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ABSTRACT 

The objective of this thesis research is to develop fast high-resolution magnetic resonance 

spectroscopic imaging (MRSI) methods of the brain at both high field (3 Tesla) and ultrahigh field 

(7 Tesla) MR.  

MRSI has long been regarded as a promising tool for non-invasive imaging of brain 

metabolism, with its potential shown in a large range of applications including energy consumption 

analysis, brain functional investigation, brain lesions characterization like tumors and stroke, 

neurodegeneration assessment, etc. However, its practical utility has been largely limited by 

several long-standing technical obstacles, including low signal-to-noise-ratio (SNR), long scan 

time, and limited resolution. Given these limitations, it has been very challenging to perform three-

dimensional high-resolution MRSI experiments in a clinically feasible time.  

In recent years, a subspace-based MRSI method named as SPICE (SPectroscopic Imaging by 

exploiting spatiospectral CorrElation) has been proposed for accelerated MRSI. A number of 

proof-of-concept works using the basic SPICE method for 1H-MRSI at 3T have demonstrated its 

potential and advantages in significantly advancing imaging speed, resolution, and SNR. However, 

imaging capability of the basic SPICE method still cannot satisfy the ever-growing clinical needs.  

The proposed research further developed the SPICE method with multiple aspects of 

improvements, which significantly enhanced its imaging capability and made it a more practically 

powerful and clinically useful MRSI tool. In data acquisition, a novel pulse sequence was 

developed at 3T with multiple unique acquisition features for high imaging efficiency and 

robustness. More specifically, the proposed sequence used an FID (free induction decay)-based 

acquisition with ultrashort TE (echo time) and short TR (repetition time) for maximized SNR 

efficiency, removed water and lipid suppression pulses for minimized energy deposition, and 

employed fast spatiotemporal trajectories and highly sparse sampling of data space for fast imaging 

speed. As a result, three-dimensional metabolite signals (field of view: 240×240×72 mm3) at 

2.0×3.0×3.0 mm3 nominal spatial resolution and unsuppressed water signals at 2.0×1.0×1.0 mm 

could be successfully acquired in an 8-minute scan. This method was also implemented and further 

developed at 7T MR systems. Taking advantage of the SNR benefit of ultrahigh field, the pulse 

sequence at 7T was pushed to achieve whole brain coverage (field of view: 240×240×160 mm3), 

high-resolution (3.0×3.0×3.2 mm3 for metabolites and 2.0×2.0×3.2 mm3 for water) imaging within 
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the same scan time (8 minutes) via using a rapid spatiotemporal readout on slice direction and 

employing a higher sparse sampling strategy. Given these data acquisitions, the key processing 

and reconstruction issues included (1) separation of signals from water, lipid, and metabolites, (2) 

reconstruction from the sparse and noisy measurements, and (3) correction of effects and artifacts 

brought by various system imperfections. The first two processing issues were addressed using a 

union-of-subspaces model with subspace learning strategies, and the last issue was resolved by 

utilizing information derived from the unsuppressed water signals and several navigator signals 

embedded in the data acquisition.  

To demonstrate the feasibility and performance of the proposed method, in vitro experiments 

and in vivo experiments were carried out on a standard spectroscopic phantom and healthy 

volunteers, respectively. Given those technical advances, the proposed method successfully 

showed good accuracy and reproducibility in phantom experiments and obtained high-quality, 

high-resolution brain metabolite maps from healthy subjects. Moreover, the presented method was 

also applied for clinical tumor imaging to demonstrate its values in clinical environments. The 

feasibility studies showed its impressive imaging capability in capturing metabolic alterations in 

small-size tumors, imaging intra-tumor heterogeneity, classifying tumors with different grades, 

and monitoring therapeutic responses. In addition, the improved SPICE method was used for 31P-

MRSI at 7T for high resolution mapping of high-energy metabolites. Experimental results also 

showed significantly advanced performance of the proposed method in generating high-resolution, 

high-quality 31P metabolite maps.  

In this thesis research, the feasibility of fast high-resolution MRSI at both 3T and 7T was 

successfully demonstrated. The described method is expected to provide a very powerful imaging 

tool in practical environments for a wide range of scientific and clinical applications.  
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CHAPTER 1 – INTRODUCTION 

1.1 Motivation 

Brain metabolism links neural activity, energy consumption, blood flow, brain functions, and 

health status [1]–[3]. Imaging brain metabolism is central to understanding brain function and 

characterizing brain health states, which have long been desired by both researchers and clinicians. 

Over decades of development, metabolic imaging methods such as positron emission tomography 

(PET), magnetic resonance spectroscopy (MRS), and optical imaging have provided valuable tools 

to probe the distribution of many metabolites and their related metabolic processes in the brain 

[4]–[7]. For example, with specific tracers, PET has been used to map glucose consumption, 

oxygenation extraction, and dopamine metabolism of the brain. With this imaging capability, PET 

has been applied in the diagnosis of various diseases including brain tumors, Alzheimer’s disease, 

and Parkinson’s disease [8], [9]. Magnetic resonance spectroscopic imaging (MRSI) is another 

well-known metabolic imaging method. Without any injection of radioactive isotopes, MRSI can 

use the intrinsic signals from brain tissues to map numerous metabolites, such as N-Acetylaspartate 

(NAA), creatine (Cr), choline (Cho), myo-inositol (Ins), glutamine (Gln), and glutamate (Glu) 

using 1H-MRSI, and phosphocreatine (PCr), adenosine triphosphates (ATPs), Nicotinamide 

adenine dinucleotide (NAD), and inorganic phosphate (Pi) using 31P-MRSI. Due to the radiation-

freeness and easy-accessibility, MRSI has long been regarded as a promising imaging tool for non-

invasive in vivo metabolic studies and clinical diagnosis [6], [10]. Its invention dates back to the 

early stage of magnetic resonance imaging (MRI) [11]–[13]. Through several decades of 

development, MRSI has shown its great potential and value in many studies such as energy 

consumption analysis, tumor characterization, and neurodegeneration assessment.  

However, its development and clinical applications were much more limited than expected 

since the practical utility was restricted due to several long-standing technical obstacles:    

➢ Low signal-to-noise ratio (SNR): The concentrations of most MR detectable metabolites in the 

human brain are on the order of millimolar (mM), which is around three orders of magnitude 

lower than the concentration of water molecules. Therefore, the detection sensitivity of these 

metabolites is extremely low given the weak signals buried in the thermal noise.  

➢ Long scan time: Typical MRSI methods needs to encode four dimensions of the signal 

functions, including three spatial dimensions and one spectral dimension, which require a huge 
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number of measurements. In addition, given the low SNR of metabolite signals, usually many 

averages are applied in practice to gain enough SNR, which further prolongs the scan time. For 

example, traditional 1H-MRSI methods usually take more than 10 minutes to scan only one 

slice, which is far from practically feasible for three-dimensional (3D) imaging of the brain.  

➢ Low spatial resolution: Limited by the low SNR and long scan time, typical MRSI methods 

can only acquire a small number of spatial encodings, resulting in a very low spatial resolution. 

The spatial resolution for typical 1H-MRSI methods is around one cm3. This large voxel size 

makes these methods suffer from severe partial volume effects and not be able to resolve spatial 

metabolic heterogeneity.  

➢ Nuisance signals: Specially for 1H-MRSI, another big challenge it faces is the overwhelming 

water and lipid signals (which are called nuisance signals). Since signals of water and lipids 

are more than three orders of magnitude higher than the metabolite signals, metabolite signals 

are hardly visible in the spectra of 1H-MRSI without any suppression or processing. Therefore, 

insufficient separation between nuisance and metabolite signals can result in significant 

artifacts and quantification errors for metabolite signals.  

Given these barriers, it has been very challenging to perform 3D high-resolution MRSI 

experiments in a clinically feasible time. Therefore, even with the capability to obtain scientifically 

and clinically desirable information, the applications of MRSI methods in practical environments 

are still very limited.  

During the past several decades, numerous efforts have been made to address these challenges 

and promote MRSI technology. In data acquisition, special excitation pulses for good localization 

[14]–[16], suppression pulses for reducing nuisance signals [17]–[19], and fast trajectories for 

rapid spatiospectral encoding have been developed [20]–[22]. Moreover, the advances in parallel 

imaging and compressed sensing have enabled sparse sampling of the signal space, which can 

further reduce the acquisition time [23]–[25]. Various processing methods have also been proposed 

for effective denoising, high-quality reconstruction, and accurate spectral quantification [26]–[33]. 

In recent years, a subspace based MRSI technique called SPICE (SPectroscopic Imaging by 

exploiting spatiospectral CorrElation) has been proposed for accelerated 1H-MRSI at 3T [34]–

[36]. SPICE technique exploits a unique property known as partial separability (PS) or low-rank 

structure of spectroscopic signals [33]. This property reveals that high-dimensional spectroscopic 

signals reside in a very low-dimensional subspace, and it has enabled special data acquisition and 
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processing schemes to significantly accelerate MRSI. The proof-of-concept works using the basic 

SPICE method on 1H-MRSI at 3T have demonstrated its superior performance on improving 

imaging speed, resolution, and SNR [34]–[36]. However, the imaging capability of these 

“prototype” methods in terms of imaging volume, resolution, and speed, is still not sufficient to 

satisfy the ever-growing clinical needs.   

Ultrahigh field MR (≥ 7T) has drawn more and more attention in recent years. The most direct 

benefit brought by ultrahigh field MR is the significantly enhanced signal intensity, which enables 

higher resolution for various MR imaging techniques [37]–[40]. The relaxation times change in 

ultrahigh field MR compared with low field MR, such as longer T1, shorter T2 and T2*. These 

changes of relaxation times can lead to higher contrast-to-noise ratio (CNR) for functional MRI 

(fMRI) and better image contrast for structural imaging like MPRAGE (Magnetization Prepared 

Rapid Acquisition Gradient Echo) and SWI (Susceptibility Weighted Imaging) [41]–[45]. 

Specially for MRSI, ultrahigh field MR not only provides enhanced SNR, but also offers increased 

chemical shift dispersion for better separation of different molecules. Ultrahigh field MR has 

shown great potential to enhance the MRSI imaging capability [46]–[50].  

This thesis research aims at leveraging these progresses and further developing the SPICE 

method to provide a more powerful MRSI image technique with sufficient spatial resolution and 

imaging speed for clinical environments (at 3T). This thesis research also aims at utilizing the 

unique benefits brought by ultrahigh field MR to further enhance the imaging capability of high-

resolution MRSI at 7T.  

 

1.2 Main Results 

In this thesis research, we achieved the following main results:  

➢ We proposed a novel data acquisition sequence for ultrafast high-resolution 1H-MRSI at 3T. 

The proposed sequence significantly improves the previous basic SPICE method, and it is 

characterized by several unique acquisition features, including FID (free induction decay)-

based acquisition with ultrashort TE (echo time) and short TR (repetition time), elimination of 

water and lipid suppression pulses, fast simultaneous spatiotemporal trajectories, and highly 

sparse sampling of data space in variable density. As a result, 3D metabolite imaging (field of 

view (FOV): 240×240×72 mm3) at 2.0×3.0×3.0 mm3 nominal resolution could be obtained in 

an 8-minute scan at 3T MR systems. Furthermore, since no water suppression pulses are 
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applied, the proposed pulse sequence can also obtain high-resolution water imaging at 

2.0×1.0×1.0 mm3 simultaneously in the same scan, from which anatomical imaging, 

quantitative susceptibility mapping (QSM), and quantitative T2* mapping can be generated. 

➢ This data acquisition sequence was further developed at ultrahigh field (7T). Utilizing the SNR 

benefits of ultrahigh field, the sequence at 7T was extended to achieve whole-brain high-

resolution MRSI within the same time. More specifically, the sequence kept acquisition 

features including FID acquisition and no water suppression, but changed the readout direction 

to slice direction, and employed sparse sampling with a higher acceleration factor. As a result, 

whole brain (FOV: 240×240×160 mm3) metabolite imaging at 3.0×3.0×3.2 mm3 nominal 

resolution and water imaging at 2.0×2.0×3.2 mm3 were obtained simultaneously in an 8-minute 

scan. Furthermore, the unsuppressed water signals were used for correcting the effects caused 

by various challenging system imperfections at ultrahigh field. 

➢ The key processing issues given the proposed data acquisition schemes included (1) separation 

of signals from water, lipid, and metabolites; (2) reconstruction from the sparse and noisy 

MRSI data; and (3) correction of system imperfection. The union-of-subspaces framework of 

SPICE was used to address the first two processing issues. This model is able to significantly 

reduce degrees-of-freedom for representing the spatiospectral functions, facilitate effective 

reconstruction from sparse and noise measurements, and allow good separation of signals 

between different molecules. In this thesis research, the basis functions for different molecules 

were generated using subspace learning strategies, pre-determined from quantum simulation 

and sets of high-quality training data. The feasibility of addressing these processing issues and 

producing high quality reconstruction results were successful demonstrated. The third issue 

was resolved using the unsuppressed water signals and embedded navigator signals in the 

sequence. Successful resolve of these issues not only made the SPICE technique practically 

possible, but also provided a set of valuable tools and solutions to many common issues in 

other MRSI methods.  

➢ Both phantom experiments and in vivo experiments were carried out to demonstrate the 

feasibility and potential of the proposed method for fast high-resolution 1H-MRSI. At 3T MR 

platforms, the proposed method successfully achieved metabolic imaging at 2.0×3.0×3.0 mm3 

nominal resolution and water imaging at 2.0×1.0×1.0 mm3 with an FOV of 240×240×72 mm3 

within an 8-minute scan time. It produced accurate and reproducible results in the phantom 



5 
 

experiments and achieved high-quality, high-resolution results in experiments on healthy 

subjects. The proposed method was also performed on patients diagnosed with various grades 

of brain tumors. Results from these feasibility studies have showed great potential values of 

the proposed method in tumor imaging with the capabilities to capture metabolic alterations in 

small-size tumors, map intra-tumor heterogeneity, and monitor therapeutic responses. At 7T 

MR platforms, the proposed method further extended the FOV to whole brain coverage 

(240×240×160 mm3) and achieved metabolic imaging at 3.0×3.0×3.2 mm3 nominal resolution 

and water imaging at 2.0×2.0×3.2 mm3 resolution within the 8-minute scan time. Encouraging 

high-quality experimental results were also obtained successfully in both phantom and in vivo 

scans, showing the feasibility and performance of the proposed method.  

➢ The presented SPICE method was also adapted to 31P-MRSI at 7T for high resolution mapping 

of energy metabolites. An optimized 31P-MRSI sequence featured by FID acquisition with 

short TE and TR, NOE (Nuclear Overhauser Effect) enhancement module, and SNR efficient 

data space sampling was used. Using the subspace-based method for denoising, high quality 

3D metabolite maps (220×220×100 mm3) at 9.1×9.1×12 mm3 nominal resolution were 

obtained in a 30-minute scan, successfuly revealing metabolite contrast between gray matter 

and white matter.  

 

1.3 Organization of the Dissertation  

The dissertation is organized as follows:  

Chapter 2 reviews some basic background knowledge related to this thesis work. At first, 

overall background about brain metabolic imaging including its significance and current progress 

on imaging methods are discussed. Then technical essentials including MR physics, MRSI basic 

principles, accelerated acquisition approaches, and mathematical foundation of subspace modeling 

(known as partial separability model) follow. After these, basic concept and early work on the 

SPICE method for MRSI are introduced. Progress, benefits, challenges, and potentials of ultrahigh 

field MR are discussed at the end of this chapter,. Chapter 3 describes the detailed design of the 

proposed fast high-resolution 1H-MRSI acquisition sequence at 3T, including the specifically 

designed features in pulse sequence, the pattern of sparse sampling on the data space, embedded 

navigator signals’ acquisition, and experimental implementation. Similarly, Chapter 4 describes 

the data acquisition sequence at 7T, particularly on features to utilize the signal enhancement for 
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whole-brain coverage and to overcome the specific technical challenges brought by ultrahigh field. 

Example implementation of this sequence is also described at the end of this chapter. Chapter 5 

introduces the data processing methods based on the union-of-subspaces model and subspace 

learning strategies. The essentials of signal model, subspace learning procedure, reconstruction of 

water, lipid, and metabolite signals, and the correction of system imperfection are covered in this 

chapter. Chapter 6 presents the experimental results obtained both in vitro and in vivo, at both 3T 

and 7T, demonstrating the performance and potential of the method for high-resolution metabolite 

mapping. Results from a feasibility study applying the proposed method for tumor imaging are 

also included. Chapter 7 introduces application of the subspace imaging method in high-resolution 

31P-MRSI, including acquisition sequence optimization, data processing and reconstruction 

methods, and experimental results. Chapter 8 concludes this dissertation and discusses future 

research directions built on this work. In the following chapters of this dissertation except Chapter 

7, “MRSI” refers to “1H-MRSI” if no specific classification is given. 

 

 

 

  



7 
 

CHAPTER 2 – BACKGROUND 

2.1 Metabolic Imaging of the Brain 

The human brain consists of a huge number of cells which closely and continuously interact with 

each other through complex chemical and electrical activity. There are various metabolic processes 

simultaneously happening in the brain to facilitate brain functionality. The metabolism can be 

divided into catabolism and anabolism. In catabolism, large complex molecules are transformed 

into small ones through breakdown processes, which releases energy to support the communication 

and function of cells. The anabolic processes consume energy to synthesize more complex 

molecules, which are used for building cellular structures and storing energy. These metabolic 

processes support and mediate numerous brain cellular functions, including gene expression, 

protein expression and translation, generation and propagation of action potential, synaptic 

transmission, metabolites recycling, and so on. Therefore, probing brain metabolism and imaging 

distribution of metabolites are central to understanding how brain’s anatomy and physiology 

respond to environment, diseases, injury, and aging [51].  

Regulation of brain metabolite supply and energy metabolism is essential to maintain normal 

brain functionality, while physiological or pathological processes usually activate or deactivate 

some specific metabolic pathways, thus lead to abnormal changes of metabolite concentrations 

[2], [3]. For example, glutamate is the primary excitatory neurotransmitter and gamma-

aminobutyric acid (GABA) is the main inhibitory neurotransmitter, both of which work together 

to regulate the normal neurotransmission processes [52]. In glutamatergic synapses, glutamate is 

released by the pre-synaptic neuron, and its uptake by the post-synaptic neuron via glutamate 

receptors stimulates the change of action potential, which leads to communication between 

neurons. On the contrary, GABA limits nerve transmission by decreasing action potential and 

blocking stimulation of neurons, thus modulating the overall neural communication. The 

imbalance of glutamate and GABA could cause abnormality or dysfunction of neurotransmission, 

which has shown to be correlated with many mental disorders such as schizophrenia, anxiety 

disorders, and depression [53]–[58]. There are several MR detectable metabolites playing central 

roles in the brain energy metabolism, such as glucose (Glc), ATPs, and lactate (Lac) [51]. Glucose 

is an energy substrate which produces ATPs through glucose oxidation and glycolysis. Most of 

the energy consumed by the human brain is produced from glucose, so it has been regarded as the 
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most essential metabolic fuel for the brain. The overall glucose level and flux rate are kept in a 

dynamic balance in normal brains; severe reduction of brain glucose level could quickly lead to 

disease states like cognitive dysfunction, loss of consciousness, seizures, or irreversible brain 

damage. ATP is the primary source of biochemical energy, and its expenditure devotes to maintain 

cell integrity, keep tissue viability, support electrophysiological activity, and facilitate neural 

communication. PCr functions as an alternative energy reserve, which can provide an additional 

ATP supply through a phosphorylation-dephosphorylation reaction when the energy requirement 

cannot be met by oxidative phosphorylation. When sufficient oxygen is present, the pyruvate 

generated from glucose is fully oxidized to carbon dioxide and water through the tricarboxylic 

(TCA) cycle, while the pyruvate is reduced to lactate when oxygen is lacking. In many disease 

states, the pathways to production of lactate are strongly enhanced, such as ischemia and cancer. 

Hence, sudden lactate increase in the brain has been regarded as an indicator for abnormality. 

Many diseases also usually come with reduction of NAA, which is one of the metabolites with the 

highest concentrations in the brain (around 10 mM in some brain regions). NAA is a nervous 

system-specific metabolite, which is synthesized from aspartate and acetyl-coenzyme A. It has 

been found to play multiple roles in brain biochemical processes, including involvement in myelin 

lipid turnover, link to ATP metabolism in neuronal mitochondria, and as a precursor for the 

enzymatic synthesis of N-acetylaspartylglutamate (NAAG), the third most prevalent 

neurotransmitter in the human brain [59]. Additionally, NAA has long been regarded as a marker 

of neuronal density, and its decreases associated with those neuropathologies are interpreted to 

represent loss of neurons [59]. Another prominent brain metabolite, choline, is specially associated 

with cancer metabolism, like oncogenesis, tumor progression, and proliferation. The “Cho” signal 

in 1H-MRS actually contains multiple choline-containing compounds, such as free choline, 

glycerophosphorylcholine, and phosphorylcholine, so it is also often referred as “total choline”. 

Choline-containing metabolites are involved in cell membrane synthesis and degradation, so the 

elevated Cho in brain tumors is suggested to indicate high cellularity, cell destruction, and 

increased brain membrane turnover [60].  

Since these brain metabolites participate in numerous aspects of the brain metabolism, being 

able to map them can provide a valuable window to study brain metabolism and probe how the 

brain responses to various environmental conditions. After decades of effort on the development 

of imaging methods, recent state-of-the-art non-invasive metabolic imaging tools like PET and 
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MRS/MRSI have been successfully applied in many brain imaging applications, showing great 

potential and clinical values. Three representative metabolic imaging tools including 18FDG-PET, 

1H-MRS/MRSI, and 31P-MRS/MRSI are discussed as follows.  

2.1.1 18FDG-PET 

Positron emission tomography has been currently regarded as one of the most common metabolic 

imaging tools. As the name suggests, PET is a technique that depends on the positron emitted from 

the object and utilizes it for imaging. More specifically, PET requires injection of radiotracers 

which are chemical molecules labeled by radioactive positron emitting isotope. After injection, the 

PET tracers concentrate in the tissues of interest through blood circulation and undergo positron 

emission decay. The emitted positron travels in tissue shortly and then annihilates with an electron, 

producing a pair of gamma photons moving in the opposite directions (approximately). These 

emitted gamma photons can be collected by the detectors distributed around the PET scanner and 

then produce signals. PET requires coincident detection of the pair of photons in opposite 

directions, which allows localization of the emission event in post processing. By determining the 

lines where the coincident events happen and collecting data emitting by many angles, PET can 

obtain spatial maps of the labelled metabolites through reconstruction. Since the radioactive 

isotopes can be used to label various biochemical molecules like glucose, ammonia, and water, 

PET is able to measure the distribution and changes of targeted molecules in metabolic processes 

or physiological activities.  

2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) is the most widely used PET tracer, which is a 

glucose analog. After injection, FDG is transported into living tissues at a similar rate as glucose, 

then it is phosphorylated to FDG-6-phosphate while it does not enter further metabolic pathways. 

Therefore, FDG uptake reflects the uptake of glucose, so it has been widely used for measuring 

glucose metabolism. 18FDG-PET imaging has been applied in a wide range of applications 

including investigating neurofunction, neurodegenerative diseases, and oncology. For functional 

imaging, 18FDG-PET quantitatively measures cerebral metabolic rates of glucose (CMRglu), 

whose consumption is directly related to physiological stimulation of the neurons, thus it can 

effectively probe the spatiotemporal correlation between the metabolic changes and 

hemodynamics. Since CMRglu is closely related to the brain functional state, 18FDG-PET has also 

been successfully applied in numerous neuropsychiatric and neurodegenerative diseases including 

traumatic brain injury (TBI), schizophrenia, depression, bipolar disorder, Alzheimer's disease, and 
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Parkinson’s disease [61]–[66]. Given the fact that cancer cells usually have increased glucose 

uptake and glycolysis to support their abnormal growth, 18FDG-PET has shown its advantages and 

values in tumor diagnosing, staging, monitoring, evaluating and even prognosis of various 

malignancies [5], [8], [67]. Over decades of development, 18FDG-PET has been well-accepted and 

widely employed as one of the standard imaging techniques for oncology scans in both scientific 

research and clinical environments.  

Besides 18FDG, there have been many other PET tracers developed to probe in different aspects 

of human metabolism. For example, 15O-water, which is a water analog, has been utilized to 

measure regional cerebral blood flow and oxygen consumption; 18F-Fluorodopa can be used for 

measuring dopamine synthesize, which has shown great values for schizophrenia, Parkinson’s 

disease, and brain tumors; 13N-Ammonia is regarded as excellent blood flow agent and has been 

widely used for quantification of myocardial blood flow; it is also related to glutamine metabolism 

so used for diagnosis of astrocytoma; 11C-Methionine is related to amino acid uptake and protein 

synthesis, so it is mainly applied in brain tumors and myocardium infarction.  

2.1.2 1H-MRS/MRSI 

MR spectroscopy/spectroscopic imaging are imaging techniques based on the magnetic resonance 

phenomenon. Different molecules have different electronic structures, thus different shielding 

effects on nuclei which are reflected as different resonance frequencies in MR signals. MR 

scanners use RF pulses to excite the imaging object and receive MR spectroscopic signals as sum 

of all these frequency/molecule components. Through special post-processing and reconstruction 

methods, MRS/MRSI can resolve different molecules from the overall spectroscopic signals. MRS 

usually refers to methods measuring spectroscopic signals from a single voxel, while MRSI are 

methods measuring spatially resolved spectra, thus obtaining the spatial distribution or mapping 

of different molecules. More details of MRS/MRSI methods will be introduced in section 2.2.  

1H-MRS/MRSI methods measure MR signals from protons. An illustration of 1H-MRSI and 

typically detectable molecules are shown in Figure 2.1. The number of metabolites measurable by 

typical 1H-MRS/MRSI techniques is more than ten. The most widely investigated metabolites 

include NAA, creatine, choline, myo-inositol, glutamate, glutamine, GABA, lactate, etc. These 

metabolites have been proved valuable in many applications and studies. For example, NAA, Cho, 

and Lac have been used as good biomarkers for brain tumor imaging, with close relation to tumor 

grading, characterization, and treatment responses [68]; NAA and Lac have been used in ischemia 
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for lesion identification and assessment of tissue salvageability [69]; neurotransmitters including 

Glu and GABA are critical in various functional studies, especially in investigation of their 

metabolic changes in response to stimulation activity [70]; moreover, Glu and GABA have shown 

great potential in diagnosis and characterization of a bunch of neuropsychiatric diseases like 

schizophrenia and depression [53]–[58]. 1H-MRS/MRSI allows detection and measurement of all 

these molecules within a single scan without any injection, so it has been regarded as a very useful 

investigative metabolic imaging tool. 

 

Figure 2.1: Illustration of 1H-MRSI in obtaining distributions of multiple molecules from the 

spatially resolved spectra. The main detectable molecules (including NAA, Cr, Cho, Ins, Glu, 

GABA, etc.) are involved in specific biological process, thus indicate different aspects of the brain 

metabolism.  

However, concentrations of these metabolites in the human brain are very low, usually on the 

order of a few mMs. Moreover, MR-based methods have fundamentally limited sensitivity and 

acquisition efficiency compared with PET imaging from physics. Sensitivity issue is one of the 

most severe technical challenges 1H-MRS/MRSI methods face, limiting its resolution, imaging 

speed, accuracy, and practical impact. Recent technical advances to overcome this issue will be 

elaborated in later sections of this thesis.  
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2.1.3 31P-MRS/MRSI 

Similar to 1H-MRS/MRSI, 31P-MRS/MRSI utilizes tissue intrinsic spectroscopic signals to 

measure multiple phosphorus metabolites. Different from the metabolites measurable by 1H-

MRS/MRSI, many detectable phosphorus metabolites are involved in cellular energetic processes 

and membrane phospholipids. As a representative MR spectrum shown in Figure 2.2, the typically 

measurable phosphorus metabolites of human brain include PCr, ATPs (split into three resonances, 

𝛼-ATP, β-ATP, and γ-ATP), NAD (integration of NADH and NAD+), Pi (including exocellular 

and intracellular Pi), phosphocholine (PC), phosphoetanolamine (PE), glycerophosphocholine 

(GPC), and Glycerophosphoethnolamine (GPE) [71]. Given this rich set of metabolites which are 

closely related to bioenergetics, 31P-MRS/MRSI is regarded as one of the most powerful imaging 

tools to study brain energy metabolism.  

 

Figure 2.2: Representative 31P-MR spectrum of human brain. The detectable phosphorus 

molecules can provide biological information regarding energy metabolism and membrane 

phospholipids.  

Measurement of PCr and ATPs using 31P-MRS/MRSI in human brain has been utilized to 

characterize and understand the energetic processes in both healthy and diseases states. Since many 

disorders are related to imbalances in bioenergetics processes, 31P-MRS/MRSI has been used in 

numerous studies to investigate energetic impairments in neural disorders like Alzheimer’s disease, 

multiple sclerosis, migraine, epilepsy, and cerebral ischemia [72]–[74]. It has also been found that 
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the phosphomonoesters (PC and PE) and phosphodiester (GPC and GPE), which are related to cell 

membrane phospholipids, are important biomarkers for aging and psychiatric illness like 

schizophrenia [75]. Another important application of 31P-MRS/MRSI is to measure tissue PH 

value using the chemical shift of Pi. It is known that PH value presents abnormality in tissues with 

several disease states, hence 31P-MRS/MRSI has also been applied in PH investigations of some 

diseases like brain tumors and depression disorders.  

Compared with 1H-MRS/MRSI, 31P-MRS/MRSI has a few advantages. First, phosphorus 

spectrum has a wider bandwidth spanning around 30 ppm (only around five ppm for proton 

spectrum), so the phosphorus metabolites have much less spectral overlapping with others and 

their separation is considerably easier. Another major advantage is that 31P-MRS/MRSI does not 

have huge nuisance signals like water and lipids in proton spectrum, which largely simplifies the 

acquisition and processing of 31P-MRS/MRSI data. However, the sensitivity of phosphorus signals 

is considerably lower than proton, given its lower gyromagnetic ratio and lower metabolite 

concentrations. Therefore, the resolution and imaging speed of 31P-MRS/MRSI methods are more 

limited than 1H-MRS/MRSI methods, which have largely limited its practical utility.  

Comparing these metabolic imaging tools, each one has its own strength and weakness. PET 

imaging has the advantage of superior signal sensitivity compared with MRS/MRSI methods. The 

molecular sensitivity of typical PET and MR methods are around 10-11 mol/L and 10-6 mol/L, 

respectively. And PET imaging is naturally quantitative while MRS/MRSI methods are not, which 

need external or internal reference for absolute quantification. However, most of the PET tracers 

have short half-life, so a cyclotron is usually needed near the clinical site, which has limited the 

widespread applications. MRS/MRSI methods do not require the injection of radioactive isotopes, 

thus providing simpler experimental operation and harmlessness to examined subjects. Moreover, 

MRS/MRSI methods are able to simultaneously map multiple metabolites in a single scan, which 

is currently impossible for PET. In a practical aspect, MR scanners have much better accessibility 

compared with PET scanners, making MRS/MRSI a compelling non-invasive metabolic imaging 

tool in practice.  

 

2.2 Magnetic Resonance Spectroscopic Imaging  

This section introduces some basic concepts of MR physics and basic principles of MRSI.  
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2.2.1 Nuclear magnetic resonance and signal formulation  

The generation of MR signals is based on the well-known nuclear magnetic resonance (NMR) 

phenomenon. As the name suggests, NMR involves nuclei in the object, magnetic fields, and 

resonance phenomena. It is known that any imaging objects can be broken down into molecules, 

then atoms, then to nuclei and surrounding electrons. A nucleus with odd atomic numbers has a 

nonzero angular momentum usually called nuclear spin (denoted as 𝐽). The nucleus with non-zeros 

spin generates magnetic moment as:  

𝜇 = 𝛾𝐽 (2.1) 

where the constant 𝛾 is known as the gyromagnetic ratio, and it is nucleus dependent. Each nuclear 

spin has its magnetic moment with specific magnitude and direction. The net magnetization of the 

imaging object is the vector sum of the magnetic moment of all the nuclear spins in the object.  

�⃗⃗⃗� = ∑ �⃗�𝑛

𝑁𝑠

𝑛=1

  (2.2) 

where �⃗⃗⃗� is the bulk magnetization of the whole object, �⃗�𝑛 the magnetic moment of 𝑛th nuclear 

spin and 𝑁𝑠 the total number of spins in the object, which is normally much more than 1026 in the 

human brain. At thermal equilibrium, when no external magnetic field is present, the net magnetic 

moment is zero since the directions of spins are arbitrary due to thermal random motion. When the 

object is exposed to a strong external magnetic field 𝐵0 (assuming the direction is in z direction), 

according to the theory of quantum mechanics and Boltzmann distribution, the bulk magnetization 

is along the same direction as 𝐵0 and the magnitude is:  

𝑀𝑧
0 =

𝛾2ℏ2𝐵0𝑁𝑠𝐼(𝐼 + 1)

3𝐾𝑇𝑠
  (2.3) 

where 𝛾 is the gyromagnetic ratio, ℏ is Planck’s constant (ℏ = ℎ/2𝜋, ℎ = 6.626 × 10−34 𝐽 ∙ 𝑠), 

𝑁𝑠 is the total number of spins, 𝐼 is the nuclear spin quantum number, 𝐾 is the Boltzmann constant 

(1.38 × 10−23 𝐽/𝐾), 𝑇𝑠 is the absolute temperature of the spin system. For 1H (spin-1/2 system), 

𝛾 = 2𝜋 × 42.58 MHz/T, and the bulk magnetization is:  

𝑀𝑧
0 =

𝛾2ℏ2𝐵0𝑁𝑠

4𝐾𝑇𝑠
  (2.4) 
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Bulk magnetization 𝑀𝑧
0 which determines the sensitivity of NMR experiments points along the 

direction of 𝐵0, and the transverse component is zero at equilibrium. To generate NMR signals 

from such a polarized sample, precession motion needs to be generated. In other words, the 

longitudinal magnetization needs to be transformed onto the transverse plane. In modern MR 

experiments, an additional magnetic field is needed to apply, which varies with time and oscillates 

in radiofrequency (RF) range, known as 𝐵1(𝑡). During the RF pulse, the magnetization precesses 

on 𝐵0 and 𝐵1. For simplicity, assuming frequency of the 𝐵1 field matches the resonance condition, 

the frequency is the same as the Larmor frequency of the spin system:  

𝜔1 = 𝜔0 = 𝛾𝐵0  (2.5) 

The time-dependent behavior of �⃗⃗⃗�  during the application of 𝐵1  field could be described 

quantitatively using the Bloch equation which takes the following form in MR context:  

𝑑�⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗� × �⃗⃗� −

𝑀𝑥𝑖 + 𝑀𝑦𝑗

𝑇2
−

(𝑀𝑧 − 𝑀𝑧
0)�⃗⃗�

𝑇1
  (2.6) 

where �⃗⃗�  includes both 𝐵0  and 𝐵1  field ( �⃗⃗� = 𝐵0
⃗⃗⃗⃗⃗ + 𝐵1

⃗⃗⃗⃗⃗ ); 𝑖 , 𝑗  and �⃗⃗�  are unite vectors of the 

coordinates 𝑥, 𝑦, 𝑧 respectively; 𝑀𝑧
0  is the thermal equilibrium value of bulk magnetization as 

described above; 𝑇1  and 𝑇2  are the longitudinal and transversal relaxation times, respectively. 

After typical RF excitation, a transverse magnetization component will be generated, which rotates 

around 𝐵0 at Larmor frequency and can induce voltage signals in the receiver coil according to 

Faraday law of electromagnetic induction and the principle of reciprocity. More specifically, the 

voltage induced in the receiver coil is determined by:  

𝑉(𝑡) = −
𝜕

𝜕𝑡
∫𝐵𝑟

⃗⃗⃗⃗⃗(𝒓) ∙ �⃗⃗⃗�(𝒓, 𝑡)𝑑𝒓 (2.7) 

where 𝐵𝑟
⃗⃗⃗⃗⃗(𝒓) is receiver sensitivity on location 𝒓 and the integral is on the whole object. This 

voltage signal is often referred as raw NMR signal. Under modern MRI detection scheme (phase-

sensitive detection with signal demodulation), the signal detected by the MR scanners can be 

expressed as:  

𝑆(𝑡) = 𝜔0𝑒
𝑖𝜋/2 ∫𝐵𝑟,𝑥𝑦

∗ (𝒓)𝑀𝑥𝑦(𝒓, 0)𝑒−𝑡/𝑇2(𝒓)𝑒−𝑖Δ𝜔(𝒓)𝑡𝑑𝒓 (2.8) 
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where 𝜔0 is the Larmor frequency; Δ𝜔(𝒓) = 𝛾Δ𝐵(𝒓) is the frequency of field inhomogeneity; 

𝐵𝑟,𝑥𝑦
∗  is the conjugate of 𝐵𝑟,𝑥𝑦. In this expression, the field inhomogeneity is assumed to be time 

independent. If the field inhomogeneity is time varying, the term Δ𝜔(𝒓)𝑡 should be replaced by 

𝛾 ∫ Δ𝐵(𝒓, 𝜏)𝑑𝜏
𝑡

0
.  

2.2.2 Chemical shift and magnetic resonance spectroscopic imaging   

The description in 2.2.1 assumes the object only contains one single type of nuclear spin, so the 

object only has one resonance frequency which is determined by Equation (2.5). However, in the 

real world, the resonance frequency not only depends on gyromagnetic ratio and the main 𝐵0 field, 

but also depends on chemical environment of the nucleus, which is usually referred to as chemical 

shift. More specifically, there are electrons surrounding the nucleus, which rotates in the opposite 

direction to the nuclear spin precession when placed in the main 𝐵0 field. This precession of 

electrons generates an associated magnetic moment opposite to the nuclear magnetic moment, 

which is analogous to a shielding of nucleus. The “effective” resonance frequency of the nucleus 

under this shielding effect can be expressed quantitatively in the following form:  

𝜔 = 𝛾𝐵0(1 − 𝜎) (2.9) 

where 𝜎 is the shielding constant depending on the chemical environment of the nucleus, and it is 

usually on the order of a few parts per million (ppm). This frequency shift due to chemical shift 

phenomenon makes it possible to separate the spectroscopic signals from different molecules 

based on their frequency differences, which lays the physical foundation of the NMR spectroscopy.  

Given a spin system containing spins with different resonance frequencies (assuming a 

homogeneous sample with homogeneous sensitivity profile), the MR signals generated after a 

pulse excitation, which is also referred as popular FID signals, take the following mathematical 

form:  

𝑆(𝑡) = ∫ 𝜌(𝜔)𝑒
−

𝑡
𝑇2(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔

∞

−∞

 (2.10) 

where 𝜌(𝜔) is the spectral density function characterizing the distribution of different frequency 

components. In Equation (2,10), the decay rate of FID signal is characterized by 𝑇2 relaxation time, 

where the magnetic field is ideally homogeneous. In the practical cases where field homogeneity 

is present, the FID signal would decay faster given the phase cancellation, thus the decay rate 
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would be characterized by another shorter “effective” relaxation time instead, which is usually 

denoted as 𝑇2
∗. With the capability to probe the distribution of different molecules based on their 

differences in resonance frequencies, NMR spectroscopy has made significant impact in chemical 

and biological studies in the past several decades.  

Obtaining spatially resolved spectroscopy has long been desired in both scientific research and 

clinical applications. MRSI is such a technique to obtain and resolve both spatial and spectral 

information using the MR signals (as illustrated in Figure 2.1). MRSI combines MR spectroscopy 

with MR imaging, encoding spectral information in the FID/temporal signals and employing 

gradient fields to encode spatial information, as done in typical MR imaging methods. More 

specifically, the introduction of gradient fields generates a spatially dependent magnetic field:  

Δ𝐵(𝒓, 𝑡) = �⃗�(𝑡) ∙ 𝒓 (2.11) 

Then, the signal equation can be revised as:  

𝑆(𝑡) = ∫ ∫ 𝜌(𝒓,𝜔)𝑒
−

𝑡
𝑇2(𝒓,𝜔)𝑒−𝑖𝜔𝑡𝑒−𝑖𝛾∫ �⃗�(𝜏)∙𝒓

𝑡
0 𝑑𝜏𝑑𝜔𝑑𝒓

𝑊𝑉

 (2.12) 

If we introduce 𝒌 to denote 𝒌 =
𝛾

2𝜋
∫ �⃗�(𝜏)𝑑𝜏

𝑡

0
, use 𝜔 = 2𝜋𝑓, and add the term for static field 

inhomogeneity, then the signal equation becomes:  

𝑠(𝒌, 𝑡) = ∫ ∫𝜌(𝒓, 𝑓)𝑒
−

𝑡
𝑇2(𝒓,𝑓)𝑒−𝑖𝛾Δ𝐵(𝒓)𝑡𝑒−𝑖2𝜋𝑓𝑡𝑒−𝑖2𝜋𝒌∙𝒓𝑑𝑓𝑑𝒓

𝐹𝑉

   (2.13) 

which is the (k, t)-space data acquired in the MRSI methods (noise term is discarded in the above 

equation). In this equation, 𝜌(𝒓, 𝑓) is the desired spatiospectral function to map, 𝑠(𝒌, 𝑡) is the 

measured MRSI data, 𝑉  is the volume of interest, and 𝐹  is the spectral bandwidth. The 

fundamental imaging problem of MRSI is to recover 𝜌(𝒓, 𝑓) from the measured (k, t)-space data 

𝑠(𝒌, 𝑡).  

To collect the MRSI signals 𝑠(𝒌, 𝑡), as shown in Equation (2.13), both spatial encodings in k-

space and temporal encodings in t dimension are needed. The most commonly used pulse sequence 

for MRSI acquisition is the well-known chemical shift imaging (CSI) method [12]. Essentially, in 

each excitation after RF pulses, CSI method collects entire FID/temporal signals for t dimension 

encodings on one specific 𝒌 space location; then it collects spatial encodings using different phase 
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encoding gradients in different excitations. Assuming the desired spatiospectral function 𝜌(𝒓, 𝑓) 

is support-limited and band-limited, CSI method samples both k-space and temporal signals at the 

Nyquist rate for full recovery without aliasing. With enough number of encodings, direct Fourier 

reconstruction can be performed to generate a good approximation of 𝜌(𝒓, 𝑓). The CSI method 

has been used as the gold standard method of MRSI for many years, and it is still widely used in 

many MRSI studies. However, the spatial encoding efficiency of CSI is very low, with only one 

spatial encoding in each excitation. Assuming the number of encodings in each spatial dimension 

is 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, and in temporal dimension is 𝑁𝑡, the total number of excitations needed in CSI for 

one average would be 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧. Given the low SNR of MRSI signals, many averages are 

usually needed, leading to a very long scan time. Therefore, most CSI experiments are limited to 

low spatial resolution and small brain coverage. For example, in human brain experiments, typical 

CSI methods acquire only one single slice, with resolution around 10 mm (where 𝑁𝑥 = 24, 𝑁𝑦 =

24, 𝑁𝑧 = 1, assuming TR = 1 second) and three averages, then the scan time is already 28.8 

minutes. These imaging efficiency and capability are far from sufficient for practical applications 

in clinical environments. Therefore, acceleration is necessary for MRSI methods.  

 

2.3 Accelerated MRSI  

 

Figure 2.3: A historic illustration of some milestones in the development of MRSI technology. 
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During the past a few decades, a lot of research efforts from the MR society has been invested to 

push the development of MRSI methods forward, resulting in many advanced MRSI technologies. 

A historic illustration of some milestones in the development of MRSI technology is shown in 

Figure 2.3. In these progresses, a large number of methods were proposed for the acceleration of 

MRSI. These accelerated MRSI methods can be roughly categorized into methods using fast 

sampling trajectories and methods using sparse sampling of (k, t)-space.  

2.3.1 Fast trajectories   

 
Figure 2.4: Fast sampling trajectories used for MRSI acquisition. (a) EPSI trajectory; (b) spiral 

trajectory; (c) concentric ring trajectory; (d) radial trajectory; (e) rosette trajectory. This figure is 

reproduced from [76].  

The basic idea of fast sampling trajectories is to use a much higher readout bandwidth to increase 

the number of readout encodings and utilize these increased encodings to simultaneously sample 

both spatial and temporal dimensions. The number of spatiotemporal encodings acquired in each 

excitation increases, then the number of excitations needed could be reduced to shorten the total 

scan time. For example, traditional 1H-CSI sequences at 3T use a readout bandwidth around 5 kHz. 
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To accelerate the acquisition, the readout bandwidth can be increased to 200 kHz, increasing the 

number of temporal encodings by a factor of 40 and these extra encodings can be utilized as spatial 

encodings, thus reducing the number of excitations needed by a factor of 40. Therefore, the critical 

part of sequence design is how to efficiently and simultaneously encode both spatial and temporal 

information but avoid inducing additional artifacts. Over decades of development, there have been 

many special sampling trajectories proposed for fast MRSI acquisition, including echo planar 

spectroscopic imaging (EPSI) trajectory, spiral trajectory, concentric ring trajectory, radial 

trajectory, and rosette trajectory [76], as illustrated in Figure 2.4. These trajectories have different 

acquisition efficiency, different requirements on gradient coil systems, and result in different 

characteristics of collected signals.  

EPSI is one of the most commonly used fast MRSI trajectories, using a sequence of alternating 

trapezoidal gradients to encode kx-t space [20]. As shown in Figure 2.4(a), EPSI encodes one kx 

line and its corresponding temporal signals in each TR, then encodes ky and kz using different 

TRs with different phase encoding gradients. So, the overall acceleration factor compared with 

CSI is equal to the number of encodings in kx. Compared with other fast trajectories, EPSI has the 

advantage of cartesian sampling, thus easiness in reconstruction, but it faces spectral ghost artifacts 

given the inconsistency between odd and even echoes. Spiral trajectory samples both kx and ky at 

the same time, and it has been shown in principle to have the best efficiency in covering spatial 

encodings for MRI [21]. But for MRSI, the efficiency of spiral trajectory is reduced by the time 

needed to fly back to origin for the next repeated temporal sampling. Some methods like spiral-in-

spiral-out type of acquisition have been proposed, but they also face the inconsistency issue similar 

to EPSI. Additionally, spiral trajectory is sensitive to field inhomogeneity and requires non-

cartesian reconstruction. Concentric ring trajectory also simultaneously encodes both kx and ky 

and has good acquisition efficiency. Compared with spiral trajectory, concentric ring trajectory 

does not have dead time between repeating temporal encodings. But due to the gradient limitation, 

the k-space rings with large radius would require multiple temporal interleaves to fulfill Nyquist 

sampling rate in temporal direction [77]. Rosette trajectory is another similar non-cartesian 

trajectory, and its advantage lies in the design flexibility and low-gradient requirements [78]. With 

different setup of parameters, it can be transformed into concentric ring, spiral and radial 

trajectories. Radial trajectory is similar to the projection-based sampling as used in CT [79]. Its 

advantage is the repeated sampling of k-space center, thus offering the possibility of self-
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navigation. These trajectories have all been adopted in MRSI studies for accelerated acquisition, 

and the choice between them depends on the gradient system, practical needs, and corresponding 

processing methods.  

 

2.3.2 (k, t)-space under-sampling 

Another major type of acceleration approach for MRSI is under-sampling of (k, t)-space. These 

methods sparsely sample (k, t)-space data to reduce the number of excitations, thus reducing the 

acquisition time. Then the missing measurements are recovered by reconstruction methods 

including other prior information or constraints.  

One widely used strategy to recover under-sampled data is parallel imaging, using the 

sensitivity encodings provided by the modern multi-channel array coils. From the mathematical 

standpoint, Papoulis’ multi-channel sampling theorem shows that with multiple sampling 

channels, the signals sampled without satisfying the Nyquist rate can still be recovered under some 

conditions [80]. More specifically, assuming a signal 𝑠(𝑡) is bandlimited (|𝑓| < 𝐵/2) and energy 

limited, the Shannon sampling theorem states that 𝑠(𝑡) can only be determined from the samples 

when the sampling interval is smaller than 1/𝐵. This sampling interval is known as the Nyquist 

sampling interval. Under multi-channel sampling scenario, assuming the sampled signals are 

outputs of 𝑠(𝑡) after 𝐿 linear time-invariant filters, with the sampling rates as 1/𝐿 of the Nyquist 

rate, denoted as 𝑠𝑙(𝑚Δ𝑡), Δ𝑡 = 𝐿/𝐵, Papoulis’ sampling theorem states that 𝑠(𝑡) can be perfectly 

recovered from 𝑠𝑙(𝑚Δ𝑡) by a uniquely determined interpolation, with some conditions on the 

frequency responses of these filters/channels. In MR imaging, the image function can be regarded 

as the bandlimited signal 𝑠(𝑥) and its corresponding signal in k-space as 𝑠(𝑘),  the multiple 

receiving coils (assuming the number of coils is 𝐿) with different sensitivity profiles can be 

regarded as those linear time-invariant filters. Based on the Papoulis’ sampling theorem, the image 

function 𝑠(𝑥) can be perfectly reconstructed from the measured multi-coil data 𝑠𝑙(𝑚Δ𝑘), even if 

Δ𝑘 is only 𝐿 times of the Nyquist rate (Δ𝑘 = 𝐿/𝐵, 𝐵 stands for the FOV of the image function). 

Even through the practical situation cannot match the idealness; for example, the real coil 

sensitivity profiles do not fully satisfy the requirements of this theorem on the channel frequency 

responses; it has still been shown that good reconstruction of MR images can be achieved with 

multi-channel coils under some level of sub-sampling which is lower than a factor of 𝐿 [23], [24].  
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There have been many parallel imaging methods building on this principle to enable 

reconstruction from sub-sampling. The two most popular methods are known as SENSE and 

GRAPPA [23], [24]. Even both methods have Papoulis’ sampling theorem as the most basic 

principle, and they share some common features, but do have different assumptions, different 

requirements, and different implementations. SENSE method assumes that the image data acquired 

by each coil channel is the image function multiplied by the receiving sensitivity profile of that 

channel, as shown in the following forward model:  

𝑑𝑐(𝒌) = ∫𝜌(𝒓)𝑠𝑐(𝒓)𝑒−𝑖2𝜋𝒌∙𝒓𝑑𝒓
𝑉

   (2.14) 

where 𝑑𝑐(𝒌) is the measured k-space data of the 𝑐th coil, 𝑠𝑐(𝒓) is the sensitivity profile of the 𝑐th 

coil, and 𝜌(𝒓) is the image function to be reconstructed. As can be seen, to reconstruct 𝜌(𝒓) from 

𝑑𝑐(𝒌), the sensitivity functions of each coil 𝑠𝑐(𝒓) is required to be known. In practice, one set of 

auxiliary data is usually acquired to pre-estimate the sensitivity maps, and the inverse problem of 

the forward model in Equation (2.14) can be solved in either k-space domain or spatial domain. 

GRAPPA method assumes the following k-space interpolation model which means that the data 

in one k-space location can be presented by a linear combination of adjacent k-space data from 

multiple channels, and the coefficients are k-space independent:  

𝑑𝑐(𝑘) = ∑ ∑ 𝑑𝑛(𝑘 − 𝑚Δ𝑘)𝑔𝑛,𝑐(𝑚Δ𝑘)

𝑀/2

𝑚=−𝑀/2

𝑁

𝑛=1

 (2.15) 

where 𝑔 is the interpolation kernel, 𝑀 is the neighborhood range, 𝑁 is the number of channels. 

GRAPPA method does not need to pre-acquire explicit sensitivity maps, but it needs a set of fully 

sampled k-space calibration data to estimate the interpolation kernel. The interpolation kernel can 

be estimated by solving 𝑔𝑛,𝑐(𝑚Δ𝑘) from the inverse problem of Equation (2.15) in least square 

sense using the calibration data. Both methods have been successfully and widely used in many 

MR imaging techniques and they have also been adopted in MRSI methods for acceleration.  

Another popular strategy is constrained reconstruction exploiting various prior information 

like spatial smoothness, spatial/spectral sparsity, low rankness, etc. [25], [33], [81]. These 

constraints and priors can significantly narrow the solution space in the reconstruction problems, 

and different methods can work in different applications, depending on the signal properties. The 
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spatial smoothness assumes that the spatial distribution of MR signals is relatively smooth 

especially in the human brain except at some anatomical edges; the spatial/spectral sparsity 

assumes the signals have only a limited number of non-zero values under some sparsify 

transforms; the low rankness means some specific forms of matrix have only a very small rank. 

All these prior knowledges can be incorporated into the reconstruction process in various forms 

(separately or jointly) to help recover sparse measurements. A systematic and comprehensive 

review of constrained reconstruction methods can be found in [82].  

 

2.4 Partial Separability Model 

MRSI is a high-dimensional imaging technique. Compared with conventional anatomical MRI, 

MRSI adds one or two spectral dimensions to the imaging problem (thus is a 4D or 5D imaging 

problem). Due to the curse of dimensionality, MRSI requires a much larger number of encodings 

compared with 3D MRI under traditional Fourier imaging framework. In practice, collecting MRSI 

encodings in good resolution require numbers on the order of a hundred in each direction and a 

few averages are usually needed for good SNR. So a total-number about hundreds of millions of 

encodings are needed, which could lead to prohibitory acquisition times. Fortunately, based on the 

partial separability model [33], it can verified that the high dimensional spatiospectral function 

actually resides in a very low dimensional subspace and only has a small number of degrees-of-

freedom. It means that only a small number of measurements are needed to represent the high 

dimensional data, which admits highly sparse sampling of the data space. This session will 

introduce the mathematical framework of the subspace modeling based on the partial separability 

of spatiotemporal signals.  

Consider the acquired spatiotemporal MRSI data 𝑠(𝒌, 𝑡) (the data has been digitalized in the 

process of MR signals collection), which is defined over 𝒦 × 𝒯, with 𝒦 = {𝑘1, 𝑘2, … , 𝑘𝑚} and 

𝒯 = {𝑡1, 𝑡2, … , 𝑡𝑛} (𝑚 is the number of k-space sampling points and 𝑛 is the number of temporal 

sampling points). For now, let’s assume 𝑚 > 𝑛, which is the case in most 3D MRSI applications. 

In Fourier imaging framework, the number of encodings needed to represent this spatiotemporal 

function is 𝑚 × 𝑛. However, if it is assumed that the spatial variations are separable from temporal 

variations, which means the spatiotemporal function is partially separable, then the spatiotemporal 

function  𝑠(𝒌, 𝑡) can be represented as:  
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𝑠(𝒌, 𝑡) = ∑𝑢𝑙(𝒌)𝑣𝑙(𝑡)

𝐿

𝑙=1

   (2.16) 

where 𝐿 is the model order, {𝑣𝑙(𝑡)} usually denote the temporal basis functions and {𝑢𝑙(𝒌)} the 

spatial coefficients. Such a 𝑠(𝒌, 𝑡)  satisfying Equation (2.16) is called 𝐿 th-order partially 

separable. It can be justified that when 𝐿 is large enough, Equation (2.16) is a valid model to 

represent any 𝐿2 functions defined over 𝒦 × 𝒯, as the following theorem states:  

Theorem 2.1. Let 𝐗 × 𝐘 be the Cartesian product of measure spaces 𝐗 and 𝐘, then the set of 

functions ∑ 𝑔𝑙(𝑥)ℎ𝑙(𝑦)𝑙  for all 𝑔𝑙(𝑥) ∈ 𝐿2(𝑥) and ℎ𝑙 ∈ 𝐿2(𝑦) is a dense subset in 𝐿2(𝐗 × 𝐘).  

In the scenario of MRSI data, this theorem states that if 𝑢𝑙(𝒌) and 𝑣𝑙(𝑡) are 𝐿2 functions, which is 

the case in practice, any 𝐿2 function 𝑠(𝒌, 𝑡) defined on the (k, t)-space can be expressed as the 

form of ∑ 𝑢𝑙(𝒌)𝑣𝑙(𝑡)
𝐿
𝑙=1 , as long as the order 𝐿 is large enough. For better understanding, one 

extreme case is that when 𝑠(𝒌, 𝑡) is digitalized, if 𝐿 is chosen as 𝑚 × 𝑛 with 𝑢𝑙(𝒌) and 𝑣𝑙(𝑡) as 

delta functions, then Equation (2.16) can naturally represent any finite functions defined over 

𝒦 × 𝒯, which means there are no correlations between spatial and temporal variations. But in 

practice, the spatial variations of MRSI signals are strongly correlated with its temporal variations. 

Given the spatiotemporal correction, the model order can be very small. Another extreme case is 

that if the temporal variations of all the spatial points are the same, i.e., 𝑠(𝒌, 𝑡) = 𝑢(𝒌)𝑣(𝑡), then 

the model order is only one. The assumption on small model order of MRSI signals can also be 

justified by the fact that there are only a limited number of molecules or biological tissues in the 

brain.  

The function satisfying Equation (2.16) also implies low rankness of the Casorati matrix 

formed by 𝑠(𝒌, 𝑡), which means, it can be proved that the matrix  

𝑪 =  [

𝑠(𝑘1, 𝑡1) 𝑠(𝑘1, 𝑡2)

𝑠(𝑘2, 𝑡1) 𝑠(𝑘2, 𝑡2)
… 𝑠(𝑘1, 𝑡𝑛)

… 𝑠(𝑘2, 𝑡𝑛)
⋮ ⋮

𝑠(𝑘𝑚, 𝑡1) 𝑠(𝑘𝑚, 𝑡2)
⋱ ⋮
… 𝑠(𝑘𝑚, 𝑡𝑛)

]  (2.17) 

has a rank upper-bounded by 𝐿 and 𝐿 < min {𝑚, 𝑛}. This is a necessary and sufficient condition 

for Equation (2.16). Given this partial separability model (when the model order 𝐿 is small), the 

overall degrees-of-freedom reduces from 𝑚 × 𝑛 to (𝑚 + 𝑛) × 𝐿, which indicates that the actual 
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number of measurements required to estimate the desired spatiotemporal function can be 

significantly decreased. Moreover, in applications like MRSI where the temporal basis functions 

{𝑣𝑙(𝑡)} can be pre-determined by prior information, the number of unknown to be determined will 

further reduce. With this benefit, the partial separability (or low-rank, or subspace) model provides 

a lot of flexibility for special signal acquisition and processing methods beyond the basic Fourier 

imaging framework, like reconstruction from sparse sampling and signal denoising. This model 

has also been successfully applied in a range of MR imaging applications besides MRSI, such as 

dynamic imaging, function imaging, and parameter mapping [83]–[86]. This thesis research is also 

built on this partial separability model for acquisition design, signal processing, and image 

reconstruction.  

 

2.5 Subspace-Based MRSI Method – SPICE 

 

Figure 2.5: An overview on the development timeline of SPICE technique, including early works 

starting from 1975, mathematical framework proposed in 2007, proof-of-concept work from 2013, 

and recent development into a practical technique and clinical applications. 

As described in the last section, the partial separability, or subspace model can be applied to MRSI 

methods for many aspects of improvements, including acceleration and denoising. SPICE 

(SPectroscopic Imaging by exploiting spatiospectral CorrElation) is such a subspace-based 

imaging method for high-resolution MRSI. The development of SPICE is a long-term effort, with 

early concepts starting from Lauterbur’s work in the 1970s [11]. Then from the 1980s to 1990s, 
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several early works such as the compartmentalized spectroscopy like SLIM (spectral localization 

by imaging) and generalized-series model-based MRSI method were proposed [85], [87]. The 

mathematical framework, which is the partial separability model as described above, was proposed 

in 2007 [33]. During the same period, a few more signal processing tools like anatomical 

constrained reconstruction and methods for water-fat separation were also developed [81], [88]. 

From 2013 to 2016, the concept of SPICE had been proven feasible in both phantom and in vivo 

experiments using phototype acquisition methods, and the results have shown great potential of 

SPICE in advancing imaging capabilities of MRSI [34]–[36]. In recent years, SPICE has been 

further developed into a more powerful and practical technique for fast high-resolution metabolic 

imaging, with several novel designs and improvements, which is also where this thesis research 

contributes [89]–[92]. Moreover, the SPICE method has lately been applied to a range of clinical 

applications like brain tumors and stroke and achieved many encouraging results [93], [94]. These 

clinical cases have shown the tremendous potential and values of SPICE in clinical environments. 

A timeline overview of the development of SPICE is shown in Figure 2.5, summarizing some key 

milestones in the process. The rest of this section will briefly introduce the basic concepts of SPICE 

method regrading to data acquisition and data processing as proposed in the early proof-of-concept 

stage, which is referred as “basic SPICE”.  

The basic SPICE method is featured by the use of subspace model in both data acquisition and 

data processing. In data acquisition, the basic SPICE method uses a hybrid acquisition sequence 

to collect two sets of MRSI data, which are used for determining subspace structure and image 

reconstruction, separately. In data processing, SPICE estimates spectral subspace from one of the 

two datasets and reconstructs spatiospectral functions using the other one incorporating subspace 

structure and spatial constrains. As a result, the basic SPICE method is able to achieve 3D MRSI 

at around 3 mm resolution in about 30 minutes.  

More specifically, in the basic SPICE method, a dual-density, dual-speed EPSI sequence is 

used for data acquisition, as shown in Figure 2.6. The entire data acquisition is divided into two 

phases. In the first phase, a slow EPSI sequence is used to acquire the data for subspace estimation, 

which are denoted as D1. This slow EPSI sequence encodes two phase encoding directions and 

one temporal direction with sampling rates satisfying Nyquist rates. As shown in Figure 2.6(b), 

this acquisition only covers a small set of k-space center, thus only has a very low resolution with 

a short scan time. In the second phase, a rapid EPSI sequence is used to acquire the imaging data  
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Figure 2.6: The basic SPICE sequence for 3D MRSI: (a) the dual-density, dual-speed EPSI 

sequence to acquire D1 and D2 data; (b) the corresponding (k, t)-space trajectories. This figure is 

from [35]. 

for reconstruction, which is denoted as D2. Within each excitation, this rapid EPSI sequence 

simultaneously encodes two spatial dimensions as well as the temporal dimension. The third 

spatial dimension is encoded using different excitations/TRs with different phase encoding 

gradients. Additional temporal encodings are obtained using different excitations with different 

echo shifts. As shown in Figure 2.6(b), this D2 acquisition has a much larger k-space coverage than 

D1 to provide higher spatial resolution, but with sparser temporal samplings. As discussed in 

section 2.3.1, EPSI trajectories simultaneously sample spatial encodings and temporal encodings, 

so there is a trade-off between the number of readout points and echo-spacing, which correspond 

to spatial resolution in readout direction and spectral bandwidth, respectively. In these two 

datasets, D1 has a smaller spatial resolution but higher spectral bandwidth, while D2 has a higher 

spatial resolution and smaller spectral bandwidth, which is to be overcome via echo shifts and 

subspace-based processing. In both D1 and D2 acquisitions, the sequences use PRESS (Point 

Resolved Spectroscopy) for excitation and localization, which is able to selectively excite a spatial 
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region like brain only. If no spatial selection is needed, the PRESS excitation module can be 

replaced by a typical spin echo (SE) module. For water and lipid suppression, a WET (water 

suppression enhanced through T1 effects) module and an OVS (outer volume suppression) module 

are added at the beginning of each TR. A spoiler gradient is placed at the end of each TR to dephase 

the remaining transversal magnetization.  

One example implementation of this acquisition sequence has the following scan parameters: 

FOV = 240×240×72 mm3 (excitation volume = 240×240×60 mm3), TR = 1100 ms, TE = 20 ms, 

readout bandwidth = 68kHz/125 kHz (for D1/D2), matrix size = 16×16×16×512/80×80×20×120 

(for D1/D2, corresponding spatial resolutions = 15×15×4.5 mm3/3.0×3.0×3.6 mm3), total time is 

26 minutes. 

Given the acquired D1 and D2 data, the main processing steps include subspace estimation and 

image reconstruction. To estimate the subspace structure (basis functions) from D1, based on 

Equation (2.16), it is straightforward to use singular value decomposition (SVD) directly on the 

Casorati matrix as shown in Equation (2.17). But the pre-requirement is that the field 

inhomogeneity effects need to be removed first. Otherwise, the model order would be significantly 

increased. The limited resolution of D1 data makes the removal of field inhomogeneity challenging. 

To overcome this issue, a constrained reconstruction method incorporating a pre-acquired field 

map is used, as solving the following optimization problem:  

�̂�1 = argmin
ρ

‖𝑑1 − Ω1(ℱ(𝐵⨀𝜌))‖
2

2
+ 𝜆1‖𝜌‖∗,  (2.18) 

where 𝜌 is the field-corrected spatiotemporal MRSI signal, 𝑑1 the measured (k, t)-space D1 data, 

𝜆1 the regularization weight, and Ω1, ℱ, 𝐵 the operators representing k-space sampling, Fourier 

transform, and field inhomogeneity effects, respectively. After �̂�1 is obtained, it can be used to 

reformed the Casorati matrix as Equation (2.17) and then be applied by SVD. The first 𝐿 right 

singular vectors are chosen to form the temporal basis functions (denoted as a matrix V). With the 

determined basis functions from D1, the image reconstruction problem becomes estimation of 

spatial coefficients in Equation (2.16) using the D2 data. It can be done by solving the following 

regularized least-squares formulation:  

Û2 = argmin
U

‖𝑑2 − Ω2(ℱ(𝐵⨀(UV)))‖
2

2
+ 𝜆2‖W∇U‖2

2,  (2.19) 
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where U is the matrix form of spatial coefficients {𝑢𝑙(𝑥)}, 𝑑2 the measured (k, t)-space D2 data, 

𝜆2 the regularization weight, and W∇ the edge weighted total variation operator. The later term, a 

weighted L2 regularization incorporates spatial priors to further improve the reconstruction. The 

spatial prior can be generated from any anatomical images. This form of regularization has good 

computational efficiency and is easy for characterization. With the spatial coefficients determined, 

the reconstructed spatiotemporal functions can be generated using U and V as Equation (2.16).  

Using the basic SPICE method, many encouraging preliminary results have been obtained, 

showing a good combination of resolution, imaging speed, and resulting SNR [34]–[36]. However, 

the scan time around 30 minutes is still not good enough to be clinically welcomed as a routine 

imaging method. Besides, additional scans are needed to acquired field map and anatomical images 

for data processing, which also take more scan time.  

 

2.6 Ultrahigh Field MR  

 
Figure 2.7: The timeline of development on the high field MR (1.5T - 7T) and ultrahigh field MR 

(≥7T). 

Normally, ultrahigh field MR is referred to as MR system with a field strength equal to or larger 

than 7 Tesla. The first 7T human MR system was established in 1999. Over the last 20 years, we 

have witnessed encouraging progress in the instrumentation improvement and overcoming 

technical challenges in ultrahigh field MR [37], [38]. In recent years, the ultrahigh field MR has 

received tremendous interest in both scientific research and clinical studies, especially after the 

manufacture 7T systems got Food and Drug Administration (FDA) approval. Both Siemens 
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Magnetom 7T Terra and GE SIGNA 7T have been approved for clinical use by the US FDA in 

2017 and 2020, respectively. To date there have been more than 80 operative human ultrahigh 

field MR scanners around the world and the number continues increasing. A timeline of the 

development of MR with different field strength is summarized in Figure 2.7.  

Compared with low field MR (< 1.5T) and high field MR (1.5T - 7T), ultrahigh field MR has 

several attractive advantages including enhancement of SNR and contrast-to-noise ratio (CNR) 

which enables higher spatial resolution; change of relaxation times (such as prolonged T1 and 

shortened T2) which leads to better imaging contrast in some specific imaging applications; and 

increased chemical shift dispersion especially benefitting separation of molecules in MR 

spectroscopy/spectroscopic imaging.  

➢ SNR: The most direct benefit of ultrahigh field is the increase of SNR. Given the relationship 

between thermal equilibrium spin polarization and field strength shown in Equation (2.3), 

ultrahigh field MR can provide a linear increase of signal intensity theoretically. In practice, 

the enhancement of SNR also depends on the coil setup, B1 transmission field, shape of the 

object, and effects of displacement currents. Based on the simulation study considering those 

practical factors, the SNR gain at 7T is still in the linear regime, approximately [95]. Therefore, 

compared with the widely used 3T MR system, 7T MR can provide more than twice SNR in 

general. This SNR improvement has been largely used to push higher spatial resolution, as 

demonstrated in a variety of MR imaging techniques, such as anatomical MRI, fMRI and 

MRSI.  

➢ Relaxation times: Relaxation times of molecules change with field strength. Generally, as field 

strength increases, T1 values increase significantly, T2 values decrease slightly, while T2* 

values decrease almost linearly. Taking the water of gray matter as an example, from 3T to 7T, 

T1 value increases from around 900 ms to 1800 ms, T2 value slightly decreases from 80 to 65 

ms, and T2* value decreases from around 64 ms to only 35 ms. These changes of relaxation 

times can provide better imaging contrast in some imaging techniques. For example, due to the 

decrease of T2* value (which is the result of increased susceptibility effects), ultrahigh field 

MR has shown improved imaging of brain vascular structures using susceptibility weighted 

imaging.  

➢ Chemical shift dispersion: Based on Equation (2.9), the chemical shift dispersion increases 

linearly with field strength, which provides better frequency separation between different 
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molecules. Especially for 1H-MRSI, the spectra are quite crowded with the frequencies of more 

than ten molecules spreading within a range of 4 ppm. With increased chemical shift 

dispersion, it would be easier to overcome some of the challenging issues in MRSI, such as 

removal of water and lipid signals from metabolite signals and accurate robust spectral 

quantification.  

However, there is still a considerable number of technical challenges restricting the impact of 

ultrahigh field MR in practical use. These technical issues include more inhomogeneous B0 main 

field and B1 transmission field, quadratically increased specific absorption rate (SAR), and faster 

signal decay (due to shortened T2*) at ultrahigh field.  

➢ B0 inhomogeneity: The susceptibility effect is linearly dependent on the field strength, so the 

B0 field inhomogeneity greatly increases at ultrahigh field. The increased B0 inhomogeneity 

could lead to severe artifacts and signal distortion, especially in the regions with large 

susceptibility effects like the frontal areas near the sinuses. For some imaging techniques like 

echo-planar imaging (EPI) sensitive to B0 field inhomogeneity, ultrahigh field would cause 

significantly increased artifacts or geometric distortions.  

➢ B1 inhomogeneity: The relationship between wavelength and frequency is 𝜆 = 𝑣/𝑓. So with 

an increased field strength (thus resonance frequency), the wavelength of the RF pulse 

decreases significantly at ultrahigh field. More specifically, for excitation of 1H at its resonance 

frequency, the RF pulse wavelength is around 25 cm at 3T while it becomes around 12 cm at 

7T, smaller than the normal human head size. Therefore, the interference effects can cause 

severe excitation variations over the imaging volume, which could lead to noticeable spatial 

inhomogeneity on images. This inhomogeneity sometimes is difficult to be separated with real 

image contrast, thus it causes challenges in both qualitative and quantitative evaluation.  

➢ SAR: A simplified model of SAR calculation is 𝑆𝐴𝑅 = (𝜎𝐴2𝜔2𝐵1
2𝐷)/2𝜌, where 𝜎  is the 

electrical conductivity of tissue, 𝐴  the body size, 𝜔  the RF frequency, 𝐵1  the RF pulse 

amplitude, and 𝐷 the duty cycle. Therefore, given the same subject and the same RF pulse, 

SAR at 7T is more than 4 times than that at 3T. The increased SAR limits the usage of quite 

some sequences with high SAR values, such as turbo spin echo (TSE), inversion recovery (IR), 

adiabatic pulses and sequences with very short TR like fast low angle shot (FLASH).  

➢ Signal decay: As described above, T2* value decreases almost linearly with field strength 

increasing. The significantly faster signal decay means shorter acquisition window, degraded 
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SNR in late echoes, wider spectral linewidth for spectroscopic signals, and more serious signal 

dephasing and distortion. For acquisition sequences with a long TE, the SNR improvement 

brought by the increased field strength may be cancelled by the faster signal decay.  

In the past decades, many works and efforts have been made to overcome these technical 

challenges [96], [97]. Even though they have not been fully addressed, but given the significant 

amount of technical advances, some quite encouraging results have been achieved at 7T regarding 

better reveal of morphological details as well as improved imaging capability. For example, 

anatomical images at submillimeter resolution have been shown in a clinically feasible scan time 

[43]–[45], functional imaging with improved spatial accuracy and neural activity specificity has 

been demonstrated [41], [42], and some works have shown the improved resolution and robustness 

of metabolic imaging at ultrahigh field [47]–[49]. These results have shown the unique 

opportunities provided by ultrahigh field in improving imaging performance. This thesis research 

implements the SPICE method at ultrahigh field and utilizes its SNR benefits to further enhance 

the imaging capability for high-resolution metabolic imaging.  
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CHAPTER 3 – DATA ACQUISITION FOR HIGH-

RESOLUTION 1H-MRSI AT 3T 

In this chapter, we present a novel data acquisition scheme for fast high-resolution 1H-MRSI at 

3T, further extending based on the basic SPICE method. This data acquisition sequence is 

characterized by several unique features to increase imaging efficiency and to make SPICE a 

feasible technique for practical applications and clinical environments.  

3.1 Pulse Sequence   

As described in section 2.5, the basic SPICE sequence has produced very promising results as a 

proof-of-concept imaging tool. Aiming at being a clinically endorsed imaging technique, further 

improvements are needed in terms of imaging speed, SNR, and robustness. Figure 3.1 shows the 

sequence diagram of the proposed pulse acquisition scheme, equipped with several unique features 

to improve imaging capability in these aspects. These acquisition features include: (1) FID-based 

acquisition with ultrashort TE, (2) short TR, (3) no water/lipid suppression, (4) EPSI trajectories 

with a large echo-space, (5) blipped gradients for sparse sampling, and (6) motion navigators. This 

section will introduce these acquisitions features and their impacts on the imaging performance in 

detail.  

 

Figure 3.1: Pulse sequence diagram of the proposed data acquisition scheme. This sequence 

includes several unique features to enable fast high-resolution MRSI, which include: FID-based 

acquisition with ultrashort TE, short TR; no water/lipid suppression; EPSI trajectories with a large 

echo-space; embedded motion navigator for motion detection; and blipped gradients used for 

sparse sampling of (k, t)-space.   
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3.1.1 FID-based acquisition with ultrashort TE 

Typical MRSI methods use a spin echo or stimulation echo-based sequence for excitation and 

localization, such as PRESS, STEAM (stimulated echo acquisition mode), LASER (localization 

by adiabatic selective refocusing), and semi-LASER methods [14], [16]. These SE type of MRSI 

methods have several advantages including high-quality volume selection and good spectral 

quality. FID-based acquisition without any 180-degree refocusing pulses is another type of MRSI 

scheme which is typically used in 31P-MRSI and 13C-MRSI, given their very short T2 values. The 

comparison of FID-based MRSI and SE-based MRSI is discussed as follows.  

➢ Volume selection: PRESS, STEAM, LASER, and semi-LASER can specifically excite a 

spatial volume (with selective excitations in three dimensions) while basic SE sequences and 

FID sequences can only excite a slab (with selective excitation in only one dimension, usually 

in the slice dimension). Volume selection can help exclude signals from unwanted regions like 

the subcutaneous layer, but it may also exclude signals from some regions of interest like cortex 

near the edge of the brain. So, SE sequences and FID sequences can reverse full signals from 

in-plane, but they need to overcome the lipid contamination issue in other ways.  

➢ Chemical shift displacement (CSD): Different molecules have different chemical shifts, thus 

different resonance frequencies, so they would experience different excitation profiles given 

the same selective excitation, normally called CSD. This CSD issue is particularly problematic 

in single voxel spectroscopy (SVS) if using PRESS or STEAM. LASER and semi-LASER use 

adiabatic pulses, thus minimizing the CSD. SE sequences and FID sequences only have 

selective pulses in one dimension, so the effects of CSD can be minimized by wide bandwidth 

pulses or some oversampling.  

➢ TE: SE-based acquisitions usually include one or more refocusing pulses and their associated 

gradients after the excitation pulse, while FID-based acquisitions can acquire signals after 

excitation with very small decays for phase encoding gradients. So, SE-based acquisitions 

usually have a relatively long TE (> 20 ms), while FID-based acquisitions can have a very 

short TE (< 4 ms).  The benefit of long TE used in SE-based acquisitions is reduction of signals 

from both macromolecules and lipids, thus the metabolite signals are more clear and easier to 

quantify. But long TE causes a loss of SNR, and the FID-based acquisitions can minimize the 

signal loss due to TE and keep short T2 components like macromolecules and lipids.  
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➢ Energy deposition and B1 inhomogeneity: As mentioned above, SE-based acquisitions include 

one or more 180-degree refocusing pulses while FID-based acquisitions only use one 

excitation pulse with relatively a small flip angle. So the energy deposition or SAR of FID-

based sequences are much smaller than the SE-based sequences, especially at high field or 

ultrahigh field systems. Similarly, the use of 180-degree pulses also makes the SE sequences 

relatively more sensitive to B1 inhomogeneity compared with FID-based sequences. But it 

should be noted that the adiabatic pulses used in LASER and semi-LASER sequences can 

reduce the sensitivity to B1 inhomogeneity.  

In summary, SE-based sequences have the advantages of volume selection and clearer spectra, 

while FID-based acquisitions generally keep more signal components, have smaller CSD, smaller 

SAR, and are less sensitive to B1 inhomogeneity. Considering these factors, SNR efficiency (which 

is discussed in the next section), and capability of signal processing tools, an FID-based acquisition 

instead of the original SE-based acquisition, is used in the proposed acquisition sequence. The TE 

value of this sequence is kept as short as possible to preserve the SNR which is 1.6 ms in current 

implementation.  

3.1.2 Short TR for SNR efficiency and acquisition efficiency 

Typical SE-based sequences usually use a relatively long TR more than one second, while FID-

based sequences can use a very short TR as possible. Taking simple CSI as an example, if both SE 

sequences and FID sequences only sample temporal encodings of one specific k-space location in 

each TR, then their scan times are the numbers of spatial encodings multiplying their TR values. 

So given the same number of encodings, shorter TR means shorter scan time, thus higher 

acquisition efficiency. For example, in a CSI experiment with spatial encodings of 16×16×10, SE 

sequences with TR as 2 seconds would take 5,120 seconds, around 85 minutes, while FID 

sequences with TR as 200 ms only takes 8.5 minutes, which is a significant reduction. However, 

for MRSI, another major concern is the SNR. The SE sequences in the above example is sure to 

have much better SNR than the FID sequences given the long scan time. So SNR efficiency needs 

to be taken into account in sequence selection. Here we compare the SNR efficiencies of both FID 

sequences and single-echo SE sequence, changing with TR values. In both cases, perfect spoiling 

is assumed.  

In FID-based sequence (assuming excitation using the Ernst angle), when the magnetization 

reaches a steady state, the signal formulation at TE can be expressed as:   
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𝑆𝐹𝐼𝐷 =
𝑀0 sin 𝜃𝐸 (1 − 𝑒−𝑇𝑅/𝑇1)

(1 − cos 𝜃𝐸 𝑒−𝑇𝑅/𝑇1)
𝑒−𝑇𝐸/𝑇2

∗
, (3.1) 

where 𝜃𝐸  is the Ernst angle, which is the flip angle that maximizes the signals in Equation (3.1). 

The Ernst angle can be calculated as:  

𝜃𝐸 = arccos(𝑒−𝑇𝑅/𝑇1). (3.2) 

In SE-based sequence (assuming the excitation pulse is 90˚ and the refocusing pulse is 180˚), the 

signal intensity at TE is:    

𝑆𝑆𝐸 = 𝑀0(1 − 2𝑒−(𝑇𝑅−𝑇𝐸/2)/𝑇1 + 𝑒−𝑇𝑅/𝑇1)𝑒−𝑇𝐸/𝑇2
∗
. (3.3) 

The SNR efficiency is computed as:  

𝜂 =
𝑆

√𝑇𝑅
. (3.4) 

For comparison, a T1 value of 1400 ms, a T2 value of 260 ms, and a T2* value of 30 ms, are selected 

(representative as NAA at 3T). The TE values are selected as 4 ms and 30 ms for FID and SE 

sequences, respectively. Their SNR efficiencies with different TRs are plotted in Figure 3.2.   

 

Figure 3.2: SNR efficiency comparison between FID and SE sequences, with different TR values.  
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We can see that in this simple setup (other factors like number of encodings, bandwidth, etc. are 

not included), FID sequences with a short TR have better SNR efficiency than SE sequences. 

Additionally, when TR is in a short range (100 ms to 300 ms), the SNR efficiency shows little 

difference. Therefore, based on the acquisition efficiency and SNR efficiency, the TR used in the 

FID sequence used in this research is as short as 160 ms.  

3.1.3 Elimination of water/lipid suppression 

The signal intensity of water and lipid signals are usually several orders of magnitude higher than 

that of metabolite signals in the brain, so water and lipid suppression are almost necessary in the 

traditional MRSI methods. The water signals and metabolite signals have different resonance 

frequencies, so typically frequency selective pulses are used to excite and then spoil the water 

signals, such as CHESS (chemical shift selective), WET, and VAPOR (variable pulse power and 

optimized relaxation delays). The basic SPICE sequence uses a three-pulse WET for water 

suppression. The lipid signals are mainly from the subcutaneous layer, leaking into the brain due 

to the limited spatial encodings. One method to suppress the lipid signals are using spatial selective 

pulses like OVS to excite and spoil the signals in the subcutaneous layer, as described in the basic 

SPICE acquisition sequence. Another method is to use inversion recovery pulses to null the lipid 

signals by selecting specific inversion times. However, all these suppression methods will prolong 

the TR, thus total scan time since multiple pulses and gradients are needed to be added prior to 

excitation. Moreover, methods like inversion recovery also affect the signals of metabolites. 

Therefore, in the proposed acquisition sequence, no water suppression and lipid suppression pulses 

are used, the removal of water and lipid signals is performed using signal processing methods 

instead.  

Elimination of these suppression pulses have several advantages. First, without these pulses, 

TR values can be pushed much shorter, as the 160 ms used. So, the acquisition efficiency is further 

improved. Second, removing of these pulses can significantly reduce the energy deposition, which 

is especially useful at high field and ultrahigh field given the short TR. Third, it can keep the 

metabolite signals unaffected from the suppression pulses like OVS or inversion recovery. Fourth, 

the unsuppressed water signals can be utilized to provide a lot of useful information such as 

structural information, sensitivity map, field map, etc. This information from the water signals can 

be used to facilitate reconstruction, correct system imperfection, and provide water imaging of 

multiple modalities.   
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3.1.4 EPSI trajectories with a large echo-space 

As introduced in section 2.5, SPICE uses EPSI trajectories to provide fast simultaneous spatial and 

temporal encodings. The echo-space of the EPSI trajectory is determined by:  

𝜏𝐸𝑃𝑆𝐼 = 2 × (2 × 𝜏𝑟𝑎𝑚𝑝 + 𝑁𝑟𝑒𝑎𝑑 × 𝑡𝑟𝑒𝑎𝑑), (3.5) 

where 𝜏𝑟𝑎𝑚𝑝  is the ramp time of readout gradient, 𝑡𝑟𝑒𝑎𝑑  the readout dwell time, which is 

determined by the readout bandwidth, and 𝑁𝑟𝑒𝑎𝑑 the number of readout points, which determines 

the spatial resolution in readout direction. In traditional EPSI methods, the echo-space is limited 

by the spectral bandwidth, thus the number of readout points and the readout spatial resolution are 

very limited. Enabled by the subspace modeling, the echo-space of SPICE sequence do not 

necessarily satisfy the Nyquist sampling rate, so a large echo-space can be used to achieve high 

readout resolution, as illustrated in Figure 3.3. More specifically, in the proposed sequence, the 

number of readout points is 110, plus ramp sampling points of 24 (the effective total number of 

readout points is 126), resulting an echo-space of 1.76 ms (equivalent to 568.2 Hz). With an FOV 

of 240 mm in readout direction, the readout resolution is around 2.0 mm, which is significantly 

higher than the typical EPSI methods.   

 

Figure 3.3: Comparison of EPSI trajectories in (kx, t)-space of traditional EPSI method and SPICE 

method.   

The basic SPICE method acquires two sets of data, with D1 for subspace estimation and D2 for 

image reconstruction. In the proposed sequence, D1 acquisition is no longer needed since the 

subspace structures can be estimated and learned from a set of training data. Furthermore, in 

acquisition of the metabolite signals, no blipped gradients are used for spatial encodings, as the 

typical EPSI methods. This means that only one kx line is covered in each TR, including all the 

temporal encodings of that kx line. Both ky and kz dimensions are encoded using different TRs 
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with different phase encoding gradients. Removal of the D1 acquisition further reduces the scan 

time, and the modification on D2 acquisition improves the (k, t)-space coverage, avoids the 

inconsistency issue between multiple echo shifts, and makes it more flexible for sparse sampling 

of peripheral (k, t)-space, as introduced in the next section.  

3.1.5 Blipped gradients for sparse sampling 

The proposed sequence does not suppress water signals, so the simultaneously acquired water 

signals can be used for water imaging like QSM [89]. If no extension is applied, the resolution of 

water signals is the same as the metabolite signals, which is around two to three mm. This 

resolution is high for metabolite signals but not enough for water signals to capture some fine 

structures in the brain. As a reference, typical structural imaging techniques used in routine clinical 

scans have resolutions around one mm. To increase the spatial resolution, one alternative approach 

is to increase the number of spatial encodings by adding more TRs with higher phase encoding 

gradients, but this will significantly increase the scan time. For example, to increase the resolution 

from three mm to one mm in two phase encoding directions, the number of TR will increase to 

nine times, thus the total scan time will be nine times, which is not practically acceptable. To 

address this issue, we use blipped gradients in the proposed sequence. As described in the basic 

SPICE sequence, using blipped gradients can enable multiple spatial encodings in one FID process, 

which is equivalent to utilizing temporal encodings for spatial encodings. More specifically, 

without blipped gradients, only one (ky, kz) location is encoded in one TR, but the t direction is 

fully sampled; with blipped gradients, multiple (ky, kz) locations can be encoded in one TR, but t 

direction of these points are under-sampled. Different from the original SPICE method where echo 

shifts are used to compensate the temporal encodings, the proposed method leaves the missing (k, 

t)-space data empty and uses a reconstruction method to recover the missing measurements. A 

uniform under-sampling is also used in the phase encoding directions, which can be recovered 

using typical parallel imaging techniques. With these sparse sampling strategies, the acquisition 

for high-resolution signals is significantly accelerated. But given the limited SNR of metabolite 

signals and the highly sparse measurements, this extended acquisition is only for water signals but 

not metabolite signals. The detailed design of (k, t)-space sampling pattern is discussed in section 

3.2.  
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3.1.6 Linear motion navigators 

As shown in Figure 3.1, a set of linear motion navigators is included at the end of each TR. The 

navigator set includes three readouts in the k-space center of three orthogonal directions (kx, ky, 

kz). With these navigators in each TR, the proposed sequence is able to detect translational motion 

of the subject with a temporal resolution of a TR (160 ms). More specifically, the signals acquired 

by each of the three navigators can be regarded as a projection of the object in the axis (x, y, z). 

This can be easily understood from the central slice theorem, which states that the Fourier 

transformation of a projection at a specific angle is equal to the line in Fourier space at the same 

angle. Therefore, any translational head movement in these three directions can be detected and 

estimated from these three projections. Since each TR has one set of such navigators, the proposed 

sequence can identify the TRs corrupted by head motion and the corresponding data, which 

provides a lot of flexibility in retrospective motion correction.  

It should be noted that this design of navigators minimizes affecting on the original sequence, 

without prolonging TE or lengthening the scan time. There are many other more sophisticated 

motion navigators for MRSI which can provide more accurate motion estimation like including 

estimation of rotation motion [98]–[103], but most of these methods require additional equipment 

or additional acquisition time for collecting enough signals. Comparing with these methods, the 

implementation in the proposed method is relatively simple but efficient. It should also be noted 

that the signals at the end of the TR still have enough SNR for motion estimation, which is also 

one of the benefits of removing water suppression in acquisition.  

In summary, the proposed pulse sequence has several unique acquisition features including: 

(1) FID-based acquisition with ultrashort TE, (2) short TR, (3) no water/lipid suppression, (4) EPSI 

trajectories with a large echo-space, (5) blipped gradients for sparse sampling, and (6) motion 

navigators. These acquisition features improve the pulse sequence over the basic SPICE sequence 

in terms of efficiency, energy deposition, resolution, and robustness. The following section will 

describe the design of sampling pattern in (k, t)-space for further acceleration and resolution 

enhancement.  

 

3.2 Sparse Sampling of (k, t)-Space 

The proposed sequence can simultaneously acquire the spectroscopic signals of water, lipid, and 

metabolites in (k, t)-space. So its sampling in (k, t)-space not only needs to take into account the 
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desired spatial resolution, spectral bandwidth, and total scan time, but most importantly, the largely 

different characteristics of different signals. The concentration of metabolites in human brains is 

several orders of magnitude lower than that of water and lipids, so the most limiting factor for 

metabolic imaging is its SNR. Given the limited SNR, it is challenging to push high-resolution and 

acceleration beyond what the SNR can support. On the contrary, signals from water and lipids 

have sufficient SNR, especially in spectroscopic imaging, so higher resolution and acceleration is 

much more feasible. Besides, the metabolite spectra contain signals from multiple molecules like 

NAA, Cr, Cho, Ins, Glu, etc. and these signals spread over a narrow frequency range around three 

ppm, so some of the metabolite signals are largely overlapped with each other, while the water 

signals have only a single resonance peak in ideal conditions. Therefore, typically, more temporal 

encodings are needed for metabolite signals to separate signals from different molecules while 

fewer temporal encodings are needed for water signals.  

Considering these factors, the sampling pattern of the proposed sequence in (k, t)-space is 

designed as shown in Figure 3.4. As can be seen, this (k, t)-space is sampled in two regions with 

variable density. First, the central (k, t)-space region is fully sampled both spatially and temporally. 

It means the EPSI trajectory in one TR only samples the (kx, t)-space of one single (ky, kz) point. 

The (ky, kz) space in this region is covered using different TRs with different phase encoding 

gradients. This full sampling in this region is to preserve enough SNR and sufficient temporal 

encodings for metabolite signals. The peripheral (k, t)-space is highly sparsely sampled using 

blipped gradients, as mentioned in section 3.1.5. The ky direction is under-sampled by a factor of 

3 and the (kz, t)-space is under-sampled by a factor of 12. The sampling of (kz, t)-space follows 

the spatiotemporal CAIPIRINHA (Controlled Aliasing in Parallel Imaging Results in Higher 

Acceleration) pattern [104], [105], which encodes different kz with in adjacent temporal points. 

More specifically, in a (kz, t)-block, assuming point (kz0, t0) is sampled at t0, then point 

(kz0+2Δkz, t0+Δt) will be sampled at the next temporal point (t0+Δt). When the kz encoding 

points hit the boundary of the (kz, t)-block, then the gradient blip step would change the polarity, 

becoming -2Δkz. So the sampling trajectories are in “zig-zag” shape in (kz, t)-space. If the 

temporal dimension is collapsed, which means all the (kz, t) points are used to fill its corresponding 

kz only, then there would be no under-sampling in kz direction. The CAIPIRINHA pattern has 

been proven to facilitate improved parallel imaging reconstruction, reducing noise and aliasing, 

thus it is widely employed in the sparse sampling design [104], [105]. Specially, the (kz, t)-space 
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CAIPIRINHA trajectories simultaneously encode both spatial and spectral information in each 

FID process, exploiting the spatiospectral correlation of MRSI data, thus enabling high sparsity 

level.  

 

Figure 3.4: Sampling pattern of the proposed method in (k, t)-space. Entire (k, t)-space is sampled 

in two regions with variable density. The central region is fully sampled with typical EPSI 

trajectories, while the outer region is sparsely sampled both spatially (with a factor of 3 in ky) and 

temporally (with a factor of 12 in kz-t space) for water and lipid signals.  

With this sampling pattern, metabolite signals are reconstructed only using the central region 

of (k, t)-space given its SNR and temporal encoding numbers. The unsuppressed water signals in 

this region can also be utilized to estimate the sensitivity profile of the acquisition coils and 

generate a B0 field inhomogeneity map for field correction in post-processing. The water and lipid 

signals are reconstructed using the entire (k, t)-space, which has a large k-space coverage in ky 

and kz directions for higher resolution. The large acceleration factor in this outer region minimizes 

the additional scan time used for high-resolution. The high-resolution of water and lipid signals 

bring several benefits. First, the high-resolution water image and derived parameter maps like 

QSM can reveal more detailed brain structures like veins compared with low-resolution as the 

central region. This extended high-resolution can make the water imaging results comparable to 

typical structural imaging sequences. Second, the high-resolution of lipid signals can significantly 

reduce the leakage of lipid signals from the subcutaneous layers into the brain, i.e., mitigating the 
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lipid contamination issue. Third, the high-resolution water signals can provide a high-resolution 

B0 field map which is useful to correct intra-voxel field inhomogeneity effects.  

In current implementation of this sequence to cover an FOV of 240×240×72 mm3, the entire 

(k, t)-space contains 124×216×72×144 encodings, which is corresponding to a nominal spatial 

resolution of 2.0×1.0×1.0 mm3 for both water and lipid signals. The central k-space region contains 

only 124×78×24 spatial encodings, which is corresponding to a nominal spatial resolution of 

2.0×3.0×3.0 mm3 for metabolite signals. Given the current sparse sampling as described above 

(Ry = 3, Rzt = 12 in outer region), the overall acceleration factor is 6.9 for water and lipid signals.  

 

3.3 Embedding Navigators 

Besides the B0/B1 inhomogeneity, there are still a few system imperfections that can cause artifacts 

or degradation of data quality, such as B0 field drift, head motion, eddy current effects between 

odd and even EPSI echoes. As mentioned above, the B0/B1 inhomogeneity can be corrected using 

the companion high-resolution water signals. To overcome the other system imperfections, we 

incorporate a few navigator-type of acquisitions in the sequence to collect additional useful 

information. This section describes two sets of navigator signals used in the proposed sequence in 

detail. One is a navigator to detect field drift and the other one is a bipolar navigator to correct 

eddy current effects in EPSI echo pairs.  

3.3.1 Field drift navigators 

In the MR scans with heavy gradient usage, such as diffusion imaging and functional imaging, the 

power deposition of RF pulses can warm up multiple scanner components and lead to a frequency 

drift of the B0 field. Typically, the frequency drift could be from a few Hz to tens of Hz in a ten-

minute scan, depending on the scanner hardware and pulse sequence. In MRSI experiments, this 

time-dependent frequency shift would cause violation of the assumption that the spatiotemporal 

functions of imaging objects keep unchanged during the scan period. So, with these gradient-

induced frequency shifts, the resulting MRSI data is the integration of a time-changing imaging 

function, which can cause signal distortion and (k, t)-space misalignment. An accurate estimation 

of the frequency drift along time is needed to correct the effects. Therefore, navigator signals are 

embedded in the proposed acquisition sequence to track the drift frequency.  
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The pulse sequence diagram is shown in Figure 3.5, including two sets of acquisition, one is a 

short acquisition of FID signals and the other one includes multiple pairs of linear navigators. More 

specifically, after RF excitation, no phase encoding gradients are applied, so the FID signals are 

formed on the k-space center then a 10 ms window of the FID signals are collected. This set of 

short FID signals can be used to estimate the overall (zero-order) frequency. Following the short 

acquisition for field drift, a couple of paired linear navigators are added as those at the end of each 

TR in SPICE acquisition. These multiple pairs of linear navigators can be used to estimate high-

order overall frequency. This set of navigator acquisition is embedded and repeated every 60 TRs 

in the SPICE acquisition. This means the navigator signals are collected every 10 seconds in the 

scan, so they can track the frequency changes along the time. Then the measured drift frequency 

values can be utilized in processing to correct the effect of field drift retrospectively.  

 

Figure 3.5: Sequence diagram for field drift acquisition. A short FID is acquired after the excitation 

for tracking field drift, multiple pairs of linear navigators are used for higher order field drift 

detection.  

 

3.3.2 EPSI bipolar navigators 

As shown in Figure 3.1, the proposed sequence uses a bipolar EPSI readout. Different from 

unipolar or flyback EPSI readout, which only collects data at odd echoes or even echoes and uses 

large gradients in the other one, bipolar EPSI trajectories use balanced gradients and collect data 

at both odd and even echoes. Bipolar EPSI readout collects more data given no dead time for flying 

back, thus has better efficiency than unipolar EPSI readout. However, as mentioned in section 2.3, 
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bipolar EPSI trajectories are much more sensitive to the eddy current effects, which causes 

observable inconsistency between the odd and even readouts. As a simplified model for 

understanding, eddy current is generated by gradient switch, and it causes a change on gradient 

amplitude, thus a change on actual gradient moment. The effect of gradient moment changes can 

be simplified as a shift on k-space. In bipolar EPSI trajectories, eddy currents at the beginning of 

both positive and negative gradients induce k-space shifts, but the shifts are in opposite directions. 

Therefore, the eddy current causes data inconsistency between the odd and even echoes of EPSI 

data. Without correction, there will be significant ghost in the resulting spectrum due to the 

inconsistency. As discussed above, in a simplified model, this eddy current effect can be viewed 

as a k-space shift and a phase offset in the readout. The k-space shift and phase offset are further 

assumed to be not phase encoding dependent, thus only global estimation of k-space shift and 

phase offset is needed for a zero-order correction.  

 

Figure 3.6: Sequence diagram for bipolar navigator acquisition. The EPSI readouts with opposite 

polarities are acquired in a pair of TRs at the end of the proposed sequence.  

Therefore, a set of navigator signals is collected in the proposed sequence, as shown in Figure 

3.6. Two TRs with EPSI trajectories are collected at the end of SPICE scan. In both TRs, no 

additional phase encoding gradients are applied after excitation, so the signals are formed in the 

(ky, kz)-center. The EPSI readouts in two TRs are of opposite polarities, so combining two TRs 

can form one echo chain only containing positive echoes and one only containing negative echoes. 

It is assumed that there is no eddy current-induced inconsistency in these two echo chains since 
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the eddy current causes the same effects among positive echoes or among negative echoes. 

Therefore, comparing the composite echo chains with acquired echo chains can estimate the global 

k-space shift and phase offset between positive echoes and negative echoes, and they can be used 

to correct the bipolar inconsistency in the MRSI data.  

 

3.4 Implementation for Experimental Studies 

In current implementation for experimental studies at 3T, the sequence parameters are summarized 

as follows: FOV = 240×240×72 mm3, resolution of metabolites = 2.0×3.0×3.0 mm3 (matrix size = 

124×78×24), resolution of water and lipids = 2.0×1.0×1.0 mm3 (matrix size = 124×216×72), TR 

= 160 ms, TE = 1.6 ms, echo-space = 1.76 ms, echo number = 74×2, readout bandwidth = 167 

kHz, flip angle = 27˚ (Ernst angle), total scan time is eight minutes. In practical experiments, two 

OVS bands are added on the top and bottom of FOV to suppress aliasing signals from outside. 

Additionally, a manual shimming is performed by experienced operators to provide a good 

shimming condition.   

Besides the SPICE sequence, the overall scan protocol also includes one Localizer scan and 

one typical MPRAGE scan (FOV = 256 mm, matrix size = 256×256×192, resolution = 1.0×1.0×1.0 

mm3, TR = 2400 ms, TE = 2.13 ms, TI (inversion time) = 1100 ms, 192 slices, scan time = 4:40 

min). MPRAGE scan provides the anatomical information for the setup of field of view and 

segmentation for further signal processing tasks (such as nuisance signal removal and regional 

analysis).  

The resulting imaging capability of the proposed pulse sequence provides a significant 

improvement over traditional MRSI methods. To cover the same FOV and achieve the same spatial 

resolution for metabolite mapping, CSI-based sequences (spin-echo based, assuming TR as one 

second) would take 124×78×24×1 = 232128 seconds = 64.48 hours; EPSI-based sequence (spin-

echo based, assuming TR as 1 second, and three echo-shifts are needed) would take 78×24×1×3 = 

5616 seconds = 93.6 minutes; the basic SPICE method (spin-echo based, assuming TR as 1 second, 

and no echo-shift is needed) would take 78×24×1 = 1872 seconds = 31.2 minutes, but the proposed 

method only takes eight minutes, which is within the range of clinically acceptable scan time. 

Besides the imaging efficiency, the proposed method also has very unique capability to provide 

high-resolution water-based imaging and correct system imperfections like field variation induced 
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effects using the unsuppressed water signals. These special features make the proposed sequence 

easier to be carried out in practice.  

 

3.5 Summary 

A special data acquisition scheme is developed to significantly enhance the imaging capability of 

basic SPICE sequence. Combining efficient excitation, fast trajectories, sparse sampling strategies, 

and special navigator signals, the pulse sequence can successfully achieve rapid, high-resolution, 

robust MRSI in an 8-minute scan.  
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CHAPTER 4 – DATA ACQUISITION FOR WHOLE 

BRAIN 1H-MRSI AT 7T 

Ultrahigh field MR provides unique opportunities for MRSI to further enhance the imaging 

capability. In this chapter, we describe a new data acquisition scheme at ultrahigh field (7T) 

building on the proposed sequence at 3T as presented in Chapter 3. This new sequence utilizes the 

power of ultrahigh field and is designed with several special features to achieve whole-brain MRSI 

without increasing the scan time.  

4.1 Pulse Sequence   

The potential of using ultrahigh field systems for MRSI has long been recognized. The most 

striking and direct benefit of ultrahigh field is the enhanced SNR. Some comprehensive studies 

have shown that the SNR increases linearly to superlinearly with field strength in practical 

environment [95]. Since the most fundamental challenge of MRSI methods is low SNR, this 

enhancement of SNR brought by ultrahigh field is very beneficial for MRSI. This SNR benefit can 

lead to higher spatial resolution, shorter scan time, and more robust quantification results. In 

addition, the chemical shift dispersion also increases linearly with field strength, as shown in 

Equation (2.9). This increased chemical shift dispersion makes the peaks of different molecules 

more separated with each other on the spectra, which is especially beneficial for 1H-MRSI whose 

spectra are rather crowded.  

However, the increased magnetic field also poses several technical challenges on the MRSI 

development. First, it is well-known that stronger B1 field inhomogeneity is present at ultrahigh 

field. For MRSI, B1 field inhomogeneity not only causes spatial excitation inhomogeneity, but also 

makes it more difficult to suppress the water signals, which is required by most typical MRSI 

methods. Second, ultrahigh field also brings stronger B0 field inhomogeneity, which can cause 

severe signals distortion and cancellation in MRSI. The effects of B0 field inhomogeneity are 

especially large when the spatial resolution is low on the order of centimeters, which is often the 

case in conventional MRSI methods. Third, the energy deposition (measured by SAR) increases 

as the square of the field strength. Therefore, at ultrahigh field, the use of high SAR pulses like 

adiabatic pulses and 180 refocusing pulses are limited for MRSI. If these pulses are used, it may 

require a quite long TR, leading to a long total scan time. Fourth, the signal decay rate (measured 

by T2*) decreases almost linearly with increased field strength, thus the conventional long-TE 
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MRSI would suffer from significant SNR loss due to this faster decay. Fifth, the increased spectral 

bandwidth at ultrahigh field also makes it difficult to satisfy the Nyquist sampling rate when using 

fast spatiospectral trajectories like EPSI trajectories, which has limited the use of fast trajectories 

at ultrahigh field.  

Given these benefits and challenges of ultrahigh field, this thesis research further develops the 

SPICE method at 7T to achieve whole brain covered MRSI. First, whole brain MRSI is desired in 

neurological studies, especially combining with functional imaging and anatomical imaging, 

which usually require whole brain coverage. Second, increasing brain coverage requires an 

increased number of encodings, thus increased scan time. Traditional acceleration methods by 

sparse sampling would sacrifice SNR, and it can be compensated by the SNR improvement 

brought by ultrahigh field. Therefore, the enhanced SNR is utilized to further increase imaging 

volume of the SPICE method.  

The proposed pulse sequence at 7T is built on the SPICE sequence described in Chapter 3 for 

3T, and extended with a few special features, as shown in Figure 4.1. This sequence keeps some 

basic features of the 3T SPICE sequence, which are already very suitable for MRSI at ultrahigh 

field, such as FID-based acquisition; ultrashort TE; short TR; no water suppression; and embedded 

navigators. As discussed in Chapter 3, FID-based acquisition has higher SNR efficiency than 

traditional SE-based acquisition, and it has much lower energy deposition given the low flip angle 

and no 180-degree refocusing pulses. Lower energy deposition is desirable at 7T since the SAR at 

7T is more than 4 times of the SAR at 3T given the same pulses. SE-based sequences, especially 

those where multiple 180-degree pulses are used, such as PRESS and LESER, are subject to the 

tight SAR limitation at 7T, thus typically a longer TR is needed. Additionally, FID-based 

acquisition has relatively higher insensitivity to the B1 inhomogeneity, which is also a good 

characteristic at 7T. Ultrashort-TE (1.6 ms) can minimize the signal loss given the faster T2* decay 

and shorter TR is preferred since signals would become very noisy at the end of TR. Removal of 

water suppression and lipid suppression is also essential, since it not only reduces SAR and enables 

short TR, but also provide water signals for correction of various system imperfections such as B0 

and B1 inhomogeneities. Given the increased system imperfections and severer discomfort of 

subjects when lying in the 7T scanners, head motion would become a more challenging issue at 

7T. So the motion navigators embedded in each TR are more necessarily needed for sequence 

robustness.  
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Figure 4.1: Pulse sequence diagram of the proposed data acquisition sequence at 7T. This sequence 

keeps basic features of the 3T SPICE sequence, including FID-based acquisition; EPSI trajectories; 

no water suppression; embedded motion navigator; and blipped gradients for sparse sampling. 

Additionally, this sequence changes the readout direction on the slice direction, which makes it 

more suitable for whole brain imaging.    

Even though the proposed SPICE sequence at 3T has these features good for 7T, there are still 

a few technical issues if it was directly used for whole brain MRSI at 7T. First, using increased 

number of phase encodings to keep the spatial resolution while increasing imaging volume is very 

time-consuming. Specifically, if the FOV in slice direction is increased from 72 mm to 144 mm, 

then the number of encodings would be double, thus the imaging time will be twice as the sequence 

at 3T, which is more than 15 minutes. Second, larger spectral bandwidth is needed at 7T. For 

example, to cover the whole spectral range from 0 to 4.7 ppm, and assuming center frequency is 

on water (4.7 ppm), then the bandwidth needed at 3T is around 1200 Hz, and it becomes 2800 Hz 

at 7T. As discussed in Chapter 3, EPSI trajectories have a trade-off between the readout resolution 

and spectral bandwidth (echo-spacing), so the spatial resolution will be significantly reduced if we 

are to match the spectral bandwidth requirement at 7T. Third, even though SPICE sequence is a 

SAR efficient sequence with low flip angles, the saturation pulses used in OVS bands are spatial 

selective pulses with high SAR. These pulses can easily exceed SAR limitation at 7T but removing 

these pulses will introduce aliased signals from outside of the brain. To address these issues, the 

proposed sequence at 7T has two special acquisition features extending on the SPICE sequence at 

3T, which include slice-direction readout and sparser sampling of (k, t)-space. The second feature 

will be described in the next section.  
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As shown in Figure 4.1, the EPSI readout gradients are placed in the slice direction (z-

direction) instead of the typical x-direction. This change of readout direction has several 

advantages for whole brain MRSI at 7T. First, the number of encodings in slice direction is 

relatively smaller than the in-plane encodings, so better tradeoff can be achieved between 

resolution and echo-space. More specifically, the in-plane FOV is usually more than 200 mm (240 

mm in the setup of the proposed method), and the excitation slab thickness is usually less than 200 

mm even for whole brain imaging (150 mm in the setup of the presented method). To achieve the 

same spatial resolutions, e.g., around three mm, the number of encodings for in-plane directions is 

80 while it is only 50 for slice direction. With fewer number of encodings, smaller echo-space thus 

wider spectral bandwidth can be achieved using EPSI trajectories. Furthermore, when ramp 

samplings are utilized, the echo-space can be further reduced. In the current implementation, 25 

encodings are acquired at the flat top of readout gradients and 33 encodings are acquired at the 

ramp time (which is equivalent to 22 effective encodings), thus the resulting readout resolution is 

around 3.1 mm, and the echo space is 0.9 ms. Second, no additional oversampling in phase 

encodings or OVS are needed due to the readout oversampling. As mentioned in Chapter 3, in the 

sequence at 3T, two OVS bands are used to avoid the signals outsides the top and bottom of the 

FOV aliasing into the brain. Another strategy is also used to reduce the aliasing signals from the 

slice direction, which adds oversampling between the excitation slab and FOV. The sequence at 

3T has 10% oversampling at both sides in the slice direction, so the excitation slab is 60 mm given 

the 72 mm FOV in slice direction. When changing the readout direction into the slice direction, 

the intrinsic readout oversampling (a factor of two) will make the acquisition FOV double, as 

150×2 = 300 mm in slice direction. Therefore, no additional oversampling and OVS bands are 

needed any more, which also resolves the SAR issue caused by OVS bands at 7T. Third, this 

change puts the phase encodings in the in-plane directions (x and y directions), which are more 

efficient to utilize sensitivity profiles for parallel imaging. This can be elaborated in two aspects. 

On the one hand, in the in-plane directions, the number of encodings is usually more than that in 

the slice direction, so the truncation effects due to limited encodings will be less for parallel 

imaging. On the other hand, based on the design of modern head coils, more channels are usually 

distributed in the in-plane directions than slice direction, thus the sensitivity encoding efficiency 

is higher in in-place directions. Therefore, this feature can enable higher acceleration factors in 
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sampling (k, t)-space for reduction in scan time. More details on the sparse sampling of (k, t)-space 

are described in the following section.  

 

4.2 Sparse Sampling of (k, t)-Space 

Figure 4.2 shows the sparse sampling pattern of (k, t)-space in the proposed sequence at 7T. Similar 

to the discussion in section 3.2, the design of sampling is based on the consideration of largely 

different characteristics of water, lipid, and metabolite signals. The sampling of entire (k, t)-space 

is divided into three regions with variable density. More specifically, the central (k, t)-space region 

is fully sampled both spatially and temporally. The middle region is under-sampled by a factor of 

four spatially and fully sampled temporally. The under-sampling in this region follows the spatial 

CAIPIRINHA pattern, with an acceleration factor of two in each phase-encoding direction and a 

location shift in every second column. The outer region is sampled more sparsely with acceleration 

factors of two in each spatial direction and a factor of 20 sub-sampling temporally, which is 

achieved using spatiotemporal CAIPIRINHA sampling in (kx, t)-space. Moreover, the spatial 

sampling pattern also follows the spatial CAIPIRINHA pattern as the middle region.  

 

Figure 4.2: Sampling pattern of the proposed method in (k, t)-space. Entire (k, t)-space is sampled 

in three regions with variable density. The central region is fully sampled, while the middle region 

is spatially under-sampled by a factor of two in each direction. The outer region is sparsely sampled 

both spatially (a factor of four) and temporally (a factor of 20) for water and lipid signals.  
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Compared with the sparse sampling in the sequence at 3T, the sparse sampling at 7T adds a 

middle region with a moderate acceleration factor as four. Both the middle region and central 

region are used for metabolite signals while the sparse outer region is only for water and lipid 

signals. The under-sampling of the middle region is to reduce the scan time for metabolite signals. 

If the middle region is spatially fully sampled as the central region, then the total scan time would 

be much longer (e.g., more than 15 minutes). To preserve the SNR for metabolite signals, the 

acceleration in middle region is not high, just as two in each direction. And the SNR loss in this 

region can be compensated by the SNR enhancement brought by ultrahigh field. Moreover, no 

temporal under-sampling is applied, so the under-sampling in this region can be easily recovered 

by typical parallel imaging echo-by-echo, which does not disturb the temporal signals. It should 

also be noted that the under-sampling in two spatial directions is made workable by changing the 

readout into the slice direction, as described in section 4.1. The employment of CAIPIRINHA 

pattern in (kx, ky)-plane provides further improvement in reconstruction regarding to reduced 

aliasing and reduced noise amplification.  

The sampling of central region is very similar to the sequence at 3T, which is to gain adequate 

SNR and provide estimates of spatial sensitivity profiles, field inhomogeneity maps, and data 

adaptive subspaces. The sampling of the outer region extends the sequence at 3T by adding under-

sampling in the “blipped direction”. More specifically, the sequence at 3T has under-sampling in 

only one spatial direction if the temporal encodings are collapsed for spatial encodings, but this 

sequence at 7T has under-sampling in both spatial directions, and it also follows a CAIPIRINHA 

pattern. So, the overall acceleration factor in the outer region is higher than that in the sequence at 

3T, and the sparse sampling in this region can also be overcome combining both parallel imaging 

and subspace modeling.  

In current implementation, the entire (k, t)-space contains 120×120×58×280 encodings, with 

the central k-space region containing 32×32×58 spatial encodings, and the middle region 

80×80×58 spatial encodings. Given the current sparse sampling as described above (Rx = Ry = 2 

in middle region, Rx = Ry = 2, Rt = 20 in outer region), the overall acceleration factors would be 

21 for water and lipid signals and 2.7 for metabolite signals. This level of sparsity makes the fast, 

high resolution, whole brain MRSI achievable in practice. In this implementation, the spatial 

resolution of water/lipid signals is not pushed high as the sequence at 3T, to nearly one mm. This 

is due to the consideration on computation load, since the data around one mm resolution will be 
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too large to be processed on our current computational platform, but there is no acquisition 

limitation to push higher resolution.  

 

4.3 Implementation for Experimental Studies 

In current implementation of this sequence at 7T, the parameters are summarized as follows: FOV 

= 240×240×150 mm3, resolution of metabolites = 3.0×3.0×3.2 mm3 (matrix size = 80×80×58), 

resolution of water and lipids = 2.0×2.0×3.2 mm3 (matrix size = 120×120×58), TR = 150 ms, TE 

= 1.6 ms, echo-space = 0.9 ms, echo number = 140×2, readout bandwidth = 167 kHz, flip angle = 

26˚ (Ernst angle), total scan time is eight minutes. Compared with the sequence at 3T, this sequence 

at 7T does not include OVS bands, so the TR is shortened to 150 ms for reducing scan time. Manual 

shimming is still required in operation and typical scans including Localizer and MP2RAGE (FOV 

= 256 mm, matrix size = 256×256×256, resolution = 1.0×1.0×1.0 mm3, TR = 4400 ms, TE = 2.17 

ms, echo-space = 6.8 ms, flip angle-1 = 4˚, flip angle-2 = 5˚, TI-1= 750 ms, TI-2 = 2950 ms; 256 

slices, scan time = 8:02 min) are also included in the experiments.  

To achieve the same spatial resolution with the same FOV for metabolite mapping, the 

proposed acquisition sequence has a significantly improved acquisition efficiency. More 

specifically, spin-echo CSI-based sequences (assuming TR as one second) would take 

80×80×58×1 = 371200 seconds = 103.11 hours; spin-echo EPSI-based sequence (assuming TR as 

one second, and four echo-shifts are needed) would take 80×58×1×4 = 18560 seconds = 5.15 

hours; the spin-echo based SPICE method (assuming TR as one second, and no echo-shift is 

needed) would take 80×58×1 = 4640 seconds = 77.3 minutes; the SPICE sequence directly 

converting from 3T as discussed in the last chapter will take around 15 minutes; and the proposed 

method at 7T only takes eight minutes. Similarly as the sequence at 3T, the proposed method at 

7T also provides high-resolution water-based imaging and corrects system imperfections using the 

unsuppressed water signals. Besides, the removal of OVS bands makes it no need to worry about 

the SAR limitation in the practical experiments.  

 

4.4 Summary 

A special data acquisition scheme is designed building on the SPICE sequence at 3T, which takes 

advantage of the SNR benefit and overcomes the challenges brought by the ultrahigh field (7T). 
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Extending the SPICE sequence at 3T with slice-direction readout and sparser (k, t)-space sampling, 

the pulse sequence can achieve ultrafast, high-resolution, whole-brain MRSI in an eight-minute 

scan.  
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CHAPTER 5 – DATA PROCESSING WITH 

LEARNED SPATIOSPECTRAL MODEL 

In this chapter, we present the special data processing approaches for generating high-quality 

spatiospectral functions of multiple molecules from the sparse measurement collected by the 

proposed pulse sequence. The processing methods are based on the union-of-subspaces signal 

model with the subspaces being pre-learned from training data, incorporating spatial priors as 

constraints. The algorithms for subspace learning and reconstruction from sparse and noisy data 

will be discussed. We also present the practical methods for correcting system imperfections, 

including strong B0 inhomogeneity, B1 inhomogeneity, frequency drift and subjects’ head motion. 

These methods are generally applicable for both 3T and 7T, so they are not discussed separately 

for different strength unless necessary.  

5.1 Union-of-Subspaces Model  

Compared with the traditional MR imaging, MRSI increases dimensionality of the imaging 

problem by adding one spectral dimension. This high dimensionality significantly increases the 

degrees-of-freedom; thus, a huge number of encodings are needed under the traditional Fourier 

imaging framework. As introduced in section 2.4, the subspace model based on partial separability 

can significantly reduce the degrees-of-freedom and facilitate high quality signal denoising and 

reconstruction [33]. In this thesis work, the signal processing tasks are more complicated than the 

basic SPICE method introduced in section 2.5, since no water/lipid suppression is applied, and the 

data space is highly sparse sampled. Therefore, the subspace imaging framework is extended by 

using a union-of-subspaces model for addressing the new processing tasks. More specifically, the 

spatiotemporal function of each molecule (water, lipids, metabolites, etc.) is represented using a 

very low-dimensional subspace, and the overall signal is expressed as the sum of these subspaces 

instead of one single subspace: 

𝜌(𝑥, 𝑡) = ∑𝜌𝑛(𝑥, 𝑡)

𝑁

𝑛=1

= ∑ ∑𝑢𝑛,𝑙(𝑥)𝑣𝑛,𝑙(𝑡)

𝐿𝑛

𝑙=1

𝑁

𝑛=1

 (5.1) 

where 𝜌(𝑥, 𝑡) denotes the overall spatiotemporal signal, 𝜌𝑛(𝑥, 𝑡) the signal of the 𝑛th molecule, 

{𝑣𝑛,𝑙(𝑡)} the temporal basis functions, and {𝑢𝑛,𝑙(𝑥)} the corresponding spatial coefficients. In 

practice, it can be justified that the sum of model orders ∑ 𝐿𝑛
𝑁
𝑛=1  is small, since there are only a 
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small number of molecules and tissue types in the human brain. In principle, this union-of-

subspaces model is included in the single subspace model in Equation (2.16), both of which can 

significantly reduce the degrees-of-freedom and facilitate many special processing methods. But 

Equation (5.1) is more flexible to represent the signal containing molecules with largely different 

characteristics. In other words, the basis functions are grouped for different molecules, and each 

group of basis functions may have very different properties with others. This provides many 

benefits in subspace determination, separation of signal components, and incorporation of different 

constraints to different molecules in reconstruction. 

As discussed before, one critical element of subspace-based models is the determination of 

subspace structures. In the basic SPICE method, water and lipid signals are suppressed in the 

acquisition stage and removed in processing prior to reconstruction. Therefore, only one subspace 

is needed for metabolite signals, and the subspace structure is estimated from the acquired D1 

dataset directly. This subspace estimation strategy is good at producing data-consistent and data-

adaptive subspace, but the generated subspace may be contaminated by field inhomogeneity 

effects, measurement noise, and residual nuisance signals given the limited number of encodings 

in D1. Increasing the number of encodings of D1 acquisition can help mitigate these effects, but it 

would tremendously increase the scan time.  

Given the proposed acquisition sequence and the union-of-subspaces model, the determination 

of subspaces for water, lipids, and metabolites are all needed. Instead of estimating these subspaces 

from a companionly acquired dataset as D1, a subspace learning strategy is used to estimate these 

subspaces from multiple sets of pre-acquired training data [91].  

 

5.2 Subspace Learning    

To generate the sets of spectral basis functions, the learning strategy used in this thesis research 

combines prior information from both quantum mechanics simulations (physics-based priors) and 

pre-acquired training data (distribution priors). More specifically, for the spectroscopic signals of 

one specific molecule, the deterministic resonance frequency structure is determined by quantum 

mechanics simulations with known chemical structures and related parameters, and the distribution 

of spectral parameters depending on the experimental environments (like linewidth and frequency 

drift) is estimated from training data.  
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Considering a spectroscopic signal from a specific molecule (denoted as 𝑛th molecule), it can 

be modelled as follows (the overall constant scale is discarded for simplicity):  

𝑠𝑛(𝑡) = 𝜑𝑛(𝑡)𝑒−𝑡/𝑇2,𝑛+𝑖2𝜋𝑓𝑛𝑡ℎ(𝑡) (5.2) 

where 𝜑𝑛(𝑡) represents the resonance frequency structure of this molecule, including chemical 

shift and spin-spin coupling; 𝑇2,𝑛  and 𝑓𝑛  denote the T2 relaxation time (which determines the 

spectral linewidth) and frequency shift of this molecule, respectively; ℎ(𝑡)  is an overall 

compensation function accounting for the line-shape variations in practical experimental 

environments (caused by intra-voxel field inhomogeneities, etc.). This modulating function is 

modelled as a generalized-series (GS) compensation function [85]: 

ℎ(𝑡) = ∑ 𝑐𝑚𝑒−𝑖2𝜋𝑚Δ𝑓𝑡

𝑁gs

𝑚=−𝑁gs

 (5.3) 

where 𝑁gs is the GS model order, which is usually small in practice; 𝑐𝑚 the GS coefficient and Δ𝑓 

the frequency step.  

The signal model in Equation (5.2) can be regarded as a generalized form of the FID signal 

formulation in Equation (2.10), based on several practically feasible assumptions. First, the 

chemical shift coefficients and spin-spin coupling coefficients do not change with experimental 

environments, so the integral of all the frequency components from a molecule can be represented 

using a single 𝜑𝑛(𝑡). Second, the transversal relaxation process and frequency shift caused by the 

external magnetic field have overall effects for one molecule, even it has multiple nuclei (protons 

as discussed in 1H-MRSI) with different chemical shifts. With these, the integral of Equation (2.10) 

can be represented by 𝜑𝑛(𝑡)𝑒−𝑡/𝑇2,𝑛+𝑖2𝜋𝑓𝑛𝑡. Third, the effects of environmental variations can be 

captured by the GS model. This can be justified in a few aspects: with a large enough model order, 

the GS model can be used to present any signals; considering the signal without the GS term as a 

reference signal, GS model is optimal to express the measured signal in the sense of maximizing 

cross-entropy [106]; the field inhomogeneity effects can be regarded as a spatial convolution, and 

the GS model can be regarded as a convolution model in spectral domain, so the GS model is a 

fair linear model for the general field effects under spatial smoothness conditions.  

Generating physical basis functions of metabolite signals (𝜑𝑛(𝑡) in model Equation (5.2)) 

through quantum mechanics simulations have long been part of NMR studies. Through many years 
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of development, there have been many software and toolboxes for generating basis functions by 

simulation, such as NMR-SCOPE, GAMMA, GAVA, Spinach, and JMRUI [107]–[113]. Most of 

the simulation methods are based on the density matrix formulation, which allows determination 

of the measurement of MR signals for a specific molecular spin system under specific experimental 

conditions such as field strength and pulse sequence. There are a few parameters that describe 

physical properties of the molecular spin system, which are needed in the quantum mechanics 

simulation, including chemical shifts, spin-spin coupling constants, and relaxation times (which 

are optional). These parameters of the typically detectable molecules have been carefully 

quantified and are already well established to the society. In this work, the physical basis function 

of typical measurable brain metabolites (including NAA, Cr, Cho, Ins, Glu, Gln, GABA, Lac, etc.) 

are simulated using GAMMA tool embedded in the Vespa package [114].  

The spectral parameters, 𝑇2,𝑛, 𝑓𝑛, and ℎ are not as deterministic as the physical basis functions, 

they vary in different experiments, subjects, and in different voxels. But it is assumed that under 

the normal physiological conditions and similar environmental conditions, the variations of 𝑇2,𝑛 

and 𝑓𝑛 are small and their distributions are similar between different experiments. Furthermore, it 

has been shown that the distributions of parameters 𝑇2,𝑛  and 𝑓𝑛  reside on a non-linear low-

dimensional manifold in high-dimensional vector space, and this manifold can be approximated 

by using a linear subspace [91]. Therefore, the distributions of these spectral parameters can be 

learned from training data by estimating linear subspaces. The modulating function ℎ(𝑡) varies 

more from experiment to experiment mainly due to practical factors like B0 field inhomogeneity 

and eddy current. It is very challenging to approximate a consistent and useful distribution from 

prior scans. However, for water and lipid signals, these effects can be mitigated and corrected 

when spatial resolution is high; for metabolite signals whose resolution is usually very low, the 

effects are assumed to be global, which means the effects on metabolites signals are the same on 

water signals if there are any. Since the proposed sequence does not suppress water signals, the 

modulating function can be estimated from the companion unsuppressed water signals.  

The procedure to learn subspace for a specific molecule from training data is summarized as 

follows. Assuming the physical basis function of this molecule (𝜑𝑛(𝑡)) has been generated by 

quantum simulation and the set of training data contains many points of spectra, the modulating 

function ℎ(𝑡) is first estimated. More specifically, for water and lipid signals, which are of enough 

SNR, ℎ(𝑡) can be estimated by directly fitting the spectral signals to Equation (5.2); for metabolite 
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signals, which do not have sufficient SNR, the ℎ(𝑡) estimated from the companion water signals 

are used. With ℎ(𝑡) determined, the spectral parameters 𝑇2,𝑛 and 𝑓𝑛 can be estimated by fitting to 

Equation (5.2). The fitting method used is based on a time-domain fitting method [115]. Then, the 

spectral parameters from many samples are obtained, which are assumed to follow the underlying 

distribution. To capture the distribution using a subspace, a collection of spectral signals is re-

generated using Equation (5.2) with the estimated parameter, and these spectra are arranged into a 

Casorati matrix as follows:   

[
 
 
 
 𝑠𝑛(𝑡1; 𝜃𝑛

1) 𝑠𝑛(𝑡2; 𝜃𝑛
1)

𝑠𝑛(𝑡1; 𝜃𝑛
2) 𝑠𝑛(𝑡2; 𝜃𝑛

2)

… 𝑠𝑛(𝑡𝑁𝑡
; 𝜃𝑛

1)

… 𝑠𝑛(𝑡𝑁𝑡
; 𝜃𝑛

2)

⋮ ⋮
𝑠𝑛(𝑡1; 𝜃𝑛

𝑁) 𝑠𝑛(𝑡2; 𝜃𝑛
𝑁)

⋱ ⋮
… 𝑠𝑛(𝑡𝑁𝑡

; 𝜃𝑛
𝑁)]

 
 
 
 

 (5.4) 

where 𝜃𝑛 is the spectral parameter set learned from a specific voxel and 𝑠𝑛(𝑡) is the generated 

spectral signal using the fitting spectral parameters. Then the set of basis functions {𝑣𝑛,𝑙(𝑡)} is 

estimated using SVD on the Casorati matrix and are selected as the right-singular vectors. These 

basis functions simply capture the distributions of signal variations in the training data. As 

discussed, different basis functions are estimated for different molecules and then they are used in 

different aspects of the data processing.  

Different sets of training data were acquired for the subspace learning. For the water and lipid 

signals, the training data was acquired using the SPICE sequence as described in section 3.4 and 

section 4.3. But for these sequences, only basic spatial under-sampling was employed for 

acceleration, not any spatiotemporal under-sampling (like using the CAIPI trajectories). This 

purely spatial under-sampling was easily overcome using basic parallel imaging methods without 

imposing subspace constraints, so the spectral properties of water/lipid signals were well 

preserved. For the metabolite signals, two SPICE sequences were performed sequentially, one with 

water suppression/lipid suppression and the other one without suppression. Then the spectra for 

training were obtained from the water/lipid suppressed data after nuisance removal and various 

correction utilizing the water/lipid unsuppressed data. Since for each 3D data there are tens of 

thousands of spatially resolved spectra which can be used for training, only data from a few 

subjects were acquired for the subspace training. It should be noted that separated subspaces were 

generated for different scanners and different cohorts of subjects (like healthy controls and patients 
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with specific diseases). The processing of this data followed the learning procedure as described 

above.  

 

5.3 Reconstruction of Sparse Water/Lipid Signals     

Given the data acquisition scheme, one of the key processing issues is to overcome the sparse 

sampling. As described in section 3.2 and section 4.2, the (k, t)-space is sparsely sampled in 

variable density. For both sequences at 3T and 7T, the central k-spaces are fully sampled, and outer 

k-spaces are spatiotemporally sparsely sampled using CAIPIRINHA trajectories. But the sequence 

at 7T has a middle k-space region where there is only spatial under-sampling. In this section, the 

reconstruction for the middle k-space at 7T (with only spatial under-sampling) is first discussed, 

then the reconstruction for regions with both spatial and temporal under-sampling follows.  

In middle k-space of the 7T sequence, the acceleration factors are only 2 in both kx and ky 

directions, which can be addressed using basic parallel imaging methods. The data in central and 

middle k-space are used not only for reconstruction of water and lipid signals with relatively low 

resolutions, but also for reconstruction of the metabolite signals. So, the reconstruction in these 

regions needs to preserve temporal signal patterns and avoid filtering out low-intensity metabolite 

signals. We use an echo-by-echo GRAPPA+SENSE strategy to recover the under-sampled k-space 

for each time point, which may minimize the perturbation of reconstruction on the temporal signal 

pattern [23], [24]. First, the GRAPPA k-space convolution kernel is estimated from the fully 

sampled central k-space of early a few echoes, then the GRAPPA kernel is used to interpolate the 

missing data in these echoes. These processing steps follow the original GRAPPA method (as 

shown in Equation (2.15)) but involve more data from multiple echoes for estimating the kernel 

[24]. With reconstructed alias-free images of these echoes, a set of coil sensitivity maps at the 

same resolution can be estimated under simple assumption that the sum-of-square of the coil 

sensitivity maps is uniform:   

𝐸𝑐(𝒙) =
𝜌𝑐(𝒙)

√∑ |𝜌𝑐(𝒙)|2𝑁𝑐
𝑐=1

 
(5.5) 

where 𝑁𝑐 is the total number of coil channels, 𝐸𝑐(𝒙) and 𝜌𝑐(𝒙) are the sensitivity function and image 

of the 𝑐𝑡ℎ channel, respectively. Then, these coil sensitivity maps are used for SENSE reconstruction 

on the data (including both central and middle k-space) of all the echoes. The echo-by-echo SENSE 
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reconstruction is implemented as solving the inverse problem in Equation (2.14) through linear 

least-square solver. Since the SENSE reconstruction is a linear process, this reconstruction strategy 

can minimize the effects on the temporal patten, thus preserving the metabolite signals in these k-

space regions.  

In the outer k-space of both 3T and 7T sequences, the measurements are highly sparsely 

sampled, so it requires very strong prior information to recover the missing (k, t)-space data. Since 

data in these regions is only used for reconstruction of high-resolution water and lipid signals, 

temporal constraints such as subspace structures of water and lipids are safe to use. More 

specifically, this reconstruction issue is solved using a constrained reconstruction method, which 

incorporates sensitivity encodings, pre-learned subspace structure, spatial supports of different 

signals, and spatial smoothness constrains [92]. This reconstruction was formulated as solving the 

following optimization problem:  

�̂�𝑤 , �̂�𝑓 = arg min
𝑈𝑤,𝑈𝑓

∑‖𝑑𝑐 − Ω{ℱ𝑆𝑐𝐵(𝑀𝑤𝑈𝑤𝑉𝑤 + 𝑀𝑓𝑈𝑓𝑉𝑓)}‖2

2

𝑁𝑐

𝑐=1

+ 𝜆𝑤‖𝐷𝑈𝑤‖2
2 + 𝜆𝑓‖𝐷𝑈𝑓‖

2

2
 (5.6) 

where 𝑑𝑐 is vector form of the measured (k, t)-space data of the 𝑐th coil channel. 𝑉𝑤, 𝑉𝑓 are matrix 

form of the pre-learned water and lipid basis functions from training data, and 𝑈𝑤 , 𝑈𝑓 are the 

corresponding spatial coefficients to be determined. 𝑀𝑤 and 𝑀𝑓 are masks for the spatial support 

of brain tissue and subcutaneous lipids. Ω, ℱ, 𝑆𝑐, 𝐵, and 𝐷 are operators representing (k, t)-space 

sampling, Fourier transform, sensitivity encoding, field inhomogeneity, and edge-preserved total 

variation, respectively. In current implementation, the coil sensitivity map and B0 field map are 

estimated from the images of low-resolution k-space regions (central region in the 3T sequence; 

central and middle regions in the 7T sequence) by sum-of-square method shown in Equation (5.5) 

and a linear HSVD (Hankel Singular Value Decomposition) fitting [116], respectively; the edge 

map is derived from the high-resolution anatomical image of MPRAGE using image local 

gradients. The regularization parameters 𝜆𝑤 and 𝜆𝑓 are chosen based on the discrepancy principle. 

After solving this optimization problem, the spatiospectral functions of water and lipids can be 

synthesized using the estimated spatial coefficients �̂�𝑤 and �̂�𝑓, as 𝜌𝑤 = �̂�𝑤𝑉𝑤 and 𝜌𝑓 = �̂�𝑓𝑉𝑓.  
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5.4 Reconstruction of Noisy Metabolite Signals 

After reconstruction of the sparse data as described in the last section, the remaining key processing 

issues include (1) separation of water/lipid signals with metabolite signals (also known as nuisance 

removal issue) and (2) reconstruction of metabolite signals from the noisy measurements (similar 

as a typical denoising issue).  

The nuisance removal task mainly includes the removal of water and lipid signals. The signal 

intensity of the water and lipid signals is more than three orders of magnitude higher than that of 

metabolite signals. In normal physiological conditions, lipids only exist in the subcutaneous layer 

of the brain, which do not overlap with the metabolite signals. However, given the limited spatial 

encodings of MRSI methods, the ringing of lipid signals would leak into the brain and overwhelm 

the metabolite signals in traditional Fourier reconstruction. Water signals have different frequency 

distributions (around 4.7 ppm) with the metabolite signals (mainly within 1.0 - 4.0 ppm), but given 

the large intensity of water signals, the tail of its spectra can overlap with the metabolite signals. 

To address these issues, processing methods incorporating the reconstructed high-resolution water 

and lipid signals (as described in the last section) are used, which are based on the previously 

reported nuisance removal methods [117]–[119]. A very brief discussion is included below.  

For lipid removal, one of the typical methods uses a Papoulis-Gerchberg (PG) based algorithm 

to compute the ringing signals from the subcutaneous layer given the boundary condition, which 

has achieved many encouraging results. However, given the limited spatial encodings of MRSI 

data and not sufficiently accurate boundary condition, PG-based methods usually only achieve 

very limited performance in terms of k-space extrapolation of lipid signals. The proposed method 

can have high-resolution lipid signals as shown in the last section, which already has significantly 

reduced lipid ringing. Using PG-based methods on the high-resolution lipid signals for further k-

space extrapolation can reduce the requirement on PG-extrapolation and tremendously improve 

the lipid removal performance.  

For water removal, the subspace-based method shown in [117] has very good performance in 

brain tissues with relatively small field inhomogeneity and susceptibility effects. However, in brain 

regions such as frontal lobe near the sinuses where large susceptibility exists, the water signals are 

strongly distorted, thus they are very difficult to be removed. The distortion of water signals is 

mainly due to the combination of field inhomogeneity and convolution effects of limited spatial 

encodings. In the regions of large field inhomogeneity, the adjacent spatial locations have largely 
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varied frequencies. If the resolution is large enough, the water signals will have good spectral 

shape without distortion. But when the resolution is limited, the water signals from adjacent 

locations with different frequency are summed together, leading to signal cancellation and 

distortion. Therefore, the high-resolution water signals provided in the proposed method can help 

resolve the distortion of water signals, thus it can result in better removal of water signals, 

especially in the regions with large field inhomogeneity.  

After the nuisance removal, the remaining metabolite signals were buried in the measurement 

noise given their low-concentrations and high-resolution. This reconstruction task was addressed 

using subspace modeling and anatomical constraints as the basic SPICE method while integrating 

pre-trained basis functions obtained as described in section 5.2. This reconstruction is formulated 

as solving the following optimization problem: 

�̂�𝑚 = argmin
𝑈𝑚

‖𝑑𝑟 − ℱ (∑ 𝑈𝑚𝑉𝑚

𝑀

𝑚=1

)‖

2

2

+ ∑ 𝜆𝑚‖𝐷𝑈𝑚‖2
2

𝑀

𝑚=1

 (5.7) 

where 𝑑𝑟 is vector form of the noisy (k, t)-space data after nuisance removal as described above. 

𝑉𝑚 represent the pre-learned basis functions of the 𝑚th molecule and 𝑈𝑚 the corresponding spatial 

coefficients. It should be noted that data 𝑑𝑟 are coil-combined and field-corrected after nuisance 

removal. After reconstruction, the spatiospectral functions of different molecules can be generated 

as 𝜌𝑚 = �̂�𝑚𝑉𝑚.  

 

5.5 Correction of System Imperfections     

MRSI methods are relatively sensitive to system imperfections like B0 inhomogeneity, B1 

inhomogeneity, field drift, and head motion [37], [38]. Significant artifacts will appear if they are 

not properly corrected. As described in session 3.4, the unsuppressed water signals and embedded 

navigator signals in the proposed method can provide very unique opportunities for solving these 

issues.  

B0 field inhomogeneity can cause frequency shift, broadened spectral linewidth, and signal 

distortion in MRSI. Traditional MRSI methods require an additional GRE or water unsuppressed 

MRSI scan to obtain B0 field map for correction. The proposed method does not need additional 

scans, high-resolution B0 field map can be derived from the companion water spectroscopic signals 
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through fitting methods like HSVD. This high-resolution field map can be used to correct the B0 

inhomogeneity effects effectively.   

B1 inhomogeneity usually causes significant spatial shading effects, especially at ultrahigh 

field while using coils with large channel numbers (e.g., 64-channel coils). Without correction, the 

B1 inhomogeneity would impose additional spatial variation to the metabolite distributions. In 

conventional experiments, a couple of additional scans are needed to map the B1 field. The 

unsuppressed water in the proposed method can provide a good reference to derive B1 map. 

Specifically, under the assumption that the B1 field should be spatially smooth, and they have the 

same shading effects on both water and metabolite signals, the B1 field can be estimated from the 

water image through a spatial polynomial fitting. Then, this B1 field map (weighting map) can be 

used to correct the shading effects in metabolite signals.  

The correction of field drift and head motion depends on the navigator acquisitions as 

described in Chapter 3. The short FID signals for estimating field drifts (frequency drifts) are 

acquired every 60 TRs. Under the assumption that the field drift is a smooth process along time, 

the frequency shifts estimated every 60 TRs are interpolated to each single TR using a polynomial 

fitting. Then these estimated frequency shifts can be used to correct the data in each TR.  

The head motion is detected using the linear navigators at the end of each TR. The spatial shifts 

of head in three axes can be estimated using the linear navigators by computing the shifts of their 

projection profiles. Instead of using the estimated spatial shifts to correct the k-space data, the 

proposed method uses an interpolation-based strategy. More specifically, data in the TRs with 

large estimated spatial shifts are identified as motion-corrupted data. The data in these TRs are 

discarded from the measurements, and then the discarded (k, t)-space data is interpolated using the 

remaining (k, t)-space data (denoted as motion-free data) through parallel imaging with additional 

spatial constraints. This interpolation is done by solving the following optimization problem:   

�̂� = argmin
𝜌

∑‖𝑑𝑐 − Ω𝑚𝑓ℱ(𝑆𝑐𝜌)‖
2

2

𝑁𝑐

𝑐=1

+ 𝜆‖𝑊∇𝜌‖2
2 (5.8) 

where 𝑑𝑐 denotes the motion-free data of 𝑐𝑡ℎ coil, Ωmf the k-space sampling operator for motion-

free data, ℱ the Fourier transform operator, 𝑆𝑐 the spatial sensitivity map, 𝑁𝑐 the channel number 

of coil, ∇ the total variation operator and 𝑊 a spatial weighting derived from anatomical images. 
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After reconstruction, the motion-corrected data �̂�𝑐  is synthesized using the reconstructed 

(interpolated) data and the measured data: 

�̂�𝑐 = Ωmcℱ(𝑆𝑐 ⊙ �̂�) + Ωmf𝑑𝑐 (5.9) 

where Ωmc is the k-space sampling for the motion-corrupted data. Overall, the motion correction 

process can be regarded as a SENSE-based k-space interpolation. 

 

5.6 Summary     

In summary, the union-of-subspaces model has enabled separation and reconstruction of the 

spatiospectral functions of different molecules from the sparse and noisy measurements. Based on 

this subspace model, incorporating a subspace learning strategy, special processing approaches are 

used to address the challenging processing tasks. Moreover, the high-resolution water/lipid signals 

are also utilized to improve the removal of nuisance signals and correct system imperfections, 

including B0 inhomogeneity, B1 inhomogeneity, field drift, and head motion. 
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CHAPTER 6 – 1H-MRSI EXPERIMENTAL 

RESULTS 

To demonstrate the feasibility and to evaluate the performance of the proposed 1H-MRSI methods 

at both 3T and 7T, both phantom experiments and in vivo experiments have been carried out. The 

sequence at 3T has also been performed on tumor patients to show its potential clinical values. 

This chapter presents all the results obtained from both 3T and 7T.  

6.1 Phantom Experiments at 3T 

The 3T phantom experiments were performed on a uniform sphere phantom (SPECTRE phantom, 

Gold Standard Phantoms LTD) on a Siemens Prisma scanner (Siemens Healthcare, Erlangen, 

Germany). The phantom is of 150 mm diameter and is filled with water-based liquid and a set of 

brain metabolites/neurotransmitters (including NAA, Cr, Cho, Ins, Glu, Lac and GABA) at 

physiological concentrations (NAA: 12.5 mM, Cr: 10.0 mM, Cho: 3.0 mM, Ins: 7.5 mM, Glu: 12.5 

mM, Lac: 5.0 mM, GABA: 2.0 mM). The sequence protocols are the same as described in section 

3.4. The SPICE sequence was scanned twice for analyzing test-retest reproducibility (FOV = 

240×240×72 mm3, resolution of metabolites = 2.0×3.0×3.0 mm3 (matrix size = 124×78×24), TR 

= 160 ms, TE = 1.6 ms, echo-space = 1.76 ms, echo number = 74×2, readout bandwidth = 167 

kHz, flip angle = 27˚, scan time = 8 minutes).  

A series of results are displayed in Figure 6.1-6.4, showing performance of the proposed 

method in noise reduction, accuracy, and reproducibility. Figure 6.1 shows a comparison of results 

using Fourier reconstruction and using SPICE reconstruction. From both spatial distributions 

(metabolite maps) and spectral distributions (localized spectra), it is obvious that SPICE 

reconstruction significantly improves SNR and produces high-quality MRSI results. From the 

reconstructed spectra, we can see clear peaks of NAA, Cr, Cho, Lac, Ins, and overlapped Glu and 

GABA after SPICE reconstruction, while they are buried under noise in the Fourier reconstruction. 

To verify the denoising results, a low-resolution but high SNR data was generated from the 

measured data. Specifically, the resolution of raw data was reduced by a factor of eight (two in 

each spatial dimension) via k-space truncation, and Hamming windows were added in all three 

spatial dimensions. So the “effective” resolution was approximately around 60 times lower than 

the original raw data, but this reduced-resolution improved SNR in the voxel. The comparison 

between this low-resolution data and SPICE reconstruction is shown in Figure 6.2. The localized 
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spectrum of SPICE reconstruction shows good consistency and similar noise level with that of 

low-resolution data, while the SPICE reconstruction keeps a much higher spatial resolution.  

 

Figure 6.1: Comparison of raw data and SPICE reconstruction results, including metabolite maps 

and localized spectra (Raw data in blue spectrum, SPICE results in black spectrum). The displayed 

SPICE spectrum was scaled by a factor of 2.  

 
Figure 6.2: Comparison of low-resolution data and SPICE reconstruction results, including 

metabolite maps and localized spectra (low-resolution data in pink spectrum, SPICE results in 

black spectrum).  

Figure 6.3 shows the resulting metabolite maps and localized spectra from two repeated SPICE 

scans on this phantom. Good agreements were found in both spatial maps and spectra. A more 

quantitative analysis was done, with R2-plots and Pearson’s correlation coefficients shown in 

Figure 6.4. Good reproducibility was successfully achieved on this phantom data (Pearson’s 

correlation coefficients for NAA: γ = 0.9593; for Cr: γ = 0.9563; for Cho: γ = 0.9561; for Glx 

(denoted for Glu+GABA here): γ = 0.9403), which is a result of the significantly improved SNR.  
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Figure 6.3: Comparison of SPICE results in two repeated scans, including metabolite maps and 

localized spectra from the same spatial location.  

 

Figure 6.4: R2-plots of four metabolites including NAA, Cr, Cho and Glx (Glu+GABA) in two 

sequential repeated SPICE scans. Identical line is shown in black. Pearson correlation coefficients 

are also computed and displayed.  

This set of phantom results show that the SPICE method at 3T is able to achieve high-SNR 

and well reproducible MRSI results from an 8-minute scan in an in vitro environment using a 

standard metabolite phantom. The special data acquisition sequence, combining with a subspace 
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model, provides significant improvement on SNR, that enables higher spatial resolution and more 

robust and reproducible results.  

 

6.2 In vivo Experiments at 3T 

The 3T in vivo experiments on healthy volunteers were also carried on the Siemens Prisma scanner 

(Siemens Healthcare, Erlangen, Germany). The scans were approved by the Institutional Review 

Board of University of Illinois, and written informed consent was obtained before the scan. The 

scan protocol of SPICE sequence is the same as described in section 3.4. The reconstruction of 

metabolite signals and water signals is described in Chapter 5.  

Figure 6.5 displays a set of representative results, including high-resolution metabolite maps 

(including NAA, Cr, Cho, and Ins at 2.0×3.0×3.0 mm3 nominal resolution, four different slices of 

the brain are shown) and high-quality spatially resolved spectra. From the metabolite maps, we 

can see good contrast of metabolites given the high-resolution capability. For example, higher 

creatine in gray matter than white matter, and low metabolite signals in brain ventricles are clear 

in the results, which match the observations in literature. The localized spectra also show decent 

SNR and reasonably separated spectral peaks from main detectable metabolites.  

 

Figure 6.5: High-resolution metabolite maps (including NAA, Cr, Cho, and Ins) and localized 

spectra obtained from a healthy subject.   
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Besides high-resolution metabolite signals, the proposed method also generates higher-

resolution water signals (at 2.0×1.0×1.0 mm3 nominal resolution), which can be used to provide 

structural information. Susceptibility mapping (QSM) is one of the imaging modalities that can be 

extracted from the water spectroscopic signals. QSM can quantitatively map tissue susceptibility 

and it has been widely used for study of brain fine-structures like veins. Spatial resolution is critical 

to QSM, but MRSI sequences usually have low spatial encoding efficiency since they need to 

sample the temporal signals. The proposed method addresses this issue by using sparse sampling 

with spatiotemporal trajectories in outer (k, t)-space (as discussed in section 4.2). This sparse 

sampling helps to achieve high-resolution of water signals while keeping fast imaging speed; it 

takes around one minute to cover outer (k, t)-space but increases the resolution by a factor of nine. 

The resulting QSM map compared with that obtained using only central k-space (corresponding 

to a resolution of 2.0×3.0×3.0 mm3) is shown in Figure 6.6. Through the comparison, especially 

in the zoom-in regions, we can see some vein structures are lost in the low-resolution QSM maps 

due to partial volume effects, while these structures are nicely revealed in the high-resolution QSM 

maps produced by the proposed method.  

 

Figure 6.6: Comparison of QSM maps obtained from a healthy subject using (a) high-resolution 

SPICE (with the entire (k, t)-space, 2.0×1.0×1.0 mm3); and (B) low-resolution SPICE (with only 

central (k, t)-space, 2.0×3.0×3.0 mm3).  

The high-resolution capability can not only provide nice structural imaging, but also improve 

the separation between metabolite signals and water/lipid signals. On the one hand, the lipid 

signals leaking from the subcutaneous layers into the brain would significantly reduce with higher 
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resolution. On the other hand, the signal distortion and cancellation due to field inhomogeneity 

and partial volume effects could also largely reduce. Figure 6.7 shows an illustration of these 

benefits of high resolution. In the water images at TE of 70 ms, we can see the signal dephasing 

near the frontal region is much severer in low-resolution than high-resolution SPICE data, and the 

signal distortion in the water spectra is also obviously reduced with high-resolution. Moreover, 

after removal of water signals, the high-resolution SPICE data has much less lipid contamination 

(orange spectra) and much less residual water signals (blue spectra). Higher resolution also 

benefits the correction of field effects for metabolite signals. With low-resolution SPICE data, only 

a low-resolution field map can be estimated and used for correction, while higher-resolution field 

correction becomes possible with high-resolution SPICE data. As shown in Figure 6.8, after field 

correction with high resolution, the cancellation and distortion of metabolite signals in the frontal 

region is significantly reduced, which greatly improves the quality of MRSI results.  

Figure 6.9 shows a more complete set of results obtained by the proposed method, including 

water image, QSM map, T2* map, myelin water imaging, NAA map, Cr map, Cho map, and Ins 

map. All these imaging modalities are acquired from a single 8-minute scan, with water signals at 

2.0×1.0×1.0 mm3 resolution and metabolite signals at 2.0×1.0×1.0 mm3 resolution.  

 

Figure 6.7: Comparison of the effects of different resolutions on MRSI data regarding to signal 

cancellation, lipid contamination and water removal. Both low resolution (2.0×3.0×3.0 mm3) 

SPICE data and high resolution (2.0×1.0×1.0 mm3) SPICE data, including water images at TE of 

70 ms, water removed image, and their localized spectra are displayed.  
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Figure 6.8: Comparison of NAA maps and metabolite spectra after correcting field effects using 

estimated field maps of different resolutions (low resolution is 2.0×3.0×3.0 mm3 and high 

resolution is 2.0×1.0×1.0 mm3).  

 

Figure 6.9: A representative set of results obtained from a healthy subject using the proposed 

method at 3T within an 8-minute scan time. The results include water image, QSM map, T2* map, 

myelin water faction at 2.0×1.0×1.0 mm3, and NAA, Cr, Cho, and Ins maps at 2.0×1.0×1.0 mm3.  

A test-retest reproducibility study similar to the phantom experiments was carried out. The 

healthy volunteer was scanned twice within the same session, and the results from the two scans 

were compared. Figure 6.10 shows Bland-Altman plots of the resulting metabolite maps including 

NAA, Cr, Cho, and Ins. From the plots and the rates of outside points beyond two standard 
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deviations (4.9%, 5.5%, 5.3%, 5.7% for NAA, Cr, Cho, and Ins, respectively), we can see 

reproducibility of the proposed method in in vivo environment is still very reasonable.  

 

Figure 6.10: Bland-Altman plots of metabolites including NAA, Cr, Cho, and Ins, from a test-

retest study scan.  

 

6.3 Applications on Brain Tumor at 3T 

Currently, the most widely used brain tumor imaging tool in clinical practice is MRI, which can 

provide high-resolution structural information. The structural information has very high sensitivity 

for neoplastic diseases, but does not have good specificity to distinguish tumors with other focal 

lesions or differentiate tumors of different grades and mutant phenotypes [68], [120]. The potential 

of noninvasive metabolic imaging for brain tumors has long been recognized by both imaging 

scientists and clinicians. Imaging metabolism of brain tumors is essential for its diagnosis, 

treatment planning, and therapy assessment, and in the past several decades, there have been 

numerous studies showing the unique values of brain metabolites including NAA, Cr, Cho, and 

Lac as biomarkers with good specificity for brain tumors [68], [94], [120]–[123]. However, the 

conventional MRSI methods are not able to provide sufficient spatial resolution, brain coverage, 
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imaging speed, and robustness, thus their clinical applications are rather limited. MRSI methods 

are still not widely accepted as a routine clinical tool for tumor imaging.  

The imaging capability of the proposed method may overcome these technical obstacles and 

provide a unique opportunity for the applications of MRSI in brain tumor imaging. The three mm 

resolution of the proposed method may help in many aspects such as capturing small-size tumors 

and revealing intra-tumor metabolic heterogeneities. To demonstrate the potential of this method 

in brain tumor imaging, scans have been performed on patients with diagnosed tumors. All the 

scans were carried out on a 3T Siemens Skyra scanner (Siemens Healthineers, Erlangen, 

Germany), under approval of the Institutional Review Board of Shanghai Fifth People’s Hospital, 

China. Written informed consents were obtained from all participants before the scans. The 

imaging protocol is the same as described in Section 3.4, but the MPRAGE scans were carried out 

after contrast agent (gadolinium diethylenetriaminepentaacetic acid) was intravenously 

administered for contrast enhancement.  

Figure 6.11 compares the proposed high-resolution MRSI (2.0×3.0×3.0 mm3) with a low-

resolution MRSI of a practically used spatial resolution (12×12×12 mm3). This low-resolution 

MRSI data was generated from the high-resolution data by k-space truncation. The patient was 

diagnosed with a small-size tumor, as indicated in the anatomical image (by a blue arrow). Using 

the proposed method, this small-size tumor can be observed on the Cho map very clearly, but it is 

not differentiable from surrounding tissues in the low-resolution MRSI due to strong partial 

volume effects. The spatially localized spectra also show the advantages of high-resolution MRSI. 

From the previous studies using single voxel spectroscopy or low-resolution CSI methods, it has 

been shown that the brain tumor typically shows reduced NAA and elevated Cho [68], [120]. In 

the spectra of high-resolution MRSI data, the NAA reduction and Cho increase in tumors are 

clearly revealed compared with the normal tissues. But in the low-resolution data, these spectral 

features are not as distinguishable from the normal issues as in the high-resolution data. This set 

of results show that the enhancement of resolution using the proposed method can enable improved 

detection of metabolic alterations in such small tumors.  

High resolution MRSI also benefits imaging of large-size brain tumors, especially for high-

grade tumors. High-grade brain tumors like glioblastomas usually have strong intra-tumoral 

heterogeneities; different regions of the lesion such as edema, enhancing ring and necrotic core are 

expected to have different pathological conditions thus different metabolic fingerprints. Figure 
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6.11 shows a set of results obtained from a tumor patient diagnosed with grade IV glioblastoma. 

Four representative localized spectra from enhancing ring, surrounding edema, necrotic core, and 

normal tissue are displayed, showing distinct metabolic features. Edema, enhancing ring and 

necrotic core all show reduction of NAA due to the loss of neurons; enhancing ring where has the 

highest possibility of proliferation show the highest Cho; necrotic core has destroyed cell 

environment, thus it shows reduction of all metabolites. From the metabolite maps, we can also 

observe these metabolic heterogeneities with different metabolites showing different spatial 

distributions. This set of results shows that the high resolution of the proposed method can reveal 

intra-tumoral metabolic heterogeneities, which would be very valuable in determining biopsy sites, 

tumoral boundaries, and tumor characteristics.  

The proposed method is also applied to study the metabolic differences between tumors of 

different grades. A small cohort of patients with low-grade (WHO grade I, 4 patients) and high-

grade tumors (WHO grade IV, 4 patients) were recruited in the study. A comparison of MRSI 

results is displayed in Figure 6.12, including representative anatomical imaging and Cho/NAA 

ratio maps, and quantitative Cho/NAA values in the tumor regions of these two groups. The tumor 

regions were determined by segmentation on the anatomical images including edema, and the 

normal tissues were selected as the contralateral tissues of lesions. From the Cho/NAA ratio maps, 

we can see that Cho/NAA ratios in the tumor lesions are higher than those in the normal tissues, 

and the ratios in high-grade tumors are higher than those in the low-grade tumors, which is 

consistent with previous studies in literature. In the statistical analysis of Cho/NAA values, we can 

see the significant differences of Cho/NAA values between high-grade tumors and low-grade 

tumors (p<0.0001) and between tumors and normal tissues (p<0.0001). This set of results shows 

the potential of the proposed method for noninvasive tumor grading, using the brain metabolites 

as biomarkers with good specificity. Further study may include more metabolites and imaging 

modalities from the companion water signals like QSM and T2* in the analysis.  

This imaging method has also been applied to monitor the longitudinal metabolic changes after 

treatment. Figure 6.14 shows the results obtained from a patient diagnosed with metastasis from 

lung cancer. Three scans using the proposed method were performed on this patient in two weeks, 

three months, and six months after the gamma knife therapy, respectively. From the Cho/NAA 

maps and quantitative values in the lesion area, we can clearly see the reduction of Cho/NAA along 

the time, which is considered being related to the regional remission and reduction of tumor 
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volume. This can be confirmed on the anatomical images and clinical scores. The positive 

responses of the patient to treatment were well-captured by the metabolic changes detected using 

the presented method.  

These preliminary clinical results were obtained from a small cohort of patients, as a feasibility 

study. But these results have demonstrated the potential of our proposed method in capturing small 

brain tumors, imaging tumor heterogeneities, tumor characterization, and monitoring treatment 

responses. This could lay a foundation for further metabolic studies on brain tumors, providing 

more clinical insights. The results of this section have been published on IEEE-EMBS 

(Engineering in Medicine and Biology Society) conference in 2021 [94].  

 

Figure 6.11: Results obtained from a brain tumor patient to show the high-resolution capability in 

capturing small tumors. (A) Metabolite maps from high-resolution data (2.0×3.0×3.0 mm3). (B) 

Low-resolution metabolite maps (12×12×12 mm3). (C) Spectra from normal tissue and tumor in 

the high-resolution data. (D) Spectra from the same points as in (C) but in low-resolution data.   
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Figure 6.12: Representative results from a high-grade glioma patient to show high-resolution 

capability in revealing intra-tumoral heterogeneity. Metabolite maps including NAA, Cr, and Cho, 

and localized spectra from the normal tissue, edema, enhancing ring, and necrosis core are showed.   

 

Figure 6.13: Comparison of Cho/NAA spatial maps and values between high-grade tumors (WHO 

IV, 4 patients) and low-grade tumors (WHO I, 4 patients). (A) Representative Cho/NAA maps. 

(B) Box plots of Cho/NAA values in the tumor lesions and the contralateral normal tissues. The 

central red mark is the median, the edges of the box are the 25th and 75th percentiles. 
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Figure 6.14: Longitudinal metabolic changes of a tumor patient diagnosed with metastasis from 

lung cancer. Three scans were performed in two weeks, three months, and six months after the 

gamma knife therapy. Cho/NAA ratio maps and the box plots of Cho/NAA values in tumor lesions 

are displayed. Recoveries of NAA and Cho along time have been observed along with the positive 

responses to treatment.  

 

6.4 Phantom Experiments at 7T 

The 7T phantom experiments were performed on a 7T Terra scanner (Siemens Healthcare, 

Erlangen, Germany) equipped with a 32-channel receiver coil. The same uniform sphere 

metabolite phantom as described in section 6.1 was used. The scan protocol for whole brain MRSI 

was described in section 4.3 (FOV = 240×240×150 mm3, resolution of metabolites = 3.0×3.0×3.2 

mm3 (matrix size = 80×80×58), TR = 150 ms, TE = 1.6 ms, echo-space = 0.9 ms, echo number = 

140×2, readout bandwidth = 167 kHz, flip angle = 26˚, scan time = 8 minutes).  

Besides validating the proposed method and its performance, the phantom experiments at 7T 

were also used to demonstrate the correction of B0/B1 inhomogeneity and reconstruction of sparse 

data. Therefore, one set of data with fully sampled (k, t)-space was acquired using the proposed 

sequence at 7T. Scan parameters were the same as above, but no sparse sampling was applied, so 

total scan time was 17 min. Then retrospective under-sampling was performed to simulate the 

sparse data. For the sparse data, parallel imaging reconstruction was performed to interpolate the 

missing measurements. Then the remaining processing steps of both full data and sparse data were 

the same, including removal of water signals, reconstruction of metabolite signals, and correction 

of B0/B1 field inhomogeneity, as presented in Chapter 5.  
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Compared with the sequence at 3T, one critical point of the 7T sequence is utilization of sparse 

sampling even for metabolite signals to accelerate imaging speed. Therefore, good recovery of the 

sparse metabolite signals is important for the proposed method at 7T. As mentioned before, parallel 

imaging echo-by-echo without any additional constraints (such as subspace) was used to recover 

this part of under-sampling for metabolite signals, minimizing perturbation to temporal patterns. 

Figure 6.15 compares the phantom metabolite maps (including NAA, Cr, Cho and Glx) 

reconstructed from the fully sampled data and sparse data. The results from both data show good-

quality and homogeneous spatial distribution in all four metabolite maps, without noticeable 

spatial aliasing artifacts. From the difference maps calculated as L2-error between two maps, the 

differences between these two sets of results are less than 1%, which are acceptable in most of the 

practical applications.  

Figure 6.16 shows a comparison of NAA maps from the metabolite phantom before and after 

B0/B1 field correction. We can see that, with a 150 mm spatial coverage in the slice direction, the 

proposed method was able to cover the whole phantom (150 mm diameter). Before correction of 

B0/B1 field inhomogeneity (in Figure 6.16(A)), there were obvious shading effects in the NAA 

map due to the strong B1 inhomogeneity at 7T. In the localized spectra from two different locations, 

there were inconsistencies due to both B0 and B1 inhomogeneity, regarding to overall frequency 

shifts and signal magnitude differences. After B0/B1 field correction (in Figure 6.16(B)), the spatial 

distribution became much more homogeneous, and the localized spectra showed better agreement. 

It is known that the spectroscopy phantom has homogeneous concentration of metabolites, so the 

results show very good effectiveness of field correction, which is desired in MRSI data, especially 

at ultrahigh field.  

This set of phantom results demonstrate the feasibility of the proposed method at 7T in in vitro 

experiments. In the acquisition aspect, whole brain coverage and fast imaging speed have been 

achieved, and in the processing aspect, success in field correction and recovery of sparse sampling 

in metabolite signals have also been shown.  
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Figure 6.15: Comparison of phantom metabolite maps (including NAA, Cr, Cho, and Glx) 

obtained from fully sampled data and sparse data as the proposed method. Differences between 

the full data and sparse data are also displayed, within 1% of the metabolite maps.  

 

Figure 6.16: Comparison of phantom NAA maps before and after B0/B1 correction using the 

unsuppressed water signals. Spectra from two different locations are also displayed. After field 

correction, the spatial map shows improved homogeneity, and the localized spectra have better 

agreement.  
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6.5 In vivo Experiments at 7T 

In vivo experiments at 7T were performed on healthy subjects on the same 7T Terra scanner 

(Siemens Healthcare, Erlangen, Germany) as 7T phantom scans. These scans were approved by 

the local Institutional Review Board. Written consent from the participants was collected from the 

participants before the scan. The scan protocol is described in section 4.3, including a Localizer 

scan, an MPRAGE scan, and a SPICE scan.  

To compare performance of the sequences at 3T and 7T, one healthy volunteer was scanned at 

both 3T and 7T, using corresponding sequences with the same scan time around eight minutes. 

Figure 6.17 shows a comparison of spectra at 3T and 7T. Both data have been processed until the 

step before reconstruction of metabolite signals, including field correction, nuisance removal, coil 

combination, etc. Both sets of data were resized to resolutions of 1 cm for SNR consideration and 

spectra from one spatial voxel of each data were displayed for comparison. As observed, the 

spectrum of 7T data shows much improved SNR and separation between metabolite peaks, which 

matches expectation given the benefits of ultrahigh field. After metabolite reconstruction, the 

resulting metabolite maps of both 3T and 7T are shown in Figure 6.18, including NAA, Cr, Cho, 

and Glx. Both reconstruction of 3T and 7T data use similarly weak spatial regularization to 

illustrate comparison of data quality. We can see that the 7T metabolite maps have much reduced 

noise-induced fluctuations than 3T metabolite maps. The 7T metabolite maps also show noticeably 

better contrast between gray matter and white matter, especially for Cr map. This set of results has 

demonstrated the benefits of signal and contrast enhancement brought by ultrahigh field.  

Figure 6.19 displays a representative set of results obtained from another healthy volunteer, 

including tri-planar views of whole-brain metabolite maps (NAA, Cr and Cho) and localized 

spectra from a region-of-interest. High-quality spatiospectral distributions of metabolites in the 

whole brain range were successfully obtained using the proposed method. We can see the whole 

brain metabolite maps match the anatomical structures reasonably well.  

Since the proposed MRSI method does not suppress water signals, water imaging with various 

contrast can also be obtained. First, the anatomical images can be provided by the unsuppressed 

water signals. From the magnitude decay of water spectroscopic signals, T2* map can be derived 

through direct exponential fitting. From the phase evolution of water spectroscopic signals, QSM 

can be generated through a standard QSM pipeline. These images from water signals (including 

anatomical image, QSM, and T2*, at 2.0×2.0×3.2 mm3 resolution) and metabolite maps (including 
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NAA, Cr, and Cho maps at 3.0×3.0×3.2 mm3 resolution) are simultaneously obtained from the 

single scan and displayed in Figure 6.20. This multi-model imaging capability of the proposed 

method may provide a valuable tool in practical applications.  

 

Figure 6.17: Comparison of localized spectra using the proposed sequences at 3T and 7T. Both 

displayed data are truncated to around 1 cm resolution and have not been reconstructed using 

subspace.  

 

 
Figure 6.18: Comparison of reconstructed metabolite maps from 3T and 7T. Both data were 

acquired on the same subject within similar scan times around eight minutes.  
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Figure 6.19: Tri-planar views of the whole brain metabolite maps (NAA, Cr, and Cho) and 

localized spectra. High quality spatiospectral distribution at high resolution (3.0×3.0×3.2 mm3 

resolution) was obtained in an 8-minute scan.  

 

Figure 6.20: Simultaneously obtained whole brain water imaging (water image, QSM, and T2*) at 

2.0×2.0×3.2 mm3 resolution and metabolic imaging (NAA, Cr, and Cho maps) at 3.0×3.0×3.2 mm3 

resolution in a single 8-minute scan. 
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The reproducibility of the SPICE sequence at 7T was also evaluated. A set of test-retest scans 

were performed on the healthy subjects. There were four scans for each subject, two sequential 

scans were performed within the same session while the other two scans were performed in one 

session of the other day. Figure 6.21 shows some representative test-retest metabolite maps from 

the four scans on the same subject. There metabolite maps were registered together for display and 

quantitative analysis. We can see reasonably reproducible metabolite maps were successfully 

obtained among different scans and different sessions. The corresponding R2-plots and correlations 

were displayed in Figure 6.22. For inner session scans, the Pearson’s correlation coefficients for 

NAA, Cr, and Cho are 0.8535, 0.8162, and 0.7031, respectively; for inter session scans, these 

Pearson’s correlation coefficients of metabolites are 0.8388, 0.8063, and 0.6993, which are very 

close to, but slightly lower than, those of inner-session scans.  

 
Figure 6.21: In vivo metabolite maps (including NAA, Cr, and Cho) from test-retest scans at 7T. 

four scans were performed on the same subject. Two sequential scans were performed within the 

same session while the other two scans were performed in one session of the other day.  
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Figure 6.22: R2-plots of in vivo metabolite maps in test-retest SPICE scans, as shown in Figure 

6.21. (a-c) are plots of metabolite maps of scans within the same session; (d-f) are plots of 

metabolite maps of scans from different sessions. Identical lines are shown in black. Pearson 

correlation coefficients are also computed and displayed. 

 

6.6 Summary  

Both phantom and in vivo studies have been carried out to demonstrate the feasibility and to 

evaluate the performance of the proposed method. The preliminary results show that the proposed 

method can provide high-quality, high-resolution metabolite maps as well as high-resolution water 

imaging at both 3T and 7T. The applications in tumor imaging shows great potential values of the 

proposed method in clinical environments. The 7T results demonstrate the benefits of ultrahigh 

field, and its signal enhancement enables whole brain coverage and higher SNR.   

  



87 
 

CHAPTER 7 – HIGH-RESOLUTION 31P-MRSI AT 

7T 

Besides 1H-MRSI, 31P-MRSI is also a promising metabolic imaging technique for the brain, whose 

great potential in probing energy metabolism has long been recognized. However, traditional 31P-

MRSI techniques for the brain are largely limited in resolution and imaging speed given the 

extremely low concentrations of phosphorus metabolites. This section introduces the work 

integrating both ultrahigh field and subspace modeling for 3D high-resolution 31P-MRSI.  

7.1 Challenges of 31P-MRSI  

As introduced in section 2.1, brain 31P-MRS/MRSI techniques are able to detect a bunch of 

resonances of high-energy metabolites and membrane phospholipids, such as PCr, ATP, Pi, NAD, 

PC, PE, GPC, GPE, etc. These metabolites are unique probes in evaluation of many aspects of 

biology processes, including ATP synthesis and consumption, oxidative phosphorylation, 

composition of cell membranes, and tissue pH distribution and changes. Since many diseases and 

disorders are related to imbalance of energy metabolism, 31P-MRSI methods have been employed 

in investigation of a range of diseases, like cancer, stroke, multiple sclerosis, and epilepsy [72]–

[74]. However, 31P-MRSI methods are rarely used in a clinical setting, caused by several technical 

impediments imposed by the low sensitivity and low concentration of phosphate metabolites. 

Given the natural signal intensity of phosphate metabolites, 31P-MRSI methods are limited to low 

resolution, small brain coverage, and prohibitory long scan time, which are even more challenging 

than 1H-MRSI.   

First, the gyromagnetic ratio of 31P is 17.2 MHz/T, which is about one third of 1H (42.6 

MHz/T). This low gyromagnetic ratio causes very low bulk magnetization of 31P, about 1/10 of 

1H, according to Equation (2.3). This difference in gyromagnetic ratio also leads a different 

resonance frequency as 1H, so a separate, specially designed RF coil is needed for excitation and 

acquisition. This additional request on hardware also limits its practical utility in some level. 

Second, the concentrations of 31P metabolites are very low in the brain. The concentrations of most 

31P metabolites are on the order of mM, metabolites like NAD have even lower concentrations (as 

shown in Table 7.1). These low concentrations lead to very limited sensitivity for these 

metabolites. Third, the frequencies of 31P metabolites are widely spread, covering a range of more 

than 20 ppm. On the one hand, the spectral peaks of metabolites are well separated, so the 
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quantification of metabolites is much easier compared with the crowded 1H MR spectrum. But on 

the other hand, RF pulses with adequate excitation bandwidth is needed, and a large sampling 

bandwidth is also required to avoid spectral aliasing, based on the Nyquist sampling theorem. In 

addition, large sampling bandwidth imposes challenges to the use of fast spatiotemporal 

trajectories as introduced in section 2.3.  

  

Table 7.1: Concentrations of typically detectable 31P metabolites in the brain. The values are 

obtained from [124].  

Given the low SNR nature of 31P MR signals, many studies use single voxel 31P-MRS, or single 

slice 31P-MRSI with very low resolution, which suffer from strong partial volume effects and lack 

the capability to resolve metabolic heterogeneity of the tissue. To achieve large brain coverage or 

high spatial resolution, the scan time will become unacceptably long. For example, a 3D 31P-MRSI 

study with a spatial resolution around one cm could easily take more than one hour, which is far 

from clinically feasible.   

 

7.2 Data Acquisition and Image Reconstruction 

As discussed in the last section, to achieve 3D high-resolution 31P-MRSI within a reasonable scan 

time, the fundamental challenge is the SNR issue. To address this challenge, we propose a 31P-

MRSI method synergistically integrating ultrahigh field, SNR-efficient acquisition sequence, and 

subspace modeling for 3D high-resolution 31P-MRSI (at 7T).  
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Figure 7.1: Pulse sequence diagram of the data acquisition sequence for 31P-MRSI at 7T. The 

sequence is based on FID-CSI sequence, integrated with NOE pulses to enhance SNR and 

optimized parameters such as short TR (200 ms), ultrashort TE (1.0 ms), and width bandwidth of 

excitation pulses.    

In data acquisition, a basic FID-based CSI sequence is used, as shown in Figure 7.1. The 

selection of this FID-CSI sequence is based on several considerations. First, the SNR of 31P 

metabolite signals is still very low even on the 7T scanners. The use of fast trajectories like EPSI 

or spiral trajectories for acceleration or higher resolution would further sacrifice SNR, which is 

not desirable in this SNR-limited scenario. Second, given the large bandwidth of 31P spectrum, 

spatiotemporal trajectories would face the trade-off between sampling bandwidth and spatial 

resolution, but CSI sequence can guarantee enough acquisition bandwidth as wanted. Third, some 

important 31P metabolites have very short T2 values, especially ATPs and NAD have T2 values 

around 15 ms. So, an FID acquisition with short TE is preferred for preserving SNR of these 

metabolites.  

The CSI sequence at 7T is optimized with several specifics. First, the RF excitation pulse is a 

SINC-based pulse with a wide bandwidth (around 10 kHz) to reduce chemical shift displacement 

error. Furthermore, the used SINC pulse is weighted by a hamming window to improve slice 

profile (reduce Gibbs ringing). Second, a minimum TE as 1.0 ms is used to maximize SNR and 

preserve short T2 metabolites. Third, TR value is selected as 200 ms, which is the minimum TR to 

cover enough temporal encodings. Similar to the discussion in section 3.1.2, the SNR efficiency 
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does not very much in the short TR range. Fourth, a weighted k-space sampling scheme is used. 

This means that the k-space locations closer to the k-space center have a greater number of 

averages. This provides good SNR efficiency and spatial response functions. Fifth, an NOE 

(Nuclear Overhauser Effects) module is added in the sequence to enhance SNR of 31P metabolites 

[125]. The NOE module saturates the proton spins near 31P nuclei using low-power RF pulses (4 

sequential rectangular pulses in each TR in our implementation) at water frequency before 

acquisition of 31P signals. Through dipolar interactions between 31P and 1H, the saturated water 

protons can enhance the magnetization of 31P metabolites.  

Compared with 1H-MRSI described in previous chapters, the processing of 31P-MRSI data is 

relatively more straightforward since it does not have sparse sampling and nuisance signals. 

Therefore, the major processing task is on signal denoising, which can be addressed using the 

learned subspace model as used for 1H-MRSI reconstruction. So the reconstruction procedure 

includes subspace learning and constrained reconstruction.  

In the subspace learning, a simplified spectral formulation is used, discarding the term of 

compensation function in Eq (5.2):  

𝑠𝑛(𝑡) = 𝜑𝑛(𝑡)𝑒−𝑡/𝑇2,𝑛+𝑖2𝜋𝑓𝑛𝑡 (7.1) 

where 𝜑𝑛(𝑡) represents the resonance frequency structure of a specific 31P metabolite; 𝑇2,𝑛 the T2 

relaxation time and 𝑓𝑛 the frequency shift. The physical basis function 𝜑𝑛(𝑡) can be generated 

from quantum mechanical simulation as 1H-MRSI. For in vivo experiments, where the broadened 

linewidth would cover J-splitting and result in single spectral peak for each metabolite, 𝜑𝑛(𝑡) can 

also be generated as a single Lorentzian function with known frequency shift. Discarding of the 

compensation function may cause model error, so a preliminary field correction step is performed 

as a pre-processing step before reconstruction or spectral fitting. More specifically, given the low 

SNR of 31P-MRSI data, a Hamming window is applied in k-space to gain SNR, then the frequency 

shifts of PCr peak (as referred to 0 ppm) are estimated as the field map for correction. This field 

correction only corrects the inter-voxel field inhomogeneity but not intra-voxel field 

inhomogeneity. Then the estimation of spectral parameters 𝑇2,𝑛 and 𝑓𝑛 can be done by fitting to 

Equation (7.1), using the time-domain fitting method as in 1H-MRSI  [115]. Then the remaining 

steps follow the subspace learning for 1H-MRSI, including re-generation of spectral signals using 
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Equation (7.1), arrangement of spectral signals into a Casorati matrix, and generation of basis 

function using SVD.  

Training data was collected using the CSI sequence as described above. Normally the training 

data has smaller resolution while higher SNR than the typical imaging data; given the long scan 

time of 31P-MRSI experiments, we directly use the imaging data for subspace learning without 

acquiring additional training data.  

With the pre-determined spectral basis functions (the matrix form is denoted as V𝑝 ), the 

reconstruction or denoising task can be done by subspace modeling incorporating anatomical 

constraints as the 1H-SPICE method. The formulation is similar to Equation (5.7) as solving the 

optimization problem: 

Û𝑝 = argmin
U𝑝

‖𝑠𝑝 − U𝑝V𝑝‖
2

2
+ 𝜆𝑝‖𝐷U𝑝‖

2

2
 (7.2) 

where 𝑠𝑝  is vector form of the noisy 31P-MRSI data in spatiotemporal domain, after Fourier 

reconstruction from (k, t)-space data. U𝑚  represents matrix form of spatial coefficients, 𝐷  the 

edge-weighted total variation operator and 𝜆𝑝 the regularization parameter. The edge weighting 

for regularization is estimated from a 1H anatomical images acquired with the 31P-MRSI scan. 

After getting Û𝑝, the reconstructed spatiotemporal function can be generated as 𝜌𝑝 = Û𝑝V𝑝.  

After reconstruction, spectral quantification of metabolites is performed using a subspace-

based fitting method [32]. For absolute quantification, γ-ATP is used as internal reference since it 

is widely regarded as three mM concentration in a normal human brain. Then the concentration of 

other metabolites is calculated based on the following formula:  

𝐶𝑝 =
1

𝑃𝑝
𝐶𝛾𝐴𝑇𝑃

𝐸𝛾𝐴𝑇𝑃

𝐸𝑝

𝑆𝑝

𝑆𝛾𝐴𝑇𝑃
  (7.3) 

where 𝐶𝑝, 𝐸𝑝, 𝑆𝑝, and 𝑃𝑝 are concentration, T1 factor, signal intensity (area under the spectrum), 

and contained number of 31P of a specific metabolite, respectively. The T1 factor is computed as 

follows:  

𝐸 =
(1 − 𝑒−𝑇𝑅/𝑇1) sin 𝛼

1 − cos 𝛼 𝑒−𝑇𝑅/𝑇1
  (7.4) 
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where 𝛼 and 𝑇𝑅 are flip angle and TR of the sequence, respectively. T1 values of metabolites are 

obtained from literature reported values [126].  

 

7.3 Experimental Results  

The 31P-MRSI experiments were performed on a 7T MR scanner (Siemens Healthcare, Erlangen, 

Germany) equipped with a single channel, dual-channel 31P-1H quadrature TEM head volume coil. 

Experiments were performed on both phantom and healthy subjects. The phantom is a home-made 

bottle phantom filled with water-based liquid and ATP of 10 mM concentration. The in vivo 

experiments were performed under the approval of the Institutional Review Board of University 

of Minnesota, and written informed consent was obtained before the scans. The sequence protocols 

slightly vary between scans. One typical set of CSI parameters for in vivo scan are as follows: FOV 

= 220×220×100 mm3, matrix size = 24×24×8; resolution = 9.1×9.1×12 mm3, TR = 200 ms, TE = 

1.2 ms, bandwidth = 5000 Hz, vector size = 1024, average (k-space weighted) = 12, flip angle = 

30˚, scan time = 15 minutes. The slight modifications based on this protocol will be specially 

discussed below.  

In phantom experiments, the only difference in scan protocol compared with the protocol 

mentioned above was fewer number of averages. Only six averages were acquired for phantom 

experiments, resulting in a scan time of 9:45 minutes. Figure 7.2 shows a set of such phantom 

results to illustrate the denoising performance of the proposed method. The spatial distributions of 

three ATPs (including γ-ATP, 𝛼-ATP, and β-ATP) and spectra from a selected spatial location are 

displayed. Both metabolite maps and spectra show that the 31P-SPICE method could largely reduce 

the measurement noise and produce high-quality results.  

Figure 7.3 shows a set of representative in vivo results (using the same 15-minute scan protocol 

as mentioned above). From the spectra from a selected spatial point within the brain, we could see 

that the original 31P-MRSI are very noisy, with only the peak of PCr (which has the highest 

concentration) visible. Signals of other metabolites like ATPs were buried under the large 

measurement noise. After SPICE reconstruction, signals of these metabolites became much more 

visible. The improvement is also obvious in the resulting metabolite maps (including PCr, γ-ATP, 

and 𝛼-ATP). This shows that the proposed method is able to obtain reasonable 3D 31P metabolite 

maps at a nominal resolution of 9.1×9.1×12 mm3 in a 15-minute scan.  
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One important question 31P-MRSI is used to study is the metabolite contrast between gray 

matter and white matter. The contrast of 31P metabolites is difficult to be directly investigated using 

single voxel 31P-MRS and typical low-resolution 31P-MRSI methods. In this work, the metabolite 

contrast is evaluated using the 31P-SPICE method. To gain enough SNR for the analysis, the 

proposed sequence was repeated twice in data acquisition, taking a total 30-minute scan time. 

Figure 7.4 shows the metabolite maps including PCr, γ-ATP, 𝛼-ATP, GPC, and PE obtained in the 

scan. A T1-weighted images acquired in the same scan and the derived masks of tissues (including 

gray matter, white matter, and CSF) are also displayed as reference. High-quality spatial maps of 

these metabolites were successfully obtained. Comparing with the proton images, we could 

qualitatively see some level of contrast in these metabolite maps. Figure 7.5 shows the quantitative 

comparison of metabolite concentrations between gray matter and white matter. Based on the box 

plots, the concentrations of γ-ATP and 𝛼-ATP were quite uniform between gray matter and white 

matter, the concentration of PCr in gray matter was higher than that of white matter, while white 

matter has a higher concentration of GPC than gray matter. These observations match the previous 

studies in literature [127]. This indicates that the resolution of the proposed method might have 

the capacity to address partial volume effect and resolve the metabolite difference between gray 

matter and white matter.  

  

Figure 7.2: Representative 31P-MRSI results obtained from an ATP phantom before and after 

denoising using SPICE.   
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Figure 7.3: Representative 31P-MRSI results obtained from a healthy subject before and after 

SPICE reconstruction, including localized spectra and metabolite maps.   

 
Figure 7.4: Metabolite maps obtained from a healthy subject in a 30-minute scan for metabolite 

contrast analysis. T1-weighted images, masks of tissues, and metabolite maps are shown.  
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Figure 7.5: Box plots of metabolite concentrations between gray matter and white matter, including 

PCr, γ-ATP, 𝛼-ATP, and GPC.  

NAD is one biologically important metabolite detectable by 31P-MRSI. However, due to the 

low concentration of NAD in human brain (around 0.4 mM), it is very challenging to map NAD 

distributions using traditional 31P-MRSI methods. To achieve enough SNR for NAD mapping, we 

used a long 31P-MRSI scan with lower resolution. More specifically, the acquired matrix size was 

reduced to 15×15×13, and the scan time was along 50 minutes. Under this long scan time and low 

resolution, the resulting SNR would become possible to achieve good estimation of low 

concentration metabolites like NAD. Figure 7.6 shows the high-quality spectrum obtained from 

the scan. The spectral peaks of 31P-metabolites (including PCr, γ-ATP, 𝛼-ATP, β-ATP, NAD, Pi, 

GPC, GPE, PC, and PE) can be clearly observed and well separated with each other. Since the 

signal of NAD is overlapped with γ-ATP in spectrum, a spectral fitting was performed to resolve 

these metabolites. The fitting results are also included in Figure 7.6, which show that the spectral 

fitting method can successfully resolve the metabolites and the resulting residual is near noise 

level. Figure 7.7 shows spatial maps of the full spectrum of 31P metabolites obtained from this 

scan, including NAD. Based on the quantification, mean concentration of NAD within the brain is 
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0.417 ± 0.091 mM, which is close to previously reported value [128]. This shows that the proposed 

method may provide a potentially powerful imaging tool for NAD mapping.  

 
Figure 7.6: A localized spectrum (in blue) obtained from the 50-minute scan, the fitted spectrum 

by spectral quantification (in black) and difference (in red) are also shown.  

 

Figure 7.7: Spatial maps of a full spectrum of 31P metabolites obtained from a 50-minute scan, 

including PCr, γ-ATP, 𝛼-ATP, β-ATP, NAD, Pi, GPC, GPE, PC, and PE.  
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7.4 Summary  

In this chapter, ultrahigh field, fast acquisition sequence, and subspace modelling are integrated to 

achieve high-resolution 31P-MRSI. Both phantom and in vivo experiments have been performed. 

Experimental results show that the proposed method can significantly reduce the measurement 

noise and produce high-quality, high-resolution 31P-metabolite maps at 7T. Potential of the method 

in imaging brain metabolic heterogeneity and mapping low-concentration metabolites like NAD 

are also successfully demonstrated.  
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CHAPTER 8 – CONCLUSIONS AND FUTURE 

DIRECTIONS 

8.1 Summary and Conclusions  

This thesis research has presented a novel imaging method based on SPICE framework for fast 

high-resolution MRSI. The presented method synergistically integrates fast acquisition sequence, 

subspace modelling, and machine learning to make the imaging capability of achieving three-

dimensional high-resolution MRSI within a practically acceptable scan time possible. This 

approach has been used for high-resolution 1H-MRSI at both 3T and 7T, and applied to high-

resolution 31P-MRSI at 7T.  

For 1H-MRSI at 3T, the proposed acquisition sequence is characterized by several unique 

features including FID-based acquisition with ultrashort TE, short TR which maximizes SNR and 

acquisition efficiency, elimination of water/lipid suppression, EPSI trajectories with a large echo-

space, motion navigators, and sparse sampling of (k, t)-space in variable density to extend spatial 

resolution. Combining these features provides remarkable efficiency and robustness for data 

acquisition, making the SPICE technique feasible for practical and clinical applications. In data 

processing, a union-of-subspace model is used to represent the overall signals containing water, 

lipid, and metabolite signals. This subspace modelling significantly reduces the degrees-of-

freedom in representing the high-dimensional spatiospectral signals in high-resolution, and it also 

enables incorporation of spatial and spectral priors in processing. Moreover, the subspace 

structures of different molecules are pre-learned using both physical priors from quantum 

mechanics simulation and distribution priors from training data. These processing features make 

the reconstruction and separation of signals from the noisy and sparse measurements possible. As 

a result, high-quality metabolite maps at 2.0×3.0×3.0 mm3 nominal resolution with unsuppressed 

water signals at 2.0×1.0×1.0 mm3 resolution can be obtained in an 8-minute scan.  

Both phantom and in vivo experiments were carried out to validate and evaluate the 

performance of the proposed method. The accuracy and reproducibility of the proposed method 

have been preliminarily validated. Compared with the low-resolution version of SPICE, the 

proposed method not only provided much higher resolution of metabolite signals, but also showed 

improved capabilities of water imaging in capturing brain fine-structural features, reducing lipid 

contamination, and recovering signal drop and distortion in large susceptibility regions. The 
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proposed method was also applied to a small cohort of tumor patients to demonstrate its values in 

clinical environments. The preliminary results have shown impressive potential of the proposed 

method in capturing metabolite alteration of small-size brain tumors, imaging intra-tumoral 

metabolic heterogeneities, providing biomarkers for noninvasive tumor grading, and evaluating 

therapeutic efficiency by detecting metabolic responses. This imaging tool should also be of 

interest for many other clinical applications, like stroke, brain injury, and neurodegenerative 

diseases.  

Ultrahigh field is especially beneficial for MRSI given the enhanced MR signal and more 

separate spectral resonances. The proposed method was also implemented on 7T to take advantage 

of the benefits provided by increased field strength. In current implementation, the enhanced SNR 

was utilized to pursue whole brain coverage without increasing scan time, which is desired by 

many neuroscience studies. By changing the EPSI readout to slice direction and sub-sampling the 

metabolite signals, the proposed method could achieve whole brain metabolite mapping at 

3.0×3.0×3.2 mm3 nominal resolution in the same 8-minute scan time. Moreover, the unsuppressed 

water signals also provided valuable data and information for correction of the increased system 

imperfections at ultrahigh field. The effectiveness of the method in correcting effects caused by 

B0 and B1 inhomogeneity at 7T and in recovering the sparse sampling of (k, t)-space measurements 

were well demonstrated in phantom experiments. In vivo experiments were also carried out at 7T, 

and the preliminary results have shown the SNR and contrast improvement brought by ultrahigh 

field.  

With the power of ultrahigh field, the proposed method was also applied for high-resolution 

31P-MRSI to map high-energy brain metabolites at 7T. The challenges of 31P-MRSI are relatively 

more straightforward than 1H-MRSI, mainly on poor SNR. The subspace modelling method of 

SPICE was integrated with an optimized CSI sequence at 7T to address this challenge. The 

experimental results from both phantom and healthy subjects have demonstrated the effectiveness 

of the proposed method in noise reduction and production of high-quality, high-resolution 

metabolite maps within an acceptable scan time. Its potential in imaging brain metabolic 

heterogeneity and mapping low-concentration 31P-metabolites like NAD were also successfully 

demonstrated. With more development in receiving coil and acquisition sequence, the imaging 

capability should be further improved.  
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In summary, this thesis research has shown the encouraging progress of SPICE for high-

resolution MRSI, from proof-of-concept to a practical imaging technique. The preliminary results 

have demonstrated its feasibility and capability in multiple aspects, from 3T to 7T, from 1H-MRSI 

to 31P-MRSI. Its impressive imaging capabilities have been thought impossible but have been 

dreamed about by scientists and clinicians for many years. With further development, the SPICE 

method would provide a powerful metabolic imaging tool to map the metabolic fingerprints of 

brain function and diseases, opening many unique opportunities for neurological, psychiatric 

studies, and a large range of clinical applications.  

 

8.2 Future Directions  

Besides the presented imaging methods, SPICE provides a very unique platform for the 

development for many other imaging techniques. Given current exciting progress, there are 

numerous future research works and developments that can be built on this work. A few of them 

are discussed as follows, including machine learning, multi-contrast imaging, and neurotransmitter 

mapping.  

8.2.1 Machine learning 

Recent years have witnessed the tremendous progress on machine learning and artificial 

intelligence, especially the development of large scale deep neural networks. Benefited from the 

increased access to large datasets, significantly improved computation power, and developments 

of well-developed, open deep learning toolbox in near decades, machine learning, especially deep 

learning techniques have innovated a lot of areas such as computer vision. Machine learning 

methods have also been extensively applied to medical imaging regarding to many different 

aspects, such as image segmentation, image reconstruction, and image analysis [129]–[131], 

achieving very encouraging results. The capability and benefits of machine learning techniques 

have been greatly recognized by the MR society, and they are being to be applied to almost every 

aspect of the MR research.  

Current spectral priors used in this work are used in the form of linear subspaces, as the union-

of-subspaces model presented in section 5.1. Additionally, only a small number of training data 

are used currently. To further reduce the measurements needed for imaging, or enable higher 

quality reconstruction from the noisy data, stronger prior knowledge is necessary. This could be 
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potentially achieved in two ways: one is to obtain prior information from a much larger set of 

training data, and the other one is to obtain better priors from the training data. Given the emerging 

progress on deep learning, and more and more data available for training, it is expected that deep 

learning-based methods can provide better ways to utilize the prior information embedded in the 

training data. The prior information can be in many forms, such as spatial constraints, spectral 

constraints, specific distribution, and so on. With such large flexibility and rich information, 

machine learning type of methods should lead to better reconstruction and processing results for 

MRSI. Our group already has a few works utilizing the power of machine learning in some specific 

MR applications [132], [133], and we will keep moving forward in this direction.  

8.2.2 Multi-contrast imaging 

One beauty of MR techniques is that different contrasts can be generated with different pulse 

sequences and parameters. After about 40 years since its development, numerous MRI methods 

have been developed for generating different image contrasts for specific applications. For 

example, structural imaging methods with T1-weighting, T2-weighting, or susceptibility 

weighting, have been widely used for anatomical examination; functional imaging, especially 

BOLD (blood oxygenation level dependent)-fMRI has been the indispensable tool for neurological 

studies; diffusion imaging has been popular for studying white matter fiber structures and 

diagnosis of ischemic stroke; perfusion imaging has also been used for brain functional studies or 

tissue viability assessment; quantitative imaging methods such as T1 mapping, T2 mapping, and 

QSM have been recently welcome for tissue characterization; and metabolic imaging as described 

extensively in previous chapters. These different contrasts provide complementary biological 

information, and it has been shown that combining multiple imaging modalities can better 

characterize the tissue and can help improve diagnosis sensitivity and specificity.  

However, traditional MR imaging paradigm is to acquire these contrasts one by one with 

separate pulse sequences, which takes very long scan times and brings challenging registration 

issues. In recent years, quite a few works on simultaneous multi-contrast imaging have been 

drawing more and more attention, such as MR fingerprinting (MRF), MR multitasking, STAGE 

(STrategically Acquired Gradient Echo) imaging, and EPTI (echo planar time-resolved imaging) 

[134]–[137]. Current multi-contrast methods are only focused on imaging of water signals, thus 

not including metabolic imaging capability.  
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As described in previous chapters, the proposed pulse sequence for 1H-MRSI does not suppress 

water signals, so it provides tremendous flexibility for simultaneous metabolic imaging and water 

imaging. In one acquisition, the metabolite signals can be used for metabolite mapping, and the 

unsuppressed water signals can be utilized for imaging many other traditional MRI modalities. 

More specifically, without any modification, current sequence already provides entire FID signals 

including T2
* decay and phase evolution, so structural imaging as typical GRE images and SWI 

images, and quantitative maps of T2
*, QSM, and myelin water fraction (MWF) maps can be 

generated from current sequence [89], [92]. Current FID-based acquisition is very flexible to be 

integrated with other acquisition modules to generate specific contrast. For example, with 

interleaved echo volume imaging navigators, the sequence has been extended for simultaneous 

functional imaging (BOLD-fMRI) and metabolic imaging; with variable flip angle and T2 

preparation pulses, the sequence can be used for simultaneous T1/T2 parameter mapping and 

metabolic imaging; with a diffusion preparation pulses, simultaneous diffusion imaging and 

metabolic imaging has also been shown feasible. Based on these progresses, it can be expected 

that with further development, the proposed method can provide a very special imaging technique 

for simultaneous metabolic imaging, structural imaging, quantitative imaging, and functional 

imaging within a practical scan time.  

8.2.3 Neurotransmitter mapping 

As introduced in section 2.1, neurotransmitters glutamate and GABA play central roles in 

excitatory and inhibitory neurotransmission process, respectively. Mapping neurotransmitters can 

provide valuable insights on brain functionality and the underlying physiology of many mental 

disorders like schizophrenia, anxiety disorders, and depression [53]–[58]. However, there are 

several long-standing technical difficulties for neurotransmitter mapping using 1H-MRSI. As the 

difficulties of typical 1H-MRSI methods, it suffers from low sensitivity and huge nuisance signals, 

thus is limited in low-resolution and long scan time. Moreover, the resonances of glutamate are 

largely overlapping with glutamine, and the resonances of GABA are largely overlapped with 

NAA, glutamate/glutamine, creatine, and broad macromolecule resonances. These sensitivity and 

spectral overlapping issues make neurotransmitter mapping very challenging. Current MRSI 

methods exploit multi-TE J-resolve or J-editing techniques to address the spectral overlapping 

issue, but these techniques require additional scan time. Therefore, most current neurotransmitter 
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mapping methods are limited to single voxel or very low spatial resolution, which cannot fulfill 

the practical research and clinical needs.  

Current 1H-SPICE method provides high-resolution mapping of several metabolites with high 

concentrations and little overlapping with other metabolites, like NAA, Cr, Cho, Ins, and Glx 

(combination of Glu and Gln), but it has good potential to map neurotransmitters via additional 

extension or improvements. The acquisition features and subspace-based processing methods can 

be easily adapted and utilized to address the imaging problems of neurotransmitter mapping 

techniques. In addition, ultrahigh field as 7T can provide significantly enhanced SNR and better 

spectral separation, which are very beneficial for neurotransmitter mapping methods. So the 

experience of this thesis research at 7T will also benefit the development of neurotransmitter 

mapping techniques. Our group has already done some preliminary works using SPICE for J-

resolved MRSI at 3T [138], showing very encouraging results. Based on the progress, SPICE 

should be able to provide a more powerful imaging tool to neurotransmitter mapping in the near 

future.   
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