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ABSTRACT

Networks extracted from multiple sources and platforms or from multiple instances of iden-

tical domains form the multi-network, such as large social networks collected from Facebook

and Instagram, medium-scaled networks of chemical compound and proteins extracted from

chemical/protein interaction, etc. Multi-network association refers to the node associations

or proximities in a multi-network model, which goes beyond the boundary of node associa-

tions of a single simple network. Multi-network association offers a fundamental primitive

for mining multi-networks, in the sense that it reveals the unique, collective relations among

node sets, which can not be captured by mining individual networks separately.

Although network mining has become a ubiquitous tool of knowledge discovery for re-

searchers and practitioners in diverse application domains, research in the multi-network

association is still relatively limited, owing to the following three major challenges. First (

Problem formulation), how do we explicitly formulate the multi-network association infer-

ence problem in various multi-network scenarios, such as multiple plain/attributed networks,

multi-layered networks, hypergraphs, etc.? How do we implicitly preserve multi-network as-

sociation in an embedding model which is targeted at multi-network mining tasks? Second

(Computational complexity), how can we develop efficient algorithms for mitigating the high

complexity of the problems defined on multi-networks, in terms of both time and space

complexity? Third (Application), how will the multi-network association empower or enable

novel applications on multi-network data? To what extent can the multi-network association

based methods boost the classic multi-network mining tasks?

In this Ph.D. thesis, an in-depth study of the multi-network association is formally dis-

cussed and analyzed to jointly tackle the aforementioned challenges. Specially, the research

works from this thesis are organized based on the taxonomy of the network associations (i.e.

pairwise vs. high-order association), and the taxonomy of the core algorithmic techniques

(i.e. numerical vs. neural methods). First (pairwise association with numerical techniques),

we develop a family of fast solvers (FASTEN) for the Sylvester equation, which lays the

foundation of numerous multi-network mining tasks. We further introduce a novel applica-

tion, namely interactive subgraph matching, empowered by the Sylvester equation. Second

(pairwise association with neural techniques), we extend the boundary of the numerical tech-

niques for pairwise association and design Sylvester Multi-Graph Neural Network model. As

a generalization of traditional Sylvester equation, its flexible architecture could incorporate

numerical features, and it is able to be adapted to various downstream tasks. We then show
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that how such technique could be successfully applied on the application of social recom-

mendation, to achieve up to 30% improvement over baseline methods. Third (high-order

association with numerical techniques), we design a family of algorithms (i.e., SyTE) for

multi-way association problem on both plain and attributed networks. It shows applica-

bility in a variety of multi-network mining tasks, such as multi-network alignment. Forth

(high-order association with neural techniques), we develop an unsupervised multi-resolution

multi-network embedding model to simultaneously embed network elements of different reso-

lutions and different networks into the same embedding space. We also present a hypergraph

representation learning model via pre-training strategy, with a real-world case study on the

inconsistent variation family detection problem for Amazon selection and catalog system.
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CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Recent years have witnessed tremendous growth of the network data, which is commonly

generated and extracted either from various sources or different instances of the same domain.

For example, there exist multiple partially overlapped academic collaboration networks col-

lected from DBLP, Google scholar and ArnetMiner website [1]; multi-view networks can be

extracted from the same social network platform (e.g. Twitter) with different categories of

node/edge views [2, 3]; medium-scaled enzyme-enzyme interaction and large-scaled protein-

protein interaction networks can be acquired from bioinformatic experiments [4, 5], etc. On

the other hand, network mining techniques have made great strides in a variety of tasks

in extensive application domains, ranging from the classic ranking problem and similarity

searching task on regular/heterogeneous information networks [6, 7], to recent advances in

fact checking and query answering (QA) problem on knowledge graphs [8, 9, 10], and many

more.

Despite all these progress, the majority of research in network mining focuses on single

simple networks, primarily focusing on pairwise node relations within the same network.

However, the aforementioned network data often contains far more than pairwise node-to-

node connection information within the same network. In order to effectively mine profound

insights from the data, the high-order node relations should be explored and exploited. For

example, in biochemical reaction networks, the effect of different sets of nodes might be more

important than single node pairs [11, 12, 13]. In the study of human interaction in multi-

channel or multi-view social networks, the key often lies in the relationship of collections

of nodes across multiple channels/views [14, 15, 16]. However, it is often non-trivial to

either adapt single network mining algorithms for multi-network mining tasks, or develop

new algorithms. Specifically, there exists unique patterns in multi-networks which can not be

captured only by simply applying mining techniques for single simple networks. For example,

applying independent network embedding methods on individual networks results in latent

node representations of separate embedding spaces, which hinders the direct comparison

of such node embeddings [17, 18]. Naively using classic random walk with restart based

techniques on multiple networks with anchor links can only obtain effective node proximities

within well-connected individual networks [19, 20]. Simply adapting neural models such as

graph autoencoder on hypergraphs fails to capture the unique high-order node associations
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of hypergraphs1 [13, 22]. Overall, it is difficult to leverage approaches directly from single

simple networks onto multi-networks, and thus it calls for new algorithms for mining multi-

network data.

1.2 RESEARCH CHALLENGES

Among others, we identify the following key challenges in designing new algorithms for

multi-network association.

First (problem formulation), there are two possible methods to define multi-network asso-

ciations, namely the explicit and implicit methods. On one hand, for the explicit method, we

should formally define the multi-network association mathematically and develop inference

algorithms for solving it. For multi-network node proximity, the pairwise explicit associa-

tion can naturally be represented by a matrix. The high-order explicit association is often

represented by a tensor. Specifically, how can we encode the topological node similarities as

well as node/edge attribute similarities in modeling the multi-network association? How can

we incorporate prior multi-network association knowledge in calculating the multi-network

association? On the other hand, for the implicit method, instead of calculating the multi-

network association directly, the focus is to implicitly preserve such association while solving

related mining tasks (e.g. embedding, classification, etc.). There are two categories of im-

plicit multi-network association. First, we can represent explicit multi-network association

in its low-rank form, in which the explicit association is preserved by a similarity measure of

the low-rank features. Second, the implicit multi-network association is obtained by learning

a low-dimensional embedding via neural models. Generally speaking, the major challenge

is two-fold, including (1) how to design models to capture such implicit associations in a

multi-network scenario; (2) how to learn the topological as well as attribute similarities of

high-order network objects?

Second (computational complexity), multi-network problems are usually much more com-

plex than their single-network counterparts, in terms of the input network sizes (multiple

networks vs. single network), and the complexity of network data models (e.g. hypergraphs

vs. simple networks), which leads to algorithms with potentially higher time and space

complexities. For instance, given a single simple network G with n nodes and m edges.

Calculating the Personalized Pagerank (PPR) [23] for a given node costs O(#iter · (m+n))

in time complexity by the basic fixed point method. However, given two networks G1, G2,

calculating cross-network node proximities by IsoRank [24] costs O(#iter ·(m2+n2)) in time

1Hypergraph can be seen as a special case (without domain networks) of the network of networks (NoN)
data model, which is a multi-network data model for modeling networks of multiple granularities [21].
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complexity by the basic fixed point method that is similar to the one for PPR. How can we

design algorithms which can not only tackle the multi-network association tasks, but also

enjoy tractable complexity on large networks?

Third (application), it is unclear how multi-network association-based approaches could

either improve the traditional mining tasks compared with directly applying existing meth-

ods on multi-networks, and/or enable novel applications, which are inapplicable by naively

adapting single-network approaches. For example, how can we collectively align multiple

similar users from multiple social networks? How can we jointly recommend appropriate

music styles, artists and albums to users by comprehensively considering their interactive

associations? How can we interactively answer users’ queries in the form of queries graphs

in a large network dataset? How can we simultaneously associate network objects of differ-

ent granularities (e.g., nodes/subgraphs/graphs) to enable recommending users to groups or

groups to users?

With the above motivations and challenges, the goal of this Ph.D. thesis is to design

novel algorithms to infer multi-network association in order to empower various

multi-network applications.

1.3 RESEARCH TASK OVERVIEW

To address the challenges mentioned beforehand, we specifically explore the following four

distinctive but internally correlated research problems, categorized by the pairwise/high-

order association and the taxonomy of methodologies (i.e. numerical/neural techniques).

The structure of this categorization can be present as a 2-by-2 table, which is shown in

Table. 1.1 .

1.3.1 A Divided View of Research Tasks

Pairwise Network Association. As a sub-area of multi-network association, pairwise net-

work association is extensively studied because of its broad applications. We will focus on

numerical optimization techniques by a special category of matrix equations (i.e. Sylvester

equation), and its instantiation on solving the pairwise association for various multi-network

mining tasks. The neural extension of such matrix equations and two representation learning

models will be further explored.

Task 1.1 - Pairwise Network Association with Numerical Techniques. Nu-

merical methods for pairwise association represent the pairwise network association as a

score matrix, whose entry equals to the weighted total support by all possible cross-network
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Table 1.1: The overall scope and the taxonomy of research works in this thesis.

matches. Based on this idea, we can formulate the problem of pairwise association as a

convex optimization problem with the idea of a generalized principle of network alignment,

and then concisely represent the solution of this matrix by a Sylvester equation. Moreover,

we develop an efficient solver (FASTEN [25]) for this special Sylvester equation for both

plain and attributed networks. FASTEN efficiently solves the Sylvester solution without ap-

proximation, and the algorithm could achieve more than 10,000 times faster compared with

the traditional linear system solvers. Furthermore, we also show the applicability of the

Sylvester equation in enabling novel multi-network mining tasks, such as collective network

alignment, interactive subgraph matching, and so on. Specifically, we develop a family of

efficient algorithm, FIRST [17], for answering query graphs with dynamic query modification

from user feedback. The FIRST algorithm adopts an approximate method in solving the

Sylvester equation, which could preserve more than 90% accuracy while achieve up to 16

times speed-up over baseline methods.

Task 1.2 - Pairwise Network Association with Neural Techniques. Existing neu-

ral models try to learn comparable latent node representations for multi-network tasks such

as network alignment. We focus on not only comparable cross-network node embeddings,

but also multi-resolution embedding which is comparable between multi-resolution network

objects from different networks. Furthermore, we will elucidate the relation between our nu-

merical techniques on pairwise network association inference (matrix equation) and neural

models (e.g., via Graph Neural Networks). Specifically, we propose a multi-resolution multi-

network embedding model (MrMine [26]), for learning the embedding of network objects
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from different resolutions and different networks on the same embedding space. We also

develop a neural framework as an generalization for the numerical Sylvester equation (i.e.,

Sylvester Multi-Graph Neural Network), and show the applicability of its instantiations in

geometric matrix completion (SyMGNN [27]) and social recommendation (NeMos [28]).

High-order Network Association. As a generalization of pair-wise network association,

high-order network association deals with more complex network data models (including

multiple regular networks and hypergraphs), problem formulation, and corresponding al-

gorithms. We will focus on generalizing numerical optimization by Sylvester equation to

high-order association on regular networks, and several neural approaches for high-order

association on hypergraphs as well as multi-network embeddings.

Task 1.3 - High-order Network Association with Numerical Techniques. Exist-

ing numerical approaches for high-order association aim to learn the multi-relations across

entities of different domains, typically via tenor factorization. We resort to a generic convex

optimization formulation which can be solved by a Sylvester tensor equation. We propose an

efficient algorithm (SyTE [15]) for solving such special tensor equations for the high-order

association solution on both plain and attributed networks. SyTE enjoys a linear time and

space complexity, and is shown to be effective in a variety of multi-network mining tasks, such

as multi-network alignment, multi-network node retrieval and high-order recommendation.

Task 1.4 - High-order Network Association with Neural Techniques. Capturing

high-order association with latent representations by neural models is the key of this category

of methods. In this thesis, we introduce a hypergraph representation learning framework

(HyperGRL [29]) which leverages the strength of pre-training strategy and Graph Neural

Networks (GNN). The proposed model is shown to outperform all baseline methods in hy-

peredge classification by up to 5.7%. Additionally, we conduct a real-world case study, in

which HyperGRL is successfully applied in the inconsistent variation family detection for

the Amazon selection and catalog system.

In summary, the research of this thesis boils down to design principled algorithms to

solve the three aforementioned challenges for problems of pairwise and high-order network

association inference and applications. Numerical and neural techniques consist of the two

categories of the mining approaches in the multi-network scenario. We will elaborate the

algorithms as well as the applications. Moreover, we will elucidate how these two seemingly

distinctive techniques are related with each other.

1.3.2 A Unified View of Research Tasks

Unification of Pairwise and High-order Network Association. As discussed above,

high-order network association is a generalization of pair-wise network association towards
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more than two networks, which make it natural to unify the two areas of problems and their

corresponding methods under the umbrella of the multi-network association. For the prob-

lem, the unified multi-network association problem takes the inputs of multiple attributed

networks, and outputs either the explicit collective associations of nodes across input net-

works, or the node embeddings which implicitly encode such collective associations. For

the methods, the high-order multi-network association methods could usually degenerate to

pairwise association methods when the number of input networks is two. But as we will

see in Chapter 3 and Chapter 5, specific problems will tackle different challenges, and it is

difficult to have a one-fits-all method.

Unification of Numerical and Neural Techniques. Although the numerical and neural

techniques for the multi-network association problems appears to be two separate directions,

there exists a potential unified view to relate them. As shown in Table 1.1, the Sylvester

Multi-Graph Neural Network [27] serves as a bridge between the blocks of numerical tech-

niques and neural techniques for pairwise association. Specifically, the traditional Sylvester

equation-based methods for explicitly calculating multi-network association can be reformu-

lated and generalized into a neural framework, which is learnable and incorporated with

downstream tasks end-to-end. We will elaborate this unified view in detail in Chapter 4.

1.3.3 Overview of the Strengths and Weaknesses of Techniques

Numerical techniques usually refer to a series of methods which use numerical approxi-

mation for mathematical analysis, such as numerous numerical methods for solving linear

systems. Neural techniques usually represent a category of machine learning methods which

adopt various (deep) neural network architectures in the model. Here, taking the repre-

sentative numerical and neural techniques (i.e., Sylvester equation-based approaches and

the Graph Neural Networks-based approaches) as examples here, we summarize the general

strengths and weaknesses in Table 1.2 of the numerical and neural techniques corresponding

to the taxonomy of the topics shown in Table 1.1.

1.4 THESIS ORGANIZATION

The remainders of the thesis are organized as follows. In Chapter 2, we first review

the related literature in the exact same taxonomy as this thesis (Table 1.1), and then

summarize the applications and limitations of the existing works. In Chapter 3, we present

the fast Sylvester equation solver for both plain and attributed networks, with one novel

application, namely interactive subgraph matching. In Chapter 4, we introduce our works of
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Table 1.2: The strengths and weaknesses of the multi-network association techniques.

Techniques Numerical Techniques Neural Techniques

Strengths

• Theoretical strength: able
to guarantee the solution
existence, uniqueness, ro-
bustness, etc.;

• Efficiency: efficient meth-
ods exist; No hidden
states/representations;

• Able to leverage long-range
topological dependency.

• Able to incorporate hetero-
geneous features;

• Able to leverage non-linear
relationship between input
features and outputs;

• Easy to be adapted to other
downstream tasks end-to-
end.

Weaknesses

• Difficult to incorporate het-
erogeneous features;

• Unable to capture non-
linear relationship between
input and output;

• Solution should always be
adapted to a downstream
task by separate learning
model, but not in an end-
to-end fashion.

• Difficult to theoretically an-
alyze the solution’s proper-
ties;

• Developing efficient method
is an open challenge; Need
to save hidden states/repre-
sentations;

• Tend to suffer from over-
smoothing when leveraging
long-range dependency.

Sylvester Multi-Graph Neural Network with one novel application: social recommendation

with Graph Neural Networks. In Chapter 5, we present the problem and solutions of multi-

way association. In Chapter 6, we elaborate our approaches for multi-resolution multi-

network embedding, as well as a hypergraph representation learning method with a case

study on inconsistent variation family detection. We conclude the thesis and discuss the

future directions in Chapter 7.
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CHAPTER 2: LITERATURE REIVEW

In this chapter, we review the literature of the related work of the thesis topic. Following

the research problems of the thesis, we divide this chapter into two categories, including the

pairwise network association and the high-order network association. For each category, we

further divide it into numerical techniques and neural techniques.

2.1 PAIRWISE NETWORK ASSOCIATION

Pairwise network association refers to the node associations between pairs of nodes across

different networks in a multi-network scenario. In the following literature review, we will

focus on the pairwise network association for two regular plain and attributed networks

respectively. Various graph mining tasks are closely related to this problem such as net-

work alignment [18, 19, 30], clustering [31, 32, 33], and matrix completion in multi-network

scenarios [34, 35, 36], etc. They either explicitly or implicitly leverage pairwise network

association for their tasks. We will review the representative works for each task.

2.1.1 Numerical Techniques

The core idea of the well-known IsoRank algorithm by Singh et al. [19, 24] is to represent

the two-network alignment result as a cross-network pairwise association score matrix, whose

entry (i, j) equals to the total support provided to it by each of the |N(i)|∗|N(j)| (|N(i)|:
number of neighbors of node i) possible matches between the neighbors of i and j. In return,

each node-pair (u, v) must distribute back its entire score equally among the |N(u)|∗|N(v)|
possible matches between its neighbors. This idea could be concisely represented as a matrix

equation on plain networks, which is later generalized as the topology consistency principle

as one of the three principles of attributed network alignment in FINAL by Zhang et al. [30].

Multi-Network clustering also utilize the idea of pairwise association for effective clustering.

Multi-Network Anchoring (MNA) algorithm by Kong et al. [37] formulates the pairwise

association inference problem on heterogeneous networks as a stable matching problem be-

tween the two sets of nodes in two different networks, under one-to-one mapping constraint.

MCA by Liu et al. [38] propose to use a cross-domain cluster alignment matrix for mapping

cluster membership of one domain network to the other. The cross-domain cluster align-

ment matrix could be seen as a generalization of pairwise association matrix for node pairs.

Matrix completion on multi-networks could be regarded as referring the missing pairwise
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associations given the observed incomplete pairwise association matrix. Kalofolias et al.

propose a low-rank solution [36] which is structured by the proximity between rows and

columns that form communities to tackle the optimization problem of matrix completion.

The formulation could combine both the collaborative filtering and content based filtering

idea.

2.1.2 Neural Network-based Techniques

For each of the data mining tasks by numerical methods which we discussed beforehand,

the neural techniques are also explored progressively. DMNE by Ni et al. [31] presents a

multi-network embedding model which coordinates multiple neural network modules (one

module for each input network) via a co-regularized loss. Another representative work, IONE

by Liu et al. [39] aims at explicitly modeling input/output context representations so as to

conserve the similarities of users with “similar” followers/followees pattern in the embedded

space, and proposes a unified model for learning users’ embedding as well as user alignment

via transferring of context information across networks. For clustering, DMGC by Luo et

al. [33] proposes to use a autoencoder network with a minimum entropy clustering objective

for jointly inferring cluster assignments and cluster associations in multi-network in an end-

to-end model. Most recently, Yan et al. propose GraphAE [40] which targets at adapting

the learned network representation to other networks while implicitly leveraging the cross-

network pairwise associations. Recent Graph Neural Networks based approaches for matrix

completion on multi-networks include [34, 41, 42, 43, 44, 45]. Other neural approaches of

multi-network embedding with pairwise association for various specific application scenarios

include [46, 47, 48, 49, 50, 51, 52]. Lastly, as we will review in the next two subsections, the

methods that target at alignment/clustering/tensor completion on more than two networks

might be degenerated to pairwise association problem in their corresponding settings.

2.2 HIGH-ORDER NETWORK ASSOCIATION

High-Order network association refers to the node associations beyond pairwise relation-

ship, such as the node association across more than two regular networks, and the node

association of hyperedges in a hypergraph. In the following literature review, we will fo-

cus on the high-order network association for multiple regular networks and hypergraphs

respectively.
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2.2.1 Numerical Techniques

Traditional high-order association research is often referred to as (multi-)relational learn-

ing (MRL), in a sense that the target is to learn the interaction relations across different

entities of different domains [53, 54, 55, 56]. These works commonly adopt the matrix/tensor

factorization approach. But they either do not explicitly model the interactions of entities

as networks or implicitly model such interactions by graph regularizer, which imposing con-

ditions to make similar entities close in their feature representations. Recently, the research

on network-based multi-relational learning begins to draw attention, and is most relevant

to the focus of this thesis. Representative works are briefly described as follows. TOP

by Liu et al. [57] formulate the problem as a convex optimization problem, which enables

transductive learning using both labeled and unlabeled tuples, and offers a scalable (linear

w.r.t. input network sizes) algorithm. Li et al. [16] propose a general tensor-based optimiza-

tion framework to infer the multi-relations among the entities across multiple networks in a

low-rank tensor. The paper particularly studies the multi-relations between protein-protein

interaction network, gene-gene relation network, and human disease-disease similarity net-

work. Recently, Li et al. propose LowrankTLP [58], whose formulation generalizes a widely

used label propagation model to the tensor product graph. The algorithm is efficient by

sequentially selecting the eigen-pairs from each individual network.

For high-order network association on hypergraphs, leveraging hypergraph laplacian-based

objective with a regularizer formulation solves a wide range of research problems. This

method is originated from [59] by Zhou et al., in which the authors propose to formulate the

hypergraph partitioning as a ranking-based convex optimization problem. The formulation

and its variants with different regularizer are found to be applicable in numerous problems,

such as link prediction in social networks [60], image/text retrieval [61], recommendation

[62], social mining [63], bioinformatics [64], and multimedia research [12]. Meanwhile, other

numerical techniques are also applied to solve various problems. For example, Zhang et al.

propose a Coordinated Matrix Minimization (CMM) algorithm. It uses coordinated matrix

minimization method for nonnegative matrix factorization in the adjacency space of the

hypergraphs for hyperedge prediction. MetaFac by Lin et al. [65] propose to use hypergraph

for modeling the relational and multi-dimensional social data for multi-relational learning,

and develop a tensor factorization based method for community detection. Recently, there

are also reflection on how to effectively construct hypergraph from raw data for obtaining

optimal mining task performance with classic methods [11, 66, 67]. For example, Yoon et al.

investigate the conditions for constructing hypergraphs with different levels of abstraction

specifically for hyperlink prediction [66]. Sharma et al. find that the 2-project graph fails
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when capturing high-order associations [67].

2.2.2 Neural Network-based Techniques

For high-order network association on multiple regular networks, the number of litera-

ture is limited compared with classic numerical methods, but many recent works can be

regarded as implicitly utilizing high-order associations. The current approaches could be

roughly divided as non-convolutional based and convolutional based. Here we review some

representative works. Aimed at local network clustering, the algorithm AMRWR by Yan

et al. [32] develops a Multi-Network Random Walk with Restart (MRWR) schema, which

could be seen as a modified truncated random walk applied on multi-networks for discovering

local clusters on a given network in association with additional networks. DeepMNE by Xue

et al. [68] presents a semi-supervised autoencoder model for learning feature latent repre-

sentations of nodes of multiple regular networks. CrossMNA by Chu et al. [18] leverages

the cross-network information of multi-networks to refine two types of node embeddings,

the inter-vector for multi-network alignment and intra-vector for other downstream network

analysis tasks. LinkNBed by Trivedi et al. [69] aims at entity linkage in multiple knowl-

edge graphs, and proposes a deep relational learning framework which learns entity and

relationship representations across multiple graphs. These works implicitly preserve high-

order associations as building the optimization model. High-Order association on regular

networks could usually be used in the following applications, i.e. multi-network alignment

[18], high-order social recommendation [70, 71], etc.

For high-order network association on hypergraphs, similar to regular network scenario,

two major directions are explored in recent literature, namely the non-convolutional tech-

niques, such as language model-inspired models (e.g. Skipgram) and graph auto-encoder-

based models, and also the models based on Graph Neural Networks (GNN). Specifically,

Yang et al. [72] target at location based social networks (LBSN), and first propose a random-

walk-with-stay scheme to jointly sample user check-ins and social relationships. Then it

learns node embeddings from the sampled (hyper)edges by preserving n-wise node proxim-

ity by a Skipgram-based model. After that, Yang et al. continue to propose LBSN2Vec++

[73] for heterogeneous hypergraph embedding in LBSNs. RNe2Vec by Shang et al. [74] follow

the direction of [72] and propose a biased random walk based approach for capturing differ-

ent repost behaviors in a post network. Besides all the embedding methods using Skipgram,

graph auto-encoder is also explored. DHNE by Tu et al. [22] prove that the hypergraph em-

bedding learning should conserve the intrinsic indecomposablity property of hyperedges via

nonlinear functions. In order to achieve this, the model utilizes an encoder-decoder module
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and a non-linear module in the model architecture of hypergraph embedding learning.

On the other hand, recent years have witnessed a surge of Graph Neural Network-based

neural models for mining tasks in hypergraphs in the literature. We will review a few rep-

resentative works, some of which are in the frontier of unprecedented research directions.

One of the earliest works that explore the applicability of GNN on hypergraph is [75] by

Arya et al. It adopts the idea of multi-graph CNN model from [34] by Monti et al., which

is an early multi-network convolutional model for geometric matrix completion. Later, Feng

et al. proposes hypergraph neural network (HGNN) [76], which designs a hyperedge convo-

lution operation to handle the data correlation during hypergraph representation learning.

Hyper-SAGNN by Zhang et al. [77] investigates the potential of combining attention-based

dynamic mechanism with a static neural network mechanism to achieve superior perfor-

mance in hyperlink prediction. HyperGCN by Yadati et al. [13] present how to adapt

Graph Convolutional Networks (GCN) on hypergraphs with derivation from hypergraph

laplacian. Moreover, inspired by recent exploration of using GNN model on combinatorial

problems on regular graphs, it tries to solve combinatorial problems on hypergraphs for the

first time. Most recently, Yu et al. studies the potential of using self-training strategy, which

is originally developed in natural language processing and computer vision communities, on

hypergraph representation learning for social recommendation [78] for the first time. Be-

yond static hypergraph mining, Jiang et al. [79] demonstrate how GNN could be adapted

for representation learning on dynamic hypergraphs.

As for applications, unlike classic approaches of mining hypergraphs, neural approaches

only focus on a small number of real-world data mining tasks, such as hyperlink prediction

[80], and recommendation [78]. Further investigation of how to boost diverse applications

could be one future direction.

2.3 MULTI-NETWORK ASSOCIATION APPLICATIONS

Here, we review some representative graph mining applications which leverage the multi-

network association either explicitly or implicitly. These applications are all closely related

to the scope of this thesis.

2.3.1 Network Alignment

Network alignment is an important aspect of applications closely related to the multi-

network association. Based on the specific problem settings, the network alignment problem

can be divided into the following categories: (1) pairwise network alignment, which aims
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at finding the node correspondence across two networks [30, 81, 82]; (2) collective network

alignment, which targets at collectively align multiple networks [15, 83]; (3) High-Order

network alignment, which maximizes the number of correspondent high-order structures,

such as triangles [84]; (4) Hierarchical network alignment, which simultaneously aligns the

nodes and clusters of nodes in different resolutions. Multi-level optimization and multi-

resolution matrix factorization techniques have been applied to tackle this problem [85, 86].

A complete survey on network alignment research can be found in [87].

2.3.2 Social Recommendation

The related works of social recommendation can be roughly divided into two categories,

the classical social recommendation methods and the recent GNN-based models.

Classical Social Recommendation Methods. SocialMF [88] incorporates the mecha-

nism of trust propagation into the matrix factorization-based model, and shows its effective-

ness in tackling cold-start problems. TrustSVD [89] extends the idea of trust propagation

to leverage both explicit and implicit influence of ratings and trust in the matrix factoriza-

tion model. ContexMF [90] proposes a probabilistic matrix factorization method to fuse the

indicidual preference and interpersonal influence. CNSR [91] is one of the earliest works to

introduce neural models in social recommendation. It proposes two modules, namely a social

embedding and a collaborative neural recommendation part, and further combines them in

a joint learning framework.

GNN-based Models. Numerous GNN-based models have been proposed. We review

some of the most representative works here. PinSage [92] is one of the earliest works to

apply GNNs on recommender systems. The model constructs convolution operations via

random walks to generate embeddings of items which incorporate both graph topology and

feature information. NGCF [93] proposes to propagate the user/item embeddings on the

user-item bipartite graph for modeling the high-order connectivity. GraphRec [44] proposes

a neural model to jointly capture the interactions and opinions in the user-item graph, in

order to handle the heterogeneity issue in the user-user and user-item relation. Recently,

DiffNet [94] and DiffNet++ [95] propose a GNN-based model to combine the social influ-

ence diffusion with the interest diffusion, with different designs of GNN architectures. As

a follow-up, DiffNetLG [96] models both local implicit influence of users on unobserved in-

terpersonal relations, and global implicit influence of items broadcasted to users. LightGCN

[97] simplifies the GCN model in recommendation to only keep the neighbor aggregation

for collaborative filtering. RecQ [78] develops a hypergraph-based model to model the high-

order user relations in social recommendation. ESRF [98] addresses the three commonly
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observed drawbacks in practice with a deep adversarial framework.

2.3.3 Link Prediction in Hypergraphs

Among the earliest work, Li et al. [60] transform the hyperlink prediction problem as a

ranking problem for hyperedges, and adopt a SimRank-like [99] method. [14] use a coor-

dinated matrix minimization method for nonnegative matrix factorization in the adjacency

space of the hypergraphs for hyperedge prediction. More recently, representation learn-

ing and GNN-based methods are developed for this direction. Tu et al. propose DHNE

[100] which applies auto-encoder and deep neural networks for the representation learning of

hyperedges. Hyper-SAGNN by Zhang et al. [77] combines the attention-based dynamic rep-

resentations and the MLP-based static representations for hyperedge prediction. HGNN by

Feng et al. [76] generalizes the convolution operation to the hypergraph by hypergraph Lapla-

cian. Deep Hyperedges [101] by Payne jointly uses contextual and permutation-invariant

node memberships of hyperedges for hyperedge classification.

2.3.4 Subgraph Matching

Various subgraph matching techniques can be found in different targeting problems. Tra-

ditional exact subgraph matching algorithms include Ullmann [102], TurboISO [103], and

CFL [104]. G-Ray by Tong et al. [105] applies RWR (Random Walk with Restart) [106, 107]

and CePS (CenterPiece Subgraphs) [108] idea to achieve fast inexact pattern matching for

networks with node attributes. TALE by Tian and Patel [109] allows approximate matching

and large query graphs by proposing NH-index (Neighborhood Index). SIGMA by Mongiovi

et al. [110] defines a new effective pruning rule for inexact matching based on multi-set

and multi-cover, a variant of the well known set-cover problem. It performs well in the

application of query yeast and human protein complexes. More recently, R-WAG, I-WAG

and S-WAG by Roy et al. [111] aim to return fast best-effort answer for WAG (Weighted

Attributed Graphs) query by designing a hybrid index structure that incorporates weighted

attributes, structural features and graph structure. NeMa by Khan et al. [112] proposes a

heuristic approach based on defining a new definition of matching cost metric. More recently,

IncMatch by Fan et al. presents a simulated method for incremental subgraph matching of

certain patterns. Recently, G-Finder by Liu et al. [113] is proposed to leverage traditional

indexing methods on inexact matching scenario.
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2.4 LIMITATIONS FOR EXISTING WORKS

From a high-level perspective, the existing works on multi-network association exhibit the

following three limitations. First, the learned multi-network association does not always

effectively encode the multi-network topology or multi-network attributes. For example,

given two attributed networks as inputs for network alignment, many existing works could

not effectively combine the nodes’ local topology features with their numerical features or

attributes [81, 99, 114]. Consequently, the learned multi-network association or node em-

beddings could fall short in achieving superior performance. As another example in social

recommendation, many existing works fail to leverage both the user-user social interaction

and the user-item relation of interest, when learning user/item embeddings for recommen-

dation [44, 90, 91, 92]. Second, the existing methods often suffer from high time and space

complexities when dealing with large multi-networks. As we have discussed in Chapter 1, the

solution space of the multi-network association problem becomes significantly larger com-

pared with single network node association problem [25]. Therefore, the computational com-

plexity is also much larger. Furthermore, when learning representations of multi-networks,

the model architecture becomes more complex compared with single network models. For

example, conducting random walks on multi-network data for unsupervised embedding be-

comes highly non-trivial compared with random walks on single simple networks, in which

the random walks are well-defined [20, 26]. Third, the existing methods are often difficult

to be adapted for new multi-network applications. For example, the pairwise network asso-

ciation methods are difficult to be applied directly for high-order association problems for

multi-networks [29].
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CHAPTER 3: PAIRWISE ASSOCIATION WITH NUMERICAL
TECHNIQUES

The Sylvester equation is the cornerstone of many multi-network mining tasks, such as

network alignment, subgraph matching, graph kernel, and node similarity. In this chapter, we

introduce our works on the solution of the Sylvester equation and its applications, including

(1) a family of fast Sylvester equation solvers for plain networks where no attributes are

available [25]; (2) a family of fast Sylvester equation solvers for attributed networks [25]; and

(3) a novel application of Sylverster equation for multi-network mining, namely interactive

subgraph matching [17].

3.1 FAST SYLVESTER EQUATION SOLVER FOR PLAIN NETWORKS

How can we link users from different social network sites (e.g., Facebook, Twitter, LinkedIn,

etc.)? How can we integrate different tissue-specific protein-protein interaction (PPI) net-

works together to prioritize candidate genes? How to predict the toxicity of chemical

molecules by comparing their three-dimensional structure? How can we detect suspicious

transaction patterns (e.g., money-laundering ring) in the financial network given a template

pattern/query? The Sylvester equation [115], defined over the adjacency matrices of the

input networks, provides a powerful and unifying primitive for a variety of key graph mining

tasks, including network alignment [116], graph kernel [117], node similarity [118], subgraph

matching [17], etc. Figure 3.1 presents an illustrative example of using Sylvester equation

for graph mining.

A major limitation of Sylvester equation lies in the high computational complexity. For

graphs with n nodes and m edges, the straight-forward solver is O(n6) in time and O(m2)

in space. Much effort has been devoted to speed up the computation for solving Sylvester

equation. Nonetheless, state-of-the-art methods for plain graphs require a complexity that is

at least O(mn+n2) [30]. The complexity for solving Sylvester equation would be even more

intensified when the input graphs have accompanying node attributes. For example, it would

add an additional O(l) (l is the number of node attribute values) to the time complexity

of conjugate gradient descent solver. Some recent approximate algorithms try to reduce

this complexity by matrix low-rank approximation. Nonetheless, it still requires O(n2),

even with such an approximation. Table 3.1 summarizes the time and space complexity of

the existing methods for solving Sylvester equations. Consequently, most of the existing

Sylvester equation solvers can only handle graphs with up to tens of thousands of nodes.

To address this issue, we design a family of Krylov subspace based algorithms (FASTEN)
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Figure 3.1: An illustrative example of network alignment by Sylvester equation [30, 119].
Left: the input plain graphs with the dashed line indicating the preference matrix B. Right:
the solution matrix X of the corresponding Sylvester equation X = A1XA2 + B gives the
cross-network node similarity, where A1 and A2 are the adjacency matrices of the input
graphs; and a darker square on the right represents higher cross-network node similarity.
Best viewed in color.

to speed up and scale up the computation of Sylvester equation for graph mining. The

key idea of the designed methods is to project the original corresponding linear system

onto a Kronecker Krylov subspace. By doing so, we are able to obtain an O(n) factor

reduction in time complexity and O(m2/n2) factor reduction in space complexity compared

to normal Krylov subspace based Sylvester equation solver for plain graphs [115]. Building

upon that, we seek to further reduce the complexity. Here, our key observation is that the

preference matrix in the Sylvester equation is often low-rank (e.g. Figure 3.1), which implies

that the solution matrix itself must have low-rank structure. This, together with some

additional optimization (e.g., exploiting the linearity by using the block-diagonal structure

of the solution matrix for the attributed graphs), helps further reduces the complexity of

the designed method to be linear in both time and space, without approximation error.

Table 3.1 (shaded parts) summarizes the time and space complexities of the FASTEN

algorithms. The main contributions of this work are as follows:

• Novel Algorithms. We design a family of efficient and accurate Sylvester equation

solver for graph mining tasks, with and without node attribute.

• Proof and Analysis. We provide theoretic analysis of the developed algorithms in

terms of the accuracy and complexity.

• Empirical Evaluations. We perform extensive experimental evaluations on a diverse

set of real networks with a variety of graph mining tasks, which demonstrate that our

methods (1) are up to 10, 000× faster than the Conjugate Gradient method, the best

known competitor that output exact solution, and (2) scale up to million-node graphs.

17



Table 3.1: Complexity Summary and Comparison. r (the rank of input graphs), l (number
of node attributes) and k (subspace size) are much smaller compared with m and n. Some
small constants are omitted for clarity.

Algorithm Attributed(Y/N) Exact(Y/N) Time Space
FP [117, 120] Y Y O(n3) O(m2)
CG [117, 120] Y Y O(n3) O(m2)
Sylv. [117, 120] Y Y O(n3) O(m2)
ARK [121] Y N O(n2) O(n2)

Cheetah [122] Y N O(rn2) O(n2)
NI-Sim [119] N N O(n2) O(r2n2)
FINAL-P [30] N Y O(mn + n2) O(n2)
FINAL-NE [30] Y Y O(lmn + ln2) O(n2)
FINAL-N+ [30] Y N O(n2) O(n2)
FASTEN-P N Y O(kn2) O(n2)
FASTEN-P+ N Y O(km + kn) O(m + kn)
FASTEN-N Y Y O(mn/l + kn2/l) O(m/l + n2)
FASTEN-N+ Y Y O(km + k2ln) O(m + kln)

3.1.1 Problem Definition

The main symbols and notations used in this work are summarized in Table 3.2. The

calligraphic letters G1 and G2 represent two attributed graphs. The uppercase bold letters

A1 and A2 represent the n × n adjacency matrices and the uppercase bold letters N1

and N2 represent the node attribute matrices. N1 and N2 are diagonal matrices in which

Nj
1(a, a) = 1 if the node a in graph G1 has node attribute j and otherwise it is zero. The

uppercase bold letter N without subscript or superscript is the combined node attribute

matrix of two input graphs. N =
∑l

j=1N
j
1 ⊗Nj

2 where l is the number of node attributes.

We use uppercase bold letter D as the combined diagonal degree matrix of the two input

graphs. For a matrix (e.g., X), we vectorize it in the column order to obtain its equivalent

vector representation (e.g., x = vec(X)). For an attributed network, we index its nodes

by the corresponding attributes in the adjacency matrix, i.e., all the nodes with the same

attribute are consecutive rows/columns in the adjacency matrix, and their induced subgraph

is a block of the adjacency matrix with consecutive indices. For example, for G1 in Figure 3.2,

node-1 and node-2 are the first two rows/columns in the adjacency matrix A1 since they

share the same node attribute (blue diamond); and node-3 and node-4 are the last two

rows/columns in A1 since they share the same node attribute (green hexagon). This will

simplify the description of the developed algorithms.

Sylvester equation for graph mining. For the completeness, we present a brief review

of Sylvester equations and their applications to graph mining. For more details, please
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Table 3.2: Symbols and Definition

Symbols Definition
G1 = {A1,N1} an attributed graph

N combined node attribute matrix of input graphs
R, r residual matrix and residual vector

H1, H2 k × k Hessenberg matrices
D1,D2 diagonal degree matrices

I an identity matrix
B preference matrix in the Sylvester equation

Kk(A, r0) Krylov subspace with dimension k
k Krylov subspace size k ≪ n
α the parameter 0 < α < 1
l the number of node attribute

b = vec(B) vectorize a matrix B in the column order
[A,B] concatenate two matrices in a row
[A;B] concatenate two matrices in a column

diag(A1, ...,Ai) diagonalize i matrices
⊗ Kronecker product

trace(·) trace of a matrix
∥ · ∥F Frobenius norm

refer to [30, 117, 119]. For graphs without attributes, let A1 ← α1/2D
−1/2
1 A1D

−1/2
1 and

A2 ← α1/2D
−1/2
2 A2D

−1/2
2 be the normalized adjacency matrices of two input graphs, and B

be the preference matrix. We have the following Sylvester equation [30].

X−A2XAT
1 = B (3.1)

By the Kronecker product property, we have the equivalent linear system of Equation (3.1)

as follows.

(I−W)x = b (3.2)

where W = A1 ⊗ A2, b = vec(B) and x = vec(X). We assume that A1 and A2 are of

the same size n × n. For example, for the two input graphs in Figure 3.1, A1 and A2 are

4× 4 adjacency matrices of G1 and G2 respectively, and B is the preference matrix to reflect

the prior knowledge (the dashed line). The entries of the solution matrix X indicate the

similarity between a node pair across two input graphs.

When the input graphs have attributes on nodes, the W matrix in Equation (3.2) becomes

W = D−1/2[N(A1⊗A2)N]D−1/2. To simplify the notation, let A
(ij)
1 ← α1/2D

−1/2
1 Ni

1A1N
j
1D

−1/2
1 ,

A
(ij)
2 ← α1/2D

−1/2
2 Ni

2A2N
j
2D

−1/2
2 be the attributed, normalized adjacency matrices. We can

see that A
(ij)
1 is of the same size of A1, but it is ‘filtered’ by the corresponding attributes.
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In other words, A
(ij)
1 only contains links in A1 from nodes with attribute i to nodes with

attributes j. In this case, Equation (3.2) becomes:

[I−
l∑

i=1

l∑
j=1

(A(ij)
1 ⊗A

(ij)
2 )]x = b (3.3)

Again, by the Kronecker product property, we have the following equivalent Sylvester equa-

tion of Equation (3.3):

X−
l∑

i=1

l∑
j=1

A
(ij)
2 X(A

(ij)
1 )T = B (3.4)

For the ease of description of the developed algorithms, we also use a block-matrix rep-

resentation. Take A1 for an example, we have A1 = [Aij
1 ]i,j=1,...,l, where Aij

1 is a block of

matrix A1 from rows of attribute i to columns of attribute j. Note the subtle difference

between Aij
1 and A

(ij)
1 : they have different sizes and we can verify that A1 =

∑l
i,j=1A

(ij)
1 .

We use a similar representation for other matrices in Equation (3.4), i.e., A2 = [Aij
2 ]i,j=1,...,l,

B = [Bij]i,j=1,...,l, and X = [Xij]i,j=1,...,l.

Figure 3.2 presents an illustrative example of attributed Sylvester equation. A1 and A2

are two 4 × 4 adjacency matrices, and N1 and N2 are the node attribute matrices of G1
and G2. B represents the prior knowledge (the dashed line). Each entry of the solution

X indicates a similarity score between a node pair across G1 and G2. Although both A
(11)
1

and A11
1 correspond to links between node-1 and node-2 (since both nodes share the first

attribute, i.e., blue diamond), their sizes are different: A
(11)
1 is of 4 × 4 whereas A11

1 is of

2× 2.

Figure 3.2: An illustrative example of attributed network alignment by Sylvester equation
[30, 119]. Left: the input graphs with node attributes (colors and shapes). Dashed line:
preference matrix. Right: the solution matrix X of Equation (3.4), representing cross-
network node similarity. A darker square represents a higher similarity value. Best viewed
in color.
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The Sylvester equations defined in Equation (3.1) and Equation (3.4), together with their

equivalent linear systems (Equation (3.2) and Equation (3.3)) provide a very powerful tool

for many graph mining tasks. For example, the solution matrix X indicates the cross-

network node similarity, which can be directly used for the task of network alignment; by

aggregating the solution matrix X (e.g., by a weighted linear summation over the entries in

X), it measures the similarity between the two input graphs [121]; if one of the two input

graph is a small query graph, the solution matrix X becomes the basis for (interactive)

subgraph matching [17]; if the two input graphs are identical without node attributes, the

corresponding Sylvester equation degenerates to SimRank and thus its solution matrix X

measures the node similarity [119].

However, as mentioned earlier, a major bottleneck lies in the high computational com-

plexity. In the next two sections, we present our solutions to speed up and scale up the

computation of Sylvester equations, which are divided into two parts based on whether or

not the input graphs are attributed. See Table 3.1 for a summary and comparison.

Krylov subspace methods for linear systems. A classic method for solving a linear

system Ax = b is via Krylov subspace methods [115]. It first generates an orthogonal basis

of the its Krylov subspace with an initial residual vector r0, denoted by Kk(A, r0), where

r0 = b −Ax0, and x0 is an initial solution. Then it iteratively updates the residual vector

and the corresponding solution vector x over the Krylov subspace formed equation [115]

Compared with the alternative methods, e.g., (conjugate) gradient descent, the major ad-

vantage of Krylov method lies in the ability to project the original system onto a subspace

with a much smaller dimension/size, which can be in turn solved very efficiently.

3.1.2 FASTEN-P(+): Fast Algorithms for Plain Networks.

Here, we address the Sylvester equation for plain graphs without node attributes, i.e.,

Equation (3.1) and Equation (3.2). We start with the key ideas and intuition behind the de-

veloped algorithms, and then present the detailed algorithms (FASTEN-P and FASTEN-

P+), followed by some analysis in terms of the accuracy and complexity.

Intuition and Key Ideas. Let us first highlight the key ideas and intuition behind the

two developed algorithms, using the example in Figure 3.1. First, if we directly apply the

standard Krylov subspace methods to solve Equation (3.2), we would need to generate the

orthonormal basis of Kk2(I−A1⊗A2, r0) or Kk2(A1⊗A2, r0), which requires a complexity

as high as O(n4) in both time and space. To avoid such a high polynomial complexity, our
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first key idea is to represent the Krylov subspace of I − A1 ⊗ A2 as well as conduct the

subsequently computation to update the residual/solution vectors indirectly by the Krylov

spaces of the two input graphs. Taking Figure 3.1 for an example, where the two adjacency

matrices are both 4 × 4. The Krylov subspace of the corresponding Sylvester equation is

in R16. As will shown in the developed FASTEN-P algorithm, we will decompose it into

the Kronecker product of two Krylov subspace in R4, which will largely reduce the time and

space cost (FASTEN-P).

Second, notice that the solution matrix X itself is of size n× n. Thus, if we compute and

store it in a straight-forward way, it still needs O(n2) complexity. Here, the key observation

is that the preference matrix B often has a low-rank structure. For the example in Figure 3.1,

the preference matrix B only has two non-zero entries (B(3, 4) and B(4, 3)), making itself

a rank-2 matrix. This observation is crucial as it allows us to perform all the intermediate

computation as well as to represent the solution matrix X in an indirect way, leading to a

linear complexity (FASTEN-P+).

FASTEN-P Algorithm. Let D1 and D2 be the diagonal degree matrices of the adjacency

matrices of the two input graphs A1 and A2 respectively. We normalize the adjacency

matrices as A1 ← α1/2D1
−1/2A1D1

−1/2, and A2 ← α1/2D2
−1/2A2D2

−1/2, where 0 < α < 1

is a regularization parameter.

We first show how to represent Kk2(A1 ⊗A2, r0) indirectly in the form Kk(A1,g) ⊗
Kk(A2, f). To be specific, let Vi = [v1,v2, ...,vi], Wj = [w1,w2, ...,wj] for i ∈ {k, k + 1},
and j ∈ {k, k + 1}, where {vi}ki=1 and {wj}kj=1 are orthonormal basis of Kk(A1,g) and

Kk(A2, f), respectively. Let H1, H2 and H̃1, H̃2 be the Hessenberg and Hessenberg-like

matrices generated by the Arnoldi process 1 [115]. We have that

H1 = VT
kA1Vk,H2 = WT

kA2Wk (3.5a)

H̃1 = VT
k+1A1Vk, H̃2 = WT

k+1A2Wk (3.5b)

H1, H2 are k × k and H̃1, H̃2 are (k + 1) × k. Notice that k is often much smaller than

n (i.e., k ≪ n). Therefore the size of the above Hessenberg and Hessenberg-like matrices is

small. We can prove that Vk ⊗Wk forms the orthonormal basis of Kk(A1,g) ⊗ Kk(A1, f)

(see the details in the proof of Theorem 3.1).

Next, we show how to update the residual vector r and the solution vector x using the

indirect representation of Kk2(A1 ⊗A2, r0). Let x0 be an initial solution of Equation (3.2).

1Note that if A1 and A2 are symmetric (undirected graphs), Lanczos algorithm can be applied. We use
Arnoldi process for generality.
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The initial residual vector is:

r0 = b− (I− αW)x0 (3.6)

To obtain a new solution x1 = x0 + z0, we want z0 ∈ Kk(A1,g)⊗Kk(A2, f), i.e.,

z0 = (Vk ⊗Wk)y (3.7)

for an unknown vector y ∈ Rk2 . The new residual is:

r1 = r0 − [(A1 ⊗A2)(Vk ⊗Wk)y − (Vk ⊗Wk)y] (3.8)

Based on Equation (3.5a), we seek to minimize the residual:

||r1||2 = min
y∈Rk2

||r0 − (A1 ⊗A2)(Vk ⊗Wk)y + (Vk ⊗Wk)y||2

= min
y∈Rk2

||r0 − (A1Vn)⊗ (A2Wk)y + (Vk ⊗Wk)y||2

= min
y∈Rk2

||r0 − (Vk+1H̃1)⊗ (Wk+1H̃2)y + (Vk ⊗Wk)y||2

= min
y∈Rk2

||(Vk+1 ⊗Wk+1)[(Vk+1 ⊗Wk+1)
T r0 − (H̃1 ⊗ H̃2)y + (Ik+1,k ⊗ Ik+1,k)y]||2

= min
y∈Rk2

||(Vk+1 ⊗Wk+1)
T r0 − (H̃1 ⊗ H̃2)y + (Ik+1,k ⊗ Ik+1,k)y||2 (3.9)

where Ik,k+1 = [δi,j]1≤i≤k+1,1≤j≤k and δi,j is the Kronecker δ-function. Equation (5.14) can

be solved by:

min
Y∈Rk2

||WT
k+1R0Vk+1 − H̃2YH̃T

1 + Ik+1,kYITk+1,k||F (3.10)

It can be proved that the least square problem in equation (3.10) can be solved by the

following linear system (see details in the proof of Theorem 3.1):

L(Y) = C (3.11)

where L(Y) = H̃T
2 H̃2YH̃T

1 H̃1 −HT
2YH1 −H2YHT

1 + Y, and C = H̃T
2W

T
k+1R0Vk+1H̃1 −

WT
kR0Vk. Notice that the size of both Y and C are k × k, so the dimension of Equation

(3.11) is typically small and we can solve it by Global Conjugate method [123].

Another subtle issue is how to choose the initial vectors g and f for the Arnoldi Process.

We use a procedure in [124] to choose f and g to guarantee that r0 ∈ Kk(A1,g)⊗Kk(A2, f)

as follows. If ||R0||1≤ ||R0||∞, we choose f as the column of R0 with the largest l2 norm

and g = RT
0 f/|f |22; otherwise, we choose g as the row of R0 with the largest l2 norm and
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f = R0g/|g|22.
Putting everything together, we have the overall algorithm for solving the Equation (3.1)

in Algorithm 3.1.

Algorithm 3.1 FASTEN-P

Input: Normalized adjacency matrices A1 and A2, tolerance parameter ϵ > 0, Krylov
subspace size k > 0, preference matrix B;

Output: The solution X of Equation (3.1).
1: Initialize X and the residual matrix R;
2: while ||R||F> ϵ do
3: Choose Arnoldi vectors g ∈ Rn and f ∈ Rn;
4: Apply Arnoldi Process on A1, A2 and obtain H̃1, H̃2, Vk, Vk+1, Wk, Wk+1;
5: Use Global Conjugate Gradient method for the linear system L(Y) = C;
6: Update solution X← X + VkYWT

k ;
7: Update residual R← R−Vk+1H̃1YH̃T

2W
T
k+1 + VkYWT

k ;
8: end while

The first line is the initialization of the solution matrix and the residual. Line 2 to 8

are the outer loop, while line 5 is the inner loop which uses the Global Conjugate Gradient

method. Line 6 (Equation (3.7)) updates the solution matrix X at each iteration. Line 7

(Equation (3.8) and Equation (5.14)) updates the residual matrix R at each iteration.

FASTEN-P+ Algorithm. To further reduce the time and space complexity of FASTEN-

P, we explore the low-rank structure of the preference matrix B of Equation (3.1). Firstly, it

is common in many graph mining tasks that the matrix B of Equation (3.1) has a low-rank

structure. For example, in network alignment, anchor links are often sparse (e.g. in Figure

3.1, only 1 anchor link is given). If the prior knowledge of anchor links is unknown, matrix

B becomes a uniform matrix, which means it is rank-1. Secondly, it turns out that the

low-rank structure of the preference matrix B would imply the solution matrix X must have

a low-rank block matrix structure (see the detailed analysis and proof in Lemma 3.1). This

allows us to implicitly represent both the residual matrix and the solution matrix, which

leads to a linear complexity.

The improved algorithm (FASTEN-P+) is summarized in Algorithm 3.2. As we can

see the residual R is implicitly represented by the multiplication of U1 and U2, and the

solution X is implicitly represented by the multiplication of M and N. The residual is

updated at each iteration in line 9 and the solution is updated in line 7. Due to the implicit

representation of the initial residual matrix, we need a slightly different procedure to choose

the Arnoldi vector in line 4. Given the implicit representation of residual by U1 and U2,

let r1 = eTU1U2, r2 = U1U2e (e is an all-one vector), and let i1 and i2 be the indexes of
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the largest entries in r1 and r2. If max(r1) ≥ max(r2), we choose f as U1U2(:, i1), and then

g = UT
2U

T
1 f/|f |22; otherwise, we set g as UT

2U1(i2, :)
T , and then f = U1U2g/|g|22.

Algorithm 3.2 FASTEN-P+

Input: Normalized adjacency matrices A1 and A2, tolerance parameter ϵ > 0, Krylov
subspace size k > 0, preference matrix B;

Output: The implicit representation for the solution matrix X of Equation (3.1): P and
Q.

1: Initialize P,Q. Set e be an all-one vector.;
2: Let U1 ← B(:, 1), U2 ← e;
3: while trace(U2

T (U1
TU1)U2) > ϵ do

4: Choose Arnoldi vectors g ∈ Rn and f ∈ Rn;
5: Apply Arnoldi Process on A1 and A2 to obtain H̃1, H̃2, Vk, Vk+1, Wk, Wk+1;
6: Use Global Conjugate Gradient method for L(Y) = C;
7: Construct P← [P,VkY],Q← [Q,WT

k ];
8: L2 ← Vk+1H̃1YH̃T

2 , P2 ←WT
k+1, L3 ← VkY, P3 ←WT

k ;
9: Construct U1 ← [U1,L2,L3], U2 ← [U2

T ,PT
2 ,P

T
3 ]T ;

10: end while
11: Return P,Q.

From line 3 to line 10 are the outer loop where the algorithm updates P, Q, U1, U2 and

checks stopping condition. Line 6 is the inner loop of Global Conjugate Gradient method.

We remark that the low-rank representation for the solution matrix X in Algorithm 3.2

bears subtle difference from [30, 121, 125], which approximate the input adjacency matrices

with an inevitable approximation error. In contrast, the low-rank representation of the solu-

tion matrix in the developed FASTEN-N is due to the low-rank structure of the preference

matrix B, regardless whether or not A1 and A2 are low-rank. As such, it does not introduce

any approximation error.

Proofs and Analysis. We provide the proofs and analysis of the proposed algorithms as

follows.

Correctness. The correctness of FASTEN-P is summarized in Theorem 3.1, which says the

matrix X by Algorithm 3.1 finds the exact solution of Equation (3.1).2

Theorem 3.1 (Correctness of FASTEN-P). The matrix X by Algorithm 3.1 is the exact

solution of Equation (3.1) w.r.t the tolerance ϵ.

Proof. First, we prove that Vk ⊗Wk is the orthonormal basis of Kk(A1, g) ⊗ Kk(A2, f).

2Following the convention in scientific computing, we say a solutionX is exact w.r.t. a tolerance parameter
ϵ if the Frobenius norm of the difference between X and the solution by the direct method is less than ϵ.
Throughout the paper, ϵ is set to be a very small number, e.g., ϵ = 10−7.
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The Hessenberg matrix H1 ⊗H2 and A1 ⊗A2 satisfy the following relationship

H1 ⊗H2 = (VT
kA1Vk)⊗ (WT

kA2Wk)

= (VT
k ⊗WT

k )(A1 ⊗A2)(Vk ⊗Wk)

= (Vk ⊗Wk)T (A1 ⊗A2)(Vk ⊗Wk)

(3.12)

Therefore, Vk ⊗Wk forms the orthonormal basis of Kk(A1,g)⊗Kk(A2, f).

We then show that the least square problem with regard to Y in Equation (3.10) can be

solved by a normal Equation (3.11).

We define the following linear operation: Φ(Y) = H̃2YH̃T
1 −Ik+1,kYITk+1,k. Then, we have

that ||R1||F= ||WT
k+1R0Vk+1 − Φ(Y)||F is minimized if and only if the following condition

holds [124]:

ΦT (WT
k+1R0Vk+1 − Φ(Y)) = 0 (3.13)

where Φ(Y)T is the joint linear operation of Φ(Y). Therefore, we have that

H̃T
2 (WT

k+1R0Vk+1 − Φ(Y))H̃1 − ITk+1,k(WT
k+1R0Vk+1 − Φ(Y))Ik+1,k = 0 (3.14)

which is equivalent to Equation (3.11).

Finally, we prove that Algorithm 3.1 could give the exact solution of Equation (3.2).

For an arbitrary vector v ∈ Kk(A1,g) ⊗ Kk(A2, f), we have that (I − A1 ⊗ A2)v also

belongs to Kk(A1,g) ⊗ Kk(A2, f). This is because (A1 ⊗ A2)v ∈ Kk(A1,g) ⊗ Kk(A2, f)

when H̃1(k + 1, k) = H̃2(k + 1, k) = 0 before the convergence.

Therefore, the Kronecker subspace is invariant under matrix I −A1 ⊗A2. According to

[115], this is a sufficient condition for the solution obtained from any (oblique or orthogonal)

projection method onto the Kronecker subspace to be exact. Thus, FASTEN-P gives the

exact solution of Equation (3.1) or its equivalent linear system (Equation (3.2)), which

completes the proof. QED.

In order to prove the correctness of FASTEN-P+, we first give the following lemma,

which says that the low-rank structure of the preference matrix B implies that the solution

matrix X must be low-rank as well.

Lemma 3.1 (Low-rank structure of the Sylvester equation). If the preference matrix B in

Equation (3.1) is of low-rank r, then the rank of the solution matrix X of the Equation (3.1)

is upper-bounded by pkr, where p is the number of iterations in the outer loop in Algorithm

3.2.
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Proof. Suppose the rank-r preference matrix B can be represented as B = B1B
T
2, where

B1, B2 ∈ Rn×r. Every iteration of the calculation for P and Q in Algorithm 3.2 concate-

nates matrices VkY and Wk, which has rank k, to the implicit solution matrices. After p

iterations, the ranks of P and Q are at most pkr. QED.

Based on Lemma 3.1 and following a similar process as the proof for Theorem 3.1, we can

prove that Algorithm 3.2 also gives the exact solution of Equation (3.1).

Lemma 3.2 (Correctness of FASTEN-P+). If P and Q are the two matrices returned by

Algorithm 3.2, matrix X = PQ is the exact solution of Equation (3.1) w.r.t the tolerance ϵ.

Proof. From Algorithm 3.1, the solution X is calculated as the summation of the elements in

{V(i)
k Y(i)(W

(i)
k )T}pi=1 where i is the index of iterations and p is the number of total iterations.

From the matrix structure of P and Q, we can see that PQ = V
(1)
k Y(1)(W

(1)
k )T + ... +

V
(p)
k Y(p)(W

(p)
k )T which is equal to the solution of Algorithm 3.1. According to Theorem 3.1,

the correctness of Algorithm 3.2 also holds. QED.

Efficiency. The time and space complexity of FASTEN-P and FASTEN-P+ are summa-

rized in Lemma 3.3. We can see that the developed FASTEN-P has a quadratic complexity

in both time and space, which is already better than state-of-the-art algorithms for solving

Sylvester equations on plain graphs - they either produce an inexact solution or require a

super-quadratic time complexity (See Table 3.1 for a comparison). Furthermore, the devel-

oped FASTEN-P+ has a linear complexity in both time and space.

Lemma 3.3 (Complexity of FASTEN-P and FASTEN-P+). The time and space com-

plexity of FASTEN-P are O((2k + 4)pn2) and O(n2) respectively. The time and space

complexity of FASTEN-P+ are O(kp(m + (r + 2k + 1)n)) and O(m + (r + 2k + 1)n)

respectively, where p is the number of iterations in the outer loop and r is the rank of B.

Proof. First, for FASTEN-P Algorithm, as we can see from Algorithm 3.1 and Algorithm

3.6, the main computation lies in the update of solution matrix, residual matrix, and k steps

of Arnoldi iteration. Specifically, for updating the solution matrix and residual matrix in each

iteration, the time complexity is O(4n2). For the Arnoldi algorithm on A1 and A2 in each

iteration, the time complexity is O(2kn2). Overall, the time complexity for FASTEN-P for

p iterations is O((2k+ 4)pn2). For space complexity, since we need to store the intermediate

solution matrix and the residual matrix, the space complexity is O(n2). Second, similarly

for FASTEN-P+ Algorithm, the main computation lies in updating P,Q,U1,U2 matrices,

which cost O((r + 2k + 1)nk). In this case, the Arnoldi process costs O(km). Overall, for

the Algorithm 3.2, the time complexity is O(kp(m + (r + 2k + 1)n)). For time complexity,
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because of the implicit solution P,Q and residual matrices U1,U2 in Algorithm 3.2, the

space complexity is O(m + (r + 2k + 1)n). QED.

3.2 FAST SYLVESTER EQUATION SOLVER FOR ATTRIBUTED NETWORKS

In this section, we present the attributed Sylvester equation solvers (FASTEN-N and

FASTEN-N+) for Equation (3.3) and Equation (3.4).

3.2.1 FASTEN-N(+)

We start by introducing the intuition and key ideas, and then present the detailed algo-

rithms, followed by some analysis in terms of the accuracy and complexity.

Intuition and Key Ideas. First, we cannot directly apply FASTEN-P or FASTEN-P+

to solve Equation (3.3) and (3.4). The main difficulty lies in the summation of Kronecker

products on the left side of Equation (3.3), which should be first approximated by a sin-

gle Kronecker product and itself could take O(n3) in time (nearest Kronecker product)

[117]. To address this issue, the key observation is that the solution matrix X for the

attributed Sylvester equation (i.e., Equation (3.4)) has a block-diagonal structure. This

allows us to decompose the original Sylvester equations into a set of inter-correlated small-

scaled Sylvester equations, which can be in turn solved by block coordinate descent methods

(FASTEN-N). Second, by exploring the low-rank structure of the solution matrix (as we

did in the FASTEN-P+ algorithm), we will be able to obtain a linear algorithm to solve

Equation (3.4). Let us explain this by the example in Figure 3.2. We can rewrite its at-

tributed Sylvester equation as follows (Equation (5.11)). It can be seen that we only need to

solve two inter-correlated Sylvester equations w.r.t two 2×2 diagonal blocks (X11 and X22),

which can be in turn solved by an efficient block coordinate descent (BCD) [126] method.

For the two off-diagonal blocks (X12 and X21), they are the same as the corresponding blocks

in the preference matrix B.

X11 − [A11
2 X11(A11

1 )T + A12
2 X22(A12

1 )T ] = B11 (3.15a)

X22 − [A21
2 X11(A21

1 )T + A22
2 X22(A22

1 )T ] = B22 (3.15b)

X12 = B12 (3.15c)

X21 = B21 (3.15d)
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FASTEN-N Algorithm. In the general case, Equation (3.4) can be decomposed into a

group of inter-correlated equations of block variables:

Xii −
l∑

q=1

Aiq
2 X

qq(Aiq
1 )T = Bii (3.16a)

Xij = Bij (3.16b)

where 1 ≤ i, j ≤ l, i ̸= j. Since the off-diagonal blocks Xij are the same as the corresponding

blocks in B, we will focus on solving Equation (3.16a) in the developed algorithm, using a

BCD method. The goal is to minimize the overall residual, namely the residual of Equation

(3.4). In each iteration, one diagonal block variables will be updated with other blocks fixed.

Let B̃i = Bii+
∑l

j ̸=i A
ij
2 X

jj(Aij
1 )T . We will solve the following equation in the i−th iteration

in order to update Xii:

Xii −Aii
2X

ii(Aii
1 )T = B̃i (3.17)

If we only treat Xii as variables with all other diagonal blocks fixed, Equation (3.17) is a

Sylvester equation without attributes, and thus can be efficiently solved by the developed

FASTEN-P algorithm.

Algorithm 3.3 FASTEN-N

Input: Normalized adjacency matrices A1 and A2, node attribute matrices N1 and N2,
preference matrix B, tolerance parameter ϵ > 0, Krylov subspace size k > 0, number of
node attribute l;

Output: The solution X of Equation (3.4).
1: Initialize each diagonal block variable Xii,∀1 ≤ i ≤ l, residual matrix R;
2: Construct block matrices Aij

1 , Aij
2 , Bij, Bij, ∀1 ≤ i, j ≤ l by the node attribute matrices

N1, N2;
3: while ||R||F> ϵ do
4: for i = 1, ..., l do
5: Compute B̃i = Bii +

∑
j ̸=iA

ij
2 X

jj(Aij
1 )T ;

6: Apply Algorithm 3.1 on Equation (3.17) to obtain Xii;
7: end for
8: Let R←

∑l
j=1(B

jj −Xjj) +
∑l

i=1

∑l
j=1A

ij
2 X

jj(Aij
1 )T ;

9: end while

The developed FASTEN-N is summarized in the algorithm 3.3. Line 1 and 2 initialize

the diagonal block variables, and the block matrices used in the decomposed set of equations.

Line 3 to line 9 are the outer loop which uses the BCD method and checks the stopping

condition. Line 6 is the inner loop of Algorithm 3.1. Line 8 updates the overall residual of

Equation (3.4).
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FASTEN-N+ Algorithm. In order to further reduce the time and space complexity of

FASTEN-N, we explore a similar strategy as in FASTEN-P+ by the low-rank structure of

the preference matrix B. Here, we further represent each block matrix of B in its low-rank

form, which allows to implicitly represent the solution block matrices Xii in the low-rank

forms when solving the Equation group (3.16a). The developed algorithm FASTEN-N+ is

summarized in Algorithm 3.4. Like FASTEN-N, it also uses the block coordinate descent

method. A key difference between FASTEN-N and FASTEN-N+ lies in that, instead of

calculating B̃i directly, FASTEN-N+ represents it by two matrices B̃1
i = [Bii(:, 1),Aij

2 Pi]

and B̃2
i = [e;QiA

ij
1 ], ∀1 ≤ i ≤ l, where e is an all-one vector, and Pi, Qi are the implicit

representation of solution Xii.

Algorithm 3.4 FASTEN-N+

Input: Normalized adjacency matrices A1 and A2, node attribute matrices N1 and N2,
preference matrix B, tolerance parameter ϵ > 0, subspace size k > 0;

Output: The implicit solution Pi, Qi, ∀1 ≤ i ≤ l of Equation 3.17.
1: Initialize Pi, Qi, ∀1 ≤ i ≤ l. Set e be an all-one vector;
2: Construct block matrices Aij

1 , Aij
2 , Bij, Bij, ∀1 ≤ i, j ≤ l by the node attribute matrices

N1 and N2;
3: Let Ui

1 ← Bii(:, 1), Ui
2 ← e;

4: while
∑l

i trace((U2
i)T ((U1

i)TU1
i)U2

i) > ϵ do
5: for i = 1, ..., l do
6: B̃1

i ← [Ui
1,A

ij
2 Pi], B̃

2
i ← [Ui

2;QiA
ij
1 ], ∀1 ≤ i ≤ l;

7: Apply Algorithm 3.2 on Equation (3.17) to obtain Pi, Qi;
8: end for
9: Ui

1 ← [Ui
1,−Pi,A

ij
2 Pj], U

i
2 ← [Ui

2;−Qi;Qj(A
ij
1 )T ], ∀1 ≤ i, j ≤ l;

10: end while
11: Return Pi and Qi, (i = 1, ..., l).

In Algorithm 3.4, line 4 to line 10 are the outer loop which uses the BCD method and

checks the stopping condition, and line 7 is the inner loop of Algorithm 3.2. In line 6,

the revised preference matrix B̃i in the equation group (3.16a) is represented by two low-

rank matrices. In line 9, the residual of each equation in the equation group is indirectly

represented as well.

Proofs and Analysis.

Correctness. The correctness of the developed FASTEN-N and FASTEN-N+ is summa-

rized in Theorem 3.2, which says that both algorithms find the exact solution of Equa-

tion (3.4).

Theorem 3.2 (Correctness of FASTEN-N). The solution matrix X by Algorithm 3.3 is

the exact solution of Equation (3.4) w.r.t the tolerance ϵ. If Pi and Qi, (i = 1, ..., l) are the
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matrices returned by Algorithm 3.4, matrix X = diag(P1Q1, ...,PlQl) +
∑l

i ̸=j B
(ij)) is the

exact solution of Equation (3.4) w.r.t the tolerance ϵ.

Proof. The proof of Theorem 3.2 is two-fold. First we prove that the Equation (3.4) can

actually be decomposed to the Equation group (3.16a) and (3.16b). Second, if all block

variables are solved in the Equation group (3.16a), their summation is equal to the solu-

tion of Equation (3.4). First, in Equation (3.4), let T =
∑l

i=1

∑l
j=1A

ij
2 X(Aij

1 )T . Unfold

Aij
2 = Ni

2A2N
j
2, A

ij
1 = Ni

1A1N
j
1 with the definition of attribute matrices N1 and N2. So,

T =
∑l

i=1N
i
2A2(

∑l
j=1N

j
2XNj

1)A1N
i
1.

Because
∑l

j=1N
j
1 = I,

∑l
j=1 N

j
2 = I, we can write X as X = (

∑l
j=1N

j
1)X(

∑l
j=1N

j
2) =∑l

i=j N
j
2XNi

1 +
∑l

i ̸=j N
j
2N

i
1. Let X1 =

∑l
i=j N

j
2XNi

1, X2 =
∑l

i ̸=j N
j
2N

i
1. Therefore the

Equation (3.4) can be written as:

X1 + X2 −
l∑

i=1

Ni
2A2X1A1N

i
1 = B1 + B2 (3.18)

and can be further decomposed to:X1 −
l∑

i=1

Ni
2A2X1A1N

i
1 = B1 (3.19a)

X2 = B2 (3.19b)

where B1 =
∑l

i=j N
j
2BNi

1, B2 =
∑l

i ̸=j N
j
2BNi

1, then B = B1 + B2. Note that X1 =∑l
j=1 X

jj =
∑l

j=1N
j
2X

jjNj
1, where Xjj = Nj

2XNj
1. Equation (3.19a) can be further decom-

posed to
∑l

j=1 X
jj−

∑l
i=1 A

ij
2

∑l
j=1 X

jj(Aij
1 )T = B1, which can be decomposed to Equation

(3.16a) and each Xjj can be seen as a variable. Since Equation (3.19b) is also equal to

Equation (3.16b), thus the Equation (3.4) can be decomposed to Equation group (3.16a)

and (3.16b).

Because taking the summation of left and right side of the equations (3.16a) and (3.16b)

and we would have Equation (3.4). From previous section, FASTEN-P gives exact solution

for each subequation. If all block variables are solved in the Equation group (3.16a) and

(3.16b), we can have the solution of the original Equation (3.4).

Following a similar process as the proof for Theorem 3.2, we can show that Algorithm 3.4

also gives the exact solution of Equation (3.4). QED.

Lemma 3.4 (Correctness of FASTEN-N+). If M and N are the two matrices returned

by Algorithm FASTEN-N+, matrix X = MN is the exact solution of Equation (3.4).

Proof. Similar to Lemma 3.2, since the FASTEN-N+ uses the FASTEN-P+ algorithm in
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the inner iteration of Algorithm 3.4, the solution for diagonal block variant i is equal to the

product of Pi and Qi. When each diagonal block is constructed by the product of Pi and

Qi in this way, the overall solution is thus equal to the solution of FASTEN-N. QED.

Efficiency. The time and space complexity of FASTEN-N and FASTEN-N+ are summa-

rized in Lemma 3.5. We can see that the developed FASTEN-N has a quadratic complexity

in both time and space. Furthermore, the developed FASTEN-N+ has a linear complexity

in both time and space (See Table 3.1 for comparison).

Lemma 3.5 (Complexity of FASTEN-N and FASTEN-N+). The time and space com-

plexity of FASTEN-N are O(p2mn/l + (2k + 4)p2n
2/l) and O(n2 + m/l) respectively. The

time and space complexity of FASTEN-N+ are O((p1km + p1k(r + lk + k + 1)n)p2l) and

O(m + (r + kp1(l − 1))n), respectively. p1 is the number of iterations of FASTEN-N or

FASTEN-N+in the inner loop, and p2 is the number of iterations of the outer loop, and r

is the rank of the preference matrix B.

Proof. First, for FASTEN-N algorithm, the main computation lies in the construction of B̃i

in the outer loop, which costs O(mn/l). For the inner loop, it costs O((2k+4)n2/l). Overall,

for the Algorithm 3.3, the time complexity is O(p2mn/l + (2k + 4)p2n
2/l). The main space

consumption lies in the residual matrix R and all B̃i, which in combine cost O(n2 + m/l).

Second, for FASTEN-N+ algorithm, the main computation lies in the norm of the residual

in the low-rank form, and the construction of B̃1
i , B̃

2
i , Ũ

1
i , Ũ

2
i , which cost O((p1km+ p1k(r+

lk+k+1)n)p2l) overall. For space, due to the low-rank implicit representation of the solution

blocks and the residual by B̃1
i , B̃

2
i , Ũ

1
i , Ũ

2
i , the space complexity is O(m+ (r + kp1(l− 1))n)

overall. QED.

3.2.2 Details of Assistant Algorithms

The Global Conjugate Gradient method and the Modified Arnoldi Iteration are summa-

rized in Algorithm 3.5 and 3.6.

3.2.3 Experimental Results

In this section, we present the experimental results. The experiments are designed to

evaluate the efficiency, the effectiveness and the parameter sensitivity of the developed family

of algorithms (FASTEN).

Experimental Setup. We first describe the experimental setups as follows.
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Algorithm 3.5 Global Conjugate Gradient for Equation (3.11)

Input: The right-side matrix C;
Output: The solution matrix Y for Equation (3.11).

Initialize solution matrix Y0, R0 = C− L(Y0), P0 = R0;
for j = 0, 1, ..., jmax do

αj =< Rj,Rj >F /< L(Pj),Pj >F ;
Yj+1 = Yj + αjPj;
Rj+1 = Rj − αjL(Pj);
βj =< Rj+1,Rj+1 >F /< Rj,Rj >F ;
Pj+1 = Rj+1 + βjPj;

end for

Algorithm 3.6 Modified Arnoldi Iteration

Input: A vector v, matrix A, the subspace size k;
Output: The orthonormal basis [v1,v2, ...,vk], and the k + 1 by k Hessenberg-like matrix
H̃.
Initialize v1 = v/||v||2;
for j = 0, 1, ..., k do

w = Avj;
for i = 1, 2, ..., j do

hi,j = vT
i w;

w = w − hi,jvi;
end for
hj+1,j = ||w||2;
if hj+1,j = 0 then Stop;
else

vj+1 = w/hj+1,j;
end if

end for

Datasets. We evaluate the developed algorithms on five real-world datasets [127], which are

summarized in Table 3.3.

Table 3.3: Datasets Summary

Dataset Name Category # of Nodes # of Edges
DBLP Co-authorship 9,143 16,338
Flickr User relationship 12,974 16,149
LastFm User relationship 15,436 32,638
AMiner Academic network 1,274,360 4,756,194
LinkedIn Social network 6,726,290 19,360,690

• DBLP: This is a co-authorship network with each node representing an author. Each
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author is assigned one node attribute vector of the number of publications in 29 major

conferences [128].

• Flickr: This is a network of friends on the image and video hosting website Flickr.

Node attribute vector is constructed from users’ profile information (e.g. age, gender,

location, etc.) [129].

• LastFm: Collected in 2013, this is the following network of users on the music website

LastFm [129]. A detailed profile of users is provided. The node attribute vector is also

constructed from users’ profile information.

• AMiner: AMiner dataset represents the academic social network. Undirected edges

represent co-authorship and the node attribute vector is extracted from the number of

published papers [129].

• LinkedIn: The graph of LinkedIn dataset is from users’ connections in the social net-

work LinkedIn. The node attribute vector is constructed from users’ profile information

(e.g. age, gender, occupation, etc.)

Comparison Methods. We compare the developed methods against four baseline methods,

the Fixed Point method (FP) [120], the Conjugate Gradient Method (CG) [120], FINAL-

P+ [30], and FINAL-N+ [30]. According to [117], CG is best known method in terms of

efficiency to obtain the exact solution of the Sylvester equation studied in this work. FP is

widely used in solving Sylvester equation and linear system. FINAL-P+ and FINAL-N+

are two recent approximate methods that solve the Sylvester equation on plain graph and

attributed graph respectively [30]. We set the rank of the input networks to 2 in both

FINAL-P+ and FINAL-N+ to ensure a fast computation, and the runtime of these two

methods with a higher rank would be longer than the results reported below. We terminate

an algorithm if it does not finish within 3, 000 seconds.

Repeatability. All datasets are publicly available. We will release the code of our developed

algorithms upon the publication of the paper. All experiments are performed on a server

with 64 Intel(R) Xeon(R) CPU cores at 2.00 GHz and 1.51 TB RAM. The operating system

is Red Hat Enterprise Linux Server release 6.9. All codes are written in MATLAB R2017a

using a single thread.

Efficiency. We next present the efficiency of the developed algorithms.

Speedup. We first evaluate how much speedup the developed algorithms can achieve over

baseline methods, on seven real-world datasets, including two subsets of AMiner with 25K

and 100K nodes respectively. The results are presented in Figure 3.3. As we can see
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(a) Log of running time on different
datasets. Lower is better.

(b) Log of running time on different
datasets. Lower is better.

Figure 3.3: Efficiency comparison on plain and attributed networks. Best viewed in color.
Datasets: 1: DBLP, 2: Flickr, 3: LastFm, 4: Aminer with 25K nodes, 5: Aminer with
100K nodes, 6: Aminer, and 7: LinkedIn.

from Figure 3.3(a), the developed FASTEN-P already outperforms all the baselines on all

datasets even including the approximate method FINAL-P+. The developed FASTEN-

P+ outperforms all baseline methods as well as FASTEN-P by a large margin. When it

is applied on the largest dataset LinkedIn, the running time of FASTEN-P+ is less than

100 seconds; whereas all the other methods cannot finish within 3, 000 seconds. On AMiner

(with 25K nodes) dataset, FASTEN-P+ is more than 10, 000× faster than CG (3, 000+

seconds vs. 0.3 seconds).

On the attributed networks (Figure 3.3(b)), FASTEN-N outperforms CG and FP, and its

running time is close to FINAL-N+ although the latter produces an approximate solution.

The developed FASTEN-P+ outperforms all baseline methods as well as FASTEN-N by a

large margin. On AMiner (with 25K nodes) dataset, FASTEN-N+ is more than 10, 700×
faster than CG. (3, 000+ seconds vs. 0.28 seconds)

Scalability. The scalability experiments are conducted on the largest Aminer dataset. We

run experiments on graphs with different size (ranging from 5K to 1.2M nodes) 100 times,

and report the average running time. The results are presented in Figure 3.9. We can see

that all the baseline methods are at least quadratic w.r.t the number of nodes in graphs,

and could not finish within 3, 000 seconds for graphs with more than 100, 000 nodes. Both

the developed FASTEN-P+ and FASTEN-N+ scale linearly to million-node graphs.
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(a) Running time vs. Log(number of
nodes). Dataset: Aminer without at-
tributes

(b) Running time vs. Log(number of
nodes). Dataset: Aminer with attributes

Figure 3.4: Scalability on plain (left) and attributed graphs (right). Best viewed in color.

(a) log of error vs. log of running time
(ϵ = 10−12, k = 14)

(b) log of error vs. log of running time
(ϵ = 10−7, k = 5)

Figure 3.5: Error vs. running time comparison of five methods on plain graphs (left) and
attributed graphs (right). Best viewed in color.

Effectiveness. For the effectiveness evaluation, we define the error of the solution as:

Error = ||X−X′||F where X is the solution matrix by FASTEN or other baseline methods,

and X′ is computed by the direct method on the equivalent linear system of the Sylvester

equation (namely Equation (3.2) and (3.3)). Since the direct method takes O(n6) in time, we

use a subset of AMiner with 4K nodes in this experiment to avoid extremely long running

time of the direct method. We compare the Error vs. the running time of our methods with
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all the baseline methods in Figure 3.5. We can observe that the Conjugate Gradient (CG)

method and all of our developed FASTEN algorithms have a very small Error (less than

10−7). Error of both Fixed Point and FINAL-N+ are more than 10−4. In the meanwhile,

the running time of the developed FASTEN is smaller than all baseline methods in all cases.

Parameter Sensitivity.

Figure 3.6: Sensitivity study of FASTEN-P. Best viewed in color.

In the developed FASTEN algorithms, we need to set Krylov subspace size k, which might

affect the convergence rate and the running time of the developed algorithms. Generally

speaking, a smaller k makes the computation of the inner loop faster, but might cause

a slower convergence of the outer loop (see Section 3.1.2 and Section 3.2 for the detailed

descriptions of inner loop and outer loop); on the other hand, it would take longer time for

the inner-loop with a larger k although it might help reduce the iteration number of the

outer-loop.

Take FASTEN-P as an example, we report the running time of FASTEN-P vs. the

subspace size k on three datasets in Figure 3.6. We can see the running time stays stable

at a low number when 14 ≤ k ≤ 60, and it starts to increase when k is outside this range.

Overall, we found that the running time of all the four developed algorithms is insensitive

in a relatively large range of the Krylov subspace size k.

3.3 NOVEL APPLICATION: INTERACTIVE SUBGRAPH MATCHING

Many real networks often accompany with rich node and/or edge attribute, including the

demographic information for users on a social network (i.e., node attribute), the transac-
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Figure 3.7: An illustrative example of interactive attributed subgraph matching. Best viewed
in color.

tion types on a financial transaction network (i.e., edge attribute), the expertise of team

members as well as the communication channels between them on a collaboration network

(i.e., both node and edge attributes). Attribute subgraph matching [105, 130] is the key

for many explorative mining tasks, i.e., to help identify user-specific patterns from such at-

tributed networks, and has become an integral part of some emergent visual graph analytic

platforms [131]. To name a few, in network science of teams, attributed subgraph matching

is the cornerstone to help form a team of experts with desired skills of each member as

well as the communication pattern between team members (i.e., example-based team forma-

tion) [132, 133]; in finance informatics, it is a powerful tool to identify suspicious transaction

patterns (e.g., money laundry ring) [105]; in intelligence analysis and law enforcement, it can

help end-analyst generate valuable leads (e.g., a suspicious terror plot, the master-criminal

mind, etc.)[108].

Despite that tremendous progress has been made, most, if not all, of the existing attributed

subgraph matching algorithms requires the user accurately knows what s/he is looking for,

in other words, to provide an accurate query graph. However, in some application scenarios,

the end-user might only have a vague idea on her search intent at the beginning and thus

needs to constantly revise and refine her initial query graph.

Figure 3.7 represents an illustrative example of such interactive matching process. On the

left side of Figure 3.7 is the input data (attributed) data network, and on the right side we

illustrate a procedure of team formation in an interactive style. Let us assume skill A to skill

D stands for programming, databases, machine learning and visualization, respectively, and

the edge attribute 1 to 3 represents three different communication approaches. We have the
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following interactive matching process. (1) At the beginning, the user only knows s/he wants

to form a team of size 3, with two skills (e.g., programming and machine learning) and the

team should be led by the machine learning expert, and therefore s/he issues a line query

(Q1). (2) After the user sees the initial matching graph (M1), s/he realizes that the project

only needs one programmer; but in the meanwhile it requires another expert in databases

and better communication between all the team members. Therefore, s/he issues a revised

clique query (Q2). (3) After seeing the corresponding updated matching subgraph (M2),

s/he decides to expand the team size by adding an additional expert in data visualization to

help databases expert. Thus, s/he expands the previous query graph by adding an additional

link and node (Q3). (4) After s/he sees the updated matching result (M3), s/he finds that

having too many communications (i.e., over-communications) between the team members

might hurt the team productivity. Thus, s/he revises the query graph again (Q4), to keep

only vital communications between the key team members. Finally the user finds the ideal

team (M4).

In such an interactive setting, a major bottleneck is the computational efficiency. This is

because simply re-running the matching algorithms on the revised query graph from scratch

might be computationally too costly as such algorithms require either building an index of

the underlying data graph (e.g., [109]) or a costly iterative process during the query stage

(e.g., [105, 130]).

To address these limitations, we develope a family of effective and efficient algorithms

(FIRST) to support interactive attributed subgraph matching scenario. There are two

key ideas behind the developed methods. The first is to recast the attributed subgraph

matching problem as a cross-network node similarity problem. This formulation allows

us to simultaneously encode topology consistency and attribute consistency in a coherent

optimization problem, whose major computation lies in solving a Sylvester equation for the

query and the underlying data graph [30]. The second key idea is to explore the smoothness

between the initial and revised queries, which means that the revised query can often be

viewed as a perturbed version of the previous query graph. For the example in Figure 3.7,

the third query graph (Q3) can be viewed as perturbed version of the second query (Q2)

with an additional node with one additional link. It turns out this observation enable us to

solve the new/updated Sylvester equation incrementally, without re-solving it from scratch.

The developed FIRST algorithms enjoy a linear time complexity with respect to the input

data network size. We conduct extensive experiments on real-world datasets, which show

that the developed method leads to up to 16× speed-up with more than 90% accuracy.
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3.3.1 Problem Definition

Table 3.4 summarizes the main symbols and notation used throughout the work. We

use bold uppercase letters for matrices (e.g., A), bold lowercase letters for vectors (e.g., s),

and lowercase letters (e.g., α) for scalars. We use the calligraphic letter G to represent an

attributed network, i.e., G = (A,NA,EA), where A is the adjacency matrix, NA and EA

are the node and edge attribute matrices of G, respectively. We use the subscript q to denote

the corresponding notations for the query graph (i.e., Q = (Aq,Nq,Eq)), and ˜ to denote

the corresponding notation after the user modifies the initial query (i.e., Q̃ = (Ãq, Ñq, Ẽq)

is the revised query graph). Likewise, the initial and updated similarity matrix are denoted

by s and s̃. The initial matching subgraph and the updated matching subgraph are denoted

by M and M̃ respectively. Additionally, We use ˆ to denote the approximate version of

vectors or matrices in this work (e.g., ŝ, Ŵsym, etc.).

The node attribute matrix of input networks N is defined as N =
∑K

p=1N
p
A⊗Np

q where K

is the number of distinct node labels. Np
A and Np

q are diagonal matrices in which Np
A(a, a) =

1 if the node a in network G has node attribute k and otherwise it is equal to 0. The edge

attribute matrix of input networks E is defined as E =
∑L

l=1E
l
A⊗El

q where L is the number

of distinct edge labels. El
A and El

q are n× n and k × k matrices respectively. El
A(a, b) = 1

if the edge (a,b) in network G has edge attribute l and otherwise it is equal to 0. For

example, for the initial query graph (Q1) in Figure 3.7, we have N1
q(1, 1) = 1, N2

q(1, 1) = 0,

E1
q(1, 2) = 1 and E2

q(1, 2) = 0, etc. For the revised query graph, we have E1
q(2, 3) = 1 and

N3
q(3, 3) = 1, etc.

With these notations, the interactive attributed subgraph matching problem can be for-

mally defined as:

Problem 3.1. Interactive Attribute Subgraph Matching.

Given: (1) an undirected attributed network G, (2) an undirected initial query graph Q,

(3) the initial matching subgraph M, (4) the revised query graph Q̃;

Output: the updated matching subgraph M̃.

For the team formation example in Figure 3.7, between stage-1 and stage-2, the line query

(Q1) and the clique query (Q2) are the initial and the revised query graphs, respectively;

and M1 and M2 are the corresponding initial and revised matching subgraph, respectively.

Between stage-2 and stage-3, the clique query (Q2) will be treated as the initial query graph,

and Q3 becomes the new revised query graph, so on and so forth.
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Table 3.4: Symbols and Definition

Symbols Definition
G = {A,N,E} an attributed network

Q, Q̃ initial and revised query network

M, M̃ initial and updated matching subgraph
A, Aq the adjacency matrix of the attributed data network and query graph

NA/Nq, EA/Eq the node and edge attribute matrix of the network/query graph
n, k # of nodes in G and Q

m1, m2 # of edges in G and Q
P,L # of the node and edge labels
a, b node/edge indices of G
x, y node/edge indices of Q
p, l node/edge label indices
I an identity matrix
H k × n prior alignment preference
S k × n similarity matrix
r, t reduced ranks
α the parameter, 0 < α < 1

s = vec(S) vectorize a matrix S in column order
Q = mat(q, n2, n1) reshape vector q into an n2 × n1 matrix in column order

Wsym symmetrically normalize matrix W
D = diag(d) diagonalize a vector d

⊗ Kronecker product
⊙ element-wise matrix product

abs() absolute value
∥ · ∥F Frobenius norm
and() AND operation

3.3.2 Fast Interactive Algorithms

In this section, we first review an existing network alignment algorithm, which provides the

base for our developed algorithm. Then, we present our algorithms (FIRST) in different

scenarios, e.g., revising the topology/node attributes/edge attributes in the query graph,

whether the input data network has both node and edge attributes, etc.

Preliminaries. Generally speaking, in attributed subgraph matching, we want to find a

subgraph from the input data network G that maximizes some ”goodness” function with

regard to the query graph Q [105]. Here, our idea is to recast it as a cross-network node

similarity problem. To be specific, let S be a k×n non-negative cross-network node-similarity

matrix, where S(i, j) measures the cross-network similarity between the ith query node in Q
and the jth node in G (i.e., to what extent the jth node in G matches the ith query node).

In order to find the cross-network node similarity matrix S, we adopt a recent network

alignment algorithm [30], which naturally encodes both the topological and attribute con-

sistency between two networks (the data network and the query graph in our setting) in the
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following Sylvester equation (please refer to [30] for the full details).

s = αWsyms + (1− α)h (3.20)

where s = vec(S), h = vec(H) and H is a k × n matrix of prior similarity knowledge.

Wsym = D−1/2WD−1/2 is the symmetrical normalization of W and W can take three

possible forms according to the availability of the attribute information in the networks [30],

including

(i) Wsym = A⊗Aq: if only adjacency matrix is available;

(ii) Wsym = N(A⊗Aq)N: if the adjacency matrix and node attributes are available but

edge attributes are missing;

(iii) Wsym = N[E ⊙ (A ⊗Aq)]N: if the adjacency matrix, node and edge attributes are

all available.

And D is the diagonal degree matrix of W. For example, if both node and edge attributes

are available (Wsym being type (iii)), D is computed by:

D = diag(

K∑
k,k′=1

L∑
l=1

(Nk
A(E

l
A ⊙A)Nk′

A1)⊗ (Nk
q (E

l
q ⊙Aq)N

k′
q 1)) (3.21)

where K and L are the number of different node and edge labels respectively.

The solution of Eq. (3.20) can be obtained by either an iterative procedure or a closed-

form formula. And the closed-form solution can be further approximated (and sped up)

by using low-rank approximation on the two input networks. However, none of these solu-

tions is applicable in the interactive setting. This is because: (1) for the iterative solution,

each iteration requires O(min(km1, nm2) time complexity and it might take many itera-

tions to compute the similarity matrix S only for the initial query network, let alone for

the interactively updated query networks, and (2) for the closed-form solution, its O(n3k3)

time complexity, or even its approximate solution, is still computationally too costly if user

frequently changes the queries.

The common key ideas behind our upcoming developed algorithm FIRST are that: (1) we

recast the attributed subgraph matching problem as a cross-network node similarity problem

(i.e., to compute the matrix S in Eq. (3.20)), and (2) by exploring the smoothness between

the initial query and updated queries, we can solve the Sylvester equation incrementally. In

our work, we assume that the data network G and the prior preference H remain unchanged

during the interactive process. In practice, the size of the query network is often much

smaller than that of the data network, i.e. k ≪ n.
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Handling Node Attribute. In this subsection we consider the scenario in which node

attribute is available but edge attribute is missing in both network and query graph. We

discuss two cases: (A) only revising the topology of the query graph and (B) only revising

node attribute of the query graph. First we present Algorithm 3.7 to solve the case where

only topology is changed.

Topology Change. Based on our problem formulation and assumptions, in the interactive

scenario the updated similarity vector s̃ after query modification can be expressed as follows:

s̃ = (1− α)(I− αW̃sym)−1h (3.22)

where W̃sym = D−1/2N(A ⊗ Aq)ND−1/2. Since only the topology of the updated query

differs from initial query, the node attribute information N will not contribute to s̃.

Since many real-world networks are observed to have a low-rank structure, we can leverage

this characteristics to obtain a good approximation of the similarity matrix. Here, we define

the approximate similarity matrix as follows:

Definition 3.1. (APPROXIMATE SIMILARITY VECTOR)

Given a similarity vector s = (1 − α)(I − αWsym)−1h, its approximate similarity vector ŝ

is given by

ŝ = (1− α)(I− αŴsym)−1h (3.23)

where Ŵsym is a low rank approximation of Wsym.

Since the adjacency matrices A and Aq are both symmetric, we can apply rank-r eigen-

value decomposition (EVD) on A and Aq. An additional advantage of using EVD is that

we can reduce the space complexity by only storing the low-rank matrices instead of the

whole adjacency matrices. The algorithm is summarized in Algorithm 3.7.

From the fourth line to seventh line are the precomputing stage. The top r eigenvalue

decomposition of A and the top t eigenvalue decomposition of Aq are calculated. UA and

ΛA are stored. In the interactive stage, only the top t eigenvalue decomposition of Ãq

is calculated. Then S̃ is computed from line 10 to line 15. The proof of correctness of

FIRST-Q is presented as follows:

Theorem 3.3 (Correctness of FIRST-Q). The Algorithm 3.7 (FIRST-Q) gives the ap-

proximate similarity vector by Definition 3.1: s̃ = ŝ .

Proof. According to Definition 3.1,

ŝ = (1− α)[I− αP1(Â⊗ Âq)P1]−1h

= (1− α)P1
−1[D1 − α(Â⊗ Âq)]−1P1

−1h
(3.24)

43



Algorithm 3.7 FIRST-Q

Input: the attributed data network G = {A,NA},
1: the initial and revised query network Q = {Aq,Nq}, Q̃ = {Ãq, Ñq},
2: the alignment preference matrix H,
3: parameter α.
Output: Approx. updated similarity matrix S̃.
4: Precomputing Stage:
5: UAΛAUT

A ← A; //top r eigenvalue decomposition
6: UQΛQUT

Q ← Aq; //top t eigenvalue decomposition
7: Store UA, ΛA;
8: Interactive Stage:
9: UQΛQUT

Q ← Ãq; //top t eigenvalue decomposition
10: Compute node attribute matrix of input networks N and diagonal degree matrix D; Construct

P = D− 1
2N, D1 = P−1P−1;

11: L← UA ⊗UQ;
12: R← UT

A ⊗UT
Q;

13: Λ← ΛA ⊗ΛQ;
14: s̃ = (1− α)P−1[D1

−1 + αD1
−1L(Λ−1 − αRD1

−1L)−1RD1
−1]P−1h;

15: S̃ = mat(̂s, n, k); //reshape similarity vector

in which P1 = D̃− 1
2N = ND̃− 1

2 , D1 = P1
−1P1

−1. Let UAΛAU
T
A be top r eigenvalue

decomposition of A and UQΛQU
T
Q be top t eigenvalue decomposition of Aq. Then in the

interactive stage, Ŵsym can be written as:

Ŵsym = D̃− 1
2N[(UAΛAU

T
A)⊗ (UQΛQU

T
Q)]ND̃− 1

2

= D̃− 1
2N[(UA ⊗UQ)(ΛA ⊗ΛQ)(UT

A ⊗UT
Q)]ND̃− 1

2

(3.25)

Let L = UA ⊗UQ, R = UT
A ⊗UT

Q, Λ = ΛA ⊗ ΛQ. According to equation 3.24 and the

definition of ŝ,

ŝ = (1− α)(I− αP1LΛRP1)−1h

= (1− α)P1
−1(D1 − αLΛR)−1P1

−1h

= (1− α)P1
−1[D1

−1 + αD1
−1L(Λ−1 − αRD1

−1L)−1RD1
−1]P1

−1h

(3.26)

where the third equality comes from the Sherman-Morrison Lemma [134]. Hence the cor-

rectness of FIRST-Q is proved. QED.

It is worth pointing out that if the node attribute information is also missing, which means

that Wsym takes the form of type (i), the algorithm also works by setting N to be identity

matrix I. The proof is almost identical to the proof above.

Node Attribute Change. Here, we provide an algorithm (FIRST-N) for the scenario where

44



only node attribute of the query graph is revised during user’s interactive query process.

Again, the edge attribute is not available in this scenario (i.e., no E and Eq). The algorithm

is summarized in Algorithm 3.8.

Algorithm 3.8 FIRST-N

Input: the attributed data network at time step 1 G = {A,NA},
1: the initial and revised query network Q = {Aq,Nq}, Q̃ = {Ãq, Ñq},
2: the alignment preference matrix H,
3: parameter α.
Output: Approx. updated similarity matrix S̃.
4: Precomputing Stage:
5: UAΛAUT

A ← A; //top r eigenvalue decomposition;
6: UQΛQUT

Q ← Aq; //top t eigenvalue decomposition;
7: L← UA ⊗UQ;
8: R← UT

A ⊗UT
Q;

9: Λ← ΛA ⊗ΛQ;
10: Store L, R, Λ;
11: Interactive Stage:
12: Compute node attribute matrix of input matrix N and diagonal degree matrix D with Ñq, A

and Ãq; Compute P = D− 1
2 Ñq;

13: Compute D1 = P−1P−1;
14: s̃ = (1− α)P−1[D1

−1 + αD1
−1L(Λ−1 − αRD1

−1L)−1RD1
−1]P−1h;

15: S̃ = mat(̂s, n, k); //reshape similarity vector

In the precomputing stage, the algorithm calculates and stores L, R and Λ, while in the

interactive stage the algorithm can directly construct P. S̃ is calculated from line 12 to line

15.

From the algorithm, we can notice that the eigenvalue decomposition of adjacency matrix

A and Aq, the construction of matrices L, R and Λ can be precomputed at initial step, thus

further speed up this algorithm, compared with Algorithm 3.7. The proof of the correctness

of Algorithm 3.8 is similar to the proof of Algorithm 3.7 and is omitted for space.

Handling Edge Attribute. In this subsection, we discuss the interactive scenario where

both node and edge attribute are available. Note that in this case the query can be revised

in multiple ways (e.g., only revising network topology/node attribute/edge attribute vs

simultaneously revising network topology as well as attributes, etc.). In our developed

algorithm (FIRST-E), we consider the general case where network topology, node and edge

attributes are all revised simultaneously during one interactive stage. The rest of the ways

to revise the query graph are special cases, and thus can also be supported by our approach.

The algorithm is presented in Algorithm 3.9.

The precomputing stage is from line 4 to line 14 and the interactive stage is from line 16

to line 24. In line 20, two block matrices (U, Λ) are constructed. U is a 1×L block matrix
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Algorithm 3.9 FIRST-E

Input: the attributed network at time step 1 G = {A,NA,EA},
1: the initial and revised query network Q = {Aq,Nq,Eq}, Q̃ = {Ãq, Ñq, Ẽq}
2: the alignment preference matrix H,
3: parameter α, index of changed edge attribute l′ (optional).
Output: Approx. updated similarity matrix S̃.
4: Precomputing Stage:
5: for each l ∈ [1, L] do
6: Ul

AΛl
A(Ul

A)T ← El
A ⊙A; //top r eigenvalue decomposition

7: Store Ul
A, Λl

A;
8: end for
9: if l′ is not empty then
10: for each k ∈ [1, L] do
11: Uk

qΛ
k
q(U

k
q)

T ← Ek
q ⊙Aq; //top t eigenvalue decomposition

12: Store Uk
q, Λ

k
q;

13: end for
14: end if
15: Interactive Stage:
16: Construct N and D from A, Ãq, NA, Ñq, EA, Ẽq;
17: for each l ∈ [1, L] (or each l ∈ l′ if l′ is not empty) do
18: Ul

qΛ
l
q(U

l
q)

T ← El
q ⊙ Ãq; //top t eigenvalue decomposition

19: end for
20: Construct block matrix U = [V1,V2, . . . ,VL], in which Vi = Ui

A ⊗Ui
q (i ∈ [1, L]), and block

matrix Λ = diag(Y1,Y2, . . .YL), in which Yj = Λj
A ⊗Λj

q (j ∈ [1, L]);

21: L← D− 1
2NU;

22: R← UTND− 1
2 ;

23: s̃ = (1− α)[I+ αL(Λ−1 − αRL)−1R]h;
24: S̃ = mat(̂s, n, k); //reshape similarity vector

with each element being Vi, while Λ is a L × L diagonal block matrix with each diagonal

element being Yj (i, j ∈ [1, L]).

As mentioned at the beginning of this subsection, the algorithm still works in other ways to

revise the query graph by setting Ãq, Ñq or Ẽq equal to their initial counterparts. Specifically,

if only certain edge attributes are changed, the algorithm could take an optional parameter

l′ (line 3) as the index of changed edge attribute, otherwise l′ is set empty. In line 9, the top

t eigenvalue decomposition of the element-wise product of the kth edge attribute matrix Ek
q

and network adjacency matrix A is computed, if l′ is not empty. In the following interactive

stage, the eigenvalue decomposition can be only calculated on the element-wise product of

the changed edge attribute matrices (El
q) and Ãq (line 17 to 19), which further speed up

the interactive computing stage.

Theorem 3.4 (Correctness of FIRST-E ). The Algorithm 3.9 (FIRST-E ) gives the approx-
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imate updated similarity vector by Definition 3.1: s̃ = ŝ.

Proof. We know that W̃ takes the form of type C (which is D−1/2N[E⊙ (A⊗Aq)]ND−1/2).

Then

W̃sym = D− 1
2N[(

L∑
l=1

El
A ⊗ El

q)⊙ (A⊗ Ãq)]ND− 1
2

= D− 1
2N[

L∑
l=1

(El
A ⊙A)⊗ (El

q ⊙ Ãq)]ND− 1
2

(3.27)

Ŵsym = D− 1
2N[

L∑
l=1

(Ul
AΛ

l
A(Ul

A)T)⊗ (Ul
qΛ

l
q(Ul

q)T)]ND− 1
2

= D− 1
2N[

L∑
l=1

(Ul
A ⊗Ul

q)(Λl
A ⊗Λl

q)((Ul
A)T ⊗ (Ul

q)T )]ND− 1
2

= D− 1
2NUΛUTND− 1

2

(3.28)

where U and Λ are block matrices as described in line 20 of Algorithm 3.9. From Equation

(3.27) to Equation (3.28), the top r and top t eigenvalue decomposition are taken as described

in line 6 and line 18. The derivation from the second line to the third line in Equation (3.28)

is based on the property of block matrix [135]. If l′ is not empty, in the interactive stage,

Ŵsym = D− 1
2N[

∑
l∈l′

(Ul
AΛ

l
A(Ul

A)T)⊗ (Ul
qΛ

l
q(Ul

q)T)

+
∑
l /∈l′

(Ul
AΛ

l
A(Ul

A)T)⊗ (Ul
qΛ

l
q(Ul

q)T)]ND− 1
2 (3.29)

where the eigen-decomposed term that is not in the index l′ (in the second line of equation

9) is calculated in the precomputing stage (line 6). Still, equation 9 is equal to equation 8.
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Let L = D−1/2NU, R = UTND−1/2. Then ŝ is given as:

ŝ = (1− α)(I− αŴ)−1h

= (1− α)(I− αLΛR)−1h

= (1− α)[I + αL(Λ−1 − αRL)−1R]h

The last line comes from Sherman-Morrison Lemma [134]. Hence we have proved that

s̃ = ŝ and FIRST-E gives the approximate updated similarity vector. QED.

Implementation Details. In this section, we present implementation details of our method

to transform the similarity matrix to one or more matching subgraphs. After either FIRST-

Q, FIRST-N or FIRST-E is called, the returned similarity matrix S̃ should be transfered

into updated matching subgraph M̃. We start by introducing indicator matrix X and

“goodness” function.

Let X be a k × n binary match indicator matrix, where X(i, j) = 1 means that the ith

query node in Q matches the jth node in G; and X(i, j) = 0 otherwise. It can be seen that

each row of X has only one entry to be 1 and each column of X has at most one entry to

be 1. The match indicator matrix X induces the matching subgraphs, i.e., the matching

subgraph are the induced subgraph of G whose corresponding columns in X are not empty.

The match indicator matrix X can be found through the following “goodness” function 3.

g(X) = −∥ XAX′ −Aq ∥2F + a · trace(SX′)− b · ∥ XX′ − I ∥2F (3.29)

where a and b are parameters that balance the weight of each term.

The idea behind the goodness function to calculate X(k×n) that best embodies both the

rankings in the pair-wise similarity matrix (the second term) and the original connectivity

consistency (the first term of the network. In our developed method, we first drive the index

matrix T, which gives the node pairs that should be connected in the resulting matching

subgraph; then convert all connected subgraphs to “super nodes” (i.e., connected node sets);

and finally find the bridges between the corresponding super nodes. The developed procedure

to find matching subgraph is summarized in Algorithm 3.10.

Since the counterpart of the query graph can be found in the indicator matrix X, the

connection among the counterparts should be decided. In line 1 and 2, the algorithm finds

the indices of nodes that are directly connected and not connected in the original data

3In this work, we use a local heuristic to find X from S by searching the top-l entries in each row of S,
where l is a small number (e.g., l = 3).
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Algorithm 3.10 Sim2Sub

Input: Indicator Matrix X(k × n), the data network G, revised query graph Q̃.
Output: The updated matching subgraph M̃
1: T = X′AqX−and(A,X′AqX); //index matrix of nodes in subgraph that should be connected;
2: Construct index I of connected nodes from and(A,X′AqX);
3: for each connected node set C in I do
4: Construct ”super node” C ′;
5: end for
6: Update the data network G;
7: for each unconnected ”super node” pair (C ′

1, C
′
2) from T do

8: Connect (C ′
1, C

′
2) by the shortest path;

9: end for
10: return M̃;

network G. From line 3 to line 10, the algorithm constructs super nodes and find shortest

paths as bridges among counterparts that should be connected. The method generates one

subgraph from one indicator matrix X. If multiple results (e.g., t results) are required,

then t indicator matrices which have top t largest “goodness” values will be constructed as

described in Section 3.3.2.

Complexity Analysis. In this section we give the complexity analysis of the developed

algorithms (i.e., FIRST-Q, FIRST-N and FIRST-E).

Lemma 3.6. Complexity of FIRST-Q & FIRST-N. The time complexity of Algorithm

3.7 and Algorithm 3.8 is O(r2t2kn+rtkn+K2kn), and its space complexity is O(k2rn+m1).

Here, n and k are the orders of the number of nodes of the input data network and the query

graph, respectively; K denotes the number of unique node attributes, and r and t are the

rank of eigendecomposition; m1 is the number of edges in attributed network G.

Proof. Firstly, since the diagonal degree matrix D needs to be updated, from equation 3.21,

D is given as follows when edge attribute is missing:

D = diag(

K∑
k,k′=1

(NkANk′1)⊗

O(k2)︷ ︸︸ ︷
(Nk

qAqN
k′
q 1)︸ ︷︷ ︸

O(k2)+O(nk)=O(nk))

(3.30)

This is because k ≪ n based on our assumption. Also note that during the updating, A

and N of the network G is unchanged. In all, the complexity of updating D is O(K2kn). In

the process of computing s̃,

s̃ = (1− α)P−1[D1
−1 + αD1

−1L

O(r2t2kn)+O(r3)=O(r2t2kn)︷ ︸︸ ︷
(Λ−1 − αRD1

−1L)−1 RD1
−1]P−1h︸ ︷︷ ︸

O(r2t2kn)+O(rtkn)

(3.31)
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Secondly, when computing the above multiplication in backward way in order to make

use of the linear complexity property of vector multiplication, the complexity can achieve

O(r2t2kn) + O(rtkn). The time for the rest of the computation in the algorithm is smaller,

and thus can be ignored in the big-O notation. Overall, the time complexity of FIRST-Q

is O(r2t2kn + rtkn + K2kn).

The proof of space complexity is omitted for space. QED.

Lemma 3.7. Complexity of FIRST-E. The time complexity of Algorithm 3.9 is O(r2t2kn+

Lrtkn + K2Lkn), and its space complexity is O(Lrtkn + m1). Here, n and k are the or-

ders of the number of nodes of the input network and query graph, respectively; K, L

denotes the number of unique node and edge attributes, respectively and r, t are the rank

of eigendecomposition; m1 is the number of edges in attributed network G.

Proof. When N and E are both available, in the process of updating diagonal degree matrix

D:

D = diag(
K∑

k,k′=1

L∑
l=1

(Nk(El ⊙A)Nk′1)⊗

O(k2)︷ ︸︸ ︷
(Nk

q (E
l
q ⊙Aq)N

k′
q 1)︸ ︷︷ ︸

O(K2Lkn)

) (3.32)

s̃ = (1− α)[I+ αL

O(Lrtkn)+O(L3r3t3)+O(r2t2kn)︷ ︸︸ ︷
(Λ−1 − αRL)−1 R]h︸ ︷︷ ︸

O(r2t2kn+Lrtkn)

As we see from the above equations with the heaviest computation in the algorithm, the

time complexity of FIRST-E is O(r2t2kn + Lrtkn + K2Lkn). The complexity of the rest

of the computation in the algorithm can be reasonably ignored.

The proof of space complexity is omitted for space. QED.

3.3.3 Experimental Results

In this section, we present the experimental results and analysis of our developed algo-

rithms. The experiments are designed to answer the following questions:

1. Effectiveness. How effective are our developed subgraph generating algorithms com-

pared to other algorithms when different structures of queries are sent as inputs?

2. Efficiency. How fast are our developed algorithms compared to other techniques when

they are applied on different size of real networks? How do our algorithms scale?
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Experimental Setup. We first describe the experimental setup as follows.

Datasets. We use five different real-world datasets in our experiments, summarized in Ta-

ble 3.5.

Table 3.5: Datasets Used in Evaluations

Name # of Nodes # of Edges Node/Edge Attribute
DBLP 9,143 16,338 Node attribute only
Flickr 12,974 16,149 Node attribute only
LastFm 136,421 1,685,524 Node attribute only
ArnetMiner 1,274,360 4,756,194 Node & edge attribute
LinkedIn 6,726,290 19,360,690 Node attribute only

• DBLP: In the graph of DBLP each node represents an author who published paper

in popular Data Mining and Database conferences and journals. Undirected edges

represent co-authorship and each author has one attribute vector of the number of

publications in 29 major conferences [128].

• Flickr: The graph of this dataset is the network of friends on Flickr. Node attribute

vector is transformed from users’ profile information [129].

• LastFm: This dataset contains the following relationships of users on LastFm [129].

The node attribute vector is also transformed from users’ profile information, such as

age, gender and location. It was collected in 2013.

• ArnetMiner: The graph in ArnetMiner dataset represents the academic social network.

Undirected edges represent co-authorship and node attribute vector is extracted from

number of published papers [129].

• LinkedIn: The graph of LinkedIn dataset is from users’ connection relationship in

the social network in LinkedIn. The node attribute vector is transformed from users’

profile information such as age, gender and occupation, etc.

Comparison Methods. We compare our developed algorithms with G-Ray [105], MAGE [130],

FINAL together with its variants (e.g., FINAL-N, FINAL-N+, FINAL-NE ) [30]. To be spe-

cific, according to the two-phase nature of our method, we compare the similarity matrix

calculated by our method and FINAL and the subgraph with G-Ray and MAGE. We also

verify the efficiency of our developed method on five real-world datasets and test the scala-

bility.
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Machine. The following experiments are tested on 64-bit Windows Machine with 3.60 GHz

CPU and 32.0 GB RAM. Programs are implemented in MATLAB with single thread.

Effectiveness.

Matching Graph Comparison. We evaluate the effectiveness of each of the two phases of the

whole algorithm. First, we show how well our algorithms can perform on computing the

cross-network node similarities. We define the distance of two similarity matrices computed

by two different methods. The distance is calculated as the Frobenius norm of the difference

between two similarity matrices: distance = ∥ S− S′ ∥F , where S is computed by FINAL-

N+ and S′ is computed by FIRST. The distance against the number of query nodes indicate

the closeness between the similarity matrix returned from FIRST and FINAL-N+. As we

observe from Figure 3.8, as the number of query nodes increase, the distance can be lower

than 1.5× 10−6, which indicates that the similarity results computed by these two methods

are quite close. Next we treat the similarity matrix returned from FINAL-N+ as groundtruth

and define the precision and recall to evaluate how well our method approximates FINAL-

N+. First we sort both similarity matrix S and S′ and truncate top k columns as retrieved

results M. The precision and recall are then calculated with regard to p (p ≤ k) selected

columns. For each row, if the entry in S’ of selected matrix is also in M, then we consider

it as relevant. From Figure 3.8, we can observe that the precision tends to be high when

the recall is low. Also the overall tendency shows that a relatively small r leads to a high

precision.

In the second phase, we test the effectiveness of our subgraph generating algorithm against

G-Ray and MAGE respectively. We design five typical query patterns and load them into

three algorithms. The performance of three algorithms are summarized in Table 3.7 and

Table 3.8. We define the terminology in the table as follows.

According to the summary, the patterns returned by G-Ray deviate significantly from the

query pattern. The returned subgraph is reasonable in several patterns such as E-star (83.3%

exact matching nodes) and line (50% exact matching nodes). For other patterns like clique

(FIRST 57.1% vs. G-Ray 25.0% exact matching nodes) and loop (FIRST 71.4% vs. G-Ray

27.3% exact matching nodes), our method performs better. Generally speaking, thanks to

our formulation that considers both the topology and pairwise node similarity, when the

inputs contain more diverse and complicate patterns, the results returned by our method

tends to have a better balance on the subgraph structure and attribute matching. Overall,

our method also outperforms MAGE when edge attribute is taken into consideration.
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Table 3.6: Terminology Definition in Table 3.7 & 3.8

Name Definition
Extra Nodes Nodes in subgraph with incorrect node attribute or related position
Exact Matching Nodes Nodes in subgraph with correct node attribute and related position
Intermediate Nodes Nodes in the path between exact matching nodes
Extra Edges Edges in subgraph with incorrect edge attribute or between extra nodes
Exact Matching Edges Edges in subgraph with correct node attribute and between exact matching nodes
Intermediate Edges Edges in the path between intermediate nodes

Table 3.7: Matching Comparison of 5 Patterns (Nodes)
% % Exact % Intermediate

Extra Nodes Matching Nodes Nodes
Algorithm G-Ray MAGE FIRST G-Ray MAGE FIRST G-Ray MAGE FIRST

Star(N) 62.5 * 0.0 37.5 * 75.0 0.0 * 25.0
E-Star(N) 0.0 * 0.0 83.3 * 71.4 16.7 * 28.6

Line(N) 50.0 * 0.0 50.0 * 83.3 0.0 * 16.7
Loop(N) 0.0 * 0.0 27.3 * 71.4 72.7 * 28.6

Clique(N) 25.0 * 0.0 25.0 * 57.1 50.0 * 42.9
Star(NE) * 50.0 0.0 * 30.0 40.0 * 20.0 60.0

E-Star(NE) * 0.0 0.0 * 33.3 41.7 * 66.7 58.3
Line(NE) * 33.3 0.0 * 33.3 62.5 * 33.3 37.5

Loop(NE) * 27.3 44.4 * 27.3 33.3 * 45.5 22.2
Clique(NE) * 40.0 0.0 * 60.0 66.7 * 0.0 33.3

Table 3.8: Matching Comparison of 5 Patterns (Edges)
% % Exact % Intermediate

Extra Edges Matching Edges Edges
Algorithm G-Ray MAGE FIRST G-Ray MAGE FIRST G-Ray MAGE FIRST

Star(N) 66.7 * 0.0 33.3 * 57.1 0.0 * 42.9
E-Star(N) 0.0 * 0.0 60.0 * 50.0 40.0 * 50.0

Line(N) 60.0 * 0.0 40.0 * 60.0 0.0 * 40.0
Loop(N) 8.3 * 0.0 8.3 * 42.9 83.3 * 57.1

Clique(N) 35.7 * 0.0 7.1 * 12.5 64.3 * 87.5
Star(NE) * 42.9 0.0 * 0.0 14.3 * 57.1 85.7

E-Star(NE) * 0.0 0.0 * 7.1 9.0 * 92.9 91.0
Line(NE) * 27.3 0.0 * 0.0 14.3 * 72.7 85.7

Loop(NE) * 30.0 42.9 * 0.0 14.3 * 70.0 29.8
Clique(NE) * 33.3 0.0 * 0.0 12.5 * 100.0 87.5

(a) Precision vs. Recall (α = 0.8). (b) Distance vs. Query Size.

Figure 3.8: Effectiveness Comparison (number of query nodes = 13, r = 5).
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(a) Running time vs. Query Size comparison
between FINAL and FIRST. (α = 0.8).

(b) Running time vs. Query Size and Eigende-
compositon Rank. (α = 0.8).

Figure 3.9: Scalability Comparison and Analysis on Query Size and Eigendecomposition
Rank.

Case Study. We also designed an interactive scenario which is shown in Figure 3.10. The

Figure 3.10: A case study of interactive attributed subgraph matching on DBLP. Best viewed
in color. (a): query graphs, (b): matching subgraphs. Green ellipse: node attribute value,
Yellow rectangle: matching node, White rectangle: extra/intermediate node.

experiment is conducted on DBLP dataset. The initial query is a 4-node clique which

requests a group of co-authors from four different main conferences. The initial result gives

an approximate clique with three intermediate authors. After that, the user adds one more

author from SIGKDD to the group and the algorithm returns an approximate subgraph with

six intermediate authors. Note that as the query is refined, the result is also incrementally

54



refined instead of a complete change, as Alan F. McMichael appears in both initial and

updated result. This phenomena can be also observed from the following steps and it makes

sense in the interactive procedure. As the user realizes that the structure is complex and

incurs too many intermediate nodes, the query graph is revised to a loop fashion. The refined

result shows H. Schweitzer and Enrico Motta in both results. Finally the user is shown a

refined output with five intermediate nodes, and all five matching nodes are exact matching

nodes from DBLP. This implies the cooperation pattern among the authors.

Efficiency. Lastly, we present the efficiency results for FIRST.

Speedup. We first evaluate the efficiency of our developed technique and there are two phases

in this particular experiment. First, we only consider node attribute and perform FIRST

against FINAL-N and FINAL-N+ to compare the running time on five datasets. Then we

add edge attribute and perform FIRST against FINAL-NE. In each test, the query graph is

fixed and it is a relatively small graph with 13 nodes. The results are shown in Figure 3.11.

From the result we can observe that our algorithm outperforms the other three algorithms

with speedup from 2× to 16×. Specifically, when the large graph has over 20M edges, The

response time for exact network alignment method is too long to measure. But our method

can incrementally update pair-wise similarity in about 20 seconds with a high accuracy (over

90%, see Section 3.3.3).

(a) Efficiency Comparison 1 (α = 0.8). (b) Efficiency Comparison 2 (α = 0.8).

Figure 3.11: (Lower is better.) Log of Running time vs Datasets of different size. (number
of query nodes = 13, r = 5).

Scalability. The scalability of FIRST is summarized in Figure 3.9 and they are tested

on DBLP. We first measure the running time against the number of query nodes and also

compare it with FINAL-N and FINAL-N+. We can see that the running time of FIRST

grows linearly. Compared to FINAL-N and FINAL-N+, FIRST has better scalability as
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the increase of query size. Next we measure the scalability with regard to the number of

eigenvalues used in FIRST. We can see that for different r, the running time still grows

linearly. At the point where there are 60 nodes and r = 10, the running time is still less than

1 second (0.8s). It shows that the quick response time of FIRST, which makes it suitable

for interactive query feedback.
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CHAPTER 4: PAIRWISE ASSOCIATION WITH NEURAL TECHNIQUES

In this chapter, we introduce the neural techniques which we have developed for the

pairwise multi-network association problem. We first elaborate the Sylvester Multi-Graph

Neural Network (SyMGNN framework), which is a neural generalization of the traditional

Sylvester equation specifically for geometric matrix completion task. Second, we elucidate

NeMos model, a simplified multi-network GNN-based neural model for social recommen-

dation, as an extension of the low-rank instantiation of SyMGNN framework.

4.1 SYLVESTER MULTI-GRAPH NEURAL NETWORK

As we have shown in Chapter 3, the Sylvester equation plays a central role for various

applications in applied mathematics [136] [137], systems and control theory [138], machine

learning [139] and graph mining [25]. Particularly in graph mining, the Sylvester equation

has shown its applicability in various multi-network mining tasks, such as network align-

ment [30], subgraph matching [17], and social recommendation [15]. Despite its concise

mathematical formulation and deep theoretical background on equation properties, there

are several limitations when it is applied on multi-network mining. First, the real-world net-

work data contains various heterogeneous features. However, the features of the networks

can not directly be incorporated into the traditional Sylvester equation formulation. Sec-

ond, in the task of multi-network association, the traditional Sylvester equation essentially

calculates a linear transformation from the observed prior multi-network association matrix.

However, the non-linear relation between the prior knowledge and the final solution can not

be captured by the traditional Sylvester equation. Third, solving the Sylvester equation

is decoupled from the downstream learning task, and it is not clear how to further adapt

the solution of the Sylvester equation towards different multi-network mining tasks. For

example, in network alignment task, the solution matrix of multi-network association is first

calculated by the Sylvester equation. Then, the soft/hard alignment method is conducted

on the solution, such as the greedy match. The Sylvester equation can not be trained or

tuned in an end-to-end fashion as deep neural networks, and consequently the performance

of the downstream tasks might be suboptimal. A natural question is: how can we obtain

the best of both the traditional Sylvester equation and the neural networks?

In this chapter, we design a multi-graph neural network framework, SyMGNN in order

to generalize the traditional linear Sylvester equation towards an end-to-end neural net-

work model. Specifically, we focus on geometric matrix completion task, and elucidate two
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instantiations for the SyMGNN framework. Our designed approach bears three distinc-

tive advantages compared with both the Sylvester equation and the existing neural models

targeted on geometric matrix completion. First, our framework is a general form, and it

is flexible to be instantiated by different downstream tasks. Second, by leveraging the at-

tention mechanism, our model incorporates the within network attention and cross-network

attention, which strengthens the model expressiveness, and learns compatible node repre-

sentations across different networks. Third, two instantiations are provided based on direct

2-dimensional multi-network association learning and low-dimensional representation learn-

ing for separate networks, respectively. The low-dimensional instantiation approach can

potentially further reduce the model’s space complexity.

The notations used throughout the chapter are summarized in Table 4.1. Generally, we

use bold uppercase letters to represent matrices, bold lowercase letters to represent vectors,

lowercase or uppercase letters in regular font for scalars.

Table 4.1: Symbols and Definition

Symbols Definition
G1 = {A1,F1} a network with feature matrix

H prior knowledge matrix of cross-network associations
D1,D2 diagonal degree matrices

I an identity matrix
W,Θ learnable parameter matrices
α, β the weighting parameter 0 < α, β < 1
d the dimension of features

< vi,vj > the inner product of vi,vj

bmm(·) batch matrix multiplication
∥ · ∥F Frobenius norm

diag(v) construct a diagonal matrix by vector v

Before giving the definition of GNN-based neural Sylvester equation, we first provide some

preliminaries on the traditional Sylvester equation and the Graph Neural Networks, followed

by a formal definition of the geometric matrix completion.

4.1.1 Preliminaries

Sylvester Equation for Multi-network Mining. Given two networks represented as

G1 = {A1,F1}, G2 = {A2,F2}, and an anchor multi-network association matrix H, which

denotes the prior knowledge of the multi-network node associations. The Sylvester equation
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for multi-network mining is defined as follows [25]:

X = αÃ2XÃT

1 + (1− α)H (4.1)

where Ã1 and Ã2 are the symmetrically normalized adjacency matrices of the input net-

works. The X represents the cross-network node association scores which the equation aims

to calculate. The scalar α ∈ (0, 1) is aimed at weighting the multi-network association ag-

gregation term (i.e. Ã2XÃT
1), and the prior knowledge term (H). Due to the normalization

of A1 and A2, the corresponding linear system of Eq. (4.1) contains a positive semi-definite

coefficient matrix, which guarantees the existence of unique solution for Eq. (4.1). Solving

Eq. (4.1) is often time-consuming. A straightforward iterative method to solve Eq. (4.1)

is the fixed point iteration. More efficient method is proposed in [25] with linear time and

space complexity.

The formulation of this equation for multi-network mining (Eq. (4.1)) enjoys several

distinctive advantages, which are summarized as follows. Firstly, theoretically the existence

and uniqueness of the solution X can be guaranteed. Furthermore, there exists various

efficient and scalable solvers for the solution. Secondly, the solution X can be seen as a fixed

point of the equation and can be obtained by iteratively evaluating the Eq. (4.1). Compared

to existing neural models, which might contain a number of hidden layers, there is no need to

save the hidden states/representations. Thirdly, when reaching the fixed point, theoretically

it is equivalent to proceed the recurrent process implied by Eq. (4.1) infinite times, so the

formulation is able to leverage long-range dependency when solving X.

However, despite the advantages and effectiveness in various tasks, generally there are

also several limitations of this formulation which are summarized as follows. Firstly, the

numerical features of the nodes can not be effectively utilized for calculating X. Secondly,

the X can be seen as a linear transformation from the prior knowledge matrix H. However,

the potential non-linear relationship between them can not be captured by this formulation.

Thirdly, since the equation is not learnable and not tunable, the solution X should always be

adapted to a target downstream task by another learning model, but not in an end-to-end

fashion. This might result in suboptimal performance for the downstream task.

Graph Neural Networks. The Graph Neural Networks (GNN) are powerful deep learning

models for network data. The basic idea of GNN model is to learn node representations via

learnable aggregation, in which the node features are accumulated and transformed from

the neighborhood features. Given a network G = (A,F), where A ∈ Rn×n is the adjacency

matrix of G, and F ∈ Rn×d is the feature matrix with d being the dimension of features,
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representative GNN aggregation step at time step t can be written as follows.

X(t+1) = ϕ(ÃX(t)W + Ω(t)F) (4.2)

where Ã is the normalized adjacency matrix with added self-loops. W is a learnable pa-

rameter matrix for the aggregated features. Different GNN models adopts different feature

aggregation mechanisms. GCN model [140] inserts the adjacency matrix with self-links and

applies the re-normalization. It also sets Ω = 0. GAT model [141] utilizes the self-attention

mechanism in feature aggregation. GIN model [142] adopts an MLP layer after the aggre-

gation of hidden representations of nodes for improving the discriminative ability of GNN

model.

Convolutional Graph Embedding. Proposed in [143], the convolutional graph embed-

ding (CGE) model is a GNN-based single network embedding model. Different from tra-

ditional GCN [140], which simply sums up the hidden representations of all neighbors, the

aggregation weights for center nodes and neighbor nodes are differentiated and learnable

with the model in CGE. Specifically, in the (l + 1)-th layer, the output of a CGE layer can

be represented as:

V(l+1) = ϕ((diag(σ) + (I− diag(σ))Ã)V(l)Θ(l)) (4.3)

where V(l+1) and V(l) are the node representation matrices of the (l + 1)-th and l-th layer,

respectively. σ is the learnable weight vector for the self-connections, and Θ(l) is the learnable

weight matrix. ϕ() is an activation function. Using CGE adds more expressiveness to the

model compared with GCN, and we will elaborate how to leverage it in Section 4.1.4.

4.1.2 Geometric Matrix Completion

Different from traditional matrix completion problem, the geometric matrix completion

needs to handle two additional networks which reflect the topological relations between the

nodes of two entities sets. Specifically, the problem is defined as follows.

Problem 4.1. Geometric Matrix Completion

Given: Two networks with node features G1 = {A1,F1}, G2 = {A2,F2}, and the partially

observed multi-network association H of the nodes in G1 and G2;
Output: The unobserved entries in H.

In this section, we will elaborate our framework of implicit multi-graph neural networks.

First, we will present a general framework of neural Sylvester equation, followed by two GNN-
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Figure 4.1: The overall illustration of two instantiations for SyMGNN. (a): the base model,
and (b): the low-rank model.

based instantiations of the general framework targeted at the geometric matrix completion.

Second, we will introduce the training method with details. Third, we will provide analysis

of the two instantiations in terms of complexity.

4.1.3 Sylvester Multi-Graph Neural Network Framework

The goal of the proposed SyMGNN framework is to leverage the advantages of the

traditional Sylvester equation, and in the meanwhile overcoming its limitations. First, if we

observe the Sylvester equation in Eq. (4.1) from an iterative perspective, we can see that

the first term on the right side aggregate the multi-network node association X linearly for

the updated X. The second term incorporates the prior multi-network association message

H into the updated X. Second, similar to the ideas of the traditional Sylvester equation, we

identify the two key modules of the SyMGNN: (1) the multi-network aggregation learning

module; and (2) the prior multi-network association incorporation learning module. The

general framework can be represented in Eq. (4.4).

X = ϕ(α · aW(F1,F2, Ã1, Ã2) + (1− α) · bΘ(F1,F2,H)) (4.4)

where aW() and bΘ() are two neural modules with parameters W and Θ, and weighting

scalar α ∈ [0, 1]. ϕ() is a non-linear activation function. X is the multi-network association
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output of the SyMGNN framework, and it can be further fed into a neural network for

adapting towards a downstream task in an end-to-end fashion. As we can see, this framework

is a neural generalization originated from the Sylvester equation in Eq. (4.1). When the

neural modules aW and bΘ are linear aggregation functions, the Eq. (4.4) degenerates to the

classic Sylvester equation Eq. (4.1). Therefore, we can say that the Sylvester Multi-Graph

Neural Network framework is a non-linear and neural generalization of the traditional linear

Sylvester equation. For Eq. (4.4), numerous instantiations exist for different downstream

tasks. Next, we will discuss how to specifically instantiate this framework towards geometric

matrix completion (Problem 4.1).

4.1.4 Base Model for Geometric Matrix Completion

Here, we present our base model for geometric matrix completion problem. In order to

instantiate aW(F1,F2,A1,A2), we design two parallel layers which adopt the CGE-based

aggregation layer and the attention-based aggregation layer respectively. The motivation

here is to learn the 2-d hidden representations for the multi-network association solution.

In order to achieve this, we design two types of 2-d convolutional non-linear aggregation

module, namely the adjacency matrix-based GCE neural aggregation, and the attention-

based neural aggregation. To be specific, given G1 = {A1,F1},G2 = {A2,F2} with n1, n2

nodes respectively, we first apply the learnable parameters of self-connections from Eq. (4.3)

on A1 and A2 to obtain the updated adjacency matrices. The goal is to adopt the learnable

weight of the self-connections from CGE for improving the expressiveness of the model:

Â1 = diag(σ1) + (I− diag(σ1))Ã1 (4.5a)

Â2 = diag(σ2) + (I− diag(σ2))Ã2 (4.5b)

where σ1 and σ2 are learnable weights for self-connections of the first network and the

second network respectively. Before applying the multi-network aggregation layers, the node

features of G1 and G2 are fed into an MLP layer for obtaining the hidden features U1 =

MLP1(F1) and U2 = MLP2(F2). In the CGE-based multi-network aggregation, the output

of the l-th level aggregation can be represented as:

X
(l)
1 =

l∑
i=1

ϕ(Âi
1U1W

(c)
i UT

2(Â
i
2)

T) (4.6)
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where W
(c)
1 , · · ·W(c)

l are parameter matrices and ϕ() is an activation function. In practice,

W
(c)
i , i = 1, 2, ..., l is implemented as W

(c)
i = W′

i(W
′
i)

T, as a metric learning approach for

the generalization of Mahalanobis distance [144], in order to capture the feature correlation

between nodes from two different networks.

In the attention-based multi-network aggregation, the output can be represented as:

X2 = ϕ(B1U1W
(a)UT

2B
T

2) (4.7)

where W(a) is the parameter matrix, B1 and B2 are attention score matrices for G1 and G2
respectively. For instance, the attention score of node (i, j) ∈ G1 is calculated as:

B1(i, j) =
exp(< ui,uj >)∑n1

k=1 exp(< ui,uk >)
(4.8)

In order to instantiate bΘ(F1,F2,H)), similar to the first term aW(F1,F2, Ã1, Ã2), we

can also adopt two types of parallel aggregation layers. The first one is the direct neural ag-

gregation from prior multi-network association, and the second one is via attention schema.

However, since the entries of the prior multi-network association matrix H is often real val-

ues or multi-class categorical rates, it is unreasonable to directly use H for cross-network

feature aggregation. Thus the prior multi-network association-based multi-network aggrega-

tion is only adopted when H contains binary associations. The two types of multi-network

aggregation modules are shown as follows.

X3 = ϕ(U1HUT

2) (4.9a)

X4 = ϕ(U1CUT

2) (4.9b)

where the cross-network attention score matrix C is calculated as C(i, j) =
exp(<ui,uj>)∑n2

k=1 exp(<ui,uk>)

for i ∈ G1, j ∈ G2.
Putting everything together, as shown in Figure 4.1, the intermediate multi-network asso-

ciation matrices X1,X2,X3,X4 consist of the hidden representation tensor X ∈ Rn1×n2×4 for

the multi-network association solution. We apply a fully connected layer on X for obtaining

the final multi-network association X = bmm(X ,W) where W ∈ Rn1×4×1 is the parameter

tensor.

4.1.5 Low-rank Model for Geometric Matrix Completion

Instead of conducting bi-linear neural aggregation for the multi-network association di-

rectly, we can generate the embeddings for nodes of G1 and G2 respectively. Similar to
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the base model, we consider both the direct neural aggregation from the original network

topology, and the neural aggregation from the within network attentions. First, given

two networks G1 = {A1,F1},G2 = {A2,F2} with n1, n2 nodes respectively, the node fea-

tures are fed into an MLP layer for obtaining the hidden features U
(h)
1 = MLP

(l)
1 (F1) and

U
(h)
2 = MLP

(l)
2 (F2). Similar to the motivation of the base model, U

(h)
1 ,U

(h)
2 are then fed

into two parallel CGE-based and attention-based neural modules for generating the hidden

representations of the node features for two networks separately. We take U
(h)
1 as an exam-

ple, and the process for U
(h)
2 is similar. The updated node hidden representations after an

l-layer CGE module is:

U
(l+1)
1 = ϕ((diag(σ) + (I− diag(σ))Ã)U

(l)
1 W(l)) (4.10)

where U
(0)
1 = U

(h)
1 , Θ(l) is the parameters for the l-th layer, and ϕ() is an activation function.

After L layers, we obtain U
(L)
1 . The updated node hidden representations after the attention-

based neural aggregation module is:

U
(att)
1 = ϕ(B1U

(h)
1 W(att)) (4.11)

where the attention score matrix B1 can be calculated via Eq. (4.8). bΘ(F1,F2,H) is also

instantiated for G1 and G2 separately. Here, we can adopt a similar prior multi-network

association-based neural aggregation when the prior H denotes binary or multi-class rela-

tions. For H with entries of K classes, we apply K neural networks, in which each neural

network aggregates one class of nodes.

V
(p)
i = ϕ(HiU

(h)
1 Θ

(p)
i ) (4.12a)

U
(c)
1 = ϕ(CU

(h)
1 Θ(c)) (4.12b)

where Hi is the prior multi-network association which only contains the entries of the i-th

class. Θ
(p)
i and Θ(c) are learnable parameters. The V

(p)
i for all classes are then concatenated

and fed into an MLP for the node representation U
(p)
1 = MLP([V

(p)
1 ||· · · ||V

(p)
K ]). The cross-

network attention matrix C is calculated by the same method as in Eq. (4.9b).

Putting everything together, we now have four representation matrices for each network:

U
(L)
1 ,U

(att)
1 ,U

(p)
1 ,U

(c)
1 . We can adopt another fully connected layer to obtain a final repre-

sentation U1
1. The predicted multi-network association between two nodes is calculated by

1We find that by simply adding them with the original node hidden representations, we can already
achieve superior performance.
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the dot product of the row vectors of the resulting representation matrices U1 and U2.

4.1.6 Training

For matrix completion, we adopt the Mean Squared Error (MSE) loss for both instantia-

tions:

L1 = ||H−M⊙X||2F (4.13a)

L2 = ||H−M⊙ (U1U
T

2)||2F (4.13b)

where the M matrix is a mask of 0, 1, with 1 indicating the position of the observed prior

multi-network associations. For the low-rank instantiation, the dot product of the node rep-

resentations are used as the final solutions. For the regularization of the model parameters,

we adopt the weight decay method with 0.01 as decay factor as we find that it shows slightly

better performance over L2 regularization. We use the Adam optimizer as it overall shows

the stablest training.

4.1.7 Complexity Analysis

For notation simplicity, assume that the two input networks contain n nodes and m edges

respectively. Suppose the feature dimension is d, the number of observed rating is m′ and

the dimension of node representations is r < d. For the base model, the major computation

lies in the within-network and cross-network attention calculation as well as the aggregation.

From Eq. (4.8), the within-network attention aggregation costs O(n2d). From Eq. (4.9b),

the cross-network attention aggregation costs O(n2d). Eq. (4.3) costs O(Lmd+ d2n). Since

usually r, d << m, n, so its computation is not comparable with the attention-based neural

aggregation. The overall time complexity for the base model is O(#iter ·(n2d)), where #iter

is the total number of iterations. The space complexity is O(n2) because of the main storage

of attention score matrices. Similarly, for the low-rank model, the overall time and space

complexity are also O(#iter · (n2d)) and O(n2). However, for the low-rank model, if we

do not apply the within-network and cross-network attention-based neural aggregation, the

time and space complexity would be reduced to O(L(md+nd2)+m′d), and O(m+n(d2+r2))

respectively. Since the base model needs to store the intermediate multi-network association

matrix, the space complexity can not be further reduced even if the attention-based neural

aggregation is dropped.

In the next section, we present the experimental results on real-world benchmark datasets

to show the effectiveness of the instantiations of the SyMGNN models.
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4.1.8 Experimental Setting

Dataset and Pre-processing. The benchmark datasets used in the experiments are sum-

marized in Table 4.2. For the benchmark datasets, ML-3K and Flixster have both user-user

Table 4.2: The statistics of the benchmark datasets.

Dataset # of Users # of Items # of Ratings Density
Douban 3,000 3,000 136,891 0.0152
Flixster 3,000 3,000 26,173 0.0029

YahooMusic 3,000 3,000 5,335 0.0006
ML-100K 943 1,682 100,000 0.0630
ML-1M 69,878 10,677 1,000,209 0.0447

and item-item interaction network. Douban only contains a user-user interaction network

and YahooMusic only contains a item-item interaction network. For these two datasets, we

use the identity matrix as the adjacency matrix for the missing networks. For ML-100K,

ML-1M, we construct their user-user and item-item interaction network by adopting a k-

nearest neighbors search via their features, and the k is treated as a hyperparameter in our

model. All the datasets include multi-class categorical ratings. For the training/testing split,

we use the same partition which is also adopted by existing methods, such as [143] [34], etc.

Baseline Methods. We use five baselines in our comparison, including the traditional

Sylvester equation Sylv. [137], and recent neural network-based and GNN-based methods:

IGMC [41], GC-MC [42], PinSage [92], and sRGCNN [34].

Experimental and Hyperparameter Settings. For the effectiveness comparison, we

tune the hyperparameters of the model based on the best performance on the validation

set. We use 2-layer GCE and attention aggregation in both instantiations on all datasets

except for ML-100K and ML-1M. On these two datasets, the base model uses 3-layer GCE

and attention aggregation. For the k-NN method used for generating social networks and

item-item interaction networks on ML-100K and ML-1M dataset, we use k = 10 for the

low-rank model and k = 12 for the base model. Further studies of the sensitivity of k will

be discussed in the ablation study. The metric for comparison is the widely adopted rooted

mean squared error (RMSE).

4.1.9 Effectiveness Results

The first comparison results are shown in Table 4.3, as these datasets are the most com-

mon datasets among all existing methods. The results are reported based on the average of

five runs. The best performances are shown in bold fonts and the second best performances
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are shown with underlines. As we can observe from the table, the traditional Sylvester

equation can not achieve competitive results compared to other neural network/GNN-based

baseline methods, which is consistent with our discussion on the limitations of the Sylvester

equation. The Sylvester equation can not effectively incorporate node features, and also

can not capture non-linear relations between the observed multi-network association and

the solution. Among all the neural network-based methods, the proposed framework with

low-rank instantiation outperforms the rest of the baselines on Douban, Flixster and Ya-

hooMusic datasets. Flixster (U) represents the dataset with only the usage of user-user

interaction network. The performance of the proposed method slightly drops, and it shows

the importance of both interaction networks of users and items in our model. Particularly,

on YahooMusic dataset, the proposed method achieves 7.65% improvement over the best

baseline. The average improvement over all datasets on Douban, Flixster and YahooMusic

is 2.58%, which shows the effectiveness of the proposed models.

Table 4.3: RMSE comparison for geometric matrix completion.

Method Douban Flixster Flixster (U) Yahoo
Sylv. 1.220 1.244 1.276 29.403

IGMC 0.729 0.895 0.895 19.292
GC-MC 0.734 0.917 0.941 20.501
PinSage 0.739 0.954 0.951 22.954

sRGCNN 0.801 0.926 1.179 22.415
Ours (base) 0.762 0.911 0.934 19.277

Ours (low-rank) 0.725 0.891 0.916 17.815

The comparison results on ML-100K and ML-1M datasets are shown in Table 4.4. As we

can see, the Sylvester equation is still not competitive with the rest of the methods. Our

proposed low-rank instantiation consistently performs the best over all baselines. Among

all baselines, GC-MC has close performance compared with our methods. GC-MC contains

the graph encoder and the bi-linear decoder architecture which has similar effects to our

proposed GNN-based neural aggregation model. This is consistent with our intuition of the

effectiveness of the cross-network feature aggregation.

4.1.10 Ablation Study

The ablation study results are shown in Table 4.5. The ’Base model (G)’ and ’Base model

(A)’ represent the model with only GCE-based neural aggregation and the model with only

attention-based neural aggregation. The low-rank model uses the same abbreviation. The
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Table 4.4: RMSE comparison on ML-100K and ML-1M dataset.

Method ML-100K ML-1M
Sylv. 1.403 1.323

IGMC 0.922 0.857
GC-MC 0.905 0.854
PinSage 0.942 0.906

sRGCNN 0.931 0.865
Ours (base) 0.915 0.851

Ours (low-rank) 0.899 0.843

values inside the parentheses denote the maximum allocated GPU memory in one epoch, in

which we use the same batch size (i.e. 50) for comparison. As we can see, firstly the original

model performs the best over all variants in terms of RMSE for both base and low-rank in-

stantiations. Secondly, the model without the attention neural aggregation overall consumes

the least GPU memory during training. On average, with only 1.24% performance drop, the

models without attention neural aggregation show 16.98% less memory consumption. Fur-

thermore, comparing with other baselines’ performance in Table 4.4, the variant low-rank

model in Table 4.5 still outperforms all baseline methods.

Table 4.5: Ablation study on ML-100K and ML-1M dataset.

Method ML-100K ML-1M
Base model 0.915 (160Mb) 0.851 (2,371Mb)

Base model (G) 0.932 (141Mb) 0.862 (2,099Mb)
Base model (A) 0.924 (148Mb) 0.861 (2,209Mb)

Low-rank 0.899 (136Mb) 0.843 (1,983Mb)
Low-rank (G) 0.902 (110Mb) 0.857 (1,476Mb)
Low-rank (A) 0.920 (116Mb) 0.853 (1,641Mb)

4.1.11 Parameter Sensitivity

We mainly study the impact of the number of GCE-based neural aggregation layers and

the k value for k-NN method in graph construction in ML-100K datasets. The results are

shown in Figure 4.2 and Figure 4.3. From Figure 4.2, we can see that the performance is

relatively stable for both models in terms of different number of layers. From Figure 4.3,

the original models exhibit stabler performance over the models without the attention-based

neural aggregation (the dashed lines) w.r.t. the k value. This can also indicate that the

attention-based neural aggregation can make the model less sensitive to the hyperparameter
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for constructing graphs when the user-user/item-item interactions are not directly available.

Figure 4.2: RMSE vs. number of layers
for GCE aggregation.

Figure 4.3: RMSE vs. k for k-NN method
in graph construction.

4.2 A UNIFIED VIEW OF (NEURAL) SYLVESTER EQUATION MODEL

In this section, we provide a unified view of the traditional Sylvester equation introduced

in Chapter 3 and the neural Sylvester equation model introduced in Chapter 4 for pairwise

multi-network association in a framework of constrained optimization formulation. Before

diving into the unified view, we first introduce a special type of non-linear equation, which

is the preliminaries of the unified framework, and is closely related to the SyMGNN model.

4.2.1 Discussion on the Multi-network Equilibrium Equation

In this subsection, we elaborate the relationship between the developed SyMGNN model

with a non-linear equation named equilibrium equation in multi-network scenario [145], and

discuss a potential future direction. From Eq. (4.4), if the right side of the equation also

takes the solution X as an input, the resulting equation can be seen as a multi-network

implicit neural model, in which the solution can be seen as the output of a neural model

without the storage of hidden states. The equation is also referred to as the equilibrium

equation, with the following formation:

X = ϕ(α ∗ aW(X,A1,A2) + (1− α) ∗ bΩ(F1,F2)) (4.14)
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where ϕ(·) is a non-linear activation function. aW(X,A1,A2) is the generalized and learn-

able aggregation function for X, and bΩ(F1,F2) is the learnable function for incorporating

numerical node features in updating X. F1,F2 are node feature matrices for the input

networks. α is a weighting scalar for balancing the weight between aW(·) and bΩ(·). The

intuition behind Eq. (4.14) follows the idea of the Sylvester equation in Eq. (3.2). The

first term aW(·) serves as the propagation term which propagates the current cross-network

association to the neighbohoods. The second term bW(·) serves as the linear transformation

term which directly transform the representation of one network to the other. Compared

with Eq. (3.2), Eq. (4.14) can be seen as a generalized and learnable neural equation, with

various potential model instantiations catering to different downstream tasks.

Eq. (4.14) implicitly defines the hidden state of X so that X does not need to be explicitly

calculated at each layer of a recurrent process. As we will see shortly, under certain conditions

(i.e. the well-posedness condition), the equation will be guaranteed to have a unique solution

by iterating until reaching a fixed point. The conditions are discussed next.

4.2.2 The First Instantiation for Dense Solution

Here we propose one instantiation of the general framework of Eq. (4.14) for the dense

solution matrix X. The key ideas which tackle the limitations of the traditional Sylvester

equation are two-fold. First, we observe that the aggregation term in Eq. (3.2) (i.e. A2XAT
1)

assigns equal weights for cross-network node pairs during aggregation, thus it could not

differentiate between important and less important cross-network node pairs for the learning

task. Our idea is to re-weight such node pairs in aW(·) in order to be more adaptive towards

the downstream task. Second, we propose a cross-network distance metric learning function

for bΩ(·), so that bΩ(·) provides an update to solution matrix by the feature space, which can

not be obtained by cross-network association aggregation alone. Our proposed instantiation

is as follows.

aW(X,A1,A2) = (W2 ⊙A2)X(W1 ⊙A1)
T (4.15a)

bΩ(U1,U2) =
√
U2ΩUT

1 (4.15b)

where W1,W2 are parameter matrices which adjust the weights of neighbors when aggregat-

ing cross-network similarities. Here since A1 and A2 are typically sparse matrices, W1,W2

could have the same sparsity as A1 and A2. As we can see the aggregation term in Eq. (3.2)

becomes a special case where W1 = W2 = I. Ω is a bi-linear parameter matrix. When Ω

is a positive semi-definite matrix (i.e. Ω = W(u)(W(u))T), bΩ(·) can be seen as a distance

metric which adopts a generalized Mahalanobis distance [146].
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Next, we will discuss the well-posedness conditions by which the instantiated equation

(Eq. (4.14) by plugging in Eq. (4.15a) and Eq. (4.15b)) exists a unique solution.

Lemma 4.1. ||W1||∞ < λpf (A1)
−1 and ||W2||∞ < λpf (A2)

−1 are the sufficient conditions

for the well-posedness of Eq. (4.14) when instantiated by Eq. (4.15a) and Eq. (4.15b).

Proof. Eq. (4.14) can be written as the following equivalent vectorized equation (weighting

scalar α is absorbed in the matrix for notation brevity):

vec(X) = ϕ((W1 ⊙A1)⊗ (W2 ⊙A2)vec(X) + vec(B)) (4.16)

where vec(X) is the vectorized matrix X, and B = bΩ(U1,U2). By Lemma B.1 in [145], a

sufficient condition for well-posedness is λpf (|(W1 ⊙A1) ⊗ (W2 ⊙A2)|) < 1, where λpf is

the Perron–Frobenius eigenvalue. Practically, we would need to resort to more tractable

conditions during training. Specifically, λpf (|(W1⊙A1)⊗ (W2⊙A2)|) = λpf (|W1⊗W2)⊙
(A1⊗A2|), and we have the following strict condition, i.e. λpf (|(W1⊗W2)⊙ (A1⊗A2)|) ≤
λpf (|W1 ⊗W2|)λpf (A1 ⊗A2) < 1. So that the condition becomes:

λpf (|W1 ⊗W2|) < λpf (A1 ⊗A2)
−1 (4.17)

In practice, the matrix W1 ⊗W2 will need to be calculated as well as its Perron–Frobenius

eigenvalue. However, this condition is not tractable. We use a more strict condition by

observing that λpf (|W1 ⊗W2|) ≤ ||W1 ⊗W2||∞= ||W1||∞||W2||∞, and let

||W1||∞||W2||∞< λpf (A1 ⊗A2)
−1 (4.18)

as the updated sufficient condition. Because λpf (A1 ⊗ A2) = λpf (A1)λpf (A2), and also

||W1||∞, ||W2||∞ ≥ 0, λpf (A1)
−1, λpf (A2)

−1 > 0, when we have ||W1||∞ < λpf (A1)
−1 and

||W1||∞ < λpf (A1)
−1, the sufficient condition in Eq. (4.18) will be satisfied. QED.

This sufficient condition indicates that the W1 and W2 should lie in the hyper-ball of

two different sizes. By the Theorem 2.2 in [147], if condition in Eq. (4.17) is satisfied, there

always exists a re-scaled model that have the exact same output for the same input.

4.2.3 The Second Instantiation for Low-rank Solution

The idea of a low-rank representation model is to replace the X ← YZ, where Y and Z

are low-rank representations of the node in G1 and G2, respectively.

Y = ϕ(αWaY(W2 ⊙A2) + (1− α)WbU2) (4.19a)
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Z = ϕ(βWaZ(W1 ⊙A1) + (1− β)WbU1) (4.19b)

The well-posedness condition of the equilibrium equations Eq. (4.19a) and Eq. (4.28) is

given in the following lemma.

Lemma 4.2. ||W2||∞≤ 1 and ||Wa||∞≤ λpf (A2)
−1 are the sufficient conditions for the well-

posedness of Eq. (4.19a). ||W1||∞≤ 1 and ||Wb||∞≤ λpf (A1)
−1 are the sufficient conditions

for the well-posedness of Eq. (4.28).

Proof. For Eq. (4.19a), similar to Lemma 4.1, a sufficient condition for well-posedness

is λpf (|(W2 ⊙ A2) ⊗Wa|) < 1. In order to have a more tractable condition, we have

λpf (|(W2 ⊙ A2) ⊗Wa|) = λpf (|W2 ⊙ A2|)λpf (|Wa|) ≤ λpf (|W2|)λpf (A2)λpf (|Wa|). One

strict sufficient condition would be:

λpf (|W2|)λpf (|Wa|) < λpf (A2)
−1 (4.20)

Note that 0 ≤ λpf (|W2|) < ||W2||∞, and 0 ≤ λpf (|Wa|) < ||Wa||∞. When the con-

dition ||W2||∞< 1 and ||Wa||∞< λpf (A2)
−1 are satisfied, we will have ||W2||∞||Wa||∞<

λpf (A2)
−1. So Eq. (4.20) will also hold. Similar proof can be established for Eq. (4.28).

QED.

The two categories of the instantiations can be naturally incorporated with the down-

stream tasks which take the input of the solution of the equilibrium equation. The training

of the downstream tasks and the equilibrium equation can be conducted in an end-to-end

fashion by back propagation. We point out that this could be a future research direction

which is closely related to the proposed SyMGNN model. The theoretical properties of the

multi-network equilibrium equation can guarantee the existence, uniqueness of the solution,

and the convergence of the model training.

4.2.4 The Unified Framework for (Neural) Sylvester Equation Models

Given two input networks with node features G1 = {A1,F1}, G2 = {A2,F2}, and the

partially observed multi-network association H of the nodes in G1 and G2. First of all, we

do not consider the objectives of any downstream tasks, and the goal is to infer all the

unobserved entries in H. Then a unified optimization framework can be written as follows.

L(X) = ϕ(α · a(X,A1,A2,F1,F2) + (1− α) · b(X,H,F1,F2)) (4.21)
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where a() and b() are topology smoothing term and anchor multi-network association reg-

ularization term, which are similar to Eq. (4.4) and Eq. (4.14). ϕ() could be a linear or

non-linear function, based on the specific constraints of the optimization problem. α is a

weighting scalar for balancing the two terms. The optimization goal of the first term is to

strengthen the association of cross-network node pairs if they share similar or consistent

local topology. The optimization goal of the second term is to regularize the solution so that

the observed multi-network association is consistent with the solution of the optimization

problem. For example, if we instantiate Eq. (4.21) by the topology consistency principles

proposed in the network alignment problem [30], the framework can be written as:

min
X
L(X) = α

∑
a,b,c,d

[X̃(a, c)− X̃(b, d)]2 ·A1(a, b)A2(c, d) + (1−α)[X(a, c)−H(a, c)]2 (4.22)

Here, for conciseness, we only use topology consistency as an example and do not consider

node features. X̃ is the normalized solution matrix X by node degrees. (a, b) and (c, d) are

two node pairs in G1 and G2. In order to solve Eq. (4.22), we can show that it is a convex

problem, and the closed-form solution can be obtained by solving a Sylvester equation in the

form of Eq. (3.1) presented in Chapter 3 [15, 30]. We can also see that in Eq. (4.22), the ϕ()

is instantiated as a linear identity function. If we constrain ϕ() function as a differentiable

non-linear function, the Eq. (4.21) can be seen as a generalization of the multi-network

equilibrium equation discussed in Eq. (4.14), since the node features are pruned in the first

terms and the solution matrix is removed from the second term in Eq. (4.14).

If we still constrain ϕ() function as a differentiable non-linear function, and furthermore,

we do not incorporate the solution matrix X into the first and the second term of Eq. (4.21)

to make it in the form of a matrix equation, then we could transform Eq. (4.21) as a neural

layer of a feed-forward network as presented in Eq. (4.4). Consequently, the neural layer

can be applied to any downstream multi-network mining tasks, and they can be trained

through a single loss function in an end-to-end fashion via back propagation [27]. Therefore,

Eq. (4.21) could be a unified perspective of the (neural) Sylvester equation-based model

discussed in Chapter 3 and Chapter 4. There might exist other potential instantiations of

this framework for different optimization goals.

4.3 NOVEL APPLICATION: SOCIAL RECOMMENDATION WITH GNNS

Graph Neural Networks (GNNs) are power tools for a variety of machine learning and

data mining tasks on graph data, such as node/graph classification [148] [26], link predic-
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tion [149], graph matching [150], and graph-based recommendation [97]. Particularly, social

relations play an important role in influencing users’ preference in recommender systems.

When choosing from numerous items, users tend to follow their social network friends with

whom they share the same interest or whom they trust. This type of trust/interest influence

could naturally be captured by GNN models. As a result, substantial recent works focus

on applying GNN techniques on the social recommendation task, in which the GNN model

is leveraged for learning representations of users and items in an convolutional manner on

social networks. Despite some previous successes, the existing works exhibit a few funda-

mental limitations. First, similar to traditional recommender systems, the negative sampling

method for social recommendation is underexplored. One of the most common strategy is

uniform negative sampling (UNS), which samples from the unobserved items as negative

samples with equal probability. However, the naive UNS method could introduce bias to the

model since the unobserved items might also contain positive items. Second, the existing

GNN-based neural models usually directly adopt the off-the-shelf GNN models/layers, which

often suffer from oversmoothing especially for the social recommendation task. Furthermore,

many current GNN architectures are tailored for specific tasks, and might not be suitable

for social recommendation if applied directly. Third, the existing social recommendation

models do not fully utilize the use-item interaction for message aggregation and representa-

tion learning. Most existing methods only consider the observed user-item interactions for

users’ interest diffusion for representation learning. However, the unobserved interactions

and the negative samples might also provide a different category of interactions, which is

often underexplored.

In this section, we design a simplified multi-network GNN-based neural model (NeMos)

for social recommendation problem. Compared with the existing methods, the developed

model bears the following distinctive advantages. First, we design a novel generative nega-

tive sampling method, which aims at generating hard negative samples as a complement of

the sampled negative samples to improve the generalization ability of the model. Second, we

develop a simplified multi-network GNN-based model, which does not adopt current GNN

models in the user representation learning, but instead only keeps a relative small number of

the linear feature aggregation process . By this simplified design, the model could still aggre-

gate hidden features in a convolutional way, and in the meanwhile avoid the oversmoothing

issue which is often incurred by the deep Graph Neural Networks. Third, we leverage both

the positive and negative user-item interactions in the users’ interest propagation between

users and items, in order to explicitly model the users’ positive and negative preferences.

First, we formally define the graph-based social recommendation problem and provide

some preliminaries.
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Figure 4.4: Social recommendation problem setting.

4.3.1 Problem Definition

In the traditional recommender system with users’ implicit feedbacks, given a user set U =

{u1, u2, ..., uN} and item set I = {i1, i2, ..., iM}, there are only user-item interactions, which

could be represented as a matrix R ∈ RN×M . Rui = 1 if there is an observed interaction

between user u and item i, and otherwise 0. In the general social recommender system, there

is also a social network, whose user-user interactions indicate the users’ social relations, and

the numerical features of users and items. The social relations can naturally be represented

as an adjacency matrix A ∈ RN×N . We denote the user and item feature matrices as

E ∈ RN×K1 and F ∈ RM×K2 . A toy example of a typical social recommendation setting is

illustrated in Figure. 4.4. In real-world recommendation systems, the users could hardly

interacte with all the items, hence the R matrix is usually very sparse. Here, its entries with

question marks are unobserved. With these inputs, the problem of social recommendation

is formally defined as follows.

Definition 4.1. Social Recommendation:

Given: User set U , item set I, a social network G = {A,E,F}, and the observed user-

item interaction R;

Output: The prediction of the interaction scores of the unobserved user-item pairs for

users in U .

4.3.2 Preliminaries

Classic Matrix Factorization for Social Recommendation. The matrix factorization

(MF) is originally used on traditional recommender systems where no social relations are
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available. With social information, the MF methods are extended by using the first-order

social relation as regularization [151]. A general formulation could be represented as follows.

Ls =
1

2

N∑
u=1

M∑
i=1

Iui(R(u, i)− uiv
T

j )
2 +

β

2

N∑
u=1

h(ui, {uj}j∈Ni
) +

λ1

2
||U||2F+

λ2

2
||V||2F (4.23)

where the Iui is a indicator function to indicate whether (u, i) exists observed interaction.

ui,vj are row vectors of U and V. h(ui, {uj}j∈Ni
) is the social regularizer function, in

which {uj}j∈Ni
is a set of user i’s neighbors. Representative social regularizer functions are

average-based regularization and individual-based regularization, which can be represented

as ||ui−
∑

j∈Ni
sim(i,j)·uj∑

j∈Ni
sim(i,j) ||

2
F , and

∑
j∈Ni

sim(i, j)||ui−uj||2F , respectively. The sim(i, j) denotes

a similarity measure between user i and user j.

GNN-based Neural Social Recommendation. As the recent development of Graph

Neural Networks (GNN), numerous GNN-based models are proposed for social recommen-

dation. Most existing works focus on how to adopting various GNN models or designing

complicate GNN layers for social influence and interest influence diffusion, in order to gener-

ate user and item representations. Given the inputs (G = {A,E,F}, R), the user and item

representation generated by GNN-based neural model at level l can generally be represented

as:

u
(l)
i = Φ(GNN1(A,E),V(l)) (4.24a)

v
(l)
j = GNN2(R,E,F,U(l)) (4.24b)

where GNN1() is used for user representation learning, GNN2() is used for item representa-

tion learning. GNN2()’s inputs include R, which is often treated as an adjacency matrix of

user’s interest. U(l), V(l) are user and item representations at level l respectively, Φ() is a

neural network for leveraging item representation information back to user representation

for learning more compatible user/item representations. As more and more works focus on

designing complicate structures for GNN1(), GNN2() and Φ(), our findings suggest that even

by a simplified GNN which does not contain multiple sophisticated message-passing layers

and nonlinearity, the model can still achieve superior performance.

Next, we present our model with the generative negative sampling strategy, followed by

the analysis on complexity.

4.3.3 Model Architecture

We first show the succinct multi-network GNN-based neural model architecture. The key

ideas of the proposed model are two-fold. First, the user-user social relations are utilized
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Figure 4.5: The overall model architecture of NeMos. Best viewed in color.

only for feature aggregation among users, without the complicated architecture designs from

various existing GNN models. Here, we hypothesis that the major benefit of the GNN

models for social recommendation originates from the local feature aggregation among users

in the social network. Furthermore, GNN models often suffer from oversmoothing with

multiple layers ([152]). As we will see from the empirical evaluation, users that are multiple

hops away provide little or even negative information to the users’ representation learning.

Thus the common multi-layer GNN architecture and the nonlinearity between GNN layers

are refrained, which also reduces the model complexity. Second, apart from the user-user

graph, both the positive and the sampled negative user-item interactions are combined into

a heterogeneous bipartite graph, which is used for interest propagation across items and

users. The model architecture is illustrated in Figure 4.5.

Figure 4.5 also shows how the input user/item features are processed within one epoch.

At the beginning of each epoch, for each user, we uniformly sample a fixed number of items,

which do not have interactions with the user. We temporarily treat these items as ‘negative’

items for interest propagation in the model. Note that the ‘negative’ items are not fixed for

each epoch. If there is already a set of ‘negative’ samples for each user from the last epoch,

a new set of ‘negative’ samples will be re-sampled. A detailed negative sampling strategy is

elaborated in Section 4.3.4.

In the model, first of all, the user/item features are fed into a multi-layer perceptron

(MLP), and then combined with a user/item prior embedding, which is also known as the

‘free embedding’ in some existing works ([95], [153]), in order to obtain user/item hidden

representations for further processing. For example, given user u and item i, the hidden

representations can be represented as:
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H1(u, :) = MLP1(E(u, :)) + P(u, :) (4.25a)

H2(i, :) = MLP2(F(i, :)) + Q(i, :) (4.25b)

where P and Q denote the learnable prior representations of users and items, whose ini-

tialization P(u, :),Q(i, :) ∼ N (0, γ2I) follows a Gaussian distribution with zero mean and

standard deviation γ > 0. The intuition of imposing a prior with Gaussian distribution origi-

nates from the classic probabilistic matrix factorization for traditional recommender systems.

[154] shows that with Gaussian noise as the prior distribution of the latent representations,

maximizing the log-posterior over user and item hidden representation is equivalent to min-

imizing a squared error objective with quadratic regularization. The prior in Eq. (4.25a)

(4.25b) work in a similar fashion (see analysis in Section 4.3.7).

Second, user hidden representation is used for the L−level feature aggregation within the

social network. In each level, the hidden representations are passed from a source node to

a target node of each edge, and the representations are summed up as the updated user

hidden representation (H1 and H2). Third, the resulting user representations and the item

representations are diffused in two directions by users’ interactions with both positive and

the sampled negative items, for positive and negative interest propagation. Here, the users

and positive/negative items form a heterogeneous bipartite graph Gb. We use two different

MLPs for modeling the positive and negative interest propagation. Then, the positive items

are fed into a neural module for generating negative samples. Suppose that A+
b ∈ RN×M

denotes the adjacency matrix induced from positive interactions of Gb. A+
b (i, j) = 1 if user

i has iteractions with item j. A−
b ∈ RN×M denotes the adjacency matrix induced from

sampled negative interactions of Gb. A−
b (i, j) = 1 if user i and item j are sampled as

negative pairs. Generally, the intuition behind this module is to generate compatible user

(item) embeddings with the assist of the information from item (user). The user embedding

Ĥ1 and item embedding Ĥ2 after interest propagation are:

Ĥ1 = A+
b ·H2 · (D+

u )−1 + H1 (4.26)

Ĥ2 = MLPp((A
+
b )T ·H1 · (D+

i )−1) + MLPn((A−
b )T ·H1 · (D−

i )−1) + H2 (4.27)

where D+
u ,D

+
i ,D

−
i are diagonal degree matrices for representation normalization. D+

u (x, x) =∑
y A

+
b (x, y), D+

i (x, x) =
∑

xA
+
b (x, y) and D−

u (x, x) =
∑

y A
−
b (x, y). MLPp() and MLPn() are

two MLP modules for the users’ positive and negative interest propagation in item repre-

sentation respectively. Finally, after the interest propagation, the representations of users

and items are used for calculating the final predictions by inner product. The details for loss
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function is discussed in Section 4.3.6.

4.3.4 Generative Negative Sampling

Here, we present the proposed generative negative sampling strategy for the social recom-

mendation problem.

Numerous existing works adopt uniform negative sampling (UNS) from the unobserved

items. However, it is unreasonable to naively assume that the unobserved items are equal to

negative samples, because it might introduce bias into the negative samples, and the UNS

method is not able to generate hard negative examples. In order to alleviate this issue, in-

spired by recent studies on mixup ([155], [156]), which linearly interpolates pairs of examples

for data augmentation in various tasks, we introduce the generative negative sampling. Our

key idea is to generate negative samples through neural networks in the continuous embed-

ding space of items. For a given user u, the neural generator takes the hidden representations

of true positive items zi as inputs, and the representations of uniformly sampled unobserved

items {i1, ..., ip} as offsets:

z′i = α · g(zi) + (1− α) · Pooling
i1,...,ip∈Ω−

(zii , ..., zip) (4.28)

where g(zi) = σ(W2 · σ(W1 · zi + b1) + b2) is a MLP, with W1,W2,b1,b2 as learnable

parameters, and σ() is a Sigmoid function. Ω− is the set of sampled unobserved items.

Pooling() is the Pooling function which transforms the input representations of the sampled

unobserved items into a combined representation. α is a weighting scalar for the first MLP

term and the second offset term of unobserved samples. The intuition of the first MLP term

is to deviate the true item representation from the embedding space in order to generate a

fake item representation, whose corresponding item might not exist. The intuition of the

second term is to bump such deviation in the direction of unobserved samples, in which the

true negative samples might exist. The above negative sample generator is learned with the

model in an end-to-end fashion. Note that the generated samples may take different set of

sampled negative items as inputs for Eq. (4.28), so that the embeddings of the generated

negative samples are also learned along with the learning process of the recommendation

problem. As the learning process proceeds, the generated negative could become harder,

which is closely related to the idea of curriculum learning [157, 158]. We will further discuss

this in Section 4.3.8.

There are two major advantages by the generative negative sampling. First, the generated

samples are mixed with information from positive items, resulting in harder negative samples
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compared with samples by UNS. Second, the generated fake samples can be combined with

the real samples as an augmentation for the dataset. In this way, the proposed model

is potentially more generalizable because of the interpolation of embedding spaces with

augmentation during training.

4.3.5 Implementation Details

Here, we further present some implementation details.

Choice of α. As suggested by [155], the selection of α affects the model generalization, and

it is often solved by sampling from a distribution. Here we use Beta distribution due to its

strong empirical performance.

Static Negative Re-sampling. As a natural extension for UNS, we can uniformly re-

sample the negative samples from unobserved items in every epoch of the training, instead

of using one fixed negative item set. Static means the sampling method does not consider

the model output dynamically as in dynamic negative sampling. Compared with fixing the

negative item set, this could potentially prevent overfitting and also improve the model’s

generalization.

Dynamic Negative Re-sampling. We also adopt dynamic negative sampling for mitigat-

ing the limitations of UNS and obtaining hard negative samples dynamically at each epoch.

Specifically, the unobserved items are ranked by the model’s output rating scores at each

training epoch. Then the negative samples are extracted from the top ranked items, which

are supposed to be the hard examples.

4.3.6 Training

Instead of leveraging the commonly used Bayesian Personalized Ranking (BPR) loss, we

adopt the simple Mean Squared Error (MSE) loss, which is easier to implement for our model

and meanwhile with superior performance. We briefly discuss two limitations of the BPR loss

in terms of practical implementation. First, given a pair of positive and negative samples,

BPR loss ranks the positive sample higher than the negative sample. If the pair is uniformly

sampled from the observed and unobserved items, it always makes the ratio of positive and

negative items equal to 1 : 1, which restricts the model generalization. Second, for C positive

items, we sample rC negative samples using negative sampling ratio r, and consider every

combination of positive and negative item pairs in BPR loss. The computational complexity

is O(N · rC2), which is significantly larger than MSE loss (O(N · (C + rC))). Our loss
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function is given as follows.

L =
∑

(u,i)∈Ω+∪Ω−

||R(u, i)− Ĥ1(u, :)Ĥ2(i, :)
T||22 (4.29)

The predicted rating of (u, i) is calculated as the inner product of representation vectors

Ĥ1(u, :)Ĥ2(i, :)
T. Ω+ and Ω− are positive and negative user-item pair set respectively. Here,

for Ω−, we combine the uniformly re-sampled items with the generated fake items as a given

user’s final negative samples to obtain the best performance. We adopt the Adam optimizer

which shows more stable convergence than other optimizers. The Adam optimizer is applied

with a weight decay of 0.001.

4.3.7 Analysis

In this subsection, we first discuss the effect of the Gaussian prior, and then give the

complexity analysis for NeMos.

Gaussian Prior. Here, under the same assumption as probabilistic matrix factorization, the

conditional probability of the observed user-item interaction follows a Gaussian distribution:

p(R|P,Q, γ2
R) =

N∏
u=1

M∏
i=1

[N (R(u, i)|f(pu)f(qi)
T, γ2

r )]I
R
u,i (4.30)

where pu and qi are the u-th row vector and the i-th row vector in P,Q respectively. f()

function represents the model, and here we assume that the rest of the parameters are

fixed. IRu,i is an indicator function, which is equal to 1 if (u, i) has observed interactions, and

otherwise 0. Given that P(u, :),Q(i, :) ∼ N (0, γ2I), the posterior probability of the Q and

P is:

p(P,Q|R,A, γ2, γ2
R) ∝ p(R|P,Q, γ2

R)p(P|γ2)p(Q|γ2) (4.31)

We plug Eq. (4.30), p(P|γ2), and p(Q|γ2) into Eq. (4.31), and maximize the log-posterior

becomes equal to minimizing the following formula:

L′ =
1

2

N∑
u=1

M∑
i=1

IRu,i(R(u, i) − f(pu)f(qi)
T) +

γ2
R

2γ2

N∑
u=1

||P(u, :)||22+
γ2
R

2γ2

M∑
i=1

||Q(i, :)||22 (4.32)

We can see that the last two terms in Eq. (4.32) indicate the L2-regularization of the

learnable prior representations P,Q.

Complexity Analysis. The major computational hurdle lies in the user feature aggregation

and the interest propagation. Suppose that the adjacency matrix of user-user social network
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contains m1 non-zero entries, and the adjacency matrix of the bipartite user-item graph

contains m2 and m3 non-zero entries for A+
b ,A

−
b respectively. Let the dimension of the

user/item hidden representations equal to d. Then the time complexity of the proposed

model is O(iter · (K1m1 + d(m2 +m3))), where iter indicates the number of iterations in all

forward pass. Since the adjacency matrix A, A+
b , and A−

b are all usually sparse in real-world

data, m1,m2,m3 are usually comparable or smaller than the magnitude of N,M , and are

much smaller when compared with the magnitude of N2 and M2.

4.3.8 Discussion

Here, we discuss the relation between the proposed generative negative sampling strategy

with the curriculum learning method on graphs, particularly in recent research for node and

graph classification. The idea of curriculum learning adopts the idea of training a machine

learning model in an easy-to-difficult fashion. For graph classification, CurGraph by Wang

et al. [158] proposes to calculate a difficulty score for the graphs in training data via the

graph and node embeddings of the Graph Neural Network model. GNN-CL by Li et al.

[157] proposes a node generator and edge generator empowered GNN model for imbalanced

node classification problem. Specifically, the node generator uses the node embeddings from

the minority class as inputs for generating new node embeddings as a oversampling strategy

for minority class. This method can be seen as a special case of our proposed generative

negative sampling method, when the embeddings of the positive items are not used as inputs

for the negative sample generation.

Lastly, we present the experimental results on real-world datasets to show the effectiveness

of the proposed model.

4.3.9 Experimental Setting

We use the most widely used two benchmark datasets in the experiments, and their

statistics are shown in Table. 4.6.

Table 4.6: The statistics of the two benchmark datasets.

Dataset Yelp Flickr
# of users 17,237 8,358
# of items 38,342 82,120

# of ratings 204,448 143,765
# of observed links 0.03% 0.05%

Link density 0.05% 0.27%
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Datasets and Pre-processing. Yelp.com is an online website that publishes crowd-

sourced reviews and ratings about businesses. Users can also connect to each other to have a

social relation through Yelp. The ratings are in the range of [0, 5], and the reviews are usually

text and images. The Yelp dataset2 mainly consists of information about users, businesses,

and reviews. For the pre-processing, we use the same process setting as the baselines [94],

[95]. The user-user social network is constructed via the user’s friend information. The

user/item feature vectors are calculated by averaging all the learned word embeddings of the

user/item via Word2vec model.

Flickr is an American image hosting and video hosting service, as well as an online commu-

nity. Users can follow each other and build social relations. The items (photos and videos)

can be upvoted by users as implicit feedbacks. The Flickr dataset is shared by [94]. For

the pre-processing, the user feature vectors are calculated by averaging the image feature

representations he/she liked generated via a VGG16 convolutional neural network.

Baseline Methods. We compare the NeMos model with three types of baseline methods:

(1) one representative traditional recommendation method without the usage of social rela-

tions (BPR [159]); (2) one representative traditional social recommendation methods which

models the first-order social relations (CNSR [91]); and (3) six state-of-the-art GNN-based

social recommendation methods (GraphRec [44], PinSage [92], NGCF [93], DiffNet [94],

DiffNet++ [95], DiffNetLG [96]).

Experimental Settings. For the metrics, we use two most commonly used metrics for rec-

ommendation, Hit Ratio (HR@K) and Normalized Discounted Cumulative Gain (NDCG@K),

where K ∈ {5, 10, 15}. In the experiment, the training, validation and testing data ratio is

equal to 8 : 1 : 1, and we use the exact same split for all baselines. In the evaluation, we

sample 1, 000 unrated items for each user, and combine them with the rated items for the

calculation of HR@K and NDCG@K. The results are averaged over five runs.

Hyperparameter Settings. For Yelp dataset, the number of uniformly sampled unob-

served items for each user is 8. For Flickr dataset, the number of uniformly sampled

unobserved items for each user is 15. For both datasets, we use 2 layers of user feature

aggregation, 200 as batch size, and 0.001 as learning rate, as we find them contributing to

the best evaluation performance.

4.3.10 Effectiveness Results

The performance comparison is shown in Table 4.7 and Table 4.8. ’Stat.’ means training

with static re-sampling strategy, and ’Gen.’ indicates training with generative negative

2https://www.yelp.com/dataset
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Table 4.7: Social recommendation comparison on Yelp dataset.

HR@K NDCG@K

Models K=5 K=10 K=15 K=5 K=10 K=15

BPR 0.1695 0.2632 0.3252 0.1231 0.1554 0.1758

CNSR 0.1877 0.2904 0.3458 0.1389 0.1746 0.1912

GraphRec 0.1915 0.2912 0.3623 0.1279 0.1812 0.1956

PinSage 0.2105 0.3049 0.3863 0.1539 0.1828 0.2130

NGCF 0.1992 0.3042 0.3863 0.1450 0.1828 0.2041

DiffNet 0.2276 0.3461 0.4217 0.1679 0.2118 0.2307

DiffNet++ 0.2503 0.3694 0.4493 0.1841 0.2263 0.2497

DiffNetLG 0.2599 0.3711 0.4473 0.1941 0.2333 0.2586

Ours (Stat.) 0.3857 0.3918 0.3982 0.4093 0.4105 0.4122

Ours (Gen.) 0.3956 0.4025 0.4146 0.4198 0.4212 0.4231

Table 4.8: Social recommendation comparison on Flickr dataset.

HR@K NDCG@K

Models K=5 K=10 K=15 K=5 K=10 K=15

BPR 0.0651 0.0795 0.1037 0.0603 0.0628 0.0732

CNSR 0.0920 0.1229 0.1445 0.0791 0.0978 0.1057

GraphRec 0.0931 0.1231 0.1482 0.0784 0.0930 0.0992

PinSage 0.0934 0.1257 0.1502 0.0844 0.0998 0.1046

NGCF 0.0891 0.1189 0.1399 0.0819 0.0945 0.0998

DiffNet 0.1178 0.1657 0.1855 0.1072 0.1271 0.1301

DiffNet++ 0.1412 0.1832 0.2203 0.1296 0.1420 0.1544

Ours (Stat.) 0.1452 0.1411 0.1412 0.1725 0.1674 0.1667

Ours (Gen.) 0.1547 0.1504 0.1469 0.1850 0.1792 0.1781

sampling strategy. The best performances are shown in bold font and the second best

performances are shown with underlines. On Yelp dataset, except for HR@15, our NeMos

model significantly outperforms all baseline methods. Specifically, the HR@5 is improved by

34.3% compared with the best baseline. The NDCG@K is also significantly improved. For

example, the NDCG@15 is increased by up to 38.8%. On Flickr dataset, similar observations

can be made. The HR@5 is increased by 8.7% and the NDCG@15 is increased by 13.3%

compared with the best baseline. Furthermore, the proposed model shows more significant

improvement when the K is small.

4.3.11 Ablation Study

The ablation study results are shown in Table 4.9 and Table 4.10. The ’Uni. prior’ repre-

sents the model trained with a uniformly distributed prior user/item representations. The
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Table 4.9: Results for ablation study on Yelp dataset.

HR@K NDCG@K

Models K=5 K=10 K=15 K=5 K=10 K=15

Uni. prior 0.2718 0.2747 0.2790 0.2935 0.2937 0.2948

No prior 0.1591 0.1617 0.1654 0.1698 0.1703 0.1714
GCN 0.3541 0.3532 0.3533 0.3777 0.3767 0.3766

No re-sample 0.3713 0.3764 0.3821 0.3950 0.3967 0.3983
Ours (Stat.) 0.3857 0.3918 0.3982 0.4093 0.4105 0.4122

Ours (Gen.) 0.3956 0.4025 0.4146 0.4198 0.4212 0.4231

’No prior’ represents training without the prior user/item representation. ’GCN’ denotes our

model variant in which the user feature aggregation is replaced with a Graph Convolution

Network. ’No re-sample’ denotes training without the negative re-sampling process at each

epoch. As we can see from the results, firstly the prior representation has a huge impact

on the model performance. Without such prior, the performance could drop up to 59.8%

for HR. Initializing the prior with proper distribution is also important, since Gaussian dis-

tribution outperforms the uniform distribution. As we discuss in the Gaussian prior, the

Gaussian distribution regularizes the learnable prior representations. Secondly, using GNN

model does not positively contribute to the final performance. As we discuss in the model,

the non-linearity and complex design in GNN models might have little or even negative influ-

ence. Instead, a simple two-layer linear user feature aggregation performs the best. Thirdly,

the re-sampling strategy is crucial and could improve the model’s ability of generalization.

Generally, the generative negative sampling outperforms the static negative sampling and

further outperforms no re-sampling.

Table 4.10: Results for ablation study on Flickr dataset.

HR@K NDCG@K

Models K=5 K=10 K=15 K=5 K=10 K=15

Uni. prior 0.1479 0.1442 0.1443 0.1758 0.1706 0.1700

No prior 0.0840 0.0812 0.0808 0.0991 0.0957 0.0951

GCN 0.0687 0.0890 0.1125 0.0693 0.0687 0.0721

No re-sample 0.1045 0.1022 0.1020 0.1213 0.1186 0.1182

Ours (Stat.) 0.1452 0.1411 0.1412 0.1725 0.1674 0.1667

Ours (Gen.) 0.1547 0.1504 0.1469 0.1850 0.1792 0.1781

As discussed in previously, we show the impact of aggregation layers for user features in

Figure 4.6. Both the proposed model and the model using GCN module are tested. As we

can see, for both model variants, the performance reaches the peak at 2 layers of aggregation,
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and quickly drops at larger number of layers. It also suggests that it might not be necessary

to use deep GNN models in many social recommendation tasks as the representation becomes

oversmoothing fast.

Figure 4.6: The impact of aggregation layers.
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CHAPTER 5: HIGH-ORDER ASSOCIATION WITH NUMERICAL
TECHNIQUES

In this chapter, we will elucidate our works for the problem of multi-way association for

both plain networks and attributed networks [15], which belongs to the category of high-

order multi-network association in Table 1.1. Compared with the pair-wise association, much

fewer methods exist for multi-way association due to the challenges in problem formulation,

algorithm design, and the scalability issue. We will show how to model the problem with a

convex optimization formulation, and how to solve it by efficient approaches.

5.1 BACKGROUND AND MOTIVATION FOR MULTI-WAY ASSOCIATION

Multiple networks are ubiquitous in many important applications. For example, how to

link identical or similar users from multiple social networks (i.e., collective network align-

ment) [39]? How to simultaneously recommend items, activities as well as locations to a user

(i.e., high-order recommendation) [34, 71]? In bioinformatics, how to discover relevant drugs

and genes for a specific disease [160]? In team management, how to optimally assign team

members with the right skills to the right teams for relevant tasks [132, 161]? The key to

answering these questions lies in multi-way association, which identifies strongly correlated

nodes from multiple networks.

For pair-wise association (e.g., network alignment [18, 30, 81, 162]), it links node-pairs

across two input networks. On the contrary, multi-way association aims to discover the

collective association w.r.t. to a set of nodes. Figure 5.1 presents an illustrative example.

Given three social networks, a multi-way association (e.g., the red dashed box on the left of

Figure 5.1) is a set of three users (i.e. nodes) from each of the three input social networks,

who are either identical or similar with each other. We can represent all the multi-way

associations in the form of a 3rd-order tensor X (e.g., the right-most part in Figure 5.1),

and the weights of the tensor entries measure the strength of the corresponding multi-way

associations. For a given user, each entry of the corresponding slice of tensor X with a high

weight indicates a pair of users from the other two social networks who are both strongly

associated with the given user. Likewise, given an activity network, a social network and a

location network, strong multi-way associations inferred from them could indicate that the

corresponding activities, users, and locations are associated with each other.

Compared with the pair-wise association, much fewer methods exist for multi-way asso-

ciation due to a number of challenges. First (C1. Problem Formulation), pair-wise cross-

network association is often formulated as an optimization problem [30, 81, 162]. For exam-
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ple, soft network alignment [30, 162, 163] can be formulated as a convex optimization problem

based on the alignment consistency principle as we have shown in Chapter 3. However, it is

not clear if such a consistency principle would generalize to multi-way association. Second

(C2. Algorithms), even if we can formulate multi-way association from the optimization

perspective, it is still highly challenging to solve it in terms of its optimality and sensitivity.

Third (C3. Scalability), the solution space of multi-way association is significantly larger

than pair-wise association. To see this, suppose there are K input networks, each with n

nodes. There could be as many as nK multi-way associations. Therefore, another major

hurdle is to scale-up the multi-way association algorithm to large networks.

In this chapter, we address these three challenges, and our main contributions are sum-

marized as follows.

• Formulation. We formulate the multi-way association problem as an optimization

problem and show that it can be solved optimally by a Sylvester tensor equation.

• New Algorithms. We propose two fast algorithms (SyTE-Fast-P and SyTE-Fast-

A) to solve the Sylvester tensor equation on plain networks and attributed networks

respectively, with a linear complexity in both time and space.

• Proofs and Analysis. We provide theoretic analysis of the proposed algorithms in

terms of optimality, sensitivity and complexity.

• Empirical Evaluations. We conduct extensive empirical evaluations on a diverse set

of real networks which demonstrate the efficacy of the proposed methods.

5.2 MULTI-WAY ASSOCIATION ON PLAIN NETWORKS

In this section, we focus on the multi-way association problem on plain networks. We

first formally give the problem definition of the multi-way association inference, and then

introduce a convex optimization formulation for solving it. Next, we elaborate a basic

algorithm, which uses the fixed point iteration method, and two Krylov subspace-based

algorithms. The algorithms are followed by analysis on the complexity.

5.2.1 Problem Definition

We first briefly introduce the notations used in the paper. We use bold uppercase letters

to represent matrices, bold lowercase letters to represent vectors, bold calligraphic letters to
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Figure 5.1: An illustrative example of multi-way association for collective social network
alignment. Left (from top to bottom): three input social networks, such as LinkedIn, Face-
book and Twitter. The red dashed rectangle indicates a prior anchor link (B in the middle).
Right: solution tensor X of the corresponding Sylvester tensor equation gives the inferred
multi-way association; the highlighted cubes in X denote four strong multi-way associations.
Best viewed in color.

represent tensors, lowercase or uppercase letters in regular font for scalars, and calligraphic

letters for multi-index (e.g. L). Specifically, each network G is represented by three matrices,

including the (weighted) adjacency matrix A, the edge attribute matrix E and the node

attribute matrix N. The i-th element of a vector x is denoted as xi, the element (i, j) of

a matrix A is denoted as A(i, j), and the element (i1, i2, ..., ik) of a tensor X is denoted

as X (i1, i2, ..., ik). We focus on categorical edge and node attributes in this paper. E

has the same dimension as its corresponding adjacency matrix A, and Ep(i, j) = 1 if the

edge (i, j) has edge attribute p. N is a diagonal matrix, and Nq(i, i) = 1 if node i has

node attribute q. We use similar notations for tensors as described in [164]. For example,

×k denotes the k-mode product of tensors, and X (k) denotes the mode-k unfolding. We

define vec(·) and reshape(·, n1, ..., nK) as vectorizing operation and tensorizing operator. In

general, we need to specify orders of vectorization and tensorization in tensor. By default,

we let vec(·) and reshape(·, n1, ..., nK) be vectorizing and tensorizing operations along the

1-st mode.1 For example, vec(X ) = vec(X (1)), i.e., column-wise vectorization of the mode-

1 unfolding of tensor X . reshape(x, n1, ..., nK) = X tensorizes vector x to a tensor of

dimension n1 × n2 × ... × nK by stacking the vectors of length n1 as the mode-1 fibers

of X . For brevity, we assume that the K input networks share comparable numbers of

1veck(·) will be used to denote vectorization along the k-th mode when necessary.
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nodes (i.e., O(n1) = ... = O(nK) = O(n)) and comparable numbers of edges (i.e., O(m1) =

... = O(mK) = O(m)). With these notations, we formally define the multi-way association

tensor (Definition 5.1), the multi-way anchor link tensor (Definition 5.2), and the multi-way

association inference problem (Problem 5.1) as follows.

Table 5.1: Table of Symbols

Symbols Definitions and Descriptions
G = {A,E,N} An attributed network

A, Ã Original/normalized adjacency matrix
E Edge attribute matrix
N Node attribute matrix
B Multi-Way anchor link tensor
X Multi-Way association tensor
x,b Vectorized tensor X and B
K Number of input networks
P,Q Number of edge/node attributes
ni,mi # of nodes/edges of Gi(i = 1, ..., K)
s Rank of multi-way anchor link tensor
r Rank used in eigen-decomposition

vec(·) Vectorization operator along 1-st mode
reshape(·, n1, ..., nK) Tensorization operator along 1-st mode⊗K

i=1 Kronecker products from index 1 to K

Definition 5.1. Multi-Way association Tensor

Given a set of K networks Gk (k = 1, ..., K). A multi-way association is the association of

a set of nodes (i1, i2, ..., iK), where i1 ∈ G1, i2 ∈ G2, ..., iK ∈ GK . The multi-way association

tensor X is of size nK × nK−1 × ... × n1. Each entry X (ik, ik−1, ..., i1) indicates to what

extent the corresponding nodes (ik, ik−1, ..., i1) are associated with each other.

Definition 5.2. Multi-Way anchor link tensor

Given a set of K networks Gk (k = 1, ..., K). The multi-way association prior tensor B is

of size nK × nK−1 × ...× n1. If the corresponding nodes in (iK , iK−1, ..., i1) are known to be

associated with each other a priori, we call (iK , iK−1, ..., i1) an anchor link.

For the example in Figure 5.1, only one multi-way anchor link (marked by the red rectan-

gle) is known a priori, and thus there is only one non-zero entry in B.2 Each positive entry

in X represents a multi-way association between a set of three users, one from each of the

2For clarity, we assume that a sparse anchor link tensor B is given for the rest of this paper. Nonetheless,
such an anchor link tensor is optional, and our proposed formulation, algorithms and analysis can be naturally
adapted in the absence of B. For example, if no multi-way association is available a prior, we can set B as
a uniform tensor, i.e. each entry is equal to 1.
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three input social networks. By the multi-way association inference algorithms that will be

introduced in the subsequent sections, we might find that there are four positive entries in

tensor X (e.g., X (1, 1, 1), X (2, 2, 2), X (3, 3, 3) and X (4, 4, 4)). Each of these four entries

indicates a set of three users who are either identical or similar with each other.

Problem 5.1. Multi-Way Association Inference

Given: A set of K networks {Gk (k = 1, ..., K)}, and a multi-way anchor link tensor B
with dimension nK × nK−1 × ...× n1;

Output: The multi-way association tensor X , whose entries measure the strength of the

association of the corresponding node sets.

5.2.2 Formulation and Basic Algorithm

SyTE Formulation. We first formulate Problem 5.1 from the optimization perspective.

The key idea is to generalize the consistency principle which was originally designed for pair-

wise network alignment [30]. Given two sets of nodes (iK , ..., i1) and (jK , ..., j1). Intuitively,

the consistency principle requires that the multi-way association of (iK , ..., i1) be consistent

with that of (jK , ..., j1) (i.e., X (iK , ..., i1) ≈ X (jK , ..., j1)), if the two node sets are consistent

in terms of the following three aspects. This includes (1) topology consistency, meaning that

the two node sets are strongly connected with each other (i.e., large Ak(ik, jk) (k = 1, .., K));

(2) node attribute consistency, meaning that nodes in each of the two sets share the same at-

tributes respectively (i.e., N1(i1, i1) = · · · = NK(iK , iK) and N1(j1, j1) = · · · = NK(jK , jK));

and (3) edge attribute consistency, meaning that the two node sets are connected with each

other by the same edge attribute (i.e., E1(i1, j1) = · · · = EK(iK , jK)). Formally, this leads

to the following objective function.

J(X ) =
∑

i1,...,iK
j1,...,jK

[β(
X (iK , ..., i1)√
d(i1, ..., iK)

− X (jK , ..., j1)√
d(j1, ..., jK)

)2 t(A1...AK)︸ ︷︷ ︸
Topology consistency

× f(ik)× f(jk)︸ ︷︷ ︸
Node attribute consistency

× g(ik, jk)︸ ︷︷ ︸
Edge attribute consistency

+ (1− 2β)(X (iK , ..., i1)−B(iK , ..., i1))
2︸ ︷︷ ︸

Anchor link regularizer

] (5.1)

where β ∈ (0, 0.5) is a weighting parameter, and functions f(·) and g(·) denote the node

and edge attribute consistency terms. The topology consistency term for all networks

is t(A1...AK) = A1(i1, j1) · · ·AK(iK , jK). Function d(·) denotes node-set normalization.

They are defined as f(ik) = 1(N1(i1, i1) = · · · = NK(iK , iK)), g(ik, jk) = 1(E1(i1, j1) =
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· · · = EK(iK , jK)), where 1() is the indicator function. The denominator d(i1, ..., iK) =∑
j1,...,jK

A1(i1, j1) · · ·AK(iK , jK), if f(ik) = f(jk) = g(ik, jk) = 1; otherwise d(i1, ..., iK) = 1.

By using the notation defined in Table 5.1, the consistency terms f(·) and g(·) can be re-

written as f(ik) =
∑P

p=1N
p
1(i1, i1) · · ·N

p
K(iK , iK), and the edge attribute consistency term

g(ik, jk) =
∑Q

q=1 E
q
1(i1, j1) · · ·E

q
K(iK , jK).

By vectorizing the multi-way association tensor, the objective function in Eq. (5.1)

can be re-written in a more concise form. First, let the tensor indices iK , iK−1, ...i1 and

jK , jK−1, ..., j1 become vector indices u and v respectively, where u =
∑K−1

k=1

∏K
j=k+1 nj(ik −

1)+iK , and v =
∑K−1

k=1

∏K
j=k+1 nj(jk−1)+jK . Then, note that d(·) in Eq. (5.1) actually calcu-

lates the degree matrix of a Kronecker graph formed by A1, ...,AK after filtered by the node

and edge attributes. Specifically, let: W =
∑

i,j,k N
i
1(E

k
1⊙A1)N

j
1⊗· · ·⊗Ni

K(Ek
K⊙AK)Nj

K =

N(E ⊙ (A1 ⊗ . . . ⊗ AK))N where N =
∑P

i=1N
i
1 ⊗ · · · ⊗ Ni

K , E =
∑Q

k=1E
k
1 ⊗ · · · ⊗ Ek

K ,

and ⊙ is the element-wise product. Let D be the diagonal degree matrix of W such that

D(u, u) =
∑

v W(u, v), and let x = vec(X ), b = vec(B). Plugging all these into Eq. (5.1),

we have the following objective function to minimize w.r.t. multi-way association vector x.

arg min
x

J(x) = αxT(I− W̃)x + (1− α)||x− b||22 (5.2)

where W̃ = D−1/2WD−1/2. The first term in Eq. (5.2) is equivalent to the first term of

summation in Eq. (5.1) for consistency principles, and the second term is to encode the prior

knowledge of anchor links. The weighting parameter is reset as 0 < α < 1 which balances

the consistency objective and prior knowledge of anchor links. It can be shown that α = 2β.

Basic Algorithm. We show that Eq. (5.2) is a convex problem in Lemma 5.2.2. Thus, its

fixed point solution gives the optimal solution of Eq. (5.2). By taking the derivative of J(x)

in Eq. (5.2) w.r.t. x and setting it to zero, we have

(I− αW̃)x− (1− α)b = 0⇒ x = αW̃x + (1− α)b (5.3)

By grouping the Kronecker products of K normalized adjacency matrices in W̃ into two parts

Af = A1⊗· · ·⊗Ak, As = Ak+1⊗· · ·⊗AK , k ∈ (1, K), the fixed point iteration can be seen

as the procedure on two input networks with adjacency matrices Af and As respectively. We

transform the Kronecker products in W̃ to matrix products (Af ⊗As)v = AsVA
T
f , where

v = vec(V) = ND−1/2x. Thus the fixed point method (referred to as Basic Algorithm) can

be applied to obtain the solution x. In a nutshell, we can show that the Basic Algorithm

(summarized in Algorithm 5.1) converges to the closed-form solution of Eq. (5.3) with a

polynomial time complexity w.r.t. the number of nodes and edges of the input networks.

92



Note that Basic Algorithm is not the major focus of this paper because of its high complexity.

The Basic Algorithm is summarized in Algorithm 5.1.

Algorithm 5.1 Basic Algorithm

Input: K Adjacency matrices of input networks A1, ..., AK , anchor link vector b = vec(B),
node or edge attribute matrix N, E if available, maximum iteration number tmax;

Output: The solution vector x of Eq. (5.3).
1: Initialize Af , As by k ∈ [1, K − 1], x, and t = 1;

2: Compute Eq
f =

⊗k
i=1E

q
i , E

q
s =

⊗K
i=k+1E

q
i ,∀q ∈ [1, Q];

3: while t < tmax do
4: Compute V = reshape(ND−1/2x, nK−k, nk);
5: x← αD−1/2Nvec(

∑Q
q=1(E

q
s ⊙As)V(Eq

f ⊙Af )T) + (1− α)b;
6: Set t← t + 1;
7: end while
8: Return x

Corollary 5.1. Convergence and Optimality of the Basic Algorithm. The Algorithm

5.1 converges to the closed form solution (1−α)(I−αW̃)−1b, which is the global minimum

of Eq. (5.3).

Proof. See Theorem 1 in [30]. Omitted for brevity. QED.

We prove the convexity of the objective function.

Lemma 5.1. The objective function in Eq. (5.2) is convex.

Proof. Since the gradient of Eq. (5.2) is ▽J(x) = 2α(I − W̃)x + 2(1 − α)(x− b) = 2(I −
αW̃)x + 2(1 − α)b. The Hessian matrix of objective function in Eq. (5.2) is H(J(x)) =

2(I−αW̃). Since this matrix is strictly diagonal dominant when α ∈ (0, 1) and also positive

definite. Eq. (5.2) is hence convex. QED.

Sylvester Tensor Equation. In order to speed-up and scale-up the computation, we

reformulate Eq. (5.3) as follows. Note that Eq. (5.3) is a linear system w.r.t. vector variable

x. Considering the definition of W, the linear system in Eq. (5.3) can be re-written as the

following Sylvester tensor equation by the property of tensor mode product and Kronecker

product (i.e., X ×1 ÃK ×2 · · · ×K Ã1 ⇔ (Ã1 ⊗ · · · ⊗ ÃK)vec(X ) [164]).

X − α
∑
o,p,q

X ×1 Ã
(o,p,q)
K ×2 · · · ×K Ã

(o,p,q)
1 − (1− α)B = 0 (5.4)

93



where Ã
(o,p,q)
i = (D

−1/2
i Np

i )(E
o
i ⊙ Ai)(D

−1/2
i Nq

i ). When neither node nor edge attributes

are available (i.e., plain networks), Eq. (5.4) degenerates into the following Sylvester tensor

equation.

X − αX ×1 ÃK ×2 · · · ×K Ã1 − (1− α)B = 0 (5.5)

where Ãi = (D
−1/2
i )Ai(D

−1/2
i ).

Next, we will present two fast algorithms to solve Eq. (5.5) and Eq. (5.4), respectively.

5.2.3 SyTE-Fast-P for Plain Networks

In this section, we present the proposed fast algorithm, SyTE-Fast-P for solving Eq. (5.5)

(i.e., plain networks).

Intuitions and Key Ideas. In order to solve Eq. (5.5) efficiently, the key idea is to

decompose its corresponding linear system into a series of subsystems, and then to solve

each of them by a tensorized Krylov subspace method. To simplify the description, we

absorb the scalar α and 1− α of Eq. (5.3) into the matrix W̃ and vector b respectively to

have the following concise equation.

(I− Ã1 ⊗ · · · ⊗ ÃK)x = b (5.6)

where we let b := −(1− α)b, and Ãi := α1/KÃi,∀i ∈ [1, K]. The coefficient matrix of this

linear system is strictly diagonally dominant and positive definite. Therefore, the system is

solvable with a unique solution [115]. However, the coefficient matrix in this linear system

contains the Kronecker product. A direct solver such as Krylov subspace method would cost

at least O(N2) where N = nK >> n is the dimension of the linear system in Eq. (5.6), due

to the construction of the orthonormal basis of the Krylov subspace [25]. To address this

issue, the key idea is to use a tensorized Krylov subspace, and let the solution tensor reside

in the tensorized Krylov subspace, so as to avoid explicit calculation of the orthonormal

basis. In this way, the solution can be represented in a Tucker decomposition form without

the explicit calculation, which will reduce the time complexity from O(N2) to O(c1m+c2l
K)

and reduce the space complexity from O(N +M) to O(c3n+Km+ l2K). Here, c1, c2, c3, l are

small constants, and K can also be regarded as a constant because it is often much smaller

than both n and m (see details below).

SyTE-Fast-P Algorithm. Firstly, notice that tensor B contains s non-zero entries (i.e., s

known anchor links). We represent B as the summation of the outer product of the indicator

vectors B =
∑s

i=1 b
(i)
K ◦ · · · ◦b

(i)
1 where b

(i)
j is an indicator vector of the i−th non-zero entry

in B corresponding to mode j. Tensor B can be further re-written as its vector form b =
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∑s
i=1 b

(i)
1 ⊗ · · · ⊗b

(i)
K . For the example in Figure 5.1, the anchor link tensor B only contains

one non-zero entry at (4, 4, 4). It can be shown that B = [0, 0, 0, 1]T ◦ [0, 0, 0, 1]T ◦ [0, 0, 0, 1]T,

and b = [0, 0, 0, 1]T ⊗ [0, 0, 0, 1]T ⊗ [0, 0, 0, 1]T. Then, Eq. (5.6) is decomposed into the

following subsystems.

(I− Ã1 ⊗ · · · ⊗ ÃK)xi =
K⊗
j=1

b
(i)
j (i = 1, ..., s) (5.7)

Secondly, instead of directly constructing the Krylov subspace KL(A×,b) where A× de-

notes I − Ã1 ⊗ · · · ⊗ ÃK , and L is the dimension of the Krylov subspace, we construct

the Krylov subspaces for Ã1, ..., ÃK separately as Kl(Ã1,b1), ...,Kl(ÃK ,bK). Then, we use

the Kronecker product of these K Krylov subspaces as the new subspace. Using the same

notation as [165], we define the tensorized Krylov subspace as follows.

K⊗
L (A×,b) := span(Kl1(Ã1,b1)⊗ · · · ⊗ KlK (ÃK ,bK)) (5.8)

where L = (l1, ..., lK) is a multi-index. For each Krylov subspace Kli(Ãi,bi), we use the stan-

dard Arnoldi method3 to obtain the orthonormal basis represented in U with orthonormal

columns. Specifically, the Arnoldi method gives the Hessenberg matrix H̃i = UT
li+1ÃiUli of

size (li + 1) × li. Note that li is often much smaller than ni (i.e., li ≪ ni). We can prove

that (1)
⊗K

i=1Uli forms the orthonormal basis of K⊗
L (A×,b), and (2) the original Krylov

subspace KL(A×,b) is contained in the tensorized Krylov subspace K⊗
L (A×,b) [165].

Thirdly, we can further prove that by using a tensorized Krylov subspace based generalized

minimal residual method, each subsystem (I − Ã1 ⊗ · · · ⊗ ÃK)xi =
⊗K

j=1 b
(i)
j in Eq. (5.7)

can be solved by the following linear system, whose scale is much smaller than the original

linear system:

(
K⊗
i=1

Ili+1,li −
K⊗
i=1

H̃i)y =
K⊗
i=1

UT

li+1r0 (5.9)

Note that the coefficient matrix has a Hessenberg-like structure. Thus, it can be solved

by the back-substitute method. Putting everything together, the proposed SyTE-Fast-P

algorithm is presented in Algorithm 5.2. We use the same dimension for all the Krylov

subspaces for notation simplicity. Note that x = x1 + · · ·+xK , where each xi = ⊗K
j=1U

(i)
lj
yi,

and X = reshape(x, nK , ..., n1).

SyTE-Fast-P* Algorithm. Here, we present another fast algorithm for solving the

Sylvester tensor equation of plain network (Eq. (5.5)). First, since each Ãi in Eq. (5.6)

3Lanczos algorithm could also be adopted here alternatively.
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Algorithm 5.2 SyTE-Fast-P Algorithm

Input: K normalized adjacency matrices of input networks Ã1, ..., ÃK , tensor B or b =
vec(B) with s known multi-way anchor links, Krylov subspace size l > 0;

Output: The solution tensor X of Eq. (5.6).

1: Decompose b for Eq. (5.7) to obtain {b(i)
j }j∈[1,K],i∈[1,s];

2: for i = 1, ..., s do
3: Initialize xi as a zero vector;
4: for j = 1, ..., K do
5: Construct Kl(Ij − Ãj,bj);

6: Obtain H̃
(i)
j , U

(i)
lj

, and U
(i)
lj+1;

7: end for
8: Solve Eq. (5.9) to obtain yi;
9: end for
10: Return implicit solution {yi, {U(i)

lj
}Kj=1}si=1.

is diagonalizable (i.e., real symmetric matrix), we take the eigen-decomposition of each

Ãi = QiΛiQ
T
i , in which Qi is a matrix with each column as an eigenvector. In this case, it

can be easily proved that the Eq. (5.6) can be written as:

(I−Λ1 ⊗ · · · ⊗ΛK)y = c (5.10)

where c = QTb and x = Qy, and Q = Q1 ⊗ · · · ⊗ QK . Note that Eq. (5.10) is very

easy to solve because the coefficient matrix is diagonal. If we use full eigen-decomposition

for each Ãi, there would be no approximation error. However, the time complexity of

calculating x from intermediate variable y would be O(N2). Since the adjacency matrices

are usually sparse and low-rank, we could use rank-r (r << n) approximation on the eigen-

decomposition of each Ãi. Then the linear system in Eq. (5.10) becomes much smaller

(rK×rK instead of nK×nK). For notation simplicity, we use the same r for each Ãi. The time

complexity of calculating y is O(rK). Adding the time complexity of eigen-decomposition

and calculating c, the overall time complexity is reduced to O(Krn2 + rK + rKnK). The

proposed SyTE-Fast-P* algorithm is summarized in Algorithm 5.3.

For simplicity, we assume the ranks of eigen-decomposition are the same for each Ãi in

line 2. The intermediate solution y is solved in line 4, and the implicit representation of

solution is returned and stored in line 5, which will significantly reduce the space complexity.

x is calculated as x =
⊗K

j=1 Qjy.

With the proposal of Algorithm 5.3 on plain networks, the SyTE-Fast-A, which uses

SyTE-Fast-P in line 4 of Algorithm 5.4, has another variant that instead uses SyTE-Fast-

P*. We name it SyTE-Fast-A*.
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Algorithm 5.3 SyTE-Fast-P* Algorithm

Input: K Normalized adjacency matrices of input networks Ã1, ..., ÃK , multi-way anchor
link tensor B, approximation rank r;

Output: The solution tensor X of Eq. (5.6).
1: for i = 1, ..., K do;
2: Conduct top-r eigen-decomposition on Ãi for Qi, Λi;
3: end for
4: Calculate c =

⊗K
j=1Q

T
jb, and solve Eq. (5.10) to obtain y;

5: Return implicit solution {y,Qj}Kj=1.

Proofs and Analysis. We give the following theorem for the complexity of the proposed

SyTE-Fast-P algorithm. In the analysis of complexity, for notation simplicity, we assume

all input networks share the same number of nodes n and number of edges m.

Theorem 5.1. Complexity of SyTE-Fast-P. The time complexity of Algorithm 5.2 is

O(sKlm + slK). The space complexity of Algorithm 5.2 is O(Km + l2K + Kln).

Proof. The Arnoldi process takes O(lm) for one iteration, and the number of total iteration

is sK. Thus the complexity for Arnoldi process is O(sKlm). Solving s linear systems of

Eq. (5.9) takes O(slK), which is linear w.r.t. the size of the linear system, thanks to the

back-substitute method. The overall time complexity for SyTE-Fast-P is O(sKlm + slK).

For space complexity, storing K adjacency matrices takes O(Km). Storing the Hessenberg

matrix for each Eq. (5.9) in the outer iteration takes O(l2K). Storing the orthonomal basis

U
(i)
lj

for the outer iteration takes O(Kln). Overall, the space complexity is O(Km+l2K+Kln)

for SyTE-Fast-P. QED.

Remark. Since K, l, s are usually much smaller than m,n (K, l, s are treated as constants4

in the big-O notation), Algorithm 5.2 has a much smaller time complexity than the Basic

Algorithm (Algorithm 5.1) whose time complexity is O(Qm⌊K/2⌋n⌊K/2⌋ · tmax +nK). Further-

more, both the space and time complexities of Algorithm 5.2 is linear w.r.t. the size (i.e.,

the number of nodes and edges) of input networks.

We then give the following theorem for the complexity of the proposed SyTE-Fast-P*

algorithm. In the analysis of complexity, for notation simplicity, we assume all input networks

share the same number of nodes n and number of edges m.

Theorem 5.2. Complexity of SyTE-Fast-P*. The time complexity of Algorithm 5.3 is

O(Krn2 + rK + rKnK). The space complexity of Algorithm 5.3 is O(Km + Knr).

4We assume that the number of input networks K is a small non-variant constant.
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Proof. SyTE-Fast-P*: K top-r eigen-decomposition takes O(Krn2). Solving Eq. (5.10)

takes linear time complexity w.r.t. the linear system size, O(rK). Calculating c takes

O(rKnK). Overall, the time complexity for SyTE-Fast-P* is O(Krn2 + rK + rknK).

For space complexity, storing K adjacency matrices takes O(Km), and storing K Q

matrices of eigenvectors takes O(Knr). Overall, the space complexity for SyTE-Fast-P* is

O(Km + Knr). QED.

Since K, r are usually much smaller than m,n (K, r are treated as constants in the big-O

notation), both Algorithm 5.2 and Algorithm 5.3 have a much smaller time complexity than

the Basic Algorithm (Algorithm 5.1) whose time complexity is O(Qm⌊K/2⌋n⌊K/2⌋ ·tmax+nK).

5.3 MULTI-WAY ASSOCIATION ON ATTRIBUTED NETWORKS

In this section, following the problem definition and convex formulation of Section 5.2,

we present a fast algorithm to solve the Sylvester equation on attributed networks (i.e.

Eq. (5.4)).

5.3.1 Intuitions and Key Ideas

Here, we present a fast solver when the node attributes are available. Notice that SyTE-

Fast-P can not be directly applied because the W matrix in Eq. (5.2) contains summations

of Kronecker products. To address this issue, we have the following key observations.

Firstly, WLOG, assume that nodes in each network are reordered such that the nodes

with the same node attributes have adjacent indices. For the example in Figure 5.1, assume

that nodes {1, 2} and {3, 4} in Gi,∀i ∈ [1, 3] have the same attributes respectively. We

observe that the solution tensor of Eq. (5.4) has a block-diagonal structure, which means

that the non-zero entries in the solution tensor X only exist in the diagonal block tensors.

Intuitively, this is because the diagonal blocks in the solution tensor correspond to nodes

across networks with the same node attributes, meanwhile the off-diagonal blocks correspond

to nodes across networks with different node attributes. This indicates that Eq. (5.4) could

be decomposed into a series of subsystems by node attributes.

Secondly, based on the above observation, we only need to solve the diagonal tensors by

block coordinate descent (BCD) method. The off-diagonal entries in X can be set equal to

the corresponding entries with the same indices in B. The linear system for the example in
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Figure 5.1 can be decomposed into:

X 1,1,1 − [X 1,1,1 ×1 Ã
11
1 ...×3 Ã

11
3 + X 2,2,2 ×1 Ã

12
1 ...×3 Ã

12
3 ]︸ ︷︷ ︸

C1,1,1
2,2,2

= B1,1,1

X 2,2,2 − [X 2,2,2 ×1 Ã
22
1 ...×3 Ã

22
3 + X 1,1,1 ×1 Ã

21
1 ...×3 Ã

21
3 ]︸ ︷︷ ︸

C2,2,2
1,1,1

= B2,2,2

with X ijk = Bijk,∀i ̸= j or j ̸= k or i ̸= k. X 1,1,1 and X 2,2,2 denote the (1, 1, 1)−th and

(2, 2, 2)−th tensor block respectively (similar notation for B). Ã11 = D−1/2N1AN1D−1/2

denotes the normalized adjacency matrix, filtered by the first node attribute. The parameter

α, together with (1−α) on B, is absorbed into tensors for notation simplicity. C2,2,2
1,1,1 represents

the contribution of block variable X 1,1,1 to X 2,2,2, and the similar notation applies for C1,1,1
2,2,2.

Thirdly, BCD requires that each X i...i be computed explicitly (e.g., by the Basic Algo-

rithm), because each block variable is needed to calculate other block variables. Although

BCD is faster than applying the Basic Algorithm on the whole variable tensor, the com-

putational complexity is still polynomial. To address this issue, the idea is to omit the

contribution of diagonal blocks from other subsystems (e.g. C2,2,2
1,1,1 and C1,1,1

2,2,2) for each sub-

system. In this way, we only need one single iteration by Algorithm 5.2 to approximately

solve each diagonal block independently.

5.3.2 SyTE-Fast-A Algorithm

Generally speaking, Eq. (5.4) with node attributes can be decomposed as: X i...i −∑
j=1 X

j...j ×1 Ãij
1 ... ×K Ãij

K = Bi...i, where the off-diagonal variant blocks are equal to

the corresponding blocks in B. It can be solved by approximated block coordinate descent

as follows. By the exact BCD, each iteration should solve:

X i...i −X i...i ×1 Ã
ii
1 ...×K Ãii

K = B̂i...i
(5.12)

where B̂i...i
= Bi...i +

∑
j ̸=i X

j...j ×1 Ã
ij
1 ...×K Ãij

K , and it can be viewed as the updated Bi...i

tensor. If we approximate B̂i...i
= Bi...i, each subsystem can be solved in one single iteration.

The SyTE-Fast-A algorithm is summarized in Algorithm 5.4. Similar to Algorithm 5.2, line

6 returns the implicit solution of diagonal block variables.

5.3.3 Proofs and Analysis

Next, we provide the complexity analysis of the proposed algorithm. Let mi, ni and si

(i ∈ [1, P ]) be the number of edges/nodes in Ãii
k (k ∈ [1, K]), and the number of non-zero
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entries in Bi...i, respectively. For notation simplicity, we assume mi,∀i ∈ [1, P ] is the same

for each input network. Let l be the subspace size when using Algorithm 5.2 in solving Eq.

(5.12).

Theorem 5.3. Complexity of SyTE-Fast-A. The time complexity of Algorithm 5.4 is

O(Km + n +
∑P

i=1(siKlmi + sil
K). The space complexity of Algorithm 5.4 is O(PKmi +

Klni + l2K).

Proof. Constructing Ãii
1 , ..., Ã

ii
K ,∀1 ≤ j ≤ P takes O(Km). Calculating Bi...i takes O(n)

because the tensor B is rank-n. Solving P equations of Eq. (5.12) by using SyTE-Fast-P

takes O(
∑P

i=1(siKlmi + sil
K)). Overall, the time complexity of SyTE-Fast-A is O(Km +

n +
∑P

i=1(siKlmi + sil
K)).

For space complexity, storing Ãii
1 , ..., Ã

ii
K takes O(PKmi). Since in the iteration only one

Eq. (5.12) is solved each time, storing Hessenberg matrices and orthonomal basis takes

O(Klni + l2K). The overall space complexity for SyTE-Fast-A is O(PKmi + Klni + l2K).

QED.

Algorithm 5.4 SyTE-Fast-A Algorithm

Input: Normalized adjacency matrices Ã1, ..., ÃK ; node attribute matrices N1, ...,NK ;
Krylov subspace size l > 0; tensor B or b = vec(B);

Output: The solution tensor X of Equation (5.4).
1: Construct block matrices Ãij

1 ,..., Ãij
K , block tensor Bi...i, ∀1 ≤ i, j ≤ P by the node

attribute matrices N1,..., NK ;
2: Initialize X i...i, ∀i ∈ [1, K];
3: for p = 1, ..., P do
4: Solve Eq. (5.12) by Algorithm 5.2 to obtain {yi, {Ui

lj
}Kj=1}si=1;

5: end for
6: Return implicit solution {{yp

i , {U
i,p
lj
}Kj=1}si=1}Pp=1.

Remark 5.1. From Theorem 5.3, note that the number of node attributes has great impact

on time and space complexity, since
∑P

i=1mi = m. A larger number of node attribute will

lead to smaller complexity for computing each block tensor variable. Also note that the time

complexity is much less than the basic method, which is O(N).

We then prove that the subsystems decomposed in Eq. (5.7) can be solved by a much

smaller linear system (Eq. (5.9)) as follows.

Theorem 5.4. Subsystem (I− Ã1⊗ · · · ⊗ ÃK)xi =
⊗K

j=1 b
(i)
j can be solved by first solving

a small-scaled linear system (
⊗K

i=1 Ili+1,li −
⊗K

i=1 H̃i)y =
⊗K

i=1U
T
li+1r0.
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Proof. For subsystem (I − Ã1 ⊗ · · · ⊗ ÃK)xi =
⊗K

j=1 b
(i)
j , the initial residual vector r0 =

b− (I− Ã1 ⊗ · · · ⊗ ÃK)x0, given an initial solution vector x0 (which is typically initialized

as zero vector). Let the updated solution vector be x1 = x0 + z0, in which we let z0 ∈ K⊗
L .

So z0 =
⊗K

i=1 Uliy. The updated residual to be minimized is as follows.

r1 = r0 − (I−
K⊗
i=1

Ai)(
K⊗
i=1

Uli)y = r0 − (
K⊗
i=1

Uli)y + (
K⊗
i=1

Uli+1)(
K⊗
i=1

H̃i)y (5.13)

Recall that the second equation above is due to the Arnoldi process, which gives H̃i =

UT
li+1AiUli . Minimizing the norm of the updated residual gives us:

min
y
||r1||22 = min

y
||

K⊗
i=1

Uli+1(
K⊗
i=1

UT

li+1r0 −
K⊗
i=1

Ili+1,liy +
K⊗
i=1

H̃iy)||22

= min
y
||

K⊗
i=1

UT

li+1r0 −
K⊗
i=1

Ili+1,liy +
K⊗
i=1

H̃iy||22 (5.14)

where the second step is because
⊗K

i=1 Uli+1 is a matrix with all columns being orthogonal

with each other. In the above equation Ili+1,li = [δi,j]1≤i≤li+1,1≤j≤li , in which δi,j is the

Kronecker δ-function, which is an identity like matrix with 1 in ”diagonal” entries. Solving

the minimization problem in Eq. (5.14) is actually equal to solving a smaller scaled linear

system, compared to the original large linear system:

(
K⊗
i=1

Ili+1,li −
K⊗
i=1

H̃i)y =
K⊗
i=1

UT

li+1r0 (5.15)

Note that x = x1 + · · · + xK , where each xi = ⊗K
j=1U

(i)
lj
yi, and the solution tensor X =

reshape(x, nK , ..., n1), which does not need to be explicitly calculated in our algorithm.

QED.

5.3.4 Sensitivity Analysis

In this section, we analyze the sensitivity of the linear system formulated in Eq. (5.3).

To be specific, we aim to understand how the solution of Eq. (5.3) will be impacted if

some edges of the input networks are changed, due to either random noise or adversarial

attacks (e.g., edge removal [166]). Given K networks G1, ..., GK and the budget for edge

perturbation in each network p1, ..., pK . Let A× = I− Ã1 ⊗ · · · ⊗ ÃK , Â = A1 ⊗ · · · ⊗AK ,
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we have:

(A× + ∆A×)(x + ∆x) = b (5.16)

where ∆A× and ∆x are the perturbations to A× and solution x respectively. We present

the following theorem:

Theorem 5.5. The relative change after edge perturbation satisfies:

||∆x||
||x||

≤ η

1− ϵ
(

K∏
i=1

mi −
K∏
i=1

(mi − 2pi))
1/2 (5.17)

where ||A×||F= ϵ < 1, η = ||D−1/2||2F . mi is the number of edges in network Gi.

Proof. Based on Eq. (5.16), we have ∆x ≈ −A×
−1∆A×x by dropping the high-order small

term ∆A×∆x. The relative change after edge removal is as follows:

||∆x||
||x||

=
||A×

−1∆A×x||
||x||

≤ ||A×
−1|| ||∆A×|| ||x||
||x||

= κ(A×)
||∆A×||
||A×||

(5.18)

where κ(A×) = ||A×|| ||A×
−1|| is the condition number of matrix A×. Note that A× is

invertible since it is nonsingular. Since ||A×||∞< 1, we have A×
−1 =

∑∞
j=0(A×)j. Therefore,

||A×
−1||F≤

∞∑
j=0

ϵj =
1

1− ϵ
(5.19)

||∆A×||= ||A× −A′
×||≤ ||D−1/2(Â − Â′)D−1/2||, where A′

× and Â′ are perturbed A× and

Â, respectively. Thus we have:

||∆A×||≤ ||D−1/2||2F ||Â− Â′||= η(
K∏
i=1

mi −
K∏
i=1

(mi − 2pi))
1/2 (5.20)

where
∏K

i=1 mi −
∏K

i=1(mi − 2pi) is the number of non-zero entries in ∆A×. Plugging Eq.

(5.19) (5.20) into Eq. (5.18) leads to Eq. (5.17). QED.

From Theorem 5.5, we can see that the relative change of the solution x is bounded by the

norm of the perturbed matrix ∆A×. One implication for adversarial attacking (e.g., remov-

ing certain edges to maximally alter the solution x) of this bound is as follows. Intuitively,

a good attacking strategy might be to remove the edges in each Ãi with high weights, since

this will lead to the largest relative norm change (i.e., a larger upper bound in Theorem 5.5).
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5.4 EXPERIMENTAL EVALUATIONS

In this section we present the experimental results to answer the following questions:

• Q1 Effectiveness. How effective and accurate are the proposed SyTE methods for

inferring multi-way association?

• Q2 Efficiency. How fast and scalable are the proposed SyTE methods?

5.4.1 Experimental Setup

Datasets. We use five datasets for evaluations whose statistics is summarized in Table 5.2.

We use five datasets for evaluations as follows:

Table 5.2: Datasets Summary

Dataset Name Category # of Nodes # of Edges
DBLP Co-authorship 1,013 3,244
Arxiv Academic network 2,908 3,551
Douban User relationship 3,384 6,556
Aminer Academic network 1,274,360 4,756,194

Dataset Name # of Users # of Artists # of Tags
LastFm 15,154 2,982 4,144

DBLP is a co-authorship network. Nodes represents authors while links represents co-

authorship relation. The original dataset contains 42,252 nodes and 210,320 edges [167].

LastFm is a dataset for recommendation. It contains user-user friendship relation, user-

artist listening relation, artist-tag categorization relation and artist profile. The original

dataset contains 1,982 users, 17,632 artists and 11,946 tags [168].

Douban includes the users’ friend relation in the online social network and offline activities,

which share overlapping users. It contains 50k users and 5M edges in the original data. [129].

Arxiv 5 is a co-authorship network from two physical and one mathematical domains.

Nodes represents authors and links represents co-authorship relation.

Aminer is an academic social network. Undirected edges represent co-authorship relation-

ship. The whole dataset contains 1,274,360 nodes and 4,756,194 edges [129].

Comparison methods. In total, we evaluate 12 methods, including the proposed SyTE

algorithms. For one-to-one multi-network alignment, we compare with CLF [169], FINAL

[30] and IsoRank [163]. For multi-network node retrieval, we compare with REGAL [114],

CrossMNA [18], FINAL [30], and IsoRank [163]. For high-order recommendation, we com-

pare with nNTF (non-negative tensor factorization), NTF (Neural Tensor Factorization)

5https://comunelab.fbk.eu/data.php
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[170], and wiZAN-Dual (Dual-Regularized One-Class Collaborative Filtering) [171]. For

scalability study, we compare the proposed fast methods SyTE-Fast-P and SyTE-Fast-A

with two classic Sylvester equation solvers, including FP (Fixed Point method) and CG

(Conjugate Gradient method) [115].

Evaluation Tasks. We design the following tasks for evaluations.

Task 1. Multi-network alignment. We first conduct multi-network alignment on three net-

works, which is different from traditional pair-wise network alignment. We use the following

datasets. Three networks from Arxiv (two physical domains and one mathematical domain),

three networks from DBLP (the original DBLP network and two permutated DBLP net-

works with 5% randomly added edge noises), and three networks from Douban (two Douban

online networks with following and messaging relation respectively and one offline network).

Task 2. Multi-network node retrieval. In order to compare with some multi-network align-

ment baseline methods which do not support one-to-one alignment, we design a multi-

network node retrieval experiment which is often referred to as ‘soft alignment’ [18, 114].

Given three networks and a node from one network, the goal of multi-network node retrieval

is to return a ranking tuple list such that the similar nodes from other networks would appear

in high ranks of the tuple list.

Task 3. High-order recommendation. To further evaluate the effectiveness of multi-way asso-

ciation, we conduct high-order recommendation. Traditional recommendation only recom-

mend items to users, but we conduct high-order recommendation task to recommend tuples

with (artist, tag) to users simultaneously on LastFm. The original dataset contains user-

user interaction network, the (user, artist, tag) tuples reflecting the user’s listening behavior,

the (artist, tag) tuples reflecting the categories of artists, and (user, artist) tuple reflecting

the users’ artist preference. The artist-artist network is constructed by the the artists’ co-

sine similarities calculated from (user, artist) tuples. The tag-tag network is constructed

by calculating the cosine similarities of tags pairs in the (artist, tag) tuples. Note that the

attributes are not used in this task.

Hardware and software. All of the datasets are public. All experiments are performed

on a machine with Intel(R) Core(TM) i7-9800X CPU with 3.80 GHz and 64.0 GB RAM.

The algorithms are programmed with MATLAB R2019a with parallel computing.

Adjustment of Baseline methods. For pairwise network alignment methods in multi-

network alignment task (FINAL, IsoRank, CLF ), the alignment is first conducted on each

pair of networks independently, and then the node alignments of each pair of networks are

merged together to compare the multi-network alignment performance. The same strategy

is used for pairwise methods in multi-network node retrieval task. For high-order recom-

mendation task, wiZAN-Dual is conducted on user-user relation network with user-artist

104



network, and user-user network with user-tag network, respectively. The recommendation

result for each user is then merged together for high-order recommendation.

Other implementation details. For multi-network alignment, we implement a high-order

greedy match algorithm. The multi-way association tensor can be transform to a high-order

0-1 tensor, in which each fiber contains at most one non-zero entry. For multi-network node

retrieval task, given one node iK from network GK , the ranking list of the nodes from the

rest of networks is calculated by sorting the slice of X (iK , :, ... :).

(a) Hits@k vs. k (high-order metric).
Known anchor link ratio: 0.3.

(b) Hits@k vs. k with pair-wise metric. Ra-
tio of known anchor links: 0.3.

Figure 5.2: Cross-network node retrieval results on DBLP dataset. Hits@k vs. k. Higher is
better. Best viewed in color.

(a) Hits@30 vs. ratio of known anchor links.
High-order metric.

(b) Hits@30 vs. ratio of known anchor links.
Pair-wise metric.

Figure 5.3: Cross-network node retrieval results on DBLP dataset. Hits@30 vs. ratio of
known anchor links. Higher is better. Best viewed in color.6
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5.4.2 Effectiveness Results

First, we present the experimental results of the multi-network alignment task. We focus

on one-to-one alignment in this experiment. In order to obtain the one-to-one mapping,

we implement a high-order greedy match algorithm to convert the multi-way association

solution tensor X to a matching tensor M, in which each fiber (e.g. M(iK , iK−1, ..., i2, :))

contains at most one non-zero entry to indicate a one-to-one alignment.

We use two metrics to evaluate the effectiveness. First, for a given one-to-one alignment tu-

ple of nodes (e.g. (u1, ..., uK), u1 ∈ G1, ..., uK ∈ Gk), we consider it as a successful alignment

iff all nodes in the tuple are correct (referred to as the high-order metric). For the second

metric, for a given one-to-one alignment tuple of nodes, we consider it successful iff any pair

of nodes (e.g. u1 and u2) in the tuple are aligned correctly (referred to as pair-wise metric).

For both metrics, the alignment accuracy is calculated as
# of correctly aligned node tuples

# of node tuples in test data
,

where the test data does not contain any known multi-way anchor links. The results on Arxiv

without attribute are shown in Figure 5.4. We observe that by the high-order metric, both

basic algorithm and SyTE-Fast-P algorithm outperform baselines by up to 16.2%. By the

pair-wise metric, our proposed methods cannot outperform, but are comparable with base-

lines. This is consistent with the goal of the proposed SyTE methods which are designed to

primarily capture multi-way (i.e., high-order) associations. On the other hand, the baseline

methods, being pair-wise approaches, are better suited for pair-wise association inference.

(a) high-order metric. (b) pair-wise metric.

Figure 5.4: Multi-network alignment results on Arxiv dataset (without node attributes).
Best viewed in color.

6Note that the curves of REGAL in both (a) and (b) are flat because REGAL is an unsupervised method.
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The results of multi-network alignment of attributed networks on DBLP dataset are pre-

sented in Figure 5.5. In most cases, both basic algorithm and SyTE-Fast-A outperform

baseline methods. Although there are some performance loss of SyTE-Fast-A compared to

the basic algorithm, the alignment accuracy of SyTE-Fast-A is still higher than baseline

pair-wise network alignment methods.

(a) high-order metric (b) pair-wise metric

Figure 5.5: Multi-network alignment results on DBLP (with attributes). Best viewed in
color.

Second, we present the experimental results of the high-order recommendation task. We

focus on one-class recommendation in this task [171]. On one hand, for each user in the test

data, if the returned top-k tuple list of (artist, tag) contains the ground-truth, we consider

it as a successful hit. Similar to multi-network alignment, this is referred to as high-order

metric. On the other hand, if either artist or tag is correctly recommended to a given user,

we consider it as a successful recommendation. This is referred to as pair-wise metric. We

use hits@30 for both metrics. The results are shown in Figure 5.6. We can observe that

the proposed algorithm SyTE-Fast-P outperforms baselines in terms of both high-order and

pair-wise metrics.

Next, we present the experimental results of the multi-network node retrieval task. For

each query node of a given network, the task retrieves nodes from the other two networks

for a top-k list. We study the hits@k vs. k for a fixed ratio of known anchor multi-way

associations, and then fix k = 30 to study the hits@30 vs. the ratio of known multi-way

anchor links. DBLP dataset is used for this task, and the results are shown in Figure 5.2 and

Figure 5.3. In Figure 5.2 (a) and Figure 5.3 (a), we can see that SyTE-Fast-P outperforms

baselines by a large margin (e.g., by 50%+ when k = 100). In Figure 5.2 (b) and Figure
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(a) high-order metric. (b) pair-wise metric.

Figure 5.6: High-order recommendation results on LastFm dataset. Best viewed in color.

5.3 (b), the proposed SyTE-Fast-P algorithm does not outperform some pair-wise network

alignment methods (e.g., CrossMNA, FINAL). This is also expected since the pair-wise

metric is used for the retrieval task, whereas the proposed SyTE algorithms are primarily

designed for the high-order metric (i.e., multi-way association).

5.4.3 Scalability Results

In the heart of our proposed algorithm is a Sylvester equation solver. Here, so we compare

the proposed methods with two classic Sylvester equation/linear system solvers, i.e., Fixed

Point method (FP) and Conjugate Gradient method (CG)7. We extract subgraphs from

the largest dataset Aminer, and the results are presented in Figure 5.7. We terminate

the program if it can not finish in 3, 000 seconds. Note that the vertical axes are in log

scale. From Figure 5.7 (a), for plain networks, our proposed method SyTE-Fast-P exhibits

a linear scalability w.r.t. the number of nodes of the input networks, whereas neither of

the two baseline methods (FP and CG) can finish within 3, 000 seconds with more than

1, 200 nodes. SyTE-Fast-P* is a variant of SyTE-Fast-P, and it is detailed in Algorithm

5.3. SyTE-Fast-A* is a variant of SyTE-Fast-A, which uses SyTE-Fast-P* in line 4 of

Algorithm 5.4. From Figure 5.7 (b), the proposed SyTE-Fast-A scales linearly whereas

all other methods scales super-linearly. Note that the blue curve (marked as SyTE-BCD)

denotes a variant of SyTE-Fast-A by using the exact block coordinate descent method. As

7Baseline methods FINAL and IsoRank also uses FP method. The supervised learning methods (e.g.
CrossMNA) are difficult to be compared with our numerical method since they require off-line training.

108



we can see, it can not scale up to large networks.

(a) without node attributes. (b) with node attributes.

Figure 5.7: Scalability results and running time comparison on Aminer dataset. Notice the
log scale in the vertical axis.

5.4.4 Parameter Sensitivity

Here, we study the parameter sensitivity of the proposed algorithm SyTE-Fast-P. We use

the multi-network alignment task to study the alignment accuracy w.r.t. two key param-

eters (i.e., α and Krylov subspace dimension l for SyTE-Fast-P). We use three subgraphs

extracted from Douban dataset. The results are shown in Figure 5.8. From Figure 5.8,

we can see that the performance of Algorithm 5.2 is stable in a relatively large range of

parameter space.

The parameter sensitivity study of SyTE-Fast-P* is presented in Figure 5.9. The perfor-

mance of SyTE-Fast-P* increases with the rank of eigen-decomposition, and α has small

impact on the performance since we use uniform multi-way anchor link tensor here. As we

can see, compared with Figure 5.8, SyTE-Fast-P is relatively more stable w.r.t. the param-

eters α and subspace size, while the rank of eigen-decomposition has higher impact on the

performance of SyTE-Fast-P*. The scalability results on the number of networks are shown

in Figure 5.10. The number of nodes used for each network is 100, and when the running

time is larger than 3,000s, the program is terminated. The vertical axis is in log scale. As we

can see, the proposed methods show exponential scalability w.r.t. the number of networks

(relatively much smaller than the number of nodes) as we analyze in Section 5.2.3 and 5.3.
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(a) pair-wise metric. (b) high-order metric.

Figure 5.8: Parameter sensitivity analysis of the proposed Algorithm 5.2.

(a) By pair-wise metric. (b) By high-order metric.

Figure 5.9: Parameter sensitivity of SyTE-Fast-P* on Arxiv.

(a) On plain networks. (b) On attributed networks.

Figure 5.10: Scalability results of running time vs. the number of networks on DBLP dataset.
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CHAPTER 6: HIGH-ORDER ASSOCIATION WITH NEURAL
TECHNIQUES

In this chapter , we present our works for high-order multi-network association using neu-

ral techniques. Specifically, we first introduce a multi-resolution multi-network embedding

framework, which aims at learning the embeddings of network elements of different resolu-

tions and from different networks into the same embedding space in an unsupervised manner

[26]. Next, we describe our work in hypergraph representation learning, with the assistance

from pre-training strategy [29]. Lastly, we will present a case study of applying the hy-

pergraph representation learning framework on a real-world application for online shopping

platforms.

6.1 MULTI-RESOLUTION MULTI-NETWORK EMBEDDING

Network embedding is the cornerstone of many real-world applications, and has been

receiving much research attention in recent years. It offers a powerful way to encode the

underlying network characteristics (e.g., topology, attribute) into a compact low-dimensional

space. As such, it has benefited a variety of downstream data mining tasks (e.g., node/net-

work classification, link prediction, and clustering), often with a significantly boosted em-

pirical performance. Despite much progress has been made, most of the previous work has

not adequately, if at all, addressed two fundamental limitations, which we elaborate below.

First, Most of the previous work, with only a few exceptions, focuses on a single network.

For multiple input networks, these methods will learn embeddings of different networks

separately, and thus might result in disparate embedding space. To see this, let us take

node embedding as an example. A dominant branch of node embedding (e.g., Deepwalk,

LINE and many of their follow-ups [20, 172, 173, 174]) relies on identifying appropriate node

proximity/context based on truncated/short random walks. The identified node context will

be then preserved in the embedding space, often through a language model (e.g., Continuous

Bag of Words (CBOW) and SkipGram). However, any node pair across different networks

are disconnected without auxiliary information (e.g., anchor links). In other words, nodes

in one network will never be the context of nodes from another network and vice versa.

Therefore, the node embeddings of different networks will be in different or disconnected

space. This would render the inapplicability of some downstream mining tasks (e.g., cross-

layer dependence inference in multi-layered network systems [175]) or add extra complexity

for other mining tasks. For example, with the node embeddings from such methods as inputs,

we would have to train an additional classifier for network alignment task, constrained by
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the availability of extra anchor links.

Second, most, if not all, of the previous work is designed to learn embeddings at single res-

olution. For example, the vast majority of network embedding focuses on node embedding

(e.g., node2vec [172], LINE [174], Deepwalk [173] and many more); at the coarser resolu-

tion, subgraph2vec [176] and deep graph kernel [177] learn the embeddings of subgraphs;

at the coarsest resolution, graph2vec [178] focuses on learning vector representations for

the entire networks. To the best of our knowledge, almost none of the previous methods

support multi-resolution network embedding, although objects (e.g., nodes, subgraphs, and

networks) across different resolutions are intrinsically correlated with each other. For ex-

ample, networks with similar subgraph distributions tend to be similar to each other [177];

[20] indicates that, nodes inside similar subgraphs are likely to belong to the same category.

Ignoring such cross-resolution correlation during the embedding learning process is likely to

lead to sub-optimal results. On the contrary, if we could have objects at different resolutions

in the same embedding space, it might greatly benefit certain downstream applications. For

example, for network science of teams [132], by embedding both team members (nodes of

the underlying person network) and teams (subgraphs) in the same space, it would immedi-

ately enable effective team member recommendation by calculating the similarity between a

candidate team member and a given target team, say based on the cosine similarity between

the member embedding and team embedding.

In order to address the above limitations, we propose a unified method (MrMine) to

learn the multi-resolution multi-network representation simultaneously in a mutually bene-

ficial way. The key idea is to construct the cross-resolution cross-network context for each

object of each network at three complementary resolutions, including node, subgraph and

network. The constructed corpus of such network context can be then fed into a variety

of language models, such as CBOW, SkipGram, etc., to generate the embeddings for dif-

ferent network objects (nodes, subgraphs, networks) from different networks in the same

space. The proposed method is highly efficient and scalable, with a time complexity of

O(Hnlog(n)) (where n is the number of nodes of input networks and H is a constant much

smaller than n) for the basic version. We further propose an accelerated version with a linear

time complexity w.r.t. the number of nodes and edges of input networks.

Figure 6.1 presents an illustrative example of the simplified procedure of multi-resolution

and multi-network embedding. Figure 6.1 (a) shows three input networks selected from

bioinformatics dataset. (b1) represents the Cross-Resolution Cross-Network (CRCN) rela-

tion network in which we connect vertices of all three types of objects (i.e. nodes, subgraphs,

and networks, represented as circles, squares, and hexagons respectively) in the same net-

work, according to the node-subgraph, subgraph-network membership (vertical black solid
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links) and subgraph similarities (horizontal red dashed links). For example, enzyme #33

contains a subgraph (we use Weisfeiler-Lehman (WL) subtree [179] in this example) num-

bered in #31, which contains node #16 and node #17. So the blue hexagon is connected

to the gray square #31, and the gray square #31 is connected to the blue circle #16 and

circle #17. Subgraph #31 and subgraph #34 are structurally similar with only one node

difference (Figure (b2)), so gray squares #31 and #34 are connected. Context of objects

from different resolutions and networks are then extracted from the CRCN relation network

to learn the embeddings in (c). As we can observe from (c), the green network is close to

the blue network (two enzymes of the same category) while both are far apart from the or-

ange network (a mutag instance). Node #10 and #11 are close because they are connected

by the same square node in (b1), which means they are rooted at the same WL subtree.

Subgraph #31 and subgraph #34 are close in the embedding space although they exist in

different networks. Also from different networks, node #16 and node #21 are close because

they are structurally similar (connected to similar subgraph #31 and subgraph #34 respec-

tively). Our method embeds multi-resolution multi-network objects into the same space,

and it naturally enables downstream multi-network mining tasks.

The main contributions of this section are:

• Problems. To the best of our knowledge, we are the first to study the problem of

learning multi-resolution multi-network embeddings.

• Algorithms. We propose effective and efficient algorithms for learning the embeddings

of multi-resolution and multi-network objects simultaneously.

• Empirical Evaluations. We perform extensive experimental evaluations on a diverse

set of real networks, which demonstrate that our methods (1) enable and enhance a

variety of graph mining tasks, such as collective network alignment, and (2) scale up

to million-node graphs.

6.1.1 Problem Definition

In this section we formally define the problem of multi-resolution multi-network embed-

ding. The symbols and notations used in this paper are summarized in Table 6.1. Let

G = {G1, G2, ..., Gk} represent a set of k input networks, and S = {S1, S2, ...Sl} represents

the subgraph set which contains all the subgraphs extracted from each graph in G of a par-

ticular type. For example, S could be a set of all Breath First Search (BFS) subtrees or

Weisfeiler-Lehman (WL) subtrees with height less than 3 exacted from all networks in G. In
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Figure 6.1: an illustrative example of multi-resolution multi-network embedding. (a) shows
three small molecular graphs from bioinformatics dataset. The two lower graphs belong
to the same category of enzyme. (b1) shows the Cross-Resolution Cross-Network (CRCN)
relation network constructed by our method. Some subgraphs/nodes are omitted for brevity.
(b2) shows two similar subgraphs (WL subtrees here) extracted from enzyme #3 and enzyme
#54, numbered in #31 and #34. (c) shows the learned 2-d representation for all network
objects. Some embeddings are omitted to avoid overlap.

this paper, we use WL subtrees for all the algorithms. With these notations, the problem of

multi-resolution multi-network embedding can be defined as follows.

Problem 6.1. Multi-Resolution multi-network embedding

Given: (a) the inputs for constructing Cross-Resolution Cross-Network (CRCN) relation

network: (a1) a set of networks G, (a2) the dimension of embedding vectors p; (a3) the

maximum height of WL subtrees H; and (b) the parameter set for corpus generation and

SkipGram model (e.g. SkipGram window size w, random walk length l, etc.).

Output: the embedding matrices Fg, Fs, and Fn for (1) all input networks in G, (2) all

extracted subgraphs in S, and (3) all nodes in G, respectively, with all embeddings in the

same space.

We adopt the following terminologies and notations for simplicity of algorithm description.

First, We use vertex and vertices to indicate the nodes in the CRCN relation network, and

nodes to only indicate nodes in the original network set. Second, we use function pn, ps, pg

for the mappings from original network object to the vertices in the CRCN relation network,

and qn, qs, qg for the mapping from vertices in the relation network back to original network

objects. For example, ps(L
n
G) = v maps the subgraph with label Ln

G (meaning WL subtree

rooted at node n ∈ G; every unique WL subtree can be represented by a distinct label) to

vertex v in the CRCN relation network, and qs(v) = l maps the vertex v from the CRCN

relation network back to a subgraph label l. Similarly, pn, qn are used for node level mapping
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Table 6.1: Major Notations and Definition

Symbols Definition
G = {G1, G2, ..., Gk} a set of k graphs

R, ER cross-resolution cross-network relation network and edge set
ERs a set of edges within subgraph vertices
ERg a set of edges between subgraph vertices and network vertices
ERn a set of edges between subgraph vertices and node vertices

L = {Ln1
G1
, ...Lnk

Gk
} a set of multi-set labels for all WL subtrees in the graph set G

Fg,Fs,Fn embedding matrices for networks, subgraphs, and nodes
H the maximum height of WL subtrees

Ln/Ln
G the WL subtree label of node n/specifically n ∈ G

(Ln
G)i the WL label of node n ∈ G at i-th WL iteration

QSi
, QSj

the sorted degree sequence of subtree Si, Sj

p the dimension of embedding vectors
Φ(n) the embedding of vertex n

pn, ps, pg mapping functions from original objects to CRCN network
qn, qs, qg mapping functions from CRCN network to original objects

and pg, qg are used for network level mapping.

To illustrate the intuition of Problem 6.1, let us make an analogy between multi-resolution

multi-network embedding and text embedding. The objects of multiple networks, subgraphs,

and nodes in our problem setting can be seen as documents, sentences, and words in text

embedding respectively. In this case, the problem studied by [180] embeds sentences/para-

graphs with words in a document, which resembles our multi-resolution problem setting.

6.1.2 Proposed Methods: MrMine

In this section, we introduce our proposed method. We start with the preliminaries fol-

lowed by challenges and key ideas. We then present the detailed demonstration of our basic

algorithm and the accelerated algorithm.

Preliminaries.

Weisfeiler-Lehman (WL) subtree. WL subtree [179] is a subgraph with tree structure rooted

at a designated node in a network. The height of the WL subtree is the maximum distance

between the root node and any other nodes. Unlike the BFS subtree, the WL subtree treats

the repetition of nodes in the node search of tree construction as distinct nodes. For example,

in the upper right WL subtree in Figure 6.2, node #0 appears in both level 0 and level 2,

because node #0 is the neighbor of node #1, #3 and #4 in level 1, and in level 2 it is

regarded as a distinct node.

WL label transformation. Originated from the Weisfeiler-Lehman graph isomorphism test,
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the WL label transformation iteration [179] is an algorithm used for relabeling node labels.

The time complexity is O(hm), where h is the iteration number/height of WL subtrees, and

m is the number of edges. The multi-set labels generated by the i-th WL iteration can be

regarded as the identity of unique WL subtrees with height of i [176]. In each iteration of

WL label transformation, a new set of labels is produced for all nodes in a network. Since

each unique label corresponds to a particular WL subtree, we use the labels (e.g. Ln
G) as

IDs for subtrees in this paper. Therefore, it can be used for efficiently generating subgraphs

on each node, and building the vocabulary of subgraphs.

Challenges and Key Ideas. In order to learn the multi-resolution multi-network em-

bedding on the same space, there are several challenges as follows. First, how to build

cross-resolution cross-network context, so that objects at different resolutions from different

networks could be in each other’s context, which would in turn allow to find their embed-

dings in the same space? Our first key idea is to introduce Cross-Resolution Cross-Network

(CRCN) relation network with vertices representing multi-resolution multi-network objects,

and edges representing cross-resolution cross-network relations between objects. For exam-

ple, in Figure 6.1 (b1), the CRCN relation network aims to capture the structural relationship

among nodes, subgraphs, and three molecular networks. Second, how to construct the links

of CRCN relation network? Our second key idea is to use WL subtrees for the subgraph

resolution. It bears three advantages as follows. (1) the WL label transformation algorithm

can be used to efficiently generate WL subtrees as subgraphs [179]; (2) the WL subtrees can

act as bridges to build links between network/subgraph/node vertices (i.e. cross-resolution

links); (3) the ’borderless’ WL subtrees in conjunction with the similarity defined over sub-

graphs help to build cross-network links. Third, how to reduce the computation cost to

build CRCN relation network (e.g. the number of subgraphs could be large, and it could

be time-consuming to build subgraph-subgraph similarity links, etc.)? Our third idea is to

explore a hierarchical structure of WL subtrees for the subgraph resolution in the CRCN

relation network construction, for the sake of avoiding explicit cross-network links (e.g. red

dashed links in Figure 6.1 (b1)), but meanwhile still preserving the cross-network subgraph

similarities.

Basic MrMine Method. First, we adopt H iterations of WL node label transformation

to generate unique WL subtrees of up to height H [176, 179]. Specifically, in order to

construct the cross-network links between subgraphs, we propose to use a function f(Si, Sj)

to calculate the similarity between subgraph Si and Sj. Similar to the selection of subtrees,

the selection of function f is also not limited. The most intuitive method of calculating

similarities between two graphs is using graph kernels. In this case, f(Si, Sj) = K(Si, Sj),

in which K can be any graph kernels such as random walk graph kernel [117], WL subtree
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Figure 6.2: an illustrative example of WL subtree. The right trees are 2-level WL trees
rooted at node #0 and #6, respectively. Best viewed in color.

kernel [179], etc. Although in common case, calculating graph kernel is costly (O(n3) in

which n is the number of nodes [117]) without approximation, subgraphs are smaller-scaled

(compared to networks) and can be calculated relatively efficient. We provide two more

efficient f functions below.

We observe that, for WL subtrees, the structural characteristic is essentially preserved by

the node degrees of each level. For example, in Figure 6.2, the structural characteristic of

2-level subtree can be simply represented by the degree sequence of node 0 concatenated

with the sorted degrees of its neighboring node 1, 3, and 4, which gives level 1: 3, level 2:

2,2,3. Since node 3 is structurally equal to node #0 (belonging to isomorphic WL subtree),

they both produce the same degree sequence. The degree sequence of WL subtree rooted at

node #1 (i.e. level 1: 2, level 2: 2,3) is distinct from that of the WL subtree rooted at node

#0 and #3. Therefore the subtree structures are also quite different. We adopt Dynamic

Time Wrapping (DTW) [20] to measure the distance between two degree sequences at each

level, and connect subgraphs with structural scores lower than a threshold. Formally, for

sorted degree sequence QSi
and QSj

of subtrees Si and Sj with length lSi
and lSj

:

f(QSi
, QSj

) =
∑
h

DTW (Qh
Si
, Qh

Sj
) (6.1)

where Qh
Si
, Qh

Sj
are the sorted degree sequences of Si and Sj at level h, respectively. How-

ever, DTW might fail to distinguish between high-level degree sequences of different length.

For example, the sorted degree sequence for 2-level subtree of node 0 in G1 (which is 2, 2, 3)
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has zero DTW value compared with the same level degree sequence of node 6 in G2 (which

is 2, 3). To address this issue, we propose to use a method similar to Spearman’s footrule

distance, which is commonly used in ranking list comparison.

f(QSi
, QSj

) =
∑
h

∑
t

|Q̃h
Si

(t)− Q̃h
Sj

(t)| (6.2)

where Q̃h
Si

is the sorted degree sequence on level h after filling zeros to the front of the

original list, Qh
Si

, to make Q̃h
Si

and Q̃h
Sj

have the same length (i.e. max(lSi
, lSj

)). t =

1, ...,max(lSi
, lSj

).

Algorithm 6.1 CRCN Relation Network Builder

Input: Given input network set G = {G1, G2, ...Gk}, maximum subtree height H.

Output: The CRCN relation network R.

1: for G ∈ G do

2: Conduct H WL relabeling iterations to generate multi-set labels L.

3: end for

4: Set edge set of R: ER = Φ.

5: for each label Ln
G ∈ L do

6: if (ps(L
n
G), pn(n)) /∈ ER then

7: Add edge (ps(L
n
G), pn(n)) to ER.

8: end if

9: if (pg(G), ps(L
n
G)) /∈ ER then

10: Add edge (pg(G), ps(L
n
G)) to ER.

11: end if

12: end for

13: Return the CRCN relation network R

The proposed CRCN relation network building algorithms are summarized in Algorithm

6.1 and Algorithm 6.2. Algorithm 6.1 builds the CRCN relation network without cross-

network edges. Algorithm 6.2 generates the cross-network edges between subgraph vertices.

In line 2 of Algorithm 6.1, we conduct H WL relabeling iterations to generate multi-set

node labels for the IDs of WL subtrees (O(Hm)). From line 5 to line 12 we add edges between

node vertices and subgraph vertices, and edges between network vertices and subgraph

vertices (O(Hkn)). Note that no edges between node vertices are added although edges

exist between nodes in the original network.

After the CRCN relation network R is constructed, we conduct truncated random walk

[173] on each vertex of R to build the corpus of multi-resolution multi-network objects,
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Algorithm 6.2 Cross-Network Subgraph Context Builder

Input: Given a multi-resolution relation network R (with subtree vertex list V and edge
set ER), threshold σ, window size w.

Output: The multi-resolution relation network with added cross-network links of subgraph
vertices.

1: Sort V of subtree vertices by the summation of degree sequence.
2: for each v ∈ V do
3: for each subtree s in the window of size w of v do
4: if f(Qh

s , Q
h
v) < σ then

5: Add edge (ps(v), ps(s)) to ER
6: end if
7: end for
8: end for
9: Return R

which is similar to build corpus for nodes in a single network. The corpus can be further

fit into a language model such as SkipGram with negative sampling or hierarchical softmax

techniques. Here we use SkipGram with negative sampling. The overall model is summarized

in Algorithm 6.3. Line 1 and 2 use Algorithm 6.1 and Algorithm 6.2 to construct the multi-

Algorithm 6.3 MrMine

Input: Given a set of networks G = {G1, G2, ..., Gk}, the height of WL subtrees H, the em-
bedding dimension p, the window size w1, w2 for adding cross-network edges of subgraph
vertices and SkipGram model respectively, and the threshold σ.

Output: The network embedding matrix Fg for G, the subgraph embedding matrix Fs, and
the node embedding matrix Fn.

1: Construct multi-resolution relation network R by Algorithm 6.1.
2: Update R by Algorithm 6.2.
3: Construct corpus W by applying truncated random walk on each vertex in R.
4: for vertex ui in each random walks r ∈ W do
5: J(Φ) = −logPr(uj|Φ(ui)), uj ∈ r[i− w2, i + w2]
6: Φ = Φ− α ∂J

∂Φ

7: end for
8: Return embedding matrices Fn, Fs, Fg.

resolution multi-network relation network for each network object. Line 3 builds corpus that

preserves the structural information of the relation network. Line 4 to line 7 are SkipGram

model that learns the embeddings of nodes, subgraphs, and networks simultaneously.

Complexity Analysis on MrMine. In Algorithm 6.2, instead of comparing every pair

of subgraphs for adding cross-network links for subgraph vertices (with time complexity

O(H2n2)), line 1 generates a sorted list of subtrees with the summation of their corresponding
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degree sequence for line 3 to only compares the structural similarity of the target vertex

with other vertices within the window of size w in the list. Since sorting the list V only cost

O(nlogn), if the window size w is bounded by O(nlogn), this method can lower the time

complexity of Algorithm 6.2 from O(H2n2) to O(Hnlog(n)). Line 4 can use either Eq. (6.1)

or (6.2).

In Algorithm 6.3, since the constructed CRCN relation network has at most (Hk+k)n+k

vertices (linear w.r.t. n), and all the steps in MrMine have linear complexity except using

Algorithm 6.1 in line 2, the overall time complexity of MrMine is O(Hnlog(n)) (assuming

that n and m have the same order of magnitude).

Accelerated MrMine+ Method. The base MrMine model introduces both cross-resolution

and cross-network links in the CRCN relation network to capture the network objects’ rela-

tion both across different layers of resolutions and different networks. To further reduce the

time complexity of MrMine, we propose the improved model MrMine+. The most intu-

itive way is to simply remove the cross-network edges between subgraph vertices (Algorithm

6.2), which immediately reduces the time complexity from O(Hnlogn) to O(Hm + Hkn).

However, this method would not only reduce the ability of preserving cross-network sim-

ilarities of the CRCN relation network, but also might lead to disconnected CRCN rela-

tion network. Instead, we explore the hierarchical structure of WL subtrees, and propose

a hierarchical CRCN (H-CRCN) relation network. The idea is to preserve the structural

characteristics across networks from different subgraph granularities (e.g. Figure 6.3). The

advantages are two-fold: (1) it largely reduces the time complexity of CRCN relation network

construction; and (2) still preserves the cross-network context information without explicitly

generating cross-network links. The details are as follows. First, we construct a reversed

hierarchical subgraph tree. The root of the tree is 0-level WL tree (i.e. node), and the

vertices in level i represents the WL-subtrees of height i. Two vertices are connected if the

WL subtree corresponding to a vertex from the higher level can be generated from a vertex’s

WL subtree of lower level. For example, in Figure 6.2, subtree 2 (level 2) can be generated

by subtree 1 (level 1) by applying one more iteration of WL relabeling iteration, so subgraph

vertex 1 and 2 are connected in Figure 6.3 (gray square 1 and 2). Next, network vertices

or node vertices are connected to the last level of subgraph tree, based on the membership

relation between the networks/nodes and the last level of WL subtrees. For example, in

Figure 6.3 (b), node 0, 3, 5, 8 are connected to subtree vertex 2 because all these nodes can

generate WL subtree 2 at level 2. The complete model is summarized in Algorithm 6.4. We

use ERs to indicate edge set within the reversed relation tree of WL subtree vertices (e.g.

edges within the dashed rectangle in Figure 6.3), ERg to indicate edges between network ver-

tices and the highest level of WL subtree vertices (e.g. edges between hexagons and squares
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Figure 6.3: an example of H-CRCN relation network structure constructed from Figure
6.2. The reversed gray trees in the dashed rectangle are the hierarchical relation network
of WL subtrees. (a) captures the relation of two networks (hexagons) with this hierarchical
subgraph tree; (b) captures the relation of nodes (circles) with this hierarchical subgraph
tree. Best viewed in color.

in Figure 6.3 (a)), and ERn to indicate edges between node vertices and the highest level of

WL subtree vertices (e.g. edges between circles and squares in Figure 6.3 (b)).

With such a way of constructing H-CRCN relation network, similarities of network objects

are captured in different subgraph granularities. For example, in Figure 6.3, node 0 and 5

are connected by the yellow short path while node 4 and 7 are connected by the red long

path, which indicates that node 0 and 5 are closer (both connected to a subgraph of finer

granularity).

In Algorithm 6.4, the ERs is constructed from line 5 to line 9. ERg and ERn are constructed

from line 10 to line 13. Note that ERg and ERn are generated independently by the edges

of (subgraph vertex, network vertex) and the edges of (subgraph vertex, network vertex)

respectively. From line 14 to 16, we apply truncated random walks for building the corpus

Ps, Pg and Pn with only ERs , ERs ∪ ERn and ERs ∪ ERn , respectively. The SkipGram model

is applied on the union of Pg, Pn and Ps from line 17 to line 21.

Complexity Analysis on MrMine+. H iterations of WL relabeling processes cost

O(Hm). From line 5 to line 9, with the absence of cross-network edges between sub-

graph vertices, only subgraph vertices need to be traversed once, with the complexity of

O(Hkn). Since there are O(n) WL subtrees in level H of Rs, the complexity of generating

ERn and ERg are O(kn) and O(n), respectively. There are at most (Hk + 1)n vertices in the

CRCN relation network. Overall, the time complexity of MrMine+ is O(Hm+ cn), where

c = [H(k+1)+1]lr (l is the length of truncated random walks, and r is the number of walks

sampled per vertex) is a constant much smaller than m,n.
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Algorithm 6.4 MrMine+

Input: Given G = {G1, G2, ..., Gk}, the height of subgraph tree in H-CRCN relation network
H, the embedding dimension p, the window size w2 for SkipGram model.

Output: The network embedding matrix Fg for G, the subgraph embedding matrix Fs, and
the node embedding matrix Fn.

1: for G ∈ G do
2: Generate multi-set subtree labels L by H WL iterations.
3: end for
4: Set ERs = Φ, ERg = Φ, ERn = Φ.
5: for (Ln

G)i ∈ LG do
6: if (p((Ln

G)i), p((Ln
G)i)) /∈ ERs then

7: Add (p((Ln
G)i), p((Ln

G))i+1) to ERs .
8: end if
9: end for
10: for vertex v of level H in Rs do
11: Add (v, pg(G)) to ERg , if qg(v) ∈ G.
12: Add (v, pn(n)) to ERn , if qg(v) ∈ Ln.
13: end for
14: Construct subtree vertices’ corpus Ps with ERs .
15: Construct network vertices’ corpus Pg with ERs ∪ ERg .
16: Construct node vertices’ corpus Pn with ERs ∪ ERn .
17: for vertex ui in random walk r ∈ Pg ∪ Pn ∪ Ps do
18: J(Φ) = −logPr(uj|Φ(ui)), uj ∈ r[i− w2, i + w2]
19: Φ = Φ− α ∂J

∂Φ

20: end for
21: Return embedding matrices Fn, Fs, Fg.

6.1.3 Experimental Results

In this section, we present the experimental results with extensive datasets and baseline

methods, to evaluate the effectiveness of handling multi-network mining tasks, and the

scalability of the proposed algorithms (MrMine and MrMine+).

Experimental Setup. Our proposed method is evaluated mainly on seven real-world

datasets, which are summarized in Table 6.2. The brief description of each dataset and the

experimental setup are presented as follows.

• DBLP: A co-authorship network with nodes representing authors and links represent-

ing co-authorship. The original dataset contains 42,252 nodes and 210,320 edges [128].

• Flickr: A network of friends on the image and video hosting website Flickr with each

node representing a user and each edge reflecting friend relationship. It has 215,495

individual users and 9,114,557 friend relationships [129].
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Table 6.2: Datasets Summary

Dataset Name Category # of Nodes # of Edges
DBLP Co-authorship 1.013 3,022
Flickr User relationship 3,911 4,152
LastFm User relationship 4,068 4,347
Douban User relationship 1,118 3,022
MySpace Social network 6,362 6,514
Aminer Academic network 1,274,360 4,756,194

Bioinformatics Size (# of graphs) Classes Avg. nodes
MUTAG 188 2 17.9
PTC 344 2 25.5

PROTEINS 1113 2 39.1
NCI1 4110 2 29.8

NCI109 4127 2 29.6

• LastFm: Collected in 2013, this is the following network of users on the music website

LastFm. The network network contains 136,420 users and 1,685,524 following links

[129].

• Douban: Collected in 2010, this data reflects the users’ friend relationship in the offline

and online activities of Douban, and contains 50k users and 5M edges. The offline and

online activity communities share some overlaps of users, which makes it suitable for

network alignment.

• MySpace: A social network which has a strong music emphasis. The links between

nodes reflect the connections of users. It has 854,498 users and 6,489,736 relationship

links.

• AMiner: An academic social network. Undirected edges represent co-authorship rela-

tionship [129]. The whole dataset contains 1,274,360 nodes and 4,756,194 edges.

• Bioinformatics: The bioinformatics dataset, including MUTAG, PTC, PROTEINS,

etc. are small-scaled networks of chemical compound, proteins or enzymes, and are

often used as benchmark datasets for graph classification.

Using the above datasets, we design the following five experimental scenarios for evaluating

the effectiveness of our method.

S1. DBLP vs. Noisy DBLP Alignment. We extract a subnetwork with 1,013 nodes from the

original DBLP dataset, and randomly add extra edges to the network to generate the second

noisy network while keeping the node set unchanged. Note that our setting is different from
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that in [30] for that our noisy edges make two networks non-isomorphic while [30] only

changes the edge weight.

S2. Douban-offline vs. Douban-online Alignment. We adopt a method introduced in [181]

to construct the offline network according to users’ co-occurrence in social gatherings. We

treat people as contacts if they participate in the same offline events more than ten times.

The constructed offline network has 1,118 users. We use the corresponding online social

network for the same 1,118 users as the second network, and add extra nodes as noises in

the alignment experiment.

S3. Cross-network Query Node Retrieval. As an complementary experiment for network align-

ment, we conduct cross-network query node retrieval, in which given a set of query nodes

from one network, we aim to retrieve similar nodes from another network. We study the

following network pairs and use their overlapping user set as groundtruth. DBLP and noisy

DBLP, Douban-offline and Douban-online, Flickr and LastFm, MySpace and noisy MySpace

with both node and edge noises.

S4. Collective Network Alignment. To further demonstrate the effectiveness of our method

on multi-network mining, we adopt a novel colletive network alignment. Rather than con-

ducting traditional two-network alignment, we use three input networks to collectively align

nodes of three networks. To the best of our knowledge, we are the first to align more than

two networks collectively. We use Douban-offline and Douban-online for this experimental

scenario. More details will be elaborated in the next sub-section.

S5. Network Level Classification. We use bioinformatics dataset for graph level classification

as shown in [176]. Since our method can learn network, subgraph and node embeddings si-

multaneously, we can either use network embeddings for classification directly or use node

and subgraph embeddings combinatorially as shown in [177]. The results present the per-

formance of the first one since it has better performance out of the two options. After we

learn the embeddings, we use 80% of the bioinformatics networks for training and 20% for

testing with a linear SVM model.

In all the above scenarios, we do not use network node/edge attributes as auxiliary infor-

mation in the experiments.

Comparison methods. In total, we use nine comparison methods in our experiments.

For (collective) network alignment and query node retrieval experiments, we use three tra-

ditional network alignment/matching methods (FINAL [30], IsoRank [163], and UniAlign

[81]), and three network embedding methods (Deepwalk [173], node2vec [172], and struc2vec

[20]). For network classification experiment, we use three baselines including both tradi-

tional Weisfeiler-Lehman kernel method (WL kernel [179]) and two embedding-based meth-

ods (Deep Graph Kernel [177], and subgraph2vec [176]).

124



Repeatability. All of the datasets are public. All experiments are performed on a server

with Intel(R) Xeon(R) CPU core with 2.00 GHz and 1.51 TB RAM. The operating system is

Red Hat Enterprise Linux Server release 6.9. The algorithms are programmed with Python.

The hyperparameters are set based on a grid search. We intend to release the source code

after the paper is published.

Effectiveness.

Visualization. To evaluate the effectiveness of the proposed method, we first use a widely

used and small-scaled dataset, the Zachary’s Karate Club [20] dataset for visualizing the

embeddings in 2-d space for intuitively presenting the difference between our method and

baseline embedding methods. We use two identical Karate Club networks in which the

second one is permutated from the original network as shown in Figure 6.4. We apply three

baseline embedding methods, Deepwalk, node2vec, and struc2vec as well as MrMine on

this dataset. Since all baseline methods only support single network embedding, we fit two

networks as one single network into these models. The results are shown in Figure 6.5 and

Figure 6.6. As we can see, the embeddings of Deepwalk clutter in four positions. Nodes from

two networks are mixed together, and can not be distinguished. node2vec roughly embeds

the nodes into two clusters by nodes’ membership, but the nodes within each cluster are

mixed up.

Figure 6.4: Original karate network and permutated karate network. Colors are set the same
for identical nodes across two networks.

Also nodes from different networks are incomparable. struc2vec embeds nodes based on

structural roles, but it can not explicitly differentiate all roles as some nodes with different

colors are embedded together, while some nodes with the same color are far apart. Our

method pairs almost all nodes with the same colors together, and clusters structurally iden-

tical nodes (e.g. node 17, 19, 52, 54 with lime color). This visualization result matches our

intuition that our model can preserve structural similarities of nodes across networks and

shows great potential in many mining tasks as we will present shortly.
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Figure 6.5: 2-d visualization of embeddings learned on Zachary’s Karate Club dataset by
two traditional methods Deepwalk and node2vec. The learned embeddings are 32-d and
transformed to 2-d by Multi-Dimensional Scaling (MDS) to preserve the embedding distance.
Nodes of same color represent that they are identical. Best viewed in color.

Figure 6.6: 2-d visualization of embeddings learned on Zachary’s Karate Club dataset by
traditional method struc2vec and by MrMine. The learned embeddings are 32-d and trans-
formed to 2-d by Multi-Dimensional Scaling (MDS) to preserve the embedding distance.
Nodes of same color represent that they are identical. Best viewed in color.

Network Alignment. Next we perform two network alignment experiments (scenario S1, S2 ).

For traditional network alignment baseline methods (e.g. FINAL, IsoRank), we calculate

the cross-network similarity matrix and apply greedy match algorithm [30] to process the

similarity matrix for one-to-one node alignment. For embedding methods, we first generate

node embeddings, and calculate the similarity matrix by the inner product of embedding
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vectors. The greedy match algorithm is then applied on the similarity matrix. The results

are shown in Figure 6.7. As the percentage of edge/node noises increases, the accuracies of

all methods decrease.

On both datasets, our proposed methods MrMine and MrMine+ outperform all base-

lines. MrMine slightly outperforming MrMine+ indicates the usefulness of cross-network

links in the CRCN relation network. Specifically, on DBLP dataset, our methods achieve

close accuracy to FINAL when there is no edge noise, but FINAL is sensitive to edge noises

and decreases rapidly on small percentage of extra edges. struc2vec also achieves close per-

formance to MrMine+. On Douban dataset, our methods outperforms baselines at all node

noise level by at most 19.71%.

(a) Alignment result on original DBLP
and noisy DBLP dataset.

(b) Alignment result on Douban offline
and online network

Figure 6.7: Network alignment result of our methods compared with traditional alignment
baseline methods and network embedding baseline methods. Best viewed in color.

Query Node Retrieval. We then conduct query node retrieval experiments (i.e. scenario S3 ).

We treat the nodes in one network as queries and the nodes in the other network as targets.

For traditional methods (i.e. FINAL, IsoRank and UniAlign), we calculate the cross-network

similarity matrix and sort the nodes in the targets based on their similarity values with query

nodes. After sorting, top-k nodes are retrieved from targets for each query node. If the

matching node exists in the top-k list, we consider it as one hit. The accuracy is calculated

as accuracy = number of hits
number of query nodes

. In some recent related works, this evaluation setting

is also referred to as the soft network alignment, for it does not output the one-to-one node

mapping. We calculate the accuracy of node retrieval w.r.t. the k value and present the

results in Figure 6.8. For (a) and (d) in Figure 6.8, we create the dataset by using the

original network for the first networks, and inserting 2% edge noises and 3% node noises by
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randomly adding edges/nodes to the input networks for the second network. For (b) and

(c), we directly use the two partially overlapped different networks as inputs, and use the

overlapped node set as queries for node retrieval. We can observe that our proposed method,

MrMine and MrMine+, significantly outperform all baselines, including both traditional

network alignment/matching methods (FINAL, IsoRank and UniAlign) and recent network

embedding methods (Deepwalk, struc2vec) on all four datasets. This experiment reveals the

effectiveness of the developed model for multi-network node retrieval in real-world datasets.

(a) Node retrieval accuracy on DBLP and
noisy DBLP dataset. Higher is better

(b) Node retrieval accuracy on Douban-
online and Douban-offline dataset.
Higher is better.

(c) Node retrieval accuracy on Flickr and
LastFm dataset. Higher is better.

(d) Node retrieval accuracy on MySpace
dataset. Higher is better.

Figure 6.8: Node retrieval results on our methods with five baseline methods. Accuracy vs.
top-k retrieved nodes. Best viewed in color.
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Collective Network Alignment. We further conduct a novel collective network alignment ex-

periment (scenario S4 ) to show the advantage of our methods on enabling difficult multi-

network mining task. We collectively perform network alignment among all nodes in three

networks (G1: Douban-offline, G2: Douban-online, and G3: Douban-online with 3% edge

and 5% node noises). Since traditional network alignment/matching methods only calculate

similarity matrix between two networks, we need to calculate S12 for G1, G2, S13 for G1, G3,

and S23 for G2, G3. The three-way similarity between G1, G2 and G3 forms a 3-d similarity

tensor S, with S(i, j, k) = S12(i, j) +S13(i, k) +S23(j, k). We implement a 3-d greedy match

algorithm to produce a one-to-one-to-one alignment for nodes in three networks. For our

method, since we simultaneously embed all nodes onto the same embedding space, we can

directly calculate the similarity tensor S and apply 3-d greedy match algorithm. We use two

metrics for this experiment. First, for each pair of three-node alignment (including three

nodes from G1, G2 and G3), we consider it a successful alignment if all nodes are aligned

correctly (a strict metric, indicating the correct 3-way alignment). Second, for each pair of

three-node alignment, we consider it a successful alignment if two of the three nodes are

aligned correctly (a relaxed metric, indicating at least 2-way correct alignment). The re-

sults are presented in Figure 6.9 (a). As we can see, our proposed methods MrMine and

MrMine+ outperforms all baselines by both metrics. The largest accuracy improvement

by the strict metric is 14.33%, and the largest accuracy improvement by the relaxed metric

is 28.20%.

Network level classification Lastly, we test the performance of the embeddings learned by

our proposed methods on network classification. We use all five categories of datasets from

bioinformatics dataset, and the results are presented in Table 6.3. The bold numbers show

the best performance. Note that different from [176, 177], we do not use node or edge

attributes in the embedding learning process. From the results, our methods outperform all

baselines in four out of five categories of bioinformatics datasets, and perform very close to

the best baseline in the proteins data, which indicates the the proposed methods’ effectiveness

of enhancing network level classification tasks. We also observe that MrMine+ performs

consistently better than MrMine in this classification experiment, which denotes that the

cross-network relation captured by H-CRCN relation network is more effective than the basic

CRCN relation network in network classification task.

Scalability. We conduct scalability study of the proposed algorithms on the largest dataset

Aminer which contains over 1M nodes. We use two subgraphs of Aminer as input networks,

and conduct a series of running time test with the number of nodes ranging from 1,000

to 1.2M (which is close to the size of the entire Aminer dataset). Figure 6.9 (b) shows

the results of the average running time on 5 runs. We can observe that the running time
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(a) 1 shows results by the first (strict) metric
and 2 shows results by the second (relaxed)
metric. Higher is better.

(b) Running time vs. number of nodes (Skip-
Gram time is not included) of MrMine and
MrMine+.

Figure 6.9: Collective alignment results on Douban offline and online dataset (a), and scal-
ability study results on MrMine and MrMine+ (b). Best viewed in color.

Table 6.3: Comparison of Network classification Accuracy on Bioinformatics Datasets (±
standard derivation)

MUTAG PTC PROTEINS NCI1 NCI109
MrMine+ 83.47± 2.01 62.00± 0.07 71.22± 0.62 68.50± 0.03 65.57± 0.02
MrMine 82.19± 1.58 55.41± 2.52 70.88± 0.38 66.90± 0.05 64.53± 0.01
WL Kernel 80.66± 3.07 59.94± 2.79 64.45± 1.14 63.42± 0.22 62.94± 0.42
Deep WL Kernel 82.95± 1.96 53.29± 1.53 69.49± 0.26 62.83± 0.25 62.47± 0.15
subgraph2vec 79.33± 0.07 42.29± 0.09 73.04± 0.04 63.01± 0.01 49.20± 0.02

of both algorithms are less than 120s when applied on 1.2M-node networks. Particularly

MrMine+ scales linearly while MrMine scales faster than (super-linearly) MrMine+

which is consistent with our analysis on the time complexity. Thus, the proposed methods

can be applied to large networks.

6.2 HYPERGRAPH REPRESENTATION LEARNING WITH PRE-TRAINING

Hypergraph, as a generalization of the traditional graph data, is ubiquitous in various

domains, and has drawn increasing attention recently [14, 77, 182]. Different from traditional

graphs, which consist of nodes and edges to represent pairwise relations between nodes,

each hyperedge contains a collection of nodes, which represents a high-order relation. For
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example, in the clinical studies of the pharmacological mechanism [182, 183], the effects

of medical treatment is often the result of the combined interactions of a set of drugs.

Here the combination of drugs for one disease forms one hyperedge. In the bioinformatics

research, protein/multi-protein complexes, which consist of different collections of protein

molecules, display different functions [184]. Here a collection of protein molecules could be

one hyperedge. In the social network domain, a group of users who participate in the same

event could be a hyperedge of that event [72, 80]. In the academic domain, authors of the

same paper could be a hyperedge of the paper they jointly publish [185].

Figure 6.10: (a), (b): An example of plain graph and hypergraph; and (c), (d): two hyperedge
expansion methods used in this paper.

Representation learning on hypergraph offers a promising way to streamline various hy-

pergraph applications. However, the traditional graph representation learning methods are

not directly applicable in capturing the high-order relations of the hypergraphs. To date,

relatively few works on hypergraph representation learning exist, most of which focus on

hyperlink prediction [77, 80, 100, 182]. The major difficulties of representation learning

on hypergraph are two-fold. First, the labels of diverse downstream tasks are usually very

scarce, which makes it difficult for training the downstream neural models. Second, most of

the recent hypergraph representation learning methods only work in the transductive learn-

ing setting [14, 60, 80, 101, 182, 186]. Specifically, these methods require all data to be seen

during the training for feature generation or representation learning in the model, which

renders the inability of these methods to handle unseen data. For example, in the hyperlink

prediction problem, many previous methods require that all candidate hyperlinks to be seen

during training.

Beside these limitations, there commonly exists one blind-spot for the dataset. Although
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many current hypergraph datasets are constructed from plain graphs, the connections among

nodes of the original plain graph should be strictly unavailable in the hypergraph scenario.

For example, in Figure 6.10, (a) represents the original plain graph, and (b) represents the

hypergraph that is constructed by (a). For such constructed hypergraphs, the black links in

(a) should never be known either explicitly (used for model) or implicitly (used for feature

generation).

In this section, inspired by the recent advances of pre-training strategies developed in

Natural Language Processing (NLP) community [187] and Graph Neural Networks (GNNs)

research [188, 189, 190], we propose HyperGRL, a self-supervised pre-training based hyper-

graph representation learning framework, with the target of both inductive and transductive

hyperedge classification. Compared with previous methods, the proposed HyperGRL enjoys

the following three distinctive advantages. First, the proposed pre-training framework is

capable of leveraging labeled data (with supervised pre-training) as well as unlabeled data

(with self-supervised pre-training), to learn transferable knowledge for diverse downstream

tasks without the help of extra domain-specific hypergraph datasets [188, 191]. Second, our

method explores bi-level (i.e. node-level and hyperedge-level) self-supervised pretext tasks,

which aim at capturing the intrinsic high-order relationships of nodes and hyperedges re-

spectively. Third, the proposed HyperGRL can work in both transductive and inductive

settings. The pre-training strategy proposed for the transductive setting is adaption-aware,

in the sense that the pre-trained model could be more adaptive to the downstream tasks

compared to traditional pre-training methods, and meanwhile be more computationally ef-

ficient.

The main contributions of this section are as follows.

• Novel Pre-Training Framework. We propose a bi-level pre-training framework for

hypergraph representation learning named HyperGRL, equipped with two mutually

complementary self-supervised pretext tasks. The proposed framework can be applied

to both transductive and inductive settings. For the tranductive setting, the proposed

HyperGRL further embraces an adaptation-aware pre-training strategy to accelerate

the knowledge transfer.

• Extensive Empirical Evaluations. We perform extensive experiments to demon-

strate the efficacy of HyperGRL. In particular, the proposed HyperGRL (1) outper-

forms all baselines across all datasets for inductive hyperedge classification, with an

up to 5.69% improvement over the best competitor, and (2) improves pre-training

efficiency by up to 42.8% on average.
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6.2.1 Problem Definition

The main notations used in this section are summarized in Table 6.4. We first define the

hypergraphs as follows.

Table 6.4: Symbols and Definition

Symbols Definition

G = (V , E ,F(n)) a hypergraph of node set V , edge set E , and feature F(n)

M the hypergraph incidence matrix
A the adjacency matrix of nodes inferred from M

Θ,Ωi parameters of GNN module and adjustment modules
fΘ(·) GNN module with parameter Θ
gΩi

(·) neural adjustment module with parameter Ωi

fΘ:Θ0=Θ′(·) a pre-trained GNN module with initialization Θ′

Definition 6.1. Hypergraph: A hypergraph is represented by G = (V , E ,F(n)), in which

V = {v1, v2, ..., vn} is the set of n nodes and E = {e1, e2, ..., em} is a set of m hyperedges.

ei = {v(i)j }, 1 ≤ j ≤ n represents the i-th hyperedge in which the nodes v
(i)
j ∈ V . We say

that node vj is inside hyperedge ei. F(n) is the feature matrix1 for nodes.

A hypergraph incidence matrix [186] M ∈ Rn×m is defined such that M(i, j) = 1 if node

i appears in hyperedge j, and M(i, j) = 0 otherwise. From M, we can build an adjacency

matrix A = MTM, in which A(i, j) indicates the number of nodes that appear in both

hyperedge i and hyperedge j.

Before formally defining the inductive hyperedge classification problem, we provide a brief

review of Graph Neural Networks (GNNs).

Preliminaries on Graph Neural Networks. GNNs are powerful deep learning models

on graphs. Representative models include Graph Convolutional Networks (GCN) [140],

Graph Isomorphism Networks (GIN) [142], Graph Attention Networks (GAT) [141], etc.

The intuition behind many previous GNN models is to learn the node representation by

convolutionally aggregating both the node/edge features and the features of the node’s local

neighbors through neural networks. Message passing is often adopted as a popular choice to

design various GNN models [192]. There are two main steps in the message passing process,

including message passing and message updating. In the message passing step, the node

features are passed to its neighbors. In the message updating step, the received features are

passed through an aggregation function (e.g., a neural network) for node representations.

Typical message passing can be summarized as:

1Optionally, there might be a feature matrix for hyperedges F(h).
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h(t+1)
mv

= Pt({h(t)
v ,h(t)

w , evw}), ∀w ∈ N (v) (6.3)

h(t+1)
v = Ut(h

(t)
v ,hm

(t+1)
v ) (6.4)

where Pt and Ut are the message passing function and node representation updating function

of the t−th iteration respectively. hv,hw are node representations of neighboring nodes

(v, w), and are initialized as node features. evw is the feature of the edge between node v

and node w. Different GNN models differ in the functions Pt() and/or Ut(). For example,

GCN [140] takes the summation of the neighboring nodes in the message passing step and

attaches a neural network module on the passed message and the node feature itself for

feature aggregation.

By using GNN layer as a neural function fΘ(·) for node representations, the inductive

hyperedge classification problem is defined as follows.

Definition 6.2. Inductive Hyperedge classification: Given a set of hyperedges E =

{e1, e2, ..., em} which are not seen in the training stage, the goal of GNN model fΘ(·) is

to learn embeddings for the downstream classifier2 gΩ(·) to classify them into t categories.

gΩ(fΘ(ei)) = pi, i ∈ {1, 2, ...,m}, where pi is the prediction vector for ei with a non-zero

entry indicating ei’s predicted category.

By adopting pre-training strategy, model fΘ(·) is first trained on pretext task(s). Note that

there could be more than one pretext task. The fine-tuning module can be represented as

fΘ:Θ0=Θ′(·) given the pre-trained GNN module fΘ′(·). Generally speaking, pre-training fΘ′(·)
could be either supervised if the labels for the pretext task are available, or unsupervised,

such as self-supervised methods.

6.2.2 Proposed Pre-Training Framework

Challenges and Key Ideas. The first challenge for pre-training hypergraphs is how to

design the self-supervised pretext tasks, since the high-order node relations of hypergraphs

are significantly different from traditional graphs structurally. Our idea is to incorporate

both node-level and hyperedge-level pretext tasks, which aim at capturing both local and

global contextual patterns of hypergraphs. Locally, the node inside one specific hyperedge

should be distinguished from nodes outside this hyperedge given the context of node. For

2gΩ() is also known as a neural adjustment module, which is an MLP specified for pretext tasks with
parameter Ω for mapping node representations to the predicted labels/values.

134



one specific hyperedge and a given inside node, we define the context of the node as all

other nodes inside the hyperedge as shown in Figure 6.11. Globally, the similarities between

hyperedges ought to be preserved. However, calculating pairwise hyperedge similarities itself

is challenging and costly, with at least O(m2) time complexity for calculating every pair of

hyperedges if the number of hyperedges is m. As an approximation for learning pair-wise

hyperedge similarities, our idea is to first cluster the hyperedges, based on the features of

nodes inside hyperedges or the hyperedge adjacency matrix when available, and then to

preserve the membership characteristic of the hyperedge clusters.

Figure 6.11: An illustrative example of the hyperedge-level pretext task (left), and the node-
level pretext task (right). Pr1, P r2 are probabilities for assigning e4 to cluster 1 and cluster
2. The red area on the right subfigure shows the context of node v, and the gray nodes are
the sampled negative examples of node v and its context. Best viewed in color.

The second challenge is how to mitigate the divergence between the self-supervised pretext

tasks and the downstream tasks. Even with two mutually complementary pretext tasks, such

divergence might still exist, in the sense that a well-trained pre-trained model might be overly

fit on the pretext tasks, and could not optimally generalize to the downstream tasks. In the

transductive setting, our idea is to design an adaptation-aware pre-training strategy, which

targets at learning a well-adaptive pre-trained model for downstream tasks. In this strategy,

only one self-supervised pretext task (node-level) is fully trained until convergence, and the

other self-supervised pretext task (hyperedge-level) is applied on the unlabeled data for fast

adaptation.

Node-level Self-supervised Pretext Task.

Task Description. In this pretext task, we aim at predicting the relationship between a

given node and its hyperedge context (i.e., other nodes inside the hyperedge). Intuitively,

we expect the node and the context share similar representation if they belong to the same

hyperedge.

Specifically, in order to obtain node-level self-supervised training labels, we first uniformly
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Figure 6.12: The pre-training and fine-tuning framework with node-level and hyperedge-
level self-supervised pre-training/adaptation in HyperGRL for hyperedge classification. Best
viewed in color.

sample a seed node (e.g. v
(s)
i ) inside each hyperedge, and obtain its corresponding context

(e.g., Ci). The combined node-context pair (v
(s)
i , Ci) is a positive example. Next, for each

pair (v
(s)
i , Ci), we adopt a negative sampling method for negative examples (v

(n)
ij ∼ Prij,

the negative sampling probability) of the selected context. We utilize a GNN module inside

the clique-expansion of hyperedges for the hidden representation of nodes. The representa-

tion of nodes corresponding to contexts are aggregated by a pooling layer for the context

representations. The node-context relationship is learned via a binary cross-entropy ob-

jective. For notation simplicity, let h be the representation learned by GNN module, and

ĥ := g
(n)
Ωn

(h) be the node representation after applying the neural adjustment function g
(n)
Ωn

(·)
of the node-level pretext task.

L(n) =
∑
i

∑
j

log[1− σ((ĥ
(s)
i )Tĥ

(C)
i )] + log[σ((ĥ

(n)
ij )Tĥ

(C)
i )] (6.5)

where ĥ
(s)
i , ĥ

(C)
i , ĥ

(n)
ij are the hidden representation of seed node i, context of node i, and

the negative sample j of node i after using the adjustment function, respectively. σ(·) is a

sigmoid function. (ĥ
(s)
i )Tĥ

(C)
i is expected to be larger than (ĥ

(n)
ij )Tĥ

(C)
i since the positive seed

node-context pair share similar feature distributions.

Negative Sampling Method. For a given pair of node and its corresponding context in one

hyperedge, one naive negative sampling method is to uniformly sample nodes outside this

hyperedge. This is applicable even if all hyperedges of a hypergraph do not share nodes,

which is often the case in real-world applications. However, this method does not distinguish
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between structurally close-by and distant nodes/hyperedges, especially when the relations

of nodes from different hyperedges can be obtained via the adjacency matrix A from the

incidence matrix M. Structurally close nodes tend to have very similar features or even

the same labels, and should be avoided as negative samples. We use the following negative

sampling strategy such that the structurally close nodes would have exponentially lower

probabilities to be sampled for negative nodes selection. Let Ã = Ak, where the entries of

Ã give the number of paths of length k. We normalized Ã as Â = D−1Ã, where D is a

diagonal degree matrix of Ã, to prevent extremely low probabilities. For a given node i, the

probability of sampling node j ̸= i is given as follows.

Prij =
exp(−γ · Âij)∑
j exp(−γ · Âij)

(6.6)

in which γ > 0 is a scaling scalar for further tuning the sampling probabilities. We consider

the nodes which are not reachable by paths of length k having high and equal probability of

being sampled. In practice, we find that a small k is often sufficient for good performance,

which also helps with the efficiency for calculating and storing Ak. This negative sampling

method is referred to as the exponential sampling method. The positive/negative hyperedges

represent the hyperedges from which positive/negative nodes are extracted in the rest of the

paper.

Hyperedge-level Self-supervised Pretext Task. In this pretext task, different from the

local node-level pretext task, we strive to capture the more global patterns of hypergraphs.

As discussed in Section 6.2.2, we aim at predicting hyperedges’ cluster membership infor-

mation. The clustering is conducted on the graph of hyperedges as follows. First, the graph

of hyperedges is constructed with adjacency matrix A = MTM, such that A(i, j) is the

number of nodes that exist in both hyperedges i and j. Next, the METIS algorithm [193]

is applied to partition the graph of hyperedges into q clusters. q is empirically selected, and

is set to be larger than or equal to the number of categories of hyperedges in the empirical

experiments. The GNN module, which shares the parameters with node-level pretext task, is

applied inside the clique expansion of the hyperedges, and the representations for hyperedges

are obtained by a graph pooling layer. Then, by adopting the categorical cross-entropy loss,

the hyperedge-level self-supervised task is written as:

L(h) = −
∑
i

[log(softmax(g
(h)
Ωh

(h
(e)
i ))) ◦ y(h)

i ]T1 (6.7)

where h
(e)
i is the hidden representation of the hyperedge i, g

(h)
Ωh

(·) is a neural adjustment
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function to map the hyperedge representations to q-dimensional vector. y
(h)
i is the multi-

class label vector of hyperedge i indicating the cluster membership, and 1 is an all-one vector,

for taking the summation of the log(softmax(·)) scores of the correct categories.

Adaptation-aware Pre-Training Strategy. Traditional pre-training methods use a two-

stage procedure, in which the first stage trains the pretext task until convergence with self-

labels, and the second stage trains the downstream task with the task labels. Specifically in

our scenario with two self-supervised pretext tasks, the two-stage training can be realized in

a serial procedure as follows.

Θ′ = arg min
Θ

L(n)(gΩn(fΘ(Etrain,F(n)));y(n)) (6.8a)

Θ(pre) = arg min
Θ

L(h)(gΩh
(fΘ:Θ0=Θ′(Etrain,F(n)));y(h)) (6.8b)

Θ̂ = arg min
Θ

L(t)(gΩt(fΘ:Θ0=Θ(pre)(Etrain,F(n)));y(t)) (6.8c)

where L(t) and y(t) are the loss function and labels for the downstream task respectively. gΩt

is the neural adjustment module for downstream task. The parameters of GNN module is

first obtained by training the node-level pretext task and then by training the hyperedge-level

pretext task.

As discussed in Section 6.2.2, the above strategy in the transductive setting might bring

non-negligible divergence between pre-training and downstream task training, which would

lead to a sub-optimal model. Moreover, since the hyperedge-level pretext task approxi-

mately preserves the pair-wise hyperedge distances, pre-training this task till convergence

might result in an even larger divergence. To address this issue, we propose an adaptation-

aware pre-training strategy. The key idea is only performing node-level pre-training on the

hyperedges with downstream task labels, and utilizing the hyperedge-level pretext task as

adaptation on the hyperedges whose labels are to be predicted in the transductive setting.

Specifically, we maintain Eq. (6.8a). But instead of training the hyperedge-level pretext

task until convergence (Eq. (6.8b)), we use it as an adaptation task, which can be represented

as s steps of gradient descent on test hyperedges Etest, and Eq. (6.8b) is replaced by s steps

of:

Θ := Θ− ϵ · ∂L
(h)(gΩh

(fΘ:Θ0=Θ′(Etest,F(n)));y(h))

∂Θ
(6.9)

where ϵ is the learning rate. Compared with the traditional pre-training method, the advan-

tages of the adaptation-aware training strategy are two-fold. First, the pre-trained model

for transferring general data knowledge is more adaptive to the downstream tasks. Second,

it is a more efficient pre-training strategy, because only one pretext task needs to be fully
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trained, and the adaptation, which only requires a few steps, can be conducted whenever

the test data3 for the downstream task is available (e.g., in an online system).

Proposed HyperGRL Framework. The end-to-end model architecture is illustrated

in Figure 6.12. The negative sampling strategy is first conducted for the input hyperedge

set, followed by the node-level pretext task. We propose two variants of GNN modules:

(1) the positive and negative hyperedges share the parameters of the same GNN layer; (2)

two different GNN layers, which are parameterized as Θ1 and Θ2 in Figure 6.12. These

variants are applied for the positive and negative hyperedges from which seed node/context

representations are generated. This will further distinguish the representations between

positive and negative nodes/contexts.

The proposed pre-training framework could flexibly support various types of GNN models,

such as GCN [140], GraphSAGE [148], GIN [142], etc. GIN is adopted in the experiments

due to its superior empirical performance. After adopting the GNN module, inspired by

HGNN [76], which aggregates messages between nodes and hyperedges, we gather messages

of nodes for obtaining the context/hyperedge representation. Here, the messages are flowed

from nodes to hyperedges, with the aim of: (1) generating hyperedge representations for

classification; (2) supporting a more general setting where hyperedges do not share nodes.

A pooling layer is used on the aggregated features, such as mean pooling and Set2set [194].

In order to achieve permutation equivariance, set module could be adopted, such as Deep

Sets [195]. Next, the hyperedge-level pretext task is adopted in two learning settings. First,

in the inductive learning setting, the hyperedge-level pretext task is trained as an additional

pre-training stage. If the node-level pretext task uses two GNN modules, the hyperedge

representations are the concatenation of the outputs of the pooling layers in two GNN

modules. Second, in the transductive learning setting, the hyperedge-level pretext task is

used as an adaptation stage (Eq. (6.9)). The fine-tuning for the downstream task follows

the pre-training, with the initialization of the pre-trained GNN module.

Complexity Analysis. With the uniform negative sampling method, the major computa-

tion of the model is applying GNN module on all hyperedges for training. Taking GIN as an

example, the computational complexity is O(d2n′Lm · iter) where d is the feature dimension,

n′ is the number of nodes for each hyperedge, L is the number of layers of GNN module, m is

the number of hyperedges, and iter is the number of iterations. Here for notation simplicity,

we assume all hyperedges share equal number of nodes n′, which is often much smaller than

the number of hyperedges m in a hypergraph. For HyperGRL with the exponential nega-

tive sampling method, the major computation is calculating Ãk in Eq. (6.6), which takes

3Note that the test data could be observed in the transductive setting, and by self-supervised design, the
labels of test data are naturally avoided during training.
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O(kmn′), where m is the number of non-zero entries in A. The time complexity of METIS

algorithm for hyperedge-level pretext task is O(m + n′ + q · log(q)), where q is the number

of clusters [193].

Model Variants. We further discuss four variants of the proposed model. We also elaborate

two practical implementations of negative sampling, based on the actual set of hyperedges

from which the negative sampling method is conducted.

Joint Training. First we briefly describe a natural variant in which the pretext tasks are

jointly trained with the downstream task. We also use this training method as a baseline in

our experiments. The joint training loss can be written as:

L(joint)
Θ,Ω1,Ω2,Ω3

= αL(n) + βL(h) + L(t) (6.10)

where L(t) represents the loss function for downstream task, hyperedge classification. α, β

are used for re-weighting the bi-level pretext tasks.

Variant I. As discussed in Section 6.2.2, instead of using one GNN module for both positive

and negative nodes in the node-level pretext task, one variant is to utilize two GNN modules,

which do not share parameters, for positive and negative nodes respectively.

Variant II. For the node-level self-pretext task, we could also learn the hyperedge represen-

tation by a ranking-based objective function, which aims at forcing the similar nodes in the

feature space to be also close in the representation space, and the dissimilar nodes to having

a margin in the representation space. Here we adopt the cosine embedding loss function to

replace Eq. (6.5). For node i and context j:

L(n) =
∑
i,j

(y(1− cos(ĥi, ĥ
(C)
j )) + (−y)(max(0, cos(ĥi, ĥ

(C)
j )− ϵ)) (6.11)

where ϵ > 0 is a margin, y ∈ {−1, 1} is the label, and cos(·) is the cosine similarity

function.

Variant III. For the hyperedge-level self-pretext task, in order to approximate the task of

preserving the exact pair-wise hyperedge similarities, we can also try to preserve the ap-

proximated pair-wise hyperedge distances in a regression objective as follows to replace Eq.

(6.7).

L(h) = ||g(h)Ω2
(H)Tg

(h)
Ω2

(H)−Ak′||2F (6.12)

where g
(h)
Ω2

(·) is a neural adjustment function for the embeddings of hyperedges, H is the

embedding matrix of all hyperedges (with row-wise hyperedge embeddings), k′ > 0 is a small

scalar and Ak′ is an approximation for pair-wise hyperedge similarities when the incidence

matrix can be used for calculating the adjacency matrix A. In this Variant, we use the above
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pretext task as adaptation steps.

Variant IV. In order to adopt GNN technique and learn the representations for hyperedges.

Besides expanding each hyperedge as a fully-connected graph (clique expansion), we can also

expand a hyperedge as a tree (tree expansion). Intuitively, each hyperedge can be seen as a

new root node connecting to all the nodes inside the hyperedge. In the message passing of

GNN module, the difference between clique expansion and tree expansion is that the nodes

in clique expansion first pass their features to the neighbors in the same hyperedge, but the

nodes in tree expansion only pass their features to the root nodes. Clique expansion and tree

expansion are two typical methods of adding hypothetical connections to the nodes inside

hyperedges for expansion.

Connection with Graph Meta-learning. Our proposed pre-training and fine-tuning

strategy for hypergraphs is also closely related to the recent Graph Meta-learning methods

for Graph Neural Networks. The basic goal for Meta-learning is to first learn a general

model on a set of tasks, and then make predictions on target tasks with very few observed

examples. For GNN, the idea of Graph Meta-learning is to learn a GNN model on a set of

graph mining tasks, by recurrently updating the model parameter via each task [196, 197].

The motivation of Graph Meta-learning is aligned with the motivation of our proposed pre-

training strategy. Although in the problem setting of HyperGRL the tasks for learning the

general model are unsupervised, the goal is also to learn a model which is generic to be

able to adapt towards the downstream tasks. Therefore, the self-supervised pretext tasks

could be trained with the downstream tasks in a recurrently fashion [197], which is similar

to the training of Graph Meta-learning methods. We note that comparing different training

methods and their mechanisms could be a potential future direction.

6.2.3 Experimental Results

In this section, we present the evaluation of the effectiveness and efficiency of the proposed

framework on public datasets. The statistics of the datasets are summarized in Table 6.5.

Experimental Setup. Here, we present the experimental results on four public datasets

(Cora, Pubmed, Corum, Disgenet) to evaluate the proposed model. In particular, we pre-

process two versions of Cora and Pubmed datasets as Cora/Pubmed-clean/noisy.

• Cora: The Cora dataset consists of 2,708 scientific publications (nodes) classified into

one of seven classes. The citation network consists of 5,429 edges between publica-

tions. The dataset contains text features for each publication, and it is described by

a zero/one-valued word vector indicating the absence/presence of the corresponding
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Table 6.5: The summary of datasets

Name # of
nodes

# of
hyper-
edges

Min
# of
nodes
in hy-
peredge

Max
# of
nodes
in hy-
peredge

Cora 2,708 2,427 2 169
Pubmed 19,717 3,887 3 20
Corum 6,132 4,736 2 131
Disgenet 8,352 8,386 3 487

word from the dictionary. The dictionary consists of 1,433 unique words [185]. Note

that the Cora dataset is a traditional graph dataset.

• Pubmed: The Pubmed Diabetes dataset consists of 19,717 scientific publications (nodes)

from PubMed database pertaining to diabetes classified into one of three classes. The

citation network consists of 44,338 links. This dataset contains text features for each

publication which is described by a TF/IDF weighted word vector from a dictionary

which consists of 500 unique words [198]. The Pubmed dataset is also a traditional

graph dataset.

• Corum 4: The Corum is the dataset of mammalian protein complexes. The dataset

contains 6,132 types of proteins (nodes), and each protein complex consists of a collec-

tion of proteins. No direct connections between proteins in the complexes exist. The

Corum dataset is a hypergraph dataset.

• Disgenet 5: The dataset contains 8,352 genes (nodes) and each disease (hyperedge)

consist of a collection of genes. Each disease is classified into one of 23 MeSH codes.

21 of these codes are used as the hyperedge categories. Note that this dataset is highly

unbalanced.

Dataset processing. Since not all of the above datasets are originally hypergraph datasets

(i.e. Cora and Pubmed), we need to first process them for generating the hypergraphs. For

Cora and Pubmed, we generate two versions of hypergraph datasets as follows. For the first

version, we take the ego-network (subgraph of the center node with 1-hop neighbors) of

each node as hyperedges, and assign the hyperedge label as the label of the majority in the

ego-network. We name this version as the noisy version since the hyperedge might contain

4https://mips.helmholtz-muenchen.de/corum/
5https://www.disgenet.org/downloads
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nodes with different categories. For the second version, we also take the ego-network of each

node as hyperedges, but only keep those whose nodes share the same category. We name

this version as the clean version. For Corum and Disgenet, they are originally hypergraph

datasets, and do not need processing.

As for the node features, for Cora and Pubmed, we use the text feature vectors as described

in the dataset details. For Disgenet, we use the numerical features of genes from the original

data (e.g. DSI, DPI, etc.) For Corum, we first construct a traditional graph of nodes, in

which each edge represents that the end nodes exist in the same hyperedge. Then we adopt

the Subsample and Traverse (SaT) Walks [101] strategy for sampling a collection of random

walks and use the embedding vectors from Deepwalk [173] method as node features6.

Baselines and adjustment. In total we adopt six baselines in our experiments. Five

of them are from previous work (Deep Hyperedge [101], DHNE [100], Hyper-SAGNN [77],

Graph-SAGE [148], Deepwalk [173]), and one of them is the joint training strategy with

the proposed self-supervised pretext tasks (Eq. (6.10)). Among the baselines from previous

work, only Deep Hyperedge is directly designed for hyperedge classification. DHNE and

Hyper-SAGNN are originally designed for hyperlink prediction. We keep the major model

architecture, and adapt these two methods as follows.

For DHNE, firstly the second-order component is designed for heterogeneous hyperedges.

Since our datasets are not heterogeneous, we only need to use one auto-encoder in this

component. Second, the supervised binary component for hyperlink prediction is modified

to multi-class hyperedge classification. For Hyper-SAGNN, we keep the idea of using both

static and dynamic embeddings of nodes, and take the summation of the static and dynamic

embeddings as the final embeddings of hyperedges for hyperedge classification.

Graph-SAGE and Deepwalk are originally designed for traditional graphs. We adapt these

two models to make them work on the traditional graph of hyperedges. In this traditional

graph, each vertex represents one hyperedge and there is an edge between two vertexes if

two hyperedges share nodes.

Reproducibility.

Model Training Details. First, for HyperGRL with uniform negative sampling, we adopt a

local sampling method for the negative hyperedges in order to sample negative nodes. Specif-

ically, the uniform sampling is conducted inside each batch of hyperedges of the stochastic

gradient descent algorithm (e.g. Adam optimizer). To this end, the node-level self-supervised

pretext task captures the local node-context relationship within a batch at each parameter

updating. Since the batch is uniformly sampled, this local sampling method eventually

6Note that for all baselines (except for Deepwalk which does not utilize node features), we use the same
node features as model inputs for fair comparison.
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equals to the global uniform sampling on all hyperedges for pre-training. Compared with

exponential sampling, which calculates Ãk (Eq. (6.6)) for globally sampling negative nodes,

this uniform negative sampling is more efficient (see Figure 6.15).

Second, in order to obtain the hyperedge embeddings from the node embeddings as the

outputs of GNN module, mean pooling is adpoted on public datasets and Set2set [194] pool-

ing with 1 recurrent layer is adopted on case study because of optimal practical performance.

Other sophisticated pooling methods for hypergraphs could be one future direction.

Third, all the adaptation functions which take the node/hyperedge embeddings as inputs

for adapting with the self-supervised pretext/downstream tasks are set as MLPs with 0.5

dropout rate. All non-linear activation functions are set as ReLU function.

Hyper-parameter Setting. For the model optimization, we adopt Adaptive Moment Estima-

tion (Adam). The hyper-parameters are set such that the downstream task perform well on

validation set. Specifically, for the optimizer, we select the batch size as 64, and learning

rate as 0.001 with learning rate scheduler that reduces learning rate on plateau. The num-

ber of epochs for node-level pretext task and hyperedge-level pretext task (for traditional

pre-training) are set to 50. For the effectiveness evaluations on public datasets, the number

of clusters for hyperedge-level pretext task is set as 10, 10, 3, 3, 21, 20 for Cora-noisy, Cora-

clean, Pubmed-noisy, Pubmed-clean, Corum, Disgenet datasets, respectively. The number of

GNN layers is set as 1. The number of adaptation steps are set to 5 for all datasets. The

dimension of node/hyperedge embeddings are set as 64.

For baseline methods, the hyper-parameters are empirically optimized based on the litera-

ture. For joint training, we set the weighting parameters α, β to be equal to 1 in Eq. (6.10).

For Hyper-SAGNN, DHNE, SAGE, and Joint Training methods, we train them using Adam

optimization method as well. The learning rate are set as 0.001 with learning rate scheduler.

The dimension of node/hyperedge embeddings is set as 64. Other baseline hyper-parameters

are set either based on the validation set or original literature guidance.

Effectiveness Results on Public Datasets. The results for hyperedge classification are

presented in Table 6.6. The metric is the multi-class classification accuracy, and the results

are mean and standard deviation values over ten runs. All supervised methods share the

same training, validation, and testing ratio of 6:2:2. The best results are shown in bold fonts,

and the second best results are shown with underlines. We adopt the two-GNN module for

the inductive setting (no Ada. in Table 6.6), and one-GNN module for the transductive

setting (Ada. in Table 6.6). The GNN module here is GIN. Both exponential and uniform

sampling methods are evaluated (shorted as Exp. and Uni. in Table 6.6). For baselines,

Hyper-SAGNN, SAGE, DHNE and Joint Training use the inductive setting. Joint Training

is a proposed baseline which trains the two pretext tasks together with the downstream task
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Table 6.6: Accuracy of hyperedge classification (mean± std in %). Bold and underline values
indicate the best and the 2-nd best performance respectively. We also conduct a significance
test. For all the tables, •/∗ indicates the result is significantly better/worse than the 2-nd
best/the best model with p-value < 0.01, and ◦ indicates no significant difference.

Models Cora-noisy Cora-clean Pubmed-

noisy

Pubmed-

clean

Corum Disgenet

DHNE 69.85±1.01 72.48±0.52 78.65±1.59 83.23±0.74 53.11±1.39 30.35±0.83
Hyper-SAGNN 66.94±2.12 67.81±1.25 83.20±2.00 83.82±0.62 79.64±0.29 31.74±0.06
SAGE 72.51±1.78 76.01±1.48 83.37±2.32 78.84±1.88 56.22±2.43 18.31±1.37
Joint Training 70.84±0.67 81.65±1.16 85.39±1.48 86.45±0.98 76.85±0.77 34.02±1.28
DW 73.39±1.64 81.66±1.41 82.73±1.70 88.54±0.62 67.35±2.18 29.07±1.45
Deep-

Hyperedge

74.35±0.64 72.66±0.93 64.33±0.71 81.58±1.01 82.74±1.64 35.46±1.08

HyperGRL

(Uni., no Ada.)

77.98±1.81
•

86.41±1.62
•

85.18±0.68
◦

88.21±1.51
◦

84.07±0.70
•

33.23±1.45
∗

HyperGRL

(Exp., no Ada.)

77.68±2.67
•

81.74±1.14
◦

86.29±1.50
•

87.81±0.49
∗

84.49±0.47
•

34.10±0.83
∗

HyperGRL

(Uni.)

74.53±1.31
•

83.86±3.55
•

85.52±0.95
◦

87.23±0.96
∗

84.31±0.99
•

35.05±0.49
◦

HyperGRL

(Exp.)

78.78±1.28
•

83.77±1.62
•

86.94±0.73
•

90.84±0.29
•

85.33±1.09
•

33.90±2.26
∗

in a joint loss. DW and Deep-Hyperedge use the transductive setting.

From the table, we make the following observations. First, for the inductive setting,

HyperGRL significantly outperforms all baselines on all datasets (by up to 5.69%), and for

the transductive setting, HyperGRL significantly outperforms all baselines on five out of six

datasets by up to 4.75%. The framework with adaptation-aware pre-training outperforms

the traditional pre-training method in five out of six datasets. The exponential sampling

method is competitive with the uniform negative sampling method when no adaptation

stage is used, but it shows improvements when adaptation-aware pre-training is applied.

The performance of the joint training model is competitive compared with the baselines.

Among the baselines, Deep Hyperedge, Hyper-SAGNN and Deepwalk have relatively better

performance over the rest of the baseline methods, because DHNE is originally designed for

hyperlink prediction. Note that Deep Hyperedge requires hyperedge association as input.

HyperGRL does not use such information in downstream tasks, but still outperforms Deep

Hyperedge in five datasets, and is also competitive on Disgenet. For Disgenet, the relatively

low accuracy is mainly due to the highly imbalanced data with 21 hyperedge categories.

Ablation Study. First, we compare the hyperedge classification performance by using

different GNN modules in our framework. For all the different versions of GNN modules,
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Table 6.7: Ablation study on bi-level self-supervised pretext tasks (mean ± std in %)

Models Cora-noisy Cora-clean Pubmed-

noisy

Pubmed-

clean

Corum Disgenet

No Pre-train 69.12±0.48 81.48±1.24 84.40±1.53 84.60±2.49 78.25±0.13 32.76±1.54

Only Node 74.23±0.84 82.27±1.25 85.04±0.37 86.84±1.94 82.52±2.14 33.75±1.70

Only Hyperedge 73.24±1.53 82.78±1.30 86.29±1.36 85.67±0.38 84.17±1.56 33.40±0.65

HyperGRL (Exp.) 78.78±1.28

•
83.77±1.62

•
86.94±0.73

◦
90.84±0.29

•
85.33±1.09

•
33.90±2.26

◦

Table 6.8: Accuracy of hyperedge classification for different GNN module (mean ± std in
%)

Models Cora-noisy Cora-clean Pubmed-

noisy

Pubmed-

clean

Corum Disgenet

GCN (Uni.) 75.58±0.98 82.09±1.26 83.59±0.63 85.96±2.27 65.23±0.48 32.36±0.44
GCN (Exp.) 76.88±2.08 84.65±3.32 84.14±1.62 86.06±1.94 83.34±0.25 32.84±0.18
SAGE (Uni.) 75.28±0.69 80.68±0.94 83.89±1.27 86.15±2.71 64.98±0.45 33.33±0.79
SAGE (Exp.) 75.52±1.01 81.04±2.09 85.18±0.86 86.94±0.32 66.03±0.28 31.69±0.21
GAT (Uni.) 73.12±2.56 81.31±0.24 84.15±1.49 86.74±2.67 82.70±2.47 31.89±2.38
GAT (Exp.) 71.21±0.72 80.15±1.68 84.79±0.72 88.49±0.72 85.75±1.29 29.89±1.48
GIN (Uni.) 74.53±1.81

∗
83.86±3.55
∗

85.52±0.95
•

87.23±0.96
∗

84.31±0.99
∗

35.05±0.49
•

GIN (Exp.) 78.78±1.28
•

83.77±1.62
∗

86.94±0.73
•

90.84±0.29
•

85.33±1.09
∗

33.90±2.26
•

we apply the adaptation-aware pre-training strategy, and the exact same hyper-parameters

for the rest of the framework. The results are shown in Table 6.8. The results are the

mean and standard deviation values of ten runs. We can see that the GIN module overall

shows the best performance over the rest of the GNN modules in our framework for the

hyperedge classification task. Also, for the same GNN module, we can see that generally the

exponential negative sampling method outperforms the uniform negative sampling method.

Second, we conduct the ablation study on the transductive hyperedge classification per-

formance for bi-level self-supervised pretext tasks (Table 6.7). We apply HyperGRL without

any pre-training stage (the first row), with only node-level self-supervised pretext task (the

second row), and with only hyperedge-level self-supervised pretext task (the third row). We

can observe that the HyperGRL framework with bi-level self-supervised pretext tasks shows

the best performance, which demonstrates the effectiveness of both levels of self-supervised

pretext tasks.

Parameter Sensitivity Results. Here, we study the hyper-parameter sensitivity of our

proposed framework. First, we show the results of the sensitivity of the number of clusters
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Figure 6.13: Accuracy (±std) vs. # of clusters in Hyperedge-level pretext task on Corum
dataset.

in the hyperedge-level pretext task in Figure 6.13. Note that we use the same model archi-

tecture with one-GNN module for all experiments in this subsection. The experiments are

conducted in both inductive and transductive settings, with both uniform and exponential

negative sampling methods. We observe that: (1) the framework shows relatively stable per-

formance on a large range of the number of clusters; and (2) the proposed framework that

uses the adaptation-aware pre-training strategy overall shows more stable performance com-

pared with the framework that does not use the adaptation-aware pre-training. Exponential

sampling with adaptation-aware training generally has the best stability. This indicates that

the bi-level adaptation-aware pre-training framework has a better adaptation ability for the

downstream task. Second, the results of hyperedge classification accuracy vs. the number

of adaptation steps are shown in Figure 6.14. The results demonstrate slight performance

drop but relatively stable over the tested adaptation steps in the range of [1, 20] for both

exponential and uniform negative sampling methods.

Efficiency Results. We compare the efficiency of the adaptation-aware pre-training strat-

egy with the traditional pre-training method as we describe in Subsection 6.2.2. The running

time comparison of the pre-training stage is presented in Figure 6.15. For both methods, the

number of node-level pre-training is set equal utill convergence. The number of adaptation

steps for adaptation-aware pre-training method is set to 5, which is the same as the setting in

effectiveness evaluations. As we can see, adaptation-aware pre-training significantly reduces

the pre-training time by 38.2% with Exp. sampling and 42.8% with Uni. sampling. Besides,

as we adopt local sampling in the uniform negative sampling method, the running time for

uniform negative sampling achieves ∼7 times reduction compared with exponential negative
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Figure 6.14: Accuracy (±std) vs. # of adaptation steps on Cora-clean (left) and Pubmed-
clean (right) dataset.

sampling.

Additional Experimental Results. We present the experimental results on the four

variants which we discuss in Table. 6.9. Compared with HyperGRL with exponential

negative sampling, the Variant-I with two GNN modules in transductive setting achieves

slightly better performance in Cora dataset. Variant-II and Variant-III with different node-

level/hyperedge-level pretext task objectives could not improve the performance of Hyper-

GRL. Variant-IV with tree expansion could also not achieve improvements over original

methods. Further sophisticated model architectures and variants are left for future work.

Figure 6.16 shows the parameter sensitivity of the number of clusters on Cora-clean dataset.

Similar to the observations from Figure 6.13, Figure 6.16 shows that the framework has rel-

atively stable performance on a large range of the number of clusters; and using exponential

negative sampling method with adaptation-aware pre-training strategy overall has stabler

performance compared with using uniform negative sampling without the adaptation-aware

pre-training.

6.3 A CASE STUDY: INCONSISTENT VARIATION FAMILY DETECTION

In this section, we introduce a real-world application of the proposed model on the incon-

sistent variation family detection problem in a large online store, and show that how the

proposed pre-training strategy can help improve a base classification model (without pre-

training) as well as other baselines which do not use pre-training, even when direct hyperedge

associations are not available (i.e. hyperedges do not share nodes).
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Figure 6.15: Running time comparison of the pre-training stage for traditional and
adaptation-aware pre-training stragety.

Table 6.9: Comparison of transductive hyperedge classification performance for model vari-
ants

Models Cora-noisy Cora-clean Pubmed-

noisy

Pubmed-

clean

Corum Disgenet

Variant-I 78.97±3.69 84.13±2.65 84.72±1.22 88.20±0.68 84.65±0.05 33.00±2.69

Variant-II 76.20±2.21 81.84±0.65 83.25±0.66 87.42±1.24 82.98±1.81 30.72±0.76

Variant-III 74.17±1.82 82.19±2,16 85.09±0.92 88.11±0.90 83.12±0.31 31.54±2.39

Variant-IV 76.56±1.43 82.64±0.39 85.56±0.39 87.32±0.97 68.24±1.41 32.15±2.10

HyperGRL (Exp.) 78.78±1.28

◦
83.77±1.62

∗
86.94±0.73

•
90.84±0.29

•
85.33±1.09

•
33.90±2.26

•

6.3.1 Preliminaries and Experimental Setup

Preliminaries. Large E-commerce services such as Amazon, Etsy, and eBay often utilize

merchandise relationships such as variations and substitutes to improve their catalog quality.

These relationships between merchandise items are the cornerstone in the field of relationship

science.

Variation family refers to a family of product items which are functionally the same but

differ in specific attributes. Such variation families are present in the same detail page.

For example, in Figure 6.17 the correctly grouped ‘Nike Air Max 270 React’ shoe family is

shown in one detail page. All items inside this family are this particular model but have

different sizes and colors. The grouping attributes of a variation family are shared by all

items inside the variation family (e.g., brand ‘Nike’), and the variation theme attributes are

attributes which differ from item to item inside the variation family (e.g., size and color).
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Figure 6.16: Accuracy (±std) vs. # of clusters in Hyperedge-level pretext task on Cora-
clean dataset

When variation families contain inconsistent items (e.g., an Adidas shoe is grouped into the

variation family in Figure 6.17), they are called inconsistent variation family (IVF). One of

the most important tasks in the catalog system is the IVF detection.

In order to solve this problem, each variation family can be regarded as a hyperedge, in

which every item should belong to the same merchandise if it is a consistent family. Then,

this specific problem is transformed into hyperedge classification problem. As for the pretext

tasks, we adopt a task called variation theme learning, which is defined as:

Definition 6.3. Variation Theme Learning: Given a set of variation families (hyper-

graph G = (V , E ,F(n)) with E = {e1, ..., em}), the Variation Theme Learning aims at learning

the variation theme attributes and grouping attributes of the families (i.e. learning which

columns of F(n) correspond to grouping/variation theme attributes).

Note that variation families are independent, which makes the direct hyperedge associa-

tions unavailable. Most baselines from Section 6.2.3 become inapplicable, such as SAGE,

DW, Deep-Hyperedge, and DHNE. Our idea is to transform this problem as a hyperedge

multi-label classification problem since variation families (hyperedges) might have multiple

Table 6.10: Statistics of Datasets for Case Study

Name # of families # of items # of unique items
Category 1 1,186 64,752 9,540
Category 2 2,169 48,860 8,474
Category 3 4,247 138,662 21,131
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Table 6.11: Results of IVF classification for case study (mean ± std in %)

Dataset Category 1 Category 2 Category 3

Metric AUC-I AUC-C AUC-I AUC-C AUC-I AUC-C

Hyper-

SAGNN

56.12±1.19 88.87±0.93 58.72±1.94 89.81±1.64 70.26±1.12 88.47±0.78

Hyper-

SAGNN,

pre-train

60.26±1.42 90.12±0.38 59.82±0.55 89.57±0.21 72.17±0.34 90.17±1.42

HyperGRL,

no pre-train

60.51±0.89 90.32±0.88 58.09±0.57 89.64±0.79 71.50±1.49 89.80±1.72

Joint Training 62.80 ±1.33 90.99±0.78 56.73±1.41 89.55±0.82 71.50±1.52 89.80±1.39
HyperGRL,

pre-train

64.06±1.27
•

90.74±1.40
◦

59.42±1.78
◦

89.84±0.70
◦

74.32±0.81
•

90.62±1.53
•

HyperGRL,

pre-train +

self-ada.

61.86±1.32
◦

90.31±1.80
◦

61.73±1.24
•

90.42±1.74
•

75.42±2.01
•

90.32±1.85
◦

grouping/variation theme attributes. Due to the fact that the labels of grouping/variation

theme attributes are available in our catalog system for variation family datasets, this pre-

text task in the pre-training stage could be supervised. During training, the hyperedge

representation produced by HyperGRL is first used for the multi-label supervised pretext

task (variation theme learning), and then the model is fine-tuned by the IVF detection task7.

IVF detection task has binary labels indicating consistent and inconsistent families (binary

classification).

Experimental Setup. We sample subsets of three product lines from the catalog system,

named Category 1, Category 2, and Category 3. Some details of these datasets are show in

Table 6.10.

The proposed method we select for this experiments is HyperGRL with supervised pre-

training task, and HyperGRL with supervised pre-training task plus self-supervised node-

level adaptation. Here the supervised pre-training task denotes variation theme learning. For

comparison, we use three strong baselines, including the joint training method, which jointly

trains the pretext task (variation theme learning task) with the targeted IVF classification

(denoted as ‘Joint training’ in Table 6.11), HyperGRL model without pre-training stage, and

the Hyper-SAGNN model with and without the help of our proposed pre-training strategy.

Note that the original Hyper-SAGNN is not a pre-training model. We modify the model to

adapt it in our pre-training framework as a strong baseline. Besides the above adaptation,

7As suggested by [188], these two tasks are highly likely to be positively correlated. Briefly, inconsistent
variation families contain inconsistent items with different distributions of grouping attributes compared
with other items, and vice versa.
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Figure 6.17: An example of correctly grouped variation family with variation theme at-
tributes, and an inconsistent item.

we apply the pre-trained Glove embeddings [199] for text features of items.

The metric for this experiment is the PR-AUC for predicting inconsistent variation family

(IVF) and consistent variation family (CVF), denoted as AUC-I and AUC-C respectively in

Table 6.11. The results are reported based on the average of five runs.

6.3.2 Results on Datasets of Product Lines

As shown in Table 6.11, first we can see that by using the supervised pretext task (the

last three rows), the model performances are consistently better than those without pre-

trained pretext task in all product lines. Second, for both methods using pretext task,

the pre-training strategy outperforms the joint training strategy by AUC-I metric and they

are very close by AUC-C metric. The Hyper-SAGNN with the adapted pre-training stage

also has relatively competitive performance compared with the proposed HyperGRL model.

This indicates that in this real-world application of hyperedge classification, pre-training can

indeed improve the base model as well as baseline method, and pre-training is generally a

better training strategy than joint training. Third, by utilizing the adaptation stage with the

node-level self-supervised pretext task (the last row), the model is able to further improve the

AUC-I performance on Categoty-2 and Category-3 product lines, which demonstrates the

effectiveness of the adaptation-aware pre-training of HyperGRL in this application scenario.
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CHAPTER 7: CONCLUSION AND FUTURE DIRECTIONS

In this chapter , we summarize the major contributions of our research in this thesis, and

then discuss the future directions in multi-network association.

7.1 SUMMARY OF THESIS WORK

In this thesis, we study the problem of multi-network association, and develop a variety of

algorithms for resolving general pairwise and high-order multi-network association problems

and their corresponding novel applications. According to our taxonomy of the problems and

the technique types, four major contributions can be drawn from the thesis.

Task 1. Pairwise Association with Numerical Techniques. For the problem of

pairwise association, on one hand, we have developed a family of Krylov subspace based

algorithms (FASTEN [25]) to speed up and scale up the computation of Sylvester equation

for graph mining. The key idea is to project the original equivalent linear system onto a

Kronecker Krylov subspace. Based on that, we develop the following methods to further

reduce complexity, including (1) implicitly representing the solution based on its low-rank

structure, and (2) decomposing the original Sylvester equation into a set of small-scale, inter-

correlated Sylvester equations. Two of the proposed algorithms have linear time and space

complexity. Numerous experiments on real-world data show that the FASTEN family of

algorithms (1) produce the exact solution, (2) are up to more than 10, 000× faster than the

best known method, and (3) scale up to million-node graphs in about 100 seconds.

On the other hand, we study the interactive attributed subgraph matching problem and

develop a family of efficient and effective algorithms (FIRST [17]) to address this problem

according to different interactive scenarios. Specifically, we first recast the problem as a cross-

network node similarity problem and show that the computation can be sped up by exploring

the smoothness between initial and revised queries. We develop FIRST-Q and FIRST-N

to handle the scenario where only node attribute is available, and FIRST-E to handle the

scenario where both node and edge attribute are available. Numerous experiments on real

world data show that our method lead up to 16× speedup with more than 90% accuracy.

Task 2. Pairwise Association with Neural Techniques. First, we generalize the tra-

ditional Sylvester equation and develop Sylvester Multi-Graph Neural Network (SyMGNN

[27]), which overcomes the limitations of the Sylvester equation. Second, we design a sim-

plified GNN model with only user feature aggregation and interest propagation for social

recommendation. Furthermore, we leverage both positive and negative samples for users’
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preference diffusion between the representations of users and items in order to learn more

compatible embeddings. Lastly, we propose a generative negative sampling approach to in-

terpolate hard negative samples for improving model’s ability of generalization. Empirical

results show that the proposed model significantly outperforms the state-of-the-art GNN-

based models [28].

Task 3. High-order Association with Numerical Techniques. For the high-order

association, we formulate the multi-way association inference problem as a convex optimiza-

tion problem, and show that it can be solved optimally by a Sylvester tensor equation. We

propose two fast algorithms (SyTE [15]) to solve this Sylvester tensor equation on both plain

and attributed networks, with a linear complexity w.r.t. the size of input networks. Exten-

sive empirical evaluations demonstrate (1) the effectiveness on a variety of multi-network

mining tasks (e.g., multi-network alignment, multi-network node retrieval and high-order

recommendation), and (2) the linear scalability of the proposed methods.

Task 4. High-order Association with Neural Techniques. We first study the multi-

resolution multi-network embedding problem and develop efficient and effective algorithms

(MrMine and MrMine+ [26]) to simultaneously learn the embeddings of multi-resolution

multi-network objects in the same space. Specifically, we capture the context of such ob-

jects can be captured by the Cross-Resolution Cross-Network (CRCN) relation network. We

then introduce a basic algorithm (MrMine) to construct such network, and an acceler-

ated algorithm (MrMine+) which explores a more complex structure of the CRCN relation

network (i.e. H-CRCN relation network) for reducing the time complexity. Numerous ex-

periments on real-world data show that (1) our methods lead up to 19.71%, 28.20%, and

5.08% increase of accuracy in traditional network alignment, collective network alignment,

and network classification, respectively; (2) our method can scale up to over 1M-node net-

works. Next, we study the problem of hypergraph representation learning, and propose an

end-to-end hypergraph pre-training framework HyperGRL [29]. It incorporates bi-level self-

supervised pretext tasks, and enables both transductive and inductive learning. HyperGRL

does not require extra domain-specific datasets, and is adaptation-aware, which makes the

pre-trained model more adaptive to downstream tasks compared to traditional pre-training

methods. Extensive experiments demonstrate that: (1) HyperGRL shows significant im-

provements of downstream task performance and stability over baselines; (2) HyperGRL is

efficient compared with traditional pre-training methods; (3) the proposed framework shows

great applicability in real-world applications of online stores.
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7.2 FUTURE DIRECTIONS

Multi-network mining is an active research field in data mining. Here, we provide several

research directions which are beyond the scope of this thesis.

A - Active Multi-network Association/Embedding. Human-in-the-loop is an impor-

tant aspect of Artificial Intelligence for robust machine learning/data mining model design.

The motivation of active multi-network association/embedding is to let human interact with

multi-network models, and the goal is to find the most informative node (set) for query

in order to maximize the downstream task performance for the rest of the nodes. The first

challenge is how to define and quantify node (set) information for query and the second chal-

lenge is how to identify such informative node (set). For active learning on multi-network

embedding, previous work on applying active learning (AL) on network data, especially

multi-network data is tightly coupled with traditional classification models such as Gaussian

random fields, but the features of nodes are not used. AL models which utilize recent GNN

architectures are still limited. Two possible directions on informativeness measure include

a matching distribution-based certainty measurement [200] and an influence function based

measurement [201] for the node (set) informativeness. Furthermore, two promising future

directions for multi-network embedding with AL include combining AL with multi-network

GNN models, and leveraging multi-armed bandit methods for active node selection strate-

gies.

B - Adversarial Multi-network Association/Embedding. Existing adversarial at-

tacks on network alignment are based on derivative-based importance score but very limited

works exist on adversarial defense. On multi-networks, the complex data structure and the

large data scale might further complicate the defense process compared to single network

scenario. One future direction is to apply adversarial training for multi-network alignmen-

t/association tasks. For adversarial multi-network embedding, there are some pilot works

on adversarial network embedding on single and simple networks (e.g., [202]). However, the

multi-network structure complicates the embedding generation and discrimination. Another

possible future direction is to combine the multi-network GNN model with the adversarial

training to improve the robustness of embedding on multi-networks. Thanks to the gen-

erality of multi-network association and embedding, many applications could be benefited

from the adversarial multi-network association/embedding technique, such as adversarial

multi-network alignment, adversarial multi-network clustering/classification, etc.

C - Temporal Multi-network Association/Embedding. Real-world data is ever-

changing overtime. Still, dynamic multi-network association/embedding-based methods are

underexplored. A natural extension of multi-network mining algorithm is temporal multi-
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network mining such as temporal multi-network association and embedding. However, direct

application of static method onto temporal multi-network data is costly, since a static model

needs to be re-trained at every time stamp. So, how to improve the efficiency without re-

training the model from scratch is one major challenge. Another challenge is how to leverage

the dynamics. For example, how to utilize the representation smoothness in dynamic multi-

network data. For future directions, the first direction is to utilize matrix approximation,

which is often used for dynamic algorithms to avoid unnecessary re-computation. The second

direction is to leverage the mechanism of sequential models into discovering the dynamics of

multi-network data, such as the Recurrent Neural Network (RNN)-based models [203], the

Transformer [204], etc.

D - Hypergraphs for Recommender Systems. The multi-network data model, which

models the high-order node relations, can also be used in the recommender system. For

example, hypergraphs can be used for bundle/high-order recommendation. Here, the goal

is to recommend a set of items to users (i.e., bundle recommendation [205]) or recommend

items to a group of users (i.e., group recommendation [206]). Recently, hypergraphs are also

adopted in the social recommendation task [78]. The major challenges of utilizing multi-

network models in recommender systems are two-fold. First, how can we construct the

hypergraphs from the data for item bundles/user sets in order to preserve the high-order

node topology information? Second, how can we effective model the high-order relation of

hypergraphs in the recommendation task? Two potential directions are as follows. First,

the problem could be simplified by dividing the process of hypergraph generation with the

recommendation task, in which the hypergraph generation could often be conducted offline in

an unsupervised style. Second, the items and users could be grouped together as hyperedges,

and the group generator could be learned simultaneously with the recommendation task.

Thus the model is also capable of generating new item bundles to a set of users.

E - Beyond Multi-network Association. Beyond the multi-network association problem,

multi-network mining contains rich research topics. For instance, the topic of multi-network

data model studies how to effectively represent complex real-world data with the assist

of various multi-network data models for further mining. Representative multi-network

data models include multi-view networks, multiplex networks, inter-dependent networks, and

network of networks (NoN), etc. Multi-network mining also benefits numerous applications

which use multi-network data. In the future, one interesting direction is to explore and

create novel multi-network data models based on real-world application. Another direction

is to improve the novel application performance by leveraging existing multi-network data

models from the exact opposite direction.
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