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ABSTRACT 
Canine thyroid carcinomas (CTCs) are a common endocrine malignancy that requires 

histopathologic examination with costly and time-consuming immunohistochemistries for 

definitive diagnosis, which can delay the time to treatment beyond surgical excision. A 

significant diagnostic challenge arises in differentiating compact follicular thyroid carcinomas 

(FTCs, derived from follicular cells) and medullary thyroid carcinomas (MTCs, derived from 

medullary cells) with routine hematoxylin and eosin (H&E) staining. Literature suggests these 

have similar clinical outcomes; however, publications often do not distinguish between compact 

FTCs and MTCs.  

The primary objective of this project is to develop and validate an artificial intelligence 

(AI) deep learning algorithm that can accurately determine the cell of origin (follicular or 

medullary) in CTCs without the use of ancillary immunohistochemical (IHC) stains. The primary 

hypothesis is that the algorithm can accurately determine the cell of origin in CTCs on routine 

H&E-stained histopathology slides. A secondary objective includes reviewing and comparing 

demographic information between follicular-derived or medullary-derived CTCs and between 

several follicular subtypes and medullary carcinomas, while tertiary objectives include 

evaluating the ability of pathologists to correctly identify compact follicular thyroid carcinomas 

from medullary thyroid carcinomas on H&E alone and comparing their diagnoses to the 

interpretations of the algorithm’s output.  

This study confirmed the primary hypothesis that it is feasible to determine the cell of 

origin for CTCs by an AI model. Additional demographic information with comparisons 

between the different types of CTCs is provided, and the need for ancillary diagnostics in 

differentiating compact FTCs and MTCs is re-iterated. For this model, most of the convoluted 

neural nets are ready for use in conjunction with interpretation by a pathologist. Additional work 
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is needed on the convoluted neural net that is for differentiating between FTC subtypes and 

MTCs. The use of this AI model could expedite the workflow for the pathologist and allow for 

rapid definitive diagnosis between compact FTCs or MTCs in dogs on routine H&E-stained 

slides which would translate to a decreased financial burden for the client, decreased time to 

diagnosis for the patient, and ultimately decreased costs of reagents and supplies for the 

diagnostic lab in future cases. Additionally, a successful algorithm could be applied to 

prospective or, potentially past studies, with whole slide images (WSIs) of CTCs to establish 

consistent differentiation between FTCs and MTCs when IHCs are not available. This in turn 

allows for more reliable interpretations of study results (e.g., a response to treatment or the 

patient outcome) or for re-evaluation of results and conclusions derived from past studies where 

FTCs and MTCs were not distinguished. These applications could contribute to elucidating 

previously obscure differences in demographics, prognoses, effective treatment modalities, and 

factors contributing to tumorigenesis. Furthermore, rapid and inexpensive methods to determine 

the neoplastic cell of origin in CTCs will assist in paving the way for more swiftly customized 

and successful therapies (personalized healthcare, precision medicine), as is currently occurring 

in human medicine.  
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CHAPTER 1: INTRODUCTION  

Introduction  

Canine thyroid carcinomas (CTCs) are a common endocrine malignancy that can be 

divided into follicular or medullary carcinomas (FTCs or MTCs, respectively) based on their cell 

of origin (Campos et al., 2014a; Campos et al., 2014b; Carver et al., 1995; Hassan et al., 2020; 

Jegatheeson et al., 2021; Kiupel et al., 2008; Liptak, 2007; Pineyro et al., 2014; Ramos-Vara, 

2002; Rosol and Meuten, 2017; Rosol and Frone, 2016; Soares et al., 2020). FTCs are derived 

from thyroid follicular cells (thyrocytes) while MTCs are derived from medullary cells 

(parafollicular cells or C-cells) (Carver et al., 1995; Patnaik and Lieberman, 1991; Pineyro et al., 

2014; Rosol and Meuten, 2017; Rosol and Frone, 2016). Currently, differentiation between these 

entities requires an initial histopathologic examination, and a panel of immunohistochemical 

(IHC) stains which can include thyroglobulin, calcitonin, synaptophysin, and chromogranin A, 

among others (Campos et al., 2014b; Carver et al., 1995; Hassan et al., 2020; Soares et al., 2020; 

Moore et al., 1984). Innately, production of hematoxylin and eosin (H&E) stained slides costs 

time (few to several days) and money, while the additional need for IHC staining further 

increases the financial burden and time to a definitive diagnosis. This could potentially delay 

patient receipt of ancillary treatments (e.g., chemotherapeutics, radioactive iodine administration, 

and/or radiation therapy) beyond the initial treatment protocol, which is usually surgery (Castillo 

et al., 2016; Campos et al., 2014b; Campos et al., 2014c; Carver et al., 1995; Jegatheeson et al., 

2021; Lee et al., 2020; Liptak, 2007; Moore et al., 1984; Sheppard-Olivares et al., 2020). 

Well-differentiated FTCs may be subtyped based on their histologic patterns of growth 

into follicular, compact, mixed, or papillary (Campos et al., 2014b; Carver et al., 1995; Hassan et 

al., 2020; Kiupel et al., 2008; Liptak, 2007; Pineyro et al., 2014; Rosol and Meuten, 2017; Rosol 
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and Frone, 2016). A significant diagnostic challenge arises in differentiating compact FTCs (and 

MTCs with routine hematoxylin and eosin (H&E) staining, as both neoplasms may grow in solid 

forms with minimal additional differentiating features (Carver et al., 1995; Patnaik and 

Lieberman, 1991; Pineyro et al., 2014; Rosol and Meuten, 2017; Rosol and Frone, 2016). At this 

time, a clear prognostic difference between canine FTCs and MTCs is not documented, which 

contrasts with what is seen in human FTCs or MTCs (Carver et al., 1995). Treatment in humans 

is superficially similar to how CTCs are treated, but in human medicine, utilization of therapies 

that are specific to genetic derangements or molecule expression are increasingly being used 

(precision medicine) (Antonelli et al., 2018; Cabanillas et al., 2019; Ceolin et al., 2019; 

Gambardella et al., 2019; Meijer et al., 2013; Turrel et al., 2006; Valerio et al., 2017). It is well 

known that human FTCs and MTCs tend to have different genetic mutations, and it can therefore 

be extrapolated that novel treatments specific to these genetic or even biochemical derangements 

may be developed based on these differences (Campos et al., 2014c; Ceolin et al., 2019; Hassan 

et al., 2020; Valerio et al., 2017). There are, however, different metastatic tendencies between 

FTCs and MTCs, where FTCs tend to metastasize to the lungs via intravascular emboli while 

MTCs tend to metastasize to the anterior cervical lymph nodes; but, this is not exclusive (Hassan 

et al., 2020; Kiupel et al., 2008; Liptak, 2007; Rosol and Meuten, 2017; Rosol and Frone, 2016). 

Given the historical diagnostic challenge to differentiate compact FTCs from MTCs, and because 

IHC staining for calcitonin immunohistochemistry (IHC) was not fully established until 

somewhat recently, MTCs were likely underreported which might skew older demographic, 

prognostic, and biologic behavior data (Barber, 2007). Even current (2020 and 2021) clinical 

literature regarding treatment modalities, still does not often distinguish between FTCs and 

MTCs, which likely perpetuates the underestimation of MTC prevalence as well as possibly 
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masks any potential underlying differences in response to treatment or biological behavior 

(Barber, 2007).  

Artificial intelligence (AI) in the context of pathology brings an exciting frontier of 

applications that are only in the nascent stages of being utilized in veterinary diagnostic 

pathology. In human medicine diagnostic settings, AI applications, and more specifically deep 

learning (DL), have been more extensively studied, and data show that AI models can more 

consistently and quickly perform menial or repetitive tasks with equivalent or increased accuracy 

as compared to a group of expert panelists (Ching et al., 2018; Coudray et al., 2018; Echle et al., 

2021; Laury et al., 2021; Levine et al., 2019; Moxley-Wyles et al., 2020; Polonia et al., 2021; 

Turner et al., 2020). Utilization of AI or other analytic software to estimate the likelihood that a 

feature represents a specific disease process (e.g., benign versus malignant) in diagnosing 

medical conditions is known as computer-aided diagnosis (CAD or CADX) (Castellino, 2005; 

Chan et al., 2020; Echle et al., 2021; Laury et al., 2021; Levine et al., 2019; Tosun et al., 2020; 

Zuraw, 2020). This is currently in use in several avenues of human diagnostics to improve the 

accuracy and efficiency of various diagnostic and treatment processes (Bulten et al., 2021; Chan 

et al., 2020; Polonia et al., 2021; Sultan et al., 2020; Zuraw, 2020). More advanced uses of AI 

contribute to knowledge discovery and can provide information that a human observer is unable 

to provide without ancillary testing (e.g., genetic mutations or identification/prediction of 

biomarkers) which may assist in rapidly providing clinically actionable data (Castellino, 2005; 

Chan et al., 2020; Ching et al., 2018; Echle et al., 2021; Laury et al., 2021; Levine et al., 2019; 

Sultan et al., 2020; Tosun et al., 2020; Zuraw, 2020). Therefore, a successful deep learning 

algorithm to differentiate compact FTCs and MTCs on H&E-stained whole slide images (WSI) 
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will facilitate rapid, cost-effective, and highly consistent results and will further advance the 

acceptance and use of AI models in the veterinary diagnostic setting.  
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CHAPTER 2: LITERATURE REVIEW  

Canine thyroid carcinomas (CTCs) are the most common endocrine malignancy in dogs, 

tend to grow rapidly, often invade local tissues and vasculature, and approximately one-third of 

dogs with CTCs have metastasis at diagnosis (Campos et al., 2014a; Campos et al., 2014b; 

Carver et al., 1995; Hassan et al., 2020; Kiupel et al., 2008; Liptak, 2007; Nadeau and Kitchell, 

2011; Pineyro et al., 2014; Ramos-Vara, 2002; Rosol and Meuten, 2017; Rosol and Frone, 2016; 

Soares et al., 2020). CTCs arise from one of the two main epithelial constituents of the thyroid 

gland– follicular cells (thyrocytes) which produce colloid, thyroid hormones (serum T3 and T4), 

and thyroglobulin (Tg) or medullary cells (C-cells, parafollicular cells) which secrete calcitonin 

(Lee et al., 2020; Liptak, 2007; Patnaik et al., 1978; Pessina et al., 2016; Pineyro et al., 2014; 

Ramos-Vara, 2002; Rosol and Meuten, 2017; Rosol and Frone, 2016). Malignant neoplastic 

transformation of these cell types yields follicular thyroid carcinomas (FTC), which are then 

classified based on histologic patterns, and medullary thyroid carcinomas (MTC), respectively 

(Carver et al., 1995; Hassan et al., 2020; Kiupel et al., 2008; Liptak, 2007; Pineyro et al., 2014; 

Rosol and Frone, 2016). CTCs of follicular origin are considered much more common; 

historically, MTCs accounted for less than 5% of all canine thyroid neoplasms but recent 

literature suggests MTCs may be more prevalent with incidence ranges between 16% and 36% 

(Barber, 2007; Campos et al., 2014a; Campos et al., 2014b; Campos et al., 2014c; Carver et al., 

1995; Hassan et al., 2020; Kiupel et al., 2008; Leav et al., 1976; Liptak, 2007; Patnaik and 

Lieberman, 1991; Pessina et al., 2014; Pineyro et al., 2014; Ramos-Vara, 2002; Rosol and 

Meuten, 2017; Rosol and Frone, 2016; Soares et al., 2020). At this time the basic treatment 

modality is surgical excision which may be accompanied by a multitude of other modalities 

(Castillo et al., 2016; Campos et al., 2014b; Campos et al., 2014c; Carver et al., 1995; 
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Jegatheeson et al., 2021; Lee et al., 2020; Liptak, 2007; Moore et al., 1984; Sheppard-Olivares et 

al., 2020). Histologic examination is required for the confirmation of malignancy (namely local 

invasion or intravascular tumor emboli), while the use of immunohistochemistry is required for 

determining the cell of origin (FTC versus MTC) (Campos et al., 2014b; Carver et al., 1995; 

Ramos-Vara et al., 2016; Soares et al., 2020). Beyond the individual patient, routinely and 

consistently confirming the cell of origin and subsequent appropriate histologic subtyping 

provides two main benefits. Firstly, this allows for more accurate comparisons between types of 

CTCs, as would be needed for prospective analyses on survival and prognosis or experimental 

treatment modalities. Secondly, the current trend in human medicine is for highly customized, 

molecular-based treatment regimens (known as personalized healthcare or precision medicine) 

which are based on specific diagnoses, like the presence of specific genetic mutations or 

overexpression of certain molecules which contribute to tumorigenesis (Al Rasheed and Xu, 

2019; Bai et al., 2020; Cabanillas et al., 2019; Nitulescu et al., 2015; Valerio et al., 2017; Wen et 

al., 2021). Since veterinary medicine tends to lag behind human medicine, the investigation into 

more specific diagnoses, including genetic or biochemical derangements, is critical to further 

advance our understanding of tumorigenesis of CTCs and the subsequent development of 

effective, customized treatments.  

 

Typical Signalment Features, Presentation, and Etiopathogenesis  

It is generally accepted that dogs presenting with any form of thyroid carcinoma (FTC or 

MTC) fall within a 9- to 10-year mean and/or median age with increased risk associated with 

advancing age and no sex predispositions (Barber, 2007; Campos et al., 2014a; Hassan et al., 

2020; Hayes and Fraumeni, 1975; Liptak, 2007; Rosol and Meuten, 2017; Rosol and Frone, 
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2016; Soares et al., 2020). Generally, regarding age, FTCs and MTCs are not separated in 

literature reports, but a few studies show that MTCs may have a mean age of 9.6 years or median 

age of 9 years with a range of either 4 to 12, 13, or 16 years (Campos et al., 2014b; Carver et al., 

1995; Patnaik and Lieberman, 1991). Campos et al. (2014b) report that differentiated FTCs have 

a median age of 10 years with a range of 4 to 14 years. One older study of 16 dogs with MTCs 

found males were three times more likely to have MTCs than females (Patnaik and Lieberman, 

1991).  

While reports are conflicting and variable, predisposed breeds may include boxers, 

beagles, Siberian huskies, golden retrievers as well as mixed-breed dogs (Hassan et al., 2020; 

Hayes and Fraumeni, 1975; Liptak, 2007; Rosol and Meuten, 2017; Rosol and Frone, 2016). One 

study also suggests that Shetland collies (also known as sheltie or Shetland sheepdog), old 

English sheepdogs, and Cairn terriers have increased risk (Hassan et al., 2020). Hayes and 

Fraumeni (1975) found that poodles (miniature and toy) may have decreased risk of developing 

CTC.  

CTCs as a whole are most commonly unilateral tumors that arise near the larynx without 

a reported side predisposition (i.e, right versus left thyroid gland) and are less commonly 

bilateral neoplasms (Hassan et al., 2020; Leav et al., 1976; Liptak, 2007; Patnaik and Lieberman, 

1991; Pessina et al., 2014; Rosol and Meuten, 2017; Rosol and Frone, 2016). Thyroid neoplasms 

may form anywhere along the cranial neck (including the tongue) to the thoracic inlet or even in 

the anterior mediastinum, pericardium, heart base, and descending aorta due to ectopic thyroid 

parenchyma that was presumably entrapped during early development (Liptak, 2007; Rosol and 

Meuten, 2017).  
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The most common presentation for CTCs as a whole is a palpable ventral or ventrolateral 

cervical mass that may be associated with a variety of additional presenting clinical signs or 

symptoms such as coughing, dyspnea, dysphagia, dysphonia, gagging, retching, regurgitation, 

Horner’s syndrome, and cranial vena caval syndrome due to either tumor compression (mass 

effect) or invasion (Lee et al., 2020; Liptak, 2007; Rosol and Meuten, 2017). These clinical signs 

may facilitate either the death of the animal or election of humane euthanasia by the owners.  

Clinically distinguishing between FTCs and MTCs can be challenging, but functional 

neoplasms may be identified by evaluating serum hormone levels. Dogs with FTCs tend to be 

euthyroid, but hypothyroidism can occur by several mechanisms that may not be specific to the 

neoplastic process. These include complete bilateral destruction of the thyroid glands, 

suppression of pituitary derived thyroid-stimulating hormone (TSH; thyrotropin), or the 

suppressive effects of nonspecific illnesses on circulating thyroid hormone concentrations 

(euthyroid sick syndrome); mild hyperthyroidism may rarely occur with functional FTCs that 

secrete sufficient T3 and/or T4 thyroid hormones (Carver et al., 1995; Hassan et al., 2020; Liptak, 

2007; Pessina et al., 2014; Rosol and Meuten, 2017; Rosol and Frone, 2016). Dogs with 

functional FTCs and concurrent hyperthyroidism are clinically similar but less severely affected 

than cats with clinical hyperthyroidism (Liptak, 2007). Dogs with CTCs tend to experience 

hyperthyroidism more than humans (Leav et al., 1976). Humans and dogs may have 

hypercalcitoninemia, which can be used as a diagnostic marker for human MTCs; however, this 

is not commonly utilized in veterinary diagnostics (Ceolin et al., 2019; Pineyro et al., 2014). 

Interestingly, there are apparently no reports of nonfunctional MTCs (non-calcitonin secreting 

MTCs) in the veterinary literature, while in humans this is rarely reported based on serum 

calcitonin levels and pentagastrin stimulation testing; in these human cases, approximately half 
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were IHC-positive for calcitonin and carcinoembryonic antigen (CEA) IHCs and most were 

IHC-positive for chromogranin A (CgA) IHC (Gambardella et al., 2019; Pineyro et al., 2014). 

MTCs may be accompanied by low to normal levels of serum calcium (Leav et al., 1976; Patnaik 

et al., 1978; Rosol and Meuten, 2017). Alternatively, MTCs may be associated with 

hypercalcemia (given the proposed pathogenesis, highlighted below), but this is less useful to 

distinguish from FTCs, as they may cause humoral hypercalcemia of malignancy (Rosol and 

Meuten, 2017; Rosol and Frone, 2016).  

The etiopathogenesis behind both FTCs and MTCs is largely unknown. For FTCs, iodine 

deficiency causing chronic thyroid follicular hyperplasia, prolonged lymphocytic thyroiditis with 

hypothyroidism, and sufficient regional irradiation have all been implicated (Hayes and 

Fraumeni, 1975; Liptak, 2007). For the former two mechanisms, there is speculation that FTCs 

may retain TSH sensitivity, and since TSH is the main regulator of thyrocyte differentiation and 

proliferation, it may then act as a continued growth factor causing chronic overstimulation and 

subsequent neoplastic transformation (Pessina et al., 2014). Briefly, recent studies have 

attempted to explore the expression of markers that may contribute to CTC development, and 

markers include insulin-like growth factor (IFG)-1, vascular endothelial growth factor (VEGF), 

fibroblast growth factor (FGF)-2, and their receptors, as well as tumor cell interactions with the 

stroma in the tumor microenvironment (Campos et al., 2014a; Pessina et al., 2016). Campos et 

al. (2014c) found several genes in both FTCs and MTCs that contribute to increased expression 

of the phosphatidylinositol-3-kinase (PI3K/AKT) signaling pathway, which essentially promotes 

cell growth and survival. MTCs may be preceded by hypercalcemia (as may occur with primary 

hyperparathyroidism or hypercalcemia of malignancy) (Rosol and Meuten, 2017; Rosol and 
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Frone, 2016). In bulls, a relationship between chronic dietary intake of excessive calcium and 

MTCs is proposed, but there are no reports evaluating this in dogs (Rosol and Frone, 2016). 

There is a paucity of reported familial thyroid cancer in dogs. Some Dutch German 

longhaired pointers have two recessive deletion mutations within the thyroid peroxidase (TPO; 

thyroperoxidase) gene, which contributes to familial FTC in this breed (Yu et al., 2021). TPO is 

important in the production of thyroid hormones (Rosol and Meuten, 2017; Rosol and Frone, 

2016). Further investigation is needed for the presence of this derangement in CTCs of other 

breeds and species. TPO mutations in humans have been previously associated with thyroid 

carcinoma, while inactivating TPO mutations in both humans and dogs have been shown to 

cause autosomal recessive congenital goitrous primary hypothyroidism (Yu et al., 2021). Lee et 

al. (2006) reports the first case of familial MTCs in 3 related dogs, but RET mutations were not 

identified which contrasts what is seen in human hereditary MTCs and multiple endocrine 

neoplasm (MEN) syndromes (Cabanillas et al., 2019; Campos et al., 2014c; Ceolin et al., 2019; 

Fuchs et al., 2020; Gambardella et al., 2019; Hayes and Fraumeni, 1975; Martucciello et al., 

2012; Meijer et al., 2013; Rosol and Meuten, 2017; Valerio et al., 2017; Yu et al., 2021).  

 

Histopathologic Classification of CTCs 

Canine FTCs can be classified by histologic examination utilizing the World Health 

Organization (WHO) classification scheme into well-differentiated (with subtypes), poorly 

differentiated, and undifferentiated (with subtypes, like carcinosarcoma [malignant mixed 

thyroid tumor]), while MTCs are considered separately as a single entity (Campos et al., 2014b; 

Kiupel et al., 2008). Subtypes of well-differentiated FTCs are based on histologic patterns and 

include follicular, follicular-compact (also known as mixed), compact cellular (also known as 
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compact or solid), and papillary (Carver et al., 1995); Kiupel et al., 2008; Liptak, 2007; Pineyro 

et al., 2014; Rosol and Meuten, 2017; Rosol and Frone, 2016). Confusingly, some veterinary 

references use “mixed” to describe carcinosarcoma (malignant mixed thyroid tumors) where 

malignant follicular cells are mixed with malignant mesenchymal components (e.g., cartilage, 

bone, or both), while in human thyroid carcinomas there also exists a mixed carcinoma 

consisting of both neoplastic medullary cells and neoplastic follicular cells (Bais et al., 2020; 

Cameselle-Teijeiro et al., 2020; Ramos-Vara et al., 2002). For this study, the follicular-compact 

subtype will hereby be referred to as the “mixed” subtype, and the compact-cellular will be 

referred to as the “compact” subtype. Overall, the follicular, mixed, and compact subtypes are 

considered relatively common diagnoses (Pessina et al., 2016). Of these, mixed FTCs may be the 

most common and are characterized by approximately equal proportions of follicular and 

compact neoplastic growth, with neoplastic follicles that may be smaller and contain less colloid 

than would be observed in the follicular pattern (Kiupel et al., 2008; Rosol and Meuten, 2017; 

Rosol and Frone, 2016). Few studies indicate the compact type may be more common than other 

subtypes (Campos et al., 2014c, Pessina et al., 2014).  

A diagnostic challenge arises with differentiating compact FTCs from MTCs with routine 

hematoxylin and eosin (H&E) light microscopy and ancillary diagnostic modalities are required 

(Figure 1) (Carver et al., 1995; Kiupel et al., 2008; Leav et al., 1976; Patnaik and Lieberman, 

1991; Pineyro et al., 2014; Rosol and Meuten, 2017; Rosol and Frone, 2016). Compact FTCs are 

described as aggregates to solid sheets of polyhedral cells with finely granulated to vacuolated 

eosinophilic cytoplasm, which gives little to no attempt at follicle formation and/or colloid 

secretion (Kiupel et al., 2008; Rosol and Meuten, 2017; Rosol and Frone, 2016). MTCs are 

similarly described as polyhedral to spindle-shaped cells with lightly eosinophilic to 
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amphophilic, finely granular cytoplasm, and an oval to elongate vesicular nucleus (Kiupel et al., 

2008; Patnaik et al., 1978; Ramos-Vara et al., 2002; Rosol and Meuten, 2017; Rosol and Frone, 

2016; Williams, 1966). Histologic features that support FTC include numerous variably sized 

follicles with periodic acid-Schiff (PAS)-positive colloid; eosinophilic cytoplasm; greater 

pleomorphism; and hemorrhage into follicles. In contrast, histologic features that support MTC 

include potentially more intrathyroidal and/or extracapsular invasion; occasional ducts and acini; 

production of amyloid derived from secreted proteins; solid growth with neuroendocrine (NE) 

packeting; amphophilic cytoplasm; prominent stroma; few to no follicles; and palisading cells 

along the periphery of lobules (Leav et al., 1976; Pineyro et al., 2014; Ramos-Vara et al., 2002; 

Rosol and Meuten, 2017). Interestingly, MTCs may also have variable histologic patterns of 

growth including tubular (follicular), papillary, small cell, giant cell, clear cell, oncocytic, and 

mixed variants, however, this distinction is not often pursued in the current diagnostic setting 

(Kiupel et al., 2008). Amyloid production is rarely observed in canine MTCs and is more 

commonly found in human or bull medullary carcinomas (Kiupel et al., 2008; Patnaik et al., 

1978; Pineyro et al., 2014; Rosol and Meuten, 2017; Rosol and Frone, 2016). Differentiation 

between MTC and compact FTC is further confounded by the presence of either entrapped, 

“normal” (non-neoplastic) thyroid follicles surrounded by neoplastic cells or the formation of 

medullary cell follicles, which are neoplastic medullary cells surrounding free colloid following 

the destruction and loss of follicular thyrocytes (Rosol and Meuten, 2017; Rosol and Frone, 

2016). Interestingly, MTCs tend to entrap thyroid follicles more than FTCs tend to entrap 

medullary cells (Rosol and Meuten, 2017).  
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Differentiation of CTCs by IHC and Histologic and Immunohistochemical Differentials 

Because differentiation of MTCs from compact FTCs with routine H&E-stained slides is 

challenging, IHC examination is often pursued and required for further characterization (Campos 

et al., 2014b; Carver et al., 1995; Leav et al., 1976; Moore et al., 1984; Soares et al., 2020). FTCs 

are diagnosed with positive thyroglobulin (Tg) immunoreactivity in 10% to 100% of the cells 

and ideally concurrent negative immunohistochemistry for calcitonin and/or NE markers (such 

as chromogranin A+B, protein gene product 9.5 [PGP9.5], neuron-specific enolase, to name a 

few) (Carver et al., 1995; Kiupel et al., 2008; Moore et al., 1984; Pineyro et al., 2014; Ramos-

Vara et al., 2002). In contrast, MTCs may be diagnosed with variable amounts of cytoplasmic 

immunoreactivity for calcitonin or NE markers (similar as above and synaptophysin [SYP]) with 

concurrent negative immunoreactivity for Tg (Carver et al., 1995; Kiupel et al., 2008; Moore et 

al., 1984; Pineyro et al., 2014; Ramos-Vara et al., 2002). The range in thyroglobulin 

immunoreactivity may relate to histologic subtypes, as follicular and mixed subtypes appear to 

more consistently exhibit thyroglobulin immunoreactivity as compared to the compact subtypes 

(Carver et al., 1995). Less commonly, IHCs for thyroid transcription factor 1 (TTF-1 [NKX2]) or 

PAX8 can be used to confirm FTCs while calcitonin gene-related peptide (CGRP), napsin A, and 

carcinoembryonic antigen (CEA) can be used to confirm MTCs; however, these not as readily 

available for routine diagnostic use (Hassan et al., 2020; Pineyro et al., 2014; Ramos-Vara et al., 

2002; Ramos-Vara et al., 2016; Rosol and Frone, 2016). Ramos-Vara et al. (2002) found that 

TTF-1 cannot be used as a discriminatory IHC, since TTF-staining was detected in both FTCs 

and MTCs; they instead propose TTF may be used in conjunction with Tg IHC to improve the 

overall sensitivity of the IHC panel. One study also suggests CGRP may be a more sensitive 

marker than calcitonin for diagnosing MTCs (Solar Arias et al., 2016). An additional challenge 
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may arise with either scant or faint IHC staining of either Tg or calcitonin. For Tg, this may be 

from altered physicochemical hormones or inactivity of neoplastic cells, and for calcitonin, this 

may result from preferential secretion and concurrent lack of hormone storage with highly 

functional MTCs (Moore et al., 1984; Rosol and Meuten, 2017). Conversely, inadequate or 

delayed fixation of CTCs may allow diffusion of Tg into the interstitium, contributing to 

increased background staining and potentially confounding Tg IHC interpretation (Ramos-Vara 

et al., 2002). In MTCs, the presence of entrapped, remnant, Tg-positive parenchyma may also 

interfere with accurate IHC interpretation (Rosol and Meuten, 2017).  

In the past, MTCs were routinely underdiagnosed due to the marked histologic similarity 

and the lack of the confirmatory calcitonin IHC marker (Campos et al., 2014b; Carver et al., 

1995). Underdiagnosis of canine MTCs likely contributed to the lack of comparative prognostic 

studies with canine FTCs, and as previously mentioned, many current clinical studies fail to 

distinguish between these tumors. This lack of discrimination between FTCs and MTCs may 

perpetuate skewed data with lower MTC prevalence and may yield unreliable interpretations and 

conclusions from CTC studies due to the masking of differences between MTCs and FTC.  

Interestingly, bulls may get ultimobranchial thyroid neoplasms which have a 

heterogenous histologic pattern of more typical medullary cells mixed with undifferentiated cells 

that have IHC positivity to both thyroglobulin and calcitonin (dual immunoreactivity); the 

ultimobranchial body is thought to be the origin of medullary cells to the thyroid gland in 

embryological development (Kiupel et al., 2008; Rosol and Frone, 2016). There is speculation 

that a unique version of mixed thyroid carcinoma in humans (mixed medullary and follicular 

thyroid carcinoma) could also represent this entity (Bai et al., 2020; Cameselle-Teijeiro et al., 

2020; Kiupel et al., 2008; Rosol and Frone, 2016). Ultimobranchial tumors should therefore be 
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considered tumors of stem cells and may be a consideration for unusual, dual-positive canine 

tumors (Kiupel et al., 2008; Moore et al., 1984). Canine ultimobranchial tumors have not been 

previously reported, although incidental ultimobranchial cysts are relatively common (Rosol and 

Meuten, 2017; Rosol and Frone, 2016).  

Recently, Soler Arias et al. (2016) report a calcitonin-negative (nonmedullary) primary 

neuroendocrine tumor of the thyroid in a dog with negative IHC staining for calcitonin, CEA, 

Tg, S100 protein, and positivity for synaptophysin and cytokeratin AE1-AE3, which is similar to 

the rare human tumor known as calcitonin-negative neuroendocrine tumor of the thyroid 

(CNNET) or “nonmedullary” thyroid tumor. In this case, IHCs to rule out a parathyroid tumor 

were not possible, but primary hyperparathyroidism had already been ruled out clinically and a 

parathyroid tumor was therefore considered unlikely (Soler Arias et al., 2016). Other 

differentials for human calcitonin-negative neuroendocrine tumors of the thyroid gland include 

paraganglioma, hyalinizing trabecular tumor, metastatic neuroendocrine tumor to the thyroid 

gland, and intrathyroidal parathyroid adenoma or tumor; some of these may also be viable 

differentials for dogs (Cameselle-Teijeiro et al., 2020; Soler Arias et al., 2016). 

For parathyroid tumors, clinical primary hyperparathyroidism often aids in establishing 

an initial diagnosis with histopathology and IHC evaluation acting to confirm the diagnosis 

(Soler Arias et al., 2016). Neoplastic cells for both parathyroid adenomas and carcinomas will 

have IHC positivity to parathyroid hormone, cytokeratins, neuroendocrine markers (e.g., CgA), 

and neurofilaments (such as S100) (Kiupel et al., 2008; Rosol and Frone, 2016; Rosol and 

Meuten, 2017).  

Therefore, with a lack of pertinent clinical history beyond the suspicion of a thyroid 

neoplasm, such as the presence or absence of clinical hyperthyroidism or hyperparathyroidism, 
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and without a robust IHC panel, definitive diagnosis may be challenging. A robust IHC-panel 

could include at least two FTC markers (Tg and TTF-1), 2 MTC markers (calcitonin and CGRP), 

one or more NE markers (SYP or CgA), and parathyroid hormone, for example.  

 

Differences in Biologic Behavior and Prognosis between FTCs and MTCs and Treatment 

Modalities 

Metastatic disease is frequently present at the time of diagnosis of CTCs, but some recent 

studies suggest that the progression of metastatic disease is slow (Giannasi et al., 2020). 

Computed tomography appears to be a more sensitive modality in detecting distant metastases in 

CTCs as compared to older, different imaging techniques (Giannasi et al., 2021). The likelihood 

of metastasis increases with the increased size of the primary tumor, evidence of vascular 

invasion (e.g., tumor thrombi in the cranial thyroid vein), and bilateral disease (Campos et al., 

2014b; Hassan et al., 2020; Jegatheeson et al., 2021; Liptak, 2007; Nadeau and Kitchell, 2011). 

A study on stereotactic body radiation therapy (SBRT) in the treatment of CTCs found the 

presence of metastasis was not a negative prognostic factor, while another study found that after 

thyroidectomy the overall survival, disease-free survival, time to metastasis, and time to 

recurrence were not different between well-differentiated FTCs and MTCs (Campos et al., 

2014b; Lee et al., 2020). Reported rates of metastasis at diagnosis include a range from 14-26% 

for regional metastasis (regional lymph nodes), 20-38% for distant metastasis (pulmonary), and 

18-95% for overall metastasis (combining regional and distant) or approximately one-third of 

dogs (Giannasi et al., 2021; Hassan et al., 2020; Jegatheeson et al., 2021; Nadeau and Kitchell, 

2011). These sources largely do not distinguish between FTCs and MTCs. Regional lymph nodes 
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may include the submandibular, medial retropharyngeal, and parotid lymph nodes (Liptak, 

2007).  

To underscore the need for accurate differentiation of CTCs, FTCs and MTCs carry 

different metastatic tendencies which may have undiscovered treatment implications. These 

patterns are not exclusive. FTCs tend to metastasize to the lung via invasion of the cranial and 

caudal thyroid veins with intravascular neoplastic emboli, while MTCs tend to metastasize to the 

anterior cervical lymph nodes (Hassan et al., 2020; Kiupel et al., 2008; Liptak, 2007; Rosol and 

Meuten, 2017; Rosol and Frone, 2016). Distant metastases may uncommonly be found in the 

brain, bone, liver, kidney, adrenal gland, liver, heart, and other organs (Lee et al., 2020; Liptak, 

2007). Previously, there was speculation that the metastatic rate for MTCs may be lower than 

FTCs, but one study found that at diagnosis, there was no difference in the incidence of 

metastasis (Campos et al., 2014b; Carver et al., 1995; Hassan et al., 2020; Rosol and Meuten, 

2017). Scintigraphy may be useful in identifying regional lymph node metastasis but not 

pulmonary metastasis in FTCs which may be linked to the concept that histologic subtypes of 

FTCs are related to the amount of cellular differentiation (Castillo et al., 2016; Liptak, 2007; 

Pessina et al., 2014). Furthermore, functional FTCs may have a lower metastatic rate than 

previously reported CTCs (Scharf et al., 2020).  

At this time, both MTCs and all FTC subtypes appear to have similar treatment protocols 

and prognoses (Campos et al., 2014b). However, Carver et al. (1995) suggests MTCs may have a 

less biologically aggressive nature than other thyroid carcinomas, given that most MTCs in their 

study were well circumscribed and resectable. Campos et al (2014b) suggests that while MTCs 

may be more amenable to complete surgical resection, the post-thyroidectomy outcome is similar 

to that of well-differentiated FTCs. Since it is suggested that compact FTCs may be less 
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differentiated than follicular or mixed FTCs, they are more likely to behave aggressively and 

recur (Castillo et al., 2016; Campos et al., 2014b).  

 Ki-67, a cellular marker of proliferation, has been evaluated in both canine FTCs and 

MTCs with no significant differences identified, and it appears to be positively associated with 

local invasiveness and negatively associated with time to metastasis in both tumor types 

(Campos et al., 2014b; Soares et al., 2020). In well-differentiated FTCs in humans, increased Ki-

67 is associated with higher metastatic rates at diagnosis and decreased disease-free survival 

(Campos et al., 2014b).  

Currently, the main treatment modality is surgery for curative intent for mobile and well-

circumscribed CTCs (complete thyroidectomy), but incisional biopsy with or without additional 

ancillary therapies may be pursued for invasive and non-resectable neoplasms (Castillo et al., 

2016; Campos et al., 2014b; Campos et al., 2014c; Carver et al., 1995; Jegatheeson et al., 2021; 

Lee et al., 2020; Liptak, 2007; Moore et al., 1984; Sheppard-Olivares et al., 2020). Ancillary 

therapies may include local external beam radiation therapy, chemotherapy (e.g., toceranib 

phosphate [Palladia], doxorubicin, carboplatin, cisplatin, and adjunctive retinoic acid 9 cis 

[isotretinoin 9-cis; RA9-cis]), and/or radioactive iodine administration (131iodine) (Castillo et al., 

2016; Campos et al., 2014b; Campos et al., 2014c; Carver et al., 1995; Jegatheeson et al., 2021; 

Lee et al., 2020; Liptak, 2007; Moore et al., 1984; Sheppard-Olivares et al., 2020). Only 

approximately 25-50% of cases are amenable to complete surgical resection due to local 

invasiveness and proximity of critical anatomic structures (Jegatheeson et al., 2021; Lee et al., 

2020). For cases where surgical resection is not possible, radiation therapy and radioiodide 

therapy may provide median survival times of up to 24 and 30 months, respectively, while the 



 
 

19 

reported median survival time of dogs with incompletely excised CTCs without ancillary 

therapies is 10 months (Brearley et al., 1999; Scharf et al., 2020).  

Uptake of radioactive iodine administration appears to be related to the degree of 

neoplastic cell differentiation. This is supported by a preliminary study which found follicular 

FTCs were associated with hyperthyroidism and increased uptake of scintigraphy agent 99mTc, 

mixed FTCs were associated with euthyroidism and normal uptake of 99mTc uptake, and compact 

FTCs, which may be considered less differentiated, were associated with hypothyroidism and 

decreased 99mTc uptake (Castillo et al., 2016; Jegatheeson et al., 2021; Pessina et al., 2014). 

CTCs do not need to be functional for abnormal scintigraphy studies, and there is speculation 

that neoplasms may be sensitive to radioactive iodine regardless of functional status, but 

consensus, even in human medicine, is lacking (Erdogan et al., 2006; Liptak, 2007; Meijer et al., 

2013). There is no reported information regarding iodine uptake and efficacy of radioactive 

iodine administration on MTCs in dogs. However, Jegatheeson et al. (2021) recently describes 

the response of CTCs to radioiodine, but study their set were primarily FTCs and they do not 

describe any methods to rule out MTCs. In human medicine, one study concluded that 

radioactive iodine treatment may be a valid, locally aimed adjuvant treatment modality in MTCs, 

even though these cells do not concentrate radioactive iodine, while another multicenter study 

did not corroborate this and strongly opposed the use of radioactive iodine in MTCs (Erdogan et 

al., 2006; Meijer et al., 2013). Mechanistically, it is thought that the organification of radioactive 

iodine isotopes in adjacent thyroid follicular cells could destroy the adjacent medullary cells 

(“bystander effect”) (Erdogan et al., 2006; Meijer et al., 2013). Numerous publications on the 

role of radiation therapy in fixed CTCs suggest that the primary treatment focus should be on 

local control of the primary tumor rather than systemic treatments, based on their study results 
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and that progression of metastatic disease is slow (Giannasi et al., 2020; Jegatheeson et al., 2021; 

Nadeau and Kitchell, 2011). 

Prognostication largely varies with gross and histologic characteristics, such as tumor 

size or volume, local invasiveness, evidence of distant metastases, or evidence of vascular 

invasion; however, some of these features may be controversial (Campos et al., 2014b; Carver et 

al., 1995; Hassan et al., 2020; Liptak, 2007; Soares et al., 2020). Campos et al (2014b) conclude 

that some of these features had no significant effect on overall survival, disease-free survival, 

time to distant metastasis, or time to loco-regional occurance but macroscopic and histologic 

vascular invasion were independent negative predictors for disease-free survival. Prognosis can 

range from good to excellent; for surgery alone, median survival times range from 7-8 months to 

over 36 months, while the median survival time for untreated dogs is 3 months (Campos et al., 

2014b; Carver et al., 1995; Hassan et al., 2020; Liptak, 2007; Soares et al., 2020). The reported 

median survival time for incompletely excised CTCs without ancillary therapy is 10 months and 

is largely due to disease secondary to local neoplastic invasion (Brearley et al., 1999). The 

control provided by radioiodide appears similar to other non-surgical treatment modalities, 

alleviates clinical signs, and prolongs survival, but does not significantly reduce tumor size; and, 

in people with lymph node and distant metastasis, radioactive iodine independently predicts a 

longer survival (Jegatheeson et al., 2021).  

Some of the aforementioned gross or clinical characteristics can be surmised from the 

clinician’s impression before and during surgery; however, the surgeon’s interpretation may be 

inaccurate, so histologic examination is critical for confirmation of the gross findings, cell of 

origin, and further evaluation of criteria of malignancy (e.g., capsular invasion, vascular 

invasion, mitotic rate) (Campos et al., 2014b; Carver et al., 1995; Soares et al., 2020). Negative 
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prognostic indicators include both gross and histologic vascular invasion, increased (delayed) 

time to presentation, and increased tumor size (before thyroidectomy), while some papers 

maintain that histologic evidence of capsular or vascular invasion does not correlate with poor 

survival (Campos et al., 2014b; Liptak, 2007). However, some of this data was from dogs that 

were examined for necropsy or had inoperable tumors, and therefore may not accurately reflect 

the situation in dogs with operable tumors (Campos et al., 2014b). Studies on operable thyroid 

tumors found that bilateral disease and histologic grade of malignancy may be helpful as 

prognostic indicators, although a histologic grading scheme has not been previously published 

nor accepted (Campos et al., 2014b). Another paper says the prognosis is good for completely 

excised mobile thyroid tumors and irradiated fixed thyroid carcinomas (Liptak, 2007). As 

mentioned above, the median survival time of dogs with untreated thyroid carcinoma is 3 

months, while in patients with resectable tumors and no metastasis, the median survival time 

with surgery alone is 7-8 months to over 36 months (Castillo et al., 2016; Hassan et al., 2020). 

While the use of chemotherapy or surgery tends to improve the prognosis, there does not appear 

to be a difference in median survival time when chemotherapy and surgery are used in 

combination as compared to surgery alone (Castillo et al., 2016; Giannasi et al., 2021; Liptak, 

2007; Nadeau and Kitchell, 2011).  

Several papers have attempted to correlate World Health Organization TNM staging 

(tumor, lymph nodes, metastasis) system to prognosis in CTCs, but results are largely conflicting 

at this time (Giannasi et al., 2020; Jegatheeson et al., 2021; Turrel et al., 2006).  
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Biochemical and Genetic Derangements and Applications  

Altered growth factors, such as insulin-like growth factor (IGF)-1, vascular endothelial 

growth factor (VEGF), and fibroblast growth factor (FGF-2) and their receptors are confirmed or 

thought to contribute to the progression of both human and canine thyroid cancers (Campos et 

al., 2014a; Pessina et al., 2016). In addition to staining of neoplastic cells, tumor-associated 

fibroblasts and/or endothelial cells of compact FTCs were found to have increased IHC 

expression of IGF-1, VEGF, FGF-2, and retinoic acid receptor (RAR)α which may contribute to 

tumor progression; in this study, mixed FTCs had intermediate expression levels which could 

further reflect the amount of differentiation present (Pessina et al., 2016). Another study has 

identified Tg and TSH-R in tumor-associated fibroblasts and that proliferating cell nuclear 

antigen (PCNA; a marker for cell mitogenesis) was expressed in neoplastic follicular cells and 

fibroblasts while TTF-1 was restricted only to neoplastic follicular cells (Pessina et al., 2014). 

The significance and implications of some of these findings remain unclear (Pessina et al., 2014).  

In humans, IGF-1/IGF-1R is overexpressed in some types of thyroid carcinomas and is 

correlated with poor prognosis (Liu et al., 2013; Pessina et al., 2016). VEGF contributes to 

tumor-induced angiogenesis controlled by neoplastic, stromal, and tumor-infiltrating cells, and 

one study correlated increased VEGF expression with poorer outcomes in compact FTCs 

(Pessina et al., 2016). FGF-2 is implicated in abnormal human thyroid growth as a mitogen and 

stimulator for endothelial cell growth but reports on levels FGF-2 levels in human thyroid 

carcinomas are contradictory and may depend on the degree of differentiation (Pessina et al., 

2016).  

Specifically, both canine FTCs and MTCs tend to have overexpression of VEGF while 

MTCs tend to have overexpression of cyclooxygenase-2 (cox-2) and P-glycoprotein (P-gp) 
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(Campos et al., 2014a). These overexpressed molecules may be therapeutic targets in the future. 

For example, a preliminary study utilizing multitargeted tyrosine kinase inhibitor (TKI) found 

promising results of remission in four of fifteen dogs and stable disease in eight of fifteen dogs 

with thyroid carcinoma (Campos et al., 2014a). P-glycoprotein (ABCB1 gene; P-gp) is an efflux 

pump involved in multi-drug resistance and has been found in human chemotherapy-resistant 

MTC cell lines; targeting and inhibiting this molecule may improve chemotherapeutic efficacy in 

otherwise resistant tumors (Campos et al., 2014a). Cox-2 expression may be linked to tumor 

development, and studies in human thyroid cancer have found that increased cox-2 expression 

has a direct causal relationship with P-gp; meaning, cox-inhibitors may decrease P-gp expression 

and therefore improve tumor sensitivity to chemotherapeutic agents (Campos et al., 2014a). 

Another study has found significant upregulation of VEGFR-1, VEGFR-2, PDPK1, 

AKT1, and AKT2 in canine FTCs and of EGFR, VEGFR-1, and PIK3CA in canine MTCs which 

are all genes involved in the PI3K/AKT signaling pathway and could be candidates for 

therapeutic targets (Campos et al., 2014c). This pathway regulates numerous cell processes, 

including cell proliferation, differentiation, and survival (Nitulescu et al., 2015). In humans, copy 

number gains in these receptor tyrosine kinase (RTK) genes are particularly associated with 

activation of the PI3K/AKT pathway and are involved in the pathogenesis of human FTC 

(Campos et al., 2014c). In this study, it was concluded that activation of this pathway could 

contribute to the pathogenesis of canine thyroid carcinomas via promoting cell proliferation, 

resistance to apoptosis (via derangement of cox-2 expression), and malignant transformation, but 

more research is still needed (Campos et al., 2014c). Interestingly, the most common mutations 

in human thyroid carcinomas (RAS [N, K, and H], PIK3CA, BRAF, RET, and PTEN) are 

considered rare in dogs (Al Rasheed and Xu, 2019; Campos et al., 2014c; Valerio et al., 2017; 
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Varricchi et al., 2019). Human FTCs tend to have mutations in the RAS, PTEN, PIK3CA, and 

BRAF genes, while the main mutation associated with human MTC is aberrant activation of RET 

(and less commonly RAS mutations), which signals through the PI3K/AKT and MAPK pathways 

(Campos et al., 2014c; Ceolin et al., 2019; Hassan et al., 2020; Valerio et al., 2017). It should be 

noted that up to 30% of human MTCs are hereditary due to germline alterations in the RET 

proto-oncogene that gives rise to MEN type 2 syndrome A and B, while between 30-50% of 

sporadic MTCs have somatic activating RET mutations, but this was not found in the first 

reported case of familial canine MTCs (Cabanillas et al., 2019; Campos et al., 2014c; Ceolin et 

al., 2019; Fuchs et al., 2020; Gambardella et al., 2019; Hayes and Fraumeni, 1975; Lee et al., 

2006; Martucciello et al., 2012; Meijer et al., 2013; Rosol and Meuten, 2017; Valerio et al., 

2017; Yu et al., 2021). Hassan et al. (2020) corroborate patterns of expression of some of these 

genes (FTC expression of AKT2 and PIK3CA and MTC expression of RET) and provides 

additional differentially expressed genes on an mRNA level between normal canine thyroid 

glands, FTCs, MTCs, and a canine thyroid adenocarcinoma cell line (CTAC). Encouraging 

results have been identified from human studies using PI3K/AKT signaling inhibitors as well as 

preliminary canine studies using toceranib phosphate (multitargeted TKI that targets VEGFR-2) 

(Campos et al., 2014c).  

Human epidermal growth factor (HER)-2 immunohistochemical expression has also been 

evaluated in canine CTCs, with nearly 50% of cases having moderate to strong expression 

(Yoshimoto et al., 2004). In human thyroid carcinomas, increased HER-2 expression is 

correlated with worse prognostic indicators, but no correlation has been identified in CTCs 

(Yoshimoto et al., 2004). This study does not appear to distinguish between FTCs and MTCs.  
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These specific molecules, receptors, genes, and pathways are mentioned as they may 

represent therapeutic targets that may eventually play a role in precision medicine for canine 

patients. Furthermore, both human and canine FTCs and MTCs appear to have genetic 

differences that appear to contribute to tumorigenesis, which supports the argument of 

differentiating these tumors rather than consolidating them under the broad category of CTCs. As 

explored more below, artificial intelligence (AI) has been shown to accurately predict gene 

expression or mutations (image-based or morphological profiling) in several human neoplasms. 

Training an AI model to predict genetic mutation or expression between canine FTCs and MTCs 

could allow for rapid and cost-effective identification of similar features and in turn promote the 

practice of precision medicine in the veterinary domain (Ching et al., 2018; Echle et al., 2021; 

Levine et al., 2019; Sultan et al., 2020). This concept is not limited to CTCs and could be applied 

to a multitude of neoplasms.  

 

Additional Corollaries with Human Medicine 

Similar to dogs, thyroid cancer is the most common endocrine malignancy in humans and 

is a leading cause of death among endocrine cancers, usually due to invasion into surrounding 

tissues or metastasis (Hassan et al., 2020; Pessina et al., 2016; Varrichi et al., 2019). From a 

demographic perspective, older women have a higher risk of developing thyroid cancer while 

men tend to experience more aggressive cancer (Barber, 2007; Hassan et al., 2020; Hayes and 

Fraumeni, 1975; Varricchi et al., 2019). A predilection for the left or right thyroid gland is not 

reported. Additional risk factors in humans include having a history of goiter or thyroid nodules, 

a family history of thyroid carcinoma, a low-iodine diet, radiation exposure, obesity and there is 
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an association between chronic inflammation and the development of thyroid carcinoma 

(Varricchi et al., 2019).  

The WHO classification scheme used for CTCs is superficially similar to the scheme for 

human thyroid neoplasms (Campos et al., 2014a; Campos et al., 2014b). Differences include that 

the human classification scheme incorporates pertinent molecular and genetic features, it 

contains numerous more specific subtypes, variants, and categories of thyroid neoplasms (e.g., 

Hürthle [oncocytic] cell tumor, mucoepidermoid carcinoma, etc.), and it is more regularly and 

recently updated (most recently in 2017, 4th edition), as compared to the scheme in domestic 

animals (originally from the 1970s with the most current, 2nd edition released in 2008) (Bai et al., 

2020; Kiupel et al., 2008). Additionally, differentiated thyroid carcinomas in humans appear to 

be restricted to either papillary thyroid carcinoma (PTC, derived from follicular cells), follicular 

thyroid carcinoma (derived from follicular cells), medullary thyroid carcinoma (derived from 

medullary cells), and Hürthle cell carcinoma (thought to be derived from metabolically altered 

follicular cells with increased numbers of mitochondria) (Al Rasheed and Xu, 2019; Bai et al., 

2020; Varricchi et al., 2019).  

The incidence of various diagnoses also differs between humans and canids. In humans, 

PTC predominates (estimated 75-90% of all differentiated thyroid carcinomas) and carries a 

favorable prognosis with a low incidence of metastasis; however, several described variants 

carry a worse prognosis (Al Rasheed and Xu, 2019; Antonelli et al., 2018; Bai et al., 2020; 

Cabanillas et al., 2019; Carver et al., 1995; Chmielik et al., 2018; Hassan et al., 2020; Moore et 

al., 1984; Yu et al., 2021). Differences in prognosis based on subtype or variant present are in 

direct opposition to what is currently seen and accepted in dogs (Carver et al., 1995). Similar to 

CTCs, histologic vascular invasion is an independent predictor of cancer-related mortality in 
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human thyroid carcinomas, and additional prognostic factors include tumor size, tumor stage, 

and histologic grade (Campos et al., 2014b).  

Regardless of these differences, it is currently believed that canine FTCs (including 

follicular, compact, mixed, and papillary subtypes) of dogs have overall similar histologic and 

biologic behavior compared to differentiated human thyroid carcinomas, lending support to the 

idea of dogs being used as an animal model for human thyroid cancer (Campos et al., 2014c; 

Chmielik et al., 2018; Haddad et al., 2018; Meijer et al., 2013; Valerio et al., 2017; Yu et al., 

2021). Both human FTCs and MTCs are relatively indolent neoplasms with high 10-year-

survival rates in humans (Campos et al., 2014c; Chmielik et al., 2018; Haddad et al., 2018; 

Meijer et al., 2013; Valerio et al., 2017; Yu et al., 2021). However, some consider human MTCs 

as more aggressive with a less favorable prognosis than differentiated FTCs, while for dogs, 

there is speculation that MTCs are less malignant (Carver et al., 1995; Fuchs et al., 2020).  

Canine MTC is similar to human MTC concerning morphology, cytochemical, and IHC 

features, and human MTCs are estimated to compose approximately 5-10% or less of all 

differentiated thyroid carcinomas, which is similar to the originally reported prevalence of canine 

MTCs (Antonelli et al., 2018; Cabanillas et al., 2019; Campos et al., 2014c; Ceolin et al., 2019; 

Gambardella, et al., 2019; Hassan et al., 2020; Leav et al., 1976).  

Ki-67 can assist in differentiating more poorly differentiated human thyroid neoplasms 

from well-differentiated or anaplastic thyroid carcinomas, and recently one study proposed a 

grading scheme for human MTCs using Ki-67, mitotic figures, and necrosis which is thought to 

accurately predict overall survival (Bai et al., 2020; Fuchs et al., 2020). Unfortunately, there is 

controversy surrounding the routine use of Ki-67, as other studies have found no prognostic 

association (Fuchs et al., 2020).  
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Superficially, therapeutic methods between canine and human patients with thyroid 

neoplasms are similar for both FTCs and MTCs, with the first step being surgery for curative 

intent (total thyroidectomy), if possible, followed by chemotherapy (e.g., tyrosine kinase 

inhibitors, BRAF inhibitors, immune checkpoint inhibitors, etc.; singly or in combination), 

radiation therapy, and even radioiodine therapy for higher-risk patients or those with 

unresectable neoplasms; for MTCs, lymphadenectomy may be considered to account for nodal 

metastases (Antonelli et al., 2018; Cabanillas et al., 2019; Ceolin et al., 2019; Gambardella et al., 

2019; Meijer et al., 2013; Turrel et al., 2006; Valerio et al., 2017). Treatment with thyrotropine 

hormone-suppressive levothyroxine may also be used in humans (Valerio et al., 2017). One 

glaring difference between veterinary medicine and human medicine is that in human thyroid 

cancer, it is becoming routine to pursue genetic subtyping for common mutations (e.g., 

BRAFV600E) which then permits the use of a customized and highly targeted therapeutic regimen 

(also known as personalized health care or precision medicine) for the patient in question, 

especially in cases with advanced disease (e.g., utilization of dabrafenib/trametinib combination 

therapy for BRAF-mutated cancer [Food and Drug Administration approved for anaplastic 

thyroid carcinoma]) (Al Rasheed and Xu, 2019; Bai et al., 2020; Cabanillas et al., 2019; 

Cabanillas et al., 2018; Ceolin et al., 2019; Haddad et al., 2018; Valerio et al., 2017; Varricchi et 

al., 2019). The recent update to the human WHO thyroid neoplasm classification scheme 

includes data on molecular and genetic derangements which promotes the ability of clinicians to 

practice precision medicine (Bai et al., 2020). Identification of specific genetic mutations 

includes the use of next-generation sequencing or single-point mutation testing with Sanger 

sequencing (gold standard), IHC examination for mutated protein expression, or liquid biopsy 

(detecting neoplastic cells, their fragments, and DNA in the bloodstream) (Cabanillas et al., 
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2019). An additional possible target includes cancer-associated fibroblasts, which are activated 

fibroblasts that promote cancer cell survival, invasion, and metastasis, induce angiogenesis, and 

attenuate sensitivity to chemotherapeutics (Wen et al., 2021). Unsurprisingly, veterinary 

medicine lags human medicine in these aspects, but this may be what the future of cancer 

treatment looks like for veterinary patients as well. The possible use and efficacy of checkpoint 

inhibitors in canine thyroid carcinoma are not yet reported, but in a study of dogs with 

pulmonary metastatic oral malignant melanoma treated with anti-programmed cell death-ligand 

(PD-L) 1 monoclonal antibody, overall survival time was increased (Maekawa et al., 2021). This 

same study surveyed several malignant canine cancers for the presence of PD-L1 expression, but 

CTCs were not included (Maekawa et al., 2021). 

MEN, also known as multiple endocrine adenomatosis, MEA, is an inherited human 

disorder with several subtypes that results in multiple neoplasms in several endocrine organs 

(Hayes and Fraumeni, 1975; Patnaik et al., 1978; Rosol and Meuten, 2017). MEN type 1 is 

associated with hyperplasia, adenomas, and/or carcinomas of the thyroid glands, adrenal cortex, 

and pituitary gland, while MEN type 2 is associated with pheochromocytomas and MTCs (Hayes 

and Fraumeni, 1975). A similar MEN-like syndrome (type 2) is well-described in bulls, but 

MEN-like syndromes are less commonly reported in other domestic animals, including dogs 

(Hayes and Fraumeni, 1975; Rosol and Meuten, 2017).  

Based on the molecular and genetic information in humans, FTCs and MTCs have 

distinct characteristics, and a similar situation may occur in dogs.  
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Application of artificial intelligence in human and veterinary medicine 

In Chapter 3, the objective of utilizing an artificial intelligence algorithm that can 

accurately determine the cell of origin (FTCs or MTCs) in canine thyroid carcinomas without the 

use of ancillary immunohistochemical stains is discussed. 

Overview of Artificial Intelligence 

Artificial intelligence (AI) is a broad term encompassing all computer-based decision-

making processes and is increasingly being used in both human and veterinary medicine, 

especially in the field of oncology (Chan et al., 2020; Ching et al., 2018; Levine et al., 2019; 

Moxley-Wyles et al., 2020; Turner et al., 2020). Machine learning is a subset of AI where 

computers can analyze and identify patterns without much if any, human programming, such that 

they can learn and improve their accuracy upon being presented with novel but related data 

(Cohen, 2021; Turner et al., 2020). Specifically, supervised learning occurs when a training set 

has been annotated by a human observer to aid in the classification of data (Ching et al., 2018). 

This is followed by reinforcement learning which allows cumulative improvement to minimize 

the difference between the actual example (ground truth) and predicted value, functioning 

similarly to operant conditioning; this can also allow for continual improvement of the model 

over time during its use (Ching et al., 2018; Cohen, 2021; Turner et al., 2021; Mitchell, 2021; 

Turner et al., 2020; Zuraw et al., 2020). One common example is artificial neural networks 

(ANNs), which are modeled after biological brain function, such that information is processed 

through subsequent layers of neurons which allows the computer to achieve more complex 

analysis with each step and ultimately teach itself how to learn (Ching et al., 2018; Cohen, 2021; 

Moxley-Wyles et al., 2020; Turner et al., 2020; Wang et al., 2019a). Deep learning (DL) is a 

specialized branch of AI that utilizes numerous ANNs and is required to develop pattern 
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recognition from complex data, such as numerous WSIs that contain a variety of features 

including a range of potentially highly variable differences in staining quality, shapes, and 

textures (Moxley-Wyles et al., 2020; Turner et al., 2020; Zuraw et al., 2020). Convoluted neural 

networks (CNNs) are a type of ANN that is considered the current standard in DL image 

recognition because they extract salient features of images to output an increasingly complex 

representation by a series of hidden convolution layers (Cohen, 2021; Turner et al., 2020; Wang 

et al., 2019a; Wang et al., 2019b; Zuraw et al., 2020). This is not an exhaustive overview of all of 

the additional types of DL methods, but a few additional examples include recurrent neural 

networks, transfer learning, and generative adversarial networks (Sultan et al., 2020). To utilize 

DL, an AI system is given a large initial data set and subsequently learns to autonomously 

identify patterns to maximally separate classes (“separability”) (Ching et al., 2018; Cohen, 2021; 

Levine et al., 2019; Moxley-Wyles et al., 2020; Turner et al., 2021; Turner et al., 2020). Not only 

must the training set need to be large for a robust algorithm, but it must be accompanied by a 

verified reference truth with representative characteristics of the population of interest; this can 

be costly and/or challenging to acquire, especially for those cases with highly variable lesions 

(Chan et al., 2020; Ching et al., 2018; Sultan et al., 2020). To corroborate the need for a large 

data set, large multicenter studies have found DL performance increases with the patient number 

in the training set and reaches a performance plateau after training on 10,000-15,000 histological 

WSI (Echle et al., 2021). In humans, publicly available WSIs from the Cancer Genome Atlas 

have been used for several DL studies and assists in providing a large study set with correlating 

clinical and molecular data (Coudray et al., 2018; Dolezal et al., 2021; Levine et al., 2019; Tsou 

et al., 2019). Not only does the training data volume contribute to the effectiveness of 

conventional ANNs, but their success also largely depends on the expertise of the developers and 
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the capability of the mathematical formulas or empirical image analysis techniques to translate 

the image characteristics into numerical values (Chan et al., 2020; Ching et al., 2018; Levine et 

al., 2019; Sultan et al., 2020; Wang et al., 2019a). In contrast, deep learning (often using CNNs) 

can automatically extract relevant features from a training image set without manual training; 

these features are expected to be superior to the conventional version, as they have high 

selectivity and invariance (Chan et al., 2020). Since having access to only a small training data 

set may be a challenge in model development, data augmentation can be applied to the images to 

expand the number and diversity of the image set via augmentation training (e.g., image 

rotations) and/or adversarial training (e.g., small targeted transformations). Transfer learning, 

where features from one task are re-used for a slightly different project goal, is another way to 

circumvent the issue of a small training set (Ching et al., 2018; Wang et al., 2019a). Both data 

augmentation and transfer learning ultimately reduce overfitting and improve generalizability 

(Ching et al., 2018; Wang et al., 2019a).  

Segmentation refers to the identification of structures within images, which may include 

nuclei, cells, or additional microscopic to macroscopic structures, depending on the desired 

outcome; or, said alternatively, this is the automated delineation between tissues and tissue 

structures (Ching et al., 2018; Levine et al., 2019). Segmentation may be semantic, referring to 

the segmentation of image parts with different meanings (i.e., tissue regions) or it may be 

instance segmentation referring to the segmentation of discrete objects regardless of whether 

they belong to the same category or not (i.e., distinguishing each cell within a tissue region) 

(Wang et al., 2019a). Training a segmentation neural network is a supervised learning process 

and requires experts (pathologists) to manually annotate (label) the ground truth (Wang et al., 

2019a). The successful and accurate segmentation of images may be inhibited by pre-analytic 
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artifacts (e.g., tissue quality, fixation, slice thickness, etc.), changes in color and brightness (e.g., 

samples stained at different laboratories), and can reach a performance ceiling due to features 

that are challenging to distinguish (i.e., a model can segment out highly distinguishable features 

easily but will have a harder time segmenting out similar features) (Levine et al., 2019; Wang et 

al., 2019b). The performance of DL is more robust than earlier image analysis programs because 

they do not solely rely on staining intensity or hand-crafted (manually defined) features, and they 

are able to take into account neighborhood structural information (e.g., tissue architecture) 

(Wang et al., 2019a). The loss function of a DL network quantifies the difference between the 

neural network output and the desired behavior given the network parameters; the training phase 

is a process to minimize this loss by adjusting network parameters iteratively (Wang et al., 

2019a). An iteration is one forward and one backward propagation construct within one training 

step; in other words, more iterations allow more training repetitions to improve the algorithm's 

functional goal (Wang et al., 2019a).  

Artificial Intelligence in the Medical Field 

In recent years, the applications of AI in the medical field have rapidly expanded and 

currently include the ability to analyze images, but can also extend to the examination of 

genomics, protein structures, and text data (e.g., electronic health records) (Ching et al., 2018). 

Current DL-based methods now match or surpass the previous state of the art in a diverse array 

of tasks in patient and disease categorization, fundamental biological study, genomics, and 

treatment development (Ching et al., 2018). Work is continuing, especially for AI image analysis 

where large and diverse sample sets are needed for training and models are developed such that 

misclassification of a challenging or artifactual sample is minimized (Ching et al., 2018).  

The two main categories of DL applications in medicine include: 
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1) basic applications which aim to simplify workflows; this is also known as 

automated analysis, computer-assisted (or aided) diagnosis (CAD or CADX), 

or in the context of pathology, pCAD (CAD for pathologists) which would 

include tumor detection in a biopsy sample or tumor subtyping by morphology 

2) advanced applications (also known as knowledge discovery) which provide 

information the human observer is unable to provide without ancillary testing 

(e.g., genetic mutations or identification/prediction of biomarkers; “image-

based” or “morphological profiling”) (Castellino, 2005; Chan et al., 2020; 

Echle et al., 2021; Laury et al., 2021; Levine et al., 2019; Tosun et al., 2020; 

Zuraw, 2020).  

Early AI image analysis was readily applied to radiology due to the relative ease of 

acquiring digital images with minimal data loss, and studies showed that AI models could 

consistently yield results equivalent to or even superior to radiologists in some, specific tasks; 

recently, similar findings have been found in the realm of histopathologic studies involving 

pathologists (Castellino, 2005; Chan et al., 2020; Levine et al., 2019; Sultan et al., 2020; Zuraw, 

2020). In 1998, the first commercial CAD system was approved for use by the Food and Drug 

Administration (FDA) which functions as a second opinion screening in mammography 

(Castellino, 2005; Chan et al., 2020; Levine et al., 2019; Zuraw, 2020). As of 2018, the only 

CAD application with widespread clinical use is the detection of breast cancer in screening 

mammography, although there are more than a dozen FDA-approved DL applications in 

radiology (Bulten et al., 2021; Castellino, 2005; Chan et al., 2020; Echle et al., 2021; Levine et 

al., 2019; Zuraw, 2020). When the CAD application for mammography screening is used in 

conjunction with a radiologist, the overall sensitivity is improved which supports the idea of a 
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synergistic relationship between expert clinicians and the use of AI models (Bulten et al., 2021; 

Chan et al., 2020).  

A reported potential pitfall with the CAD second opinion screening in mammography 

includes radiologist over-reliance on CAD with decreased vigilance in their interpretations, while 

another study recommends that CAD models be built with high specificity to minimize the 

number of false positives and avoid clinician fatigue during screening (Chan et al., 2020). 

Additionally, CAD tools require performance standards and acceptance testing before clinical 

use, which includes quality assurance to monitor the consistency and accuracy of the tool over 

time and to prevent improper use of the CAD that could negatively impact patients (Chan et al., 

2020). A similar situation should be anticipated for the use of CAD programs by pathologists.  

CAD applications for various medical imaging modalities that have been investigated 

include disease detection, characterization, staging, treatment response assessment, prognosis 

prediction, and risk assessment for various diseases; conventionally, these use feature extraction 

techniques and image processing to distinguish between various states (e.g., normal versus 

abnormal, or malignant versus benign) (Chan et al., 2020).  

Initially, the use of AI was not practical in pathology due to inadequate computers and 

hardware, including insufficient computational power, graphics processing units, storage space, 

and an inability to digitize histopathology slides as WSIs (Ching et al., 2018; Coudray et al., 

2018; Laury et al., 2021; Sultan et al., 2020; Turner et al., 2020). Now, technology has improved 

to the point where WSIs are used daily in some veterinary and human diagnostic labs worldwide, 

which has opened the door for an abundance of available WSIs that could be used for the 

development and application of AI image analysis (Levine et al., 2019; Moxley-Wyles et al., 

2020). Not only do histology slides carry more pixels than what is found in radiologic images, 
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but they also carry millions of different cells with their morphologies in the context of their 

spatial arrangement which yields arguably more information (Echle et al., 2021). With this trove 

of untapped data, DL models can infer high-level labels which could ultimately help guide 

oncologic treatment decisions, including prediction of genetic alterations, prediction of survival, 

and prediction of treatment responses as well as shedding light on specific pathogenic 

mechanisms (Echle et al., 2021). Humans cannot reliably infer these high-level labels from 

H&E-stained images and require additional methods to reach the same conclusions (Echle et al., 

2021). For instance, in one study where a model was trained to predict glioma outcomes in 

conjunction with common genomic markers, it was found that some previously overlooked 

malignant features (e.g., adjacent edema and sparsely infiltrated brain) correlated with a higher 

risk outcome (Levine et al., 2019).  

In the realm of pCAD, DL has achieved performance comparable to pathologists in 

interpreting WSIs for the detection of tumor regions and lymph node metastases (Wang et al., 

2019a). Another potential for pCAD DL applications includes quantification of important 

features in slides, such as the number of cells or mitotic figures; for mitotic figures, extensive 

work has been done but this remains challenging given the lack of 3D information (the z-axis) 

(Levine et al., 2019). Currently, mitotic counts are often manually performed by the pathologist 

which is time-consuming, highly subjective, and does not allow standardized reporting of mitotic 

scores across pathology laboratories, although there is a push in veterinary medicine to 

standardize mitotic figure reporting to an area of 2.37 mm2 (Donovan et al., 2020; Sultan et al., 

2020). Benefits of pCAD applications may eventually reshape the diagnostic process by 

improving accuracy and consistency of diagnosis and reporting which expedites the pathologists’ 

workflow and nets in increased growth, productivity, and profit of the institution (Bulten, et al., 
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2021; Ching et al., 2018; Echle et al., 2021; Levine et al., 2019; Moxley-Wyles et al., 2020; 

Sultan et al., 2020; Turner et al., 2020).  

The use of AI in pathology will most likely and most effectively resemble a synergistic 

relationship, as alluded to in radiology, and will include tasks such as tumor detection, grading, 

and IHC scoring (Aeffner et al., 2017; Bulten et al., 2021; Ching et al., 2018; Moxley-Wyles et 

al., 2020; Sultan et al., 2020; Turner et al., 2020). Although both pathologists and AI systems 

loosely utilize algorithmic decision trees to assist with diagnoses, subtyping, and prognostication, 

each has their advantages and challenges, which highlights their proposed synergistic 

relationship (Aeffner et al., 2017; Bulten et al., 2021; Turner et al., 2020). Pathologists suffer 

from inter-pathologist variability due to inconsistency and inaccuracy when counting large 

quantities and unintentional bias when interpreting routine slides, special stains, and IHCs; but 

humans excel at interpreting the whole picture and relying on experience (e.g., identification of 

normal tissues, atypical tissue patterns, or rare cancer subtypes that an AI model may have never 

seen before) (Aeffner et al., 2017; Bulten et al., 2021; Turner et al., 2020). In contrast, AI 

systems tend to follow more repeatable interpretation (especially for counting) and allow for 

more un-biased (objective) staining assessment but cannot interpret nuances in cell types and 

tissue architecture without similar instances being presented in the training sets (Aeffner et al., 

2017; Bulten et al., 2021; Turner et al., 2020).  

Thus, expertly trained AI systems excel at accurately completing repetitive tasks that 

include detecting mitoses, classifying tissues, and analyzing IHCs with accuracy similar to an 

expert pathologist interpreting WSIs with unlimited time (Coudray et al., 2018; Echle et al., 

2021; Laury et al., 2021; Levine et al., 2019; Moxley-Wyles et al., 2020; Turner et al., 2020). 

Not only do they excel at this, but they can be applied to multiple images concurrently, enabling 
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rapid and high-throughput analysis (Coudray et al., 2018; Echle et al., 2021; Levine et al., 2019; 

Turner et al., 2020; Zuraw et al., 2020). It is possible that with rigorously validated systems, AI 

could significantly lessen the amount of straightforward second opinions sought from secondary 

pathologists; however, complex cases are unlikely to be undertaken by AI soon (Moxley-Wyles 

et al., 2020). 

Advanced applications, as mentioned previously, can include the identification of 

previously unknown and actionable knowledge which could change how we develop treatments, 

categorize patients, or study diseases (Ching et al., 2018; Echle et al., 2021; Levine et al., 2019; 

Sultan et al., 2020). An example of this would be the concept of image-based profiling 

(morphological profiling) on histologic WSIs such that models are used for segmentation and 

feature extraction for functionally annotating genes and alleles, identifying the cellular target of 

small molecules, identifying disease-specific phenotypes suitable for drug screening, and 

providing predictions of survival and therapy response (Ching et al., 2018; Echle et al., 2021; 

Levine et al., 2019; Sultan et al., 2020).  

Currently, evaluation of the ever-growing biomarkers in human medicine increases the 

cost and time for decision-making in routine daily oncology practice and often requires 

additional tumor tissue for assays (e.g., IHC, in situ hybridization, polymerase chain reaction, or 

next-generation sequencing) in addition to the routine diagnostic material (often, histologic 

examination); therefore, pivoting to the use of DL for the analysis and identification of these 

actionable features could significantly streamline the process of risk stratification and treatment 

decisions while decreasing the overall financial costs and time (Echle et al., 2021; Sultan et al., 

2020; Tsou et al., 2019). Notably, the difference between a prognostic and predictive biomarker 

is that prognostic biomarkers categorize patients according to the risk of disease progression or 
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death to better customize the intensity of treatment while predictive biomarkers enable a 

particular targeted treatment to be chosen for a specific patient group (precision medicine) (Echle 

et al., 2021).  

Most work in the field of histopathologic AI image analysis has been in human breast, 

lung, and prostate cancers, and recent studies show AI models can act as pCAD tools in the 

histologic classification of breast tissue in humans (Echle et al., 2021; Polonia et al., 2021; 

Sultan et al., 2020).  

Specifically for digital pathology of human prostate cancer, DL has been developed for 

tumor detection and grading prostatectomies, tissue microarrays, and biopsies, while several 

studies show pathologist-level performance within the limits of the study design (Bulten et al., 

2021). As an example, the human Gleason grading scheme for prostatic cancers has significant 

inter- and intraobserver variability, and an AI trained on this scheme had higher sensitivity and 

higher specificity at classifying tumors into different grade groups as well as providing some 

indication of where in a grade a case was positioned (i.e., providing that a tumor is grade 3.3 

versus grade 3.7), which is, again, beyond the ability of a human observer (Bulten et al., 2021; 

Moxley-Wyles et al., 2020). Another study found that pathologists with assistance from an AI 

model trained in the Gleason grading scheme had improved agreement with either an expert 

reference standard or international experts as compared to the same pathologists without AI 

assistance (Bulten et al., 2021). AI applications to the Gleason grading scheme are still being 

investigated and have been highly cited to showcase the consistency and benefit AI models can 

provide to routine diagnostics. 

 In another exciting study, a deep CNN was trained to automatically classify human lung 

tumors into adenocarcinoma, squamous cell carcinoma, or normal tissue, which was successful 
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and comparable to the pathologist's performance (Coudray et al., 2018). This same study trained 

the CNN to predict the ten most commonly mutated genes in lung adenocarcinoma and found 

that 6 of these mutations could be accurately predicted from the images (Coudray et al., 2018).  

There is a small amount of literature on the application of AI to human thyroid 

carcinomas. One proof-of-concept study specifically on human thyroid carcinomas found that 

DL could accurately predict between mutually exclusive BRAF and RAS mutations in papillary 

thyroid carcinomas; these mutations are known to correlate to histopathologic patterns (Tsou et 

al., 2019). A different study found that deep learning could detect histologic features associated 

with the amount of either BRAF or RAS gene expression which aids in distinguishing indolent 

noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) from 

papillary thyroid carcinomas, which can directly alter treatment recommendations (Dolezal et al., 

2021). Another study on human thyroid nodules successfully used a deep CNN to differentiate 

between normal thyroid tissue, adenoma, nodular goiter, papillary thyroid carcinoma, FTC, 

MTC, and anaplastic thyroid carcinoma (ATC) (Wang et al., 2019b). The size and staining of the 

nucleus were the primary classification mechanism used here, and the model unsurprisingly had 

the most difficulty differentiating between normal tissue and adenomas (Wang et al., 2019b).  

Because pathology is often considered to be the gold standard for patient diagnosis, some 

pathologists have been conservative in adopting digital pathology, among other things, although, 

as of 2017, WSIs are now considered a class II medical device by the FDA (Levine et al., 2019; 

Tosun et al., 2020; Wang et al., 2019b).  

A current critique of the use of AI in a diagnostic setting is that the model functions as a 

“black box”, in that we do not fully understand how the model generates outputs from a given 

input; this is similar to those FDA-approved drugs with unknown mechanisms of action (Levine 
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et al., 2019; Tosun et al., 2020). Research is ongoing in attempting to elucidate this process and 

includes explainable AI (xAI mechanisms) which may further augment CAD processes (Levine 

et al., 2019; Tosun et al., 2020). Similarly, because of the state-of-the-art nature, there is a lack of 

consensus on how pathologists should supervise or work with these models, which may also be 

circumvented by xAI (Tosun et al., 2020). The goal of xAI is to provide clear justifications to the 

user for the automated recommendations made in the diagnostic workflow to then promote 

safety, reliability, and accountability when addressing issues concerning bias, transparency, 

safety, and causality (Tosun et al., 2020). Legal issues must also be considered before clinical 

implementation, such as who is liable for machine error (Levine et al., 2019).  

Artificial Intelligence in Veterinary Medicine 

Future applications of artificial intelligence in diagnostic veterinary medicine include 

many of the previously mentioned applications in all medical imaging modalities. For 

histopathology applications specifically, these may range from pCAD models to standardize and 

expedite workflows to advanced applications intending to elucidate actionable outcomes. Much 

of this has not been explored in the context of veterinary histopathology. 

Recent publications utilizing AI in veterinary medicine are wide-ranging and not 

necessarily restricted to image analysis. Some examples in veterinary medicine include detecting 

left atrial enlargement in canine thoracic radiographs, predicting survivability and need for 

surgery in horses that present for acute abdomen (colic), modeling milk productivity on a robotic 

dairy farm, toxicopathologic applications including detecting compound induced changes or 

detecting, classifying, and scoring cardiomyopathy in rodents, and enhancing active surveillance 

for avian influenza (Fraiwan and Abutarbush, 2020; Fuentes et al., 2020; Li et al., 2020; Pischon 

et al., 2021; Tokarz et al., 2021; Walsh et al., 2019). Currently, very few reports use deep 
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learning in veterinary pathology. One reports an algorithm out-performed veterinary pathologists 

in detecting the mitotically most active tumor region, while another article reports a completely 

annotated WSI image dataset of canine breast cancer to aid in human breast cancer research 

(Aubreville et al., 2020a; Aubreville et all, 2020b).  

 

Conclusion 

Confirmation of the cell of origin (FTC or MTC) and accurate diagnosis of CTCs remains 

challenging without the use of ancillary IHC stains. To expedite results and reduce costs of this 

diagnostic process, the following study explored the viability of applying AI to routine and 

readily available H&E-stained slides, compared the signalment from a retrospective set of cases 

to what is described in the literature, compared the accuracy of human pathologist interpretation 

of compact FTCs and MTCs without immunohistochemistries, and compared the results of the 

human pathologists without IHCs to interpretations generated from this model’s output data. 

This study will continue to advance the use of artificial intelligence in veterinary medicine. 

Specifically, because AI models can consistently and cost- and time-efficiently diagnose and 

subtype tumors, this model could be applied to both prospective and previous CTC studies for 

more consistent classification of CTCs as well as set up a skeleton for advanced studies on 

possible actionable outcomes, such as correlating subtle histologic features with altered 

neoplastic cell genotypes. 
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CHAPTER 3: UTILIZING DEEP LEARNING TO ACCURATELY DETERMINE CELL 

OF ORIGIN IN CANINE FOLLICULAR AND MEDULLARY THYROID 

CARCINOMAS ON ROUTINELY PROCESSED, H&E-STAINED TISSUE SECTIONS 

Abstract 

Canine thyroid carcinomas (CTC) are common endocrine malignancies that include 

neoplasms derived from both follicular cells and medullary cells which require histopathologic 

examination with costly and time-consuming IHCs for definitive diagnosis. In this study, 137 

retrospective cases with at least one accompanying IHC-stain from the University of Illinois at 

Urbana-Champaign Veterinary Diagnostic Laboratory (UIUC VDL) between January 2015 and 

June 2021 with a diagnosis of CTC were identified. These cases included both follicular thyroid 

carcinomas (FTCs) and medullary thyroid carcinomas (MTCs) derived from cervical and ectopic 

locations. For all cases, a diagnosis of CTC, subtyping (if applicable), criteria of malignancy 

(mitotic figures, vascular invasion, desmoplasia, etc.), available IHCs, and slide quality for 

scanning as a whole slide image (WSI) were evaluated. FTCs were subtyped into follicular, 

compact, and mixed; while MTCs were not subtyped. For inclusion, cases required at least one 

of the following IHC-stains: thyroglobulin (Tg), calcitonin, synaptophysin (SYP), and/or 

chromogranin A (CgA). A review of the diagnoses for each case by a single pathologist yielded 

that 61.6% (85) were follicular origin (FTCs), 25.4% (35) were medullary origin (MTCs), and 

13.0% (18) were equivocal. Of the confirmed diagnoses, the most common diagnosis was 

compact FTCs followed in descending order by MTCs, mixed FTCs, and follicular FTCs.  

The training group encompassed 75 diverse images across 57 cases with 24 instances of 

mixed FTCs, 22 compact FTCs, 6 follicular FTCs, 22 MTCs, and one instance of a bilateral FTC 

with differing contralateral diagnoses (left was compact and right was mixed). This latter case 
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was included to bolster the diversity of the training image set. The developed model is a 

supervised segmentation deep learning model. Each convoluted neural net (CNN) of the model 

was trained to discriminate between certain features such that the first, and broadest, layer 

detected high quality tissue, the next layers distinguishing neoplastic tissue from non-neoplastic 

tissues (including stroma, non-neoplastic thyroid tissue, parathyroid glands, and lymph node 

architecture), and subsequent layers were trained to distinguish between MTCs and the follicular 

and compact patterns of FTCs.  

Based on the validation data from the present study, most layers (CNN 1: high quality 

tissue, CNN 2: carcinoma versus remnant) are ready for use in a diagnostic setting in conjunction 

with interpretation by a pathologist and the continual addition of images with periodic re-training 

and re-validation of the model. Although the validation results are promising, caution is still 

recommended with the use of CNN 3 (follicular FTC pattern versus compact FTC pattern versus 

MTC pattern), especially for differentiating compact FTCs from MTCs. Further development of 

the model by adding additional training images of confirmed compact FTCs and MTCs from 

additional cases is required. The need for caution with the use of CNN 3 is highlighted by a 

comparison of the algorithm’s output to a subset of WSIs that represent compact FTCs and 

MTCs. Regardless of the segmentation maps, a component of human interpretation is still 

required for the subtyping of FTCs. This is because the mixed subtype is composed of 

approximately equivalent regions of both follicular and compact FTC patterns. 

The diagnostic challenge for veterinary pathologists reliably differentiating between 

compact FTCs and MTCs without ancillary testing, such as IHCs, is highlighted in this study 

based on low measures of agreement (Kappa values). The Kappa values used are between the 

verified diagnoses and IHC-blinded pathologists (range from 0.10 to 0.60 [poor to moderate 
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agreement], average of 0.30 [poor agreement]) and inter-pathologist agreement (range from -0.05 

to 0.41 [poor to weak agreement], average of 0.13 [poor agreement]) for a subset of WSIs.  

Introduction 

The primary objective of this project is to develop and validate an artificial intelligence 

(AI) deep learning algorithm that can accurately determine the cell of origin (follicular or 

medullary) in hematoxylin and eosin (H&E) stained, whole slide images (WSIs) of canine 

thyroid carcinomas (CTCs) without the use of ancillary immunohistochemical (IHC) stains. This 

is because some types of CTCs are challenging to discriminate between without the assistance of 

costly IHC stains, which may take days to weeks to be performed. Looking forward, routinely 

achieving an accurate and rapid diagnosis in diagnostic and research settings is useful to ensure 

correct treatment protocols are implemented, conclusions from studies are not skewed by failing 

to discriminate between types of CTCs, and could contribute to the development and 

implementation of highly specific therapeutic protocols. In this study, the primary hypothesis is 

that an algorithm can accurately determine the cell of origin (FTC or MTC) in CTCs on routine 

H&E-stained histopathology slides. The secondary objective was to review and compare 

demographic information and histologic characteristics between non-subtyped FTCs or MTCs 

and between subtyped FTCs and MTCs. Tertiary objectives were to evaluate the ability of 

veterinary anatomic pathologists to correctly identify compact FTCs from MTCs on H&E alone 

and further evaluate the function of the developed AI model in comparison to these IHC-blinded 

pathologists and the original IHC-based diagnosis.  

Materials and methods 

Case Identification and review. One hundred and thirty-seven (137) archival necropsy or 

surgical biopsy cases from the University of Illinois at Urbana-Champaign Veterinary Diagnostic 
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Laboratory (UIUC VDL) between January 2015 and June 2021 with an original diagnosis of 

CTC, including FTCs and MTCs, with at least one accompanying IHC, were identified using the 

search terms: thyroid carcinoma, thyroid follicular carcinoma, follicular carcinoma, medullary 

thyroid carcinoma, medullary carcinoma, C-cell carcinoma, and parafollicular carcinoma. Cases 

were also searched for by the presence of either thyroglobulin (Tg) or calcitonin IHC. Cases 

were included if archival slides had an accompanying IHC of either thyroglobulin (Tg), 

calcitonin, synaptophysin (SYP), or chromogranin A (CgA) that were available for manual 

review.  

Table 1 contains the antibody and dilution information that the UIUC VDL employs. 

H&E-stained slides with fewer IHCs and special histochemically stained slides from all 

identified cases were then re-examined by a veterinary anatomic pathology resident (JMA) using 

brightfield microscopy for quality, verification of the original diagnosis (FTC or MTC), and 

subtyping of FTCs (if not previously performed). These are hereby referred to as the “verified 

cell or origin” or “verified diagnosis,” respectively. The definitive microscopic diagnosis and 

confirmation of cell of origin (FTC or MTC) rest with IHC interpretation, as outlined in Table 2. 

The ground truth used for AI model training on the H&E-stained slides was therefore determined 

by the IHCs. Eighteen cases were unable to be definitively diagnosed by the provided H&E-

stained and IHC-stained slides. For these cases, JMA consulted one of two board-certified 

anatomic veterinary pathologists for assistance in reaching the final diagnosis. The inability of 

definitive diagnosis in this case subset was mainly due to equivocal IHC staining patterns or lack 

of a complete IHC panel; of the latter, the main issue was determining between a compact FTC 

versus MTC, but in a few instances, challenge arose with subtyping FTCs into mixed or 

follicular patterns. Two of these eighteen cases were considered poorly differentiated, and one 
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may represent a carcinosarcoma. Equivocal cases were excluded from model development and 

statistical testing.  

Additionally, neoplasms were evaluated for the histologic presence of subendothelial 

invasion, intravascular neoplastic emboli, osseous metaplasia (with or without mineralization), 

necrosis, desmoplasia (also known as a scirrhous response), amyloid, and the number of mitotic 

figures in ten representative high power (400x) fields (Newkirk et al., 2017). The amount of 

necrosis, if present, was scored as follows:  

1 for necrosis that encompasses 1 to 25% of the tumor as a whole, 

2 for necrosis that encompasses 26 to 50% of the tumor as a whole, 

3 for necrosis that encompasses 51 to 75% of the tumor as a whole, and 

4 for necrosis that encompasses 76 to 100% of the tumor as a whole. 

 In cases with equivocal interpretation, additional board-certified veterinary anatomic 

pathologists were consulted (MDV and KLB) which generally resulted in the determination that 

additional IHCs are needed for definitive diagnosis. Cases were excluded if H&E-stained slides 

of the CTC were absent, or if upon re-examination, the neoplasm was thought to be of 

parathyroid or other tissue origins. All acceptable slides were then submitted (Charles River 

Laboratories) for scanning, yielding 1076 unique WSIs consisting of a combination of routine 

H&E-stained slides containing CTC lesions, IHCs, and a few miscellaneous special or 

immunohistochemical stains, such as Congo Red, Giemsa, cytokeratin IHC, and CD31 IHC that 

were ordered as part of the original diagnostic workup. 

Development of the AI model. All WSIs were uploaded to the Aiforia Cloud platform 

(Aiforia Inc., Cambridge, MA, USA) as .svs files without additional processing or accompanying 

metadata regarding demographics, diagnoses, etc. One hundred and nineteen (119) cases (452 
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H&E-stained WSI) with unequivocal diagnoses (follicular subtypes or MTCs) were selected for 

possible use in model development. Of these, 75 diverse WSIs across 57 cases (~17% of the total 

available H&E-stained WSIs; ~45% of the total available cases) were selected based on diverse 

CTC tissue architecture, diagnoses, and good quality WSI scanning (minimal scan artifacts such 

as scan lines or blurry bands that severely compromise image quality). The remaining 377 WSIs 

from the cases with unequivocal diagnoses were withheld for validation and possible further 

testing. 

Development and training of the models were performed with the Aiforia Create platform 

(initially under Aiforia version 5.1 and the remaining majority and final training under Aiforia 

version 5.2). One person (JMA) trained and developed the model with guidance from an Aiforia 

representative. 

Figure 2 shows a schematic overview of the model structure. The superficial three layers 

(CNN) of the model were trained by supervised learning for segmentation, while the remaining 

CNN was intended to be an object detection layer. 

The first CNN (“high quality tissue”, CNN 1) was trained to detect any tissue, which, 

despite the name, included tissue folds, superimposed fragments of tissue, and small patches of 

blurriness. This is more appropriately called a tissue detector layer. CNN 2 is a child layer to 

CNN 1 and is a binary segmentation model to separate “carcinoma” (also known as neoplastic 

thyroid tissues) and “remnant” tissues (also known as non-neoplastic tissues, including stroma, 

non-neoplastic thyroid tissue, parathyroid glands, and lymph node architecture). Within this 

layer, skeletal muscle was trained out as background rather than stroma due to issues with the 

model identifying skeletal muscle bundles as thyroid colloid follicles. CNN 3 is a child layer to 

the “carcinoma” CNN and is a trinary segmentation model to separate between histologic 
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patterns of tumor growth. Only follicular and compact FTC subtypes are utilized because the 

diagnosis of mixed FTC is made when there are approximately equal amounts of follicular and 

compact patterns. During early model development, training a specific layer for a mixed pattern 

was deemed not feasible due to challenges in model accuracy. All subtype layers then had one 

additional, interconnected, child CNN (“mitotic figures”), which was intended to function as a 

mitotic figure counter. The configuration for the mitotic figure layer allows mitotic figures to be 

detected in all neoplastic tissue regardless of the subtype in question. 

Training annotations for segmentation layers were made by encircling representative 

regions with the desired characteristic(s) (colored circles), while the training regions were 

indicated by encircling appropriately annotated regions (black circles) (Figure 2). Typically, 

training annotations (colored circles) were drawn larger than training regions (black circles) to 

ensure all tissues were accounted for; in some instances, only training regions without training 

annotations were made to teach the model background information (e.g., to help the model 

distinguish between tissue on the slide versus blank areas of scanned slides). In some instances, 

especially for CNN 2, interface regions delineating neoplastic and non-neoplastic patterns were 

desirable to improve the segmentation margins and learning of the model. 

Because CNN 4 was intended to be an object detection layer for counting mitotic figures, 

the annotation style is slightly different. For these annotations, a stamp-like object marker was 

used to make training annotations which were then surrounded by a training region. The size of 

this marker can be changed, but 12 um diameter appeared optimal. Mitotic figures were 

annotated according to Donovan et al. (2021). 

Each CNN was manually annotated and trained in sequential order starting first with 

CNN 1 (high quality tissue). After providing a baseline set of annotations in a small number of 
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training images, the model was trained at 100 iterations (100i). After each training, the Aiforia 

program’s verification pane provides a concise, rank-ordered review of discrepancies (such as 

false positives and false negatives) between the annotations provided and the model’s prediction. 

The use of this pane allows for the refinement of existing training annotations. Following higher 

iteration training, the algorithm may also perform an analysis of regions of the WSI or the whole 

WSI itself to allow visual assessment of the current overall function of the model. Similar to the 

verification pane, this allows for further refinement of existing annotations as well as a visual 

guide of where new annotations should be placed (typically in areas where the model is 

incorrectly segmenting the tissue). With the early promising function of the model, most of the 

additional training images were added at one time until the total 75 images were annotated. After 

annotations were refined and/or added, the model was re-trained, usually with increasing 

iterations and occasionally with adjustments of advanced parameters for optimization. This 

process was repeated until the model reached subjective proficiency by examination of the 

verification pane results and analysis of regions’ layer segmentation masks. 

At this point, a final high-iteration training (between 10,000i and 15,000i) was performed 

for each segmentation CNN to allow for further refined learning and confirmation of appropriate 

function. After this, the individually trained CNNs were internally released and collated into a 

final model. The final pre- and post-training CNN parameters are summarized in Table 3. 

AI Model Validation. Twenty-five (25) diverse WSIs from 25 discrete cases that were 

withheld from the training set were selected for validation. To be included, each case required 

accompanying thyroglobulin and calcitonin, synaptophysin, or chromogranin IHCs, since these 

are required for accurate histologic interpretation, as outlined above. Thirteen (13) of these 25 

WSIs (52%) were from cases where a sister WSI was used to train the model. Although these 
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sister WSIs derive from the same patient, their use is acceptable because they contain differences 

in architectural arrangements, artifacts, amount of neoplastic tissue, and/or location (e.g., lymph 

node metastasis rather than a primary mass). These 25 WSIs for validation encompassed 5 

diagnoses of mixed FTCs, 6 compact FTCs, 3 follicular FTCs, 11 MTCs. The images were 

randomly assigned a new letter ID (from A to Y) in Microsoft Excel to preserve the blindness of 

the validators. The model was then applied to these images to generate segmentation layer masks 

for each CNN. 

Three (3) board-certified general veterinary anatomic pathologists with varying years of 

diagnostic experience assisted in the validation of this model. The pathologists were asked to 

visually assess and score each layer segmentation mask that the model generated. The scoring 

system utilized is similar to a system reported in the literature for a histologic image 

segmentation AI model (Pai et al., 2021) and an additional undisclosed study from a different 

Aiforia client that is in progress for publication. The scoring key is as follows: 1 (perfect or near-

perfect accuracy [95-100%, no significant errors]); 2 (very good accuracy [80-95%, minor 

errors]); 3 (good accuracy [70-80%, significant errors but still captures the features well]); and 4 

(insufficient accuracy [<70%, significant errors compromising feature recognition]). Validators 

were provided minimal additional instructions or guidance and were asked to classify each image 

based on their interpretation of the cell of origin (follicular or medullary; also known as FTC or 

MTC) as well as what their ultimate diagnosis would be (follicular, compact, or mixed FTC or 

MTC). 

IHC-blinded Pathologist success in differentiating compact FTC and MTC (Tertiary 

Objective). Twenty (20) WSIs including 10 compact FTC and 10 MTC each were given to 3 

general veterinary anatomic pathologists with varying years of diagnostic experience that were 
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not associated with the training or validation of the AI model. The pathologists were tasked to 

provide whether they interpreted a particular tumor as a compact FTC or MTC without ancillary 

IHCs (“IHC-blinded pathologists”). Ten (10) WSIs were from cases where a sister WSI was used 

in the training set, 2 WSIs were from cases with another image included in the validation set, and 

the remaining 8 WSIs were included in the reserved set. Both compact FTCs and MTCs are 

represented in all groups. These images were also randomly assigned a new letter ID (from A to 

T) in Microsoft Excel.  

Following the validation process, the algorithm was applied to this image set. The 

interpretation of model results was only by JMA via both visual assessment or by taking the 

highest model-generated percent segmentation area for CNN 3 (follicular FTC pattern, compact 

FTC pattern, or MTC pattern). This percentage is out of the total area that the model identified as 

“carcinoma” tissue. For visual assessment, the neoplasm was classified by the predominant 

colored layer mask with compact FTC as dark blue, MTC as light blue, and follicular FTC as 

red. The use of the category “FTC” rather than the more specific diagnosis of “compact FTC” 

was preferred to highlight the main intended function of the model (differentiation of FTCs from 

MTCs).  

Statistical analyses. R/RStudio [RStudio 2021.09.1+372 "Ghost Orchid" Release 

(8b9ced188245155642d024aa3630363df611088a, 2021-11-08) for Windows Mozilla/5.0 

(Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) 

QtWebEngine/5.12.8 Chrome/69.0.3497.128 Safari/537.36) was used for most statistical testing 

with an alpha of 0.05. Microsoft Excel (Version 2002 [Build 12527.20252 Click-to-Run]) was 

used for various calculations including means, variance, standard deviations, and Cohen’s 
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Kappa, and was also used to build confusion matrices and organize data for import into 

R/RStudio. 

For various components of the study binary or quaternary confusion matrices were 

constructed to compare many things. Categories of binary confusion matrices constructed for this 

study with their specific comparisons include: 

• Agreement of validator pathologists  

o Pairwise agreement of interpretations of validator pathologists and the 

verified cell of origin (FTC or MTC) 

o Pairwise agreement between each validator pathologist (interobserver 

agreement) for the cell of origin (FTC or MTC) 

• Agreement of IHC-blinded pathologists 

o Pairwise agreement of diagnosis of IHC-blinded pathologists to the 

verified diagnosis (compact FTC or MTC) 

o Pairwise IHC-blinded interpathologist agreement of the cell of origin 

(FTC or MTC) 

• Agreement with the model’s predictions  

o Agreement of the verified cell of origin (FTC or MTC) versus results 

generated by the model (as visually interpreted by JMA) 

o Agreement of the verified cell of origin (FTC or MTC) versus results 

generated by the model (by taking the highest percent segmentation area)  

o Pairwise agreement of the cell of origin (FTC or MTC) between each 

IHC-blinded pathologist and the model (as visually interpreted by JMA) 
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o Pairwise agreement of the cell of origin (FTC or MTC) between each 

IHC-blinded pathologist and the model (by taking the highest percent 

segmentation area)  

For each comparison, Cohen’s Kappa, the accuracy, and their respective averages (if 

applicable) were calculated. Accuracy (the proportion of agreeing predictions) was also 

calculated by summing the true positives and true negatives and dividing by the total number of 

cases (e.g., 25 for the first category).  

Quaternary confusion matrices were constructed to compare the: 

• Pairwise agreement of validation scores from all pathologists for all layers 

• Pairwise agreement of each validator pathologist’s ultimate diagnosis (follicular 

FTC, compact FTC, mixed FTC, or MTC). 

For the second category of confusion matrices, Fleiss’ Kappas were calculated and included 

evaluation of the: 

• Pairwise agreement between each validator pathologist’s ultimate diagnosis 

(subtyped FTCs or MTC) and the verified diagnosis 

• Total agreement between all validator pathologists’ ultimate diagnoses (FTC 

subtypes and MTC) (total interpathologist agreement) 

For the first set of pairwise comparisons, the average Fleiss’ Kappa was calculated and 

interpreted as outlined above. 

As an alternative evaluation of the data, the average score, variance, and standard 

deviation for each segmentation layer mask for each validator pathologist were calculated. Then, 

the average score, variance, and standard deviation across all images and all validator 

pathologists for each segmentation layer mask were calculated. This was calculated first 
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including all images and then again excluding images where the total consensus of the cell of 

origin (FTC or MTC) was not achieved between all validator pathologists.  

For evaluating demographic data, cases with missing data were excluded from the 

relevant tests as well as the single herding dog with bilateral FTC and differing contralateral 

subtypes. Age groups were made to attempt to equally distribute the age ranges. Given the wide 

spectrum of dog breeds and “mixed breed dogs”, dogs were instead grouped by the American 

Kennel Club (AKC) groups (2020). Furthermore, breeds considered to have increased risk were 

kept separate, while mixed breed dogs with at least one dog breed provided (e.g., “boxer-mix”) 

were included with the breed listed. In instances where multiple breeds were listed, the animal 

was classified into the first given breed (e.g., classified as a boxer for a “boxer-lab mix”). This 

applies to the beagle, boxer, golden retriever, and Labrador retriever strata.  

Demographic features (age groups, stratified sex, non-stratified sex, location, and breed) 

as well as histologic features (subendothelial invasion, intravascular invasion, presence of 

osseous metaplasia, presence of necrosis, and presence of desmoplasia) were each compared in a 

pairwise fashion against categories of either all FTCs and MTCs (2 categories) or subtyped FTCs 

(follicular, mixed, or compact) and MTCs (4 categories). These pairs were initially evaluated for 

independence using a chi-square test. A Pearson’s chi-squared test was then evaluated for a 

statistically significant relationship between independent pairs. A likelihood ratio was used to 

evaluate the contribution of the remaining categories to the development of all FTCs or MTCs; 

or of subtyped FTC or MTC.  

Quantitative demographic values (mean age and standard deviation) and histologic 

features (mean number of mitotic figures and standard deviation; mean necrosis score and 

standard deviation) were calculated for all CTCs, as well as for the different diagnoses. One-way 
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analysis of variances (ANOVAs) were performed to evaluate whether there were statistically 

significant differences in mean age on all FTCs and MTCs or subtyped FTCs and MTCs. Before 

the ANOVA, Levene’s test was used to first confirm that population variances were equal for 

each.  

Results 

The training WSI set encompassed 24 diagnoses of mixed FTCs, 22 compact FTCs, 6 

follicular FTCs, 22 MTCs, and one instance of a bilateral FTC with differing contralateral 

diagnoses on the same WSI (left gland was diagnosed as a compact FTC while the right was 

diagnosed as a mixed FTC). Within this image set, there were between 1 to 3 distinct WSIs from 

the same animal, deriving from different areas of the neoplasm.  

Understanding how to interpret AI models to make testable hypotheses about the system 

under study remains an open challenge, as of 2018 (Ching et al.). A common approach to 

validating deep learning algorithms in oncologic histopathology is to assess the performance of 

algorithms as compared to an expert pathologist (Sultan et al., 2020). Because a consensus on 

how to evaluate this data does not yet exist, attempts were made to follow what previous studies 

have done.  

To evaluate the model’s function, Kappa values, confusion matrices, and a few other 

methods were utilized. Cohen’s Kappa is used to compare 2 raters using a categorical variable, 

while Fleiss’ Kappa may be used for comparing 2 or more raters using 2 or more categorical 

variables. Both are used throughout this study. Interpretation of all Kappa statistics are as 

follows: <0.40 (poor agreement); 0.40-0.54 (weak agreement); 0.55-0.69 (moderate agreement); 

0.70-0.84 (good agreement); and 0.85-1.00 (excellent agreement) (Schober et al., 2021).  
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Confusion matrices may be used to visually compare the agreement between two assays 

or observers and are commonly used in evaluating artificial intelligence models. Binary (2 x 2) 

or quaternary (4 x 4) confusion matrices were built to compare a variety of things, as outlined 

below. For confusion matrices, instances of agreement occur along the diagonal of intersection 

spanning from the upper left to lower right cells, while instances of disagreement are represented 

by anything outside of this diagonal. All confusion matrices are provided in Supplementary 

Figure 3.  

Cohen’s Kappas for the pairwise agreement of the interpretations of the validator 

pathologists and verified cell of origin (FTC or MTC) are 0.84 (good agreement; pathologist A), 

0.92 (excellent agreement; pathologist B), and 0.92 (pathologist C) with a mean of 0.89 

(excellent agreement). The accuracies for these comparisons are 0.92, 0.96, and 0.96 with a mean 

of 0.95.  

Measures of agreement between validator pathologists (interobserver agreement) for the 

verified cell of origin are provided in Table 4. Cohen’s Kappas for the pairwise agreement 

between each validator pathologist (interobserver agreement) for the cell of origin (FTC or 

MTC) are 0.84 (good agreement), 0.92 (excellent agreement), and 0.92 (excellent agreement) 

with a mean of 0.89 (excellent agreement). The accuracies for these comparisons are 0.92, 0.96, 

and 0.96 with a mean of 0.95.  

Fleiss’ Kappa for the pairwise agreement between each validator pathologists’ ultimate 

diagnosis (subtyped FTCs or MTCs) and the verified diagnosis are 0.822 (good agreement; 

pathologist A), 0.593 (moderate agreement; pathologist B), and 0.712 (good agreement; 

pathologist C) with an average of 0.709 (good agreement). 
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Fleiss’ Kappa for the total agreement between all validator pathologists’ ultimate 

diagnosis (FTC subtypes and MTC; total interpathologist agreement) was 0.626 (moderate 

agreement).  

Measures of agreement between IHC-blinded pathologists and verified IHC-based 

diagnosis (compact FTC or MTC) are provided in Table 5. Cohen’s Kappas for the pairwise 

agreement of IHC-blinded pathologists to the verified diagnosis are 0.60 (moderate agreement), 

0.20 (poor agreement), and 0.10 (poor agreement) with a mean of 0.30 (poor agreement).  

Accuracy for each pair is 0.80, 0.60, and 0.55, with a mean of 0.65.  

Measures of agreement between IHC-blinded pathologists (interobserver agreement) for 

cell of origin (FTC or MTC) are provided in Table 6. Cohen’s Kappas for the pairwise IHC-

blinded interpathologist agreement of the cell of origin are 0.41 (weak agreement), -0.05 (poor 

agreement), and 0.03 (poor agreement), with a mean of 0.13 (poor agreement). Accuracy for 

each pair is 0.70, 0.55, and 0.65, with a mean of 0.63.  

Cohen’s Kappa for comparing the agreement of the verified cell of origin and visual 

assessment of the model’s results is 0.60 (moderate agreement) with an accuracy of 0.80.  

Cohen’s Kappa for comparing the agreement of the verified cell of origin and taking the 

highest percent segmentation area is 0.50 (weak agreement) with an accuracy of 0.75. 

Cohen’s Kappas for the pairwise agreement of cell of origin between IHC-blinded 

pathologists and visual interpretation of the model are 0.42 (weak agreement), 0.07 (poor 

agreement), and 0.04 (poor agreement) with an average of 0.18 (poor agreement). Accuracy for 

each pair is 0.70, 0.50, and 0.45 with a mean of 0.55.  

Cohen’s Kappas for the pairwise agreement of cell of origin between IHC-blinded 

pathologists and taking the highest percent segmentation area provided by the model are 0.31 
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(poor agreement), -0.06 (poor agreement), and -0.12 (poor agreement) with an average of 0.04 

(poor agreement). Accuracy for each pair is 0.65, 0.45, and 0.40 with a mean of 0.50.  

Considering validator interpathologist agreement on cell of origin (FTC or MTC) for the 

25 validation WSI subset, consensus was achieved for all images except for 2. In these instances, 

only one of the three (1/3) validator pathologists disagreed. For one image, the majority diagnosed 

an MTC while one pathologist diagnosed FTC; the reverse is true for the other image. Therefore, 

if the determination of the cell of origin (FTC or MTC) for these images is by the majority, the 

cell of origin ends up the same as the verified diagnosis, which is supported by good to excellent 

Cohen’s Kappa values between the verified cell of origin and each validator pathologist.  

Macroscopic images of the model’s CNN 3 WSI segmentation masks for the comparison 

of the model’s predictions to IHC-blinded pathologists in determining compact FTCs and MTCs 

are provided in Figure 3, while Table 7 compares interpretation of the model’s predictions with 

each IHC-blinded pathologist. Comparison of the interpretation of the model’s predictions to the 

verified cell of origin found misclassification by visual assessment in 4 of 20 images (images F, 

P, Q, and R) and misclassification by segmentation area percentage in 5 of 20 images (images B, 

F, P, Q, and R). In one image (image K), the follicular FTC pattern visually dominated and had 

the highest segmentation area percentage (43.7%). This represents a misclassification, as only 

WSI originally diagnosed as compact FTC or MTC were selected for this study component. For 

this image, the compact FTC segmentation area percentage was 15.27%, while the medullary 

segmentation area percentage was 14.57%. Looking at the specific segmentation patterns, 

interpretation of the algorithm’s results yielded three FTCs misclassified as MTCs (images F, P, 

and Q), while only one misclassification of an MTC as an FTC (image R). Looking at the highest 
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segmentation percent areas, three FTCs were misclassified as MTCs (images F, P, and Q), while 

two MTCs are misclassified as FTCs (images B and R).  

The highest percentage of segmentation patterns for each image ranged from 43.7% 

(image K, follicular FTC pattern) to 99.45% (image M, compact FTC pattern), while the absolute 

difference between the compact FTC pattern and MTC pattern for each image ranged from 0.7% 

to 99.352%.  

Of the incorrectly classified images by both visual assessment and percentage, only 2 

images had a sister slide that was involved in the training set. Therefore, the remaining 8 images 

with a sister slide involved in training classified the image correctly.  

Given that a scoring system from non-randomized rater pathologists with the intent to 

evaluate agreement was used for rating the model, a two-way mixed effect, absolute agreement, 

single raters intraclass correlation coefficient (ICC) was selected and performed for each layer. 

The ICC scores were first calculated using scores from all validation images and then re-

calculated excluding images where the total consensus of the cell of origin (FTC or MTC) was 

not achieved between all validator pathologists. ICC scores are interpreted like the Kappa 

statistics, as outlined above, and the ICC scores for all images ranged from 0.00 to 0.59 (poor to 

moderate agreement). The ICC scores for all images with validator pathologist consensus on the 

cell of origin ranged from 0.00 to 0.57 (poor to moderate agreement).  

The averages, variances, and standard deviations for each segmentation layer for each 

image from each validator pathologist are listed in Table 8. Below, is the overall average score 

for each segmentation layer for all images. 

1. CNN 1, High Quality Tissue: 1.11 (SD 0.27) 

2. CNN 2, Carcinoma: 1.48 (SD 0.26) 
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3. CNN 2, Remnant: 1.52 (SD 0.24) 

4. CNN 3, Follicular: 1.83 (SD 0.55) 

5. CNN 3, Compact: 2.16 (SD 0.75) 

6. CNN 3, Medullary: 2.21 (SD 0.82) 

Unfortunately, the mitotic figure counter did not successfully make it through the pre-

validation phase due to excessively high false-positive rates, relatively rare high-quality examples 

among the 75 WSIs used for training, and project timeline constraints. The most recent model has 

986 high quality manual annotations, but the algorithm identified a total of 3,185 mitotic figures 

yielding a total object error of 323.02%, a false positive percentage of 321.50%, and a false 

negative percentage of 1.52%. This model also reports a precision of 23.45%, a sensitivity of 

98.48%, and an F1 score of 37.88%. This model was trained at 5000i with a training loss of 

0.1162. Altered advanced parameters include extra complex complexity and 80% maximum 

object overlap for layer features, and a mini-batch size of 160 and 500i iterations without progress 

for training procedures. Complexity refers to how difficult it is to recognize features from the rest 

of the image, mini-batch size essentially splits the data set into smaller batches to avoid running 

out of available memory, and iterations without progress refer to a mechanism where the training 

will stop if no progress is made after a certain number of iterations. 

Clinical information provided by the client generally ranged from reporting a left, right, 

or bilateral thyroid mass, neoplasm, or carcinoma; to a thyroid mass without a specified side or 

location; or a ventral cervical or laryngeal mass. Few cases were from ectopic locations, such as 

a cranioventral cervical mass, heart base mass, subcutaneous mass at the right thoracic inlet, or a 

pericardial mass associated with the brachiocephalic trunk. In general, the accompanying clinical 

information was highly variable and was mostly restricted to indicating a thyroid mass with or 
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without providing a location. Rarely, additional information, such as results from a variety of 

clinical assessments, clinical signs, or concerns about metastasis, was provided. Comparison of 

presenting clinical signs or comorbidities was not pursued due to the incomplete and inconsistent 

reporting of this information in the study sample.  

Table 9 summarizes the distribution of all FTCs and MTCs or subtyped FTCs and MTCs 

between various demographic categories. Animals were classified by stratified sex (sex with 

spay or neuter status) and non-stratified sex (male or female), by numeric age, by age groups, by 

breed, and by neoplasm location. There is one case of a 15-year-old, AKC herding group dog 

that had bilateral FTC but was subtyped differently on each side (left was compact and right was 

mixed); this animal was excluded from the calculations of mean age, mitotic figures, and scoring 

of necrosis as well as subsequent statistical analyses but yielded a total of 138 diagnoses from 

137 animals. The remaining animals with bilateral neoplasms were diagnosed with the same type 

of CTC on each side and were subsequently considered as one diagnosis for statistical testing.  

There were 85 FTCs (61.6%), 35 MTCs (25.4%), and 18 cases with equivocal diagnoses 

(13.0%). Of the FTCs, the compact subtype was most common with 51 cases (37.0% of the total; 

60% of FTCs), the mixed subtype was second most common with 27 cases (19.6% of the total; 

31.8% of FTCs), and the follicular subtype was least common with 7 cases (5.1% of the total; 

8.2% of FTCs). When considering only cases with unequivocal diagnoses (n = 120), FTCs 

compose 70.8% while MTCs compose 29.2%. The FTC subtypes considering only unequivocal 

diagnoses are as follows: compact was 42.5% of total unequivocal diagnoses, mixed was 22.5% 

of total unequivocal diagnoses, and follicular was 5.8% of total unequivocal diagnoses. 

Age groups, stratified sex, non-stratified sex, location, and breed were compared against 

categories of either the cell of origin (FTC or MTC) or specific diagnosis (FTC subtypes or 
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MTC). The only independent pair was the age groups and categorizing tumors into either FTC or 

MTC. Subsequent Pearson’s chi-squared test confirmed there is a statistically significant 

relationship between age groups and developing CTC. (p-value = 0.01477). A likelihood ratio 

was used for the remaining pairs, and none were significant. A statistically significant 

relationship using the Pearson’s chi-squared test (P-value = 0.01477) was found between age 

groups (3 to 6 years, 7 to 10 years, and 11-15 years) and developing either all FTCs or MTCs. 

Based on the age groups, the 7 to 10 age range contained the most cases. 

The overall mean age between all diagnoses is 9.2±2.3 years, while all FTCs had a mean 

age of 9.6±2.3 years and MTCs had a mean of 8.4±2.3 years. Separating FTC subtypes, follicular 

FTCs had a mean age of 9.6±1.6 years, mixed FTCs had a mean of 9.0±2.5 years, and compact 

FTCs had a mean of 9.8±2.2 years. 

ANOVA was used to determine if there were statistically significant differences in mean 

age on all FTCs or MTCs (2 categories) and subtyped FTCs (follicular, mixed, and compact) or 

MTCs (4 categories). Levene’s test was done to first confirm population variances were equal for 

both tests (first test F = 0.0128, p-value: 0.9101; second test F = 0.3344, p-value = 0.8005). The 

first ANOVA revealed that were was a statistically significant difference in mean age between 

FTCs (9.6 years [1.6 SD] years) and MTCs (8.4 years [2.3 SD]) (F = 5.648, p-value = 0.0192). 

The second ANOVA revealed that there was not a statistically significant difference in mean age 

between at least two of these groups (F = 2.613, p-value = 0.0549).  

Examined histologic features include the presence of subendothelial invasion, 

intravascular invasion, osseous metaplasia, necrosis, and desmoplasia. Additionally, mitotic 

counts from ten high-power (400x) fields in the area of the tumor with the most mitoses were 
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performed. In cases with necrosis, the amount of necrosis present within a neoplasm was scored, 

as previously described.  

The presence of subendothelial invasion, intravascular invasion, osseous metaplasia, 

necrosis, and desmoplasia were compared against categories of either all FTCs and MTCs or 

subtyped FTCs and MTCs. A chi-square test confirmed independence in four pairs which include 

1) intravascular invasion and FTC or MTC, 2) desmoplasia and FTC or MTC, 3) desmoplasia 

and FTC subtype or MTC, and 4) presence of necrosis and FTC or MTC. A Pearson’s chi-

squared test was performed for each pair, and the p-values for each pair are as follows: 1) 1.0, 2) 

0.004885, 3) 0.012, and 4) 0.2912. Therefore, statistically significant relationships were only 

identified between desmoplasia and both CTC cell of origin and subtypes. There were 34 cases 

with desmoplasia. Of these, 13 were FTCs, 14 were MTCs, and 7 were equivocal. Of the FTCs, 

9 were compact, and 2 each were mixed or follicular. The relationships between intravascular 

invasion and cell of origin and the presence of necrosis and cell of origin are statistically 

insignificant. A likelihood ratio was used for the remaining pairs, and a statistically significant 

relationship was confirmed between the presence of osseous metaplasia and subtypes (p-value 

0.00041158). Twelve (12) cases had the presence of osseous metaplasia, and these included 5 

mixed FTCs, 3 follicular FTCs, 0 compact FTCs, 2 MTCs, and 2 neoplasms with equivocal 

diagnoses 

The overall mean number of mitotic figures between all diagnoses is 5.5±4.3, while FTCs 

had a mean of 5.3±4.4 mitotic figures and MTCs had a mean of 6.1±4.5 mitotic figures. 

Separating FTC subtypes, follicular FTCs had a mean of 3.9±2.6 mitotic figures, mixed FTCs 

had a mean of 5.6±4.8 mitotic figures, and compact FTCs had a mean of 5.3±4.5 mitotic figures. 

ANOVA was performed to evaluate for statistical significance of mean mitotic figures on all 
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FTCs or MTCs, and on subtyped FTC and MTCs. Levene’s test first confirmed that population 

variances were equal for both tests (first test F = 0.6374, p-value: 0.4263; second test F = 0.7727, 

p-value = 0.5116). Both ANOVAs revealed that there were no statistically significant differences 

in mean mitotic figures between at least two groups (first test F = 0.824, p-value = 0.366, second 

test F = 0.56, p-value = 0.642). 

For cases with necrosis, the overall mean score for necrosis was 1.6±0.8, while all FTCs 

had a mean of 1.6±0.7 and MTCs had a mean of 1.6±0.9. Separating FTC subtypes, follicular 

FTCs had a mean score of 2.2±0.8, mixed FTCs had a mean of 1.7±0.8 mitotic figures, and 

compact FTCs had a mean of 1.4±0.6. ANOVA was performed to evaluate for statistical 

significance of mean scores on all FTCs or MTCs and subtyped FTC and MTCs. Levene’s test 

first confirmed that population variances were equal for both tests (first test F = 0.0263, p-value: 

0.8715; second test F = 0.7994, p-value = 0.4977). Both ANOVAs revealed that there were no 

statistically significant differences in mean scores between at least two groups (first test F = 

0.026, p-value: 0.872; second test F = 2.089, p-value = 0.108). 

Amyloid was not detected in any neoplasm, so no statistical testing was pursued.  

Discussion 

After performing the literature review, the need for a consistent, cost-effective, and 

efficient method of differentiating FTCs and MTCs was obvious. This is because even current 

(2020 and 2021) clinical literature regarding treatment modalities frequently fails to distinguish 

these entities yielding conclusions about CTCs as a whole, which may not accurately reflect 

what is happening on a genomic or biochemical level (Giannasi et al., 2021; Hassan et al., 2020; 

Jegatheeson et al., 2021; Nadeau and Kitchell, 2011). This systemic failure of distinguishing 

MTCs from FTCs coupled with the paucity of comparative studies between these entities may 
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perpetuate skewed data with lower MTC prevalence and/or yield unreliable results and 

conclusions from CTC studies. By combining these neoplasms under the umbrella of CTCs, 

masking of clinically useful information, like differences in prognoses or therapeutic response, 

may be occurring (Barber, 2007). In future studies of CTCs, it is critical to begin routinely 

distinguishing these neoplasms, as preliminary evidence supports genetic differences between 

canine FTCs and MTCs which may eventually lead to differences in treatment, as in human 

medicine (Al Rasheed and Xu, 2019; Bai et al., 2020; Cabanillas et al., 2019; Cabanillas et al., 

2018; Campos et al., 2014c; Ceolin et al., 2019; Haddad et al., 2018; Hassan et al., 2020; Valerio 

et al., 2017; Varricchi et al., 2019).  

Overall, most convoluted neural nets (CNNs) of the model are successful and are ready 

for use in a diagnostic setting in conjunction with interpretation by a pathologist and the 

continual addition of images with periodic re-training and re-validation of the model. This is 

supported by relatively low (good) average validator scores for CNN 1 (high quality tissue), 

CNN 2 (carcinoma and remnant), and only the follicular pattern of CNN 3. Furthermore, these 

scores trend similar to what is found for the total area error percentages during the final training 

(Table 8), with CNN 1 having the least area errors overall when considering CNNs 2 and 3 

without subdividing them into their segmentation layers. Total area error is essentially the total 

error per training area, including both false positive and false negative areas. CNN 3 (follicular 

versus compact versus medullary) shows promising validation results, although the results from 

this CNN are less reliable and should be used with caution. A mixed layer for the third CNN was 

not included; instead, the model generates a tissue area percentage of each segmentation mask, 

so a pathologist could diagnose a mixed FTC after confirming an algorithm’s output gives 

approximately equal tissue area percentages for the follicular and compact segmentation regions 
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or visually assessing the segmentation masks. This further supports the requirement that a 

pathologist interprets the model-generated results. Because there are no clearly defined 

guidelines in diagnosing a mixed FTC beyond approximately equal portions of follicular and 

compact patterns, their diagnosis remains subjective. The proportions could range from a pure 

50-50 to a more skewed 60-40, etc., depending on the pathologist's interpretation and adherence 

to this definition as well as the area of mass examined (Kiupel et al., 2008; Rosol and Meuten, 

2017; Rosol and Frone, 2016). While this is considered a minor point in this study, it is still 

notable and should be considered when formulating future classification schemes of CTCs, 

especially if AI models for the classification of tumors continue to be developed based on the 

amount of pattern present.  

Looking at the overall average scores and standard deviation for each segmentation layer, 

it can be expected that CNNs 1 and 2 will function well when applied to future images, but CNN 

3 will perform less reliably with most concern given to the compact and medullary layers. 

Validation scores for CNN 3 have an estimated accuracy of 80-95% for the model’s predictions, 

while the scores for CNN 1 and 2 ranged from slightly higher to 100%. Therefore, CNN 3 still 

requires additional development, especially with providing additional compact FTCs and MTCs 

from distinctly different cases as compared to what was used so far.  

Retrospectively, a more effective model structure could be that CNN 1 is for high quality 

tissue (as is here), CNN 2 is for neoplastic tissue versus non-neoplastic tissue (as is here), and 

CNN 3 is for all FTCs (non-subtyped) versus MTCs, while subsequent CNNs could assist in 

subtyping FTCs, counting mitotic figures, or even correlating patient outcomes or genotypes with 

histologic patterns (Castellino, 2005; Chan et al., 2020; Ching et al., 2018; Echle et al., 2021; Laury 

et al., 2021; Levine et al., 2019; Sultan et al., 2020; Tosun et al., 2020; Zuraw, 2020). The latter 
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design is specifically inspired by what Laury et al. (2021) describe, but in this case, after their 

preliminary segmentation layers were trained, the whole tissue was then encircled by a training 

annotation relating to patient outcome. As more AI models for diagnostic use become validated 

and reported in the literature, determining the appropriate model structure for a particular 

diagnostic challenge will become easier.  

The ground truth for this current model could be improved by incorporating only those 

H&E-stained WSI whose diagnoses have been reviewed and agreed upon with consensus by a 

group of board-certified veterinary anatomic pathologists in conjunction with a robust IHC panel. 

This robust IHC panel should ideally include at least two FTC markers, 2 MTC markers, one or 

more NE markers, and parathyroid hormone which would allow for increased confidence in the 

diagnoses as well as the possible incorporation of more poorly differentiated CTCs (Campos et al., 

2014b; Carver et al., 1995; Hassan et al., 2020; Soares et al., 2020; Moore et al., 1984).  

Overall, the interpretation of the model’s predictions is similar to the agreement between 

the verified IHC-based diagnosis and the results of IHC-blinded pathologist. However, 

agreement is poor when comparing the model to the IHC-blinded pathologists as a whole. The 

reasons for discordance between the model’s function as compared to just IHC-blinded 

pathologist A versus the whole group of IHC-blinded pathologists are likely due to a 

combination of factors, including over-reliance on ancillary IHCs during routine diagnostic use, 

the unfamiliarity of subtle features that can be used to differentiate compact FTCs and MTCs, a 

decreased inclination to diagnose MTCs due to much of the literature suggesting a low 

prevalence, and/or differing years of experience. IHC-blinded pathologists tended to misclassify 

MTCs as compact FTCs more frequently than they would misclassify compact FTCs as MTCs, 

based on the associated confusion matrices comparing the blinded pathologists to the verified 



 
 

69 

diagnoses by IHC. In contrast, the model tended to misclassify FTCs as MTCs more than it 

would misclassify MTCs as FTCs. When considering FTCs as positive and MTCs as negative, 

this model tends to classify things as false negative more frequently than as false positive (lower 

sensitivity). For some models, specificity or sensitivity may be prioritized, depending on the 

desired outcome; however, in this case, since there are not yet obvious differences in prognoses, 

it is unclear whether sensitivity or specificity should be prioritized.  

Overall, the agreement between visual assessment or segmentation area percentage with 

the verified cell of origin (FTC or MTC) was moderate or weak, respectively. While this may 

seem concerningly low, there is an inherent bias involved in the WSI used here, as these WSI 

were selected based on their original diagnosis of compact FTCs or MTCs. The low value can 

therefore be correlated with the validation results, in that the model has the most trouble 

differentiating between compact FTCs and MTCs. This lower agreement was therefore expected 

and is not reflective of the overall function of the model.  

Both visually and according to the highest segmentation area percentage, only an 

overlapping subset of WSI were misclassified. In images with near equivalent segmentation area 

percentages, it can be inferred that the model likely struggled in differentiating between compact 

FTC and MTC patterns. The errors in model function for CNN 3, especially the medullary 

pattern, are likely associated with the high error rates found in CNN 3 during the final training. 

A potential extrapolation by a human observer would be to consider the range in 

differences between the segmentation area percentages, as this may correlate with how well the 

model is functioning. Theoretically, MTCs should not contain areas of follicular or compact FTC 

growth. Conversely, FTCs should not contain areas of MTC growth. Canine neoplasms deriving 

from both follicular thyrocytes and medullary cells have not yet been reported and are considered 
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unlikely. In light of this, FTCs should have a high segmentation percentage for compact and/or 

follicular patterns with low to zero MTC percentages, and vice versa. WSIs with small 

differences in percentages separating the FTC subtype from MTC may suggest that the model 

struggled with correctly assigning segmentation masks, while those with larger percentage 

differences could suggest more reliable model-generated output. However, based on the 

percentages in this image subset, there is one MTC that was incorrectly classified as an FTC with 

a large difference in percent segmentation areas for compact FTC (85.34%) and MTC (14.0%), 

which highlights the need for further development. Because only 2 of the misclassified images 

(by visual and percentages) had a sister slide involved in the training sets, it appears that the 

model is more successful in classifying WSIs that are similar to the training set, which is an 

expected finding.  

From the subset of WSI used in this component of the study, the segmentation masks 

generated for CNN 3 suggest that image K is a heterogeneous neoplasm and would be more 

appropriately interpreted as a follicular FTC, although this is incorrect based on the original 

verified diagnosis as well as a re-examination of the original slide and IHCs. On H&E, this 

neoplasm is relatively homogenous with lobules and sheets of polygonal cells that are 

occasionally vacuolated or pulled away from the basement membranes. As an example, 

correlating regions of the H&E-stained slide with the segmentation masks shows that the model 

is erroneously segmenting areas with vacuolated cells as the follicular pattern and areas where 

cells are pulling away from the basement membranes as MTC (Figure 4). However, attributing 

these features to how the algorithm is segmenting regions is speculative at best, since this model 

and most currently used AI models function within a black box (Levine et al., 2019; Tosun et al., 

2020). There are also large multifocal regions with no overlying CNN 3 segmentation mask 
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(26.46%) which further supports that the model struggled to assign a segment those regions, 

although they were generally detected by CNN 2 as carcinoma tissue. This discordance 

represents a failure of the model to achieve segmentation, which can be rectified by further 

training. At this time, this is a minor error, as both compact and follicular patterns are still 

categorized under FTCs as a whole and are therefore not being misclassified as an MTC; 

however, this error should ideally be trained out in future models. This image did not have a 

sister slide within the training set.  

Comparisons between the IHC-blinded pathologists and model generated predictions on a 

subset of compact FTCs and MTCs was pursued for two reasons. The first, tangible reason was 

to directly compare the function of the AI model to the IHC-blinded pathologists. For this, the 

model was found to generally be more successful than the group of IHC-blinded pathologists. 

Secondly, compact FTCs and MTCs were targeted to specifically highlight the flaws of this 

model in differentiating between compact FTCs and MTCs, as these were the two most 

unreliable layers. This unreliability was further showcased by several WSIs that were incorrectly 

interpreted by the AI-generated results which included both completely new images and fewer 

images that had sister slides involved in the training WSI set. While this data is skewed towards 

the comparison of compact FTCs and MTCs, it still appears to enable frequent correct 

interpretations. Continued development of CNN 3 is required to minimize incorrect 

classifications, as well as to ensure a robust capability of distinguishing all diagnostic classes 

considered here (follicular, mixed, or compact FTCs, and MTCs). Improvement for this 

particular comparison include having the same IHC-blinded pathologists interpret the model's 

output (make a diagnosis) and compare that to the verified diagnosis. Alternatively, a more 

desirable comparison would be having a new panel of pathologists interpret results and formulate 
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a diagnosis from this model’s CNN 3 on WSIs from all diagnosis categories (follicular, mixed, 

or compact FTCs and MTCs) to compare to verified diagnoses and/or cell of origin.  

Overall, expanding the training data set is highly recommended by incorporating H&E-

stained WSIs of CTCs from outside institutions, from the UIUC VDL archives, and/or from new 

cases that presented to the UIUC VDL after the study enrollment period. Furthermore, should 

this model ever be deployed for routine use in a diagnostic lab, training images should be 

continually added with periodic re-training and re-validation of the model to maintain quality 

assurance and quality control and ensure the appropriate function of the model. An expanded 

example library for the model to learn from which should alleviate some of the previously 

described issues and errors.  

Image matching could also improve the discriminatory ability of this model. This would 

entail pairing the H&E-stained WSI with the IHC-stained WSI and training a model to 

incorporate information from both; however, given the large variation in immunoreactivity for 

both thyroglobulin and calcitonin, this could be challenging to work out (Ma et al., 2021). The 

incorporation of multiple IHCs for each FTCs and MTCs, as outlined above, could be more 

helpful.  

The inaccuracy of pathologists’ diagnosis between compact FTC and MTCs solely by 

H&E-stained images was confirmed by the low agreement between pathologists blinded to IHCs 

as evaluated by Cohen’s Kappa. This reaffirms the continued need for ancillary modalities for 

differentiation, whether it be ordering IHCs, utilizing a fully validated AI model, or other 

diagnostic modalities. This is the first study to explicitly evaluate and characterize this 

discordance, although this concept is already well-accepted in CTC literature (Carver et al., 

1995; Pineyro et al., 2014; Rosol and Meuten, 2017; Rosol and Frone, 2016).  
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There are several instances of discordance in this project, including between validator 

pathologists’ determination of cell of origin (FTC or MTC) and between validator pathologists’ 

ultimate diagnosis (follicular, compact, or mixed FTC or MTCs). Discordance for these 

comparisons may derive from a combination of factors. Firstly, the validator pathologists could 

have been at a disadvantage in interpretation without access to all slides from a case. Secondly, as 

mentioned previously there is subjectivity in subtyping FTCs as well as differences in validator 

pathologist interpretations of IHC staining. Furthermore, interpretations of one neoplasm between 

several pathologists may differ slightly depending on the area of the neoplasm examined; some of 

these ideas can be extrapolated to explain the discordance in scoring as well. Discordance between 

FTC subtypes is considered acceptable for this project, given this inherent subjectivity and that the 

main goal was to distinguish between FTCs and MTCs. 

Validator interpathologist agreement and agreement with the verified diagnosis are both 

supported by moderate to good agreement. Less agreement here could be due to comparing three 

observers (three pathologists) rather than two (one pathologist and JMA), which inherently 

introduces more variability. The differences in Fleiss’ Kappa as compared to the Cohen’s Kappa 

may be in part due to differences in subtyping FTCs as well as differences in the statistical tests 

used.  

Regarding the validation scoring, improvements in the validation process could be made 

with more explicit instructions on how to score segmentation errors as well as decreasing the 

possible scores within the scoring system. Interpathologist differences in scoring could have 

arisen with differences in the approach of images with areas of the converse segmentation 

pattern. As an example, say an MTC was primarily segmented out with the medullary pattern, 

but it also contains regions of either follicular FTC or compact FTC patterns. For some, a small 
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amount of erroneous segmentation areas could have been considered within acceptable limits and 

given a better, lower score (a 1 or 2), while for others the presence of any erroneous 

segmentation areas could have been considered unacceptable, yielding a higher score (3 or 4). In 

this case, minimal guidance was given to the validator pathologists for this issue which surely 

contributed, at least in part, to differences in scoring. Aeffner et al. (2017) recommend 

minimizing the number of categories when scoring or grading samples to minimize the effects of 

the human tendency to avoid extremes. Therefore, a two- (acceptable or not acceptable) or three-

tiered system (excellent, acceptable, or not acceptable) could more accurately represent the 

function of the model.  

The ICC scores calculated for each layer were surprisingly low, even though the data for 

some layers appear relatively concordant, especially considering CNN 1. Although ICCs may be 

used to evaluate the agreement of quantitative data, like ratings, it is well known that ICC values 

may be spuriously low with low between-subject variance (Girard J, 2016). I suspect this is what 

is happening in this case and that another statistical test may be more appropriate. Enlisting the 

assistance of a statistician with an interest in artificial intelligence could aid in determining 

and/or confirming appropriate statistical tests.  

An F1 score calculation was also attempted for each confusion matrix comparing 

validator pathologists’ scoring for each segmentation layer. The F1 score is essentially a measure 

of accuracy, is commonly used in evaluating predictive performance in ML, and is defined as the 

harmonic mean of precision (of all positives, how many are true positives; measures the extent of 

the error caused by false positives) and recall (of all true positives, how many are predicted 

positive; measures the extent of the error caused by false negatives) (Mohajon, 2020; Zeya, 

2021). A high F1 score indicates a well-performing model (Mohajon, 2020; Zeya, 2021). With 
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this data, calculation of an F1 score was not possible for each of these confusion matrices, as the 

mathematical formula would require dividing by zero, in some instances.  

CTC literature generally maintains that while follicular, compact, and mixed FTC 

subtypes are all relatively common, the mixed or compact subtypes may be most common, 

depending on the study referenced (Campos et al., 2014c; Kiupel et al., 2008; Pessina et al., 

2014; Rosol and Meuten, 2017; Rosol and Frone, 2016). Although the literature is inconsistent, 

this study suggests that compact and mixed FTCs may be more common than follicular FTCs 

(Campos et al., 2014c, Pessina et al., 2014). Another interesting finding is that the rate of MTCs 

considering unequivocal cases is 29.2%, which is similar to what is reported in several recent 

papers on CTCs and in direct contrast to several older, as well as more recent clinical papers 

(Campos et al., 2014a; Campos et al., 2014b; Campos et al., 2014c; Carver et al., 1995; Hassan 

et al., 2020; Kiupel et al., 2008; Liptak, 2007; Pessina et al., 2014; Pineyro et al., 2014; Ramos-

Vara, 2002; Rosol and Meuten, 2017; Rosol and Frone, 2016; Soares et al., 2020). This 

difference in MTC prevalence (near 30% or less than 5%) could be a manifestation of the 

systemic lack of differentiating between FTCs and MTCs for each study and the perpetuation of 

data from older studies. 

The numeric mean age correlates with the age group most represented here (7-10 years). 

These findings correlate with literature that maintains that advancing age is associated with an 

increased risk of developing CTCs and the dogs with CTCs tend to be between 9 and 10 years of 

age (Barber, 2007; Campos et al., 2014a; Hassan et al., 2020; Hayes and Fraumeni, 1975; Liptak, 

2007; Rosol and Meuten, 2017; Rosol and Frone, 2016; Soares et al., 2020). The peak in age 

found here could be due to a combination of factors including an inherent peak age range for 

developing CTCs, that many dogs do not live to the 11- to 15-year age range due to natural 
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causes or humane euthanasia, or that owners of dogs in this latter age range may not seek 

advanced medical care for dogs nearing the end of their natural expected lifespan. A statistically 

significant relationship was found between age groups and developing all FTC subtypes or 

MTCs, but this relationship was not substantiated when FTCs were divided into subtypes. 

Accordingly, an ANOVA revealed a statistically significant difference in mean age between all 

FTCs or MTCs, while an ANOVA separating the FTC subtypes and MTCs did not reveal a 

statistically significant difference in mean age between at least two of these groups. Current 

literature does not provide mean ages for the different subtypes, as they are generally grouped 

together as FTCs. The lack of statistically significant relationships when subtyping FTCs in this 

study could support this grouping and the notion that FTC subtypes have similar biologic 

behaviors, as the canine literature currently suggests (Campos et al., 2014b). This latter point, 

however, is in contrast with what is found in human medicine and may be refuted if less-

differentiated FTCs (compact or mixed) can be correlated with worse biologic behavior or 

outcome (Bai et al., 2020; Carver et al., 1995; Castillo et al., 2016). Examination of a study set 

from various institutions could help elucidate and/or confirm these findings. Discordance of 

statistical modalities evaluating all FTCs or MTCs versus subtyped FTCs or MTCs could be a 

function of the overall small sample size per category in the likelihood ratio test. Larger sample 

sizes will assist in further elucidating any significant relationship here.  

Few articles specifically provide either a mean (9.6 years) or median age (9 years) for 

MTCs with a range of either 4 to 12, 13, or 16 years as compared to the 8.4±2.3 years found 

here; most articles group MTCs with FTCs yielding a mean age for CTCs as a whole (Carver et 

al., 1995; Patnaik and Lieberman, 1991). These results suggest that MTCs may affect slightly 

younger dogs. Additional studies are needed to confirm or refute these findings. 
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In this study, there does not appear to be any statistically significant associations between 

the sex, location, and breed compared to either all FTCs and MTCs or subtyped FTCs and 

MTCs. This is similar to what is currently described and accepted in canine CTC literature, as no 

sex or side predisposition (left versus right thyroid gland) are reported (Barber, 2007; Campos et 

al., 2014a; Hassan et al., 2020; Hayes and Fraumeni, 1975; Leav et al., 1976; Liptak, 2007; 

Patnaik and Lieberman, 1991; Pessina et al., 2014; Rosol and Meuten, 2017; Rosol and Frone, 

2016; Soares et al., 2020). In contrast, there is one report of canine MTCs being more common 

in males, and in humans, it is well accepted that older human women tend to have a higher risk 

of thyroid cancer, while men tend to experience more aggressive cancer (Hassan et al., 2020; 

Hayes and Fraumeni, 1975; Patnaik and Lieberman, 1991). Human medicine also does not report 

a side predisposition (Hassan et al., 2020; Hayes and Fraumeni, 1975). Ectopic thyroid 

carcinomas at locations other than the neck appear to be a minority of cases both here and in the 

literature (Liptak, 2007; Rosol and Meuten, 2017).  

There is a lack of consensus in the literature on predisposed breeds, but suggested breeds 

include boxers, beagles, Siberian huskies, golden retrievers, and mixed breed dogs (Hassan et al., 

2020; Hayes and Fraumeni, 1975; Liptak, 2007; Rosol and Meuten, 2017; Rosol and Frone, 

2016). This study’s population contains all of these breeds, but Labrador retrievers and herding 

dogs (as categorized by the AKC) were the most common with 15 cases each (11% of the study 

population). Hassan et al. (2020) suggest that some breeds within the AKC herding group may 

have increased risk, including Shetland collies (shelties, Shetland sheepdog), old English 

sheepdogs, and Cairn terriers. The AKC herding group also includes breeds like the Australian 

cattle dog, Australian shepherd, bearded collie, border collie, and Welsh corgis (List of Breeds 

by Group, 2020). Because herding-type dogs were common here and another study has proposed 
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increased risk, there may be a true increased risk for these latter breeds, although examination of 

this relationship would require additional studies with a much larger sample population.  

Desmoplasia is often associated with malignant carcinomas and is relatively nonspecific 

to the neoplastic cell of origin outside of carcinomas (Newkirk et al., 2017). Therefore, 

desmoplasia is a useful feature to look for when diagnosing CTCs but may not be useful in 

differentiating between all FTCs and MTCs or even between FTC subtypes. In this study, a 

statistically significant relationship with the presence of desmoplasia and all FTCs or MTCs and 

subtyped FTCs or MTCs was identified. However, the presence and amount of desmoplasia in 

CTCs have not been previously evaluated in the context of prognosis or grading and could be 

useful in the development of future prognostic or grading criteria.  

Osseous metaplasia has been described in various literature sources with conflicting 

connotations and diagnostic terms. Some sources would name these neoplasms as malignant 

mixed thyroid tumors (“carcinosarcoma”, “undifferentiated thyroid carcinoma of spindle cell 

type with osseous or cartilaginous metaplasia”, by the WHO scheme) due to concurrent 

malignant thyroid follicular cells and mesenchymal elements (Kiupel et al., 2008; Ramos-Vara et 

al., 2002; Rosol and Meuten, 2017; Rosol and Frone, 2016). The WHO scheme specifies that the 

clonality of the mesenchymal cells has not been investigated, while Rosol and Meuten describe 

the neoplastic spindle cells present as resembling those found in chondrosarcoma and 

osteosarcoma, which could suggest neoplastic qualities (Kiupel et al., 2008; Rosol and Meuten, 

2017). Another article reports the presence of woven bone with an MTC (Pineyro et al., 2014). In 

the current study, a statistically significant relationship was confirmed between the presence of 

osseous metaplasia and subtyped FTCs or MTCs, suggesting this influences the ultimate 

diagnosis. In this study, cases with osseous metaplasia generally did not contain a robust 
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spindloid neoplastic population, and the formed spaces tended to resemble normal bone marrow; 

this change was also identified in some MTCs. In most cases a diagnosis of malignant mixed 

thyroid tumor or carcinosarcoma did not seem appropriate, except for one case with an 

unequivocal diagnosis. This case contained a robust and highly infiltrative spindloid population 

as well as a distinct infiltrative epithelial population. The heterogeneity for naming neoplasms 

with malignant mesenchymal populations versus the presence of benign-appearing osseous 

metaplasia needs to be clearly defined and, ideally, with distinctive nomenclature to avoid 

confusion with the term “mixed FTCs”. Larger sample sizes would assist in further elucidating 

any significant relationship here. At this time, the remaining categorical histologic features 

evaluated in this study do not appear to hold diagnostic significance.  

ANOVAs of the mitotic figures between all FTCs and MTCs or between subtyped FTCs 

and MTCs showed no statistically significant differences, and do not appear to be useful for 

differentiation. Additionally, mitotic figures have not been successfully correlated to outcome 

values or therapeutic responsiveness (Campos et al., 2014b). Both Campos et al. (2014b) and 

Soares et al. (2020) evaluated the proliferative marker Ki-67 and found no significant differences 

between differentiated FTCs and MTC; Campos also found that at the time of diagnosis, Ki-67 

was positively associated with local invasiveness and negatively associated with time to 

metastasis but was not considered an independent predictor. In humans, Ki-67 is associated with 

clinical stage and survival in both differentiated FTC and MTC and cutoffs have been suggested 

to correlate with the neoplasm’s biologic behavior (Campos et al., 2014b). However, until there 

are more studies evaluating the role of mitotic figures in CTCs, mitotic figures should continue 

to be reported. This could include performing standardized mitotic counts, such as providing 

counts from a tissue area of 2.37 mm2 as Donovan et al. propose (2021). It is possible that 
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correlating mitotic counts with metastatic rates, therapeutic responsiveness, or prognosis could 

provide clinically useful information.  

Necrosis is another relatively nonspecific change that is often found with malignant 

neoplasms with discordant growth rates between the neoplastic cells and their vascular supply 

(Newkirk et al., 2017). ANOVAs of the mean score of necrosis between all FTCs and MTCs or 

between subtyped FTCs and MTCs showed no statistically significant differences groups.  

Campos et al. (2014b) found that macroscopic (identification of tumor thrombi in 

cervical blood vessels) and histologic (tumor growth into blood vessels) vascular invasion were 

independent negative predictors for disease-free survival and corroborates an earlier study 

suggesting that vascular invasion is one of the most important histologic criteria for the overall 

grade of malignancy. The identification of intravascular invasion could be improved by serial 

sectioning of tissue blocks, as suggested by Soares et al. (2020). However, this is impractical for 

routine diagnostic use, and, based on the results here, does not suggest a significant association 

in differentiating these tumors. Therefore, continued vigilance for the identification of 

intravascular invasion and tumor emboli is recommended as it may be of clinical importance.  

Most of the clinical findings (when provided) from this study appear consistent with what 

is found in the literature (e.g., dyspnea, vascular invasion, possible hypothyroidism, etc) (Lee et 

al., 2020; Liptak, 2007; Rosol and Meuten, 2017). Surveys or questionnaires given to referring 

veterinarians to standardize the clinical information received could assist in further determining 

the significance of those clinical findings that are not explicitly described in the literature (e.g., 

chylothorax) or appear superficially unrelated to CTCs (e.g., a concurrently excised soft tissue 

sarcoma).  
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A large limitation of the overall study is that a single resident (JMA) confirmed the initial 

diagnosis with only occasional assistance from a board-certified pathologist. This may have 

resulted in errors and/or unintended bias in the training WSI set, as well as for the secondary and 

tertiary objectives. Ideally, evaluation by consensus of the entire H&E-stained slides by a group 

(at least 3) of board-certified pathologists with or without residents could reduce these 

unintended biases or possible errors in diagnostic interpretation and improve the overall 

reliability and significance of these results. 

Other sources of bias include that these cases all came from one, tertiary institution or 

from the inclusion of those cases that already had accompanying IHC stains. For the former, the 

study set could be skewed to represent patients with more severe or unusual diseases or that have 

owners more motivated to pursue medical treatment. For the latter, there may be some missed 

cases where IHCs were not pursued, based on the tissue patterns present on routine H&E-stained 

slides (e.g., a pure follicular FTC). To the author’s knowledge, since one to two IHC stains are 

generally included in the cost of necropsy or surgical biopsy examination at the University of 

Illinois Urbana-Champaign Veterinary Diagnostic Laboratory (UIUC VDL), pathologists here 

tend to request at least either thyroglobulin (Tg), calcitonin, synaptophysin (SYP), or 

chromogranin A (CgA) as the standard of care for solid neoplasms that could represent either a 

compact FTC or MTC. Countering these biases would entail recruiting cases of CTCs from other 

institutions (from primary general practices to other tertiary referral hospitals or diagnostic labs) 

with tissue slide processing performed at both UIUC and other facilities. AI models tend to 

function better with highly variable training images; in this case, the most diverse images were 

selected to compensate for this inherent weakness, but this will be bolstered with the inclusion of 

slides from external institutions.  
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An additional obstacle encountered during model development was the identification of 

thyroid follicles and discrimination between remnant, non-neoplastic thyroid follicles versus 

those in the follicular FTC pattern. For the former, the CNN 2 of the model would misidentify 

cross-sections of skeletal myocytes as thyroid follicles which was resolved by training skeletal 

muscle as background rather than as non-neoplastic tissue. For the latter, neoplastic and non-

neoplastic follicles can be remarkable similar, which translates to being a feature that is 

challenging for the model to accurately predict. Furthermore, because entrapped remnant thyroid 

follicles within MTCs are known to occur, any potentially entrapped follicles or medullary 

follicles were not specifically trained out. This could be a future avenue of investigation 

concurrent with image-based (morphological) profiling or image matching with IHC-stained 

WSI for this model.  

A limitation for comparing the IHC-blinded pathologists to interpretations of the model’s 

predictions is that interpretations included both a subjective visual assessment and an objective 

classification based on a model-generated percentage of segmentation tissue area. Specific issues 

with comparison includes that both interpretations were performed by one person (JMA), this 

person had prior access to the diagnosis of these slides, and humans are inherently prone to 

visual bias which can skew our interpretations (Aeffner et al., 2017). Therefore, the use of an 

objective, data-driven outcome is preferable, as it is quantifiable, repeatable, and less likely to 

suffer these biases. However, the use of only the percentage segmentation area may also present 

diagnostic issues, as outlined below.  

A potential source of bias for the demographic and histologic analyses could be from 

excluding the single dog with bilateral FTC with differing contralateral subtypes; the right was 

mixed while the left was compact. Without the capability to thoroughly review the gross tissues 
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and how these neoplastic tissues were architecturally and anatomically related to one another, a 

diagnosis of bilateral FTC with differing contralateral subtypes was used. However, this may 

represent either a large mixed or compact thyroid tumor, with sectioning through an area that 

was predominately the opposite subtype. As a result, this animal was excluded from the 

statistical analyses. The effect of excluding this animal is likely small, given the number of cases 

available. 

Two potential future studies would be applying this specific model to the 18 withheld cases 

with equivocal diagnoses as well as evaluation of this model when it is applied to WSIs of CTCs 

from outside of the UIUC VDL system. For both, ideally, at least three pathologists should be 

enlisted with one person responsible for one stage of model development, including the design and 

training of the model, quality control, and verification of the model’s output, as outlined by Zuraw 

et al. (2020). 

Because of the challenge in accurately annotating mitotic figures and the model 

identifying an excessively high rate of false positives during training (mainly due to artifact, 

necrosis, or inadequate fixation), a potential future workaround could be re-staining the same 

H&E slides which contain mitotic figures with phosphohistone H3 (PHH3) and correlating the 

WSI of the H&E-stained and PHH3-stained slides using image matching (Ma et al., 2021; Tellez 

et al., 2018). PHH3 is a relatively new IHC that can identify cells that are undergoing mitosis and 

can therefore yield easily identifiable, high-contrast mitotic figures (Supplementary Figure 4) 

(Donovan et al., 2021; Tellez et al., 2018). Other proliferative markers, like Ki-67, AgNOR, or 

thymidine kinase 1, could be used but do not appear to highlight the actual mitotic figures like 

PHH3 appears to do (Ramos-Vara and Borst, 2017; Wang et al., 2017). Alternatively, transfer 
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learning could be utilized, which entails incorporating a pre-existing working mitotic figure 

detector CNN from another model and fine-tuning it into this model.  

The diagnostic challenge of veterinary pathologists reliably differentiating between 

compact FTCs and MTCs without ancillary testing, such as IHCs, is highlighted in this study 

based on low measures of agreement which supports their continued need. Another significant 

finding is that current CTC studies often fail to discriminate between FTCs and MTCs. This 

study suggests that a supervised segmentation deep learning model could be a novel and 

potentially more cost-effective way to rapidly distinguish between canine FTCs and MTCs, 

although more development is needed. Based on the validation data from the present study, most 

layers (CNN 1: high quality tissue, CNN 2: carcinoma versus remnant) are ready for use in a 

diagnostic setting in conjunction with interpretation by a pathologist and the continual addition 

of images with periodic re-training and re-validation of the model. Caution is still recommended 

with the use of CNN 3 (follicular FTC pattern versus compact FTC pattern versus MTC pattern), 

especially for differentiating compact FTCs from MTCs. Further baseline development of the 

model could include adding diverse training images from a multitude of sources and/or 

incorporating additional data (e.g., image matching with IHCs and/or correlating with other 

biomarkers or clinical data), while ancillary features could include mitotic figure detection or 

predictions about response to treatment modalities or outcome.  
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Figures and Tables 
Figure 1. Representative photomicrographs of canine medullary thyroid carcinoma (A, left) and compact follicular thyroid carcinoma 

(B, right) illustrate the similar histomorphology contributing to challenges in determining cell of origin in canine thyroid 
carcinoma (H&E, 20x).  

 

A B 
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Figure 2. Artificial intelligence model structure and training for determining cell of origin (FTCs or MTCs) in CTCs. A) The overall 
structure of the AI model in schematic form. Of note, the “mitotic figures” layers are connected between the three “subtype” 
layers (“medullary”, “compact”, and “follicular”) so that identification of mitotic figures is universal and not restricted by any 
neoplastic pattern. Hematoxylin and eosin (H&E). Scale bar = 1 mm. B) Representative annotations for the “high quality 
tissue” layer, which included any tissue present on the slide, despite the misnomer. The areas circled in green (annotations) 
indicate these areas are tissue regions (training annotations). The regions encircled in black are what is what the model “sees” 
to train on (training regions). The black circle without an outer green circle (asterisk) indicates this region should be interpreted 
as background and thus not included in subsequent analyses. H&E. Scale bar = 1 mm.  
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Figure 2 (continued). C) Representative annotations for the “remnant” and “carcinoma” layers. Neoplastic tissue is encircled in 
yellow, non-neoplastic tissue is encircled in orange, and skeletal muscle is only encircled by black (rendering it to be 
interpreted as background at this layer). H&E. Scale bar = 1 mm. D-F) Representative annotations for the “medullary” (D), 
“compact” (E), and “follicular” (F) layers; IHCs were used to determine whether to annotate as an MTC or FTC. H&E. Scale 
bar = 100 um.  
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Figure 2 (continued). G) Representative image segmentation masks from the development period illustrating output for all three 
segmentation CNNs. This image is from the single case with a bilateral FTC differing contralateral diagnoses; in this case, the 
tissue piece on the left should be interpreted as a mixed FTC with some error, while the tissue piece on the right should be 
interpreted as a compact FTC.   

G 
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Figure 2 (continued). H-J) Representative annotations made for CNN 4, the “mitotic figures” layer. H&E. Scale bar = 20 um. 
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Figure 3, Macroscopic view of the CNN 3 segmentation masks from the image set used in the third objective. Notably, image K 
appears to be a follicular FTC with 43.7% segmented as follicular FTC pattern, 15.27% as compact FTC, and 14.57 for MTC. 
The image was originally verified and re-verified as a compact FTC.  
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Figure 4, Representative regions of Image K from the subset of images used in the third objective. A-B) An area incorrectly 
segmented as follicular FTC. C) An area correctly segmented a follicular FTC with numerous colloid follicles. D-E) An area 
incorrectly segmented as MTC. All images except for C more appropriately resemble a compact FTC.  
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Table 1. Primary antibodies used for immune characterization of canine thyroid carcinomas.  
Antibody Species/Type Company Dilution Positive Control  
Thyroglobulin RP Dako 1:2000 Canine Thyroid 
Calcitonin RP Biocare 

Medical 
1:300 Canine Thyroid  

Chromogranin A RP ImmunoStar 1:2000 Canine Adrenal Gland, Pancreas, +/- 
Thyroid 

Synaptophysin MM Biocare 
Medical 

1:100 Canine Adrenal Gland, Pancreas, +/- 
Thyroid 

Abbreviations: MM, Mouse monoclonal antibody; RP, rabbit polyclonal antibody. 
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Table 2. Ideal discriminatory diagnostic features for well-differentiated follicular canine thyroid neoplasms. Adapted from the WHO 
classification scheme for canine thyroid neoplasms. 

 H&E  Immunohistochemistry 

Type Features Thyroglobulin Calcitonin Chromogranin A Synaptophysin 

Follicular The majority of tumor forms variably sized follicles with 
colloid that may be unremarkable, clumped, or mineralized 

 Positive Negative Negative Negative 

Compact The majority forms solid sheets of aggregated cells  Positive Negative Negative Negative 

Mixed Approximately equal proportions of follicular and compact 
growth  

Colloid follicles may be smaller and contain less colloid  

Positive Negative Negative Negative 

Medullary Solid neoplasm growth with typical neuroendocrine packeting 

+/- amyloid (considered rare in dogs)  

Negative Positive Positive Positive 

Positivity to thyroglobulin: moderate to strong, 10% to 100% immunoreactivity of cytoplasm, apical membranes, intracytoplasmic droplets (if 
those cells form colloid follicles), and/or colloid 

Positivity to calcitonin: faint to moderate, scant to diffuse granular cytoplasmic immunoreactivity, possibly of individualized, clustered, or the 
majority of cells  

Positivity to chromogranin A and synaptophysin: faint to strong granular cytoplasmic positivity in the majority of cells  

(Kiupel et al., 2008; Moore et al., 1984; Pineyro et al., 2014) 
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Table 3. Summarized convoluted neural network training with pre-training and post-training advanced parameters and verification 
error rates 

CNN Field of 
View 

Complexity Misc. Adjusted Advanced 
Parameters 

Total 
Iterations 

Training 
Loss 

Total Area 
Detected as 
Error 

Total Area 
Annotated 

Post-training differences 

CNN 1: 
High 
Quality 
Tissue 

225 um Complex Image Analysis: Region 
Merging Starting Level of 
100 
Heatmap starting level: 16 
Region merging starting 
level: 16 

10,000 0.0002 1.316 mm2 493.15 mm2 Heatmap starting level: 
200 
Region merging starting 
level: 100 

CNN 2: 
Carcinom
a versus 
Remnant 
tissue 

150 um Extra 
Complex 

Training Procedure: Mini-
batch size of 20 
Image Augmentation: 
Scale -15 to 15, Aspect 
Ratio 15, Maximum Shear 
15, Luminance -15 to 15, 
Contrast -15 to 15, 
Maximum White Balance 
Change 3, Noise 2 levels 
Image Analysis: Region 
Merging Starting Level of 
50 

15,000i 0.0027 5.27 mm2 167.534 mm2 No differences 

CNN 3: 
Subtypes 
(follicula
r, 
compact, 
or 
medullar
y) 

400 um Extra 
Complex 

Training Procedure: Mini-
batch size of 20 

15,000i 0.0031 12.814 mm2 289.166 mm2 No differences 
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Table 3. Summarized convoluted neural network training with pre-training and post-training advanced parameters and 
verification error rates, continued 

CNN Total 
Area 
Error 

Area Error False 
Positive 

False 
Negative 

Precision Sensitivity F1 score Error % 
(FP/FN) 

CNN 1: High 
Quality Tissue 

0.27% 
 

0.27% 0.21% 0.06% 99.63% 99.90% 99.77% 0.47% 
(0.37/0.10) 

CNN 2: 
Carcinoma 
versus Remnant 
tissue 
(combined) 

3.15% 1.57% 0.67% 0.91% 98.49% 97.95% 98.22%  
 
 

CNN 3: 
Subtypes 
(combined) 

4.43% 1.48% 0.12% 1.36% 99.60% 95.69% 97.61%  

Selected Definitions 
-Total Area Error: the sum of all false positive and false negative areas / sum of total regions of interest areas; this is essentially the 
total error per training area. 
-Area Error: the difference between analysis result and annotations, calculated of training region area  
-Precision: the percentage of analysis result area found within the annotation area 
-Sensitivity: the percentage of annotation area that was found by the analysis 
-F1 score: the harmonic mean of precision and sensitivity 
-Error % (FP/FN) is the sum of all false positive and or false negative areas for the respective class / sum of all region of interest areas; 
in other words, this is the sum of all errors in all training regions containing the class  
     -FP is the false positive as a percentage of the whole area of all annotations per class or per whole layer 
     -FN is the false negative as a percentage of the whole area of all annotations per class or per whole layer  
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Table 3. Summarized convoluted neural network training with pre-training and post-training advanced parameters and 
verification error rates, continued 

CNN Area Error Precision Sensitivity F1 score Error (FP/FN) % 

CNN 2: Carcinoma Only 1.32% 97.29% 98.86% 98.07% 3.89% (2.75/1.14) 
 

CNN 2: Remnant Only 1.83% 99.26% 97.39% 98.31% 3.34% (0.73/2.61) 
CNN 3: Follicular Only 0.73% 98.42% 95.30% 96.84% 6.23% (1.53/4.701) 

 
CNN 3: Compact Only 0.75% 99.37% 97.82% 98.59% 2.80% (0.62/2.18) 

 
CNN 3: Medullary Only 2.97% 99.97% 94.76% 97.29% 5.27% (0.03/5.24) 
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Table 4. Interobserver agreement between validator pathologists for determining the cell of 
origin (FTC or MTC) 

Pathologist Pairs A x B A x C B x C 
Accuracy (proportion 
of agreeing 
predictions) 

0.92 0.96 0.96 

Mean Accuracy  0.95 

Cohen’s Kappa: 0.84 0.92 0.92 
Cohen’s Kappa 
Interpretation: 

Good Agreement  Excellent Agreement  Excellent Agreement 

Mean Cohen’s Kappa: 0.89 

Mean Cohen’s Kappa 
Interpretation:  

 Excellent Agreement 

Table 5. Agreement between IHC-blinded pathologists and IHC-based diagnosis 

IHC-Blinded 
Pathologist 

A B C 

Accuracy 
(proportion of correct 
predictions) 

0.8 0.6 0.55 

Mean Accuracy  0.65 

Cohen’s Kappa: 0.60 0.20 0.10 

Cohen’s Kappa 
Interpretation: 

Moderate Agreement Poor Agreement Poor Agreement 

Mean Cohen’s Kappa 0.30 

Mean Cohen’s Kappa 
Interpretation: 

Poor Agreement 
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Table 6. IHC-blinded interpathologist agreement  

Pathologist Pairs A x B A x C B x C 
Accuracy (proportion 
of agreeing 
predictions) 

0.70 0.55 0.65 

Mean Accuracy  0.63 

Cohen’s Kappa: 0.41 -0.05 0.03 
Cohen’s Kappa 
Interpretation: 

Weak Agreement Poor Agreement Poor Agreement 

Mean Cohen’s Kappa: 0.13 

Mean Cohen’s Kappa 
Interpretation:  

Poor Agreement 



99 
 

 

Table 7, Comparison of the AI model’s function (as interpreted by JMA) to IHC-
blinded pathologists. Cells filled with red indicate a difference with the verified 
diagnosis. The one cell surrounded by an orange box indicates the one FTC from this 
image set where the AI results suggest a diagnosis of follicular FTC.   
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Table 8. Validator Pathologist Scores and Averaged Validator Pathologist Scores, with Averages, Variance, and Standard Deviation per 
Segmentation Layer. Columns for images B and R are outlined in red, as they are the images with discordance among validator pathologists 
in the interpretation of the cell of origin (FTC or MTC). 
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Table 9. Signalment and microscopic diagnosis of dogs with thyroid carcinoma. 
 Animals (n=137) Diagnoses (n=138) 
 FTC (n=85)1 MTC1 Unsure1 
Sex # % Fol 

(n=7) 
Com 
(=51) 

Mix 
(n=27) 

Med 
(n=35) 

Uns 
(n=18) 

Male 70 (51) 3 28 11 19 9 
MI 4 (3) — 2 1 1 1 
MC 65 (47) 3 26 10 18 8 
M-NS 1 (1) — 1 — — — 
Female 63 (46) 4 21 15 15 9 
FI 2 (1) — 1 1 — — 
FS 61 (45) 4 20 14 15 9 
F-NS 0 (0) — — — — — 
Not specified 4 (3) — 2 1 1 — 
Age, years 
(mean [SD]) 

9.2 [2.3] 9.6 [1.6] 9.8 [2.2] 9.0 [2.5] 8.4 [2.3] 9.3 [2.3] 

Age, years 
3-6 18 (13) — 3 3 9 3 
7-10 67 (49) 4 23 16 16 8 
11-15 47 (34) 3 23 7 8 7 
NS 5 (4) — 2 1 2 — 
1 Diagnoses were made by a single pathologist reviewing all tumors with accompanying 
immunohistochemical stains. An additional pathologist was consulted for a few equivocal 
cases. 
2Cases with signalment such as “boxer-mix” are included with the emphasized breed. If 
multiple breeds were provided, cases were classified using the first listed breed. This applies to 
the beagle, boxer, golden retriever, and Labrador retriever strata. The remaining strata are 
based on American Kennel Club breed classifications (2020). 
3Includes masses from the cranial mediastinum, heart base, pericardium, and subcutaneous 
mass near the thoracic inlet (ectopic neoplasms). 
 
One dog with bilateral FTC had differing contralateral subtypes. This dog was a 15-year-old, 
female spayed, herding dog. This yields 138 total diagnoses with only 137 animals. This 
animal was excluded from mean age and standard deviation calculations. The remaining dogs 
with bilateral disease were found to have the same subtypes between the left and right sides 
and were therefore considered one case each. 
 
Abbreviations: FTC, Follicular Thyroid Carcinoma; MTC, Medullary Thyroid Carcinoma; 
Fol, Follicular; Com, Compact; Mix, Mixed; Med, Medullary; Uns, Unsure; NS, not specified; 
MI, intact male; MC, castrated male; FI, intact female; FS, spayed female. 
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Table 9, continued. Signalment and microscopic diagnosis of dogs with thyroid 
carcinoma. 

 Animals (n=137) Diagnoses (n=138) 
  FTC (n=85)1 MTC1 Unsure1 
Breed2 # % Fol 

(n=7) 
Com 
(=51) 

Mix 
(n=27) 

Med 
(n=35) 

Uns 
(n=18) 

Beagles 10 (7) — 4 4 1 1 
Boxers 9 (7) 1 1 3 1 3 
Golden Retrievers 8 (6) 1 3 1 2 1 
Siberian Huskies 2 (1) 1 — — 1 — 
Labrador Retrievers 15 (11) 2 5 4 1 3 
Pit Bull 11 (8) — 3 1 4 3 
Mixed Breed Dogs 13 (9) — 4 2 7 — 
Herding 15 (11) — 7 3 3 3 
Hound 7 (5) — 4 3 — — 
Toy 14 (10) — 7 2 4 1 
Non-Sporting 11 (8) — 2 3 6 — 
Sporting 5 (4) — 2 — 1 2 
Terrier 8 (6) 2 3 1 2 — 
Working 6 (4) — 4 — 1 1 
NS 3 (2) — 2 — 1 — 
Location 
Right Neck 52 (38) 1 19 7 14 11 
Left Neck 37 (27) 1 10 10 13 3 
Cervical (side NS) 35 (27) 3 16 7 6 3 
Bilateral 5 (3) — 2 3 — 1 
Elsewhere3 4 (3) — 3 — 1 — 
NS 4 (2) 2 1 — 1 — 



103 
 

CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

 The primary goal of this project was to train an artificial intelligence (AI) model to detect 

and categorize histologic whole slide images (WSIs) of canine thyroid carcinomas (CTCs) as 

either follicular origin (FTCs) or medullary origin (MTCs). Attempts were made to incorporate 

subtyping of well-differentiated FTCs according to the World Health Organization’s Histologic 

Classification of the Tumors of the Endocrine System of Domestic Animals and for the 

development of a mitotic figure counter. Overall, most convoluted neural nets (CNNs) of the 

model are successful and are ready for use in a diagnostic setting in conjunction with 

interpretation by a pathologist and the continual addition of images with periodic re-training and 

re-validation of the model. While CNN 3 (follicular FTC versus compact FTC versus MTC) 

shows promising validation results, these results are less reliable and should be used with 

caution.  

Future work for CNN 3 includes adding more training images of all subtypes from other 

institutions, from archival, or from new H&E-stained slides from within the UIUC VDL. Other 

areas of improvement include the determination of ground truth by consensus from a group of 

board-certified pathologists; possible utilization of image matching with accompanying IHCs; 

and enlisting a panel of experts, (ideally, at least three with one person per stage of model 

development, which includes the design and training, quality control, and the verification of the 

algorithm's output). Directions for the elaboration of this model include the complete 

development of a mitotic figure counter possibly with correlations of patient outcomes or 

treatment responses or image matching with an IHC specific for mitotic figures (e.g., 

phosphohistone H3 [PHH3]); comparing pathologist diagnoses with and without the use of AI 

and/or IHCs; incorporating more rare CTC subtypes (such as carcinosarcoma); evaluation of how 
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a fully validated model incorporates into and, likely improves, workflow efficiency; developing 

and comparing a similar model specifically focusing on nuclear features (similar to Wang et al., 

2019b); correlating FTC subtypes and MTCs to response to radioactive iodine therapy; and/or 

correlating histologic image to genotypic derangements and/or patient outcomes (similar to what 

Coudray et al., 2018 and Laury et al 2021 describe). This latter point could allow for the 

development and use of highly customized precision medicine in veterinary medicine as the 

standard of care for relatively little time or cost, which is what the current trend in human 

medicine is. Additionally, by having specific tissue patterns highlighted by highly contrasting 

segmentation layer makes, previously overlooked histologic patterns may be observed which 

could then be presented to another unsupervised AI model to classify images independent from 

human input which could shed light on new relationships between histologic patterns and clinical 

features.  

 Future avenues of investigation that are not necessarily related to the use of an AI model 

include applying some of the reported human grading schemes to canine tumors to evaluate for 

prognostic ability and as well as the refinement and/or the provision of additional image 

examples of the current canine classification schemes to reflect those cases that are composed of 

more atypical or less-differentiated neoplastic thyroid cells (e.g., oxyphil cells, clear cells, giant 

cells, small cells, etc).  

Overall, the signalments from this study resemble what is described in the literature. The 

compact FTC subtype was most common (supported by a minority of the literature sources) and 

MTCs may occur in slightly younger dogs, as is seen in the few studies that distinguish FTCs 

from MTCs. Notably, current CTC literature somewhat routinely fails to discriminate between 

FTCs and MTCs. Continual grouping of these tumors may obscure useful clinical correlations 
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but also promotes the potentiation of antiquated data, such as MTCs accounting for 

approximately 5% of all CTCs, although several more recent papers report rates similar to what 

is found here.  

The diagnostic challenge of differentiating compact FTCs and MTCs without IHCs was 

highlighted in this study and is aligned with what is accepted in CTC literature.  

Possible sources of bias include that this was a uni-institutional study with relatively 

homogenous hematoxylin and eosin (H&E) staining and slide quality (all slides were produced 

in the same laboratory over several consecutive years); cases were selected for use if they 

already had attendant IHCs; and the exclusion of one dog with a bilateral FTC that was found to 

have differing FTC subtypes on each side. The effects of the latter example are likely very small, 

given the overall number of cases identified. For the tertiary objective, interpretation of AI model 

output was not blinded and was only performed by one person, which is likely a source of bias.  

 This thesis provides a baseline for future applications of AI in CTC and can provide an 

outline for additional AI applications in veterinary medicine to allow for more consistent 

diagnoses or the investigation of subtle histologic changes in other veterinary disease processes, 

including, but not limited to, neoplasia (e.g., melanoma, mast cell tumors, etc). Inconsistencies of 

immunoreactivity with available IHCs, differences in veterinary pathologist interpretation of 

both IHC-stained and H&E-stained slides, and, historically, the lack of available calcitonin IHC 

could all have been confounding factors in previous CTC studies. The AI model developed here 

could assist in resolving many of these issues and allow for more accurate, repeatable, and cost-

effective results. After further refinement, this model could then be applied to WSIs of future 

CTC studies, previous CTC studies, and possibly be implemented into the workflow of 

veterinary diagnostic laboratories in the future.  
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APPENDIX A: SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Algorithm for CTC treatment. This figure is from Liptak (2007) and 
outlines the approach to treating CTCs.  
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Supplementary Figure 2. Training a segmentation AI model. This partial figure is from Laury 
et al. (2021) and shows the general process of supervised learning for tumor 
segmentation. The training set WSIs are uploaded and manual segmentation annotations 
are applied. The model is trained and then outputs segmentation layer masks.  
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Supplementary Figure 3. All built confusion matrices. These are all of the confusion matrices made for this study. The diagonal from 
the upper left to the lower right shows the true positives, while the surrounding boxes show where errors occurred.  
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Supplementary Figure 3 (continued). All built confusion matrices. 
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Supplementary Figure 3 (continued). All built confusion matrices.   
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Supplementary Figure 3 (continued). All built confusion matrices. 
 
 
 

  



 
 

128 

Supplementary Figure 3 (continued). All built confusion matrices. 
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Supplementary Figure 4, Example of phosphohistone H3 (PHH3) immunohistochemistry. From Tellez et al. (2018).  
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