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ABSTRACT

Cancer consists of genetically heterogeneous populations of cells that arise

through a process of subclonal evolution. Reconstructing the evolutionary

processes that give rise to cancer can help us better understand cancer pro-

gression and prioritize treatment targets. The subclonal reconstruction of

cancer gives us the information about the co-occurrence of mutations within

the same subclone, the underlying proportion of cells belonging to each sub-

clone, and the ancestral relationships between them. The evolutionary pro-

cess can be described by inferring tumor phylogenetic trees. The majority of

current approaches focus only on either mutation clustering or tree inference

in isolation, or rely on computationally expensive algorithms to holistically

consider clustering and tree inference concurrently.

In this dissertation, we formalize the problem of reconstructing subclonal

structure for cancer via probabilistic modeling. Using variant and total read

count obtained from bulk DNA sequencing data as input, we introduce a

tree-constrained binomial mixture model and an expectation-maximization

(EM) method to estimate the clustering assignment for each mutation and

the underlying frequency for each cluster. Our EM algorithm employs a linear

programming approach to accurately maximize the likelihood bound subject

to tree constraints. We choose the optimal tree topology by repeating the

process across all possible tree topologies. Compared to existing work, the

resulting ClusTree algorithm more accurately identifies mutation clusters,

estimates frequencies for each cluster, and detects the proper tree topology,

especially for low-depth sequencing data.
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CHAPTER 1

INTRODUCTION

Cancer is a complex disease associated with evolutionary processes where

somatic mutations accumulate and drive tumor growth over time [1]. Tumors

often consist of a variety of genetically diverse subclonal populations of cancer

cells. This intra-tumor heterogeneity [2, 3, 4] is a major reason to cause

therapeutic resistance and treatment failure, which makes cancer one of the

leading causes of death globally [5]. Thus, characterizing this intra-tumor

heterogeneity provides key insights to understanding how cancer progresses

and to treating cancer in a comprehensive way.

Reconstructing subclonal structures for cancer consists of several sub-

problems: detecting the mutations that co-occur within the same subclone,

estimating the underlying cell proportion for each subclone, and identifying

the ancestral relationships between subclones. We use tumor phylogenetic

trees to represent the subclonal structures of tumors.

Recent high-throughput molecular sequencing technologies allow us to

study the subclonal reconstruction. A standard type of data for this study is

bulk DNA sequencing data. Sequencing bulk samples from tumors provides

the information about somatic mutations. These consist of single nucleotide

variants (SNVs), insertions and deletions of DNA base pairs. These ob-

served variant and reference read counts in bulk DNA sequencing originate

from unknown tumor subclones mixed in unknown proportions, each with

an unknown complement of SNVs. The resolution of these mixed samples is

inherently limited, and this makes the inference of the subclonal structure

harder.

Many advanced computational methods have been developed to tackle the

subclonal reconstruction problems using bulk DNA sequencing data. How-

ever, current algorithms still have plenty of limitations. Multiple solutions

from tumor phylogenetic tree inference are consistent with input DNA se-

quencing data, which leads to a large solution space including equally plau-
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sible trees [6]. In addition, most of phylogenetic tree inference algorithms

are hard to scale to tumor phylogenetic trees where there are a large number

of subclones. Another issue is that many tumor phylogenetic tree inference

methods usually are not standalone by highly depending on the output of

other existing approaches. For example, some of phylogenetic tree inference

methods take mutation clusters as input, which are obtained from other inde-

pendent mutation clustering algorithms. They cannot control the quality of

clustering, and the propagation of the incorrect information about clustering

can have a negative impact on the overall performance of the methods.

In this dissertation, we introduce a probabilistic method, ClusTree, uti-

lizing variant and total read count from bulk DNA sequencing data to per-

form the reconstruction of a subclonal structure for cancer. The method

is based on a tree-constrained binomial mixture model and an expectation-

maximization (EM) algorithm to cluster mutations and estimate the under-

lying frequency for each cluster. Our EM algorithm employs a linear pro-

gramming approach to accurately maximize the likelihood bound subject to

the constraints imposed by an underlying tree topology. By repeating this

process across all possible tree topologies, we find the clustering assignment,

the frequency of each cluster, and the tree topology at the maximum like-

lihood. We demonstrate on simulation datasets that ClusTree outperforms

previous methods in the context of clustering mutations and inferring pair-

wise relationships between mutations in a tumor phylogenetic tree. Next, we

consider a real dataset from an acute myeloid leukemia (AML) patient from

Griffith et al. [7]. We create low-depth sequencing datasets by downsam-

pling the original AML data. ClusTree generates better clustering results,

compared to both clustering-only and joint methods. In addition, ClusTree

recovers the tumor phylogenetic trees reported in Griffith et al. [7] and finds

additional possible trees, while other baseline methods return a different set

of trees.

We first provide the information about the subclonal reconstruction prob-

lem including key concepts, datasets, and related work in Chapter 2. In

Chapter 3, we present the main algorithm, ClusTree, of this dissertation

with the details about the algorithm including the derivation. We analyze

the performance of ClusTree against multiple baseline methods using both

simulation and real datasets in Chapter 4. Last, we summarize the main

method and results, and present remaining future work in Chapter 5.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we discuss the background materials about reconstructing

subclonal structures for cancer. We first introduce the concepts and the

problem we are going to solve throughout this dissertation, followed by the

previous work that is related to this work.

2.1 Subclonal Reconstruction for Cancer

Clonal Evolution and Tumor Phylogenetic Tree According to the

clonal evolution theory [1], tumors initiate when normal cells acquire muta-

tions that grow rapidly and uncontrollably and become founder cells with

initial somatic mutations. Some of driver mutations can have growth ad-

vantage compared to other neighboring cells. And they lead to faster tumor

growth. This evolutionary process continues over time and leads to the intra-

tumor heterogeneity [2, 3, 4], a distinct population of tumor cells within the

same tumor (Fig. 2.1 (a)).

In order to know how cancer progresses, we need to understand the evolu-

tionary process and uncover the heterogeneous population structure of can-

cer. The evolution of cancer can be mathematically represented using a

tumor phylogenetic tree T (Figure 2.1(b)). T is a rooted tree whose edges

are directed away from the root vertex to represent the order of the process.

The root vertex typically corresponds to the normal cells, and other vertices

of T represent groups of cells, or clones. The leaf vertices correspond to

clones observed at the time of sequence sampling, and the internal vertices

represent ancestral clones. The edges of T represent the introduction of a new

mutation or mutation clusters. Thus, by inferring tumor phylogenetic trees,

we can detect which mutations are introduced together into the evolutionary

trajectories and know the phylogenetic relationships among subclones.
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The majority of current methods [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23] to infer tumor phylogenetic trees using DNA sequencing

data have been developed under the infinite site assumption [24] where each

mutation is gained only once and never lost during the evolutionary process.

The research work in this dissertation also adheres to this assumption. We

note that there is evidence that this assumption can be violated for some

circumstances [25]. The authors found that the same genomic position can

be mutated multiple times in individual tumors using 11 of 12 single-cell

datasets from various human cancers. They observed parallel mutations at

the same position, back mutations at the same site, and losses of mutations

through deletions. They said the infinite site assumption should be used

carefully.

2.2 Relevant Data and Related Work

Bulk DNA Sequencing Bulk DNA sequencing is typically used to obtain

tumor data from patients. The DNA fragments from this sequencing tech-

nique are mixed together since cells from a sequencing sample are processed

simultaneously. The sequencing reads from the cells are aligned to a refer-

ence genome. We obtain single nucleotide variants (SNVs) from the aligned

sequencing reads. At the position of each SNV, we can observe the num-

ber of reads that mismatch with the reference genome, which is variant read

count. The total number of reads is called total read count. Additionally, the

subtraction of variant read count from total read count is called reference

read count. The ratio between variant and total read count is variant allele

frequency (VAF). Those observed read counts or VAFs are used as input

when current methods infer tumor phylogenetic trees based on bulk DNA

sequencing data.

The tumor phylogenetic tree inference based on bulk DNA sequencing

tries to solve a mixture problem, given an input VAF matrix F whose rows

correspond to sequenced samples and columns correspond to mutations. The

frequency matrix F can be factorized into two matrices, U and B. The

matrix U is a mixture matrix where the entries of U represent a mixture

proportion of clones in each sample. The matrix B represents the assignment

of mutations into clones and is equivalent to a tumor phylogenetic tree. We
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introduce underlying constraints of U and B. Each entry of U should be

nonnegative, and the sum of each row should be less than or equal to 1.

The tree matrix B is a binary matrix whose entry is 0 or 1. Its important

property is that B is lower-triangular and invertible. The problem to find an

evolutionary model based on this matrix factorization F = UB is called the

perfect phylogeny mixture problem [15].

Based on the perfect phylogeny mixture F = UB and the underlying

constraints of U and B, we can obtain the following constraints called the

sum condition [10, 11, 13, 15]. For vertex v of T and its child vertices, the

sum condition is

fi,v ≥
∑

v′∈child(v)

fi,v′ (2.1)

where fi,v is the underlying frequency of vertex v in sequencing sample i, and

child(v) is a set of child vertices of v.

Using bulk DNA sequencing data, a number of methods have been devel-

oped to tackle the subclonal reconstruction problem. The majority of current

approaches focus on either mutation clustering or tree inference in isolation.

Methods such as PyClone [26], PyClone-VI [27] and SciClone [28] focus only

on detecting mutation clusters, without considering any evolutionary rela-

tionships between clusters. PyClone is based on a beta-binomial mixture

(or binomial mixture) model with a Dirichlet process prior [29] for clustering

mutations. It has been used in many applications, but its posterior inference

based on Markov Chain Monte Carlo (MCMC) sampling [30] is computa-

tionally expensive. In order to overcome the inefficiency, PyClone-VI is de-

veloped by replacing the MCMC sampling-based inference with variational

inference [31, 32]. This newer version resolves the scalability issue of the

original algorithm, but the accuracy can be decreased due to the approx-

imation. SciClone constructs a Bayesian mixture model based on several

underlying distributions (beta, binomial or Gaussian) and uses variational

inference for posterior estimation [33, 34]. These three methods are widely

used for clustering mutations in practice. However, they fail to accurately

infer clusters for low-depth bulk DNA sequencing data (20×), which needs

a guide of a tumor phylogenetic tree for better statistical inference based on

our experiments and Liu et al. [35].

Another line of methods has been developed to focus mainly on infer-

ring tumor phylogenetic trees given mutation clusters. There exist several

6



methods based on combinatorial optimization [9, 11, 13, 15, 36, 37]. They

explore a constrained space determined by the underlying phylogenetic tree

and enumerate all possible trees satisfying the constraints. However, since

they usually focus on enumerating the solution trees that are equally plausi-

ble, the choice of a single tree from the solution trees is ambiguous. Recent

probabilistic methods, ClonEvol [38] and Pairtree [18], also belong to this

category. These methods first reduce the size of the input data from the

number of mutations to the number of mutation clusters via a chosen muta-

tion clustering algorithm such as SciClone and PyClone-VI. ClonEvol uses a

bootstrap resampling to estimate the cellular fraction of each clone and model

the clonal ordering. Pairtree is based on Bayesian inference to estimate the

posterior distributions over the ancestral relationships between pairs. How-

ever, many of the methods still operate in the infinite site assumption which

imposes tree constraints on frequencies of mutation clusters ordered in a tree.

Also, the overall performance of tumor phylogeny inference highly depends

on the quality of the clustering method they choose.

There are joint methods to consider both mutation clustering and tumor

phylogeny inference, simultaneously. PhyloSub [10] and PhyloWGS [14] in-

troduce a binomial mixture model with a tree-structured stick breaking pro-

cess prior [39]. They depend on Markov Chain Monte Carlo (MCMC) sam-

pling for the posterior inference. Canopy [16] is based on non-informative

prior and searching a space defined by a mixture model using MCMC sam-

pling. The MCMC sampling-based inference of these methods is computa-

tionally expensive even for datasets of realistic size. PASTRI [17] is based

on importance sampling, which is guided by a proposal distribution Q ob-

tained from the output of an existing mutation clustering method such as

SciClone [28]. Using the frequency samples drawn from Q, PASTRI consid-

ers all the permutations that can satisfy the sum condition in Eq. 2.1 given a

tree topology. It is computationally faster than other joint methods, but its

performance highly depends on Q. The clustering-only method for Q is not

designed to satisfy the tree constraints, so PASTRI could have no solution for

some sets of frequency samples. This would be deteriorated when the num-

ber of sequencing samples increases, since the higher number of sequencing

samples makes more complicated feasible sets.

7



Single-cell DNA sequencing Single-cell DNA sequencing allows us to

sequence the genome in a individual cell level without any deconvolution.

While the data is promising to investigate the subclonal structure of tu-

mors [40, 41, 42], current technologies have challenges [43]. The physical

isolation of single cells is not trivial [41, 44, 45, 46], and the data contains

high rates of false positives and false negatives which occur from the process

of DNA amplification [47, 48, 49]. It includes a number of missing val-

ues [41, 50] due to the non-uniformity of amplification. Additionally, single-

cell DNA sequencing is still more expensive and harder to scale than bulk

DNA sequencing.

Even thought there are still limitations in this sequencing technique, re-

searchers have tried to use the data to infer subclonal structures of cancer.

Some methods focus on clustering cells into clones and inferring their geno-

types for each clone [51, 52]. SCG [51] develops a parametric model to esti-

mate the clustering assignment and its genotyping via mean-field variational

inference [53, 54]. BnpC [52] uses non-parametric Bayesian modeling based

on Chinese restaurant process [55] for clustering and genotyping.

Another line of methods focuses on inferring the phylogenetic relationship

among cells and providing the information about clustering and genotyp-

ing. SCITE [20] and OncoNEM [21] are based on probabilistic modeling.

They consider inferring tumor phylogenetic trees using single-cell DNA se-

quencing data by maximizing the likelihood. To find the maximum likeli-

hood, they depend on their search algorithm based on Markov chain Monte

Carlo or heuristics. While other methods stick to the infinite site assump-

tion, SiFit [56] is developed under a finite-site model to describe the cancer

evolution. SiCloneFit [57] combines a finite-site model of SiFit with non-

parametric mixture modeling based on tree-structured Chinese restaurant

process prior [58]. SPhyR [59] considers inferring a k-Dollo phylogeny by

restricting the Dollo parsimony model [60] to at most k losses. PhISCS-

BnB [61] introduces the branch and bound algorithm to efficiently explore

the combinatorial space to infer tumor phylogenetic trees using input single-

cell DNA sequencing data.

Some recent methods have tried to use the complimentary features of bulk

and single-cell DNA sequencing data by using them simultaneously for joint

statistical inference. ddClone [22] considers both types of data simultane-

ously in its Bayesian model for clustering. The information about Bulk DNA

8



sequencing is used in the likelihood of the model, and the information about

single-cell DNA sequencing is used in its prior. B-SCITE [23] is developed for

both clustering and inferring tumor phylogenetic trees by extending the idea

of SCITE [20]. B-SCITE defines a joint likelihood score that combines bulk

and single-cell DNA sequencing data, and it tries to maximize the likelihood

by searching the space based on Markov chain Monte Carlo. PhISCS [62]

uses combinatorial optimization that is based on integer linear programming

to infer tumor phylogenetic trees that slightly violate the infinite site as-

sumption from bulk and single-cell DNA sequencing data.

9



CHAPTER 3

A NEW PROBABILISTIC SUBCLONAL
RECONSTRUCTION METHOD

In this chapter, we introduce our probabilistic model, ClusTree, which per-

forms the reconstruction of subclonal structures of tumors. ClusTree is

based on a tree-constrained binomial mixture model and an expectation-

maximization (EM) algorithm to cluster mutations and estimate the under-

lying frequency for each cluster, using variant and total read count from bulk

DNA sequencing data as input (Fig. 3.1). Our EM algorithm employs a linear

programming approach to accurately maximize the likelihood bound subject

to the constraints imposed by an underlying tree topology. By repeating this

process across all possible tree topologies, we find the clustering assignment,

the frequency of each cluster, and the tree topology at the maximum like-

lihood. We demonstrate on simulation datasets that ClusTree outperforms

previous methods in the context of clustering mutations and inferring pair-

wise relationships between mutations in a tumor phylogenetic tree. Next, we

consider a real dataset from an acute myeloid leukemia (AML) patient from

Griffith et al. [7]. We create low-depth sequencing datasets by downsampling

the original AML data. ClusTree generates better clustering results, com-

pared to clustering-only and joint methods. In addition, ClusTree recovers

the tumor phylogenetic trees [7] and finds additional possible trees, while

other baseline methods show a different set of trees. In Section 3.1, we first

introduce the underlying generative model of ClusTree with a graphical rep-

resentation in Fig. 3.2. In Section 3.2, we describe the maximum likelihood

estimation framework we use to infer latent variables for the clustering as-

signment, center frequency of each cluster, and a phylogenetic tree topology.

In Section 3.3, we explain model selection that is used to select the number

of clusters. We explain the details about the implementation of ClusTree in

Section 3.4

10



F
ig

u
re

3.
1:

C
lu

sT
re

e
re

co
n

st
ru

ct
s

th
e

su
b

cl
on

al
p

op
u

la
ti

on
st

ru
ct

u
re

of
h

et
er

og
en

eo
u

s
tu

m
or

s.
(a

)
T

h
e

in
p

u
t

of
C

lu
sT

re
e

is
va

ri
an

t
an

d
re

fe
re

n
ce

re
ad

co
u

n
t

of
m

u
ta

ti
on

s
ob

ta
in

ed
fr

om
b

u
lk

D
N

A
se

q
u

en
ci

n
g

d
at

a
of

h
et

er
og

en
eo

u
s

tu
m

or
s.

U
si

n
g

th
e

re
ad

co
u

n
t

d
at

a,
C

lu
sT

re
e

(b
)

d
et

ec
ts

m
u

ta
ti

on
cl

u
st

er
s,

es
ti

m
at

es
th

e
u

n
d

er
ly

in
g

fr
eq

u
en

cy
of

ea
ch

cl
u

st
er

,
an

d
in

fe
rs

th
e

cl
on

al
tr

ee
th

at
re

p
re

se
n
ts

an
ce

st
ra

l
re

la
ti

on
sh

ip
s

b
et

w
ee

n
m

u
ta

ti
on

cl
u

st
er

s.
In

or
d

er
to

d
o

th
at

,
C

lu
sT

re
e

in
tr

o
d

u
ce

s
a

tr
ee

-c
on

st
ra

in
ed

b
in

om
ia

l
m

ix
tu

re
m

o
d

el
an

d
effi

ci
en

t
in

fe
re

n
ce

b
as

ed
on

an
ex

p
ec

ta
ti

on
-m

ax
im

iz
at

io
n

al
go

ri
th

m
.

11



3.1 Generative Model

ClusTree is based on a generative model to reconstruct subclonal structures

of tumors by inferring mutation clusters, their latent frequency, and an un-

derlying phylogenetic tree. We are given variant reads A = [ai,j] and total

reads D = [di,j] from bulk DNA sequencing data as input where ai,j and di,j

are the variant and total read counts for a single nucleotide variant j ∈ [n] in

a DNA sequencing sample i ∈ [m], respectively. We assume the n mutations

originate from ℓ clusters. Let C = [C1, · · · ,Cn]T be a random variable to

represent the clustering assignment of mutations, such that Cj ∈ [ℓ] indicates

the cluster that mutation j belongs to. Each cluster k of sequencing sample

i has latent frequency fi,k. The latent frequency is constrained by the under-

lying tumor phylogeny T , which is a rooted tree whose vertices corresponds

to one of the mutation clusters. The frequency of a parent vertex in T is

at most the sum of the frequencies of its child vertices, which is the sum

condition [10, 11, 13, 15] introduced in Chapter 2.2.

Our method considers the posterior probability of a tumor phylogenetic

tree T , given observed variant and total read counts, A and D. The posterior,

p(T |A,D) is proportional to the likelihood, p(A|D, T ) and the prior, p(T )

by Bayes’ theorem. By assuming the prior over T is uniformly distributed,

maximizing the posterior is equivalent to maximizing the likelihood. Given

a fixed tumor phylogenetic tree, we compute the likelihood by marginalizing

latent variables for the clustering assignment C and underlying frequency F.

The domain of C and F is determined by model selection of the number of

clusters and by the sum condition constrained by the fixed underlying tree,

respectively. We assume a binomial distribution as the underlying distribu-

tion of the mixture structure to generate variant read counts A.

p(T |A,D) ∝ p(A|D, T )p(T ) (3.1)

=

[ ∫
F

∑
C

p(A|C,F,D)p(C)p(F|T )dF

]
p(T ) (3.2)

= EFEC[p(A|C,F,D)]p(T ), (3.3)

where EX [·] is the expectation with respect to a random variable X. In

Fig. 3.2, we show our generative framework using a graphical model. For

indices i ∈ [m] and j ∈ [n], the observations [ai,j] and [di,j] are represented

12



Figure 3.2: ClusTree is based on a generative model for variant read counts
A using bulk DNA sequencing data. Given observed total read counts di,j,
variant read counts ai,j for mutation j in sample i is generated by a
binomial mixture model with a parameter Cj for the clustering assignment
of mutation j and a parameter fi,Cj

for the underlying frequency of cluster
Cj. The latent frequency Fi for each sample i respects the sum condition,
determined by the underlying tree topology T . The choice of T is uniformly
determined among the possible tree topologies, which is determined by the
choice of the number ℓ of clusters.
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as shaded circles, while the latent variables Fi, Cj, and T are represented as

circles. The hyperparameter ℓ is a user-specified value.

3.2 Maximum Likelihood Estimation

Computing the likelihood is time-consuming, since it requires the marginal-

ization with respect to the clustering assignment C and latent frequency

F in a constrained space defined by a fixed tree topology. To avoid the

expensive computation, we consider the lower bound of the log-likelihood,

log p(A|D, T ) by applying Jensen’s inequality.

We derive a lower bound of the logarithm of our likelihood, logEFEC[p(A|C,F,D)],

by applying Jensen’s inequality twice.

logEFEC[p(A|C,F,D)] (3.4)

≥ EFlogEC[p(A|C,F,D)] (3.5)

= EF

[
log

n∏
j=1

ℓ∑
k=1

p(Cj = k)
m∏
i=1

Bin(ai,j|di,j, fi,Cj
)

]
(3.6)

= EF

[ n∑
j=1

log
ℓ∑

k=1

πk

m∏
i=1

Bin(ai,j|di,j, fi,k)

]
(3.7)

= EF

[ n∑
j=1

log
ℓ∑

k=1

γj,k
πk

∏m
i=1 Bin(ai,j|di,j, fi,k)

γj,k

]
(3.8)

≥ EF

[ n∑
j=1

ℓ∑
k=1

γj,klog
πk

∏m
i=1 Bin(ai,j|di,j, fi,k)

γj,k

]
(3.9)

= EF

[ n∑
j=1

ℓ∑
k=1

(
γj,k logπk

m∏
i=1

Bin(ai,j|di,j, fi,k)− γj,klog γj,k

)]
, (3.10)

where Bin() represents a binomial distribution, πk represents the mixture

proportion for each cluster k ∈ [ℓ], and γj,k denotes the posterior probability

that mutation j ∈ [n] belongs to cluster k ∈ [ℓ]. The sum of the mixture

proportion and the sum of posterior probabilities for all mutations j’s are 1.

That is,
∑ℓ

k=1 πk = 1 and
∑ℓ

k=1 γj,k = 1.

Since the marginalization over F is computationally expensive in Eq. 3.10,

we consider the maximization of the lower bound with respect to fi,k and
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other latent variables πk and γj,k where i ∈ [m], j ∈ [n] and k ∈ [ℓ]. That is,

max
fi,k,πk,γj,k

n∑
j=1

ℓ∑
k=1

(
γj,k logπk

m∏
i=1

Bin(ai,j|di,j, fi,k)− γj,klog γj,k

)
. (3.11)

We apply the augmented Lagrangian method [63, 64] to solve the optimiza-

tion problem. The Lagrangian function L(F, γ, π, λ, α) is as follows:

L(F, γ, π, λ, α) =
n∑

j=1

ℓ∑
k=1

(
γj,k logπk

m∏
i=1

Bin(ai,j|di,j, fi,k)− γj,klog γj,k

)

+ λ

( ℓ∑
k=1

πk − 1

)
+

n∑
j=1

αj

( ℓ∑
k=1

γj,k − 1

)
.

(3.12)

where λ and αj for j ∈ [n] are the Lagrangian multipliers for each constraint.

We compute the gradient of L(F, γ, π, λ, α) with respect to πk, γj,k, λ and

αj.

∂L

∂γj,k
= logπk

m∏
i=1

Bin(ai,j|di,j, fi,k)− log γj,k − 1 + αj (3.13)

∂L

∂πk

=
n∑

j=1

γj,k
πk

+ λ (3.14)

∂L

∂λ
=

ℓ∑
k=1

πk − 1 (3.15)

∂L

∂αj

=
ℓ∑

k=1

γj,k − 1. (3.16)

We set the gradients to 0 to obtain optimal values.

γj,k = e

[
logπk

∏m
i=1 Bin(ai,j |di,j ,fi,k)

]
eαj−1 (3.17)

πk = −1

λ

n∑
j=1

γj,k (3.18)

ℓ∑
k=1

πk = 1 (3.19)

ℓ∑
k=1

γj,k = 1. (3.20)

15



By combining Eq. 3.17 - Eq. 3.20, we obtain the closed form solutions for

updating the latent variables γj,k and πk as the followings,

γj,k =
πk

∏m
i=1 Bin(ai,j|di,j, fi,k)∑ℓ

l=1 πl

∏m
i=1 Bin(ai,j|di,j, fi,l)

(3.21)

πk =
1

n

n∑
j=1

γj,k. (3.22)

3.2.1 Linear programming to optimize F

It is not straightforward to apply a gradient-based method to update F due

to the underlying sum condition. Instead, we formulate an optimization

problem using linear programming to find the optimal F. Let L(F) denote

the terms related to F from Eq. 3.12.

L(F) =
n∑

j=1

ℓ∑
k=1

γj,k

m∑
i=1

[
ai,jlog fi,k + (di,j − ai,j)log (1− fi,k)

]
. (3.23)

Since L(F) is a concave function, we approximate it using piece-wise linear

functions with ∆ intervals [65]. Let x0 < · · · < x∆ be uniform intervals where

xs = s/∆, x0 = ϵ, and x∆ = 1− ϵ for small ϵ > 0. We assume that all fi,k’s

are in [x0, x∆] and approximate ai,jlog fi,k + (di,j − ai,j)log (1− fi,k) by

∆∑
s=0

λs

[
ai,jlogxs + (di,j − ai,j)log (1− xs)

]
(3.24)

with λs ≥ 0,
∑∆

s=0 λs = 1, and
∑∆

s=0 λsxs = f . Combining them with the

underlying sum condition, we have the following linear programming:
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maximize
λ,F

m∑
i=1

ℓ∑
k=1

∆∑
s=0

λi,k,s

n∑
j=1

γj,k

[
ai,jlogxs + (di,j − ai,j)log (1− xs)

]
(3.25)

subject to
∆∑
s=0

λi,k,s = 1 ∀i, k

(3.26)

∆∑
s=0

λi,k,sxs = fi,k ∀i, k

(3.27)

fi,k ≥
∑

k′∈children of k

fi,k′ ∀i, k

(3.28)

λi,k,s ≥ 0 ∀i, k, s
(3.29)

x0 ≤ fi,k ≤ x∆ ∀i, k.
(3.30)

3.2.2 EM Algorithm

We iteratively update the latent variables F, γ, and π to maximize the lower

bound of the log-likelihood in Eq. 3.11. Based on the initialization of F and π,

we compute γ in the E-step. Then, we update F via the linear programming

above and π using the updated γ in the M-step. Based on the updated

parameters, we compute a new likelihood value. The process is terminated

if the difference between two consecutive likelihood values is smaller than

a small threshold value. Our expectation-maximization (EM) algorithm is

shown in Algorithm 1.
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Algorithm 1: EM algorithm

Initialize: frequency matrix F, mixture proportion π

while not converged do
E Step: Compute γj,k with current parameters

γj,k =
πk

∏m
i=1 Bin(ai,j |di,j ,fi,k)∑ℓ

l=1 πl
∏m

i=1 Bin(ai,j |di,j ,fi,l)
M Step: Maximize log-likelihood with the updated F matrix

and current responsibilities

πk = 1
n

∑n
j=1 γj,k

fi,k ← Linear Programming(fi,k)

Update: log-likelihood and check convergence

3.3 Model Selection

We need to choose the number ℓ of clusters, which is a hyperparameter of

ClusTree. The number ℓ ranges from 1 to the number n of mutations. To

determine ℓ, we apply the Bayesian information criterion (BIC) [66]. Based

on likelihood L̂, BIC is computed by the following formula.

BIC = λ p log(n)− 2 log(L̂) (3.31)

where p is the number of model parameters of ClusTree, n is the number

of mutations, λ is a scaling factor to control the penalty term, and L̂ is the

maximum likelihood for given parameters. We increase λ for more dispersed

data.

3.4 Implementation

ClusTree is implemented in Python 3 and is available at https://github.

com/elkebir-group/ClusTree. Our method uses variant and total read

counts, A and D respectively, as input and requires a hyperparameter ℓ to

determine the number of clusters. The number of tree topologies we need

to consider is determined based on the hyperparameter. The mixture model

of ClusTree is not identifiable, so any permutations of clustering labels are

considered as the same for a given tree topology. For each tree topology,

ClusTree is enough to consider only one labeled tree due to this unidentifi-
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Figure 3.3: ClusTree is enough to consider the number of unlabeled trees
for the given number of cluster, instead of the number of all labeled trees.
This is computationally beneficial, compared to the algorithms that explore
the entire space of labeled trees.

ability of a mixture model. This is beneficial since ClusTree only needs to

consider the number of unlabeled trees for the given number k of clusters,

instead of the number of all labeled trees, k(k−1) (Fig. 3.3). This can reduce

the computational time significantly, compared to the methods considering

all labeled trees.

We repeat our EM algorithm with a user-specified number (default: 1,000)

of restarts, initializing (F, π) using k-means clustering [67] to infer mutation

clusters C, their frequency F, and a tumor phylogeny T . For linear program-

ming, we use the Linear Solver package of Google OR-Tools [68]. Based on

the Bayesian information criterion in Eq. 3.31, we select the number ℓ∗ of

clusters. For the chosen number of clusters, we rank the tree topologies based

on their likelihood score and refer the tree topology T ∗ and corresponding

clustering assignment C∗ and frequency F∗ with the maximum likelihood.
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CHAPTER 4

ANALYZING THE PERFORMANCE OF
CLUSTREE

In this chapter, we analyze the performance of ClusTree thoroughly and

compare the results against the performance of baseline methods. In Sec-

tion 4.1, we first introduce the baseline methods to compare with ClusTree.

In Section 4.2, we explain the evaluation metrics for clustering (homogeneity,

completeness, and V-measure) and tree inference (ancestral pair recall and

incomparable pair recall). We explain the generation process of simulation

data and report the detailed results in Section 4.3, and results for real data

in Section 4.4

4.1 Baseline Methods

We compared the clustering performance of ClusTree to two clustering-only

methods, PyClone-VI [27] and SciClone [28], and two joint inference methods,

PhyloWGS [14] and PASTRI [17].

We reported the results of PyClone-VI with a beta-binomial mode, since it

had better results than a binomial mode in our experiments for both simula-

tion and real datasets. For each run, we allowed it to have up to 10 clusters

and repeated 1,000 times with different random seeds.

We allowed SciClone to have 10 clusters as the maximum number of possi-

ble clusters, which was the same condition as PyClone-VI experiments. We

used a beta mixture model for its underlying distribution and followed their

model selection steps.

PhyloWGS was run with the parameters that the authors suggested for

MCMC sampling. For PASTRI, we used the resulting parameters of Sci-

Clone, and ran it with 1,000 different frequency samples.

For the comparison of tree inference, in addition to considering PhyloWGS

and PASTRI, we included one recent method, Pairtree [18]. Since Pairtree
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is mainly focused on tree inference, we used each output of PyClone-VI and

SciClone as its input mutation clusters. For other parameters, we followed

the authors’ suggestion.

4.2 Evaluation Metrics

As the clustering performance metrics, we used homogeneity, completeness,

and V-measure [69]. Homogeneity (H) represents that each cluster contains

only members of a single label, and completeness (C) represents all members

of a given label are assigned to the same cluster. V-measure is computed as

V-measure =
(1 + β)HC

βH + C
. (4.1)

We fixed the hyperparameter β as 1 in this evaluation.

We evaluated the performance of tree inference of ClusTree and baseline

methods by considering two metrics, ancestral pair recall and incomparable

pair recall [15]. Ancestral pair recall is defined by

Ancestral pair recall =
|A(T ) ∩ A(T ∗)|
|A(T ∗)|

(4.2)

where A(T ) is the set of ordered pairs of mutations that occur on distinct

edges of the same branch of T , and T ∗ is the ground truth tree. Incomparable

pair recall is defined by

Incomparable pair recall =
|B(T ) ∩B(T ∗)|
|B(T ∗)|

(4.3)

where B(T ) is the set of unordered pairs of mutations that occur on edges

of different branches of T , and T ∗ is the ground truth tree.

4.3 Simulation Data

We generated synthetic instances designed to reflect the characteristics of

bulk DNA sequencing data. Given m samples, n mutations, and ℓ clusters,

we fixed the ground truth tumor phylogenetic tree topology T ∗ by choosing
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one tree uniformly at random from a set of trees with ℓ vertices, which was

generated using Prüfer sequences [70]. Each mutation was randomly assigned

to one of the ℓ clusters by considering the ground truth mixture proportion

π∗, which was generated by Dirichlet(1ℓ) where 1ℓ is a ℓ-dimensional vector

whose all entries are one. Every cluster was enforced to have at least one

mutation to avoid the empty cluster.

Then, we generated the ground truth frequency matrix F∗, which repre-

sents the ground truth underlying frequency f ∗
i,k of cluster k ∈ [ℓ] in sequenc-

ing sample i ∈ [m], by applying the perfect phylogeny mixture theorem,

F = UB [15]. Based on the theorem, we created F∗ by multiplying the

ground truth mixture matrix U∗ and the ground truth phylogenetic tree ma-

trix B∗. Each row of U∗ was generated by drawing from Dirichlet(1ℓ+1) and

removing the first element from each row to satisfy the constraints of U∗,∑ℓ
k=1 u

∗
ik ≤ 1. The matrix B∗ is a binary matrix that is corresponding to the

tree topology T ∗ we selected.

Next, we generated variant read counts A, based on total read counts D

and the ground truth frequency F∗. Each entry of D was generated using

Poisson distribution with parameter r, where r is supposed to be the depth

of synthetic sequencing data. We sampled variant read counts A based on a

binomial distribution with parameter D and F∗. We also generated A using

a beta-binomial distribution to represent the over-dispersion of real bulk

DNA sequencing data. The mean parameter of a beta-binomial distribution

corresponded to the underlying frequency F∗, and the precision parameter

was fixed as a constant across all samples.

To validate the robustness of ClusTree to low-depth sequencing depths, we

generated simulation data based on several depths, r ∈ {20, 30, 50}. For each

depth, we considered the 5 different number of samples, m ∈ {1, 3, 5, 7, 9}.
For each depth and each sample, we generated 10 instances by using different

random seeds. In addition, we fixed the number of the ground truth clusters

as 5. We considered different number k of clusters, k ∈ {2, . . . , 7} and its

corresponding tree topologies for our experiments.
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4.3.1 Results on Simulation Data based on Beta-binomial
Mixtures

Fig. 4.1 (a-c) shows the results of clustering for each method with respect

to the simulation data based on beta-binomial mixtures with depth 20×.

ClusTree outperformed the four baselines across the number of sequencing

samples with respect to three clustering metrics, homogeneity, completeness,

and V-measure. ClusTree has better homogeneity (median: 0.941), com-

pleteness (median: 0.955), and V-measure (median: 0.944) than SciClone

(0.660, 0.601 and 0.629, respectively), PyClone-VI (0.723, 0.883 and 0.790,

respectively), PhyloWGS (0.684, 0.928 and 0.775, respectively) and PAS-

TRI+SciClone (0.526, 0.708, and 0.605, respectively).

Regarding model selection of ClusTree, we fixed λ as 5 in Eq. 3.31. Clus-

Tree found the number (median: 5) of clusters more correctly than other

baseline methods. PyClone-VI (median: 4), PhyloWGS (median: 3), and

PASTRI+SciClone (median: 4) underestimated the number of clusters, while

SciClone (median: 6) overestimated it in Fig. 4.2 (a). Even though the

model selection of PASTRI should be the same as that of the chosen clus-

tering method, the actual number of clusters of PASTRI tended to be less,

especially for low depth and over-dispersed data based on a beta-binomial

mixture model. Since the cluster centers estimated by SciClone were hard

to distinguish for those data, the frequency samples drawn from the clusters

were also difficult to tell. During the inference process of PASTRI, some of

the clusters were considered to represent the same cluster, and the final num-

ber of clusters became smaller than the number of clusters from SciClone.

This incorrect model selection deteriorated the performance of clustering for

baseline methods.

We also checked the number of successful runs each method returned as

a solution in Fig. 4.2 (b). PASTRI failed to return a solution for some

instances, while other methods usually provided successful runs for every in-

stance. PASTRI inferred the possible phylogenetic trees by enumerating the

frequency values sampled using the SciClone parameters. The estimation

process of frequency by SciClone was not designed to satisfy the sum condi-

tion based on the underlying evolutionary tree. Thus, PASTRI could have no

solution trees for any permutations of sampled frequencies. The increase of

the sequencing samples worsened this issue, and the number of tree solutions
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became smaller.

We compared the performance of tree inference to PhyloWGS, Pairtree,

and PASTRI in Fig. 4.3 (a-b). For Pairtree, we considered two different in-

put mutation clusters based on SciClone and PyClone-VI. Across the depths

and number of samples, ClusTree has better ancestral pair recall (median:

0.687) and incomparable pair recall (median: 0.151) than PhyloWGS (me-

dian: 0.510 and 0.0, respectively), Pairtree+PyClone-VI (median: 0.359 and

0.0, respectively), Pairtree+SciClone (median: 0.563 and 0.0, respectively)

and PASTRI+SciClone (median: 0.075 and 0.0, respectively).
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We show the results of clustering, model selection, number of successful

runs, and tree inference using simulation data based on beta-binomial mix-

tures with depth 30×.

Fig. 4.4 (a-c) shows the results of clustering for each method with respect

to the simulation data based on beta-binomial mixtures with depth 30×.

ClusTree outperformed the four baselines across the number of sequencing

samples with respect to three clustering metrics, homogeneity, completeness,

and V-measure. ClusTree has better homogeneity (median: 0.968), com-

pleteness (median: 0.969), and V-measure (median: 0.989) than SciClone

(0.809, 0.724 and 0.770, respectively), PyClone-VI (0.750, 0.887 and 0.818,

respectively), PhyloWGS (0.709, 0.953 and 0.812, respectively) and PAS-

TRI+SciClone (0.580, 0.706, and 0.588, respectively).

Regarding model selection of ClusTree, we fixed λ as 5 in Eq. 3.31. Clus-

Tree found the number (median: 5) of clusters more correctly than other

baseline methods. PyClone-VI (median: 4), PhyloWGS (median: 3), and

PASTRI+SciClone (median: 4) underestimated the number of clusters, while

SciClone (median: 6) overestimated it in Fig. 4.5 (a). Like the previous depth

20× case, this incorrect model selection deteriorated the performance of clus-

tering for baseline methods.

We also checked the number of successful runs each method returned as

a solution in Fig. 4.5 (b). For this depth, PASTRI still failed to return a

solution for some instances, while other methods provided successful runs for

every instance. This issue was worsened as the number of sequencing samples

increased, and the number of tree solutions became smaller.

We compared the performance of tree inference to PhyloWGS, Pairtree,

and PASTRI in Fig. 4.6 (a-b). For Pairtree, we considered two different in-

put mutation clusters based on SciClone and PyClone-VI. Across the depths

and number of samples, ClusTree has better ancestral pair recall (median:

0.666) and incomparable pair recall (median: 0.227) than PhyloWGS (me-

dian: 0.508 and 0.0, respectively), Pairtree+PyClone-VI (median: 0.334 and

0.0, respectively), Pairtree+SciClone (median: 0.582 and 0.0, respectively)

and PASTRI+SciClone (median: 0.593 and 0.0, respectively).
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Last, we show the results of clustering, model selection, number of suc-

cessful runs, and tree inference using simulation data based on beta-binomial

mixtures with depth 50×.

Fig. 4.7 (a-c) shows the results of clustering for each method with respect

to the simulation data based on beta-binomial mixtures with depth 50×.

ClusTree outperformed the four baselines across the number of sequencing

samples with respect to three clustering metrics, homogeneity, completeness,

and V-measure. ClusTree has better homogeneity (median: 0.989), com-

pleteness (median: 0.988), and V-measure (median: 0.988) than SciClone

(0.932, 0.832 and 0.874, respectively), PyClone-VI (0.808, 0.909 and 0.837,

respectively), PhyloWGS (0.729, 0.973 and 0.839, respectively) and PAS-

TRI+SciClone (0.668, 0.795, and 0.720, respectively).

Regarding model selection of ClusTree, we fixed λ as 5 in Eq. 3.31. Clus-

Tree found the number (median: 5) of clusters more correctly than other

baseline methods. PyClone-VI (median: 5), PhyloWGS (median: 4), and

PASTRI+SciClone (median: 4) underestimated the number of clusters, while

SciClone (median: 6) overestimated it in Fig. 4.8 (a). Like the previous depth

20× case, this incorrect model selection deteriorated the performance of clus-

tering for baseline methods.

We also checked the number of successful runs each method returned as

a solution in Fig. 4.8 (b). For this depth, PASTRI still had many failures

to return a solution for some instances, while other methods gave successful

runs for every instance. This issue was worsened as the number of sequencing

samples increased, and the number of tree solutions became smaller.

We compared the performance of tree inference to PhyloWGS, Pairtree,

and PASTRI in Fig. 4.9 (a-b). For Pairtree, we considered two different in-

put mutation clusters based on SciClone and PyClone-VI. Across the depths

and number of samples, ClusTree has better ancestral pair recall (median:

0.762) and incomparable pair recall (median: 0.195) than PhyloWGS (me-

dian: 0.486 and 0.0, respectively), Pairtree+PyClone-VI (median: 0.347 and

0.0, respectively), Pairtree+SciClone (median: 0.590 and 0.0, respectively)

and PASTRI+SciClone (median: 0.549 and 0.0, respectively).
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4.3.2 Results on Simulation Data based on Binomial Mixtures

Fig. 4.10 (a-c) shows the results of clustering for each method with respect to

the simulation data based on binomial mixtures with depth 20×. ClusTree

outperformed or was comparable to the four baselines (SciClone, PyClone-VI,

PhyloWGS and PASTRI+SciClone) across the number of sequencing samples

with respect to three clustering metrics, homogeneity, completeness, and V-

measure. ClusTree and SciClone have better homogeneity (median: 1.0),

completeness (median: 1.0), and V-measure (median: 1.0) than PyClone-

VI (0.813, 1.0, and 0.897, respectively), PhyloWGS (0.696, 1.0 and 0.821,

respectively) and PASTRI+SciClone (0.934, 0.990, and 0.960, respectively).

Regarding model selection of ClusTree, we fixed λ as 1 in Eq. 3.31. Clus-

Tree (median: 5), SciClone (median: 5), and PASTRI+SciClone (median:

5) found the correct number of clusters. PyClone-VI (median: 4) and Phy-

loWGS (median: 3) underestimated the number of clusters in Fig. 4.11 (a).

We also checked the number of successful runs each method returned as a so-

lution in Fig. 4.11 (b). PASTRI failed to return a solution for some instances,

while other methods usually provided successful runs for every instance. In

PASTRI, the frequency samples drawn from SciClone parameters were not

able to satisfy the sum condition for some instances. For those cases, PASTRI

could not return proper solutions.

We compared the performance of tree inference to PhyloWGS, Pairtree,

and PASTRI in Fig. 4.12 (a-b). For Pairtree, we considered two differ-

ent input mutation clusters based on SciClone and PyClone-VI. Across the

depths and number of samples, ClusTree has better incomparable pair re-

call (median: 0.195) than PhyloWGS (median: 0.0), Pairtree+PyClone-VI

(median: 0.0), Pairtree+SciClone (median: 0.0), PASTRI+SciClone (me-

dian: 0.0). For ancestral pair recall, ClusTree (median: 0.762) outperformed

PhyloWGS (median: 0.475), Pairtree+PyClone-VI (median: 0.399), and

Pairtree+SciClone (median: 0.649). PASTRI+SciClone (median: 0.773) had

similar performance with ClusTree.
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Fig. 4.13 (a-c) shows the results of clustering for each method with respect

to the simulation data based on binomial mixtures with depth 30×. ClusTree

outperformed or was comparable to the four baselines (SciClone, PyClone-VI,

PhyloWGS and PASTRI+SciClone) across the number of sequencing samples

with respect to three clustering metrics, homogeneity, completeness, and V-

measure. ClusTree and SciClone have better homogeneity (median: 1.0),

completeness (median: 1.0), and V-measure (median: 1.0) than PyClone-

VI (0.817, 1.0, and 0.900, respectively), PhyloWGS (0.696, 1.0, and 0.821,

respectively) and PASTRI+SciClone (0.931, 0.990, and 0.950, respectively).

Regarding model selection of ClusTree, we fixed λ as 1 in Eq. 3.31. Clus-

Tree (median: 5), SciClone (median: 5), and PASTRI+SciClone (median:

5) found the correct number of clusters. PyClone-VI (median: 4) and Phy-

loWGS (median: 3) underestimated the number of clusters in Fig. 4.14 (a).

We also checked the number of successful runs each method returned as a so-

lution in Fig. 4.14 (b). PASTRI failed to return a solution for some instances,

while other methods usually provided successful runs for every instance. In

PASTRI, the frequency samples drawn from SciClone parameters were not

able to satisfy the sum condition for some instances. For those cases, PASTRI

could not return proper solutions.

We compared the performance of tree inference to PhyloWGS, Pairtree,

and PASTRI in Fig. 4.15 (a-b). For Pairtree, we considered two differ-

ent input mutation clusters based on SciClone and PyClone-VI. Across the

depths and number of samples, ClusTree has better incomparable pair re-

call (median: 0.131) than PhyloWGS (median: 0.0), Pairtree+PyClone-VI

(median: 0.0), Pairtree+SciClone (median: 0.0), PASTRI+SciClone (me-

dian: 0.0). For ancestral pair recall, ClusTree (median: 0.727) outper-

formed PhyloWGS (median: 0.507), Pairtree+PyClone-VI (median: 0.361),

and Pairtree+SciClone (median: 0.674). PASTRI+SciClone (median: 0.851)

had better performance than ClusTree. The returned successful runs of PAS-

TRI+SciClone had accurate results. Still, the smaller number of solutions of

PASTRI+SciClone could be issues for some instances.
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Fig. 4.16 (a-c) shows the results of clustering for each method with respect

to the simulation data based on binomial mixtures with depth 50×. ClusTree

outperformed or was comparable to the four baselines (SciClone, PyClone-VI,

PhyloWGS and PASTRI+SciClone) across the number of sequencing samples

with respect to three clustering metrics, homogeneity, completeness, and V-

measure. ClusTree and SciClone have better homogeneity (median: 1.0),

completeness (median: 1.0), and V-measure (median: 1.0) than PyClone-

VI (0.860, 1.0, and 0.924, respectively), PhyloWGS (0.710, 1.0, and 0.825,

respectively) and PASTRI+SciClone (0.927, 0.990, and 0.951, respectively).

Regarding model selection of ClusTree, we fixed λ as 1 in Eq. 3.31. Clus-

Tree (median: 5), SciClone (median: 5), and PASTRI+SciClone (median:

5) found the correct number of clusters. PyClone-VI (median: 4) and Phy-

loWGS (median: 3) underestimated the number of clusters in Fig. 4.17 (a).

We also checked the number of successful runs each method returned as a so-

lution in Fig. 4.17 (b). PASTRI failed to return a solution for some instances,

while other methods usually provided successful runs for every instance. In

PASTRI, the frequency samples drawn from SciClone parameters were not

able to satisfy the sum condition for some instances. For those cases, PASTRI

could not return proper solutions.

We compared the performance of tree inference to PhyloWGS, Pairtree,

and PASTRI in Fig. 4.18 (a-b). For Pairtree, we considered two differ-

ent input mutation clusters based on SciClone and PyClone-VI. Across the

depths and number of samples, ClusTree has better incomparable pair re-

call (median: 0.131) than PhyloWGS (median: 0.0), Pairtree+PyClone-VI

(median: 0.0), Pairtree+SciClone (median: 0.0), PASTRI+SciClone (me-

dian: 0.0). For ancestral pair recall, ClusTree (median: 0.787) outper-

formed PhyloWGS (median: 0.552), Pairtree+PyClone-VI (median: 0.444),

and Pairtree+SciClone (median: 0.679). PASTRI+SciClone (median: 0.857)

had better performance than ClusTree. The returned successful runs of PAS-

TRI+SciClone had accurate results. Still, the smaller number of solutions of

PASTRI+SciClone could be issues for some instances.
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4.4 Real Data

We validated ClusTree on the dataset obtained from Griffith et al. [7], which

provided variant and total read counts for the primary and relapse sample

from bulk DNA sequencing of an acute myeloid leukemia (AML) patient.

This dataset contains multiple types of sequencing data, including whole

genome sequencing, exome sequencing, and targeted sequencing. The au-

thors combined the different types of data after they refined each dataset

through the filtering and manual review process. The polished dataset con-

tains 1,343 single nucleotide variants (SNVs) whose depth is higher than

1,000× on average for the both samples.

We applied ClusTree and baseline methods (SciClone, PyClone-VI, Phy-

loWGS, PASTRI+SciClone, Pairtree+SciClone, and Pairtree+PyClone-VI)

to the AML dataset. We excluded PhyloWGS from the baseline since its out-

put had only one big cluster including all the mutations of the dataset. The

clustering results of SciClone, PyClone-VI, PASTRI+SciClone, and ClusTree

were almost identical except only a few mutations and found 6 clusters in

Fig. 4.19. In a quantitative manner, as we fixed the result of one method as

the ground truth clustering labels, we computed the clustering performance

of the other methods with respect to the three metrics, homogeneity, com-

pleteness, and V-measure in Table 4.1 - Table 4.3, respectively. Each row

of the tables represents the fixed ground truth labels from one method, and

based on this, we found the performance of the other methods in each col-

umn. Considering the performance from the tables, we can see that the four

methods have almost the same clustering results.

Table 4.1: The four methods have almost the same clustering results with
respect to homogeneity. The performance is computed using the ground
truth labels obtained from the result of a fixed method shown in each row.

Methods SciClone PyClone-VI PASTRI+SciClone ClusTree
SciClone 1.0 0.982 0.963 0.980

PyClone-VI 0.983 1.0 0.959 0.989
PASTRI+SciClone 0.955 0.950 1.0 0.960

ClusTree 0.980 0.989 0.968 1.0
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Table 4.2: The four methods have almost the same clustering results with
respect to completeness. The performance is computed using the ground
truth labels obtained from the result of a fixed method shown in each row.

Methods SciClone PyClone-VI PASTRI+SciClone ClusTree
SciClone 1.0 0.983 0.955 0.980

PyClone-VI 0.982 1.0 0.950 0.989
PASTRI+SciClone 0.963 0.959 1.0 0.968

ClusTree 0.980 0.989 0.960 1.0

Table 4.3: The four methods have almost the same clustering results with
respect to V-measure. The performance is computed using the ground
truth labels obtained from the result of a fixed method shown in each row.

Methods SciClone PyClone-VI PASTRI+SciClone ClusTree
SciClone 1.0 0.983 0.959 0.980

PyClone-VI 0.983 1.0 0.954 0.989
PASTRI+SciClone 0.959 0.954 1.0 0.964

ClusTree 0.980 0.989 0.964 1.0

Figure 4.19: The figure shows the scatter plots for clustering results for
original high-depth real data of (a) SciClone, (b) PyClone-VI, (c)
PASTRI+SciClone, and (d) ClusTree. Except some boundary points, the
four methods have almost the same results.
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In addition, we compared the phylogenetic trees each method inferred in

Fig. 4.20. Griffith et al. [7] first applied SciClone to the AML dataset to

find the clustering assignment. Based on the clustering result, the authors

applied ClonEvol [38] to obtain tumor phylogenetic trees, and they reported

5 different trees. The set of trees ClusTree detected included the 5 trees and

additional 2 trees. PASTRI+SciClone had two overlapped trees with Griffith

et al. [7] and two different trees. Pairtree+SciClone had one common tree

with Griffith et al. [7], and additionally, it found trees whose germline vertex

had multiple child vertices, which were not found from other algorithms.

Pairtree+PyClone-VI did not detect any shared tree with Griffith et al. [7].

The color of each vertex is corresponding to the color in the scatter plot

in Fig. 4.19. According to the results of Griffith et al. [7], the blue vertex

is a founding clone with driver mutations DNMT3A (R882H) and NPM1

(W288fs). The orange, red, and brown vertex are tumor-specific subclones.

The orange cluster contains FLT3 (D885H) and IDH1 (R132H), the red clus-

ter contains FOXP1 (e11+1) and FLT3 (ITD), and the brown cluster con-

tains CXCL17 (N83D) as driver mutations. The green and purple vertex are

corresponding to subclones enriched in the relapse sample. The green cluster

contains IDH2 (R140Q), and the purple cluster contains RUNX1 (P339fs) as

a driver mutation.

To evaluate the benefits of ClusTree regarding clustering SNVs and in-

ferring trees for low-depth sequencing data, we applied donwsampling to the

original high-depth data. For each mutation, we reduced the total read count

d, by sampling the new total read count value from a Poisson distribution

with parameter r ∈ {20, 30, 50}. Here, r is corresponding to the new depth

of the downsampled data. Then, we drew the number d of samples with-

out replacement by considering the number of original variant and reference

read counts and generated a new variant read count. For each parameter

r ∈ {20, 30, 50}, we generated 10 different instances using 10 different ran-

dom seeds.

Using the downsampled data, we implemented ClusTree by considering

different k ∈ {2, . . . , 7} and the corresponding tree topologies for each k.

Then, by applying the Bayesian information criterion (BIC) where λ = 1 in

Eq. 3.31 as model selection, we chose the optimal k among them. We regarded

SciClone, PyClone-VI, PhyloWGS, and PASTRI+SciClone as our baseline

methods. SciClone was run using the parameters that Griffith et al. [7] used
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for their implementation. PyClone-VI was applied based on a beta-binomial

mixture mode with default parameters. As we applied PhyloWGS to the

downsampled datasets, it provided one big cluster that contained all the

mutations, so we excluded it from the baseline. PASTRI was applied to the

data using the output of SciClone as input and default parameters.

We evaluated the clustering performance of each method. Since the ground

truth labels were not provided, we regarded the clustering result of each

method for the original high-depth data as its own ground truth labels. The

ground truth labels that each method found were almost the same with each

other, and all of them found 6 clusters as their model selection (see Fig. 4.19

and Table 4.1 - Table 4.3). We measured the clustering performance using

three metrics, homogeneity, completeness, and V-measure.

In Fig. 4.21 (a), the results with respect to homogeneity showed that Clus-

Tree (median: 0.653, 0.641, and 0.686, respectively) outperformed SciClone

(median: 0.253, 0.140, and 0.014, respectively), PyClone-VI (median: 0.380,

0.234, and 0.197, respectively) and PASTRI+SciClone (median: 0.585, 0.366,

and 0.419, respectively).

In Fig. 4.21 (b), the results with respect to completeness showed that PAS-

TRI+SciClone (median: 0.930, 0.823, and 0.745, respectively) outperformed

SciClone (median: 0.283, 0.141, and 0.070, respectively), PyClone-VI (me-

dian: 0.197, 0.132, and 0.120, respectively) and ClusTree (median: 0.692,

0.555, and 0.637, respectively).

In Fig. 4.21 (c), the results with respect to V-measure showed that Clus-

Tree (median: 0.677, 0.589, and 0.659, respectively) outperformed SciClone

(median: 0.256, 0.141, and 0.023, respectively), PyClone-VI (median: 0.259,

0.169, and 0.149, respectively) and PASTRI+SciClone (median: 0.710, 0.492,

and 0.536, respectively). Since PASTRI had difficulty to distinguish similar

but different clusters in this over-dispersed data, PASTRI had a smaller num-

ber of clusters in its model selection than SciClone (Fig. 4.22). Due to this

reason, PASTRI had very high completeness, which made it have overesti-

mated V-measure, even though its homogeneity was not high enough.

PyClone-VI generated more clusters than the ground truth number, some

of which contained just the small number of mutations. This caused the

worse clustering performance compared to ClusTree. SciClone estimated the

number of clusters better compared to PyClone-VI, but due to the lack of

the tree information, its performance was not satisfactory.
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Figure 4.22: ClusTree had better model selection results, compared to other
baseline method (SciClone, PyClone-VI, and PASTRI+SciClone). SciClone
and PASTRI underestimated the number of clusters and PyClone-VI had
more clusters than the number of the ground truth.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we introduced a probabilistic method to reconstruct a

subclonal structure for cancer by clustering mutations, estimating the under-

lying frequency of each cluster, and inferring ancestral relationships between

them using variant and total read count from bulk DNA sequencing data.

We studied the previous work, including some methods that only focused on

clustering mutations or tree inference in isolation, and other methods that

considered both of them jointly. We discussed the potential weakness of the

approaches and presented a new ClusTree algorithm. Speicifally, ClusTree

is based on a tree-constrained binomial mixture model that employs linear

programming to deal with the underlying constraints of the problem. It can

reduce the computational time by only considering the number of unlabeled

trees, instead of exploring the space of all labelled trees. In addition, it is a

standalone approach that does not depend on the output from other existing

methods.

The results showed that ClusTree was beneficial to cluster highly over-

dispersed low-depth sequencing data, which the previous methods such as

SciClone [28] and PyClone-VI [27] had difficulty to deal with. The method

also had better results than existing joint inference methods such as Phy-

loWGS [14] and PASTRI [17] with respect to both clustering and tree infer-

ence.

However, there are still a number of limitations in this current method and

challenges to be solved in future work.

Dealing with other types of mutations While ClusTree is developed to

deal with only single nucleotide variants (SNVs), it can be extended to deal

with other types of mutations such as copy number variation (CNV). CNV

refers to the situation where the number of copies in a specific DNA segment

varies due to duplications, deletions, or other changes that can affect the
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a number of base pairs. In addition, larger-scale variations in the number

of chromosomes such as aneuploidy [71] could also be considered for better

inference in some specific circumstances. Since there is evidence that CNV

or aneuploidy affects the observed read counts of SNVs [72, 73, 74], incorpo-

rating the information into subclonal reconstruction models could enhance

the performance of the inference [75, 76, 77, 78].

Incorporating heterogeneous data We can consider dealing with bulk

DNA sequencing data and single-cell DNA sequencing data simultaneously

to add more information into inference algorithms. Even though both bulk

and single-cell DNA sequencing has limitations (introduced in Section 2.2),

there are joint methods to integrate both types of data and perform better

than methods using data obtained from only a single source [22, 23, 62].

Beyond DNA sequencing technologies, some recent work considers single-cell

RNA sequencing to uncover the heterogeneity of cancer [79, 80, 81]. They

combine bulk or single-cell DNA sequencing with single-cell RNA sequencing

for better statistical inference. This direction could be considered as future

work.

Better representation learning of sequencing data Current approaches

for the subclonal reconstruction methods depend on molecular sequencing

data pre-processed based on existing tools or practical pipelines [7, 82, 83,

84, 85]. Even though these techniques have been successfully applied in many

applications, the output we can use from the tools usually provides just dis-

crete values (e.g. read count) for each mutation. Also, errors from those

techniques could be propagated into the modeling procedure.

Borrowing the ideas [86, 87] from representation learning of recent machine

learning and natural language processing, we could consider new continuous

vector representation of mutations. We could have more modeling choices

with these vector representations than with discrete input. Recent meth-

ods [88, 89, 90] tried to represent raw DNA sequencing data based on con-

volutional neural networks [91] or Transformer [92] and use them for other

downstream tasks. Similar ideas would be applicable to the subclonal recon-

struction for cancer.
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Utilizing the Less Constrained Space The ClusTree algorithm is based

on maximum likelihood estimation to find the clustering assignment C of

each mutation and the underlying frequency F for each cluster given a tree

topology T . It employs linear programming to deal with the sum condition

(Eq. 2.1) in updating F. Even though the linear programming is efficient for

trees with the small number of vertices, it would be time-consuming for the

larger number of vertices. To make it more efficient, we can consider the less

constrained space than the space defined by the sum condition.

To do that, we revisit the perfect phylogeny theorem, F = UB in [15].

Instead of optimizing F, we can consider the less constrained space U, each

row Ui of which is defined in a space bounded by non-negative orthant Rk+1
≥0

and a standard k-simplex △k ⊆ Rk+1
≥0 . We transform random variable F to

random variable U in Eq. 3.10. Then, the lower bound is

EU

[ n∑
j=1

ℓ∑
k=1

(
γj,k logπk

m∏
i=1

Bin(ai,j|di,j, [UB]i,k)− γj,klog γj,k

)]
. (5.1)

Instead of marginalizing over U, we consider point estimation with respect

to U. We apply the augmented Lagrangian method with the following La-

grangian function L.

L(U, γ, π, λ, α) =
n∑

j=1

ℓ∑
k=1

[
γj,k logπk

m∏
i=1

Bin(ai,j|di,j, [UB]i,k)− γj,klog γj,k

]

+ λ

( ℓ∑
k=1

πk − 1

)
+

n∑
j=1

αj

( ℓ∑
k=1

γj,k − 1

)
.

(5.2)

We compute the gradient of L(U, γ, π, λ, α) with respect to ui,k, πk, γj,k, λ
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and αj.

∂L

∂ui,k

=
n∑

j=1

ℓ∑
l=1

γj,l

[
ai,jbk,l∑ℓ
s=1 ui,sbs,l

− (di,j − ai,j)bk,l

1−
∑ℓ

s=1 ui,sbs,l

]
(5.3)

∂L

∂γj,k
= logπk

m∏
i=1

Bin(ai,j|di,j, [UB]i,k)− log γj,k − 1 + αj (5.4)

∂L

∂πk

=
n∑

j=1

γj,k
πk

+ λ (5.5)

∂L

∂λ
=

ℓ∑
k=1

πk − 1 (5.6)

∂L

∂αj

=
ℓ∑

k=1

γj,k − 1, (5.7)

We set the gradients to 0 to obtain optimal values.

γj,k = πk

m∏
i=1

Bin(ai,j|di,j, [UB]i,k)eαj−1 (5.8)

πk = −1

λ

n∑
j=1

γj,k (5.9)

ℓ∑
k=1

πk = 1 (5.10)

ℓ∑
k=1

γj,k = 1. (5.11)

By combining the equations, we obtain

γj,k =
πk

∏m
i=1 Bin(ai,j|di,j, [UB]i,k)∑ℓ

l=1 πl

∏m
i=1 Bin(ai,j|di,j, [UB]i,l)

(5.12)

πk =
1

n

n∑
j=1

γj,k. (5.13)

To update U, we apply exponentiated gradient descent [93] to restrict U in

the constrained space.

ut+1
ik ←

ut
ikexp(−η∇L(ut

ik))∑K
l=1 u

t
ilexp(−η∇L(ut

il))
, (5.14)

58



where η is a learning rate, and the domain of U is {ui|uik ≥ 0 and ||ui|| ≤ 1}
for all i. Thus, our EM algorithm considering U is as follows:

Algorithm 2: EM algorithm

Initialize: mixture matrix U, mixture proportions πk

while not converged do
E Step: Compute γj,k with current parameters

γj,k =
πk

∏m
i=1 Bin(ai,j |di,j ,[UB]i,k)∑ℓ

l=1 πl
∏m

i=1 Bin(ai,j |di,j ,[UB]i,l)

M Step: Maximize log-likelihood with the updated mixture

matrix and current responsibilities

πk = 1
n

∑n
j=1 γj,k

ui,k ← ui,kexp(−η∇L(ui,k))∑ℓ
l=1 ui,lexp(−η∇L(ui,l))

Update: log-likelihood and check convergence

end

By considering U, we can directly estimate the latent variables without

depending on other linear programming solvers, which is expected to be more

efficient for large-scale data.
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