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ABSTRACT

In the last few years, online learning has become increasingly prevalent in the student learning

experience. With the advent of Massive Open Online Courses (MOOCs) and online courses

at colleges and universities, course discussion forums have become an important medium for

students to get help and ask questions. These discussion forums are also a medium to get

to know other students and participate in class discussion activities.

The critical feature of large-scale course discussion forums is that, as the number of stu-

dents learning online scales, the number of help-seeking questions scale, which can be met

with the following options: (1) an increase in the number of course staff attending to these

questions, (2) presence of an engaged community of students to actively help out each other

or (3) to develop a technique in a way that these critical help-seeking discussion posts can

be filtered out from the non-help-seeking posts in order to allow the course staff to deal with

them in an efficient manner.

In this work, we used a discussion forum dataset from a chemistry course as the pri-

mary source of data for the investigations and experiments. We explore the use of Natural

Language Processing (NLP) techniques in order to train models to classify a given text as

help-seeking or non-help-seeking. We will explore the use of labeled text data from related

domains to expand the primary dataset and experiment with transfer learning to improve

classification performance.

We also performed a Social Network Analysis (SNA) to determine the correlation between

the amount of student interaction on the discussion forums to the course outcome that they

received. This work is followed up with a UI/UX exploration of integrating the findings from

our work into the existing online course discussion forum experience.
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Chapter 1

INTRODUCTION

1.1 Motivation

In the last few years, there has been a great surge in the number of online courses and the

sheer number of people learning through these online courses. The COVID-19 pandemic,

and the ensuing changes to people’s lifestyles, have caused a vast number of universities

to migrate their course delivery infrastructure to online [1]. Along with these changes, the

pandemic has led to more people choosing to work and/or study from home, which has led

to more free time in their lives, which would have otherwise been spent in commuting or

other obligations.

Although the pandemic has greatly accelerated the growth of online learning, this trend

has been rising for a long time. The rapid growth of online learning technology and on-

line connectivity over the past decade has led to universal access to high-quality education

materials irrespective of geographical location.

With for-profit (Coursera, edX) as well as non-for-profit efforts (MIT OCW, Khan Academy),

there has been a rapid popularization of the concept of Massive Open Online Courses

(MOOCs). MOOCs are large-scale online courses that anyone can enroll in. The space of

MOOCs comprise of free-to-access as well as pay-to-access (one-time payment/subscription)

courses.

The mode of delivery of content in MOOCs or other online courses is usually in the form

of recorded video lectures or textual content like lecture notes or even a combination of these

two different media. The content of the MOOC is often supplemented with assignments or

exercises that the students need to take to strengthen their understanding of the underlying

concepts taught. Furthermore, in order to facilitate discussion between the students taking

the course and also to act as a means for seeking help from instructors or other students,

online courses also have course discussion forums. These discussion forums also serve as

a medium for instructors or other course staff to effectively convey relevant and important

information to the students. This information can either be supplemental content or logistical

information related to the everyday course affairs.
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MOOCs by nature, have large numbers of enrolled students. This can often lead to

difficulties in answering student questions in a timely manner. Because the number of course

staff monitoring discussion forums is often much lower than the number of enrolled students,

the burden of answering student questions cannot solely rest on the shoulders of the course

staff. Engaged discussion forums where students help each other and answer questions of

other students has been shown to lead to a better student experience [2]. However, motivating

students to take time out and participate in the discussion forums is a challenge.

For whatever reason, if a course discussion forum is not engaged from a help-giving per-

spective, it can lead to increased burden on the course staff to answer questions. In such

situations, it can be useful to figure out which discussion posts are help-seeking in nature so

that course staff can give immediate attention to such posts. Since going through discussion

posts and determining if they are help-seeking or not is often a time-consuming process, it is

interesting to explore if such a filtering is feasible by leveraging Natural Language Processing

(NLP) techniques.

In this thesis we will conduct all of our experiments on a dataset that we will refer to as

the CHEM dataset, which consists of discussion posts from seven semesters of a chemistry

course offering at UIUC.

From a text classification perspective, we also explore the use of transfer learning and

techniques to expand the training corpus from similar data distributions.

In this thesis, we also look at determining if an increased participation in discussion forums

leads to an improved student outcome in the course.

Lastly we explore the design of a UI/UX for course discussion forums, inspired by our

findings in the thesis.

1.2 Problem Statement

1. To what extent can text classification techniques from the field of NLP be used to classify

student posts as help-seeking or not help-seeking. We also look at techniques like transfer

learning and training corpus expansion from similar data distributions, with the aim of

improving classification performance.

2. To what extent does an increased participation in course discussion forums lead to a

better student course outcome.

3. To design a UI/UX for course discussion forums inspired by the findings from our work.
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1.3 Structure of the Thesis

Chapter 2 goes into the relevant theory behind the NLP, graph theory and Social Network

Analysis (SNA) techniques that we will make use of in our work.

Chapter 3 addresses the problem of text classification of help-seeking for course discussion

forum posts.

Chapter 4 addresses the problem statement of determining the influence of discussion

forum participation in the course outcome for students.

Chapter 5 addresses the problem of designing a potential UI/UX for course discussion

forums.

Chapter 6 is the conclusion and summarizes the findings from our work and addresses the

possible future extensions of our work.
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Chapter 2

THEORY

2.1 TF-IDF

Term Frequency - Inverse Document Frequency (TF-IDF) measures which words in a docu-

ment are important (frequent) and unique (discriminative) [3].

Term Frequency (TF) simply measures the frequency of a word in a particular document.

In order to compute the term frequency of a word w in a document d: TF (w, d) = n[w,d]
N

,

where n[w, d] is the number of occurrences of a w in d, and N is the total number of words

in a document (length of the document).

Inverse Document Frequency (IDF) measures the rarity of a particular word in the corpus.

The IDF of a word w is computed as follows: IDF (w) = log N
df(w)

, where N is the total

number of documents in the corpus and df(w) represents the number of documents that

contain the word w.

The TF-IDF of a word w in a document d is computed by multiplying the term frequency

of the word in the document by the inverse document frequency of the word in the corpus.

This explanation for TF-IDF was compiled using the help of [3].

2.2 Naive Bayes

Naive Bayes is used to estimate the probability that a document belongs to a particular

class. This estimation can be expressed as following, where ĉ is the predicted class, d is a

given document and C is the set of all possible classes: ĉ = argmaxc∈C P (c|d). Using Bayes

theorem we get that P (c|d) = P (d|c)P (c)
P (d)

. Since, P (d) = 1, we can represent the predicted

class computation as follows:

ĉ = argmaxc∈C P (c|d) = argmaxc∈C P (d|c)P (c)

Now, in order to estimate P (d|c), we can make use of the bag-of-words model which assumes

that each word in the document is independent of any other word occurrence. This means
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that if a document d can be represented using the following bag of word representation

(w1, w2, ...wn), then:

P (d|c) = P (w1, w2, ...wn|c) = P (w1|c) · P (w2|c) · ... · P (wn|c)

This explanation for Naive Bayes was compiled using the help of [3].

2.3 Logistic Regression

Logistic regression (LR) is an approach for classification problems where the output is binary.

Logistic regression uses the sigmoid function in the hypothesis definition. The sigmoid

function g can be expressed as follows:

g(z) = 1
1+exp−z

The sigmoid function is incorporated into the hypothesis definition as follows:

hθ(z) = g(θTx) = 1
1+exp−θT x

In the above formulation, θ represents the learned weights, and x represents an input feature.

The derivative of a sigmoid is simple to compute and can be expressed as follows:

g
′
(z) = g(z)(1− g(z))

We can formulate the probability of binary classification output y as follows:

P (y = 1|x; θ) = hθ(x)

P (y = 0|x; θ) = 1− P (y = 1|x; θ) = 1− hθ(x)

This can be expressed more concisely as follows:

p(y|x; θ) = (hθ(x))
y(1− hθ(x))

1−y

Assuming that examples are independent and identically distributed and we have m exam-

ples, we can express the loss function L(θ) as follows:

L(θ) =
∏m

i=1(hθ(x
(i)))y(i)(1− hθ(x

(i)))1−y(i)

We can choose to maximize the log likelihood instead, using the following formulation:∑m
i=1 y

(i) log hθ(x) + (1− y(i)) log (1− hθ(x
(i)))

This explanation for logistic regression was compiled using the help of [4].
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Figure 2.1: Diagrammatic representation of an LSTM cell (taken from [6])

2.4 Support Vector Machine (SVM)

Support vector machines try to find an N -dimensional hyperplane that tries to classify the

data points using the largest possible margin. SVMs make use of the hinge loss which can

be described as follows [5]:

l(y) = max(0, 1− t · y)

In the above formulation, t is the intended output, which can either be +1 or −1, and y is

the output of the SVM classifier. Here, t, the model output can be represented as a function

of the model parameter w and the input x as:

t = wTx

Thus, if we have m training examples and n-dimensional feature space, the SVM objective

that we need to minimize is the following:

minw
1
2

∑n
i=1w

2
i +

∑m
j=1 max(0, 1− tj · yj)

This explanation of SVMs was compiled using [4].

2.5 Long Short Term Memory (LSTM) and Gated Recurrent Unit

(GRU)

LSTMs are a kind of Recurrent Neural Network (RNN) that is able to capture long-term

dependencies in sequential data [6]. LSTMs maintain a memory cell and hidden state that
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Figure 2.2: Structure of BERT architecture (taken from [10])

gets passed along the different LSTM cells [7]. LSTMs contain three gates (input, output

and forget gates) that determine how much of the input and state should be preserved and

passed on in the network [6]. Figure 2.1 demonstrates the structure of an LSTM cell.

LSTM cells are chained together in practice. LSTM chains can be bidirectional as well

as unidirectional. A unidirectional LSTM only propagates information forwards, whereas

bidirectional LSTMs propagate information in both directions. We will make use of bidi-

rectional LSTMs in our implementation. Furthermore, we will use the many-to-one LSTM,

wherein many LSTM cells are chained together to produce a single output. This explanation

of LSTMs is compiled using [8].

GRUs are very similar to LSTMs, and can be considered as a simplification of the LSTM

structure [9].

2.6 Bidirectional Encoder Representation from Transformers

(BERT)

The BERT model architecture consists of a multi-layer bidirectional transformer encoder.

BERT consists of two phases: pre-training and fine-tuning. The first phase refers to language

model pre-training. This pre-training is done on an unlabeled dataset, which in the context of

BERT is the BooksCorpus and English Wikipedia. Pre-training has been shown to improve

the performance of NLP tasks. Then, once the model has been pre-trained, it is fine-tuned

on downstream NLP tasks, which in the context of this thesis, would be text classification.

7



Figure 2.3: General transfer learning setting (taken from [11])

This explanation was compiled using [10]. Figure 2.2 is a diagrammatic representation of

the BERT architecture.

2.7 Transfer Learning

Transfer Learning is a technique in which knowledge is extracted from a source setting, and

applied to a different target setting [11]. The classical supervised learning setting is limited

by the amount of labeled data that is available for training. Transfer learning allows us to

deal with situations where enough labeled data is not available for the task that the model

is trying to solve for. In particular, transfer learning leverages labeled data from a different,

but related domain or task [11]. Figure 2.3 illustrates the general transfer learning setting.

Figure 2.4 illustrates the most popular transfer learning scenarios in NLP. Of these, domain

adaptation and sequential transfer learning will be of particular interest to us.

Domain adaptation is used when the source and target settings solve for the same tasks,

however, labeled data is only available for the source task. Furthermore, the source and

target data also arise from different domains. In such a scenario, domain adaptation tries to

bridge the gap between the difference in domains such that a model trained on the source

setting can effectively generalize to the target setting [12].

Sequential transfer learning is becoming an increasingly popular technique in NLP. In this

setting, labeled data is available for the target domain, and the source and target settings

solve for different tasks. The source and target tasks are learned sequentially, such that the

knowledge learned from the source setting helps in learning parameters for the target task.

For example, in BERT, the source dataset consists of a large unlabeled corpus of text on

which it is pretrained. Then, each downstream task represents a target task which the model

is fine-tuned on [11].

8



Figure 2.4: Types of transfer learning scenarios (taken from [11])

2.8 Graphs

Graphs can be represented using a set of nodes V and a set of edges E. Each edge connects

two nodes in the graph. The nodes that are connected by an edge are considered neighbors.

When a graph is traversible in both directions, it is an undirected graph. On the other

hand, a graph can be directed, which means that any edge between two nodes can only be

traversed in one direction.

The degree of a node in a graph is mathematically equivalent to the number of edges that

have that particular node as an endpoint.

The adjacency matrix of a graph is a square matrix (of size |V | × |V |) which holds infor-

mation about which pairs of nodes in a graph are neighbors (or adjacent). An element of

the adjacency matrix (av,t) is 1 if v and t are neighbors and 0 otherwise [13].

This explanation for graphs was compiled using the help of [14].
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2.9 Centrality

Centrality is a score given to nodes in a graph, based on how “important” or “influential”

the node is with respect to the network.

Degree Centrality: This is one of the simplest measures of the centrality of a node.

The degree centrality of a node is computed by counting the number of direct links (edges)

shared with other nodes. [15].

Eigenvector Centrality: The eigenvector centrality score for a node i can be represented

using ci and expressed as follows:

ci =
1
λ

∑
j∈G ai,jcj

In the above equation, G is a graph, ai,j is the adjacency matrix element corresponding to

the nodes i and j and λ is a constant. By rearranging the above equation we get the following

where A is the adjacency matrix:

Ac = λc

The eigenvector centrality is then the greatest eigenvalue obtained using the above equation.

This explanation for eigenvector centrality was compiled using [16].

Pagerank Centrality: The pagerank centrality of a node v can be represented as PR(v)

and expressed as follows:

PR(v) = (1− c) + c
∑

t∈Pntin(v)
PR(t)

|Pntout(t)|

In the above expression, c is a damping factor in the range [0,1], Pntin(v) is the set of

nodes pointing to v, and Pntout(t) is the set of nodes pointed by t.

This explanation was compiled using [17].
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Chapter 3

TEXT CLASSIFICATION OF HELP-SEEKING

3.1 Introduction

In this chapter of the thesis, we will be developing NLP models to classify a discussion

forum post as help-seeking in nature or not. One of the fundamental questions that we

intend to answer in this chapter is: To what extent can the help-seeking nature of discussion

forum posts be accurately detected using popular natural language processing techniques in

the field of text classification? Given the relatively small size of our initial labeled dataset

(the CHEM dataset), we will also explore the use of transfer learning, techniques to expand

this corpus and to what extent these techniques lead to improved performance. One of

the most important criteria that we need to ensure when we expand our existing training

corpus is that the added data comes from a similar distribution as the CHEM dataset.

In our study, we identified the Stanford MOOCPosts dataset [18] and the r/HomeworkHelp

subreddit (https://www.reddit.com/r/HomeworkHelp/) as possible data sources to expand

our existing dataset.

On a broader level, the goal of this exploration is to inform the possibility of automatically

filtering discussion posts on a learning forum as help-seeking or non-help seeking. This

classification can direct the course staff’s immediate efforts toward these urgent help-seeking

posts, with the aim of improving the student experience by providing timely help. In Chapter

5, we will explore a direct application of the work in this chapter to a UI/UX for course

discussion forums.

3.2 Technical Problem Statement

1. Experiment with classical machine learning (ML) models (naive bayes, logistic regression,

SVM), RNN-based NLP models (GRU, LSTM) and pre-trained transformer model (BERT)

to determine the best performing model on the HS text classification task on the CHEM

dataset.

11
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2. To identify similar-domain text corpora to the CHEM dataset and explore transfer learn-

ing and corpus expansion as techniques to potentially boost performance.

3.3 Technical Challenges

One of the central technical challenge that we face in our study is the limited quantity of

textual data that our NLP models can learn from. One of the challenges of deploying NLP

at scale is the lack of labeled data to tackle a given target NLP task. In such situations,

there are two options, one is to label this data in-house or using a data annotation service

like Amazon Mechanical Turk. The other option is to either utilize unlabeled data and adapt

it to the given task or to make use of labeled data from a similar domain and use it for the

target task. In our study, we want to explore the impact that using labeled data from a

similar domain as the target task has on the performance of an NLP model on the target

task.

3.4 Related Work

The scope of the work in this chapter falls at the intersection of the following domains:

Confusion Detection in Course Discussion Forums

With the rise of online learning, there has been a lot of work done in the field of confusion

detection in forum posts.

Agrawal et al. [19] explore the classification of confusion in discussion forums by exper-

imenting with logistic regression, SVM and naive bayes, three models that we will use in

the experiments in this chapter. However, in our work we will also be exploring the use of

RNN-based models as well as transformer-based models.

Geller et al. [20] found great success in using a pretrained BERT model on confusion

classification on raw text data and found that this approach outperformed other classical ML

models that made use of hand-designed features. In our work we will also be experimenting

with using pretrained BERT to perform confusion classification on raw textual data from

discussion forums.

Geller et al. [21] use student hashtags in the posts to detect confusion and also looked at

automatically classifying confusion in posts that do not contain hashtags, by using logistic

12



regression.

Zeng et al. [22] make use of content-related lingustic features as well as community-

related features to detect confusion in posts belonging to the Stanford MOOCPosts dataset.

This work shows that their feature-engineering driven approach outperforms other available

algorithms for confusion detection. Another important result that this work highlights is

that predicting related sentiments like “Urgency” and “Confusion” in discussion posts are

highly correlated, which means that training a classifier to predict one could effectively be

used to make predictions on the other task. This is a significant finding, and we will be

making use of this result in our work when applying transfer learning on models trained on

a different distribution than the target dataset distribution.

Transfer Learning/Domain Adaptation for Confusion Detection in Course
Discussion Forums

Bakharia et al. [23] pointed out that their study observed an inability for models trained on

one MOOC to generalize and perform well on MOOC posts belonging to a different domain.

This work also highlighted the need for future work in the space of transfer learning and

domain adaption as possible ways to deal with this lack of generalization.

Brahman et al. [24] found that “Confusion” and “Urgency” text classification tasks on

the Stanford MOOCPosts dataset are strongly correlated tasks. This shows that a text

classification model trained on one task would be able to generalize well to the other task.

This work also demonstrates that training on correlated tasks in a multi-task learning setup

lead to an improvement in recall when compared to the single-task setup. This shows that a

multi-task learning approach enabled their model to learn hidden abstractions that it would

not have learned otherwise.

Zeng et al. [25] proposed an algorithm for expanding the training corpus using unlabeled

data from a different MOOC by considering examples that are the most dissimilar to ex-

amples in the labeled dataset, but that the classifier has a high prediction confidence in.

This work assumes a setting where there are two distributions of data: the source and target

domains, where we have labeled data for the source domain but the target domain is the task

that we want to optimize for, but which does not have a labeled dataset. The work found

that their approach outperforms other domain adaptation models in the target domain. The

work also found that domain adaption using their approach gave better performance than

only using the labeled source dataset in training.

Wei et al. [26] apply transfer learning to the Stanford MOOCPosts dataset by evaluating

the performance by training on one domain (subject matter) and evaluating on the other

13



domain. It is important to note that the Stanford MOOCPosts dataset consists of data from

three different domain areas (humanities/sciences, medicine and education) [18].

3.5 Data

3.5.1 UIUC CHEM Dataset

This is the primary dataset that we will use for all of our experiments. This dataset was

compiled and assembled by the iLearn group at UIUC. The dataset as a whole, contains

discussion forum posts obtained from seven semesters of a UIUC chemistry course. The text

data that we obtained from the discussion forums was anonymized such that the identity of

the student is completely protected. Furthermore, the data was collected and was available

for analysis only after the completion of the course and after the grades had been finalized

[27].

Just like any internet forum, there are different levels for any given discussion to take

place. We will be using the term “Level-0” posts to refer to discussion posts that are not

made as a response to any other posts, but that are directly initiated by a student. On the

other hand, we will use the term “Response-Level” posts to refer to posts that are either

responses to “Level-0” posts or another “Response-Level” post.

However, for this chapter, we will restrict our experiments to only “Level-0” posts. This

means that we will only seek to classify “Level-0” posts as either help-seeking or not.

The “Level-0” posts are either categorized as “not help-seeking” (label 0) or “help-seeking”

(label 1). More specifically within the help-seeking category we have observed three distinct

ways of seeking help [28]:

1. Straight questions

2. Implicit appeal to the community for help

3. Explicit appeal to the community for help

However, for this study we have made a simplification by unifying all of these different

ways of help-seeking into a single category representing help-seeking intent.

3.5.2 Stanford MOOCPosts Dataset

The Stanford MOOCPosts dataset contains 29,604 anonymized student posts from eleven

Stanford Public Online courses [18]. The reason that we decided to use this dataset to

augment the UIUC CHEM dataset is that both come from roughly similar distributions, i.e
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student posts from online course discussion forums. One of the main differences between

these two datasets is that is our primary dataset consists of chemistry-related posts, how-

ever the Stanford MOOCPosts dataset includes data from courses in humanities/sciences,

medicine and education [18]. Despite the differences in domain or subject matter, we expect

the linguistic patterns of seeking help to be similar, which would in turn allow our NLP mod-

els to learn from a larger sample of data. The other critical difference is that unlike the UIUC

CHEM Dataset, the Stanford MOOCPosts dataset does not label the posts as help-seeking

or not help-seeking. However, this dataset has posts containing the “Confusion” category

which is labeled on a scale of 1-7. To be more precise, the label “1” for confusion represents

“not confused” and the label “7” represents “very confused”. The labels “2-6” represent a

continuously increasing spectrum of confusion. Although the Stanford MOOCPosts dataset

contains other information (categories) like “Urgency”, “Sentiment”, “Opinion”, “Answer”,

“Question” and other categories, we will only be using the “Confusion” label because we

believe that it serves as the best proxy for capturing the sentiment of help-seeking. In the

following section, we will describe how we convert the confusion labels to corresponding

help-seeking labels.

3.5.3 r/HomeworkHelp Subreddit Posts

The r/HomeworkHelp is a subreddit where students ask help for their homework. We made

use of PRAW (Python Reddit APIWrapper) to extract 1000 (maximum limit) posts from this

subreddit. Since these posts ask for homework help, they are help-seeking by nature, thus,

when augmenting to our primary dataset, these posts would be labeled as “help-seeking”.

The reason why we chose to make use of this data source is that these posts are made on

a discussion forum, and it consists of students asking for help, thus we can assume that the

distribution of posts is very similar to the distribution of help-seeking posts in the CHEM

Dataset. Although the subject matter of these posts has a wide distribution of different

topics, we believe that the underlying linguistic patterns of seeking help remain the same,

thus we believe that augmenting additional information from these posts to our primary

dataset would be valuable.
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3.6 Help-Seeking Text Classification in CHEM Dataset

3.6.1 Structure of the CHEM Data

Table 3.1 contains a summary of the organization of the CHEM dataset in terms of the

number of posts that were obtained from each of the different semesters.

In total, if we add up the number of posts from each of the semesters, we get a total count

of 2753 posts across all of the seven semesters. After cleaning up the dataset and removing

unlabeled posts, we get a total of 2668 labeled posts.

Out of the 2668 validly labeled discussion posts, we can see the breakdown between the

number of help-seeking and non-help seeking post in Table 3.2.

3.6.2 NLP Approach

In order to perform text classification, we chose the following NLP algorithms: naive bayes,

logistic regression, support vector machine, GRU, LSTM and BERT. Naive bayes, logistic

regression and support vector machines are classical ML techniques, GRU and LSTM are

Deep Learning (DL)-based RNN models, whereas BERT is a transformer-based model. We

will have a slightly different pipeline when approaching classical, RNN-based models and

transformer-based models, and we will demonstrate that further in the following sections.

3.6.3 Training and Validation

Since we have discussion posts from seven semesters, in our experimental evaluation, we

train an NLP model using data from six semesters and evaluate its performance on the data

from the unseen semester that was held out from the training set. Since different semesters

have different number of posts, we come up with a single evaluation metric by averaging the

Table 3.1: Distribution of CHEM posts across semesters

Semester Number of posts
Semester 1 348
Semester 2 375
Semester 3 1118
Semester 4 41
Semester 5 494
Semester 6 333
Semester 7 44
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Figure 3.1: Flowchart of the NLP pipeline for classical ML models

validation performance from each of the semesters. This means that in order to evaluate

the performance of an NLP model, we conduct seven runs in total, holding out each of the

seven semesters once and training on the rest. We then compute the mean of the validation

performances across all of the seven semesters that were evaluated.

The metric that we have chosen to compute the validation performance is the F1 score

between the model predicted labels and ground-truth labels in the validation set. The

F1 score is the harmonic mean of the precision and recall [3]. For reference, we will also

display the validation accuracy, precision, recall as well as the F1 score when comparing the

performance between the different models.

3.6.4 NLP Pipeline for Classical ML Models

The Figure 3.1 contains a flowchart of the NLP pipeline of our system.

Table 3.2: Distribution of help-seeking and non help-seeking posts in CHEM dataset

Number of Help-Seeking Number of Non Help-Seeking
862 1806
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Stop Word Removal

Stop words refer to the most common words in a language [3]. The reason why we remove

stop words from our data is that because they are extremely common words. Thus, they do

not add a unique distinguishable meaning to a given text. Some of the stop words in English

include: “a”, “the”, etc.

Lemmatization

Lemmatization is a text normalization technique that replaces words with the root (base

form) of the word (known as the lemma) [3].

TF-IDF Vectorizer

In order to vectorize (convert text into a numerical format that can be processed by the

machine learning model) our discussion posts, we will be making use of the TF-IDF vector-

ization technique. The TF-IDF representation captures which words in a discussion post are

unqiue and important to that post.

NB/LR/SVM Classifiers

A detailed explanation of the workings of these classifiers is provided in Chapter 2.

3.6.5 NLP Pipeline for RNN-Based Models

The Figure 3.2 contains a flowchart of the NLP pipeline of our system.

Tokenizer

In Deep Learning (DL) NLP models, the tokenizer is used to map each word to a unique

token that can be processed by a neural network/DL model. We made use of the tokenizer

module provided by Tensorflow API [29] in order to implement this block.

Padding

Because RNN models require uniform-sized inputs, we need to make sure the the output

of the tokenizer is padded to ensure uniform length. We perform post-padding, i.e padding
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Figure 3.2: Flowchart of NLP pipeline for RNN-based models

after the end of token list in order to uniformly size. We made use of the pad sequences

module of the Tensorflow API in order to implement padding.

GRU

An explanation of the GRU is provided in Chapter 2. Figure 3.3 demonstrates the different

layers in our GRU architecture. The first layer in the GRU is an embedding layer. The

embedding layer converts a given word to a vector embedding representation. This embed-

ding layer feeds into a bidirectional GRU layer which then feeds to a custom neural network

consisting of a hidden layer and a single output neuron.

LSTM

An explanation of the LSTM is provided in Chapter 2. Figure 3.3 demonstrates the different

layers in our LSTM architecture. The first layer in the LSTM is an embedding layer. This

embedding layer feeds into a bidirectional LSTM layer which then feeds to a custom neural

network consisting of a hidden layer and a single output neuron.
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Figure 3.3: Architecture of GRU and LSTM

Figure 3.4: BERT pipeline
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3.6.6 NLP Pipeline for BERT

The Figure 3.4 contains a flowchart of the BERT pipeline.

BERT Preprocessing

We made use of the BERT preprocesser for the text preprocessing step. This preprocessor

uncases (converts text to lowercase) the input text and removes any accent markers. Then,

it tokenizes the preprocessed text.

BERT Encoder

We made use of the BERT encoder as the transformer encoder. This BERT encoder consists

of 12 transformer blocks, a hidden layer size of 768 and 12 attention heads. This BERT

encoder is pretrained on Wikipedia and BooksCorpus [10].

Custom Neural Network

The output from the BERT encoder is then fed to our custom neural network. This neural

network consists of a dropout layer (for regularization) and one hidden layer of size 64 which

then connects to a single output layer neuron.

3.6.7 Results

Table 3.3 demonstrates the performance of the different NLP models. Although we include

the training accuracy, validation accuracy, F1 score, precision and recall in the table, we

will only use the F1 score as the single real number metric to evaluate and compare model

performance. The other metrics are included only as a reference. Table 3.3 shows that we

Table 3.3: Performance of the models

Model Val. Acc. F1 score Precision Recall
Naive Bayes 0.856 0.775 0.709 0.894

Logistic Regression 0.926 0.865 0.911 0.829
Support Vector Machine 0.928 0.861 0.892 0.836

GRU 0.899 0.840 0.797 0.897
LSTM 0.905 0.858 0.835 0.886
BERT 0.927 0.860 0.891 0.833
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obtained the best F1 score of 86.5% from the logistic regression model. The SVM comes

behind logistic regression as a close second-best model with an 86.1% F1 score. We also

get an 86.0% F1 score with BERT which is a close third-best model. Except for naive

bayes, both the classical ML models had a better performance than RNN-based models.

From a theoretical standpoint, this makes sense, because classical ML models have been

shown to have better performance than DL models when the size of the training set is

relatively smaller. Since BERT is pretrained on a large corpus of text and because of the

recent advances in transformer-based architectures, the performance is justified. Moreover,

in terms of validation accuracy, SVM had the best performance and BERT was a close

second, with LR coming in third. Even for validation accuracy, the classical ML models

except naive bayes and the transformer-based BERT showed better performance than RNN

models. When we examine the precision score for the various models, we again observed

that logistic regression, SVM and BERT have the highest scores, with LR being the best

performing model. This means that whenever logistic regression classified a post as HS, we

have a 91% confidence that the post is indeed HS. However, in the case of recall, we observe

that GRU has the highest score. Naive bayes is a close second and LSTM is a close third.

BERT, logistic regression and SVM have the lowest recalls. This means that for recall, we see

that RNN-based approaches have success. For GRUs we can say that on average, it correctly

identified 89.7% of all HS posts in the corpus. There are different situations in which recall

or precision are more important, however, in this experiment we have assumed both to be

equally important, thus, identifying the best model based on F1 score. In summary, since

logistic regression has the best F1 score, it gives us the best performance in the HS text

classification task.

3.7 Dataset Expansion and Transfer Learning

3.7.1 Help-Seeking Text Classification in CHEM Dataset Expanded Using
Reddit Data

In this section we demonstrate the changes in performance, when the help-seeking posts

from the r/HomeworkHelp subreddit are added to the training dataset comprising of CHEM

posts. An important note to consider is that we only augment the training dataset with the

Reddit data and the validation accuracy is only computed on the unseen CHEM data from a

given semester. As was previously stated, the total number of posts that were obtained from

r/HomeworkHelp subreddit is 1000, and all of these 1000 posts are help-seeking in nature.
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Apart from expanding the training dataset, the rest of the NLP pipeline is the same.

Results

As can be seen from Table 3.4, expanding the training data with posts from Reddit decreased

the F1 score of all of the NLP models. Correspondingly, the best performance obtained from

training via this expanded dataset is an F1 score of 84% via logistic regression. BERT is

the second-best performing model and SVM is the third. Even in this setting, the top-three

performing models are the same. However, these models have a lower F1 score than the

setting with no dataset expansion as was seen in the previous section.

This result indicates that expanding the training set with Reddit data does not improve

the text classification performance. This also indicates that the CHEM dataset and Reddit

data might not have distributions that are as similar as we expected.

3.7.2 Dataset Expansion Using Stanford MOOCPosts Data

In this section we demonstrate the changes in performance, when StanfordMOOCPosts are

added to the training dataset comprising of CHEM posts. An important note to consider

is that we only augment the training dataset with the StanfordMOOCPosts data and that

validation performance is only computed on the unseen CHEM data from a given semester.

Apart from augmenting the training data, the rest of the NLP pipeline is the exact same

as was described in the previous section.

Adapting Stanford MOOCPosts Data to the Help-Seeking Text Classification Task

The Stanford MOOCPosts dataset contains 29,604 student posts. From a help-seeking per-

spective, the “Confusion” label of a post is of particular interest to us. This column has labels

that fall in the range of 1-7. A numerically higher label indicates a higher degree of confusion

Table 3.4: Performance of the models using dataset expansion from r/HomeworkHelp

Model Val. Acc. F1 score Precision Recall
Naive Bayes 0.824 0.745 0.670 0.883

Logistic Regression 0.909 0.840 0.832 0.857
Support Vector Machine 0.911 0.833 0.825 0.849

GRU 0.899 0.835 0.795 0.890
LSTM 0.894 0.831 0.808 0.872
BERT 0.915 0.836 0.824 0.858
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Figure 3.5: Logistic regression: change in F1 score performance based on number of
Stanford MOOC posts added

in the post. If a post had a “Confusion” label ≥ 4.0, we gave it a “Help-Seeking” label of 1

and otherwise, the post was assigned a label 0 corresponding to “Not Help-Seeking”.

Since the Stanford MOOCPosts dataset has 29,604 posts and the CHEM Dataset has

2753 posts, using all 29,604 posts would mean that our models would try to fit the Stanford

dataset more than we desire. It is important to note that one of the main reasons to introduce

dataset expansion is so that it can learn from a larger pool of data, and generalize to unseen

posts in a more robust fashion. However, by training the models with more examples from

the additional dataset, we would be tuning it to perform better on a different distribution

than the intended CHEM data. Thus, we also experiment by observing the performance

changes as we augment with larger amounts of data as illustrated in Figures 3.3 and 3.4. In

these figures we look at two models (logistic regression and LSTM), and we observe how the

performance of the model (F1 score) changes as the number of posts from Stanford MOOC

dataset are added to the training dataset. Our aim is to identify what number of added posts

gives us the best performance. We start by adding 1000 posts and increase this number in

increments of 1000 posts until we reach 5000 added posts. From both of these figures, we

observe that as the number of added posts increase, the performance of the model drops.

Similarly, from both of these figures, we observe that the setting which corresponds to 1000

added posts gives us the best performance.

Thus, for the experiments in this section we will augment the original training set with

1000 posts from the Stanford MOOCposts dataset in order to evaluate the impact that such

a technique has on the overall model performance.
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Figure 3.6: LSTM: change in F1 score performance based on number of Stanford MOOC
posts added

Results

Since the Figures 3.5 and 3.6 show us that after 1000 posts, there is a strong decline in the

model performance, we decided to carry out our experiments by adding 1000 examples from

the Stanford MOOCPosts dataset.

Table 3.5 gives us information about the performance of the different models by training

on an expanded dataset containing the CHEM dataset and 1000 examples from the Stanford

MOOCPosts dataset. We can see that SVM gives the best performance of 85.3% F1 score on

the validation set which is slightly less than the performance of SVM on the original CHEM

dataset. Logistic regression and BERT are the second- and third-best models respectively.

Again, SVM, LR and BERT make up the top-three models based on performance. However,

as we observed with the Reddit data addition experiment, there was a decrease in the average

F1 score of the models as compared to the original setting with no expanded training set.

Table 3.5: Performance of the models using dataset expansion from Stanford MOOCPosts
dataset

Model Val. Acc. F1 score Precision Recall
Naive Bayes 0.843 0.760 0.756 0.803

Logistic Regression 0.920 0.848 0.914 0.799
Support Vector Machine 0.924 0.853 0.917 0.805

GRU 0.852 0.780 0.758 0.832
LSTM 0.873 0.798 0.788 0.818
BERT 0.911 0.846 0.893 0.816
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However, one observation that we can make is that the RNN-based GRU and LSTM suffered

sharp drops in performance: 6% drop in performance for both models. For comparision,

BERT and SVM suffered around 1% and 0.8% drop in performance respectively. This shows

that the RNN-based models are less robust to the mixed distribution (CHEM and Stanford

MOOC) in the training dataset.

Another interesting take-away is the differences in the performances that are seen in Tables

3.4 and 3.5, i.e., comparison of model performance with the addition of Reddit data versus

the addition of Stanford MOOCPosts data. In both instances we added 1000 new posts

to the training set. We observe that all models except GRU and LSTM showed a better

performance with the addition of the Stanford MOOCPosts data, whereas, the RNN-based

models showed a better performance with the addition of Reddit Data. However, since

majority of the models showed an improved performance with the Stanford data, we can

draw the conclusion that the Stanford MOOCPosts dataset is closer to the distribution of

the CHEM dataset.

In summary, we did not notice any performance improvements by augmenting with the

Stanford MOOCPosts dataset.

3.7.3 Transfer Learning Using Stanford MOOCPosts Dataset

In this section we explore using Transfer Learning using Stanford MOOCPosts dataset.

Transfer learning is an approach in which a model trained on a separate task or problem is

adapted to solve another problem. A common technique for adapting a model is to fine-tune

it on the new task. Fine-tuning refers to the technique of adapting the model on a new dataset

by retraining it using the new data. Since transfer learning applies to deep learning models,

we will only be performing experiments on GRU, LSTM and BERT. In these experiments

we train these models first on the adapted Stanford MOOCPosts labeled dataset. Then, we

fine-tune it to the CHEM data and then evaluate the validation performance on a held out

semester’s worth of data just like before.

Results

In Table 3.6, we display the results obtained from using transfer learning on models trained

on the Stanford MOOCPosts dataset and fine-tuning it to the CHEM dataset. The primary

purpose of trying the transfer learning experiment is to see if pretraining on a larger corpus

of a similar domain could lead to performance improvements on the CHEM HS task. As

we can see, transfer learning using BERT yielded the best F1 score on the validation set.
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However, the F1 score of 84.9% is still less than the F1 score of 86% obtained by BERT

on the original task. This shows that performance has dipped. However, when we examine

the effects on the precision and recall, we see that while precision on the transfer learning

model has dropped from 89.1% to 84.7%, the recall has increased from 83.3% to 85.6%.

This shows that if the cost of not picking up a HS post is high, then transfer learning on

BERT gives better performance as opposed to the original setting of only using CHEM data

during training. This makes sense, because by pretraining on a large corpus of Stanford

MOOCPosts data, the model has learned to recognize different kinds of ways in which HS

behavior can be exhibited.

On the other hand, both GRU and LSTM have dropped in performance when compared

to the original setting. This seems to align with a previous observation that both the RNN-

based approaches are having trouble working with a mixed distribution dataset consisting

of CHEM and Stanford MOOCPosts data.

3.8 Analysis of Results

In this section we experimented with different types of NLP models: classical ML, RNN and

transformers and studied the HS classification performance in three different settings: using

only CHEM data in training, using Reddit/Stanford data to expand training set and lastly,

transfer learning by training on the entirety of the Stanford MOOCPosts dataset and fine-

tuning on CHEM dataset. What we observed is that when computing the average validation

performance on a semester’s worth of CHEM data, we see best performance when we only use

CHEM data in the training. Using data from other distributions does not improve validation

performance on CHEM data.

Out of all the models and settings that we explored, we found that we obtained the best

F1 score using the logistic regression classifier and using only CHEM data in the training set.

Furthermore, we obtained the best precision score using the same logistic regression model

and also in the same setting. Moreover, the best recall score was obtained by using a GRU

trained on the CHEM data. Agrawal et al. [19] observed that logistic regression and SVM

Table 3.6: Performance of the models using transfer learning

Model Val. Acc. F1 score Precision Recall
GRU 0.891 0.807 0.800 0.823
LSTM 0.884 0.798 0.771 0.848
BERT 0.918 0.849 0.847 0.856
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performed significantly better than naive bayes in the confusion text classification task that

they worked on. Our work was able to corroborate these results, as we noticed that LR and

SVM consistently outperformed naive bayes on our HS classification task.

When expanding our dataset using Reddit and Stanford data we found that all of the

models suffered a drop in performance as compared to the original setting. When comparing

between adding Reddit versus Stanford data to the training corpus, we observed that for

the majority of models except the RNN-based models, adding Stanford data gave better

performance than adding Reddit data. Furthermore, the RNN-based models suffered a large

(6%) performance drop when trained on CHEM along with Stanford MOOCPosts data as

compared to the original setting. This shows that the RNN models were less robust to the

addition of Stanford MOOCPosts data as compared to the other models.

Transfer learning (using GRU, LSTM and BERT) on the other hand, proved to be a

more effective approach than simply adding to the training dataset. We found that BERT

gave the best result when using the transfer learning approach. Although the overall F1

score and precision of BERT dropped compared to the original setting, the recall however

improved when compared to the original setting. This means that by pretraining on a larger

corpus BERT identified different ways of expressing HS behavior, which in turn helped boost

the recall. This result corroborates the findings made by Brahman et al. [24], wherein a

multi-task learning setup lead to an increase in recall.

In conclusion, what we observed by experimenting using these different models in different

settings is that in all of the different scenarios, LR, SVM and BERT gave the best and most

robust performance. These were the top-three performing models in each setting (LR and

SVM were not used in transfer learning setting).

3.9 Summary of Results

In this section we explored and identified the NLP models that ended up giving the best

performance in the HS text classification task. Although logistic regression gave the best

overall performance, we observed that SVM and BERT also ended up giving very similar

performance but only slightly lower F1 scores.

Our initial hypothesis before diving deeper into the exploration was that expanding the

CHEM dataset using data from similar domains as well as transfer learning could potentially

boost performance and improve generalizability. We had identified these additional data

sources as arising from a similar distribution as the CHEM dataset. However, upon further

exploration, we found that expanding our original dataset and transfer learning both did not
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yield any observable performance improvements in the text classification task on the CHEM

data.
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Chapter 4

SOCIAL NETWORK ANALYSIS OF CHEM
DISCUSSION FORUM DATA

4.1 Introduction

In this chapter, we explore the interaction graphs in the CHEM discussion forum data, and

determining to what extent, the amount of interaction in course discussion forums informs

the course outcome (final course grades).

We will be constructing interaction graphs from the CHEM data and using these con-

structed graphs in our exploration study. Although we will be diving deeper into the con-

struction of these graphs in a later section, the nodes of the graphs will represent students

and an edge would indicate a reply between the nodes.

More specifically from a social network analysis perspective, we plan to study the rela-

tionship between:

1. The number of posts made by a student and their course outcome (grade).

2. The number of help-seeking posts made by a student and their course outcome (grade).

3. The number of replies to help-seeking posts made by a student and their course outcome

(grade).

4. centrality/importance of a student in the discussion forum interaction graph and their

course outcome (grade).

The critical question that we plan to answer in this chapter is if participating in course

discussion forums is leading to a better student performance in the course.

4.2 Related Work

Williams-Dobosz et al. [27] study the impact that discussion forum engagement has to the

course outcome in students traditionally underrepresented in STEM versus those students

that do not belong in this category. This thesis adopts a similar undirected graph construc-

tion as was used in this paper, but a key distinction is that our work expands the study of

centrality to directed graphs as well. Our work also uses a similar set of engagement metrics
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that are outlined in this paper such as number of posts, number of HS posts made and

replied to and also node centrality. One of the observations made in [27] is that help-seeking

behavior was a significant contributor to course improvement.

Hecking et al. [30] explore the modelling of social and semantic roles of students interacting

in course discussion forums.

Furthermore, Abnar et al. [31] look at extracting information about social roles within

a network of social interactions. The paper proposes a new metric of using betweenness

centrality along with other metrics to identify social roles in a network. We will also be

using centrality in our work to identify students that have the most influence in the course

discussion interaction graph.

4.3 Data

In this section, we will be outlining the characteristics of the dataset that we will be using for

experiments in this chapter. We will only be using data from the CHEM discussion forums

in this study. The difference between the CHEM data in this chapter, versus the CHEM data

in the previous chapter, is that here, we will also be considering the replies (“Level-1”) to

the “Level-0” posts. However, we will not be looking at the replies to the “Level-1” replies,

primarily because we do not have the help-seeking labels for “non Level-0” posts (replies)

in this dataset. Thus, we will be constructing the interaction graph by taking into account

“Level-0” posts and the replies to “Level-0” posts.

In the Tables 4.1, 4.2 and 4.3, we outline some of the important characteristics of the

dataset across the seven semesters, which we will make use of in the experiments.

Table 4.1 contains a breakdown of the number of students that participated in the CHEM

discussion forum across the seven semesters from which the data has been collected. An

important point to note with regard to Table 4.1, is that it does not necessarily reflect the

exact number of students that were enrolled in the semesters, because it is possible that

some students who were enrolled in the semester did not participate in the discussion forum

at all. All of the data that was collected, is anonymized and protects the privacy of the

students as per FERPA (Family Educational Rights and Privacy Act) requirements.

Table 4.2 contains a breakdown of the number of posts and the number of HS posts across

the seven semesters. One important note with regard to Table 4.2 is that number of posts

in this table is slightly different when compared to the number of posts in Table 3.1 from

Chapter 3. This is because the posts made by instructors or other course staff is not included

in the experiments in this chapter, since we are building interaction graphs only including
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the students. Table 4.3 on the other hand contains a breakdown of the number of replies

and the number of replies to HS posts.

4.4 Building Graphical Representation of CHEM Discussion

Forum Data

We build a graphical representation of the discussion forum data, in which the nodes repre-

sent students and an edge between two nodes represents that there was a reply between the

two students. In the following paragraphs, we will go into more depth regarding the notion

of the direction of edges.

One of the main reasons for constructing a graphical representation is that it gives us the

information about centrality or importance of a student in the discussion forum interactions.

The centrality can encode both help-giving and help-seeking centrality, depending on how

the edges of the graph are directed.

Furthermore, in constructing the interaction graphs, we omit looping edges. This means

that if a student replied to their own post, then we do not include that edge in our graphical

representation. The reason we do so, is that these type of posts are usually clarifications

made as a follow-up to the post, thus, they do not encode any information about discussions

or interactions between one student and another.

Figures 4.1, 4.2 and 4.3 are the interaction graphs constructed from Semester 3 of the

CHEM course.

Table 4.1: Number of students participating in the CHEM discussion forums across the
different semesters

Semester Number of students
Semester 1 60
Semester 2 30
Semester 3 79
Semester 4 11
Semester 5 14
Semester 6 57
Semester 7 25

32



Table 4.2: Breakdown of the number of posts and HS posts across the different semesters

Semester Number of posts Number of HS posts
Semester 1 297 271
Semester 2 362 59
Semester 3 1095 312
Semester 4 28 27
Semester 5 471 28
Semester 6 327 119
Semester 7 40 24

Table 4.3: Breakdown of the number of replies and replies to HS posts across the different
semesters

Semester Number of replies Number of replies to HS posts
Semester 1 209 198
Semester 2 49 20
Semester 3 211 145
Semester 4 13 13
Semester 5 11 6
Semester 6 82 55
Semester 7 15 12

Figure 4.1: Undirected graph construction of student interactions in Semester 3
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Figure 4.2: Type I directed graph construction of student interactions in Semester 3

Figure 4.3: Type II directed graph construction of student interactions in Semester 3
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Undirected Graph

The undirected graph representation does not encode any knowledge about the direction of

the edges or replies. This means that there is an edge between two nodes if there exists a

reply between the two students. It does not matter which one of the students made a post

and which one replied. We will use the undirected graph representation as a basic version of

the graph to measure the centrality of students and will serve as a baseline for more nuanced

versions of the interaction graphs that we will proceed to explain below.

Type I Directed Graph

In the Type I directed graph, the edge between two nodes is directed toward the node

(student) that received help.

Type II Directed Graph

In the Type II directed graph, the edge between two nodes is directed toward the node

(student) that gave help.

Centrality Metrics

For both types of directed graphs, we will be using eigenvector centrality and pagerank

centrality as the centrality metrics. Since pagerank centrality is only defined for directed

graphs, we will use only degree centrality and eigenvector centrality as centrality metrics for

the undirected graph respresentation. As a note, since the overall degree is the same for

directed and undirected graphs, we will compute degree centrality only on the undirected

graph construction.

4.5 Experiments and Results

In this section, we explore the relationship or correlations between the the different variables

that we identified at the start of this chapter (Section 4.1) and the course outcomes. We

compute the correlation of the two variables in consideration using Pearson’s correlation

coefficient. We also tabulate the p-values of the two variables. While the correlation tells us

the linear correlation between the two quantities, the p-value tells us the probability that the

correlation occurred by chance [32]. The value of the correlation coefficient ranges between
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-1 and 1, where a positive value indicates a positive linear relationship and a negative value

indicates a negative (inverse) linear relationship [32]. On the other hand, since a p-value is

a probabilistic value, it ranges between 0 and 1. Furthermore, since we have seven semesters

worth of data and since each semester contains different number of interactions (posts and

replies), we will consider each semester separately, instead of computing the correlation and

p-values as an aggregate over all semesters. We believe that this technique of separating the

data from different semesters is a fair way of determining the correlations and would give

us a better account of the data, because of the difference in the level of engagement across

the semesters. Course outcomes or grades are available for each student that enrolled in and

completed the course. Course grades have the values 1, 2, 3, and 4, where 4 implies the

highest possible grade level and 1 implies the lowest possible grade level.

4.5.1 Correlation Between the Number of Posts Made by a Student and
Their Course Outcome

As we can see in Table 4.4, in six out of the seven semesters, there is a positive correlation

between the number of posts made by a student and their course outcome. The one semester

in which there was a very small negative correlation (-0.062), there was a large p-value of

0.607, which means that there is a roughly 61% probability that the correlation occurred

by chance. In the semesters that had the lowest p-values of 0.0 (Semester 2, Semester 3

and Semester 5), there was a relatively high positive correlation (0.427, 0.450 and 0.430

respectively) between the number of posts made and the outcomes achieved. This means

that we found that students who were making more posts typically ended up receiving higher

grades.

Table 4.4: Correlation between the number of posts made by student and their course
outcome

Semester Correlation p-value
Semester 1 0.155 0.147
Semester 2 0.427 0.0
Semester 3 0.450 0.0
Semester 4 0.184 0.200
Semester 5 0.430 0.0
Semester 6 -0.062 0.607
Semester 7 0.067 0.510
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4.5.2 Correlation between the Number of HS Posts Made by a Student
and Their Course Outcome

As we can see in Table 4.5, in six out of the seven semesters, there is a positive correlation

between the number of HS posts made by a student and their course outcome. The semester

that had the lowest p-value of 0.043 (Semester 3), also had the highest correlation coefficient

of 0.209 between the number of HS posts made and the outcomes achieved. However, the

correlation coefficients are not as high as the ones observed in Table 4.4. By observing the

trends in this table, we found that students who were making more HS posts typically ended

up receiving higher grades.

4.5.3 Correlation between the Number of HS Posts Replied to by a
Student and Their Course Outcome

As we can see in Table 4.6, in all of the seven semesters, there is a positive correlation

between the number of HS posts replied to by a student and their course outcome. The

semester that had the lowest p-value of 0.001 (Semester 2), also had the highest correlation

coefficient of 0.396 between the number of HS posts replied to and the outcomes achieved.

By observing the trends in this table, we found that students who were replying to more HS

posts typically ended up receiving higher grades.

Table 4.5: Correlation between the number of HS posts made by student and their course
outcome

Semester Correlation p-value
Semester 1 0.172 0.107
Semester 2 0.202 0.101
Semester 3 0.209 0.043
Semester 4 0.201 0.161
Semester 5 0.112 0.290
Semester 6 -0.096 0.427
Semester 7 0.070 0.491
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4.5.4 Correlation between the Centrality of a Student in the Interaction
Graph and Their Course Outcome

Undirected Graph Representation

We can see from Table 4.7 that for both, the degree centrality and eigenvector centrality,

there was a positive correlation between the centrality of a student in the interaction graph

and their course outcome in six of the seven semesters. Since centrality of a node in an

interaction graph indicates importance or influence in the interactions, we can extrapolate

that the positive correlation in a majority of the semesters indicates that typically, students

that had a greater influence in the discussion forums ended up with higher grades than

students who did not have as much influence.

Type I Directed Graph Representation

As a summary, in the Type I directed graph construction, the edges are directed toward the

student that received help. This means that a higher centrality would typically indicate a

higher involvement in the replies received. As we can see from Table 4.8, there was a positive

correlation between pagerank centrality and course outcome in six out of seven semesters.

Whereas, there was a positive correlation between eigenvector centrality of a student and

their course outcome in all of the seven semesters.

Type II Directed Graph Representation

As a summary, in the Type II directed graph construction, the edges are directed towards

the student that gave help. This means that a higher centrality would typically indicate a

higher involvement in the replies given. As we can see from Table 4.9, there was a positive

Table 4.6: Correlation between the number of HS posts replied to by student and their
course outcome

Semester Correlation p-value
Semester 1 0.284 0.007
Semester 2 0.396 0.001
Semester 3 0.221 0.032
Semester 4 0.096 0.508
Semester 5 0.092 0.384
Semester 6 0.202 0.091
Semester 7 0.133 0.193
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Table 4.7: Correlation between the degree/eigenvector centrality of a student and their
course outcome in an undirected graph construction

Degree Centrality Eigenvector Centrality
Semester Correlation (p-value) Correlation (p-value)
Semester 1 0.326 (0.002) 0.327 (0.002)
Semester 2 0.373 (0.002) 0.307 (0.012)
Semester 3 0.355 (0.0) 0.364 (0.0)
Semester 4 0.135 (0.350) 0.073 (0.615)
Semester 5 -0.044 (0.674) -0.062 (0.555)
Semester 6 0.161 (0.179) 0.175 (0.145)
Semester 7 0.092 (0.368) -0.002 (0.981)

Table 4.8: Correlation between the eigenvector/pagerank centrality of a student and their
course outcome in an Type I directed graph construction

Eigenvector Centrality Pagerank Centrality
Semester Correlation (p-value) Correlation (p-value)
Semester 1 0.286 (0.007) 0.310 (0.003)
Semester 2 0.215 (0.080) 0.353 (0.003)
Semester 3 0.211 (0.041) 0.215 (0.038)
Semester 4 0.101 (0.484) 0.206 (0.152)
Semester 5 0.066 (0.531) -0.003 (0.975)
Semester 6 0.245 (0.039) 0.262 (0.027)
Semester 7 0.053 (0.604) 0.104 (0.308)
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correlation between pagerank centrality and course outcome in six out of seven semesters.

Whereas, there was a positive correlation between eigenvector centrality of a student and

their course outcome in five of the seven semesters.

4.6 Analysis of Results

When examining the correlation between the number of posts a student makes and their

course outcome, we observe that in all of the semesters except Semester 6, there is a positive

correlation between the two variables. When we consider p-values, we observe three semesters

where the p-values were very close to 0.0 that had correlation scores of 0.427, 0.450 and

0.430. These also ended up being the highest correlation scores that we observed, thus we

can say that these results are statistically significant. Furthermore the only negative valued

correlation score was a very small negative value of -0.062. The associated p-value was a

relatively high 0.607, making the correlation score not statistically significant. Thus, we can

conclude that overall, there seems to be a positive correlation between the number of posts

made and the course outcome.

When looking at the correlation between the number of HS posts a student makes and

their course outcome, we again observe that in all of the semesters except Semester 6, there

is a positive correlation between the two variables. The lowest p-value we observed was 0.043

for Semester 3 which also had the highest correlation score of 0.209, thus making the negative

correlation statistically significant. Furthermore the only negative valued correlation score

was a very small negative value of -0.096. The associated p-value was a relatively high

0.491, making the correlation score not statistically significant. An observation is that the

correlation scores on average are not as high as we observed for the relation between number

of posts and course outcome. Thus, we can conclude that there is a positive correlation

Table 4.9: Correlation between the eigenvector/pagerank centrality of a student and their
course outcome in an Type II directed graph construction

Eigenvector Centrality Pagerank Centrality
Semester Correlation (p-value) Correlation (p-value)
Semester 1 0.233 (0.028) 0.239 (0.024)
Semester 2 0.098 (0.430) 0.242 (0.048)
Semester 3 0.316 (0.002) 0.331 (0.001)
Semester 4 -0.043 (0.769) 0.118 (0.413)
Semester 5 -0.148 (0.158) -0.079 (0.456)
Semester 6 0.046 (0.706) 0.085 (0.481)
Semester 7 0.054 (0.597) 0.076 (0.455)
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between the number of HS posts and the course outcome, but the positive correlation is

not as strong as in the previous case when we considered the number of posts versus course

outcome.

When examining the correlation between the number of HS posts replied to and the course

outcome, we observe that there is a positive correlation between the two variables in all of

the seven semesters. The semesters having the highest correlation scores also have the lowest

p-values, making the observed relationship statistically significant.

Finally, when considering the centrality of a node in the interaction graph we consid-

ered three different centrality computations: degree centrality, eigenvector centrality and

pagerank centrality. We computed these three centrality metrics for three different graph

constructions: undirected, Type I directed and Type II directed. In all of these six different

settings, a majority of the semesters (minimum majority we observed was 5 out of 7) exhib-

ited a positive correlation between student centrality in the graph and the course outcome.

In all of the six different settings, the highest correlation score was associated with the lowest

p-value, making the positive correlation statistically significant.

4.7 Summary of Results

In this study, we examined the impact that interaction on course discussion forums have

on the final outcome of the performance of a student. We looked at this problem from a

social network perspective and tried to examine the correlation between engagement metrics

(number of posts and number of replies) to course outcome and also centrality metrics of

students in the interaction graph to course outcomes. We found that in an overwhelmingly

large number of semesters, there was a positive correlation between these metrics to the

grade that was received. While [27] found that help-seeking was a significant contributor to

course improvement, our study validates and supplements this finding by demonstrating that

help-seeking and help-giving are significant contributors to course performance. In Chapter

5 we explore the design of a UI/UX for course discussion forums with the aim of improving

the help-giving and help-seeking experience for students on course discussion forums.
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Chapter 5

UI/UX PROPOSAL FOR COURSE DISCUSSION
FORUMS

5.1 Introduction

In this chapter, we explore the design of a discussion forum user interface/user experience

based on what we have discussed and explored so far in this thesis. An important feature of

the discussion forum experience that we propose is integrating automated help-seeking clas-

sification in the discussion forum interface. We have already explored the task of classifying

posts as help-seeking or not help-seeking in Chapter 3 of the thesis. We can directly apply

the models developed into this feature for the discussion forum.

We can also apply the computation of centrality and other interaction metrics that were

explored in Chapter 4 into a “participation” score for students.

We will make use of the principles outlined in Google’s People + AI Guidebook [33] to

inform design choices in this chapter. This resource is meant to serve as a guide for developers

and designers building human-centered ML systems.

5.2 System/Interface Design

The interface mock-ups included in this section were prepared using Figma, where we made

use of the Figma Wireframing Kit. We also used a Lorem Ipsum generator (https://

loremipsum.io/) to generate random text that made up the post content in the mock-ups.

Figures 5.1 and 5.2 give a general overview of two discussion forum views. One can filter the

discussion posts by help-seeking only posts or choose to browse the unfiltered view. These

options are included in the sidebar. Furthermore as can be seen, help-seeking posts are

tagged using a green badge.
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Figure 5.1: Discussion forum “All Posts” view

Figure 5.2: Discussion forum “Help-Seeking Posts” view
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5.2.1 User Needs

Before we go into any further discussion, it is important to clearly outline the user needs

and what problem we plan to solve with our UI/UX for course discussion forums. Here is a

list of the specific user needs that we believe our system should be trying to address:

1. To try to reduce the time it takes for a student to get a response to a help-seeking

question.

2. To try to make it easier for course staff and students to identify help-seeking questions so

that they can be attended to quickly and efficiently.

3. Make it easier for students to understand their participation effort in discussion forums

and also for instructors to understand and evaluate the general as well as specific interaction

patterns in the forum. This information from an instructor’s point of view could also be

used for participation grade determination if a course does have such a requirement.

The Figures 5.1 and 5.2 from the previous section address user need number 2. The ability

to filter posts by the help-seeking label aims to achieve this objective.

5.2.2 Data Collection

When we are dealing with student interaction activity and the associated posts and replies

made by students, we need to ensure that this data that is securely stored and appropriately

anonymized. If discussion posts are collected for any purpose (e.g. augmenting the text

corpus of discussion posts for training the HS classifier), then this must be an opt-in feature

for students. Facebook’s Responsible Innovation Principles [34] state that “Never surprise

people”, and this principle should be applied to the data collection feature of our discussion

forum user experience. It must be up to a student to opt-in to such a feature. Even after

a student opts in to the feature, appropriate care must be taken to anonymize any student

identifying information from the text data.

5.2.3 Notification Driven Help-Giving

We want to encourage students to give assistance to their peers who are in need of help.

For this reason, we have identified that prodding students (via a notification) to help out

someone who needs help is a quick and an efficient manner to encourage help-giving behavior.

Figure 5.3 demonstrates how such notifications can be designed. In order for a feature to

be effective it must aim to reduce friction to achieve a given task. The notification design

in Figure 5.3 provides a direct link to a help-seeking post that needs attention. In order

44



Figure 5.3: Notification driven help-giving

to determine which help-seeking posts should be prodded to users, we can implement a

functionality in the backend to sort unanswered help-seeking posts based on the amount of

time that they have remained unanswered. The posts that have remained unanswered for the

longest amount of time can then be directed to students via notifications. The “Feedback

+ Control” chapter of Google’s PAIR Guidebook states that it is important to explicitly

communicate the value of impact to users in order to build on their existing mental models

of the system. We incorporated this principle to our notification design by communicating

the impact or value that the help-giving behavior would have to their own participation

score. This not only encourages help-giving behavior but also explicitly communicates the

impact that the help-giving behavior would have.

5.2.4 Automated HS Classification while Creating a Post

This feature automatically classifies student posts as HS or not when a student creates a new

post. In order to implement this feature, we need to ensure that the recall of our classifier

is high. This means that our classifier should be able to capture a high fraction of all of

the HS posts. This could mean that our classifier wrongly classifies some posts that are not

HS, but that is acceptable because the cost of predicting a HS post as non-HS is higher
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Figure 5.4: Automated HS classification while creating a post

than the cost of predicting a non-HS post as HS. Furthermore, automatically predicting

HS behavior reduces the friction that students face while creating a post and reduces the

likelihood of students intentionally classifying a non-HS post as HS, simply to get a faster

reply. Furthermore, we have the option for students to confirm the prediction of our HS

classifier, thus allowing for graceful failure and control, which are two principles highlighted

in the People + AI guidebook. This feature is demonstrated in Figure 5.4.

5.2.5 Forum Interaction Insights

When evaluating the interaction performance of a student in a discussion forum (whether for

grading or otherwise), it would be helpful to provide the relevant breakdown as illustrated

in Figure 5.5. Not only is it important to know how many posts or replies a student made,

but it is also useful to gain insights about the centrality of a student with respect to the

discussions as well as the help-seeking posts or replies to help-seeking posts that a student

makes. This insights give a more complete picture of the interactions of a student in the

discussion forum and it is important not only from a student’s perspective but also from

a participation grade assignment perspective, if a course has such a requirement. Even in

the absence of participation grading, these insights can be used to assign badges to students

that actively participate or help out other students, thus encouraging participation. Course
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Figure 5.5: Forum interaction insights

discussion forums like Piazza and Campuswire assign such badges for students that meet a

specified threshold of posts or upvotes received.
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Chapter 6

CONCLUSION

In the Chapter 3, we explored the help-seeking text classification using classical ML mod-

els (NB, LR and SVM), RNN-based models (GRU and LSTM) and a transformer-based

approach (BERT). We found success using logistic regression, support vector machine and

BERT in the text classification task. We also identified two similar domain data sources

that included r/HomeworkHelp subreddit and Stanford MOOCPosts dataset to augment

the training corpus that consisted of CHEM posts. We did not find this technique of cor-

pus expansion to directly translate to performance improvements in the text classification

task. We then experimented using transfer learning on the Stanford MOOCPosts dataset

and fine-tuning on the CHEM dataset. This approach was applied on the GRU, LSTM and

BERT models. While it did not lead to a better performance than the best performing model

(logistic regression) in the original setup, it did indicate that transfer learning via BERT im-

proved the recall score, when compared to the original BERT model. From a bigger picture

perspective, we found that using logistic regression by training only on the CHEM data gives

us the best F1 score of 86.5%.

We then examine the interaction patterns in the CHEM dataset and we try to determine

if an increased level of discussion forum activity correlates to a better course outcome. From

our experiments we found a generally positive correlation between activity in the CHEM

discussion forums and course outcomes.

Equipped with this knowledge, we propose a UI/UX for course discussion forums that

makes it easier to get help and give help on course discussion forums. Improving the wholistic

product experience for the end users is critical to making the course discussion forums a useful

part of MOOCs and other online learning experiences.

Future Work

One of the future extensions of the work in this thesis would be to gather data from different

course discussion forums and evaluate if the text classification models developed in this work

generalize well to help-seeking text classification. One challenge associated with this is to
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find good quality labeled data in line with the HS categorization that was shown in this

work.

Another potential extension includes evaluation of the kind of correlation that exists be-

tween student activity and course outcome in data from other course discussion forums and

MOOCs. This would help us understand this problem statement from a broader perspective.

Lastly, the other possible extension to this work is to implement and deploy (in a real-world

setting) a course discussion UI/UX in line with the principles and characteristics that we

discuss in Chapter 5 and evaluate to what extent this redesign leads to a change in student

behavior and course outcome.
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