the POSIX file system API, however,

they often utilize higher-level I/O libraries specially designed for scientific I/O. For example,

MPI-IO [4] supports collective I/O operations, where groups of processes use the API to

concurrently execute a read or write operation. As an optimization, MPI-IO servers can

perform global write buffering and aggregation to match the I/O pattern of clients to the

layout of data on the data servers. Libraries such as HDF5 [5] and ADIOS [6, 7] provide

higher-level storage management capabilities. For example, HDF5 provides its own directory

structure, with files being replaced with typed, multidimensional numerical arrays called

datasets. I/O libraries may be layered, e.g., HDF5 can be layered on top of MPI-IO to

enable collective access to datasets; and, in turn, MPI-IO can be layered on top of POSIX.

This layering generates complex I/O access patterns that may differ greatly from the I/O

access patterns one would deduce from examining the scientific application code.

While PFSs can support high read and write bandwidths under ideal conditions, their

effective performance can vary significantly depending on the I/O access patterns of ap-

plications, the PFS configuration, and the interference from other concurrently running

applications [8, 9, 10]. A major impediment to PFS performance is the strict adherence to

POSIX semantics, which requires sequential consistency in general and atomicity for many

operations [11, 12]. The strict enforcement of these requirements impedes caching, generates

significant additional traffic, and results in congestion in situations of high sharing, especially

for small block reads and writes [13]. In order to avoid these performance issues, HPC I/O

researchers have developed PFSs with relaxed semantics, such as UnifyFS [14], PLFS [15],

Gfarm/BB [16], and GekkoFS [17], and have demonstrated significant performance improve-

ments.

Despite the greatly improved I/O performance demonstrated by these relaxed-semantics

PFSs, there remain several unsolved issues regarding their ability to correctly and efficiently

support HPC applications:
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• It is not generally known a priori whether an application will run correctly on a PFS

with weaker semantics.

• It is challenging to determine the consistency semantics needed by an application

since I/O patterns depend on the execution flow and on the behavior of high-level I/O

libraries.

• PFSs relax POSIX semantics in different ways which reduce the portability of appli-

cations across PFSs. A categorization of consistency semantics for PFSs is needed for

applications and I/O libraries to target.

• Providing a single static consistency model can not achieve optimal performance for

all applications.

• There is no accepted mechanism for applications to pass to the PFS information on

the required consistency semantics.

• The lack of information about application’s I/O patterns leads to conservative PFS

choices by system designers, possibly leading to unnecessarily reduced I/O performance

by many applications.

These critical, open issues show that there is a clear gap in our knowledge of application

consistency semantics requirements and the relaxed consistency models of PFSs. In this

dissertation, we use a systematic approach to address these issues.

1.1 DISSERTATION ORGANIZATION

Chapter 2 gives background on the key components involved in this work, such as consis-

tency models, I/O behaviors, POSIX I/O, etc.

Chapter 3 presents Recorder, a multi-level I/O and MPI tracing tool. Recorder is devel-

oped to collect detailed I/O and MPI information on HPC applications. Such information

is essential for the later I/O study. Recorder is able to store every parameter of every inter-

cepted I/O and MPI call. To handle the large volume of collected information, we propose

a context-free-grammar based compression algorithm, which can greatly reduce the trace

file size by using recurring patterns recognition. Our experiments show that, in comparison

with the state-of-the-art tracing tools, Recorder can store more information with less space

and lower time overhead.

In Chapter 4, we use a trace-driven analysis approach to determine the consistency re-

quirements of applications. We first develop a categorization of I/O consistency models,
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which serves as the basis for describing the consistency models offered by non-POSIX PFSs.

We then present the I/O characteristics of 17 representative HPC applications, using the

traces collected by Recorder. While our study focuses on the application’s consistency re-

quirements, we also study their access patterns that are important to understand their I/O

performance. Next, we propose a method for detecting I/O accesses that can cause con-

flicts under weak consistency models. Using this method, we can decide the consistency

requirements of the targeted applications.

Our study in Chapter 4 shows that most HPC applications do not require strict POSIX

consistency semantics. Instead, different applications require different consistency models.

However, existing PFSs support only a single static consistency model and provide no means

for users to specify their consistency requirements. In Chapter 5, we present TangramFS, a

user-level parallel file system that provides tunable consistency. TangramFS allows users to

specify the consistency requirements of their applications, and even more, it exposes a set

of primitives which allows users to have fine control on what should be consistent and when

to perform synchronization operations. TangramFS is designed for accelerating applications

using burst buffers. TangramFS unifies node-local burst buffer devices and presents a global

view to all clients. In our experiments, we study the impact of different consistency models

on I/O performance. We show that choosing an appropriate model can greatly improve

performance.

In Chapter 6, we go over the related research projects and publications to each of the

components of this work. We finally conclude with some possible future research directions

in Chapter 7.
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CHAPTER 2: BACKGROUND

In this chapter, we provide information on HPC applications, I/O behavior studies, con-

sistency models, POSIX I/O, and burst buffer file systems.

2.1 HPC APPLICATIONS AND I/O BEHAVIOR

HPC applications are highly-parallel, often with tens of thousands of processes working

concurrently to simulate physical phenomena. Scientific applications tend to have regular

I/O patterns due to their typical 3-phase structure: initialization, time step computation,

and finalization. During initialization, parallel processes read in input files, consisting of ini-

tial data and simulation configuration information. In the computation phase, the processes

loop through a series of “time steps”, where in each time step, the phenomenon is simulated

for some time delta, after which all parallel processes synchronize using a communication

library and optionally write data to a file, either a checkpoint that can be used for recovery,

or a snapshot of the current simulation state for further analysis. During the finalization

phase, processes will write final data to files. The number of files accessed in parallel varies

across applications, but it is common for processes in an HPC application to concurrently

access a single shared file or a set of shared files in an I/O phase.

Many researchers have studied the I/O behavior of HPC applications and have noted

the regularity of I/O requests [18, 19, 20, 21, 22]. These researchers collected I/O trace and

profile information from application runs and analyzed them to discover patterns. In general,

the researchers concluded that scientific applications share common I/O properties such as

sequential file access, initial and final phases of compulsory I/O, and bursts of high-volume

I/O activity at regular intervals during computation. Other researchers have focused on

I/O measurement for the purpose of improving performance [23, 24]. For example, Carns

et al. characterized the I/O behavior of several scientific applications and found potential

I/O performance issues in those applications, such as a large number of small writes. In

contrast to these application-level studies, several efforts have examined the I/O behavior

of applications at the system level [25, 26]. For example, Luu et al. [25] conducted a study

of thousands of supercomputing applications and revealed that POSIX I/O is much more

widely used than other high-level I/O libraries, and most applications only achieved a small

fraction of the available I/O performance.

In contrast to these studies, our work focuses on collecting detailed traces of I/O opera-

tions with the explicit purpose of analyzing their behavior to understand their consistency
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requirements.

File system researchers looking to relax POSIX semantics often make assumptions that

I/O operations are conflict-free: e.g., if concurrent processes write to the same file, each

process will modify an independent segment of the file and there will be no write-after-write

hazards that would affect file data integrity. However, these lower-level behaviors have not

been studied. A primary contribution of this work is to fill in that knowledge gap in HPC

I/O behavior understanding.

2.2 CONSISTENCY MODELS

At a high level, a consistency model specifies a contract between programmer and system,

wherein the system guarantees that if the programmer follows the rules, the shared data

will be consistent and the results of reading, writing, or updating will be predictable. A

consistency model is required for every level at which an interface is defined between the

programmer and the system.

Sequential consistency [27] is the most intuitive consistency model. It says that the result

of any execution is the same as if the operations of all the processors were executed in some

sequential order, and the operations of each individual processor appear in this sequence in

the order specified by its program. Sequential consistency is considered a strong consistency

model because it guarantees operations of the same processor will always execute in order.

The major drawback is that it hinders optimizations that may result in reordering, e.g.,

write buffers and out-of-order cores.

On the other hand, relaxed consistency models (weaker than sequential consistency) allow

more optimizations but can be counter-intuitive. Consider the following example (Table 2.1),

where each process loads the value of the variable (x and y) written by the other process.

Assume x = y = 0 initially. Intuitively, there are three possible outcomes: (r1, r2) = (0,

Process 1: Process 2:
S1: x = 100; S2: y = 100;
L1: r1 = y; L2: r2 = x;

Table 2.1: Can both r1 and r2 be set to 0?

100), (100, 0) or (100, 100). Sequential consistency guarantees any execution of this program

will only produce one of these three results. The reality is that most of the real hardware (in

the domains of CPU and memory) also allows (r1, r2) = (0, 0). For example, x86 systems

from Intel and AMD use a relaxed consistency model called total store order [28], which
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allows reordering write→read, which violates sequential consistency. With this relaxation,

write buffers can be used to buffer the expensive writes so that reads (L1 and L2) can bypass

the early writes (S1 and S2).

2.3 POSIX I/O INTERFACE AND SEMANTICS

The POSIX I/O interface [29] and its semantics were designed decades ago for use by a

single machine with a single storage device, i.e., not for the highly-concurrent operations to

PFSs typical on HPC systems. POSIX I/O operations are commonplace and include the

familiar open, close, read, and write operations used by applications in many domains.

The primary challenges for parallel I/O arise from the strict semantics requirements the

POSIX specification imposes on write and read operations, which essentially requires se-

quential consistency. These requirements necessitate the use of a cache coherence protocol

that is often implemented using read/write locks. The POSIX standard [29] states:

• Any successful read from each byte position in the file that was modified by the last

write shall return the data specified by the write for that position until such byte

positions are again modified.

• Any subsequent successful write to the same byte position in the file shall overwrite

that file data.

A previous effort [30, 31] proposed a set of extensions to the POSIX I/O API for HPC. The

extensions include options to introduce “laziness” into the API to improve PFS performance.

For example, the effort introduced new stat calls where some fields are optional and the

information in other fields is not required to be current to reduce query time, and API calls to

flush caches and synchronize across compute nodes when operating on files where the O LAZY

flag was supplied to open. Unfortunately, this proposal was not accepted into the POSIX

I/O standard. However, similar functionality is now being adopted by relaxed-semantics

PFSs.

2.4 BURST BUFFER FILE SYSTEMS

Recently, HPC systems have become equipped with burst buffers (BBs), and a new crop of

POSIX and near-POSIX PFSs have been developed to support them. BBs are in-system fast

storage devices designed to buffer the “bursty” I/O requests from HPC applications between

the compute nodes and main storage. BBs are attractive because they can smooth the bursty
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I/O traffic and promise better scalability and performance advantages, e.g., latencies on the

order of a few µs [32].

Current BB installations are either shared across compute nodes, e.g., with DataWarp on

the supercomputer Cori [33], or local to individual compute nodes, e.g., as node-local SSDs

on the supercomputer Summit [34]. Despite their performance advantages, BBs present

challenges to users. In particular, BBs that are local to individual compute nodes present

challenges for applications that perform shared file I/O because these BBs do not present

a shared file namespace across compute nodes. In addition, BBs are temporary resources

just like CPUs. They can only be accessed during the life time of a user job. This adds

the burden to users as they need to transfer the data in (called stage-in) and out (called

stage-out) at the start and end of the job.

As a result of these challenges, a set of new PFSs have been developed to facilitate the

use of BBs. These PFSs are mostly designed as user-level file systems that have the same

life time as the user’s job. As user-level file systems, they can assume a single user at a

time, thus reducing or avoiding permission and security checks. Moreover, since they are

not designed to be general-purpose PFSs, they can be specially optimized (e.g., relaxing

POSIX consistency semantics) for the targeted applications. We will describe some popular

BB PFSs in Chapter 6.
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CHAPTER 3: I/O AND MPI TRACING

In this section, we present Recorder, a multi-level I/O and MPI tracing tool. Recorder

captures HDF5, MPI (including MPI-IO), and POSIX I/O calls. The major difference be-

tween Recorder and other tracing tools is that Recorder faithfully records all parameters of

the intercepted function calls. Recorder is developed to collect detailed information from

HPC applications. Such information will be used in the later I/O study. The MPI informa-

tion is used to infer the order between I/O operations, which is necessary to determine an

application’s consistency requirements.

3.1 OVERVIEW

Tracing is challenging in that it needs to store a huge amount of information with an

acceptable overhead. The overhead consists of two parts: (1) space overhead, which in-

cludes the memory footprint during runtime and the storage needed to store the traces after

the application run, and (2) time overhead, which is due to the tracing and compression

procedure.

Compression can occur at two points: online compression, which is performed as traces

are collected, and offline compression, which occurs after all traces have been collected.

Offline compression can be executed in parallel at the program finalize point, thus reducing

I/O. Online compression usually is intraprocess, compressing the trace file generated for

one process, whereas offline compression usually is interprocess, combining the trace files of

distinct processes.

The longer an application runs or the more nodes it runs on, the more function calls it will

make. Fortunately, most codes exhibit recurring I/O and communication patterns. Good

trace compression can be achieved if we recognize and compress as many recurring patterns

as possible. We do so by representing the traces using a context-free-grammar (CFG) and a

call signature table (CST). Next, we describe the CFG and CST and then show how to use

them to represent I/O and MPI calls and how to build them incrementally.

3.1.1 CFG and CST

A formal grammar is defined by a set of production (or term-rewriting) rules that describe

all possible strings in a given formal language—namely, all strings of terminal symbols that

can be obtained by repeatedly applying production rules of the grammar, starting from
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the initial nonterminal symbol S. A context-free grammar is a formal grammar whose

production rules are of the form A → α, where A is a single nonterminal symbol and α is

a string of terminal and/or nonterminal symbols. The grammar generates a unique string if

there is exactly one rewriting rule for each nonterminal.

A string can be represented by a CFG that uniquely generates that string. If the string

has repeating patterns, the grammar can be much shorter than the string. For example,

a string an, where n = 2k, can be represented by a grammar with k + 1 production rules:

S → A1A1, A1 → A2A2, . . ., Ak → a. In the best case, a CFG can represent a string of N

characters in O(logN) space, whereas in the worst case (e.g., a random string) it requires

O(N) space. Conceptually speaking, building the CFG is the process of compressing the

string, and repeated rule application is the process of decompressing the string.

Recorder builds online for each process a CFG that compresses and stores the sequence

of I/O and MPI calls made by that process. This sequence can be considered as a string

of terminal symbols, where each terminal represents a unique call and the values of its

parameters. To efficiently map from a call to a terminal symbol, Recorder maintains a call

signature table on each process. A call signature is composed of a function id (every I/O

and MPI function has a unique id) and the values of its parameters. Parameters that are

handles to opaque MPI objects are encoded symbolically (we describe the encoding later).

Figure 3.1 shows a simple code snippet and the produced CFG and CST when running with

two processes.

The CFG and CST together enable efficient intraprocess compression. And since both are

maintained independently at each process, there is no message exchange or communication

overhead until the interprocess compression, except for calls creating new communicators

and similar global objects. Locally, they guarantee that recurring call patterns will be

compressed by the grammar rules. Globally, calls and grammar rules across processes will

be merged during the interprocess compression, which will be discussed in Section 3.4.

3.1.2 Optimized Sequitur Algorithm

Both the CFG and CST are built on the fly. Every time Recorder encounters an I/O or

MPI call, it first consults the CST to find the terminal symbol or create a new entry if it

is its first occurrence. Next, the current grammar is modified in order to handle the new

terminal symbol.

The algorithm we used to build the CFG is the well-known Sequitur [35] algorithm. It is

a good fit for Recorder for two reasons: (1) it is an incremental algorithm that can grow the

CFG at runtime, that is, one call at a time; and (2) it has a linear time complexity in terms

9



  MPI_Comm_size(comm, &size);
  MPI_Comm_rank(comm, &rank);
  int fd; 
  if (rank == 0) 
      fd = open("file0", O_RDWR);
  if (rank == 1) {
      fd = open("file1", O_RDWR);
  for (int i = 0; i < 10; i++) 
      write(fd, buf, 1024);
  close(fd); 

S → 1 → 2 → 3 → A → 5
A → 410 

TerminalCall Signature

MPI_Comm_size(comm, 2);

MPI_Comm_rank(comm, 0);

open("file0", O_RDWR)

close(fd);

1

2

3

4

TerminalCall Signature

MPI_Comm_size(comm, 2);

MPI_Comm_rank(comm, 1);

1

2

CFG of Rank 0

CFG of Rank 1

CST of Rank 0 CST of Rank 1

writ(fd, buf, 1024) 4

open("file1", O_RDWR); 3

close(fd); 5

writ(fd, buf, 1024)

5

S → 1 → 2 → 3 → A → 5
A → 410 

Figure 3.1: CFG and CST example of a simple code snippet running with two processes.

of the number of symbols, which is important because the number of calls tends to be large.

The grammar generated by the Sequitur algorithm has two properties:

• P1: No pair of adjacent symbols appears more than once in the grammar.

• P2: Every nonterminal appears more than once on the right-hand side of a production.

The algorithm operates by enforcing the two constraints on the grammar. When property

P1 is violated, a new production is formed. Thus, a rule A → bcBbc will be replaced by

A → XBX and X → bc. When property P2 is violated, the useless production is deleted.

For instance, if we have productions A → Bc, B → ab and if B appears in no other

production, then the first production is replaced by A→ abc, and the second one is deleted.

With these two constraints, a loop of N identical iterations will be compressed to a O(logN)-

size grammar. A more compact grammar is obtained by adding to the notation repetition

counts, namely, productions of the form A→ Bk, and replacing each production of the form

A→ BiBj by the production A→ Bi+j [36]. This optimization reduces space complexity for

regular loops from O(logN) to O(1). (Strictly speaking, we replace a logarithmic number of

productions by counters with a logarithmic number of bits—i.e., we replace recursion with

iteration.)
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Recorder uses this optimized version of the Sequitur algorithm to build each local CFG.

For details about the implementation of the Sequitur algorithm we refer readers to [35, 36].

3.2 IMPLEMENTATION

Figure 3.2 depicts the whole tracing and compression process, which has the following

steps: (1) intercept each I/O and MPI call; (2) store the timing information; (3) encode

parameters, and compose the call signature; (4) update the CST; (5) use the Sequitur

algorithm to grow the CFG; and (6) perform interprocess compression.

App

Rank 0

2. Storing timing
infomration

4. Update CST 5. Grow CFG

3. Encode function
parameter

Intra-process
tracing and compression

CFG 0
CST 0

CFG 1
CST 1

CFG N-1
CST N-1

1. Intercept
each call 

Rank 1 1. Intercept
each call 

Rank N-1

... ...

1. Intercept
each call 

CST

CFG

6. Inter-process
Compression

Figure 3.2: Tracing and compression process of Recorder.

The intraprocess compression, which is done separately for each process, consists of steps

(2)–(5). Steps (4) and (5) have already been discussed in the preceding section. In this

section, we describe the remaining steps in detail.

3.2.1 Intercepting I/O and MPI Calls

Recorder is built as a shared library so that no code modifications or re-compilations

are required. Recorder uses function interposing to intercept function calls. This can be

done easily in Linux systems by library preloading. Once specified as the preloaded library,

Recorder intercepts HDF5, MPI, and POSIX function calls issued by the application and

reroutes them to the tracing implementation. This process is illustrated with an example

in Figure 3.3. Recorder stores the value of each input parameter in the prologue() and
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the value of each output parameter in the epilogue(). This is one reason why we need

both. The other is to measure the duration of the call. The prologue code records the

starting timestamp and starts a timer. All the remaining steps (3, 4, and 5 in Figure 3.2)

are performed in the epilogue code.

Application

H5DWrite(...)

HDF5

 MPI_File_write_at_all(...)

MPI I/O

pwrite(...)

POSIX I/O

Recorder
1. prologue()
2. Call the original function
3. epilogue() 

Recorder

...

1 2

3

4
5

Recorder

...

Figure 3.3: Example of instrumentation of the I/O stack by Recorder. 1○ Application calls
the HDF5 library method H5Dwrite. 2○ Recorder intercepts the function and performs
the tracing process. 3○ Recorder calls the real H5Dwrite function. 4○ H5Dwrite calls the
MPI function MPI File write at all. 5○ MPI File write at all is also intercepted and
recorded by Recorder. This continues until the I/O stack reaches the POSIX layer.

The wrappers for HDF5 and POSIX functions are manually written, whereas the wrappers

for MPI functions are automatically generated from the MPI standard documents (Latex

files). The reason we use Latex files instead of MPI header files as input is that we need to

know the direction of each function parameter (i.e., input, output, or both), and this infor-

mation is normally not presented in the header files. To be specific, we use MPI 4.0 RC [37]

to generate the wrappers. Before compiling Recorder, a filtering pass is done automatically

to remove the calls that are not supported by the local MPI implementation. This step is

required because the targeted MPI can be an older version that does not support recently

added MPI calls.

3.2.2 Compressing Timing Information

Recorder supports storing the timing information in different detail levels. The default

mode keeps only statistical timing information for each call signature. In the CST, we keep
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the average for the calls’ duration. This adds negligible overhead and does not increase the

number of CST entries.

If more details are required for the analysis, for example, to study the skews in collective

call invocations, Recorder is also able to store nonaggregated timing information. The rest

of this section focuses on the modes that store nonaggregated timing information with either

lossless or lossy compression. In these modes, Recorder keeps the duration and interval for

each call, where duration is the elapsed time of the call and interval is measured between

two calls with an identical call signature. We choose to keep the duration and interval

instead of the call start and end time because they have smaller values and are easier to

compress. In postprocessing, we can use the duration and interval to infer the entry time

(noted as tstart) and the exit time (noted as tend) for every call. Timestamps are most

useful when the clocks of distinct processors are well synchronized. This can be achieved by

synchronization techniques that take advantage of MPI [38, 39] or of hardware support [40].

We will not go into the topic of clock synchronization since it is beyond the scope of this

dissertation.

Lossless timing compression is achieved by using an existing general-purpose lossless com-

pression algorithm Zstandard [41]. For lossy compression, we study several algorithms with

the main goal of achieving the smallest space overhead. These algorithms are (1) a CFG-

based algorithm same as the one we used for compressing function calls, (2) a histogram-

based algorithm named HIST, and (3) SZ [42] and ZFP [43], two state-of-the-art floating-

points compression algorithms designed for scientific data arrays. All the algorithms except

ZFP allow user-tunable relative errors—the larger the error, the higher the compression

ratio.

CFG-based algorithm Following are the assumptions that motivated us to use the CFG

again (as in compressing the call sequence) to compress timestamps.

• Functions with the same call signature should have similar durations. But network

congestion, system noise, and other irregularities introduce variations.

• Functions with the same call signature should have similar intervals if they occur in a

loop and each iteration of the loop takes the same time to execute. Again, variations

exist, and irregular codes might show even larger divergences.

We bin durations by using exponential bins. A duration of d will be represented by d̂ =

⌈logb d⌉. The relative error in duration will be at most b− 1. The base b can be specified by

users on a per-function basis. Intervals are handled as follows. Assume that a call occurs
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at time t and that the previously stored interval representations for calls with the same

signature are î1, . . . , îk. Then the new adjusted interval is ik+1 = t−
∑k

j=1 b
îj ; this interval

will be encoded as îk+1 = ⌈logb ik+1⌉. This scheme ensures that the wall-clock time for each

call will be recovered with a relative error of at most b− 1.

Based on the above assumptions, the sequences of the durations and of intervals (after

binning) should exhibit some recurring patterns just like the call sequence. Therefore, we

use the Sequitur algorithm again to build two separate CFGs (one for each sequence) to

compress them.

Histogram-based algorithm Our preliminary experiments showed that the previous as-

sumptions are mostly true. However, the network noises and discrepancies between different

processes have a huge impact on the effectiveness of the CFG-based compression algorithm.

The duration (and interval) of a sequence of identical calls will fall into different bins if their

ratio between the larger and the smaller exceeds b. They will be represented by distinct

terminal symbols, which impedes compression. The top two figures of Figure 3.4 show the

durations of two ranks’ MPI Ssend calls in a single-node FLASH [44] run. The durations are

binned by using a 10% relative error. The calls were repeatedly invoked in a loop and have

an identical call signature across the two ranks. The call sequence itself can be perfectly

compressed, in the format of a150, where a is the terminal symbol representing this call. But

the durations are highly variable, both within each process and across the two processes.

Another insight is that the durations of identical calls are not uniformly distributed. Some

durations have higher frequency occurrence than others have, as shown in the bottom two

figures of Figure 3.4. This suggests that we can reduce the space cost using an entropy-

encoding method such as Huffman encoding [45]. In Recorder, we implemented a simple

histogram-based algorithm, named HIST. As in the CFG-based algorithm, durations (and

intervals) are first binned. Then the HIST algorithm picks the top 2K frequent bins and uses

K+1 bits to encode the durations (and intervals) that belong to one of those bins. All others

will be stored unchanged. One additional bit is necessary to distinguish these two cases.

Since the frequencies of durations and intervals are not known before the program execution,

we use the first M (set to 100 in our experiments) observed samples to approximate their

distributions.

SZ and ZFP These two algorithms are designed for compressing scientific data arrays of

floating-point values. In Recorder, the sequences of durations and intervals are just double

values stored in 1D memory buffers. Once the buffer is full, we compress the whole buffer

using one of the specific algorithms and dump out the compressed data. A small optimiza-
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Figure 3.4: Top: durations of the first 150 iterations of an identical MPI Ssend call made by
two distinct ranks. Middle: the binned duration sequence. Bottom: the histogram of the
binned durations.

tion can be applied to both algorithms: instead of buffering durations (intervals) in the

order of calls, we can cluster them according to the calls’ signature before the compression.

The motivation comes from the same assumptions described earlier—identical calls should

have similar durations or intervals that are easier to compress. The modified versions are

noted as SZ-Clustered and ZFP-Clustered, respectively. Table 3.1 summaries all six timing

compression algorithms supported by Recorder.

Algorithm Clustered by call signature

CFG ×
HIST ✓
SZ ×
ZFP ×
SZ-Clustered ✓
ZFP-Clustered ✓

Table 3.1: Summary of the supported timing compression algorithms
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3.2.3 Encoding Function Parameters

The objective of Recorder is to keep as much information as possible. One challenge is

that the values of many function parameters are not significant and are hard to compress.

For example, in a fwrite() call, a void* ptr parameter points to the memory buffer that

the caller wants to dump. In most cases, the absolute address of the memory buffer provides

little information yet requires many bytes to store. It may be important to know whether

two buffers overlap but not where they were allocated in memory.

A similar observation can be made about all MPI opaque objects: One wants to know

what the object represents, not the value of the pointer or the integer that references it.

For this, one needs to be able to associate calls that created the object with calls that

consume the object. To do so, Recorder uses locally unique symbolic representations for all

memory pointers and MPI objects, so that later we can compare and match them across

different calls. For example, an MPI datatype created by MPI Type indexed() and later

used in MPI Send() will have the same symbolic id in both calls. Since the arguments of the

MPI Type indexed() call are also preserved, this allows recreating the layout of the send

buffer or properly replaying the call. An MPI communicator created by MPI Comm split()

and used later in MPI Send() will have the same symbolic id in both calls. This allows

recreating the communicator’s group and the rank of each group member. For all other

basic type parameters (e.g., numeric values and strings), we simply store their values.

For each process and each MPI object type, Recorder maintains a mapping between the

object of that type and its symbolic id. Recorder also maintains a pool of free ids so that

every time a new object is created, we can give it an unused id from the pool. When an

object is released (manually by calls such as MPI Type free() or automatically by the MPI

library for MPI Request objects), Recorder will revoke its id and return it to the pool. In

most cases, only a small number of ids are used since the application either reuses the same

objects or frees the old objects before allocating more.

Besides being able to compare symbolic ids in different calls, another advantage of this de-

sign is that if different processes create MPI objects in the same order (as most regular codes

tend to do), they will get the same sequence of symbolic ids, which helps the interprocess

compression.

In the rest of this section, we describe some of the object types that require special

treatment. We cover here the implementation of only some of the most difficult cases.

MPI Comm A parameter of type MPI Comm is required by all MPI communication calls.

Unlike other MPI objects where the symbolic id is only locally unique, we make sure that
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all processes that belong to the same communicator will get the same id, in order to help

compression and help the matching process at the post-mortem phase. The algorithm for

this follows three steps.

1. Every process in the group of the new communicator checks for the maximum symbolic

id locally assigned to a communicator.

2. An all-reduce operation is used to get the groupwide maximum symbolic id.

3. Every process in the group uses one plus the maximum id retrieved from the last step

as the symbolic id for the newly created communicator.

The group-wide maximum is required to avoid assigning the same id to different commu-

nicators at the same process. This algorithm works only for blocking intracommunicator

creation calls such as MPI Comm split(). Intercommunicators are handled differently be-

cause we are not able to perform all-reduce on an intercommunicator. The solution is to

create a temporary intracommunicator by merging the intercommunicators and then use

the same algorithm mentioned above. The nonblocking communicator creation calls such

as MPI Comm idup() are even trickier since we cannot issue a blocking all-reduce within a

nonblocking call. Instead, we have to use a nonblocking all-reduce call and keep track of the

MPI request generated from it. Later, when we intercept MPI Waitxxx() or MPI Testxxx()

calls, we check the completed requests to see whether the symbolic id has been received.

MPI Status The MPI Status structure includes five fields as shown below.

struct MPI_Status {

int count;

int cancelled;

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

}

Figure 3.5: MPI Status structure

The fields of this structure will be filled after the return of the MPI calls, unless the input

argument is MPI STATUS IGNORE. Recorder keeps only two of these fields, MPI SOURCE and

MPI TAG, since they are important for matching communication calls. The fields count and

cancelled can be inferred during postprocessing, and MPI ERROR in most cases is just zero

so we ignore it in the current implementation.
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Memory pointers We assign symbolic ids to MPI objects so that the call creating such an

object can be matched with the calls using it. To achieve the same goal for memory pointers,

we intercept memory management calls, including malloc, calloc, realloc, and free. We

also intercept CUDA memory allocation calls such as cudaMalloc, cudaMallocManaged,

and cudaHostAlloc, and we keep track of the device location of the allocated memory. We

use an AVL tree to keep track of the currently allocated memory segments. Each node

represents a segment, and nodes are sorted according to the starting address of the segment.

In addition, each node stores the segment’s size and its assigned symbolic id. The search for

the segment containing an address will take, on average, O(logN), where N is the current

number of nodes in the AVL tree. For each communication buffer, we keep the symbolic id

of the containing segment and, optionally, the device location and the displacement from

the segment’s start.

This approach handles all memory buffers that are allocated on the heap. For stack

variables, since malloc/free calls are not invoked, we assign them an id when they are

accessed, and the allocated size is assumed to be one byte to be conservative.

3.3 OPTIMIZATIONS

In this section we discuss some important optimizations applied by Recorder. These

optimizations are needed mostly for interprocess compression.

3.3.1 Common Patterns

One side benefit of the CST- and CFG-based compression method is it compresses well for

common I/O and communication patterns. For example, regular and static communication

patterns, whether point-to-point or collective calls, will have identical call signatures across

loop iterations. Thus they will be stored only once, due to intraprocess compression. Another

example is provided by applications that use symmetric collective communications, such as

MPI Allgather or MPI Allreduce, where all the calling processes pass the same argument

values. The call signatures will be stored only once, due to interprocess compression.

3.3.2 File Offsets

Many I/O calls like fwrite, MPI File write and H5Dwrite do not require an explicit

offset to be specified. They use the current file offset stored by the file-position indicator.

These calls are easy to compress because their call signatures are identical across loops or
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even processes. However, other I/O calls such as pwrite and MPI File write at contain

an explicit offset parameter, which if not handled properly will lead to a low compression

ratio. Consider a simple example below:

for {

pwrite(fd, buf, count, offset);

offset += count;

}

Figure 3.6: Calls with explicit offset parameter

The offset parameter is different in every iteration, thus the call signature is different

across the loop. Even worse, if every process writes to a separate region of a file (which

is a common parallel I/O pattern) using the pwrite calls, then the call signatures are also

different across processes.

Therefore, it is critical to recognize the pattern in the offsets to ensure a good intra and

interprocess compression. Currently, Recorder supports linear offset pattern detection. We

detect patterns in the form of a ∗ r + b, where r is the global rank of the calling process.

For every call with an offset parameter, Recorder stores a and b instead of the actual offset.

In postprocessing, the original offset can be easily recovered. Sequential accesses with the

same chunk size will observe the same a, both within a process and across processes. And

b will normally increase by a fixed chunk size, e.g., count of the above pwrite call. Most

I/O codes exhibit such a linear access pattern, so the algorithm works well in most cases.

However, random access such as random reads in machine learning applications will lead to

undetectable patterns. But it is also not very useful to store the random offsets.

3.3.3 Relative Ranks

In point-to-point calls such as MPI Send() and MPI Recv(), parameters src and dst are

used to specify the source and destination rank, respectively. A common pattern is that one

rank sends and receives messages repeatedly to and from the same neighbors. This happens,

for example, in triangular stencil codes. Consider the pseudocode in Figure 3.7, which shows

a simple 1-D communication pattern.

Like the offset parameter in I/O calls, the parameters src and dst are different at dis-

tinct ranks, which lead to different call signatures. A run with N ranks will produce 2N call

signatures, which is bad for interprocess compression. The solution to this issue is straight-

forward: Instead of keeping the actual values of src and dst, we keep the relative value
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for {

... // computation

MPI_Recv(src = my_rank - 1);

MPI_Send(dst = my_rank + 1);

}

Figure 3.7: Example of a 1-D communication pattern

based on the caller’s rank. In this way the code will produce only two unique call signatures

regardless of the number of ranks. Note that this simple method also works for regular

multidimensional communication patterns (Section 3.6.1). Moreover, this encoding scheme

works not only for source and destination but also for other parameters that may be rank

related (e.g., tag in communication calls and color and key in communicator creation calls).

3.3.4 Id of MPI Request Objects

For most MPI objects, the order of creation, usage, and finalization are deterministic. The

MPI Request objects, however, can exhibit randomness because the order of nonblocking

communications completion can be nondeterministic. Requests may be freed in a different

order at distinct iterations, and therefore the allocation of symbolic ids can differ, impairing

compression.

Consider the following example, in which every MPI Request object should be assigned

a free id from the pool of free ids (as mentioned in Section 3.2.3). Assume the pool is

initially empty. Then the order of ids assigned within each iteration totally depends on the

completion order of the calls, which is nondeterministic. As a result, the code is likely to

produce different patterns of call signatures across iterations.

for {

MPI_Irecv(from = my_rank + 1, &req1);

MPI_Irecv(from = my_rank + 2, &req2);

MPI_Isend(to = my_rank + 3, &req3);

while(!(all requests finished)) {

MPI_Waitany([req1, req2, req3]);

handle received message;

}

}

Figure 3.8: Example of a nondeterministic communication pattern

The root cause for this is that our algorithm keeps one pool of free ids for each object
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type. To address this issue, for MPI Request we maintain a separate pool for each set of

communication calls that have the same signature with the request parameter excluded from

the signature. With this modification, the three requests in the above example will always

get the same sequence of ids regardless of the request completion order.

3.4 INTERPROCESS COMPRESSION

Thus far, we have discussed how Recorder encodes and compresses function and function

parameters. In the end, each process will produce its own CST and CFG, which contain all

the information required to recover the original calls for this one process.

An HPC application can run on large numbers of processes and will create huge trace files if

we keep the CST and CFG separately for each process. Interprocess compression is critical to

avoid the trace size to grow linearly with the number of processes. Interprocess compression

leverages the common case where many processes call I/O and MPI functions in the same

order and with the same or similar parameters. Thanks to the symbolic representations

and the optimizations described earlier, we are able to compress the CST and CFG across

processes.

3.4.1 CST

The total number of function calls will increase linearly with the number of processes, with

weak scaling. But the number of unique call signatures may grow more slowly if calls have

the same signature on different processes, as in the case for many codes. We leverage this

redundancy by merging all CSTs and keeping only globally unique call signatures. We use

a parallel merge algorithm with log2P phases of pairwise merges, where P is the number of

processes. When the merge is completed, the root process broadcasts the merged CST, and

every process updates its grammar to use the new symbols assigned to their call signatures.

Figure 3.9 shows an example of this process for two processes. Each process has only two

entries in its CST, and one of them has the same call signature. After the merging process,

the merged CST contains three call signatures, and the last one, fopen("file1", "r"), will

be given a new terminal symbol (3) because its old terminal symbol (2) has already been

used. If rank 0 performs this merging task, it will send back the merged CST to rank 1 so

rank 1 can update its grammar accordingly.
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Figure 3.9: Example of interprocess compression for CSTs.

3.4.2 CFG

Grammars are also expected to have redundancies because, in scientific codes, different

processes tend to execute the same code blocks (thus the same sequence of calls) but with

different data. The symbolic representation we use for pointers often allocates the same

symbol to corresponding buffers at different processes, resulting in identical signatures.

The algorithm for interprocess compression of CFGs is similar to the one used for com-

pressing the CSTs: Pairwise merges are executed in parallel until all grammars are merged.

When two grammars are merged, a new rule S → S1S2 is generated, where S1 and S2 are

new names for the root nonterminal of the two grammars, so as to concatenate the lists of

the two processes. The names of nonterminals are changed to prevent conflicts. The merged

grammar encodes the concatenation of the process traces.

Before we merge two grammars, we first check whether the two grammars are identical.

If they are identical, the merge is more efficient because we keep only one of them and do

not rename the rules. Once all grammars have been merged, we run another Sequitur pass

to compress the merged grammar. The identity check is important because it reduces the

merged grammar size, which can significantly reduce the time required for the final Sequitur

pass. This check can be done quickly by using a memory comparison operation since our

grammar is stored internally as an array of integers. We will show later in Section 3.6 that

in many programs most processes produce identical grammars. In other words, the number

of unique grammars produced is far less than the total number of processes. We use a simple

example (Figure 3.10) to illustrate this process. The grammars merged in the first pass are

identical so we need to concatenate only the two starting rules. At the second pass, the

two merged grammars are not identical. Thus, each rule needs to be checked and updated

separately to solve conflicts (e.g., X from rank 2 is renamed to Z). A Sequitur pass then is
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run, which compresses the merged grammar.

S → X2 Y2

X → a b
Y → c d

S → X2

X → e f

S → X2 Y2

X → a b
Y → c d

S → X2

X → e f

S →S1 S2
S1 → X2 Y2

S2 → X2 Y2

X → a b
Y → c d

S →S1 S2
S1 → X2

S2 → X2

X → e f

S →S1S2S3S4
S1 → X2 Y2

S2 → X2 Y2

S3 → Z2

S4 → Z2

X → a b
Y → c d
Z → e f

Rank 0

Rank 1

Rank 2

Rank 3

Rank 0

Rank 2

Rank 0

S →W2 Z4

W →X2 Y2

X → a b
Y → c d
Z → e f

Rank 0

First merge pass

Second merge pass
Sequitur pass

Figure 3.10: Example of interprocess compression for CFGs.

The decompression is simply a process of recursive rule application. If the leftmost non-

terminal symbol is always expanded first, then the traces of the successive ranks will be

obtained in rank order. Parallelism can be easily applied to the decompression; it is also

simple to extract the trace of any selected process.

3.5 PROXY APP GENERATION

We have developed a feature called proxy app autogeneration in Recorder that can be useful

for studying I/O and MPI performance. Since it is not directly related to the dissertation,

this section gives a brief motivation and introduction to this feature.

Proxy apps are small, simplified codes that represent important features or characteris-

tics of the targeted applications. They have been extensively used for system testing and

performance evaluation [46, 47, 48]. Designing a proxy app manually is a nontrivial task

and exposes three major issues: (1) it requires involvement of the experts of the original

application when it tries to best mimic the original behavior, and it takes significant efforts

since the original application code is most likely huge; (2) it requires access to the source

code of the original application, which may be infeasible for classified applications; and (3)

removing part of the intrinsic logic (e.g., computation) from the original application makes
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debugging and correctness checking difficult. With the detailed information preserved by

Recorder, however, we can design a proxy app generator that addresses these issues.

1. The proxy app is generated automatically from Recorder traces with little or no human

intervention.

2. It relies only on the traces of the targeted application, not the source code; and the

tracing process has already stripped away the computation information.

3. Correctness checking is easy because we can run the generated proxy app with Recorder

again and compare its traces with the original application’s traces.

A proxy app can be simply generated by replacing each entry in the decompressed trace

by a suitable function. But the code size of such an application will be proportional to the

number of times calls are made in the original application, which is not practical. Instead,

we leverage the same recurring patterns that enable the high compression rate, so as to

obtain a concise proxy app. The proxy generation algorithm creates proxy apps with code

size that is proportional to the size of the compressed trace. The generated proxy app will

be small and clean if Recorder compresses well. For example, if the trace size stays constant

regardless of the number of processes, then the generated proxy app will be constant as well.

As discussed in Section 3.4, the process-local CSTs and CFGs are merged across processes

at the finalize point. In the end, for each application Recorder dumps two files: one for the

interprocess compressed CST and one for the interprocess compressed CFG. The proxy app

generator uses only these two files as input. The generation process contains three major

steps. The first two steps read and decode the final CST and CFG files, respectively. The

last step decompresses the CFG and recovers the call sequence. It then associates with each

call the information stored in the CST to construct an actual executable program.

3.6 EVALUATION

We evaluate Recorder by answering the following questions: (1) What is the trace size

for large-scale runs? (2) How do trace size and overhead scale with the number of processes

and the number of iterations? (3) How does Recorder compare with other systems? In

all experiments, the trace records preserve the values of all the arguments of the function

calls. Since we developed both a compressor and decompressor, we can check correctness by

comparing uncompressed traces with compressed next decompressed traces.

We selected a variety of codes for the evaluation, as shown in Table 3.2. First, the

benchmarks are used to ensure the completeness and correctness of Recorder regarding the

24



MPI tracing functionality. Then we use the NAS Parallel Benchmark (NPB) to compare

Recorder with the state-of-the-art MPI tracing tool ScalaTrace [49]. Finally, we use a real-

world scientific simulation, FLASH [44], to evaluate Recorder’s scalability for I/O and MPI

tracing. The same FLASH simulations are also used to evaluate Recorder’s overhead and

the effectiveness of the different timing compression algorithms supported by Recorder.

All experiments were conducted on Theta at the Argonne National Laboratory. Theta

is a Cray XC40 system consisting of 4,392 Intel KNL 7230 compute nodes. Each compute

node has 64 cores and 192 GB of DDR4 memory. The experiments we ran used up to 16,384

cores on 256 nodes.

Type Code Purpose

Benchmark 2D and 3D Stencils
OSU Microbenchmarks [50]

Ensuring the completeness and cor-
rectness of Recorder’s MPI tracing
functionality.

Miniapp NAS Parallel Benchmark [51] Comparing Recorder with the state-
of-the-art MPI tracint tool Scala-
Trace [49].

Production app FLASH [52] Evaluating the scalability and the
overhead of Recorder for both I/O
and MPI tracing; Also for evaluat-
ing different timing compression al-
gorithms.

Table 3.2: Codes used for evaluation

3.6.1 Benchmarks

We tested two stencil codes: a 2D 5-point stencil with nonperiodical boundaries and a 3D

7-point stencil with periodical boundaries. They both use MPI Isend(), MPI Irecv(), and

MPI Waitall() for communication. The meshes are distributed by using a block distribution

on a Cartesian mesh of processes with the same number of dimensions.

Thanks to the relative rank optimization described in Section 3.3, Recorder compresses

perfectly for regular stencil codes. The trace file size does not change with the number of

iterations or the number of processes beyond a certain number. On an M × N Cartesian

mesh of processes, process i will communicate with processes i± 1 (horizontal direction) or

i±N (vertical direction); boundary processes may communicate with MPI PROC NULL. There

are 9 possible communication patterns (four corners, four sides, and interior). All patterns

appear when a 3× 3 mesh is used. Indeed, the compressed trace size does not grow beyond

9 processes.
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Similarly, for the 3D periodical boundary stencil, there will be at most 27 different commu-

nication patterns, and the size of the compressed trace does not grow beyond 27 processes.

We also tested all the OSU microbenchmarks except osu latency mt since Recorder cur-

rently does not support multithreaded MPI programs. Again, Recorder can compress per-

fectly across processes and iterations for all programs included in the OSU microbenchmarks.

Most programs result in a trace file size of a few kilobytes. To save space, we do not include

the exact numbers.

3.6.2 Recorder vs. ScalaTrace

Here we compare the compression effectiveness of Recorder with that of ScalaTrace [53].

ScalaTrace is a state-of-the-art MPI tracing tool that is closet to Recorder (with respect

to the MPI tracing functionality). ScalaTrace also detects recurring patterns and performs

both intra- and interprocess compression. A detailed description of different versions of

ScalaTrace will be given in Section 6.2. For our experiments, we built ScalaTrace from the

latest source code (V4). We configured ScalaTrace to retain tags (ignored by default) and use

lossless tracing where possible. We selected six class D NAS parallel benchmarks (NPB) and

ran them with increasing numbers of processes (BT, FT, and SP require a square number

of processes to run on).

Trace sizes are shown in Figure 3.11 for different NAS benchmarks and different process

counts. We did not get the results of ScalaTrace for BT, MG, and SP when running with 16K

processes. Those runs did not complete after several hours, whereas they normally finish in

a few minutes without ScalaTrace. Of the six benchmarks, ScalaTrace outperforms Recorder

in only CG when running with more than 8, 192 processes. In all other cases, Recorder gen-

erates shorter traces while keeping more information. Moreover, the gap between Recorder

and ScalaTrace becomes larger when increasing the scale. We also performed a detailed

comparison between Recorder and ScalaTrace using three FLASH simulations [54]. We will

not repeat the results here, but, to summarize, in all the cases we studied, Recorder achieved

smaller trace sizes with significantly lower overheads. Next, we discuss Recorder’s results on

the NAS benchmarks in more detail.

FT and LU Their communication patterns did not change with the number of processes,

and Recorder was able to recognize all of their recurring patterns. FT uses only three

collective MPI functions (MPI Reduce, MPI Alltoall, and MPI Bcast) for communication.

The 16K-process FT run invoked MPI Reduce 884, 736 times, but there was only one unique

call signature across all processes. LU, on the other hand, makes great use of point-to-point
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communication calls including MPI Send, MPI Irecv, and MPI Recv. Its behavior is similar

to that of the stencil codes discussed previously. Consider MPI Irecv as an example: In the

16K processes LU run, Recorder recognized 30 unique MPI Irecv call patterns, for a total

of 19, 800, 316 invocations.

BT and SP These two benchmarks have identical communication patterns [55]. In each

iteration, a forward pass and a backward pass were performed in each of the x, y, and

z directions. Along each direction, MPI Isend was used to send the surface data to each

one’s immediate successor, and MPI Irecv was used to receive that data from each one’s

immediate predecessor. Such a pattern is easy to recognize, as suggested by the result for

BT. However, SP’s implementation makes matters more complicated. Unlike BT where the

surface size moved by each process is fixed, in SP it depends on whether the sender sits

on the domain boundaries. Since this size is a part of the call signature of Isend/Irecv,

increasing processes will also introduce new communication patterns.

CG and MG The trace size of these two benchmarks exhibited sublinear growth rates,

which means that new patterns were observed when increasing the number of processes. The

reason for the increase is the source and destination parameters in point-to-point calls. In

CG, all processes are laid out in a 2D grid where process (i, j) communicates with process

(j, i). Consider a P × P -processor grid in which the destination of an outgoing message

is dst = (me%P ) × P + me/P , where me is the the sender’s rank. This pattern was not

recognized by Recorder (it recognizes only linear patterns for now). The number of unique

(me, dst) pairs is thus P 2. However, with the relative-ranks optimization (Section 3.3.3),

this number is reduced to P , which results in a sublinear growth rate. Similarly, in MG, the

processes are also laid out in a 2D grid. Each process communicates with all of its neighbors,

whose rank is decided by a combination of three parameters: axis, direction and level, where

axis ∈ {1, 2, 3}, direction ∈ {−1, 1} and, level ∈ {0, 1, ..., O(log2 P )}. So the number of

unique patterns increases at the speed of log2 P . To summary, even though Recorder does

not compress perfectly for the communication patterns observed in CG and MG, the growth

rate of distinct patterns is kept proportional to the square root of the number of processes.

As a result, it takes only a few hundred kilobytes for both benchmarks to store all the MPI

calls at their largest scales.
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Figure 3.11: Comparison of trace file size with NPB.

3.6.3 Scalability of MPI tracing

In this section, we evaluate the scalability of Recorder using scientific simulations, and

we discuss additional factors that affect the compression ratio. We tested three simulation

problems that come with the FLASH package: Sedov, Cellular, and StirTurb. All are 3D

simulations with I/O disabled. To add more variances into the simulations, we disabled the

adaptive mesh refinement (AMR) feature for Cellular and StirTurb and kept it for Sedov.

Also, we used two different grid systems: a uniform grid for Cellular and a PARAMESH [56]

generated grid for Sedov and StirTurb. The differences in their configurations result in a

different set of MPI calls being used, as we will show later.

Figure 3.12 and Figure 3.15 how the trace size scales with the number of processes and

the number of iterations. We also plotted on the right of each figure the total number of

MPI calls Recorder encountered. As expected, the number of MPI calls increases linearly

with the number of processes and iterations.

Trace Size vs. number of processes When varying the process count, we kept the

number of iterations fixed at 500 iterations. The problem size per process was also kept

unchanged (weak scaling).

For Sedov and StirTurb, the trace file size did not change with the process count, suggest-

ing that all communications patterns were encountered and recognized by Recorder. The

trace size of Cellular changed slightly with the process count, presumably because the data
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Figure 3.12: Evaluation of Recorder’s trace size of MPI calls with FLASH simulations. We
also plot on the right the number of MPI calls intercepted by Recorder.

layout changed according to the number of processes. Overall, in all three simulations the

trace file size stayed at a stable level, which shows the perfect scalability of Recorder with

the number of processes.

To further understand the differences between the three simulations, we show in Table 3.3

some important statistics of the trace of their 16K-process runs. Cellular and StirTurb used

only blocking MPI calls, whereas Sedov also used a few nonblocking calls during the adaptive

mesh refinement process. The exact set of MPI functions used and the number of calls made

by each simulation are shown in Figure 3.13.

Cellular StirTurb Sedov

MPI functions used 14 20 27
Unique grammars 28 2 74
CST size (KB) 4.68 3.77 410.21
CFG size (KB) 2.07 2.11 147.84

Table 3.3: Statistics of traces of 16K-process runs.

Also in Table 3.3, we can see that StirTurb has the simplest communication pattern, since

it produced only two unique grammars across 16K processes. This is further confirmed in

Figure 3.14, where we visualize the communication patterns of each simulation by showing

the data size exchanged between processes. We used 64-process 100-iteration runs for easy

visualization. In StirTurb, all processes except rank 0 sent and received the same amount of

data from and to all others, which corresponds to two unique grammars. More interesting

is that the communication pattern of Cellular is almost identical to that of the NAS MG

benchmark showed in Figure 7 of [57]. We will not further discuss these communication
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Figure 3.13: MPI calls count of 16K-process FLASH simulations. Cellular, StirTurb, and
Sedov used 14, 20, and 27 unique MPI functions, respectively.

patterns since this topic is beyond the scope of our work. We note, however, that all the above

analyses and visualizations are based purely on the Recorder traces, thus demonstrating the

usefulness of the detailed information stored by Recorder.

Trace Size vs. number of iterations When varying the number of iterations, the

process count was fixed at 16,384. Cellular and StirTurb produced constant-size trace files.

These two simulations did not introduce any new communication patterns when increasing

the number of iterations. Sedov internally uses the PARAMESH library to perform parallel

adaptive mesh refinement. It builds a hierarchy of subgrids to form the compute domain.

These subgrid blocks are stored by using a tree data structure. At each refinement phase,

new child blocks will be created and added. The blocks are sorted in Morton order so as

to compute a load-balanced partition with a good locality. Afterwards, data blocks may

be moved across processes to rebalance the load. The communication is performed by

using point-to-point calls: Isend, Irecv, and Waitall. The communication pattern changes

at each refinement. In our runs, the AMR was triggered only once at the beginning of
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Figure 3.14: FLASH communication patterns for 64-process 100-iteration runs.

the run. Thus, we did not observe sharp increases in the trace size across iterations. The

small trace size increase was due to some extra MPI Send/MPI Recv being called with new

sources and destinations. This is caused by the output mechanism where rank 0 asks for

the current minimum simulation time delta; the source of that datum changes every few

hundred iterations.

Finally, we note that Recorder can store complete traces from the hundreds of millions of

MPI calls generated by a multi-minute run with 16K processes in 600 KB for Sedov and just

6 KB for Cellular and StirTurb.
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Figure 3.15: Evaluation of Recorder’s MPI trace size with FLASH simulations. We also plot
on the right the number of MPI calls intercepted by Recorder.
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3.6.4 Scalability of I/O Tracing

Here, we use the same FLASH simulations to evaluate the scalability of Recorder regarding

its I/O tracing functionality. In these experiments, MPI tracing was disabled, and only the

I/O calls (including MPI-IO) were intercepted by Recorder. Each run of a FLASH simulation

outputs several files, including log files, plot files, checkpoint files, etc. In our experiments,

we focus on the I/O calls that write plot files and checkpoint files. Other files are extremely

small and take unnoticeable time to write. FLASH uses HDF5 to write the plot files and

checkpoint files, which in turn issues MPI-IO calls. Eventually, MPI-IO makes POSIX I/O

calls to do the actual job. Recorder intercepts and stores the I/O calls from all three layers.

In addition, FLASH supports two I/O modes: (1) Collective I/O mode, which uses collec-

tive MPI-IO calls such as MPI File write at all. (2) Independent I/O mode, which uses

independent MPI-IO calls such as MPI File write at. The two modes exhibit significantly

different I/O patterns, which we will also study and discuss in detail in the next chapter.

For now, what we need to know is that different I/O patterns lead to different I/O tracing

scalabilities. We evaluate Recorder using FLASH simulations with both modes to show the

effectiveness of our compression algorithm.

Independent I/O In this mode, HDF5 issues independent MPI-IO calls where each pro-

cess writes its own portion of data to a shared output file (plot file or checkpoint file). In

our experiments, the problem size per process was fixed (weak scaling), so both the total

number of I/O calls and the final output file size increased linearly as the number of pro-

cesses. Figure 3.16 shows how Recorder’s I/O trace size scales with the number of processes

and the number of iterations. On the left, we kept the number of iterations fixed at 500,

and increased the number of processes from 128 to 16,384. Even though the intercepted

I/O calls increased linearly as the number of processes, the trace file size stayed constant.

The reason is that, this weak scaling experiment introduced no new I/O patterns when

more processes were put to use. Each process performed identical writes but to different

file offsets, which resulted in a linear pattern that were easily recognized and encoded using

their writer’s rank. On the right, we ran the simulations on 16K processes and increased the

number of iterations from 100 to 1000. The simulations were configured to output a new

plot file and checkpoint file every 200 iterations. Since every new file uses a different name,

and the filename is also included in the call signature, so at every 200 iterations, Recorder

saw a new set of I/O call signatures. Therefore, we can clearly see that the Recorder’s I/O

trace size increased in 5 stages, each at 200× iterations. The increase of the trace size in

this case can be easily avoided. One way is to write output files in a rolling manner. For
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example, we can ask FLASH to keep up to two checkpoint files at a time. And we overwrite

the older file whenever a new one needs to be written out. This way, the trace file size will

stop increasing after the second checkpointing step. However, this method does not work

when all output files are to be preserved, such as snapshots and plot files. In such cases, we

can leave the filename out of the call signature and store it separately. This way, the I/O

call signatures of different files become identical, thus writing new files will not result in new

I/O patterns.
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Figure 3.16: Evaluation of Record’s I/O trace size with FLASH simulations. Independent
MPI-I/O was used for all runs. When varying the process count (left), the number of
iterations was fixed at 500. When varying the number of iterations (right), the process
count was fixed at 16K.

Collective I/O In this mode, HDF5 issues collective MPI-IO calls, where only a subset

of processes are selected to perform the actual I/O operations. Those processes are called

aggregators. Each aggregator first collects the data from a distinct set of processes, including

itself. Then it groups the data according to the offset and performs writes in larger chunks.

The collective I/O increases the I/O chunk size and reduces the number of I/O operations.

The aggregator count is an important parameter for I/O performance tuning. Running

with a different number of aggregators will generate different I/O patterns. The MPI-IO

implementation in our system, ROMIO, uses the Lustre stripe count and the number of

compute nodes to decide the aggregator count. The Lustre stripe count is a user tunable

parameter, which controls how many Lustre data servers are used to store a file. At runtime,

ROMIO calculates the aggregator count using the minimum of the stripe count and the

number of compute nodes for this run. In our experiments, we evaluate Recorder using two

stripe counts: 8 and 32. Figure 3.12 shows the results. The top three figures show how

the trace size of each FLASH simulation changed with the number of processes. Unlike

the independent I/O experiment, where the trace size stayed constant, in the collective I/O
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experiments, we observe that in all three simulations, the trace size fluctuated with small

rises and falls. The trace size always increased before 512 processes regardless of the stripe

count, due to new I/O patterns being introduced. Adding aggregators will introduce new

I/O patterns. Therefore, Recorder will not see any new I/O pattern beyond 8 nodes (512

processes) for the stripe count of 8 or 32 nodes (2,048 processes) for the stripe count of

32. This is confirmed by the bottom three figures. They show that in all simulations, the

number of unique grammars stopped increasing after 512 and 2,048 processes for the stripe

count of 8 and 32.
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Figure 3.17: Evaluation of Recorder’s I/O trace size with FLASH simulations. Collective
MPI-I/O was enabled for all runs. Two different stripping configurations were used. The
top three figures show how the trace size scales with the number of processes. The bottom
three figures show the number of unique grammars stored in the final merged CFG.

The final trace size is the sum of the CFG file size and the CST file size. The CFG file

size depends on the number of unique grammars and the total number of grammar rules and

symbols. As we can see from Figure 3.12, the three simulations produced a similar number

of unique grammars but very different trace sizes. The discrepancy was caused by their

CST files. The three simulations used an identical set of I/O calls (due to the programming

modularity of FLASH) as shown in Figure 3.18. Cellular made much more I/O calls than

the other two. However, a higher call count does not necessarily make a larger CST file, as

frequent calls may be easy to compress. The CST file size is decided by the number of unique

call signatures. We show in Figure 3.19 the top 10 I/O functions that are responsible for
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the most unique call signatures. For example, H5Dclose was the most frequent function in

all three simulations, but lseek64 had the highest number of unique call signatures, which

makes it the most difficult function to compress. Nevertheless, Cellular again generated the

most unique call signatures, and thus had the largest total trace size.
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Figure 3.18: I/O calls count of 16K-process FLASH simulations. All three simulations use
an identical set of I/O functions.

3.6.5 Overhead

Recorder’s overhead comes from two sources: intraprocess compression overhead, due

to the construction of CFG and CST, and interprocess compression at the finalize point.

The first part scales well because the intraprocess compression is totally independent across

processors. For the latter part, compressing CSTs normally takes negligible time, while

the compression for CFGs dominates and is largely due to the sequential final Sequitur

pass. This overhead depends on the number of unique grammars. Fortunately, in most

cases there are only a few unique grammars. From an application’s perspective, the actual

overhead incurred largely depends on the ratio between the application’s computation and

communication. In general, the higher this comp-to-comm ratio, the lower the overhead.
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Figure 3.19: Top 10 I/O functions with the highest call signature count. 16K-process FLASH
simulations.

In this section we evaluate Recorder’s overhead using again FLASH simulations with

various process counts and number of iterations. We measured the execution time of FLASH

runs with and without Recorder. Moreover, we repeated all experiments with two different

domain sizes. This was done by tuning the block size. Each process in our simulations works

on one block of size NXB×NYB×NZB, where NXB, NYB, and NZB are the number of grid

points along each dimension. Thus, the global domain size in terms of the number of grid

points is NXB×NYB×NZB×nprocs, where nprocs is the number of processes used to run

the simulation. We confirmed that changing the block size does not affect the number of

MPI calls. Thus, a larger block size will result in a higher comp-to-comm ratio.

Overhead vs. number of processes Figure 3.20(a) shows the normalized execution

time against the process count. Recorder shows good weak-scaling performance—increasing

the number of processes does not increase the overall compression time.

For the block size of 8x8x8, the average execution time was increased by about 20.10%

for Sedov, 2.64% for StirTurb, and 1.80% for Cellular. The overhead of Sedov is higher

because it has more unique grammars than the other two and thus required more time for

the final Sequitur pass. Cellular has a more complex communication pattern than StirTurb,

but nevertheless, it shows a lower overhead because it is much more computation intensive

than StirTurb. For example, a 16K-process Cellular run takes about 70 seconds to finish

whereas StirTurb completes in about 30 seconds.

When running with a larger block size (16x16x16), the overall execution time was in-

creased, but the communication pattern and the number of unique grammars stayed the

same. Therefore, the time for Recorder to perform the intra- and interprocess compres-
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sion remained the same. As a result, the average overhead was reduced to 1.92%, 1.66%,

and 0.30% for Sedov, StirTurb, and Cellular, respectively. We expect that the larger the

problem size is, the lower the overhead is.

Overhead vs. number of iterations Figure 3.20(b) shows the normalized execution

time against the number of iterations. The more iterations a simulation runs, the more calls

it will make. As we have shown in the preceding section, increasing the number of iterations

does not introduce new communication patterns. Therefore, the overhead of Recorder’s

interprocess compression will be amortized by the increasing number of iterations. Once

again, in all simulations the larger the block size, the lower the overhead.
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(b) Normalized execution time vs. number of iterations.

Figure 3.20: Evaluation of Recorder’s overhead with FLASH simulations. We conducted the
experiments with two different problem sizes to show the impact of comp-to-comm ratio on
Recorder’s overhead.
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3.6.6 Compressing Timing Information

We evaluated all six timing compression techniques discussed in Section 3.2.2. To quickly

recap, the first two, CFG and HIST, are proposed by this work, whereas SZ and ZFP are

existing lossy compressors. The last two, SZ-Clustered and ZFP-Clustered, are modified

versions of SZ and ZFP with clustering applied before compression.

We ran 16K-process FLASH simulations six times, and we enabled one different timing

compression technique each time. Unlike the call sequence, the timing information is more

difficult to compress because of the intrinsic nondeterminism introduced by noises and irreg-

ularity in computations. A trade-off between accuracy and overhead has to be made when

storing the timing information. In our experiments the relative error bound was set to 10%

for CFG, HIST, and SZ. ZFP supports only an absolute error bound, which we set to 10µs.

Moreover, K was set to 3 for HIST, i.e., the most frequent 8 (23) bins are encoded using 3

bits.
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Figure 3.21: Comparison of different timing compression techniques with 16K-process
FLASH simulations.

Figure 3.21 shows the produced trace size of durations and intervals for each simulation.

First, for durations, the clustered versions of SZ and ZFP achieved higher compression ratios

than did the unmodified versions. Clustering groups the durations according to their calls’

signatures. Identical calls have similar durations, as discussed in Section 3.2.2, thus making

compression easier. On the other hand, clustering hinders the compression ratio for intervals,

a phenomenon that was not expected. After investigation, we found that the cause is that

clustering brings together intervals of an identical call from different loops. This separates

the intervals of adjacent calls in the same loop, where these adjacent calls are more likely
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to have similar intervals. A better approach would be clustering intervals according to

the loop structure instead of the call signature, but we leave this to future work. Second,

CFG achieved lower compression ratios than SZ and HIST did in all cases. The results

confirmed our discussion in Section 3.2.2 in that the CFG-based algorithm is not a good

fit for compressing timestamps. Third, HIST achieved the best compression ratio in all the

simulations except intervals of Sedov, where it is close to that of SZ.
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CHAPTER 4: I/O STUDY OF HPC APPLICATIONS

In this chapter, we first investigate and present a categorization of the most common

consistency models implemented by existing PFSs. Next, we propose an algorithm that

can determine the consistency requirements of an application using the traces collected by

Recorder. We then perform a detailed I/O study of 17 representative HPC applications.

The most important conclusion we draw is that different applications require different con-

sistency models, but most applications do not require the strict POSIX consistency, which

acknowledges the potential to use a PFS with tunable consistency support.

4.1 PFS CONSISTENCY SEMANTICS

We first discuss the consistency semantics of PFSs and present the categorization of relaxed

consistency models that we use in this work. In general, the difference between the models

in our categorization is based upon when updates to a shared file are visible to subsequent

reads.

Our algorithm to determine consistency semantics needs of an application uses only data

operations and leaves consideration of metadata operations to future work. Because of

this, PFSs like GekkoFS [17] and BatchFS [58], that provide relaxed metadata consistency

semantics but strict POSIX data consistency semantics will be categorized as having “strong

consistency semantics”, as described in Section 4.1.1. However, we do provide analysis on

the metadata operations used by our set of applications in Section 4.4.4 and find that the

applications use only a small subset of the available POSIX metadata operations.

4.1.1 Strong Consistency Semantics

POSIX requires sequential consistency for reads and writes: upon successful return, mod-

ifications made by a write call must be visible to subsequent read calls until those file

regions are updated. Because HPC systems do not have global clocks, we employ the partial

happens-before order or causality order defined by the execution order within each process

and the communications across processes [59]. We use → to denote this order. We define

strong consistency semantics with the following condition: A read r from a byte returns the

value written by a write w to the byte if w → r, and for any other write w′ to the same byte

if w′ → w or r → w′. Otherwise, the value returned is undefined.
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Most general-purpose PFSs (e.g., Lustre, GPFS, GFS, BeeGFS and PVFS21 [61, 62])

support strong consistency semantics. The disadvantages of strong consistency semantics are

not readily apparent in a single node/single storage device system, in which I/O operations

are serialized. However, these semantics are expensive to maintain in PFSs, where there are

a potentially large number of concurrent I/O requests being handled by distributed servers.

Distributed locking is a common approach to guaranteeing strong consistency semantics

and is used by popular PFSs like GPFS and Lustre. Locks may be applied to blocks, file

segments, full files, or other granularities of file accesses. The number of locks depends on

the lock granularity and the number of sharing processes. Thus, the metadata server, where

the locks are normally maintained, may become a bottleneck for large-scale applications.

4.1.2 Commit Consistency Semantics

The fundamental problem behind the performance issues stemming from strong consis-

tency semantics is that the PFS is ignorant of application synchronization logic and the

happens-before order of concurrent I/O operations; the PFS must make worse-case assump-

tions and serialize all potentially conflicting I/O operations. Alternatively, an application

can provide ordering information for conflicting operations so that the PFS can implement

a weaker consistency semantics. We define commit consistency semantics as a less strict

consistency model, where “commit” operations are explicitly executed by processes, and

I/O updates performed by a process to a file before a commit become globally visible upon

return of the commit operation.

Many user-level and BB PFSs (e.g., BSCFS [63], UnifyFS [14], SymphonyFS [34], and

BurstFS [64]) provide commit consistency semantics. Note that the “commit” operation is

system-specific. For example, in UnifyFS, a commit can by performed with an fsync oper-

ation which makes writes performed by an individual process globally visible. Alternatively,

UnifyFS also provides a lamination operation, which renders a file permanently read-only

and makes all file data globally visible. Similarly, SymphonyFS does not support read-after-

write and overlapping writes between different nodes unless fsync() is called. The fsync()

operation, which flushes the cache of the caller and ensures that data is persisted, acts as

the commit. A close() call usually also has the effect of a commit.

1PVFS and PVFS2 (now OrangeFS [60]) provide non-conflicting write semantics where non-overlapping
writes (potentially concurrent) are immediately visible to all processes once completed. The behavior of
conflicting writes are undefined. The semantics of these file systems fit best in our strong semantics category
even though they do not meet full POSIX requirements on atomicity.
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4.1.3 Session Consistency Semantics

We define session consistency semantics as semantics that guarantee writes by a process

are visible to another process when the modified file is closed by the writing process and

subsequently opened by the reading process, with the close happening before the open.

Commonly known as close-to-open semantics, several PFSs implement this model including

NFS [65], DDN IME [66], Gfarm/BB [16] and AFS [67].

The major difference between session semantics and commit semantics is when the writes

become visible to other processes. In commit semantics, updates become globally visible

after a commit operation by the writer. In session semantics one needs a pair of operations,

one executed by the writer and the other by the reader.

4.1.4 Eventual Consistency Semantics

The most relaxed semantics model we define is eventual consistency semantics ; we are

not aware of more relaxed semantics being provided by any PFS. In this model, even with

no explicit commit operation, updates from a write are eventually visible to all readers if

no subsequent write to the same location occurs. PFSs that implement this model have

more freedom to perform optimizations such as write aggregation, data reorganization, and

delayed propagation.

While there are several PFSs that provide eventual consistency semantics, they may im-

pose additional constraints to provide better performance. For example, PLFS [15] imple-

ments eventual consistency semantics and is designed specifically for large parallel checkpoint

files, where it converts an N–1 (N clients, one file) write access pattern into an N–N (N clients,

N files) pattern. In PLFS, the outcome of two overlapping writes is not guaranteed to be

correct with respect to the happens-before relationship even with explicit synchronization.

Another example is echofs [68], which is designed for node-local BBs. Although echofs pro-

vides the POSIX interface, it manages data by the use of memory mapped files, and POSIX

semantics is only enforced locally to each compute node. Globally, data becomes visible

when it is eventually transferred out to the system-level PFS.

4.1.5 Discussion

A summary of the PFSs we discussed and their consistency semantics is shown in Table 4.1.

Our categorization does not cover all the semantic differences between the file systems, but

is sufficient for our purposes. Most PFSs we discussed provide strong consistency semantics
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for I/O operations performed by a single process, where a read of a file location returns

the value last written to that location by the same process, if no other process modifies

that location. BurstFS is an exception, where a read following two writes from the same

process could return the value of either write. PLFS and PVFS2 also do not provide such a

guarantee because the behavior of overlapping writes is simply undefined.

Consistency Semantics File Systems

Strong Consistency GPFS, Lustre, GekkoFS, BeeGFS, BatchFS, OrangeFS

Commit Consistency BSCFS, UnifyFS, SymphonyFS, BurstFS

Session Consistency NFS, AFS, DDN IME, Gfarm/BB

Eventual Consistency PLFS, echofs, MarFS [69]

Table 4.1: HPC file systems and their consistency semantics.

Adherence to stronger consistency semantics normally imposes higher overhead to guar-

antee the given consistency model, with metadata servers a likely bottleneck. PFSs that

implement weaker consistency semantics can alleviate such bottlenecks. The underlying

assumption behind using weaker semantics is that HPC applications do not normally ac-

cess files via interleaved reads and writes to random offsets, so stronger consistency is not

required.

In the following sections, we address the central questions of this work: Do applications

really need strong consistency semantics from a PFS? If not, what is the weakest model that

suffices for a given application? In this dissertation, we focus on the strongest three con-

sistency models, excluding eventual consistency, because traditional scientific applications

rely on a deterministic relationship between writes and reads. Eventual consistency may be

applicable for non-traditional, emerging scientific workloads, e.g., workflows in which simu-

lation data is pipelined to analysis modules, but we reserve analysis of these workloads for

future work.

4.2 I/O PATTERNS

The I/O pattern of an application describes how the application accesses the PFS. A key

concern for us is whether multiple processes in the application concurrently access the same

file, and, if so, whether the accesses are conflicting, and whether and how the accesses are

synchronized. Another concern is whether accesses are “random” or “sequential”, as this has

a significant impact on performance. I/O patterns can be studied at different granularities.

At a very high granularity, the POSIX API and most I/O libraries require users to set

flags when opening a file. Common flags indicate the file will be accessed for reads only,
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writes only, both reads and writes, and for appending to the file. This very high granularity

information for I/O patterns does not provide sufficient information for our study.

To examine the consistency semantics needs of applications, we focus on byte-level, fine-

grained I/O patterns. The main focus of our study is about identifying potential conflicting

I/O operations where delayed writes may cause errors. But we also harvest information on

the I/O access pattern, whether random or sequential, and about executed meta-operations.

As expected, HPC applications do not access files randomly, and sequential appends are

very common, e.g., for log files or snapshots of an ongoing simulation. However, when

using I/O libraries like HDF5, the metadata operations of those libraries may introduce

more complicated patterns. The I/O patterns can be studied at two levels: (1) the local

pattern of accesses performed by one process, and (2) the global pattern of accesses generated

collectively by the I/O calls across processes. Both levels of patterns affect performance, but

in different ways. As we will show in Section 4.4.2, the global pattern is likely to appear

more random than the local pattern since the I/O requests from concurrent processes are

interleaved in time. However, because of the nature of scientific applications, the interleaved

accesses from multiple processes are not truly random, especially when collective I/O and

libraries such as MPI-IO are used that may perform data aggregation before accessing the

PFS.

4.2.1 Overlaps and Conflicts

Conflicting accesses can occur when two I/O operations access the same location of a file.

We call this situation an overlap. Overlaps can cause conflicts if one of the two operations

is a write. If two overlapping operations by distinct processes are concurrent, then the

outcome of the operations to the file is non-deterministic even under POSIX semantics:

Writes are not atomic, and accesses can be interleaved in arbitrary manner. We assume

now (tested later in Section 4.3.2) that the programs we test are “race-free”: If the parallel

application performs conflicting I/O operations, then these accesses are synchronized and

are not concurrent. Thus, if a process writes data to a file and another process reads that

data, a synchronization will ensure that the read does not start before the write completed.

But, if the PFS provides weaker semantics, a conflict may still happen, as the write may not

be visible to the reader when it completes. This can occur in four cases:

• RAW-[S—D]: read-after-write by the same process (S) or by different processes (D).

• WAW-[S—D]: write-after-write by the same process (S) or by different processes (D).
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We define these four cases as potential conflicts. Whether they are actual conflicts depends

on the PFS semantics. In the majority of PFSs, conflicting accesses by the same process will

take effect in the right order so that only RAW-D and WAW-D are potentially problematic.

Note that a write-after-read pair cannot cause a conflict, as we assume conflicting operations

are properly synchronized and the read will complete before the write starts.

The information about potential conflicts is important at different levels: A programmer

running the application on a PFS with weak consistency can prevent the conflicts by in-

serting commit operations at suitable points, or the designer of a parallel I/O library can

insert commit operations automatically. On the other hand, if the application can tolerate

relaxed consistency, then the PFS or I/O libraries can leverage the tolerance for improved

performance.

4.3 DETECTING OVERLAPS AND CONFLICTS

To analyze the I/O behaviors of an application, we need to extract its dynamic I/O

operations. The operations depend on the application logic, but also on parameters such as

the PFS and I/O library settings, and on the underlying hardware configuration such as the

number of data servers. We utilize Recorder to generate traces from applications. While

our focus is on identifying potential conflicts in file accesses, the detailed traces obtained

also enable us to identify to what extent file accesses are sequential or random, which is

important for performance optimizations.

4.3.1 Detecting Overlaps

Here, we describe the algorithm for detecting overlaps. We represent each record as a

tuple (t, r, os, oe, type), where t is the entry timestamp, r is the rank of the process who

made the call, os and oe are the starting and ending offsets of this I/O operation, and type

indicates a read or write operation.

Calculating the offset of an I/O operation is not always straightforward. For functions like

pwrite, the offset and length are included in the arguments of the call, but for functions like

write, the offset is not specified, but depends on previous accesses to the file. Therefore, the

algorithm tracks the most up-to-date offset for each file. For metadata operations like open

and seek, we update the offset according to the open flag (e.g., O CREAT, O TRUNC, or

O APPEND) and the seek flag (e.g., SEEK CUR, SEEK END, or SEEK SET) respectively.

For operations such as write and fwrite, we increment the current offset by the number of

bytes accessed by that function.
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Once we have the correct offset for each function, we use Algorithm 4.1 to construct an

overlapping pair table P . This algorithm is quadratic in the worse case, since each I/O

operation could overlap with all others. In practice, the running time (sorting excepted) is

linear in the number of records. Although we have not done so, sorting can be replaced by

merging as records for each rank are already sorted.

Algorithm 4.1 Detecting overlaps

1: Sort tuples by os
2: for each tuple Ti do
3: for each tuple Tj, j > i do
4: if osj > oei then
5: break ▷ subsequent tuples will not overlap with Ti

6: else
7: P [ri, rj]← 1 ▷ Ti and Tj overlap

4.3.2 Detecting Conflicts

We use timestamps in the traces to determine the order of I/O operations from different

nodes. Since the timestamps come from the local system clocks, large clock skews could

result in incorrect ordering. To reduce skew, we perform a barrier operation when starting

the run and adjust timestamps in the trace records using the exit time from the barrier as

time = 0. We found that clock drift on the system we used can be ignored, because clock

skews in the traces we collected are less than 20 microseconds, while potentially conflicting

I/O operations are 10’s of milliseconds apart.

In order to further validate our methodology, we analyzed traces of the FLASH applica-

tion (Section 4.4.3), which was the one application that exhibited conflicting I/O accesses.

We matched sends to receives and collective functions invocations, so as to determine the

execution order imposed by the communications between processes: e.g., a send starts before

the receive completes, and a barrier starts at all nodes before it completes at any node. The

actual algorithm for MPI calls matching and I/O synchronization verification is discussed

in [70]. In conclusion, we found that conflicting I/O operations were properly synchronized

by the MPI calls: If call A and B performed conflicting I/O accesses, and call A had a lower

timestamp than call B, then A necessarily executed before B, due to the program synchro-

nization logic. Thus, we can assume that timestamp order of conflicting I/O operations

matches their execution order, and that this execution order is enforced by the program

logic. (The order of non-conflicting I/O operations does not affect the computation.)

Now we can describe the algorithm for detecting conflicts. Two tuples (t1, r1, os1, oe1, type1)

and (t2, r2, os2, oe2, type2), where t1 < t2, are a conflict pair if the following conditions are
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satisfied:

1. The pair overlaps: either os1 ≤ os2 ≤ oe1 or os2 ≤ os1 ≤ oe2.

2. The first operation is a write: type1 = write.

3. For commit semantics: process r1 does not execute any commit operation after t1 and

before t2.

4. For session semantics: there is no close operation on process r1 at time tc and open

operation on process r2 at time to so that t1 < tc < to < t2

We expand the overlap detection algorithm presented above (Section 4.3.1) to identify

those overlaps that correspond to a read-after-write conflict or a write-after-write conflict,

and whether the two conflicting accesses are on the same process or on distinct processes.

In order to test the third condition, we need to find, for each write, what is the earliest

succeeding commit executed by the same process. In order to test the fourth condition,

for each I/O operation we need to find the earliest time an ensuing close is executed and

the latest time a preceding open is executed by the same process. We expand each record

(t, r, os, oe, type) with two additional fields: to, the time of the last preceding open and tc, the

time of the first succeeding close or commit by process r. Then (t1, r1, os1, oe1, type1, to1, tc1)

and (t2, r2, os2, oe2, type2, to2, tc2), with t1 < t2, conflict in commit semantics if they overlap,

type1 = write, and tc1 > t2; they conflict in session semantics if they overlap, type1 = write,

and it is not the case that t1 < tc1 < to2 < t2.

We can mark records with the time of the last preceding open and next following commit

or close by traversing the records of each process in timestamp order. Alternatively, we

can create a table of successive commit and close operations and a table of successive open

operations for each process. Conditions three and four can be checked by performing one or

two binary searches in the table. Since the number of open, close, and commit operations

usually is very small the overhead for the binary searches will be negligible.

4.4 RESULTS

Here, we present the results of our investigation of the I/O patterns of HPC applications

and of our algorithm for detecting I/O access conflicts. First, we explore our findings of the

access patterns from both the application’s level and a PFS’s perspective. Next, we present

the conflicts detected under different consistency semantics. Finally, we show the metadata

operations observed from each application and I/O layer.
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4.4.1 System and Application Configurations

We performed our experiments on the Quartz system at Lawrence Livermore National

Laboratory (LLNL). Each Quartz node consists of an Intel Xeon E5-2695 with two sockets

and 36 cores in total, with 128GB memory; the nodes are connected via Omni-Path. The

operating system is TOSS 3. Slurm is used to manage user jobs. The PFS is an LLNL

customized version of Lustre, 2.10.6 2.chaos.

We selected 17 HPC applications: 11 real-world scientific applications, 4 I/O bench-

marks (MACSio, pF3D-IO, VPIC-IO and HACC-IO), and one machine learning application

(LBANN). The full list of these applications and their configurations is given in Table 4.5.

The applications are representative of the typical workloads at a supercomputing center and

span a variety of domains. They perform I/O using the POSIX API and a variety of I/O

libraries: MPI-IO [4], HDF5 [5], Silo [71], NetCDF [72] or ADIOS2 [7].

An application’s I/O patterns depend on its explicit I/O operations but also on configura-

tion parameters of the I/O libraries and the underlying file systems that determine implicit

and low-level I/O operations. Because of this, for applications that can employ multiple I/O

libraries, we run the application using each of the I/O libraries supported by the application.

We expect that the I/O patterns, especially with respect to I/O conflicts, should not depend

on the scale of runs. To confirm this, we ran all applications at two different scales: (1)

8 nodes with 8 processes per node, for 64 MPI ranks in total; and (2) 32 nodes with 32

processes per node, for 1024 MPI ranks in total. Our results confirmed our expectation,

as we found no differences due to scale in the I/O patterns for any application we studied.

Thus, for ease of presentation, we focus on the results collected from 64-process runs in the

rest of this chapter.

As much as possible, we used the same compiler and library versions for our runs, but

needed to make exceptions in some cases for dependency and compatibility issues. Overall,

we used three different compiler and I/O library combinations to build 15 applications from

source. We only had access to the binaries of the remaining two (pF3D-IO and VASP). We

summarize the build and link information in Table 4.2.

4.4.2 Access Patterns Overview

We first categorize the applications we study according to the high-level I/O access pat-

terns they exhibit in Table 4.3 to show our coverage of the possible behaviors of applications.

In our categorization, we use an X−Y notation where X represents the number of processes

performing I/O, and Y represents the number of files accessed. X = N indicates that all
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Applications Compiler MPI HDF5

ENZO, NWChem, GAMESS, LAMMPS, QMC-
PACK, Nek5000, GTC, MILC-QCD, HACC-IO,
VPIC-IO

Intel 19.1.0 Intel MPI 2018 HDF5 1.12.0

pF3D-IO, VASP Intel 18.0.1 MVAPICH 2.2

LBANN GCC 7.3.0 MVAPICH 2.3 HDF5 1.10.5

ParaDiS, Chombo, FLASH, MACSio Intel 19.1.0 Intel MPI 2018 HDF5 1.8.20

Table 4.2: Build and link configurations for the applications in our experiments. We do
not have access to the source code of pF3D-IO and VASP, the information reported here is
retrieved from the ldd command. The versions for other I/O libraries whenever used are:
ADIOS 2.5.0, NetCDF 4.3.3.1 and Silo 4.10.2.

processes perform I/O operations, while X = M indicates that I/O is executed by a subset

of processes. An N − N pattern typically indicates that each process accesses a distinct

file; an M −M pattern typically indicates that each of the M processes aggregates the I/O

requests of a subset of N/M processes, and each aggregator accesses a distinct file.

We categorize the access patterns for each file (i.e., accesses from all processes to the same

file) as: consecutive, monotonic or random. Let oi and ni be the offset and the number

of consecutive bytes accessed by the i-th I/O operation. The consecutive pattern requires

oi+1 = oi+ni. The monotonic pattern only requires that oi+1 > oi+ni. All other accesses are

considered random. Consecutive and monotonic accesses are often strided or strided cyclic:

At each I/O phase, process i accesses the file at offset ai+b and all processes access the same

number of bytes (except for a small amount of extra metadata that could be introduced by

the I/O library). We see that the applications we have chosen for our study provide good

coverage of the possible space of I/O patterns exhibited by HPC applications. Surprisingly,

many of the applications exhibit a 1–1 pattern for accessing files. We anticipated that nearly

all applications would perform parallel I/O of some sort, but we see that is not the case.

We note that most applications show a 1–1 pattern when reading input files, but for space

reasons we do not include that aspect in our table. Also note that Table 4.3 only shows

the patterns we observed. Our runs are not exhaustive across all possible configurations

for these applications, which may show different patterns. For example MILC-QCD, with

the save parallel parameter (MILC-QCD Parallel), uses an N–1 pattern for checkpointing,

whereas with the save serial parameter (MILC-QCD Serial), it uses only one rank for I/O.

FLASH is another example, which will be discussed in more details later this section.

Now we discuss the low-level access patterns of our applications. Figure 4.1(a) shows

the global access patterns from the perspective of the PFS, and Figure 4.1(b) shows the

aggregated local access patterns from the perspective of individual processes. We compute
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Consecutive Strided Strided Cyclic

N–N ENZO, pF3D-IO, HACC-IO,
NWChem

N–M MACSio

N–1 LBANN, VASP Chombo, FLASH-nofbs,
ParaDiS-HDF5, ParaDiS-
POSIX, MILC-QCD Parallel

M–M GAMESS, LAMMPS-Adios2

M–1 LAMMPS-MPIIO FLASH-fbs,
VPIC-IO

1–1 GTC, Nek5000, NWChem,
QMCPACK, VASP, MILC-
QCD Serial, LAMMPS-HDF5,
LAMMPS-NetCDF, LAMMPS-
POSIX

Table 4.3: High-level access patterns of applications studied.

the percentage of each access type by dividing the number of accesses for that type by the

number of total accesses, across all files accessed by the application. Each bar in the charts

represents a single execution of an application configuration.

From the perspective of a single process, random accesses to a file are rare. From the global

perspective of the PFS, accesses are sometimes much more random (e.g., FLASH-nofbs and

LBANN), but global random accesses are still rare. The global access pattern is same as the

local pattern when each process accesses a distinct file. It is also regular when all processes

access the same file and the accesses are closely coordinated, as is the case for collective I/O.

These results clearly indicate that PFS performance can be improved by read-ahead or by

aggregating delayed writes, both at the client and at the server side.

In the remainder of this section we focus on four representative applications: LAMMPS,

ParaDiS, FLASH, and LBANN.

LAMMPS and ParaDiS We highlight LAMMPS and ParaDiS because both of these

applications can employ multiple I/O libraries and show different I/O patterns for each

library. For both LAMMPS and ParaDiS, we note that when using the POSIX API, all I/O

accesses are consecutive from both the local and global perspectives. However, when the

applications use higher-level I/O libraries, random accesses are introduced. This is primarily

due to bookkeeping and optimizations performed by the I/O libraries, e.g., HDF5 stores and

accesses metadata that is interspersed within the user file, leading to random accesses.

50



0%

25%

50%

75%

100%

FA
LS

H
-n

of
bs

FL
A

SH
-f

bs
N

ek
50

00
Q

M
C

PA
C

K
VA

SP
LA

M
M

PS
-A

di
os

2
LA

M
M

PS
-N

et
C

D
F

LA
M

M
PS

-H
D

F5
LA

M
M

PS
-M

PI
IO

LA
M

M
PS

-P
O

SI
X

EN
ZO

LB
A

N
N

N
W

C
he

m
Pa

ra
D

iS
-H

D
F5

Pa
ra

D
iS

-P
O

SI
X

C
ho

m
bo

G
TC

G
A

M
ES

S
M

IL
C

-Q
C

D
 S

er
ia

l
M

IL
C

-Q
C

D
 P

ar
al

le
l

M
A

C
Si

o
pF

3D
-I

O
V

PI
C

-I
O

 n
on

un
i

V
PI

C
-I

O
 u

ni
H

A
C

C
-I

O
 M

PI
IO

H
A

C
C

-I
O

 P
O

SI
X

Consecutive Monotonic Random

(a) Global pattern from the perspective of the PFS.
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(b) Local pattern from the perspective of individual processes.

Figure 4.1: Overview of low-level access patterns

FLASH We selected FLASH because it can be easily configured to employ independent

or collective MPI-IO. In FLASH simulations, there is a parameter “block size” that decides

the problem size each process should work on. The parameter can either be determined

at compile time or specified at runtime using configuration file parameters. Setting a fixed

block size (FLASH-fbs) at compile time enables collective I/O for writing checkpoint files
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(but not plot files). Using a dynamic block size (FLASH-nofbs) gives more flexibility to users

but also disables collective I/O. As expected, with collective I/O, the global access pattern

is much less random.

Figure 4.2 shows detailed file access patterns (write-only) for the two configurations of

FLASH (64 ranks run) for accessing checkpoint and plot files. The charts in (a) and (d) show

the access patterns generated by writing a checkpoint file in the two I/O modes (collective

vs. independent). When independent I/O is used, every process participates in the I/O

activity, whereas when collective I/O is enabled, the MPI-IO library (via calls from HDF5)

aggregates I/O accesses and only six aggregator processes access the PFS. The small I/O

accesses at the beginning of the file are HDF5 metadata operations. Because ∼ 30 processes

are involved in metadata writes, it suggests that the MPI-IO aggregators are not employed

for metadata. Figure 4.2(c) shows the access patterns of a plot file with collective I/O, where

only rank 0 writes data to the plot file, but around 30 ranks participate in HDF5 metadata

operations.

The independent I/O behavior of FLASH-nofbs shown in Figure 4.1(a) exhibits ∼50%
random accesses. We plot the accesses to a checkpoint file over time in Figure 4.2(b) and

(e). As Figure 4.2(e) shows, there is a large amount of parallelism in those accesses, which

is expected. However, we see a different pattern when we focus on a single rank as show in

Figure 4.2(f), where for rank 0, the accesses are mostly monotonic.

LBANN We chose to highlight LBANN because it is an example of a read-intensive ap-

plication, which differs from the majority of scientific simulations that are write-intensive.

All processes in LBANN concurrently execute the POSIX API read() call to load the entire

dataset into memory. Similar to FLASH-nofbs, from the global view of the PFS, there are a

large portion of random accesses because all reads are issued in parallel. However, from the

local view of a single process, all reads are consecutive because every rank reads all bytes of

the file from the beginning to the end.

4.4.3 Access Conflicts with Different Semantics

Here, we report our findings on the semantics needs of scientific applications and show

support for the assumption that strong consistency semantics are rarely required. We use

the algorithm from Section 4.3.2 to detect conflicts for the 17 applications under session

semantics and commit semantics2, and show the results for session semantics in Table 4.4.

2Our test for a commit operation is positive if fsync, fdatasync, fflush, fclose or close are called
by the application or I/O library.
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(a) Collective I/O per rank, check-
point.

(b) Collective I/O over time,
checkpoint.

(c) Collective I/O per rank, plot
file.

(d) Independent I/O per rank,
checkpoint.

(e) Independent I/O over time,
checkpoint.

(f) Rank 0 independent I/O over
time, checkpoint.

Figure 4.2: Collective I/O write patterns of FLASH-fbs (a, b, c) and independent I/O write
patterns of FLASH-nobfs (d, e, f).

Seven of our applications exhibit conflicting I/O accesses under session semantics, but in

only one application (FLASH) the conflict involves two distinct processes. Since all but

one of the PFSs we studied can correctly handle RAW and WAW conflicts on the same

process (BurstFS being the exception), all the applications but FLASH will run correctly

with session semantics.

We employed our conflict detection algorithm for commit semantics, and the conflicts in

FLASH disappeared, but the conflict pattern of the other applications was unchanged. The

conflicts in FLASH are caused by the flushes of HDF5 metadata. During the checkpoint

step, FLASH calls H5Fflush() (which flushes both data and metadata) after having written

one dataset. The file is closed once all datasets have been written. Before the file close,

session semantics do not guarantee the latest updates are seen by other processes so the

conflict is inevitable. In comparison, the commit operation (fsync() called by H5Fflush())

in commit semantics makes the updates visible to all processes and avoids the conflict. No

conflicting accesses are generated by LAMMPS when using POSIX, MPI-IO, and HDF5 for

I/O. The conflicts appeared only when NetCDF or ADIOS are used, where the conflicts are

caused by library metadata operations. For example, in LAMMPS-ADIOS the conflict is
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Application I/O Library
WAW RAW
S D S D

FLASH HDF5 ! !

ENZO HDF5 !

NWChem POSIX ! !

pF3D-IO POSIX !

MACSio Silo !

GAMESS POSIX !

LAMMPS ADIOS !

LAMMPS NetCDF !
LAMMPS HDF5

LAMMPS MPI-IO

LAMMPS POSIX

MILC-QCD POSIX

ParaDiS HDF5

ParaDiS POSIX

VASP POSIX

LBANN POSIX

QMCPACK HDF5

Nek5000 POSIX

GTC POSIX

Chombo HDF5

HACC-IO MPI-IO

HACC-IO POSIX

VPIC-IO HDF5

Table 4.4: Conflicts with session semantics. ‘S’ indicates the conflicting operations are
called by the same process; ‘D’ indicates that the conflict involves multiple processes. Under
commit semantics, the conflicts from FLASH disappeared.

due to the overwriting of a single byte of the ADIOS metadata file (*/md.idx).

Some conflicts can be avoided with little effort, especially when they are introduced by

I/O libraries. For example, in FLASH the conflicts are caused by flushes of metadata, and

to avoid the conflicts we can either enable the HDF5 collective metadata mode (which would

have only rank 0 perform all metadata I/O) or simply remove the call to H5Fflush(). In the

latter case, correctness is still guaranteed in the absence of failures since the H5Fclose() in

the end implies an H5Fflush(). With a single line code change, FLASH can run correctly

on all file systems that support session semantics or commit semantics.

In summary, all but one of the applications we studied can execute correctly with session

semantics, provided that conflicts on the same process are properly handled. The one excep-

tion can be handled with a single line change to an I/O library. Under commit semantics,
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the results are similar since applications do not make much use of fsync or other commit

operations.

4.4.4 Metadata Operations

Because metadata operations can introduce performance bottlenecks, PFS developers may

choose to relax POSIX metadata requirements. For example, it is rare for a scientific ap-

plication to access the atime attribute of its data files. A PFS developer may choose to

update atime only once at the end of the execution in order to reduce the number of update

messages sent to the metadata server (or to avoid invalidation messages if client-side caches

are used). Figure 4.3 shows POSIX I/O metadata and utility I/O operations3 used in the

applications we studied. We indicate where the invocations occur, in the MPI library, in

HDF5, or in the application or another library. (We cannot further refine the last category

Since Recorder does not trace other libraries.)

Figure 4.3: Metadata operations used by applications.

3The operations we monitored were: mmap, mmap64, msync, stat, stat64, lstat, lstat64, fstat, fstat64,
getcwd, mkdir, rmdir, chdir, link, linkat, unlink, symlink, symlinkat, readlink, readlinkat, rename, chmod,
chown, lchown, utime, opendir, readdir, closedir, rewinddir, mknod, mknodat, fcntl, dup, dup2, pipe, mkfifo,
umask, fileno, access, faccessat,tmpfile, remove, truncate, ftruncate
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We see that each application configuration uses only a small set of metadata operations,

and many operations like rename(), chown() and utime() are not used by any appli-

cation. I/O libraries introduce more metadata operations than direct use of the POSIX

API, and each library introduces a different set of operations. For example, compared to

ParaDiS-POSIX, ParaDiS-HDF5 uses three more metadata operations, lstat(), fstat(),

and ftruncate(). Similarly in LAMMPS, only two operations are observed for LAMMPS-

POSIX, but LAMMPS using I/O libraries introduces additional operations such as getcwd()

and unlink(). In some cases, we observed a POSIX call in the source code but did not found

it in our traces. This is the case for unlink() in ENZO. This could be due to the chosen

run configurations, or to dead code in the application.

4.5 DISCUSSION

The results of this chapter provide HPC users a methodology for examining the I/O

patterns of their applications to determine whether using a relaxed-consistency PFS is ap-

propriate. We have made all the data4 and code5 used in this study public so that the

community can use and build upon it. The data includes traces files, input/output files, and

a detailed report for each application run, including information such as I/O sizes, function

counters, conflicts detected for each file, etc. The code also implements the algorithms we

used for analyzing the I/O traces.

4https://doi.org/10.6075/J0Z899X4
5https://github.com/uiuc-hpc/Recorder
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Application Version I/O
Library

Configuration Description

FLASH [44] 4.4 HDF5 2D 512x512 Sedov explosion problem. 100 time steps;
Checkpointing at every 20 steps.

Nek5000 [73] v19.0rc1 POSIX Eddy solutions in doubly-periodic domain with an addi-
tional translational velocity. This case monitors the error
for an exact 2D solution to the Navier-Stokes equations.
1000 timesteps; Checkpointing at ever 100 steps.

QMCPACK [74] 3.9.2 HDF5 A short diffusion Monte Carlo calculation of a water
molecule. 100 warmup steps; 40 computation steps;
Checkpointing at every 20 steps.

VASP [75] 5.4.4 POSIX Simulate elastic properties and energies for zinc-blended
GaAs at a given volume and pressure.

LBANN [76] 0.1000 POSIX Train and test Autoencoder with CIFAR-10 dataset. The
CIFAR-10 dataset contains 60,000 32x32 color images in
10 different classes.

LAMMPS [77] 20Mar 3 ADIOS
NetCDF
HDF5
MPI-IO
POSIX

2D LJ flow simulation. 100 steps in total and check-
pointing at every 20 steps. Dump only atoms unscaled
coordinates. Different I/O libraries are usd for writing
the dump file.

ENZO [78] enzo-dev
20200623

HDF5 Non-cosmological Collapse test: a sphere collapses until
becoming pressure supported.

NWChem [79] 6.8.1 POSIX 3-Carboxybenzisoxazole Gas-phase Dynamics at 500K.
5 equilibration steps, 30 data gathering steps and print
output every 5 steps. Write out solute coordinates to the
trajectory file every step.

ParaDiS [80] 2.5.1.1 HDF5
POSIX

Use fast multipole method for far-field forces to simulate
dislocations in a sample copper.

Chombo [81] 3.2.7 HDF5 A 3D variable-coefficient AMR Poisson solve in which
the RHS and the coefficients are sinusoidals.

GTC [82] 0.92 POSIX Built-in example run (gtc.64p.input) of the Gyrokinetic
Toroidal code.

GAMESS [83] June 30,
2019 R1

POSIX Closed shell functional test on a C1 conformer of ethyl
alcohol.

MILC-QCD [84] 7.8.1 POSIX MILC collaboration code for lattice QCD calculations.
MACSio [85] 1.1 Silo Simulate the I/O behaviors of ALE3D [86]. Silo is used

for I/O.
pF3D-IO - POSIX Simulates one pF3D [87] checkpoint step. The total out-

put of one process is about 2GB.
HACC-IO [88] 1.0 MPI-IO

POSIX
The HACC I/O benchmark captures the I/O patterns
of the HACC [89] simulation code. This includes the
checkpoint and restarts as well as the analysis outputs
produced by the simulation. It also captures the various
I/O interfaces used in HACC, namely, POSIX I/O, MPI
collective I/O and MPI independent I/O.

VPIC-IO [90] 0.1 HDF5 VPIC [91] is a scalable particle physics simulation. The
I/O pattern of VPIC-IO is a 1D particle array of a given
number of particles where each particle has eight vari-
ables.

Table 4.5: Application Input and Run Configuration Information
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CHAPTER 5: PARALLEL FILE SYSTEM WITH TUNABLE
CONSISTENCY

5.1 OVERVIEW

As discussed in Chapter 2, regarding I/O accesses, the POSIX specification contains two

components: the interface and the semantics. The I/O interface specifies a set of APIs such

as open, read, write and close. And the semantics describes what happens after the

return of an I/O call. The POSIX I/O interface is ubiquitous and is widely used in the HPC

world, including both applications and libraries. However, as we have shown in the last

chapter, very rarely do HPC applications require strict POSIX consistency semantics. This

presents an opportunity to improve performance by relaxing the consistency requirements.

A PFS can provide the same I/O interface but support a weaker consistency model. This

way, existing applications can enjoy performance improvement without any code modifica-

tion. The correctness is guaranteed as long as the provided consistency model meets the

minimum requirement of the application. And an application’s consistency requirements can

be determined using the method proposed in the previous chapter.

Unfortunately, applications do not provide information about the consistency model they

require and PFSs are not set up to use such information. So PFSs have to make the worst case

assumptions and provide strict POSIX consistency. In this chapter, we propose TangramFS,

a proof-of-concept PFS that supports tunable consistency. The main goal is to evaluate what

is the impact of different consistency models on I/O performance, or how much performance

one can gain by relaxing the consistency semantics.

TangramFS is an ephemeral file system that is available to a single user and a single job at

a time. The lifetime of a TangramFS instance is the same as the duration of a user job. The

user is responsible for starting and terminating TangramFS at the job start and end time.

TangramFS is expected to run on systems with node-local burst buffers (BB). TangramFS

unifies node-local BB resources (e.g, NVRAM and persistent memory) and presents a global

namespace to all clients. TangramFS can be considered an extra buffer layer on top of

the traditional PFS such as Lustre and GPFS. TangramFS buffers all I/O accesses to the

underlying PFS using node-local BB devices. Even though the node-local BBs are persistent

storage, they normally can only be accessed during the lifetime of the user’s job. So it is

important to move the data buffered by TangramFS to the underlying PFS before the end

of the job.
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5.2 DESIGN

Designing a new PFS involves a variety of decisions. For example, we need to decide

how to resolve a path and map it to the inode server, how to retrieve file locations given

an inode, how to distribute inodes and data blocks, which protocol should we use to guar-

antee consistency, etc. However, TangramFS is not designed to be a full-edge file system.

We have a narrow-minded goal of studying the impact of different consistency models on

performance. So the most important design choices for TangramFS are how to provide a

way for applications to specify their consistency requirements, and with that information,

how to support tunable consistency models. With that in mind, we isolate the implemen-

tation of consistency semantics from other components. Other components are considered

control variables in our experiments, and we need to make sure they do not jeopardize the

performance when evaluating different consistency models.

When designing a new PFS, there are many research and production systems one can

learn from. Most modern PFSs [1, 2, 3] use some kind of locking mechanism to guarantee

the POSIX consistency semantics. The lock-based design is a good choice to support POSIX

consistency, but we will show in this section that it is not the best one for relaxed consistency

models. We will investigate the issues of the lock-based designs in implementing weaker

models and then we will propose a synchronization-based (shortened as sync-based in the rest

of this work) paradigm that is more suitable for implementing relaxed consistency models.

5.2.1 Lock-based Design

The locking mechanism ensures that a node cannot read from a file (or part of a file)

that may be being modified by another node. This way it guarantees a write will become

immediately visible to the subsequent reads while allowing that write to be cached. We use a

simple read-after-write example shown in Figure 5.1(a) to illustrate the locking mechanism.

Assume the read by node B accesses the same range as the write by node A. From the

view of a lock-based PFS, the write arrives first. Before node A can write anything, it will

first ask for the write permission (e.g., a write lock) from the lock manager. Once granted,

depending on the implementation, node A can either modify the disk directly or cache the

write in memory. Next, when the read arrives, node B will contact the lock manager to

acquire a lock for its read operation. Since the lock of the same range has been given to

node A, the PFS will need to revoke it and reassign it to node B. The revoke operation will

result in a flush to be performed by node A. This flush operation guarantees that the cached

write of node A becomes visible to everyone. This way, the read by node B is guaranteed to
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(b) Non-overlapping writes

Figure 5.1: Two simple access patterns.

return the latest data written by node A.

Now consider a case where the I/O operations on different nodes only access non-overlapping

ranges (Figure 5.1(b)). In such a case, no lock is needed at all. The extra locks can greatly re-

duce the performance. As we scale out, the overhead due to the unnecessary lock operations

will quickly become intolerable. But unfortunately, the lock in this case is still inevitable

from the perspective of a lock-based PFS, due to the unawareness of the I/O access pattern

(i.e., they are non-overlapping writes) and the POSIX consistency requirement. The POSIX

consistency requires the write should be immediately visible to the subsequent reads. Mean-

while, POSIX does not specify a way for applications to share information about their I/O

patterns to the PFS. When a lock-based PFS sees a write, it does not know what will come

next and whether the next I/O operation will access the same data, therefore a lock must

be acquired before every operation to ensure the POSIX consistency. Even though imple-

mentation optimizations such as distributed lock managers can be adopted to alleviate the

locking overhead in this specific workload, we will show in the next section, that no single

optimization works ideally in every scenario. In general, each design choice is associated

with a set of trade-offs. An optimization works well for one I/O workload may perform

poorly for others. The root cause again is two-fold: (1) The strict consistency requirements

imposed by POSIX, and (2) The lack of information about applications’ I/O pattern. Next,

we will present a better design for implementing weaker consistency models.

5.2.2 Sync-based Design

Compared to the strict POSIX consistency, weaker models offer more flexibility to the

system designers. In weak consistency models, writes are required to become visible only

after a certain synchronization point, e.g., after an explicit commit operation or at the close

point. This enables more optimizations such as cache-to-cache transfer, delaying flushes, and

avoiding communications. The exact synchronization point depends on the I/O pattern and
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is decided by users. So it is important that the PFS provides a way for users to share this

synchronization information. This can be done by requiring users to specify their desired

consistency model or by asking them to use additional PFS APIs.

We propose a sync-based paradigm that by default offers no protection (no lock) and

no consistency guarantee for any I/O operation. Modifications are made visible only af-

ter the synchronization point. This way, the PFS will incur a minimum overhead if the

synchronization operations are minimized. Reusing the two examples in Figure 5.1, in the

read-after-write case, the synchronization must take place after the write and before the read.

And the overhead is similar to that of the lock-based design. But in the non-overlapping

write example, synchronizations are not required, and thus the overhead can be kept at a

minimum level. As one can see, the key is to remove all unnecessary synchronization opera-

tions, which requires accurate information regarding the application’s synchronization logic.

In a sense, this adds some burdens to the users—the more accurate the information they

provide, the better the performance. In the worst case, we synchronize after every write,

which essentially falls back to POSIX consistency.

5.2.3 Discussion

To summarize, imposing a stronger consistency model will certainly sacrifice more per-

formance. The lock-based design achieves a good compromise when a strong consistency is

required yet no or little information about applications’ I/O is shared with the PFS. When

we expect more information to be passed to the PFS, in particular, the consistency require-

ment or the synchronization logic of applications, a sync-based paradigm can be used to take

full advantage of such information. Therefore, TangramFS supports the POSIX consistency

using a lock-based design and supports weaker consistency models using a sync-based design.

We want to emphasize that, the targeted applications of TangramFS are HPC applications

that do not require POSIX consistency. Even though we support POSIX consistency, we

expect applications to enjoy the full benefit of TangramFS when they can run with a weak

consistency model.

5.2.4 Limitation and Assumptions

Currently, TangramFS is implemented as a proof-of-concept PFS with a major focus on

studying the impact of different consistency models on performance. To be specific, we only

focus on data consistency and ignore metadata consistency for now. TangramFS supports

several metadata operations such as stat to support most HPC I/O applications. But only

61



EOF (file size) is supported and kept globally consistent. TangramFS only supports regular

files. Files that represent sockets or other blocking devices are not handled. Append mode

is not supported but can be simulated using seek and write.

One important assumption we make is that overlapping accesses are properly synchronized

under a given consistency model, i.e., there are no concurrent and conflicting accesses to the

same range of the same file. This is a reasonable assumption but can greatly simplify the

implementation. For example, it disallows multiple processes from issuing conflicting lock

requests, which makes the locking protocol easy to implement. With the “proper synchro-

nization” assumption, when we say we support POSIX consistency, we actually mean we

support the strong consistency model defined in Section 4.1.1. And we only focus on meet-

ing the consistency requirements of data operations, i.e., a write shall become immediately

visible to everyone. Other requirements like actively updating the last modification time are

ignored.

5.3 PRIMITIVES

Here, we discuss the most important TangramFS primitives. They are broadly divided

into three categories: core primitives, locking primitives, and synchronization primitives.

The locking primitives are used to implement POSIX consistency and the synchronization

primitives are used to implement weaker consistency models. The locking primitives and

the synchronization primitives are mutually exclusive, only one set can be used during the

execution of an application.

5.3.1 Core Primitives

Table 5.1 shows the core primitives of TangramFS. They include essential calls that are

used in both lock-based and sync-based designs. The calls are designed to mimic the POSIX

I/O interface in order to ease the work of rewriting existing codes. A major difference is

that, in TangramFS, write (tfs write) and read (tfs read) calls provide no lock and no

consistency guarantee at all. The write call by itself does not make its modification visible

to others. And the read call is not guaranteed to return the most recent modification, unless

the last write was performed by the same process. The consistency is provided by dedicated

primitives as we will show later. In other words, TangramFS strips away the responsibility

of guaranteeing consistency from read and write calls. This way, more optimizations can be

employed when implementing the write and read calls, which are normally the most frequent

and expensive calls in an I/O program.
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The core primitives, even though provide barely any consistency guarantee, can support

some simple and common I/O workloads. Particularly, the workloads that access non-

overlapping ranges and require no synchronizations. Implementing such workloads using the

core primitives should be able to achieve a near-zero software overhead. The same workload

if running with POSIX consistency will have a much higher overhead.

• tfs file t* tfs open(const char* pathname)

Description: Open the file whose pathname is the string pointed to by pathname, and asso-

ciates a TangramFS file handler (tfs file t) with it. This file handler is an opaque object

and can be used by subsequent I/O functions to refer to that file. The file is always opened

in read-write mode. Append mode is not supported. The file offset used to mark the current

position within the file shall be set to the beginning of the file.

Return Value: Upon successful completion, the function shall return a pointer to the Tan-

gramFS file handler; otherwise, a NULL pointer shall be returned.

• int tfs close(tfs file t* file)

Description: This function shall cause the file handler pointed to by file to be released and the

associated file to be closed. Any buffered data shall be discarded (not flushed like in POSIX).

Whether or not the call succeeds, the file handler shall be disassociated from the file.

Return Value: Upon successful completion, the function shall return 0; otherwise, it shall

return -1.

• ssize t tfs write(tfs file t* file, const void* buf, size t size)

Description: Write size bytes of data pointed by buf to the file handler pointed to by file.

The file-position indicator of the calling process shall be advanced by the number of bytes

successfully written. The write becomes immediately visible to the writing process. But it is

not guaranteed to be visible to others after the call.

Return Value: Upon successful completion, the function shall return the number of bytes

successfully written; otherwise, -1 shall be returned.

• ssize t tfs read(tfs file t* tf, void* buf, size t size)

Description: Read size bytes of data from the specified file to the buffer pointed to by buf.

The file-position indicator of the calling process shall be advanced by the number of bytes

successfully read. This function shall return the most up-to-date buffered write by the same

calling process. If the calling process never writes to that range before, it shall return the most

recent flushed data, regardless of who performed the flush.

Return Value: Upon successful completion, the function shall return the number of bytes

successfully read; otherwise, -1 shall be returned.

Table 5.1: TangramFS core primitives
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• ssize t tfs read peer(tfs file t* file, tfs addr t* peer, size t offset, size t

size, void* buf)

Description: This function shall read the file range of [offset, offset+size-1 ], that is buffered

by the peer client specified by peer.

Return Value: The size bytes of the most recent buffered data shall be returned on success.

In case the peer did not buffer the required data or an error occurred, -1 shall be returned.

• int tfs flush(tfs file t* file)

Description: Flush all the buffered data (if any) of the file of the calling process. The function

shall be a no-op if no buffered data exists for the file handler pointed to by file.

Return Value: Upon successful completion, the function shall return 0; otherwise, it shall

return -1.

• ssize t tfs seek(tfs file t* tf, size t offset, int whence);

Description: Set the file-position indicator for the file handler pointed to by file. The new

position, measured in bytes from the beginning of the file, shall be obtained by adding offset to

the position specified by whence. The specified point is the beginning of the file for SEEK SET,

the current value of the file-position indicator for SEEK CUR, or end-of-file for SEEK END.

The function shall allow the file-position indicator to be set beyond the end of existing data in

the file.

If data is later written at this point, subsequent reads in the gap shall return undefined data

until data is actually written into the gap. The function by itself shall not increase the end-of-

file.

Return Value: Upon successful completion, the function shall return the current file-position

indicator; otherwise, it shall return -1.

• ssize t tfs tell(tfs file t* file);

Description: This function shall obtain the current value of the file-position indicator for the

file handler pointed to by file.

Return Value: Upon successful completion, the function shall return the current value of

the file-position indicator for the file handler measured in bytes from the beginning of the file.

Otherwise, it shall return -1.

• int tfs stat(tfs file t* file, struct stat* buf)

Description: This function shall obtain information about a file associated with the file

handler pointed to by file, and shall write it to the area pointed to by buf. Currently, TangramFS

only maintains the file size attribute (i.e., st size of struct stat), all other attributes are

ignored.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

Table 5.1: Cont.
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5.3.2 Locking Primitives

Table 5.2 shows the key primitives used in our lock-based design. A lock token is assigned

to a contiguous data range. The actual lock granularity depends on the implementation.

And like most of the locking mechanisms, TangramFS provides two lock types: read lock and

write lock. A read lock can be shared by multiple owners, but a write lock requires exclusive

ownership. A conflict happens when acquiring a lock that is owned by someone else and

one of them is a write lock. The conflict is handled internally by the tfs acquire lock

function.

The primitives are very simple and easy to use. The heavy lift is done at the implementa-

tion end, where many optimization decisions have to be made. This work will not reinvent

a locking algorithm. Rather, we use a variant of the distributed locking algorithm proposed

in [3].

• int tfs acquire lock(tfs file t* file, size t offset, size t size, int type)

Description Acquire a lock of range [offset, offset+size-1 ] of the file handler specified by

file. The type is one of the two values: LOCK TYPE READ for a shared read lock or

LOCK TYPE WRITE for an exclusive write lock. The function guarantees that the speci-

fied range shall be covered by the granted lock, but the implementation can also extend the

lock range. The function shall handle any conflict internally.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be re-

turned.

• int tfs release lock(tfs file t* file, size t offset, size t size)

Description: Release the locks held by the calling process for the range [offset, offset+size-

1 ] of the file handler specified by file. The function shall release all locks covered by the

specified range. If an existing lock overlaps with the specified range, it shall relinquish at least

the requested range. The implementation can split and release partially the existing lock, or

revoke the entire lock. The function shall be a no-op if the calling process does not possess any

lock for the given range.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

• int tfs release lock file(tfs file t* file)

Description: Release all locks granted for the file handler file. The function shall be a no-op

if no lock is possessed by the calling process.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

Table 5.2: TangramFS locking primitives
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• int tfs release lock client()

Description: Release all locks of all files held by the calling process. The function shall be a

no-op if no lock is possessed by the calling process.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

Table 5.2: Cont.

Combining core primitives and locking primitives, we can support POSIX consistency

easily. Table 5.3 shows how to use them to implement several common POSIX functions so

that they meet the POSIX consistency requirements.

POSIX calls Core and locking primitives
open tfs open

write tfs acquire lock; tfs write

read tfs acquire lock; tfs read/tfs read peer

fsync
close tfs release lock file; tfs close

Table 5.3: Implementing POSIX consistency using core and locking primitives

5.3.3 Synchronization Primitives

The sync-based design does not involve any lock. Instead, it requires applications to

explicitly make synchronization calls. This can be achieved by calling the primitives directly

or by specifying a required consistency model and letting the TangramFS runtime invoke the

primitives automatically. Table 5.4 shows the provided synchronization primitives. The goal

of these primitives is to be flexible enough to support different consistency models while not

preventing any implementation optimization. The two key primitives are tfs attach and

tfs query. The attach call is made only at the synchronization point, which ensures the

caller’s update becomes visible to everyone. The attach call is not needed if the application

is certain that the data will not be read by others. The query call is made whenever one

needs to see the most up-to-date attached write from others. In most HPC I/O workloads,

this is rare, one would normally read from its own writes or read from an existing file.

So the weaker the consistency model or the less the synchronization operations, the less the

attach and query calls are needed and thus the lower the overhead. This is further confirmed

in Table 5.5, which shows how different consistency models can be implemented using the

core and synchronization primitives. We assume no knowledge about the application’s I/O
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patterns, thus we place a query before every read. In reality, users can decide whether the

query is necessary. Another possible optimization for implementing session consistency is to

perform a whole file query (tfs query file) at the open time. This query should return all

attaches to the specified file, so later reads will not need to query again.

• int tfs attach(tfs file t* file, size t offset, size t size)

Description: Attach the update from offset to offset+size-1 to the file handler pointed to

by file to the calling process. This function shall make the most recent buffered writes of the

calling process to the specified range visible and available to all processes. Overlapping ranges

that were attached before shall be overwritten. The data covered by the specified range must

have been written and buffered, but not flushed, before the call. The function shall be a no-op

if no modification has been made to the specified range.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

• int tfs attach file(tfs file t* file)

Description: Attach all buffered writes to the file handler pointed to by file to the calling

process. Overlapping ranges that were attached before shall be overwritten. The function shall

be a no-op if no buffered writes exist.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

• int tfs query(tfs file t* file, size t offset, size t size, tfs interval t**

owners, int* num owners)

Description: Return the most recent attached processes of the buffered writes of the file

covered by the range of [offset, offset+size-1 ]. The results shall be written to owners and

num owners, where owners contains a list of intervals and the attached process of each interval.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

• int tfs query file(tfs file t* file, tfs interval t** owners, int* num owners)

Description: Return the most recent attached processes of the buffered writes of the file. The

results shall be written to owners and num owners, where owners contains a list of intervals

and the attached process of each interval.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

Table 5.4: TangramFS synchronization primitives
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• int tfs detach(tfs file t* file, size t offset, size t size)

Description: Detach previously attached writes covered by the range of [offset, offset+size-1 ]

of the file. The function shall make the buffered writes covered by the specified range no longer

visible and available to all other processes. If the data needs to be persistent, tfs flush should

be called before this function. Flushed then detached data can be read using tfs read.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

• int tfs detach file(tfs file t* file)

Description: Detach all previously attached writes of the calling process to the file handler

pointed to by file. The function shall be a no-op if no attached writes exist.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

• int tfs detach client()

Description: Detach all previously attached writes of the calling process. The function shall

be a no-op if no attached writes exist.

Return Value: Upon successful completion, 0 shall be returned. Otherwise, -1 shall be

returned.

Table 5.4: Cont.

POSIX
calls

POSIX
consistency

Commit
consistency

Session
consistency

open tfs open tfs open tfs open

write tfs write;

tfs attach

tfs write tfs write

read tfs query;

tfs read/read peer

tfs query;

tfs read/read peer

tfs query;

tfs read/read peer

fsync tfs attach file

close tfs close tfs attach file;

tfs close

tfs attach file;

tfs close

Table 5.5: Implementing different consistency models using core and synchronization prim-
itives
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5.4 IMPLEMENTATION

In this section, we describe the implementation details of TangramFS. TangramFS is

a user-level file system with a focus on data operations. A limited number of metadata

operations (e.g., stat) and attributes (e.g., EOF) are supported. For data operations, we

have supported the most commonly seen POSIX I/O functions such as read, write, fsync,

seek, tell, etc. Figure 5.2 depicts the architecture of TangramFS. There are two ways to

run an application on TangramFS.

1. Using a built-in consistency model. This is the simplest way to use TangramFS. It

requires no code modifications to existing applications. Users can choose a consistency

model that meets their application-specific consistency requirements. TangramFS in-

tercepts POSIX I/O calls automatically and implements them using the specified con-

sistency model. Currently, we support three consistency models: POSIX, commit, and

session.

2. Using the TangramFS primitives directly, which requires existing applications to be

rewritten. This method allows the most accurate synchronization logic to be shared

with TangramFS. Applications written using TangramFS APIs are not limited to the

built-in consistency models. Users have fine control over what should be consistent

and when the synchronization should happen.

Now we briefly discuss the implementation of the core primitives. We reserve the in-depth

discussion for Section 5.4.2. Each client process buffers its writes (tfs write) using the

node-local BB devices. We assume the BB devices are large enough during the entire usage

of a job execution. At a read call (tfs read), the client tries to read from its local buffer first;

if the requested range has not been written before, the client will read from the underlying

PFS to get the latest flushed data. One optimization we employed is called client-to-client

transfer, achieved through tfs read peer, where the reading client directly fetches the data

from the last writer’s buffer using RDMA. This optimization is currently available in the

sync-based implementation. It requires an extra message (tfs query) sent by the reader to

query the information about the last writer before the read call.

Besides the core primitives, TangramFS performs extra tasks depending on the underlying

implementation. The next two subsections discuss implementation details specific to the

lock-based and sync-based designs.
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Figure 5.2: TangramFS Architecture

5.4.1 Lock-based Implementation

There are many ways to implement a lock-based file system that guarantees POSIX con-

sistency. Each of them includes a set of implementation decisions, and each decision is as-

sociated with a set of trade-offs, e.g., centralized lock server versus distributed lock servers.

As discussed earlier, it is impossible to implement a lock-based PFS that works ideally for

every I/O workload. The major obstacles are the lack of I/O information and the strict

adherence to the POSIX consistency requirements. They prohibit many optimizations and

often lead to unnecessary software overhead in many cases.

In TangramFS, we adopt a variant of the locking mechanism proposed in [3]. There is one

global lock manager (TangramFS Server in Figure 5.2) for the entire system and one local

lock manager per compute node. The original implementation requires root privileges to

run. Its lock managers (both global and local) are dedicated processes, who are persistent

across jobs. TangramFS is a user-level PFS, so in our implementation, one TangramFS client

process is selected to play the role of the node-local lock manager. The lock managers in

TangramFS have the same life cycle as the TangramFS instance, which is just the duration

of the associated job.

The client processes on each node only communicate with the node-local lock manager,

and this node-local manager tries to handle all of its clients’ requests locally and only com-

70



municates with the global server when necessary. The global lock manager coordinates locks

between local lock managers by handing out lock tokens, which convey the right to grant

distributed locks without the need for a separate message exchange each time a lock is ac-

quired or released. Repeated accesses from the same node to the same file range will only

require one message sent to the global lock server. Before the first access, the local lock

server will issue a lock acquire request to the global server. Once granted, all the subsequent

accesses can be performed locally. Client-side caching is also possible as the data written or

read can not be modified elsewhere without revoking the token first. Next, we discuss lock

tokens and then go through each locking operation.

Lock token The smallest unit of a lock token is a block, where the block size is configured

in advance. A lock token can cover multiple contiguous blocks. It has one of the two types:

shared read token or exclusive write token. An access to a sub-block also needs to acquire

a token for the entire block. It is important to decide the block size carefully as concurrent

sub-block accesses may cause false sharing and even trashing.

Acquiring lock Assuming no conflict, there are three ways to grant a lock token:

• Exact: Grant a token that covers exactly the requested range. This can incur a high

overhead for small and frequent non-overlapping I/O accesses because each operation

requires a message sent to the global server to acquire the lock token.

• Extend-end: Extend the end of the granted token to the farthest possible block. This

works well for the scenario where the same node accesses contiguous blocks in subse-

quent I/O operations. However, this will perform badly for strided access patterns.

• Extend: Extend both the start and end of the granted lock token to the farthest

possible block. For example, the first lock request will get a whole file lock token. This

works well for the scenario where the same node accesses nearby blocks in multiple I/O

operations. Those access are not necessarily sequential or contiguous, possibly due to

concurrent I/O requests issued by different clients on the same node. This will work

badly for strided access patterns.

Releasing lock One can release a single lock token, all lock tokens of a specific file, or all

lock tokens of a specific client. When a client releases a lock token, it returns the ownership

back to the node-local lock server. However, the local lock server does not need to hand it

back to the global server.
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Resolving conflict When a conflict is found, the global lock server returns the owner

information of the conflicting token to the requester. Besides that, the global server is not

further involved in resolving the conflict, which reduces the risk of becoming the bottleneck.

The requester then negotiates with the owner regarding the requested range. And there are

two ways to reach an agreement.

• Revoking: The owner of the conflicting token simply releases its token, regardless of

the actual range it covers. This conflicting token very likely covers a range that is

larger than the conflicting range. File flushes need to be performed by the owner of

the conflicting token. Once done, the requester can acquire the lock token again.

• Splitting: The owner splits and releases a partial range of the conflicting token. The

actual range released is decided using the extend-end method described above. A flush

may be performed if the conflicting range has been modified. After that, the requester

can acquire the lock token again. This message flow is depicted in Figure 5.3, where

the numbers indicate the order of each message. TangramFS uses this method.

Global lock manager

Node 1 
Local lock manager

Node 2 
Local lock manager

Client Client

1. acquire_lock()
10. respond 

2. acquire_lock()
3. conflict found 

Client Client

4. split_lock()
7.  respond 

5. release_lock()
6. respond 

8. acquire_lock()
9. respond 

Figure 5.3: The process of acquiring a lock and resolving the conflict. Note that there is no
split lock primitive in TangramFS, it is used internally in the acquire lock implementa-
tion.
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5.4.2 Sync-based Implementation

The sync-based implementation uses a server-client architecture (Figure 5.2) similar to

that of the lock-based implementation. One major difference is that the sync-based design

requires no locks, and thus no lock managers. Besides, the sync-based implementation

normally generates fewer messages between the server and the clients because the messages

are only sent at synchronization points (not before every I/O operation as in the lock-based

case). We use one global server to handle all messages from clients. Optimizations such as

distributed servers and namespace partitioning are left to future work.

The global server is multithreaded where the master thread handles all communications

and the rest threads run an identical worker routine. Each worker maintains a FIFO queue

that is used to hold client requests. When a new client request (e.g., a query request) is

received, the master thread creates a new task and appends it to one worker’s task queue.

The worker is selected in a round-robin manner. Once the task is completed by the specified

worker, the server will send back the result to the requesting client. Next, we go through

the tasks triggered by the synchronization primitives:

• Attaching: When a client process invokes a tfs attach* primitive, it notifies the

server that it will be responsible for the writes to the specified file range. In other

words, the client essentially declares itself as the owner of the most recent update to

the specified range. The subsequent queries (tfs query) to the same range will return

this client as the owner. Other clients can later use tfs read peer to directly fetch

the data from the client’s buffer without going through the underlying PFS.

• Detaching: A client is also allowed to detach a previously attached write. When a

write is attached, the owner is responsible for responding and supplying data for future

tfs read peer requests. The owner may later flush the write from its BB to the un-

derlying PFS and clean up the space. In this case, it needs to detach the corresponding

write as the data is no longer available for a quick client-to-client transfer.

• Querying: A client issues a tfs query call to ask the server who owns the most up-

to-date data of the given range, i.e., who performed the last attach to the same range.

The server will respond with a list of intervals (the queried range may cover multiple

attaches) along with their owners’ information. An empty list will be returned if no

one has attached to the range yet.

The global server maintains a per-file interval tree (noted as global interval tree) to keep

track of the attached writes. Internally, TangramFS uses an augmented self-balancing binary
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search tree to implement this interval tree. Each interval (or each node of the tree) has the

form of ⟨Os, Oe, Owner⟩, where Os and Oe are the start and end offset of a file update, and

Owner stores the information of the most recent client who attached to the range. Note

that the interval tree keeps only the most recent attach and does not store any histories.

A new interval is inserted upon each attach request. And at the insertion time, the server

checks the existing intervals to decide if they need to be split. An existing interval is split if

it overlaps with the new interval and has a different owner. The server also merges intervals

belonging to the same client with contiguous ranges. This reduces the number of intervals

and accelerates future queries. When the server receives a detach request, it consults the

interval tree and checks whether the same client still owns the write. It is possible that

another client has overwritten the same range and became the new owner. In that case, the

detach will simply be a no-op. Otherwise, the detach request succeeds (with possible splits),

and the interval is removed from the tree.

Each client process also maintains a similar interval tree (noted as local interval tree)

for each file. It is used to keep track of local writes and their mappings to the local

burst buffer files. To be specific, each interval of the local interval tree has the form of

⟨Os, Oe, Bs, Be, attached⟩, where Os and Oe indicate the range of a write to the targeted

PFS file, Bs and Be indicate where the write is buffered on the local burst buffer file, and

attached indicates whether the write has been attached or not. At each write (tfs write),

a new interval will be inserted into the local interval tree. There will be no split because all

writes are from the same client. Contiguous intervals are merged as in the global interval

tree. The tfs attach primitive is used to attach the writes to one contiguous file range,

while the tfs attach file primitive attaches all local writes to the file. Both calls will

pack and send all supplied information using a single RPC request. Moreover, both calls

will check the local interval tree to make sure the same range is not attached twice.

As mentioned above, a client can respond to read requests (tfs read peer) from other

clients after an attach call. This client-to-client data transfer can be performed efficiently

using RDMA. But for this to work, each client process needs to spawn a separate thread

to listen to the incoming tfs read peer requests. This increases CPU usage but can sig-

nificantly improve read performance, assuming RDMA is faster than disk I/O (i.e., reading

directly from the underlying PFS). In TangramFS, RDMA is an optional feature that can

be enabled/disabled by users depending on the targeted workload. For example, for non-

overlapping accesses, where RDMA is never used, this feature should be disabled.

In many cases, users actually know the exact I/O patterns of their code in advance—they

know which client is responsible for which writes. Therefore, users with adequate information

can reduce or even eliminate the system overhead by avoiding attach, detach and query calls.
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5.5 OVERHEAD STUDY

In this section, we study the overhead associated with the different file system designs and

implementations, i.e., sync-based versus lock-based. The major point we want to convey

is that without the ability to retrieve I/O information from applications, it is impossible

to design a PFS that works ideally for every I/O workload. In lock-based designs, an

optimization that favors one type of workload may perform badly for others. When more

information can be passed to the PFS, a sync-based design should be more efficient because

it does not perform any conservative locking operations.

We confirm our point using three common I/O workloads, namely fpp (file-per-process),

contiguous, and strided. Before we describe each workload, we define a set of symbols that

we will use in the following discussion:

N : Number of compute nodes.

P : Number of processes per node. We assume each node runs an equal number

of processes.

M : Number of I/O operations performed by each process. We assume each process

performs the same number of I/O operations.

S : Access size of each I/O operation. All I/O operations have the same access

size.

B : Block size of the file system.

Table 5.6: Definition of symbols

Now we describe the three workloads:

• FPP: In this workload, each process writes to a private file. This workload produces

NP files in total and each file has M contiguous writes. An example FPP workload is

shown in Figure 5.4.

P1 P2

Node 1

P2P1 P3 P4

Node 2

P4P3 P5 P6

Node 3

P6P5

File 1 File3File 2 File 4 File 5 File 6

Figure 5.4: FPP workload example. N = 3, P = 2, and M = 2.

• Contiguous: In this workload, each process writesM times to a shared file in a contigu-

ous and non-overlapping manner. The starting offset of each process is rank ×MPS,
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where rank is the global MPI rank of a specific process. In the end, the contiguous

workload produces one file of size NPMS. An example contiguous workload is shown

in Figure 5.5.

P1 P2

Node 1

P2P1 P3 P4

Node 2

P4P3 P5 P6

Node 3

P6P5

Shared file

Figure 5.5: Contiguous workload example. N = 3, P = 2, and M = 2.

• Strided: In this workload, each process performs its writes in a strided and non-

overlapping manner. The starting offset of the i-th write of the j-th process (i.e.,

rank = j) is iNPS + jS. Similarly, the strided workload also produces one file of size

NPMS. An example strided workload is shown in Figure 5.6.

P1 P2

Node 1

P3 P4

Node 2

P5 P6

Node 3

P1 P2

Node 1

P3 P4

Node 2

P5 P6

Node 3

Shared file

Figure 5.6: Strided workload example. N = 3, P = 2, and M = 2.

We make a few assumptions regarding the I/O workload:

1. Each process issues its I/O operations in order (from low to high offsets) and sequen-

tially, i.e., no multithreaded I/O. This is the most common case.

2. S is a multiple of B, and accesses are block aligned. In other words, no sub-block

accesses, which is in favor of the lock-based design.

First, it is easy to estimate the overhead of our sync-based implementation, where the

overhead primarily depends on the number of synchronization operations. When running

with the commit semantics or the session semantics, only the file close operation triggers

a synchronization. So for all three workloads, there is only one synchronization operation

for each process. And the overhead will be amortized by the number of writes (M). More-

over, if the workloads are written directly using TangramFS primitives, then no explicit

synchronizations are invoked at all, which will result in a near-zero overhead.
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Next, we study the overhead of lock-based implementations. One common characteristic

of the three workloads is that all writes are non-overlapping. So ideally, they require no

protection or lock against each other. But unfortunately, without knowing the I/O pattern,

a lock-based design still requires a lock to be acquired before performing any write. There

are three possible outcomes for each lock request: (1) The lock token requested is new and

not conflicting with any existing one, in such a case, the request will be satisfied by the global

lock manager. (2) The lock token has been already granted to the node-local manager, so the

request can be satisfied directly by the node-local lock manager without any communication

with the global lock server. (3) The lock token requested is conflicting with an existing one,

the requester needs to negotiate with the other parties to resolve the conflict. This process

also involves the global lock manager. We define a few more symbols to capture all possible

scenarios:

α : The number of new and non-conflicting lock requests.

β : The number of lock requests that can be satisfied locally.

γ : The number of lock conflicts.

Ts : The time to acquire a new and non-conflicting lock token.

Tl : The time to acquire a lock token that is possessed by the node-local lock

manager.

Tc : The time to resolve a lock conflict.

Table 5.7: Definition of symbols

All numbers above are per node. The locking overhead of a node is therefore:

T = αTs + βTl + γTc (5.1)

We focus on studying the average locking overhead of a single node. With the absence

of stragglers, the total overhead can be closely approximated by a single node’s overhead.

Furthermore, in all workloads, each node performs MP writes and issues MP lock requests,

so

α + β + γ = MP (5.2)

It is reasonable to assume Tc > Ts > Tl, and Ts and Tc may increase as N,P and M

increase due to congestion and the finite computing power of the global lock manager. In

fact, Tc, Ts and Tl are all implementation and hardware (e.g., network) dependent. However,

α, β, and γ normally only depend on the algorithm and the workload, i.e., they are hardware

independent. Given an I/O workload, we can perform a quick comparison of two lock-based
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implementations by comparing their α, β, and γ. A lock-based implementation should always

try to minimize α and γ, especially γ because a conflict takes much more time to handle

and it may involve flush operations.

Many optimizations have been proposed to reduce α and γ for their targeted workloads.

Here, we investigate two implementations that we described in Section 5.4.1: (1) Lock-exact,

where the granted lock token covers exactly the same range as requested; (2) Lock-extend,

where both ends of the granted lock token are extended to the farthest possible offset.

5.5.1 File-Per-Process Workload

Since each process only accesses its own file, there will be no lock conflicts (γ = 0)

regardless of the lock implementation.

Lock-exact: Each node performs MP writes and issues MP lock requests. And each lock

token is a new one and requires communication with the global lock manager. Therefore,

α = MP, β = 0, γ = 0 (5.3)

Lock-extend: The first lock request of each node will be granted a whole file lock, so

all subsequent lock requests can be satisfied locally. In comparison with the lock-exact

implementation, the lock-extend implementation reduces the number of times needed to

communicate with the global lock server from MP to P . Therefore,

α = P, β = MP − P, γ = 0 (5.4)

5.5.2 Contiguous Workload

Lock-exact: The lock token is granted to the exact range as requested. The lock token

for each write is non-conflicting because the writes are non-overlapping. Each node requires

MP lock tokens from the global lock server, therefore,

α = MP, β = 0, γ = 0 (5.5)

Lock-extend: Again, each node performsMP writes and issuesMP lock requests. Except

for the node that performs the first lock request of all, all other nodes will have their lock
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requests satisfied locally or observing conflicts, i.e.,

α = 0, β = MP − CP , γ = CP (5.6)

where CP is the average number of conflicts when running P processes per node. The actual

number of conflicts varies from run to run due to the non-deterministic arrival order of lock

requests.

Now we calculate CP . Let us name each lock request of a node as lockj
i , where j ∈ [1, P ]

indicates the j-th processor and i ∈ [1,M ] is the i-th lock request of Pj. Since each process

performs its writes in order, lockj
1 is always the first to arrive for every j. Moreover, since

the node-local lock manager handles one request at a time, it essentially serializes the lock

acquiring requests from all processes in the same node. Therefore, for every lockj
i where

i > 1, it will never result in a conflict, because lockk
1 where k ≤ j acquired a lock that covers

the entire range that will be written by Pj and subsequent conflicts (if any) do not involve

this range.

We use→ to denote the arrival order of the first lock request of each process from the view

of the node-local lock manager. Again, for each process, only the first lock request matters,

as the subsequent ones will never result in a conflict as mentioned above. In the worst case,

lockP
1 → lockP−1

1 ,→ .., lock1
1, the node will observe P lock conflicts, one by each process.

Now we examine the average number of conflicts. We break all possible arrival orders into

P cases according to which process arrives first. If lock1
1 arrives first, we will observe only

one conflict, due to itself. If lock2
1 arrives first, we will observe two conflicts, one caused by

lock2
1 and the other caused by lock1

1. In general, if lockj
1 arrives first, we will observe one

conflict due to lockj
1 and Cj−1 conflicts on average due to the first j − 1 processes. This is a

dynamic programming problem, where the solution to CP depends on the solution to CP−1,

which in turn relies on the solution to CP−2. This continues until we reach the smallest

problem C1, which we know the solution is 1. Finally, we sum up all P cases and take the

average: CP = 1+ 1
P
(C1+C2+CP−1). More generally, we denote Cn as the average number

of conflicts caused by the n processes on the same node. Now we solve Cn:

Cn = 1 +
1

n
(C1 + C2 + ...+ Cn−1) (5.7)

Multiply both sides of 5.7 by n:

nCn = n+ C1 + C2 + ...+ Cn−1 (5.8)
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Substitute n− 1 for n in 5.8:

(n− 1)Cn−1 = (n− 1) + C1 + C2 + ...Cn−2 (5.9)

Subtract 5.9 from 5.8 and solve:

Cn = Cn−1 +
1

n

=
n∑

w=1

1

w

(5.10)

So, Cn is the sum of the first n terms of the harmonic series. Finally, we plug in P and

get CP =
∑P

w=1
1
w
.

5.5.3 Strided Workload

Lock-exact: The lock-exact implementation has the exactly same behavior as in the con-

tiguous workload. Each node acquires MP lock tokens, and all tokens are new and non-

conflicting. Thus,

α = MP, β = 0, γ = 0 (5.11)

Lock-extend: The strided workload can be considered repeating the contiguous workload

inM batches, where each contiguous workload performs one write (originallyM) per process.

We assume a batch starts only after the completion of its previous batch. Then a node in

one batch performs P lock requests, thus β = P − CP and γ = CP . Therefore for a total of

M batches,

α = 0, β = M(P − CP ), γ = MCP (5.12)

In comparison with the contiguous workload, γ is increased from CP to MCP . In other

words, the lock-extend optimization is not beneficial for the strided workload.

5.5.4 Discussion

Table 5.8 summarizes the overhead of the two lock-based optimizations discussed above.

It can be seen that in all three workloads, the lock-exact optimization has identical values

of α, β, and γ. This is because all the writes are non-overlapping, so each write requires a

new token, and the token never causes a conflict. Therefore, we can always expect a stable

performance from the lock-exact implementation, even though it is not the optimal one. In
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contrast, the lock-extend optimization works much better for the file-per-process workload,

but performs poorly for the strided workload.

Workload Lock-exact Lock-extend

File-per-process α = MP, β = 0, γ = 0 α = P, β = MP − P, γ = 0

Contiguous writes α = MP, β = 0, γ = 0 α = 0, β = MP − CP , γ = CP

CP =
∑P

w=1
1
w

Strided writes α = MP, β = 0, γ = 0 α = 0, β = M(P − CP ), γ = MCP

CP =
∑P

w=1
1
w

Table 5.8: Overhead of the two lock-based optimizations for three common I/O workloads

Another insight is that in both optimizations, α, β, and γ do not scale with N . As we

mentioned earlier, they are also hardware independent. In fact, they are constant for a fixed

set of M and P . This is desired as it suggests that both implementations will not introduce

more conflicts when running the workload on more nodes. On the other hand, Ts, Tl and

Tc depend on the hardware. Ts and Tc are the most concerning parameters in our overhead

model as they may increase with N . We do not estimate them here, but we will show their

contribution to the overall overhead in the next section.

Finally, to emphasize our point, for a lock-based design, no implementation can be ideal

for every workload. The locking overhead can be reduced but is hard to eliminate. As we

have shown, α, β, and γ always add up to MP , even though they should really be all zeros.

When a weak consistency model suffices, or when the synchronization logic can be shared

with the PFS, a sync-based design should be more effective. Fortunately, as we have shown

in Chapter 4, many HPC I/O workloads behave just like the three workloads above, where

they do not need any lock to ensure consistency and correctness. For those applications, a

sync-based design is preferred as it imposes near-zero software overhead.

5.6 EVALUATION

Here, we evaluates TangramFS using the three workloads described in the previous sec-

tion. We first evaluate the bandwidths achieved by different implementations using different

consistency models. We show the cost of imposing POSIX consistency using both lock-based

and sync-based designs. And as a comparison, we show that using session consistency can

achieve a near-zero overhead for the same workloads. Finally, we compare TangramFS with

UnifyFS [14] and show the importance of supporting tunable consistency models.
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We performed all experiments on the Catalyst system at Lawrence Livermore National

Laboratory (LLNL). Catalyst is a Cray CS300 system, where each compute node consists

of an Intel Xeon E5-2695 with two sockets and 24 cores in total, with 128GB memory.

The nodes are connected via IB QDR. The operating system is TOSS 3. Slurm is used

to manage user jobs. The PFS is an LLNL customized version of Lustre, 2.10.6 2.chaos.

Each compute node is associated with a node-local Intel SSD 910 Series 800GB non-volatile

memory (NVRAM). The NVRAM is used as the burst buffer device. Its peak sequential

write bandwidth is 1000MB/s, and its peak sequential read bandwidth is 2000MB/s. All

runs were repeated at least 10 times, and the average number is reported.

5.6.1 Bandwidth vs. Number of Writes

Our first set of experiments studies how the write bandwidths achieved by different imple-

mentations scale with the number of writes (M). We evaluated two lock-based implemen-

tations (Lock-exact and Lock-extend) and one sync-based implementation. We used session

consistency when evaluating the sync-based implementation (Sync-session). Session consis-

tency requires only one synchronization message per process at the file close time, which has

a negligible overhead. In these experiments, we fixed N to 8, P to 8, and S to 4MB. In other

words, all workloads were run on 8 nodes, with 8 processes per node, and each I/O operation

writes 4MB. The only variable is M , where it was increased from 1 to 40. Figure 5.7, 5.8

and 5.9 show the execution time and bandwidth of the three workloads. The performance

of Sync-session and Lock-exact was stable. Each of them behaves identically for all three

workloads. For the sync-based implementation, the number of synchronizations is the same

and thus the overhead is the same. For the lock-exact implementation, the number of lock

requests is also unchanged, α = MP in all cases, as shown in Table 5.8. In contrast, the

performance of Lock-extend varied significantly for different workloads. It is worth noting

that Sync-session was able to achieve the peak aggregated BB bandwidth in all workloads,

suggesting that it imposed only minimal overhead.

File-per-process workload In this workload, Lock-extend contacts only P times with

the global lock manager, whereas Lock-exact performs MP communications with the global

lock server. So we can see from Figure 5.7(a), as we increased M , the gap between different

implementations in the execution time also increased. Figure 5.7(b) shows the resulting

bandwidth. Lock-extend achieved similar performance as Sync-session. Lock-exact intro-

duced a 5% bandwidth loss on average. The loss is small because I/O dominates the total

execution time, and the locking overhead relative to the I/O time is small. However, we will
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show later that this is no longer the case for small writes.
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Figure 5.7: File-per-process workload, N = 8, S = 4MB, P = 8.

Contiguous workload As in Table 5.8, Lock-exact performs MP global lock requests,

whereas Lock-extend incurs
∑P

w=1
1
w
lock conflicts, and MP −

∑P
w=1

1
w
local lock requests.

For Lock-extend, the number of conflicts is independent of M . Since Ts > Tl, we can

expect that the overhead of Lock-exact (MPTs) increases faster than that of Lock-extend

((MP −
∑P

w=1
1
w
)Tl). This is confirmed by the results shown in Figure 5.8(a), where the

execution time of Lock-extend started higher but the gap shrank as we increased M . On the

right (Figure 5.8(b)), we can see Lock-extend caught up with the other two implementations

when running with a large M .
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Figure 5.8: Contiguous workload, N = 8, S = 4MB, P = 8.
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Strided workload As suggested in Table 5.8, the lock-extend implementation works

poorly for this workload. The average number of lock conflicts generated by each node

is M
∑P

w=1
1
w
. Since we keep P fixed, the conflicting frequency increases linearly with M .

And a conflict is very expensive to resolve. Figure 5.9 confirms that the execution time of

Lock-extend indeed increased linearly as M . And the achieved bandwidth was very low,

which makes the lock-extend implementation unfit for this kind of workload.
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Figure 5.9: Strided workload, N = 8, S = 4MB, P = 8.

5.6.2 Bandwidth vs. Number of Nodes

The next set of experiments studies how the bandwidth scales with the number of nodes

(N). In these experiments, M and P were fixed to 10 and 8. We also tested the cost of

ensuring POSIX consistency using the sync-based implementation, noted as Sync-POSIX.

We repeated each experiment with two access sizes: small writes (S = 4KB) and large

writes (S = 4MB). Note that for the two lock-based implementations, α, β, and γ are all

independent of the number of nodes (N). Since we keep M and P fixed, the total number

of global lock requests and lock conflicts are also unchanged. So N only affects the overhead

through Ts, Tl and Tc.

File-per-process workload Figure 5.10 shows the results of 4MB-write runs. All imple-

mentations achieved a similar performance for this simple I/O pattern. They scaled linearly

as the number of nodes, archiving the peak aggregated hardware bandwidth. For small-scale

runs, the locking overhead is insignificant as compared to the I/O time. But we can still

observe an increasing gap between Lock-exact and others. This is because the lock-exact

implementation requires a lock acquiring message sent to the global lock server before ev-

ery write, so the global lock server will gradually become the bottleneck as we increase N .
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The same issue should also apply to Sync-POSIX as each write requires a synchronization

message sent to the global server. However, we do not observe the same phenomenon for

Sync-POSIX here due to the small scale and the use of the multithread global server.
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Figure 5.10: File-per-process workload, M = 10, S = 4MB, P = 8.

Figure 5.11 shows the results of 4KB-write runs. The software overhead of Lock-exact,

Lock-extend, and Sync-POSIX is no longer negligible as the small writes complete much

faster. Moreover, small writes can not saturate the hardware bandwidth, so all implemen-

tations achieved much lower bandwidth as compared to large writes. The bandwidth of

Sync-session and Lock-extend still increased with N , whereas the overhead of Lock-exact

and Sync-POSIX canceled the gains from adding more node-local NVRAM. Another im-

portant insight is that with proper optimizations, the lock-based implementation is more

efficient than the sync-based implementation for imposing POSIX consistency (Lock-extend

vs. Sync-POSIX). This explains why the majority of existing POSIX file systems are imple-

mented using some kind of locking mechanism.

Contiguous workload Figure 5.12 and Figure 5.13 show the results for large and small

writes. The results confirmed that, with a small M , Lock-exact is a better fit than Lock-

extend for this workload. Both lock-based implementations showed an increasing overhead

with N . The impact again is significant for small writes, where at 16 nodes, Sync-session

was 62× faster than Lock-extend and 45× faster than Lock-exact.

Strided workload As discussed in the previous section, the strided workload exhibits

the least friendly I/O pattern for the lock-extend implementation. Because this workload

generates a significant number of lock conflicts per node. And the time spent on resolving

the conflicts can easily dominate the overall execution time, even for large writes. This is
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Figure 5.11: File-per-process workload, M = 10, S = 4KB, P = 8.
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Figure 5.12: Contiguous workload, M = 10, S = 4MB, P = 8.

confirmed in Figure 5.14 and Figure 5.15. The bandwidth of Lock-extend was extremely low.

For example, for 4MB-write 16-node runs, I/O took only around 0.33 seconds to complete,

as suggested by Sync-session. But Lock-extend took 2.21 seconds in total to finish, which

suggests that it spent 5× more time on processing lock requests than performing the actual

I/O. Again, Sync-session, Sync-POSIX, and Lock-exact behave just like they were in other

workloads.

5.6.3 TangramFS vs. UnifyFS

Many PFSs have been developed to take advantage of the emerging burst buffers in HPC

systems. Most are designed as user-level file systems targeting specific I/O workloads. This

gives them the opportunity to provide relaxed consistency models. Among them, Uni-
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Figure 5.13: Contiguous workload, M = 10, S = 4KB, P = 8.
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Figure 5.14: Strided workload, M = 10, S = 4MB, P = 8.

fyFS [14] is the closest one to TangramFS. UnifyFS employs a commit consistency model

based on our study discussed in Chapter 4.1. Commit consistency semantics requires ex-

plicit commit operations to be performed before updates to a file become globally visible.

UnifyFS also adopts the sync-based design. However, it does not provide explicit synchro-

nization primitives, a commit operation is always implied (and can not be avoided) by a

certain set of POSIX I/O calls such as fsync and fflush.

Here, we use the same I/O workloads again to compare TangramFS with UnifyFS. We

tested each file system with two configurations. For TangramFS, we used POSIX consis-

tency and session consistency. Both were implemented using the proposed synchronization

primitives. We used the synchronization primitives instead of the locking primitives to test

the software overhead of the superfluous synchronizations. The result is used to demonstrate

the importance of choosing an appropriate consistency model to performance.
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Figure 5.15: Strided workload, M = 10, S = 4KB, P = 8.

With POSIX consistency, TangramFS performs an unnecessary synchronization at every

write call. We denote this configuration as TangramFS-POSIX. With the session consistency

model, TangramFS only performs one synchronization (tfs attach file) per process at the

close point. This configuration is noted as TangramFS-session. For UnifyFS, we used the

benchmark code (named write-static) shipped with it to emulate the same I/O workloads.

UnifyFS provides an option to automatically perform a synchronization operation after ev-

ery write call. When enabled, UnifyFS performs the same number of synchronizations just

like TangramFS-POSIX. We denote this configuration as UnifyFS-sync. The default Uni-

fyFS configuration (noted as UnifyFS-nosync) behaves like TangramFS-session, which only

performs the synchronization at the close point due to the lack of commit operations. For

both systems, the client-side memory caching was disabled.

Large writes Figure 5.16 shows the average write bandwidths achieved by the two PFSs

performing large writes, i.e., S = 4MB. The first thing we notice is that the bandwidths

achieved for different workloads are almost identical. Unlike the lock-based design, where

different workloads generate a different number of lock requests and lock conflicts. For the

sync-based design, the three workloads require an identical number of synchronization oper-

ations. Therefore, there was almost no difference in the performance of the three workloads.

For TangramFS, both consistency models achieved a close-to-peak bandwidth, due to the

small synchronization cost compared to the slow I/O. However, we notice that TangramFS-

POSIX started to fall behind when running beyond 12 nodes. This is due to the use of a

single server to process all synchronization requests. The total number of synchronizations

(tfs attach) is MPN . Even though the server is multithreaded, the congestion was still

observed when using more than 12 nodes, likely due to the use of a single master thread
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Figure 5.16: TangramFS vs. UnifyFS. M = 10, S = 4MB, P = 8.

listening to all incoming requests. At 16 nodes, the slow down was around 10%.

UnifyFS was slower than TangramFS in all workloads. The major reason is that UnifyFS

spent more time creating files for each run. In UnifyFS, file creation is a collective operation.

For workloads operating on a shared file, one process creates the file, then a barrier is

performed before everyone else can open the file. In contrast, the file open and creation in

TangramFS are local operations, with a near-zero cost. For example, in a 16-node strided

workload run, UnifyFS-nosync spent 0.066 seconds on creating files, out of 0.452 seconds of

the total execution time. In comparison, TangramFS-session took around 0.329 seconds to

complete the same run. Moreover, designed to be a production-level file system, UnifyFS also

pays the price for maintaining metadata and many other internal data structures, and that

is the cost that TangramFS will not be able to avoid once more features are added. UnifyFS-

sync was slower than UnifyFS-nosync due to the unnecessary synchronizations. UnifyFS-

sync can be considered as running UnifyFS with a strong consistency model. However, both

configurations (UnifyFS-sync and UnifyFS-nosync) have no way to determine whether the
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synchronization is needed at a commit call. Thus, it can not avoid the extra synchronization

cost if there are unnecessary commit calls in the original I/O code.

Small writes Figure 5.17 shows the average write bandwidths achieved by the two PFSs

performing small writes, i.e., S = 4KB. Note that the bandwidth is shown in MB/s and

on a logarithmic scale. The bandwidth of small writes was significantly lower than that of

large writes. TangramFS exhibited a similar performance for all workloads, whereas UnifyFS

performed better in the file-per-process workload than in the other two. The reason is that

in UnifyFS, each file has an owner node, and this owner node is responsible for processing all

synchronization messages of its owned files. The owner is selected at the file creation time

using a hash function. In the contiguous workload and the strided workload, one shared file

is accessed and thus there is only one owner, which behaves like a centralized server. But

for the file-per-process workload, every node serves as the owner of multiple files, which can

reduce the contention.
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It is clear that session consistency is the best consistency model for the targeted work-

loads. TangramFS-session achieved the best performance and showed perfect linear scala-

bility. UnifyFS-nosync also scaled linearly but its bandwidth was lost due to file creations

and metadata support. For example, as shown in Figure 5.18. its file creation time ac-

counted for about half of its entire execution time. Besides, the payload of each UnifyFS

synchronization RPC is much larger than that of TangramFS, due to the need to maintain

all the metadata information. For small writes, the RPC cost is significant as I/O completes

much faster, and that is why we observe a bigger difference in the achieved bandwidth for

small writes. We expect that the performance of UnifyFS-nosync to improve when using

a large M (i.e., more writes per process), where the cost of the file creation and metadata

support is amortized. To confirm this, we repeated the same experiments but with M set

to 1000. The result is shown in Figure 5.19. As expected, UnifyFS-nosync performed much

better than all the rest. The result also reveals that TangramFS has an unsatisfactory

speed for processing synchronization messages. But the point here is not to compare two

different systems because non-POSIX systems provide different features which will certainly

lead to very different performance. The most important point is that session consistency

is desired for these workloads regardless of the systems. At 16 nodes, TangramFS-session

is more than 60× faster than TangramFS-POSIX, and UnifyFS-nosync is more than 20×
faster than UnifyFS-sync. When the POSIX consistency model was used, both systems

showed a constantly low bandwidth, which suggests that the global server of TangramFS

and the owner node of UnifyFS were the bottlenecks from the very beginning. Overall, our

experiments stress why we should support tunable consistency models—so users can choose

the most appropriate one for the targeted application. They also show the importance of

minimizing unnecessary synchronizations. Without the extra synchronizations, we would
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expect an identical performance from TangramFS-POSIX and TangramFS-session for these

three workloads.
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CHAPTER 6: RELATED WORK

6.1 I/O TRACING

Many efforts exist in the area of I/O tracing. Based on their scope, those tracing efforts

can be classified into two categories. (1) System-level tools, e.g., iotop, iostat and blktrace,

monitor system level I/O activities and report useful metrics across the entire system or

at least one device or one partition. (2) Application-level tools, including Darshan [23],

Score-P [92], IPM-IO [93] and IOPin [94], run along with an application and only collect

information about that one application. In this section, we focus on application-level tools

because they are more related to our work.

I/O profiling tools Darshan [23] and TAU [95] record POSIX I/O and MPI-IO activities

and report statistics of individual applications. Although these tools collect their statistics

with low overhead and provide a good estimation of overall performance, they do not cap-

ture the detailed information needed for in-depth analysis, e.g., function parameters and

entry/exit times of function calls.

I/O tracing tools IOPin [94], built on top of Pin [96], is a dynamic instrumentation

tool for parallel I/O tracing. It traces from the application layer all the way to the storage

server layer. IOPin is tightly associated with the PVFS file system and does not trace I/O

libraries above the MPI layer. IPM-I/O [93] extended an existing performance tool called

IPM [97] to add I/O operation tracing. IPM-I/O traces POSIX I/O calls but applications

need to be linked against the IPM-I/O library. VampirTrace [98] also records calls to I/O

functions of the standard C library and is capable of tracing GPU accelerated applications.

ScalaIOTrace [99] supports both MPI-IO and POSIX I/O and can generate compressed event

logs. Score-P [92] is a popular tool suite for profiling, event tracing, and online analysis of

HPC applications. It works with many other tools like TAU [95], Vampir, and Scalasca [100].

In contrast to the above tools, Recorder intercepts HDF5, MPI, and POSIX I/O calls and

does not require modification or recompilation of applications.

I/O trace visualization tools MPE (MPI Parallel Environment) contains several log-

ging and visualization tools including Upshot [101], Nupshot [102], and Jumpshot [103].

MPE focuses on MPI performance visualizations, whereas our work is tailored specifically

for multi-level I/O. Other tools like Cube [104] and Vampir [105] are also able to display

performance monitoring data at multiple levels, and current developments in Vampir include
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the analysis of application I/O behaviors. Similarly, Recorder’s visualization tool can take an

application’s trace file as input and generate a detailed I/O report. Our work complements

existing efforts because our trace files contain highly-detailed I/O information. Moreover,

we are developing trace converters so that our trace files can be analyzed or visualized by

other tools as well.

Trace format optimizations The Open Trace Format Version 2 (OTF2 [106]) is an

event tracing format that is used in Score-P and is highly optimized for managing large

traces from parallel programs. Typically, a tool using OTF2 generates n event files for

n processes along with local index files and a global definition file. The Score-P project

recently added support for multi-level I/O tracing to OTF2 [107]. However, OTF2’s logging

API classifies I/O functions as metadata operations and data operations and ignores many

details of the actual I/O functions. For example, it does not distinguish pwrite, write,

or writev. Also, many system function calls are not intercepted such as lstat, stat, and

umask. It is possible to manually instrument users’ code to intercept those functions, but it

is difficult to do so if the functions are called within shared libraries. In contrast, the trace

optimizations introduced in Recorder are tailored for detailed I/O function tracing and our

tool captures a wide range of POSIX and standard I/O calls.

Trace overhead reduction Many efforts have been made to reduce tracing overhead and

trace file size. OTFX [108], based on OTF2, applies filters to eliminate function calls that

are shorter than a minimum duration and thus reduces intermediate memory buffer flushes.

Wagner et al. [109] proposed several encoding optimizations for OTF2, including leading zero

elimination and timer resolution reduction. General compression approaches have also been

applied in many trace formats. CCCG (compressed complete call graphs [110]) compresses

the data according to the similarity of reoccurring event sequences in a trace, within or

across different processes.

Overall, Recorder addresses key gaps in current tools support in multi-level I/O analysis.

Namely, it captures detailed function tracing information (including function parameters)

from a wide range of POSIX and standard I/O function calls; it requires no code modifi-

cation or recompilation; it provides analysis and visualization features specifically tailored

for I/O operations; and it utilizes trace format operations that account for the detailed I/O

information gathered and that reduce I/O overhead and trace file size.
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6.2 MPI TRACING

Similar to I/O tracing, significant research efforts have been made in the area of commu-

nication profiling and tracing. Many tools have been developed during the years: profiling

tools such as AutoPerf [111], mpiP [112], and IPM [97], and tracing tools like Vampir [105],

TAU [95], Score-P [92], ScalaTrace [53], and Cypress [113]. Again, we focus on tracing tools

as they are more related to our work.

Several tools like Score-p, Vampir and TAU support a tracing format named OTF [114]

or some optimized versions of it, e.g., OTF2 [106], OTFX [108] and [109]. However, OTF is

a rather general format in that it is not limited only to communication events. As discussed

earlier, it is also used by several I/O tracing tools. It uses ZLIB compression to reduce the

trace size but the inter-process compression is not supported. Tools based on it generally

lack structure-aware compression, which reduces the compression rate.

The previous version of Recorder [115] traces both communication and I/O events and it

uses a sliding window based approach to compress similar events within the window. But

it cannot detect loop structures or repetitions at long ranges. Xu et al. [116] introduced a

framework for identifying the maximal loop nest. Their algorithm can also discover long

range repeating communication patterns. However, both tools do not perform inter-process

compression, which is essential at large scales.

ParLOT [117] is a whole program tracing library built on top of Pin [96] that traces all

function calls (but not their arguments). It performs incremental online compression so

that each process will never store uncompressed information. The compression is achieved

using two general-purpose compression algorithms, which may not take advantage of the

loop structures.

Similar to Recorder, Krishnamoorthy et al. [118] proposed a framework that augments

the Sequitur algorithm to compress communication traces. The major limitation is that for

each intercepted function call, only a small number of parameters are encoded and stored.

This helps the compression rate as calls with different signatures can be combined, if they

differ in the ignored parameters; but this discards important information. In addition, the

inter-process compression does not fully exploit the possible redundancy between grammars.

It merges rules from multiple grammars without the redundancy check, which can lead to

high overhead for regular SPMD programs.

ScalaTrace [49] mainly focuses on recording communication events and features on-the-

fly compression. It extends regular section descriptors (RSD) to exploit the patterns of

repeating communication events involved in loop structures. It was designed for SPMD style

programs where there is no inconsistent program behavior across processes or time steps.
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ScalaTrace II [53] addresses this limitation of its predecessor. The intra-node and inter-

node loop detection algorithms were redesigned to improve the compression effectiveness for

scientific codes that demonstrate inconsistent behavior across time steps and processes. More

recently, Bahmani and Mueller [119, 120] proposed a signature based clustering algorithm

and context-aware clustering algorithm for ScalaTrace II to further improve the inter-process

compression. However, they require markers to be inserted into the user code so as to inform

the framework to run the clustering algorithm. The user is responsible for finding good

locations for the markers.

Overall, ScalaTrace and its successors follow a bottom-up approach that first compresses

the traces locally within each process and then performs an inter-process compression at

finalizing point. In comparison, Cypress [113] took a top-down approach where it first runs

a static pass offline to retrieve the loop and branch information of the targeting program and

then performs the intra-process compression at runtime. The static pass relies on compiler

analysis and normally is more efficient and accurate than online loop detection. The key

limitation of Cypress however is that it requires the user’s code to be first converted into

the format of LLVM IR, which means one needs the source code of all libraries. Also,

many functions are not recorded or compressed by Cypress, including some popular ones

like MPI Wait. Moreover, both ScalaTrace and Cypress require the user’s program to be

linked against their library. Recorder, on the other hand, performs runtime instrumentation

so it does not need to access or rebuild the user’s program.

Even though not the top priority of this dissertation, one important goal of Recorder

is to provide insights to MPI developers who are deploying MPI to the next-generation

supercomputers. It is important that we cover a complete set of MPI functions and all

involved parameters. As far as we know, none of the existing work achieves this. They

either miss some functions or keep only part of the parameters. And many corner cases are

ignored to simplify the implementation or to achieve a higher compression ratio.

6.3 PFSS WITH RELAXED CONSISTENCY MODELS

PFSs have been designed and implemented to support parallel workloads on HPC sys-

tems. Most support POSIX semantics; this includes widely used PFSs such as Lustre [1],

GPFS [3], and BeeGFS [2]. Even PFSs that support POSIX have mechanisms for relax-

ing the semantics for performance. For example, Lustre allows users to disable file locking

that enforces POSIX consistency semantics [121] and GPFS has options for lazy metadata

updates [122]. Additionally, NFS [65], which is widely used for home directories on HPC

systems, relaxes POSIX semantics in favor of performance.
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Recently, there is an increasing interest in the use of BBs in HPC systems as discussed in

Chapter 2. Many BB PFSs have been developed, including SymphonyFS [34], GekkoFS [17],

UnifyFS [14], Gfarm/BB [16], and echofs [68]. Many of them have been discussed when we

presented our categorization of PFS consistency models in Chapter 4. Each of these PFSs

was designed specifically for BBs, with the common goal of being fast and easy-to-use.

Some of the PFSs focus on the problem of transferring file data to and from the BBs, e.g.,

SymphonyFS and echofs, while others focus on supporting shared file I/O across compute-

node local BBs, e.g., BurstFS and Gfarm/BB. Because of their specialized functionality and

the goal of supporting the performance advantages of BBs, many of these BB PFSs relax

their adherence to strict POSIX semantics. The major limitation to these relaxed-semantics

PFSs is that they only provide a single consistency model, which can not adapt to different

I/O workloads.

GekkoFS and SymphonyFS are also user-space file systems that provide ephemeral names-

paces on node-local BBs. They both use server processes on each node to manage file oper-

ations. SymphonyFS does not provide internode communication, and thus cannot support

applications that require reading data written on remote nodes. GekkoFS does support

remote data access, due to its wide-striping scheme to balance data distribution that elim-

inates the need for clients to consult a centralized metadata directory to determine which

server handles a particular data chunk.

UnifyFS and Gfarm/BB are another two node-local BB PFSs. UnifyFS provides the com-

mit consistency model. And Similar to TangramFS, UnifyFS employs a synchronization-

based design, where synchronization operations are only performed at the commit point.

UnifyFS also provides a feature called “lamination”, where write is not allowed for a

“laminated” file to accelerate subsequent read performance. Gfarm/BB is based on the

Gfarm [123] distributed file system. Gfarm/BB provides the session consistency model and

extensively uses RDMA to improve read performance and metadata performance.

In addition to the general-purpose BB PFSs, there are also file systems designed to op-

timize I/O performance of specific workloads as described in surveys by Lüttgau and et

al. [124] and Dubeyko [125]. Such systems do not need to cater to every workload, which

allows them to adopt more optimizations. For instance, PLFS [15] is designed specifically

for large parallel N–1 checkpoint files. It transparently transforms an N–1 pattern into an

N–N pattern. It does not support overlapping writes so the writes can be freely reordered.

Another example is BurstFS [64], which is also designed for efficient checkpointing. BurstFS

provides a very limited consistency model and adopts many aggressive optimizations to im-

prove write performance. For write-heavy workloads, BurstFS can fully utilize the node-local

BBs and incur very low overhead. The consequence is that it does not guarantee that a read
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operation will always return the result of the most recent write.
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CHAPTER 7: CONCLUSIONS

This work was motivated by a long existing and controversial question: Do we need POSIX

in HPC systems? POSIX is a standard that provides clear specifications and semantics for

all aspects of an operating system. One major part is POSIX I/O, which defines a rigorous

I/O interface and a strict consistency model. POSIX was initially designed for portability,

not performance. The HPC community, on the other hand, craves performance. Even so,

general-purpose parallel file systems designed to support HPC applications need to provide

the POSIX I/O interface and its consistency model. Otherwise, existing applications have

to be rewritten, which is unrealistic especially for large legacy applications.

We argue that the POSIX I/O interface is not the issue, even though it can be extended to

add more flexibility. The strict consistency requirement is the major hindrance to achieving

scalable I/O performance. The software overhead imposed by enforcing the POSIX consis-

tency is insignificant compared to the cost of I/O operations performed by a few nodes to

some slow disks. However, as more and more nodes are being used by HPC applications,

along with the emergence of fast storage devices such as NVRAM, this overhead is no longer

negligible.

This dissertation started by answering two questions—Do HPC applications require POSIX

consistency? If not, which consistency model do they really need? To answer these questions,

we first collected the I/O information from HPC applications. We developed Recorder, a

multi-level I/O and MPI tracing tool for this purpose. To study the consistency requirement

of an application, we need to retrieve byte-level access patterns. Thus, Recorder was de-

signed to collect as much information as possible. It records all parameters of all intercepted

function calls. It supports HDF5, MPI, and HDF5 functions. We also designed a sophis-

ticated context-free-grammar based compression algorithm to store such a huge amount of

information. Many optimizations such as offset pattern recognition and symbolic represen-

tations were proposed to enable high intraprocess and interprocess compression ratios. We

have compared Recorder with the state-of-the-art tracing tools and showed that Recorder

can store more information with less time and space overhead.

We used Recorder to collect traces from 17 respective HPC applications and I/O bench-

marks using POSIX or I/O libraries. We presented their I/O characteristics in detail. While

our study focused on I/O patterns that are relevant to the PFS consistency model, we also

examined the access patterns that are important for the understanding of I/O performance

and the metadata operations used by these applications. Our study confirmed a commonly

assumed fact: Most HPC applications do not rely on the POSIX consistency semantics to
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run correctly. Actually, none of the 17 applications we studied require POSIX consistency.

Furthermore, we have made Recorder, all collected traces, and the developed analysis tools

publicly available. The detailed information stored in the traces is not limited to the con-

sistency study, they can be used to perform various I/O analyses, which we believe can be

useful to the HPC community.

We provided terminology for the categorization of the consistency semantics of PFSs.

And we presented a method for testing conflicting accesses that can cause consistency issues

when using weaker consistency models. With this method, users will be able to know if their

applications can run correctly on a given file system.

Then we investigated existing efforts on relaxed-semantics PFSs. Most support the POSIX

I/O interface, but guarantee a single relaxed consistency model. The major issue with

the PFS providing a single static consistency model is that: For applications with little

consistency requirements, it introduces unnecessary synchronization costs due to its stronger-

than-need consistency model. The last part of this dissertation proposed TangramFS, a

parallel file system that provides tunable consistency models. TangramFS allows users to

specify the desired consistency model for their applications. Users can choose the most

appropriate consistency model according to their needs. Our evaluation showed that using

the weakest feasible consistency model can greatly improve performance. Moreover, we

proposed a set of synchronization primitives that gives full control to users who are aware

of their application’s I/O synchronization logic. We showed that the sync-based design is

more efficient for implementing weak consistency models when compared to the traditional

lock-based design. Using the proposed primitives allows an application to harness the best

performance as it passes the most accurate synchronization information to TangramFS.

Moving forward, our hope is that our study can impact the community by providing a

basis for determining the consistency semantics and operations needed by applications and

provided by PFSs. Unfortunately today, it is difficult for HPC users to know what operations

are supported by non-POSIX PFSs as the support is often poorly documented. Better

documentation of the supported operations, deviations from POSIX semantics, and more

uniformity in terminology across PFSs will greatly impact the HPC community. For future

work, we plan to expand our conflicts detection algorithm to support metadata operations

and complex HPC workflows consisting of multiple applications. In addition, we plan to

investigate other semantics properties, such as safety and order semantics, in order to define

a more precise semantics model for PFSs. As for TangramFS, we will test it using real-world

and large-scale applications. This requires adopting a distributed server design to avoid the

potential bottleneck at the server end. Moreover, traditional file system utility tools such as

ls and cp need to be developed.
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