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ABSTRACT 

North American bat populations have been severely and negatively impacted by 

numerous factors, including habitat loss and fragmentation, disease, and wind energy 

development. Yet bats provide critical ecosystem services, and are thus a focus of habitat 

conservation and management. As wide-ranging flyers, bats use habitats at a variety of scales, 

from small, isolated patches for roosting to large, contiguous corridors for migration. Landscape-

level research is necessary to identify critical habitats, patches, and corridors to target 

management interventions. Habitat suitability models (HSMs) identify high quality habitat by 

predicting species occurrence at various spatial scales based on occurrence data and 

environmental variables. Bat occurrence data are mainly collected by mist netting or acoustics. 

The North American Bat Monitoring Program (NABat), a national monitoring protocol, provides 

a new data repository for developing HSMs. By combining NABat data with historical data, I 

can compare model performance by data type, which is essential for effective modeling. In this 

thesis, I seek to identify where suitable bat habitat is available across the state and compare the 

impact of different detection methods on HSM.  

First, I created Maxent HSMs for three bat species (hoary bat, eastern red bat, and tri-

colored bat) across Illinois using species-specific landscape and climate variables. With the three 

models from this study and a previously published HSM for Indiana bats, I stacked the binary 

HSMs identifying priority conservation areas across Illinois I found that each species exhibited 

different distributions and habitat usage across Illinois. Stacking the HSMs highlights shared 

high-quality bat habitat in southern IL and along riparian areas. Identifying quality conservation 

areas allows managers to prioritize restoration and conservation and use available funds on the 

most effective habitat, especially as energy companies look for mitigation lands to purchase.  
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Secondly, I sought to understand how different data types can influence HSM. I 

compared the overlap of models created from passive-only, active-only, and combined 

occurrences to identify the effect of multiple data types and detection bias. Passive data involves 

sensing the species remotely, while active detection involves handling the animal. For each 

species, the data type with the highest AUC value was the active-only model. By comparing the 

niche overlaps of HSMs between data types, I found a high amount of variation with no species 

having over 45% overlap among models. Passive models showed more suitable habitat in 

agricultural lands, while active models showed higher suitability in forested land, a reflection of 

sampling bias. Overall, this emphasizes the need to consider influences of detection and survey 

biases on modeling, especially when combining multiple data types. Biases from sampling, 

behavior at time of detection, and species life history intertwine to create striking differences 

among models. The biases and effects of each detection type should be considered in the final 

model output, particularly when the goal is to inform management decisions, as one data type 

may support very different interventions than another.  

Lastly, I created HSMs using only data from NABat’s acoustic protocol to compare to a 

model from all occurrences to understand if the data produced by the protocol were sufficient to 

create a robust HSM. I found that the NABat model was heavily impacted by acoustic data bias 

and did not create a robust enough model compared to a combined model, arguing for the 

inclusion of more occurrence records to create a model sufficiently robust enough to inform 

management decisions. Ultimately, I undertook a rigorous assessment of how various data types 

perform in the HSM ecosystem and provide recommendations for best practices of developing 

habitat models for bats using disparate data sources. 
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CHAPTER 1: INTRODUCTION 

 Bats are impacted across North America from white nose syndrome (WNS), wind energy 

development, and habitat loss and fragmentation, which threatens species both locally and range-

wide (Kunz et al. 2007, Farrow and Broders 2011, Frick et al. 2015). Establishing conservation 

and research that occurs across scales to meet these threats is important for ensuring effective 

species preservation (Akasaka et al. 2010, Kalda et al. 2015, Bellamy et al. 2020). Due to the 

difficulty of sampling nocturnal flying mammals, optimizing data collected at local and regional 

levels for continental scale analyses is the best use of sampling resources (Bellamy et al. 2013, 

Reichert et al. 2021). Habitat suitability models (HSMs) can merge presence-only data with 

environmental layers to map suitable habitat across varying spatial scales (Elith et al. 2006, 

Bellamy et al. 2013, Guisan et al. 2013). With this information, targeted management can be 

done to maximize return on conservation investment (Rodhouse et al. 2015, Stevens and Conway 

2020). Only one species of bat, the Indiana bat, Myotis sodalis, (Miller and Allem 1928) has a 

HSM for Illinois; the other 12 bat species found in Illinois lack HSMs (Cable et al. 2021). To 

address this gap, three bat species are the focus of this study: the tri-colored bat, Perimyotis 

subflavus, (Cuvier 1832); hoary bat, Lasiurus cinereus, (Palisot de Beauvois 1796); and eastern 

red bat, Lasiurus borealis, (Müller 1776). In addition, this study examines the impact of different 

data types and their biases on large scale HSMs. Lastly, the study will look at the standardized 

data collection protocol, the North American Bat Monitoring Program (NABat), to see if the data 

protocol is sufficient to make robust HSMs (Loeb et al. 2015, U.S. Geological Survey 2021).  
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ECOLOGY & IMPORTANCE OF BATS  

 Globally, bats are essential components of ecosystems and are threatened by 

compounding factors of wind development (Kunz et al. 2007, Arnett and Baerwald 2013, Péron 

et al. 2013), disease (Cryan et al. 2010, Frick et al. 2010, Turner et al. 2011), habitat 

loss/degradation (Farrow and Broders 2011, Rainho and Palmeirim 2011, Cable et al. 2021), and 

other factors (Aguiar et al. 2016, Hall et al. 2016, Mendes and De Marco 2018). Bats are the 

second most diverse mammalian order of mammals and their variety of prey, life history traits, 

and behavior render them incredibly important components of biodiversity and provide essential 

ecosystem services from local to global scales (Jones et al. 2009, Kunz et al. 2011, Kasso and 

Balakrishnan 2013). Among other services, bats pollinate many species of plants, reduce disease 

vectors and agricultural pests, promote nutrient cycling, and provide billions of dollars in tourism 

(Jones et al. 2009, Kunz et al. 2011, Kasso and Balakrishnan 2013). Many bat species have 

experienced severe population declines from disease, habitat loss, and wind energy development, 

and have become a focus of wildlife conservation and forest management (Kunz et al. 2007, 

Frick et al. 2015).  

 Since Illinois is a predominately agricultural habitat mosaic, with cropland covering 75% 

of the state’s total land area, bats likely play an essential role in pest suppression at an estimated 

value of $74/acre (Luman et al. 2004, Boyles et al. 2011, Illinois Department of Agriculture 

2021). However, increasing investments in wind energy, particularly on agricultural lands, 

compound bat mortalities, particularly threatening migratory bat populations. Wind energy 

installations negatively impact both habitat connectivity and population viability (Frick et al., 

2017; Roscioni et al., 2014). As of 2021, 6,516 megawatts of energy have been installed in 

Illinois with rapid growth potential (Aldeman et al. 2015, Clean Power Illinois 2021). A Midwest 
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study found bats are killed at the rate of 0.8-8.6 bats per megawatt per year, though this is 

considered  an underestimate (Anderson et al. 1999, Kunz et al. 2007). Across the United States, 

an estimated 500,000 bats are killed per year from barometric trauma and blade collisions, and 

this number is thought to be increasing (Grodsky et al. 2011, Hayes 2013, Smallwood 2020). 

Without steps taken to mitigate the numbers of bats killed by wind turbines, increasing amounts 

of wind energy can potentially cause long term damage to bat populations (Arnett and Baerwald 

2013, Roscioni et al. 2014, Friedenberg et al. 2021).  

 In addition to wind energy, WNS, confirmed in Illinois in 2013 (Kath & Froschauer, 

2013), is a fungal pathogen that decreased hibernating populations 10-fold nationally, has killed 

an estimated 6.7 million bats, and has been linked to local population extirpations (Frick et al. 

2015, Cheng et al. 2021). WNS dehydrates hibernating bats, causing them to arouse from torpor 

and burn through essential fat stores before summer, in addition to causing damage to wing 

tissue (Cryan et al. 2010). Since WNS has taken its toll on bat populations throughout much of 

the eastern United States, including Illinois, work to rebuild the populations of heavily impacted 

species with high extinction risk is a conservation imperative (Frick et al. 2015, Hammerson et 

al. 2017). To mitigate both wind energy and WNS threats, it is critical to manage and conserve 

habitat resources necessary to maintain populations (Farrow and Broders 2011, Barré et al. 2018, 

Cheng et al. 2021).  

 Lastly, habitat loss and fragmentation have a major impact on imperiled bat populations 

(Farrow and Broders 2011). Across the globe, deforestation, urbanization, and the conversion of 

contiguous habitat for agriculture and livestock has reduced available habitat for most species 

(Voigt and Kingston 2016, Barré et al. 2018). Some types of silviculture treatments can be 

beneficial to bats, including differing thinning treatments across the area and retaining snags.  
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Some species of bat such as the federally listed Indiana bat rely on shagbark hickory trees for 

maternity roosts (Carter 2006, Yates and Muzika 2006, Perry et al. 2008). In addition, wind 

turbines have a 1km buffer of reduced bat activity reducing potential habitat, increasing mortality 

risk, and fragmenting migration corridors (Cryan 2011, Barré et al. 2018). While underground 

caves may seem like a safe location from habitat degradation, recreational use of caves during 

winter  may cause bats to arouse from hibernation and burn through fat reserves, reduce survival 

of young, and reduce thermoregulatory benefits of roosting (Furey and Racey 2016).  

 While different species of bats have differential home range sizes, all species of bats use 

habitats on a variety of scales. As volant species, they use resource patches spread across the 

landscape (Akasaka et al. 2012, Wordley et al. 2015). Some species (e.g. hoary bat) are long-

distance migrants, traveling over 1000km, while others (e.g. Indiana bat) are short-distance 

migrants, traveling approximately 160km from summer roost sites to and from over-wintering 

hibernacula (Weller et al. 2016, Roby et al. 2019). This dichotomy of both regional and 

landscape-scale habitat importance emphasizes the need for both protection of migratory 

corridors and conservation of contiguous habitat across the landscape (Akasaka et al. 2012, 

Cable et al. 2021). While not all bats migrate, they often forage in different places than they 

roost, with foraging areas of 50-150 ha (Menzel et al. 2001, Henry et al. 2002, Veilleux et al. 

2009). Red bats will travel up to 2.5km from their roost site to forage (Elmore et al. 2005, 

Walters et al. 2007). At their roost sites, some species of bats often exhibit high roost philopatry. 

Although they may not use the same roost tree every time, species are known to roost in trees 

within 50-100m of each other on consecutive nights (Mager and Nelson 2001, Veilleux et al. 

2003). Thus, though distances vary for each species, bats use resources on a variety of scales to 

meet their needs (Bellamy et al. 2020).   
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Focal Species 

 The tri-colored bat is a small, short-distance migratory bat found in eastern North 

America (Fraser et al. 2012). Having one of the longest hibernation periods of bat species, WNS 

has severely impacted the species, with population losses up to 100% in some hibernacula 

(Turner et al. 2011). In addition, the species is impacted by wind energy development and as 

such, has been petitioned for listing under the Endangered Species Act (Kunz et al. 2011, Center 

for Biological Diversity and Defenders of Wildlife 2016, Endangered and Threatened Wildlife 

and Plants; 90-Day Findings for Five Species 2017). Tri-colored bats are uncommon to catch via 

mist-net as the species tends to forage above the trees (Menzel et al. 2005) and prefer partially 

open habitat, including forest edges and riparian corridors (Amelon et al. 2014), which are often 

difficult to net effectively. Tri-colored bats prefer to roost in trees, particularly hardwoods such 

as oaks or pines in a mature forest (Perry and Thill 2007).  While regional HSMs have been 

created, no statewide landscape level models have been published. 

 The hoary bat is a widespread migratory bat found across North and South America 

(Cryan 2003, Weller et al. 2016). Due to their migratory behaviors, hoary bats have been 

severely impacted by wind energy development, comprising an estimated 38% of wind farm 

mortalities from 2000 to 2011 across North America, the highest proportion among all bat 

species (Arnett and Baerwald 2013, Weller et al. 2016). Hoary bats usually roost solitarily in 

trees and are considered foraging generalists (Hayes et al. 2015). As hoary bats are larger and 

more adapted to foraging in open areas, they often forage above the tree canopy, meaning they 

are rarely caught in a mist net (Caire et al. 1984, Kalcounis et al. 1999, Menzel et al. 2005).   

 The eastern red bat is a migratory bat found east of the Rocky Mountains from Canada to 

Florida (Cryan 2003). A solitary roosting bat, the eastern red bat prefers mature hardwood forests 
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with substantial foliage and bark roosting opportunities (Mager and Nelson 2001, Limpert et al. 

2007, Amelon et al. 2014). They also roost away from development, near openings and edges, 

typically close to streams (Limpert et al. 2007, O’Keefe et al. 2009). Several habitat studies 

emphasize the importance of landscape characteristics over plot or microhabitat roost selection 

for this species, potentially due to their large home ranges and generalist tendencies (Ford et al. 

2005, Limpert et al. 2007, O’Keefe et al. 2009, Starbuck et al. 2015). Eastern red bats are known 

to be clutter adapted, foraging below the tree canopy and allowing for relatively frequent mist 

netting captures (LaVal and LaVal 1979, Carroll et al. 2002, Menzel et al. 2005).  

 

BAT SURVEYS & THEIR BIASES   

 Presence and absence data for bat species are commonly acquired through passive 

(acoustic) monitoring or active (physical) capture (Kuenzi and Morrison 1998, O’Farrell and 

Gannon 1999, Barnhart and Gillam 2014). Each sampling method has benefits and shortcomings 

that can influence inferences drawn from the data, ultimately impacting research and 

management decisions (O’Farrell and Gannon 1999, Hohoff 2016). In addition, each sampling 

method has different detection probabilities for different species based on their unique natural 

history, ecology, and biology which creates inherent detection biases (Kuenzi and Morrison 

1998, Flaquer et al. 2007, Law et al. 2015, Neece et al. 2019). These biases are important to 

consider when developing presence-only models as they impact the model’s results and 

interpretation (Barnhart and Gillam 2014, Ford et al. 2016, Hohoff 2016).  
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Acoustics  

 Bats navigate, forage, and communicate using echolocation calls that are unique to each 

species and their purpose (Fenton 2003, Knörnschild et al. 2012). These calls can be recorded 

non-invasively using ultrasonic microphones and detectors to efficiently gather information on 

species, presence, and overall activity levels (Gorresen et al. 2008, Coleman et al. 2014, Neece et 

al. 2019). An acoustic detector is quick and easy to set-up and low maintenance once deployed 

that can be used in a variety of habitats. Several sites can be deployed in a single day and only 

need servicing every few weeks for an entire summer. Once deployed, acoustic detectors can 

gather thousands of calls per night and, over time, terabytes of data. With an appropriate 

sampling design, a network of detectors can effectively survey an area both spatially and 

temporally (Rodhouse et al. 2011, Froidevaux et al. 2014, Loeb et al. 2015).  

 Once collected, acoustic data are analyzed with an automatic call identification software. 

Acoustic data are easier to collect than capture data, but identifying species based on the call 

alone is difficult to confirm and with potentially high false-positivity rates (Clement et al. 2014, 

Banner et al. 2018, Rojas et al. 2019). For example, hoary bat calls are distinctively lower 

frequency (>20khz) compared to other North American bats, while some Myotis species have 

very similar calls that are more difficult to identify to species, both via call identification 

software and manually (Barclay et al. 1999, Russo and Voigt 2016). While automated call 

software is readily accessible to many biologists, variance among software identification is large 

and changes with classification updates over time (Lemen et al. 2015, Russo and Voigt 2016, 

Goodwin 2019). Despite these caveats, acoustic detection is an efficient and relatively easy 

survey technique (Coleman et al. 2014, Neece et al. 2019). Although variation in detection and 
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discrepancies in species identification remain, acoustic surveys are accessible to non-bat 

biologists and managers to survey bats in their area (Seguin 2019).  

North American Bat Monitoring Protocol  

A standardized protocol that creates an even and informed probabilistic survey design is 

the best way to maximize resources and make proper statistical inferences to inform conservation 

decision making (Loeb et al. 2015). The North American Bat Monitoring Protocol (NABat) 

creates a standardized data collection method, allowing for building occupancy and species 

distribution models in addition to conducting large-scale change analyses (Banner et al. 2019, 

Rodhouse et al. 2019, Reichert et al. 2021). 

NABat seeks to further understand species distributions, populations, and trends, 

especially in the face of sudden and abrupt declines (Loeb et al., 2015; Reichert et al., 2018). In 

order to do so, the program establishes a standardized acoustic-only monitoring protocol through 

a series of spatially balanced and randomized grid cells, generating data across the United States 

and Canada (Talbert and Reichert 2018). The generalized random-tessellation stratified (GRTS) 

cells create a prioritized continental grid of 10km x10km squares (Loeb et al. 2015, Talbert and 

Reichert 2018, Banner et al. 2019). The number of cells that should be surveyed is determined 

via power analysis which prioritizes the cells (Banner et al. 2019, Reichert et al. 2021). With the 

ranking of cell importance, it creates flexibility in the implementation of the program while still 

ensuring random, stratified, and systematic sampling (Talbert and Reichert 2018). If one cell is 

unavailable for surveying, other cells of similar importance can be substituted (Loeb et al. 2015).   

Each GRTS cell is further broken into four quadrants surveyed annually with two to four 

stationary points in different quadrants and a mobile transect throughout the entire GRTS cell 
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(Loeb et al. 2015). The stationary points are placed in habitats representative of the cell’s habitat 

diversity, including public and private lands with landowner permission (Loeb et al. 2015, 

Seguin 2019). The stationary detectors are deployed for at least four nights in the summer, with 

the potential for spring and fall surveys (Loeb et al. 2015). The 25-48 km mobile transect is 

driven twice during the summer with an acoustic detector elevated on a pole outside of a vehicle 

(Loeb et al. 2015). While stationary points cannot estimate abundance, mobile transects better 

estimate abundance by maintaining a driving speed of 32kph, which is faster than bats can fly 

(Seguin 2019). Mobile transects also survey a larger area of land and diversity of habitat types, 

although a species bias has been found from the recordings (Loeb et al. 2015, Braun de Torrez et 

al. 2017, Fisher-Phelps et al. 2017). NABat also encourages surveys of private lands with 

landowner permission, which may otherwise have been a roadblock to surveying (Seguin 2019). 

With the combination of spatial and temporal diversity through multiple acoustic survey types 

across multiple years, NABat establishes a rigorous acoustic survey.  

A benefit of the NABat protocol is the accessibility of the program to local and regional 

agencies that may otherwise have been prohibitive. The NABat data collection, while organized 

by a state or federal agency, can be implemented by community scientists (Seguin 2019). This 

brings both an educational aspect to the public, but also reduces the work load for biologists 

(Neece et al. 2019, Seguin 2019, Rodhouse et al. 2021). In addition, most of the acoustic 

equipment is re-used each year, yielding a higher start-up investment, but low annual 

maintenance cost (Seguin 2019). After data are collected, acoustic processing is completed 

through automatic call identification software, before being uploaded to an online database 

(Loeb et al. 2015, Reichert et al. 2018). This removes the need for an acoustics expert to 

manually review the calls, reducing process time (Nocera et al. 2019). While this program 
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provides data and information to the local biologist, it also provides data benefits on a larger 

scope as part of the program. Collaborative monitoring in NABat across the United States 

increases the amount of data collected while spreading out the responsibility for data collection 

(Neece et al. 2019, Reichert et al. 2021).   

Many U.S. states and Canadian provinces have already implemented this survey protocol, 

while others are in the planning stages (Reichert et al., 2021). Every state has surveyed at least 

some of the GRTS cells (U.S. Geological Survey, 2021). The Illinois Bat Conservation Program 

has implemented 20 GRTS cells across the state since 2016, with 10 additional GRTS being 

added in 2022 (Illinois Bat Conservation Program, 2021). In Nebraska, 35 GRTS cells were 

implemented in 2017 with 12 being covered by community scientists. (Seguin 2019). In South 

Carolina, 20-25 GRTS cells between 2015-2016 were surveyed and 35-38 priority GRTS cells 

had a mobile transect (Neece et al. 2019). NABat generates terabytes of landscape scale data 

through a standardized acoustic protocol that uses unbiased habitat selection. Utilizing these data 

to create HSMs can be a way for states to gain information for their bat species with little 

additional field work or expenses.  

Captures 

 Alternatively, physical capture (i.e. mist-netting) can definitively identify species in hand 

but can be invasive, time and labor intensive and, thus, expensive, while producing low amounts 

of data compared to acoustics (Kuenzi and Morrison 1998, Winhold and Kurta 2008, Clement et 

al. 2014). Mist netting is a common technique for bird and bat surveys that involves placing a 

fine net across a flyway to catch animals flying through. A mist netting operation needs a skilled, 

experienced, permitted, and rabies vaccinated crew to remove bats from the net (U.S. Fish & 

Wildlife Service 2020). In addition to the field work of mist-netting, all gear must be 
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decontaminated following the U.S. Fish and Wildlife service WNS protocol to ensure the fungus 

that causes WNS is not passed between sites (U.S. Fish & Wildlife Service 2020). However, 

once the bat is in hand, morphological measurements can usually confidently identify the bat 

down to species. In addition, taking a tissue sample (guano, hair, wing punch) can confirm 

species via genetic analysis (Walker et al. 2016, 2019, Guan et al. 2020). 

 The effectiveness of mist netting changes across a bat’s life cycle and decreases with 

repeated nights of mist-netting (MacCarthy et al. 2006, Weller and Lee 2007, Winhold and Kurta 

2008). Fully sampling multiple habitats in an area can take weeks of netting. In addition, mist-

netting can be more difficult in some habitats (Carroll et al. 2002). Without surrounding 

vegetation or structures to funnel bats into the net, bats can easily sense the net and avoid capture 

(Carroll et al. 2002, MacCarthy et al. 2006, Geluso and Geluso 2012). It is also possible to 

capture zero bats for a night of mist netting as bats can avoid the net, bounce out of the net, and 

even free themselves before they are removed (MacCarthy et al. 2006). Of utmost importance. 

mist-netting involves capture and handling of the bats which always creates a small, but present 

risk of injury or death to the bat (U.S. Fish & Wildlife Service 2020).  

 Another method of physical capture is carcass counts from wind farm mortalities, which 

has been used in previous HSMs and population modeling (Péron et al. 2013, Roscioni et al. 

2014). Migratory bats (e.g. hoary bats and eastern red bats) are disproportionally affected by 

wind farms as they follow their migration routes, while some species are rarely or never found at 

wind farms (Kunz et al. 2007, Cryan 2011). Wind farms can only represent one spatial location 

as they are permanent fixtures on the landscape. Additionally, it can be difficult to obtain carcass 

data from wind farms as they do not generally share their mortality data.   
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Biases 

 Every survey method has its own data quality and species detection biases (Gu and 

Swihart 2004, Yamaura et al. 2016, Braun de Torrez et al. 2017). Recognizing bias and how it 

will impact model results is essential to proper model interpretation (Barnhart and Gillam 2016, 

Ford et al. 2016, Hohoff 2016). Most bat HSMs use data from various methods of capture and 

monitoring efforts (mist netting, telemetry, historic captures, etc.), with mist-netting being the 

more prevalent choice, although some studies have used both (Weber and Sparks 2013). In a 

local scale model predicting presence of northern long-eared bats, Myotis septentrionalis, 

(Trouessart 1897), unique detection types had a number of different variables with varying 

predictive fits (Ford et al. 2016). In a state-wide HSM, the difference in model predictions 

between an acoustic and capture HSM varied greatly among species (Barnhart and Gillam 2014). 

While many papers have investigated detection bias in occupancy models even in bats, few 

papers have looked at the effects of detection bias in HSMs (Gorresen et al. 2008, Hohoff 2016, 

Rojas et al. 2019).  

 While acoustic monitoring is an incredibly efficient monitoring tool, there are detection 

and quality biases among species, detector brand, and habitat type (Adams et al. 2012, Frick 

2013, O’Keefe et al. 2014). Varying call frequencies and distances can cause differences in 

recording between detector brands (Waters and Walsh 1994, Adams et al. 2012). In addition, 

louder low-frequency calls are more detectable than higher frequency calls which more rapidly 

attenuate due to the structure of the sound wave (Lawrence and Simmons 1982, Adams et al. 

2012). Vegetation and environmental conditions also change detection probability, as both dense 

foliage and inclement weather reducing detections (Egebjerg and Lee 1999, O’Keefe 2009, 

Neece et al. 2019).  
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 There are species biases in mist-netting as well. Bats that forage above the tree canopy, 

higher in the sky, or in open habitats (e.g. hoary bat) are more difficult to catch than those that 

forage lower in the tree canopy (Caire et al. 1984, Kalcounis et al. 1999, Menzel et al. 2005). 

When cross-checked with cameras, mist-netting only caught 3.2% of bats in the airspace, and 

efficacy decreases over time as bats remember net locations (Larsen et al. 2007).  

 

HABITAT SUITABILITY MODELING  

 One commonly used tool for identifying high quality habitat for targeted conservation 

efforts are HSMs, which produce spatial predictions of suitability across various scales based on 

occurrence data and environmental/ecological variables (Hirzel et al. 2006, Pearson et al. 2007). 

Globally, HSMs have been used across a broad array of taxa, a variety of geographic scales, and 

in varied ecological contexts to understand resource use, species occurrence, and habitat 

preferences (Boyce and McDonald 1999, Guisan and Zimmermann 2000, Hirzel et al. 2006). 

Accordingly, HSMs can provide essential species-specific information for federal, state, local 

and private land management decisions, policy planning, and conservation interventions both 

under current conditions as well as under future climate and land use scenarios (Gorresen et al. 

2005, Razgour et al. 2011, Bellamy et al. 2013). HSMs can operate at multiple scales to pinpoint 

relevant ranges based on the species’ ecology and life history traits (Razgour et al. 2011, Zellmer 

et al. 2019, Bellamy et al. 2020).  

 As wide-ranging fliers, bats forage and roost in a variety of habitats, including from 

small, isolated patches to large, contiguous corridors. On a landscape scale, species of migratory 

tree bats do fly 200-2000 km between summer and winter habitats (Cryan et al. 2004, Neubaum 
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et al. 2006, Krauel et al. 2018). Landscape connectivity is important to ensure safe migratory 

routes are preserved for long-distance and regional migrants. On a smaller scale, roosting and 

foraging resources are important on scales ranging from 100m to 1km (Veilleux et al. 2003, 

2009, Cable et al. 2021). Many species forage around 2 km from roosting sites and once at the 

foraging site, stand-level features influence prey assemblage (Henry et al. 2002, Dodd et al. 

2012, Bellamy et al. 2013, Cable et al. 2021). Habitat features vary in the scale of importance for 

different bat species (Bellamy et al. 2013). As such, they can be impacted by habitat changes at 

all scales (Ford et al. 2005, Razgour et al. 2011, Bellamy et al. 2013). Consequently, landscape 

scale research is necessary to identify essential habitat patches and corridors used by multiple bat 

species to strategically target conservation actions (Bellamy et al. 2013, Bellamy and Altringham 

2015, Zellmer et al. 2019). Looking for cost-effective ways to implement landscape-level habitat 

conservation is important for statewide management decisions. 

 For many landscape-scale HSMs, environmental variables includ 19 climate variables 

from the WorldClim Bioclimatic database, with historical datasets available at a small-scale 

resolution (Soto-Centeno et al. 2015, Fick and Hijmans 2017, Torres-Morales et al. 2019). 

Smaller scale HSMs for bats often focus on forest stand scales,aand assess roost tree suitability. 

In these instances, forest stand metrics (e.g. diameter at breast height (DBH), tree species 

composition, percent canopy cover, etc.) are often cross validated in the field. Land-use and 

elevation are also often incorporated into HSMs based on publicly available national datasets. 

While most HSMs are utilized for identifying habitat and species distributions, bat HSMs can 

also be utilized to identify disease and virus emergences (Escobar and Craft 2016, Deka and 

Morshed 2018).   



15 
 

 Additionally, there are several algorithms that can be utilized to create HSMs such as 

generalized linear models, ecological niche factor analysis, and ensemble modeling. The most 

popular approach is maximum entropy modeling, which is primarily used through the program 

MaxEnt with a user-friendly graphical interface (Phillips et al. 2006, 2021). MaxEnt estimates a 

species distribution across geographic space and can be created with presence-only data (Phillips 

et al. 2006). The probability distribution is estimated by finding the density of the covariates at 

presence sites and comparing them to the density of covariates across study area to find the 

relative habitat suitability at locations (Elith et al. 2011, Merow et al. 2013). The maximum 

entropy, or optimal probability distribution, is calculated by comparing habitat preferences found 

with presence location compared to a null model that the species does not prefer any habitat type 

(Elith et al. 2011). When compared to other types of modeling, MaxEnt preforms well with 

presence-only data (Elith et al. 2006, Phillips et al. 2006).  

 Modeling habitat suitability for bats is particularly useful as they are nocturnal, utilize 

large home ranges, and are difficult, if not impossible, to identify in flight (Greaves et al. 2006). 

Without HSMs, it becomes much more difficult to assess which habitats are critical targets to 

increase connectivity, to develop data-driven conservation plans, and predict future habitat needs 

caused by climate change and anthropogenic development (Razgour et al. 2011, Aguiar et al. 

2016, Zellmer et al. 2019). HSMs are frequently used in bat conservation, but comparisons of 

acoustic data versus physical capture data are few and often suffer from low sample size, limited 

geographic scope, and/or other factors, limiting their broad applicability (Barnhart and Gillam 

2014, Ford et al. 2016). Finding the optimal data type necessary for creating a sufficient HSM is 

important for agencies to be able to focus their sampling. 
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CHAPTER 2: ONE MODEL TO RULE THEM ALL: IDENTIFYING PRIORITY BAT 

HABITATS FROM MULTI-SPECIES HABITAT SUITABILITY MODELS 

ABSTRACT 

Bats are critical components of global ecosystems, providing essential ecosystem services 

with substantial economic benefit. Yet, North American bat populations have been severely and 

negatively impacted by myriad of factors (e.g. disease, wind energy development) with 

compounding effects. Given the above, bats are a focus of intense conservation and management. 

As wide-ranging flyers, bats utilize habitats at a variety of scales, from small, isolated patches to 

large, contiguous corridors. Landscape-level research is necessary to identify critical habitats, 

patches, and corridors to strategically target management interventions. Habitat suitability 

models (HSMs) identify high quality habitat by predicting species occurrence at various spatial 

scales based on occurrence data and environmental variables. Using species-specific landscape 

and climate variables, I created HSMs for three bat species (hoary bat, eastern red bat, and tri-

colored bat) across Illinois. With the three models from this study and a previously published 

HSM for Indiana bats, I stacked binary HSMs, thereby identifying priority conservation areas 

across Illinois. I found that species exhibited different distributional patterns and habitat 

preferences across Illinois. Multi-species HSMs highlight high quality habitat in southern Illinois 

and along big river riparian areas. This approach identified priority conservation areas, which 

allows managers to strategically target restoration and conservation measures, invest funds in 

habitat likely to have high return-on-investment, and inform decisions like siting wind turbines 

or purchasing mitigation lands.  
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INTRODUCTION 

In the Midwestern United States, bats provide essential ecosystem services including pest 

control, disease reduction, and nutrient cycling (Feldhamer et al. 2009, Kunz et al. 2011, Maslo 

et al. 2022). Agricultural pest reduction specifically has been estimated at $74 per acre, an 

impact which cannot be understated in this regional agroecosystem where 75% of Illinois is 

traditional row crop (Boyles et al. 2011, Maine and Boyles 2015, Illinois Department of 

Agriculture 2021). Within this agroecosystem, wind energy is expanding. In 2021, Illinois 

produced over 6,300 megawatts of wind energy, which is estimated to kill bats at a rate of 0.8-

8.6 bats/megawatt/year, disproportionately impacting migratory bats (Anderson et al. 1999, Kunz 

et al. 2007, U.S. Energy Information Administration 2021a). In addition, the fungus, 

Pseudogymnoascus destructans, causes a disease called white-nose syndrome (WNS) which is 

estimated to have killed 6.7 million bats in North America and is linked to local population 

extirpations (Frick et al. 2010, 2015, Cheng et al. 2021). Bats in the Midwest are negatively 

impacted in nearly all phases of their annual cycles by these many issues (i.e. migrating, 

foraging, and hibernating), causing population declines and concerns for their persistence into 

the future.  

Bats use the landscape at a variety of spatial scales, from roosting to foraging to 

migrating (Ford et al. 2005, Razgour et al. 2011, Bellamy et al. 2013). Some bat species roost 

within 0.1 km of previous roost sites, yet fly up to 2 km away for drinking and foraging (Elmore 

et al. 2005, Veilleux et al. 2009, Schaefer 2017). Additionally, bats migrate both short and long-

distances (150-1000 km) between summer roosts and winter hibernacula (Fraser et al. 2012, 

Weller et al. 2016, Roby et al. 2019). Thus, bat conservation and management decisions must 

consider these multiple scales. Appropriate ecological scales can be quantified via habitat 
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suitability models (HSMs), which tests variables across multiple scales (Razgour et al. 2011, 

Bellamy et al. 2020). This facilitates variable selection at species-specific scales of importance, 

informed by life history and behavior, and incorporating multiple scales into landscape-wide 

models (Bellamy et al. 2013, Bellamy and Altringham 2015).  

Multi-species (or “stacked”) HSMs have the potential to identify areas of high 

importance for those communities across the landscape, facilitating the prioritization of areas 

with greatest conservation value (Zellmer et al. 2019, Stevens and Conway 2020). Cost-effective 

approaches for landscape-level habitat conservation are important for statewide management 

decisions. Multi-species HSMs can help identify data and information gaps, habitats to protect, 

and areas of opportunity for adaptive management practices (Guisan et al. 2013). Creating both 

stacked and individual HSMs can help translate field data into models and maps that can inform 

decision making in management and policy (Guisan et al. 2013, Zellmer et al. 2019, Stevens and 

Conway 2020).  

The goal of this study was two-fold. First, I sought to develop individual HSMs for three 

Illinois bat species: the eastern red (Lasiurus borealis), hoary (Lasiurus cinereus), and tri-colored 

bat (Perimyotis subflavus) using landscape and climatic variables believed to be important to 

each species. Second, to develop a multi-species HSM that includes the three focal bats and the 

federally endangered Indiana bat (Myotis sodalis). I chose these species due to their vulnerability 

to white-nose syndrome (Indiana bat and tri-colored bat) or wind energy development (eastern 

red bat and hoary bat). Specifically, I sought to answer the following research questions: 1) What 

are the main summer use habitats and their characteristics for the eastern red, hoary, and tri-

colored bat? 2) Based on these preferences, where would I expect to find them across Illinois? 3) 

Considering these four focal species, where are priority conservation habitats for chiropterans 
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throughout the state? Ultimately, these models provide actionable information for Illinois state 

biologists and land mangers by providing landscape-level habitat information for approximately 

one-third of Illinois’ thirteen bat species. While these models explicitly predict suitability in 

Illinois, finding important habitat characteristics of these species can promote species 

conservation across all bat populations, especially in Midwestern states in similar habitat 

mosaics and with shared existing threats.  

METHODS 

Study Area 

Illinois is a habitat mosaic with 76% of the land classified as agriculture, 12% as forest, 

6% as urban, 3% as wetland, and 2% as other (Luman et al. 2004). The northern thirds of Illinois 

is dominated by agriculture and an urban/suburban/exurban interface, while the southern third is 

home to the Shawnee National Forest; 280,000 acres of forest managed by the U.S. National 

Forest Service (Iverson 1988, Luman et al. 2004, Rey 2004). The middle third of the state is 

primarily row crops (corn and soy) with small, isolated forest fragments, riparian corridors, 

degraded prairie, and urban areas. Across the state, Illinois forests are primarily composed of 

hardwood deciduous trees with major riparian zones along the Illinois and Mississippi rivers.  

Study Species  

Midwestern bat species exhibit a diversity of life history characteristics. The eastern red 

bat, Lasiurus borealis (Müller 1776) is a common generalist forager that primarily roosts 

solitarily in foliage and tree bark (Limpert et al. 2007, Perry et al. 2007). Their longer, narrow 

wings are adapted for fast flying over long distances and foraging in forest gaps, edges, and 

openings (Walters et al. 2007, Amelon et al. 2014, Starbuck et al. 2015). The hoary bat, Lasiurus 
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cinereus (Palisot de Beauvois 1796), migrates long-distances (>1000 km) and primarily forages 

in open spaces, both behaviors linked with high wind-turbine mortality (Hayes et al. 2015, 

Weller et al. 2016, Friedenberg et al. 2021). The tri-colored bat, Perimyotis subflavus (Cuvier 

1832) has the longest hibernation period in Illinois, contributing to devastating population losses 

from white-nose syndrome and prompting its candidacy for listing under the U.S. Endangered 

Species Act (ESA) (Turner et al. 2011, Center for Biological Diversity and Defenders of Wildlife 

2016, Cheng et al. 2021). They most often roost in live or dead foliage in mature forest stands 

and forage above the trees and in partially open habitat and riparian areas (Veilleux et al. 2003, 

Kalcounis-Rüppell et al. 2005, Farrow and Broders 2011). There is not much known about their 

migration ecology, however they may be long distance migrants (Fraser et al. 2012). Lastly, the 

Indiana bat (Myotis sodalis) (Miller and Allen 1928), listed as “endangered” under the ESA, is a 

regional migrant, with the longest recorded distance traveled of 575km. This species forms large 

maternity colonies, typically in snag roosts during the summer (Carter and Feldhamer 2005, 

Hammond et al. 2016, Roby et al. 2019). In Illinois, these maternity roosts occur in cottonwood-

elm bottomlands or oak-hickory uplands (Carter and Feldhamer 2005, Carter 2006, Schroder et 

al. 2017). Given its endangered status, the Indiana bat has a greater body of published literature 

devoted to it, including a state-wide HSM for Illinois (Cable et al. 2021). These four species 

represent common to rare species that rely on both open and forested interior and edge habitats 

for roosting and foraging.  

Occurrence Data 

Historic capture data was acquired via data sharing agreements with the Illinois 

Department of Natural Resources (IDNR) and the U.S. Fish and Wildlife Service for both mist-

netting and summer wind farm mortalities from 1999-2021. Since IDNR primarily maintains 



42 
 

records for threatened and endangered species, the historic capture data was incomplete for non-

listed species. Thus, I contacted IDNR’s list of Illinois mist-netting permittees, requesting mist-

netting records for the three focal species between 1999-2021. Eight permittees responded which 

added to the data from 2015-2019 generated by the Illinois Bat Conservation Program (IBCP) at 

46 mist net sites. I combined windfarm mortality and mist-net records, reducing the number of 

individual records to one per mist-netting location or turbine site. For all data, I removed sites 

with low positional or temporal accuracy, or lacking no data associated with captures. 

IBCP collected acoustic data using the North American Bat Monitoring Program 

(NABat) protocol for 20 NABat cells annually since 2016 (Illinois Bat Conservation Program 

2021, U.S. Geological Survey 2021). Song Meter SM4BAT Full Spectrum Ultrasonic Recorders 

or Pettersson D500x were deployed in 2-4 quadrants in each GRTS cell with a SMM-U1 or U2 

microphone (Pettersson Elektronik AB, Wildlife Acoustics). IBCP typically chose sites in each 

quadrant to represent habitat diversity in each cell. I deployed recorders for a minimum of four 

good weather nights (i.e. no rain, temperature > 60 degrees, sustained wind < 8 mph). I used the 

same protocol for all years, and sites remained largely unchanged, with some exceptions due to 

landowner permissions or personnel changes. Data were recorded from 19:00 to 7:30 each night. 

IBCP also sampled acoustic monitoring sites across Illinois that were surveyed with a similar 

acoustic protocol as GRTS cells. These data are considered presence-only as survey effort at 

each site (i.e. four nights) is insufficient to determine absence (Moreno and Halffter 2000, Skalak 

et al. 2012).  

Using the NABat protocol (Reichert et al. 2018) I processed all files recorded in the field 

through Sonobat 4 software (Arcata, CA) using the medium filter to reduce noise files 

(Szewczak 2010). I ran Kaleidoscope Pro 5.4.0 as the auto-classifier (Kaleidoscope Pro n.d.). 
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Kaleidoscope is a powerful auto-classifier that, in addition to identification, provides maximum 

likelihood estimates of species occupancy by night. I considered below 𝛼 = 0.05 to be present 

and above 𝛼 = 0.05 to be absent following standard conservative protocols (Nocera et al. 2019, 

U.S. Fish & Wildlife Service and U.S. Geological Survey 2019). These acoustic data were not 

manually vetted since NABat does not require manual vetting for data upload. All data was 

processed in 2021 to ensure that the classifier’s conditions were the same through all analyses. 

Acoustic and capture data were combined and processed in R 4.1.2 (R Core Team 2021). 

To reduce spatial autocorrelation, I removed records within 1 km of each other. Records were 

also temporally restricted from May 15th - Aug 15th to ensure that no records were from 

migratory periods, per U.S. Fish and Wildlife Guidelines (U.S. Fish & Wildlife Service 2020). 

After data cleaning and quality control, there were 264 occurrences for eastern red bats (17 from 

wind turbines, 159 from mist-netting, and 88 from acoustics), 116 occurrences for hoary bats (9 

from wind turbines, 21 from mist-netting, and 86 from acoustics), and 106 occurrences for tri-

colored bats (77 from mist-netting, and 27 from acoustics) established.  

Environmental Layers 

I used 16 landcover variables (Table 1) (per Cable et al. 2020) created from the Illinois 

Geospatial Clearing house land cover layer (Illinois Department of Natural Resources et al. 

2003). Cable et al. (2020) used Fragstats (McGarigal and Marks 1995) to calculate the number of 

patches, total area, and total edge of land cover types relevant to Indiana bat ecology. Each 

metric was calculated at three different scales statewide (0.1km, 0.5km, and 1km) to determine 

the appropriate scale of each landcover variable in predicting suitability for roosting, foraging, 

and landscape distances. I chose to keep the same spatial scales across all species to maintain 

consistency.  
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Nine additional variables were also considered based on top models of published 

chiropteran HSMs or occupancy models (Table 1). Many of these variables were forest stand 

structure or topographical landscape metrics, gathered from publicly available GIS layers and 

resampled in ArcGIS for 0.1km resolution to match layers (Cable et al. 2020). Both temperature 

and precipitation layers were taken from a 30-year normal and averaged across May-Aug to 

represent the summer average (PRISM Climate Group 2021).  

Modeling 

For all variables, I created single-predictor models for each bat species in MaxEnt v3.4.4 

(Phillips et al. 2006, 2021) to select the optimal spatial scale for variables and chose the top 15 

variables for each species by AUCtest scores to minimize over-parameterization. For univariate 

models, I used the default parameters with 20 replicates, and 10% random test percentage 

(Phillips et al. 2021). Using AUCtest scores, I determined the best spatial scale for each species 

for each landcover variable. I ranked the top scaled landcover variables among the non-scaled 

variables, selecting the top 15 variables for each species with AUCtest >0.5. The top 15 variables 

for each species were carried through subsequent analyses.  

Using the combined species-specific variables, I tested differing regularization 

multipliers ranging from 1-12 using the same default parameters of 20 replicates and 10% as a 

random test percentage. The regularization multiplier with the top AUCtest score was used in 

subsequent analyses. A larger regularization multiplier puts a higher penalty on more complex 

models, thus reducing overfitting (Elith et al. 2011). 

For each species, I created a set of candidate models based on available literature and 

ecologically relevant hypotheses. If the exact variable used in the literature was not in the top 15 
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variables for each species, proxies were chosen based on the available variables (e.g., if the top 

model in the literature had basal area, stand density index was substituted (U.S. Forest Service 

2012)). A correlation matrix was created in ArcGIS for the 15 variables for each species and 

highly correlated variables (>0.7) were removed maintaining the variable with the higher AUCtest 

value. After a literature review for each species, at least 23 models were created for each species, 

utilizing all variables in multiple combinations and used each variable at least twice (Table A.2, 

A.3, A.4). All models were run in MaxEnt using presence-only data, top regularization 

multiplier, 20 replicates, 10% of datapoints withheld for testing from the dataset by Maxent, and 

5000 maximum iterations. For pseudo-absence points, MaxEnt randomly 10,000 sampled 

background points across the state via bootstrapping.  

Model Comparison 

Models were evaluated via AUCtest scores and ranked by AICc scores using raw outputs 

and LAMBDAS files in EMNTools (Bozdogan 1987, Warren et al. 2010, Warren and Seifert 

2011). AUCtest scores predict the discriminatory ability of the model to tell occurrence points 

from background points with a score 0.5 indicating that the model is no better than random 

chance and a score of 1 indicating perfect discriminatory ability (Jiménez-Valverde 2012). I used 

the following function in the Raster Calculator in ArcGIS to convert models from raw to log 

format, standardizing the suitability scale from 0 to 1 (Hammond et al. 2016): 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 = (𝑟𝑎𝑤 ∗ 𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦)/(1 + 𝑟𝑎𝑤 ∗ 𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 

Top models (i.e. AICc weight> 0.01) were combined in ArcGIS using the “weighted sum” 

function proportionally according to AICc weights, creating a final model for each species. To 

create binary models, I created a threshold of omission for each species based on the bottom 10% 
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of suitability scores for true presences in the test datasets (Hovick et al. 2015). To calculate 

variable importance of the candidate set, I added the AICc weight value of each model that 

contained each variable. For any variable with a weight of 1, I created response curves based off 

the values provided by Maxent.  

Based on the three HSMs created above and the existing HSM for Indiana bats (Cable et 

al. 2020), I created a stacked HSM for the four species across Illinois. With the final binary 

model for each species, I summed the four models across the state with equal weights. This 

created a raster layer with integers from 0-4 where a value of 2 indicated suitable habitat for two 

species.   

 

RESULTS 

The best spatial scale for each variable varied among species, indicating the importance 

of habitats at different scales and reflective of species’ biology/ecology (Table A.1). For the 

eastern red bat, seven variables were optimal at 1km, two variables at 0.5km, and five variables 

at 0.1km. For the hoary bat, five variables were optimal at 1km, zero variables at 0.5km, and 

nine variables at 0.1km. For the tri-colored bat, five variables were optimal at 1km, seven 

variables at 0.5km, and two variables at 0.1km.  

Across all species, nine of the top 15 variables were consistent, but at different spatial 

scales (Table 2). The hoary bat had the most distinctive set of variables, with five variables 

exclusive to the species, whereas eastern red bat and tri-colored bat only had one unique variable 

each (distance to road for the tri-colored bat versus distance to water for the eastern red bat), 

although the spatial scales on some variables differed. Both eastern red bat and tri-colored bat 
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had more variables associated with forest structure and density, while the hoary bat had more 

variables related to landscape openness.  

The top model for the eastern red bat was composed of elevation, total area of agriculture 

in 0.1km, total area of forest in 0.1km, total area of water in 1km, total edge of forest in 0.1km, 

and total edge of water in 1km (Table 3). This model had just over half of the AICc weight 

(0.51), with the next top model having 0.37 of the AICc weight. The second model was 

comprised of canopy cover, distance to water, quadratic mean diameter, total area of agriculture 

in 0.1km, total area of bottomland forest in 1km, total area of forest in 0.1km, and total area of 

water in 1km. Finally, the global model (AICc weight of 0.11) was composed of existing 

vegetation height, elevation, distance to water, quadratic mean diameter, total area of agriculture 

in 0.1km, total area of bottomland forest in 1km, total area of forest in 0.1km, total area of water 

in 1km, total edge of forest in 0.1km, and total edge of water in 1km. After averaging all three of 

the top models, the total amount of suitable habitat for the eastern red bat in Illinois was 52%, 

distributed evenly across the state, with areas both in the southern forests, as well as contiguous 

sections of agricultural land in central Illinois (Fig. 1). Variable response curves reveal (Table 

A.5) that eastern red bat’s most suitable habitat is composed of less agriculture at 100m (30%) 

and more forest area at 100m (40%) than state average, while the amount of water in 100m (< 

10%) is approximately the state average.  

The top model for hoary bats was an ecologically relevant hypothesis modeling current 

and historic human use. Top variables recovered were distance to road, total area of agriculture 

in 0.1km, and the total area of urban land cover in 0.1km (Table 3). This model had all AICc 

weight and an AUCtest value of 0.74, ensuring that all three variables had an importance of 1 

(Table A.5). It predicted 58.45% of the state to be suitable habitat, including large tracts of 



48 
 

agricultural areas in central Illinois with slightly more along the western side of the Illinois river, 

and much of the state’s southern forests (Fig. 1). Suitable hoary bat habitat was found slightly 

farther from roads than average, with less total agricultural area than average (50%) and more 

urban land cover (50%) than average.  

Two tri-colored bat models contained all AICc weight, with the top model composed of 

canopy cover, elevation, distance to roads, number of patches of forest at 0.1km, total edge of 

forest at 0.5km and total edge of water at 0.5km (Table 3). The second model removed number 

of patches of forest at 0.1km (AICc of 3262). Both models had AUC values over 0.87, indicative 

of a good fit to the data. The model recovered a scant 27.96% of the state as suitable habitat (Fig. 

1), composed of much higher canopy cover (75%), lower elevation (200m), higher total forest 

edge (22%), further distance from roads (12,000m) , and lower total edge of water (50%) than 

the Illinois average.  

The final summed (multi-species) raster revealed most suitable habitat in the southern 

extent of Illinois, comprised largely of the Shawnee National Forest and following hydrologic 

features northward (Fig. 5). Suitable habitat in the rest of the state closely follows the Illinois 

River and other riparian zones. Eighteen percent of the state was considered suitable habitat for 

all 4 species, 13% was suitable for 3 species, 23% was suitable for 2 species, 12% was suitable 

for 1 species and 34% of the state was unsuitable.  
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DISCUSSION 

Single-species HSMs 

Each HSM for the eastern red bat, hoary bat, and tri-colored bat largely comport with 

habitat preferences and suitable habitats in other parts of the species’ ranges, however this is 

among the first landscape-scale HSMs for most of these species (O’Keefe 2009, Veilleux et al. 

2009, Amelon et al. 2014). Eastern red bats, generalist foragers, prefer edge habitats and un-

cluttered forests for foraging, commuting, and roosting (Ford et al. 2005, Amelon et al. 2014). 

Within the top eastern red bat variables, many of the landcover variables were important at the 

(0.1km) foraging and roosting scale, while water variables were important at the landscape 

(1km) scale. This indicates that red bats choose suitable areas with available roost sites. As 

eastern red bats are known to fly ~2km from roosts to foraging locations, the importance of 

water is reflected at landscape scale (Elmore et al. 2005, Walters et al. 2007). Stand structure and 

density variables (e.g. existing vegetation height and stand density index) also remained high in 

univariate model rankings, indicative of selection for navigable forested areas and potential roost 

sites. Throughout Illinois, eastern red bat suitable habitat is distributed along big rivers, as well 

as the agriculturally dominated central “corn desert” region. Large amounts of the state (52%), 

including agriculture and forests, deemed suitable reinforces the eastern red bat’s generalist 

tendencies and its ability to use multiple types of landcover as suitable habitat.  

As a high-flying, open area forager, suitable hoary bat habitat differed from forest-

adapted eastern red and tri-colored bats (Ford et al. 2005, Menzel et al. 2005, Veilleux et al. 

2009). Important variables focused more on open landcover and less on forests. In addition, 

univariate AUC values were lower overall (AUC > 0.65,) and the top model had with an AUC 

value less than 0.8 (AUC = 0.75), suggesting that the variables tested may not predict hoary bat 
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habitat particularly well. This may also be because hoary bat’s generalist tendencies lower the 

algorithm’s discriminant ability to discern presence locations from background pseudoabsence 

points.  The AUC values may be highest at the smallest scale, as the coarser scales around 

occurrences are less discriminable from the background when MaxEnt chooses pseudo-absence 

points. Most occurrences (both acoustic and wind turbine mortalities) are from open row crop 

agricultural areas which are areas similar to background areas, and reflective of the broad 

landcover of the state. The optimal spatial scale (0.1km) suggests local (roost) habitat 

importance, contrary to the regional (1 km) expectations of high-altitude, long-distance fliers 

(Ford et al. 2005, Menzel et al. 2005, Weller et al. 2016). Overall, the importance of variables 

including distance to road, total area of agriculture, and total area of urban landcover reflect the 

open landcover preference of hoary bat.  

While using both urban and agriculture as suitable habitat is beneficial in response to 

forest loss and agricultural conversion for the generalist nature of the hoary bat, much of Illinois’ 

agroecosystem is experiencing rapid wind energy development. Large tracts of once suitable 

agricultural habitat area are being developed with 1,100 additional megawatts of energy already 

under construction or in advanced development across the state, in addition to the 6,300 

megawatts already implemented (U.S. Energy Information Administration 2021a). Although 

Illinois is the fifth highest wind-energy producer, this trend is seen across almost the entire 

United States (except for the south-east), from the agroecosystem of the Midwest to the open 

desert in the Southwest to offshore developments on both coasts for a total production of 338 

billion kilowatt-hours nationally (U.S. Energy Information Administration 2021a, b). The hoary 

bat occurs in every state and country in North America and thus this source-sink dynamic could 

be seen across almost the entirety of its range, where hoary bats find suitable habitat, but are 
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killed by wind turbines (Pulliam 1988, Hayes et al. 2015). While the hoary bat is not currently 

being considered for listing, substantial concern of the effect of the long-term impacts of 

increased wind energy development on the population viability of the species exists (Frick et al. 

2017, Friedenberg et al. 2021, Wieringa et al. 2021). 

Both the eastern red and hoary bat are habitat generalists, but the tri-colored bat’s status 

as a riparian specialist is reflected in our modeling (Ford et al. 2005, Menzel et al. 2005, Cox 

2019). More than half of the top variables were forest land cover or stand structure metrics, 

which have been shown to be important for foraging and roosting (Menzel et al. 2005, Perry and 

Thill 2007, O’Keefe 2009). Important roosting variables, such as tree height, tree size and 

density, were in the top 10 variables, however they were not included in the top multivariate 

model indicating that while roost presence is important, it may not be the primary factor for 

habitat selection (Perry and Thill 2007, Schaefer 2017). In addition, the most frequent scale of 

importance by the tri-colored bat was 0.5km which may indicate that fine-scale features are more 

predictive of where they’ll be found and that that they are choosing areas to roost and forage 

based on habitat availability in the more immediate area (O’Keefe 2009, Schaefer 2017). Several 

variables reflected the importance of edges for the tri-colored bat, including the number of 

patches of forest as well as total edges of water and forest, which has been thought to minimize 

commuting benefits (O’Keefe 2009). In these models, distance from roads and increasing forest 

edges and canopy cover indicate the tri-colored’s size and affinity for foraging and roosting in 

structured forests with available water and openings. Suitable habitat is tightly concentrated 

around riparian (i.e. Illinois and Mississippi River) corridors and the forested southern third of 

the state. As an apparent forest obligate, habitat loss and degradation would have a stronger 

impact on the tri-colored bat (Farrow and Broders 2011, Schaefer 2017). These results are 
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worrisome and should be considered during the listing of the tri-colored bat under the U.S. ESA 

if forested habitat is being converted to agriculture across the state.   

While the creation of a HSM for the Indiana bat was done under Cable et al. (2020), the 

modeling methods paralleled this paper. With some additional forest metrics tested herein, the 

only other difference was that Cable et al. (2020) only allowed linear and quadratic models from 

Maxent and did not include acoustics in their occurrence records. While this prevents direct 

comparison of suitability values between the HSMs, both models are created with similar enough 

methods to build a multi-species HSM. The HSM for the Indiana bat is not shown in this thesis, 

however the top model for this species was the “Goldilocks” model with total area of forest in 

0.5km, total area of agriculture in 0.5km, total area of water in 0.5km, elevation, distance to 

hibernacula, and total area of urban in 0.5km with 30% of the state as suitable habitat. Across the 

state, suitable habitat was found in places of low elevation forested riparian floodplains, often 

leaving snags preferred for roosting. Suitable habitat closely followed riparian zones along the 

Illinois and Mississippi Rivers with most of the suitable habitat confined to the bottom third of 

the state.  

Multi-species HSM 

The multi-species HSM represents core habitat for nearly one-third of Illinois’ bat 

species, two of which are either federally listed, or under consideration for listing. Additionally, 

these four species represent a range of ecologies and natural histories, ostensibly acting as a 

representative sample for categories of Illinois bats imperiled by disease and wind energy 

(Feldhamer et al. 2015). Total area or edge of water, agriculture, and forest had a variable 

importance of one for at least three of the four focal species. In addition, the forested southern 

third of the state and the riparian areas along big rivers represent core bat habitat. Much of these 
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highly suitable riparian habitats for three and four species remains connected through the river 

system, thus maintenance of this connectivity is critical (Cable et al. 2021). Riparian habitat has 

been shown as important for creating snag roosting habitat from flooding, water accessibility for 

drinking, and higher insect availability (Carter 2006, Scott et al. 2010, Akasaka et al. 2012). 

Throughout the agriculturally dominated parts of the state as well as the top third, there remains 

pockets of suitable habitat for two species. As a representative sample of Illinois bats, this model 

stands as a baseline for change based on potential environmental impact of climate change or 

urbanization (Arumoogum et al. 2019, Stevens and Conway 2020). 

While the multi-species HSM represents a landscape-level approach to chiropteran 

habitat in Illinois, combining HSMs loses some nuance associated with single-species HSMs. 

Three of our focal species are tree-obligate bats leading to a greater emphasis on forested habitat, 

which potentially skews the model away from the hoary bat which roosts in trees but prefers 

foraging in open habitat. Eastern red and hoary bats are both habitat generalists, but eastern red 

bats are considered forest generalists, while hoary bats are considered open generalists (Ford et 

al. 2005, Menzel et al. 2005). Our models reveal some suitable habitats overlap for all species 

but areas suitable for three of the species may be sub-optimal for hoary bats. As rare forest 

obligates, the habitat-limiting HSM’s were the tri-colored bat and Indiana bat (Farrow and 

Broders 2011, Cox 2019, Cable et al. 2021). Restricting management and conservation decisions 

to suitable habitats with range-restricted species will ignore suitable habitat for more common 

species, especially in the highly agricultural areas where common bats provide ecosystem 

services in the form of agricultural pest reduction (Cooper-Bohannon et al. 2016, Stevens and 

Conway 2020). Focusing only on southern Illinois because of the greater suitable habitat for 
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more species neglects potential bat habitat across the state, especially in core habitat of the hoary 

bat, which may be essential as wind energy develops.   

While HSMs give a landscape scale view of suitable habitat, they don’t incorporate biotic 

factors that may be limiting to some species like competition and predation (Freeman and Mason 

2015). In addition, these models only define suitable habitat for general summer use. Modeling 

migration corridors for both long- and short-distance migrants may find additional areas of 

important suitable habitat as well as ideal maternity habitat during the summer (Hayes et al. 

2015, Gottwald et al. 2017, Wieringa et al. 2021).  Stacked multi-species HSMs may also over-

predict species richness across a landscape, however a stacked HSM outperforms a joint HSM, 

which uses combines species occurrences in one model run. Thus, this can still be used for 

consideration of considering habitat conservation and management decisions (Mateo et al. 2012, 

Del Toro et al. 2019, Zurell et al. 2020).  

Management Implications 

Our multi-species HSM reveals core habitat by creating a landscape-level model based on 

suitable habitat at smaller scales. As such, suitable areas should be a target for restoration, 

enhancement, and/or protection, particularly in and adjacent to areas of contiguous habitat. Much 

of the suitable habitat along riparian zones remains contiguous, and maintaining this connectivity 

is important for migration, foraging, and roosting (Ford et al. 2005, Cable et al. 2021). Multi-

species HSMs have been used to inform reserve networks and biodiversity reserves for other 

species (Buchanan et al. 2011, Cooper-Bohannon et al. 2016, Stevens and Conway 2020). With 

identified core habitat for all four bat species, land protection in the public trust is imperative to 

maintain sufficient habitat and prevent loss and degradation (Buchanan et al. 2011, Cooper-

Bohannon et al. 2016). In addition, best forestry management practices for bats, including 
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maintaining snags for tree roosting species, removal of invasive forest plants, and maintaining 

water quality, should be prioritized in core habitats (Leput 2004, O’Keefe 2009, Welch and 

Leppanen 2017). Highlighting these areas provides wildlife managers the ability to advocate for 

bat-friendly management on their lands. 

In this mosaic system, patches of unsuitable habitat are often adjacent to or surrounded 

by suitable habitat, and thus remain important for these volant species. Unsuitable areas, in this 

context, could therefore be targets for land acquisitions as a part of remediation efforts, and 

restored into prairie and/or forest habitat, thereby increasing overall suitable habitat areas and 

increasing habitat continuity (Starbuck et al. 2015, Barré et al. 2018, Sandoval-Herrera et al. 

2020). Cable et al. (2020) identified priority areas within 125km of Indiana bat hibernacula that 

could be key areas for habitat restoration and limiting wind turbine siting. Beyond the value in 

guiding land acquisitions and restoration efforts, these same results can inform where to limit 

siting of wind turbines and monitoring water quality for contamination to increase and improve 

habitat suitability (Starbuck et al. 2015, Barré et al. 2018, Sandoval-Herrera et al. 2020). 

Ultimately, prioritizing restoration funds in unsuitable areas should expand suitable habitat and 

maximize return-on-investment by merging with established suitable habitat. This is especially 

relevant as wind energy companies often buy land as mitigation for wind turbine mortalities 

(Smallwood 2013, Roscioni et al. 2014). HSMs can inform both potential areas to avoid for wind 

turbine development as well as highly impactful habitat mitigation sites for multiple species, 

including endangered or migratory species (Santos et al. 2013, Roscioni et al. 2014). 

In contrast to the above, wind energy development in the Midwest continues apace, and 

the siting of new wind energy development is predicted to have profound impacts on migratory 

bat species (Santos et al. 2013, Roscioni et al. 2014, Vanausdall et al. 2018). Both the number 
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and location of turbines on the landscape is important in reducing mortalities (Roscioni et al. 

2014, Hayes et al. 2015). Specifically, increased distance from suitable habitat has been linked to 

decreases in wind-turbine mortalities (Santos et al. 2013, Vanausdall et al. 2018). Our results 

reveal considerable unsuitable habitat in the eastern-central part of the state. Given this, our 

HSM should be considered when deciding where to site wind turbines, ideally siting new 

developments away from identified core habitat areas in the east-central region. In addition, 

HSMs for spring and fall migrations should be modeled and considered. If new wind energy 

development must be placed in or adjacent to suitable habitat, especially for multiple species, 

increased mitigation directed towards habitat restoration (as above) should be considered to 

offset losses, and adaptive management, like curtailing turbines when wind speed is over 7km/h 

or during migration season should be considered (Arnett et al. 2011, Roscioni et al. 2014, 

Smallwood and Bell 2020).   

 

ACKNOWLEDGEMENTS  

I would like to thank Illinois Department of Natural Resources and U.S. Fish and Wildlife 

Service for providing funding and critical data used to develop these models. In addition, I would 

like to thank past Illinois Bat Conservation Program technicians who assisted in collecting the 

acoustic and capture data. Lastly, I would like to thank everyone who provided mist-netting 

locations across Illinois including B. Blankenship, T. Carter, M. Mangan, R. McClanahan, E. 

Okon, J. Sheets, M. Vukovich, M. York-Harris.  

 

 



57 
 

ETHICS STATEMENT 

Mist-netting and bat handling occurred under IACUC Protocol 16074 and IRB UIUC IBC-18.1 

which was approved by the University of Illinois Committee and all appropriate state (Illinois 

Permits; SS16-045, 16-056, SS17-041, 17-024, 17-069, SS18-041) and federal research permits 

(USFWS Recovery Permit TE11170C [A.B. Cable] and TE182436-3-7 [Illinois Natural History 

Survey]).  



58 
 

TABLES AND FIGURES 

Table 1. Variables tested in univariate models for the eastern red, hoary, and tri-colored bat.  

Variables Spatial scale 

(km) 

Original data source Creator 

Aspect 0.1 (U.S. Geological Survey 2018) Gaulke 

Canopy Cover 0.1 (U.S. Geological Survey 2018) Gaulke 

Elevation 0.1 (U.S. Geological Survey 2018) Gaulke 

Distance to Roads 0.1 (Illinois Department of Transportation 

2018) 

(Cable et al. 

2021) 

Distance to Water 0.1 (U.S. Geological Survey n.d.) (Cable et al. 

2021) 

Existing Vegetation Height 0.1 (U.S. Department of Interior et al. 2013) Gaulke 

Number of Patches of Agriculture 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Forest 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Urban 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Water 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Null 0.1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Precipitation (30-year average of monthly summer 

precipitation) 

0.1 (PRISM Climate Group 2021) Gaulke 

Quadratic Mean Diameter 0.1 (U.S. Forest Service 2012) Gaulke 

Stand Density Index 0.1 (U.S. Forest Service 2012) Gaulke 

Solar Radiation 0.1 (Solargis 2019) Gaulke 
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Table 1 (cont.). 

Total Area of Agriculture 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Bottomland Forest 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Closed Canopy Deciduous Forest 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Coniferous Forest 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Forest 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Open Canopy Deciduous Forest 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Urban 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Water 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Edge of Forest 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Edge of Water 0.1, 0.5, 1 (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Temperature (30-year average of monthly minimum 

summer temperature) 

0.1 (PRISM Climate Group 2021) Gaulke 
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Table 2. Univariate model results ranked by discriminant ability of the Area Under the Curve Test (AUCtest) values based on 

occurrence points for the eastern red, hoary, and tri-colored bat across Illinois collected from 1999-2021. The top 15 variables were 

used in subsequent multivariate models. 

Rank Eastern red AUC Hoary AUC Tri-colored AUC 

1 Total area of ag in 0.1km 0.7231 Total area of ag in 0.1km 0.6376 Distance to roads 0.9056 

2 Total area of forest in 0.1km 0.7206 Distance to roads 0.6172 Stand density index 0.8071 

3 Existing vegetation height 0.7193 Total area of urban in 0.1km 0.6038 Total area of bottomland 

forest in 1km 

0.8033 

4 Stand density index 0.7169 Distance to water 0.5968 Total area of forest in 0.5km 0.798 

5 Number of patches of forest 

in 0.1km 

0.7016 Number of patches of forest in 

0.1km 

0.5871 Existing vegetation height 0.7959 

6 Quadratic mean diameter 0.6999 Total area of water in 1km 0.586 Total area of ag in 0.5km 0.7858 

7 Canopy cover 0.6985 Solar radiation 0.5819 Elevation 0.7721 

8 Total edge of forest in 

0.1km 

0.6967 Existing vegetation height 0.5812 Quadratic mean diameter 0.7719 

9 Total area of bottomland 

forest in 1km 

0.6548 Total area of forest in 0.1km 0.579 Canopy cover 0.7678 

10 Total edge of water in 1km 0.647 Total edge of forest in 0.1km 0.5741 Total area of water in 0.5km 0.762 

11 Elevation 0.6434 Stand density index 0.573 Temperature 0.7502 

12 Total area of water in 1km 0.6412 Aspect 0.57 Total edge of forest in 0.5km 0.7444 

13 Number of patches of water 

in 1km 

0.6355 Number of patches of urban in 

0.1km 

0.5611 Number of patches of forest in 

0.1km 

0.7362 

14 Temperature 0.6258 Total area of open canopy 

deciduous forest in 1km 

0.5568 Number of patches of water in 

0.5km 

0.7313 

15 Distance to water 0.6243 Total area of bottomland forest 

in 0.1km 

0.5554 Total edge of water in 0.5km 0.7134 

16 Number of patches of 

agriculture in 0.5km 

0.6186 Total edge of water in 1km 0.5509 Total area of closed canopy 

deciduous forest in 1km 

0.7124 
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Table 2 (cont.). 

17 Total area of closed canopy 

deciduous forest in 1km 

0.6126 Temperature 0.5501 Total area of open canopy 

deciduous forest in 1km 

0.6996 

18 Distance to roads 0.611 Total area of closed canopy 

deciduous forest in 0.1km 

0.5447 Number of patches of 

agriculture in 1km 

0.6993 

19 Solar radiation 0.6039 Precipitation 0.5421 Solar radiation 0.6782 

20 Total area of open canopy 

deciduous forest in 1km 

0.5914 Canopy cover 0.5418 Precipitation 0.6563 

21 Precipitation 0.5723 Number of patches of 

agriculture in 1km 

0.5271 Distance to water 0.637 

22 Aspect 0.5719 Quadratic mean diameter 0.5261 Total area of coniferous forest 

in 0.5km 

0.6255 

23 Total area of coniferous 

forest in 1km 

0.5475 Number of patches of water in 

0.1km 

0.5259 Aspect 0.5804 

24 Null 0.5388 Elevation 0.5244 Number of patches of urban in 

1km 

0.5566 

25 Total area of urban in 0.1km 0.5278 Total area of coniferous forest 

in 1km 

0.5136 Total area of urban in 0.1km 0.5504 

26 Number of patches of urban 

in 0.5km 

0.52 Null 0.4507 Null 0.5279 
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Table 3. Top multivariate models for the eastern red, hoary, and tri-colored bat ranked by the AICc values based on occurrence points 

from 1999-2021 across Illinois. AUCtest values show model’s goodness-of-fit. AICc values is Akaike’s Information Criterion for small 

sample size which ranks the model selection. The difference between the top AICc value and that model’s AICc value is the ∆AICc. 

The AICc wi is the models’ weight. Only models with AICc weight are shown in this table. All models are shown in the Appendix.  

Model Rationale Variables AUCTest AICc ∆AICc AICc 

wi 

Eastern red bat 

(Amelon et 

al. 2014) 

Access to water, high prey 

availability, and 

commuting by topographic 

features 

elevation + total area of ag in 0.1km + total area 

of forest in 0.1km + total area of water in 1km + 

total edge of forest in 0.1km + total edge of water 

in 1km 

0.7837 8423.76 0 0.5151 

(Limpert et 

al. 2007) 

Preferred roosting habitat 

and foraging habitat in 

riparian zones  

canopy cover + distance to water + quadratic 

mean diameter + total area of ag in 0.1km + total 

area of bottomland forest in 1km + total area of 

forest in 0.1km + total area of water in 1km + 

temperature 

0.7927 8424.4 0.6417 0.3737 

Global 

Model 

  elevation + distance to water + existing 

vegetation height + quadratic mean diameter + 

total area of ag in 0.1km + total area of 

bottomland forest in 1km + total area of forest in 

0.1km + total area of water in 1km + total edge of 

forest in 0.1km + total edge of water in 1km 

0.7922 8426.83 3.0681 0.1111 

Hoary bat  

Land Use 

History 

Bias 

Where most historical 

human impact has 

occurred 

distance to roads + total area of ag in 0.1km + 

total area of urban in 0.1km 

0.7444 3742.44 0 1 

Tri-colored bat  
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Table 3 (cont.). 

(O’Keefe 

2009) 

Minimize commuting 

costs as a smaller bat and 

prefer riparian habitats for 

roosting and maximizing 

foraging costs 

canopy cover + elevation + distance to roads + 

number of patches of forest in 0.1kmm + total 

edge of forest in 0.5km + total edge of water in 

0.5km 

0.8832 3261.34 0 0.56 

(O’Keefe 

2009) 

Minimize commuting 

costs as a smaller bat and 

prefer riparian habitats for 

roosting and maximizing 

foraging costs 

canopy cover + elevation + distance to roads + 

total edge of forest in 0.5km + total edge of water 

in 0.5km 

0.8704 3261.8 0.4658 0.44 
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Figure 1. HSMs for the eastern red bat, hoary bat, and tri-colored bat with occurrences from 1999-2021 across Illinois. Suitable areas 

are indicated in gray while each red circle indicates an occurrence point. Suitable habitat for eastern red bats is evenly distributed 

across the state with large tracts of agricultural land and forested areas deemed suitable. The hoary bat’s suitable habitat is seen in 

large contiguous patches of agricultural land in the middle of the state with additional suitable forested habitat. The tri-colored bat has 

the smallest distribution of suitable habitat following the riparian corridors, but mostly in the forested southern third of Illinois.      

 



65 
 

 

Figure 2. Maxent response curves for the eastern red bat showing the relative suitability (0-1) to each variable that had an importance 

of 1. All three variables are scaled for a proportion from 0-1. Dotted blue lines indicate the average of suitable eastern red bat habitat 

while the dashed red line indicates the average across Illinois. 

 

 

 

Figure 3. Maxent response curves for the hoary bat showing the relative suitability (0-1) to each variable that had an importance of 1. 

The two landcover variables are scaled for a proportion from 0-1. Dotted blue lines indicate the average of suitable hoary bat habitat 

while the dashed red line indicates the average across Illinois. 
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Figure 4. Maxent response curves for the tri-colored bat showing the relative suitability (0-1) to each variable that had an importance 

of 1. The two landcover variables (total edge of forest and total edge of water) are scaled for a proportion from 0-1. Dotted blue lines 

indicate the average of suitable tri-colored bat habitat while the dashed red line indicates the average across Illinois. 

 



67 
 

 

Figure 5. Stacked HSM from the eastern red, hoary, tri-colored, and Indiana bat binary habitat 

suitability maps based on occurrences from 1999-2021 across Illinois.  
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CHAPTER 3: SAMPLING METHODOLOGY INFLUENCES HABITAT SUITABILITY 

MODELING FOR CHIROPTERAN SPECIES 

ABSTRACT 

Technological advances increase opportunities for novel wildlife survey methods using 

both passive and active surveys. With an increase in detection methods, many organizations and 

agencies are creating habitat suitability models (HSMs) to identify critical habitats and prioritize 

conservation measures. However, multiple occurrence data types (passive vs. active) are being 

utilized to create these HSMs with little understanding of how inherent biases related to different 

data types might impact HSM efficacy. Here I sought to understand how different data types can 

influence HSMs using three bat species (eastern red, hoary, and tri-colored bat). I compared the 

overlap of models created from passive-only, active-only, and combined occurrences to identify 

the effect of multiple data types and detection bias. For each species, the best performing models 

were always active-only. By comparing the niche overlaps of HSMs between data types, I found 

a high amount of variation with no species having over 45% overlap between the models. 

Passive models showed more suitable habitat in agricultural lands, while active models showed 

higher suitability in forested land, a reflection of sampling bias. Overall, this emphasizes the 

need to consider influences of detection and survey biases on modeling, especially when 

combining multiple data types. Biases from sampling, behavior at time of detection, and species 

life history intertwine to create striking differences among models. These biases and concomitant 

of each detection type should be considered in the final model output, particularly when the goal 

is to inform management decisions, as one data type may support very different management 

strategies than another.  
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INTRODUCTION  

Emerging technologies afford new opportunities for monitoring wildlife via passive or 

active detection. Passive detection involves minimally invasive methods, often with no contact 

with the animal, and includes tracking prints in snow or soil, listening or recording calls, or 

camera trapping (Clare et al. 2017, Coxen et al. 2017, Sugai et al. 2019). In the age of genetics, 

additional opportunities for passive detection are created through environmental DNA (eDNA) 

and fecal sampling (Beckmann et al. 2015, Carraro et al. 2018, Hashemzadeh Segherloo et al. 

2021). Active detection involves the direct capture and subsequent handling of individuals of 

species of interest (Praca et al. 2009, Hohoff 2016, Coxen et al. 2017). These different detection 

methodologies occur across all types of wildlife; large carnivores can be passively detected via 

camera traps or actively captured (Kabir et al. 2017, Bai et al. 2018, Watts et al. 2019), birds can 

be surveyed passively through acoustic monitoring, or actively via mist-netting (Coxen et al. 

2017, Hallman 2018, Neice and McRae 2021), and for fish, electrofishing is the traditional active 

sampling while passive sampling via fyke nets is common (Rogers et al. 2003, Ruetz et al. 2007, 

Mehdi et al. 2021). More broadly, eDNA now allows for passive sampling of most vertebrates 

compared to more traditional active sampling (Harper et al. 2019, Leempoel et al. 2020, Moss et 

al. 2022).  

Passive and active detection each have their own benefits and shortcomings. Particularly 

for cryptic species, passive detection can be more efficient, easier to deploy, and may yield 

substantially more occurrences at larger temporal and spatial scales (Hohoff 2016, Clare et al. 

2017, Coxen et al. 2017). While passive detection may have a greater chance of species 

misidentification (ex. a misidentified acoustic call or fuzzy camera trap photo), active detection 

can often be time-consuming, expensive, stresses organisms, and creates a mortality risk 
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(Coleman et al. 2014, Russo and Voigt 2016, Clare et al. 2017). Additionally, active sampling is 

frequently limited to one/few capture sites per trapping period, often with accessibility 

constraints, and is dependent on species phenology (Coleman et al. 2014, Zwart et al. 2014, 

Rounsville et al. 2022). In addition, for the extensive effort that some active capture methods 

require, few to zero individuals can be captured (Flaquer et al. 2007, Bai et al. 2018). Different 

data collection methods creates detection biases that can impact future modeling (Flaquer et al. 

2007, Clare et al. 2017, Risch et al. 2021). As each data type is biased, careful consideration of 

the purpose and sampling design to account for biases of each detection type is critical (Barnhart 

and Gillam 2014, Ford et al. 2016, Risch et al. 2021).  

Most occurrence data collected are utilized in modeling distributions, habitat 

associations, or population trends, and combining multiple sampling methods in the same model 

introduces detection biases (Graves et al. 2012, Banner et al. 2018, Hallman 2018). When 

conducting species distribution modeling, HSMs are affected by the occurrence data supplied 

(Gu and Swihart 2004, Barnes et al. 2014, Barnhart and Gillam 2014). Passive acoustic and 

eDNA data are increasing in use in HSMs for multiple taxa, including fish, birds, and bats (Cox 

2019, Hedley et al. 2020, Hashemzadeh Segherloo et al. 2021). Omitting imperfect detection and 

false positives can impact model precision and accuracy (Banner et al. 2018, Louvrier et al. 

2019, Rojas et al. 2019). Combining data sets may greatly increase the number of occurrences 

for cryptic species as well as introducing greater species misidentification and imperfect 

detection (Miller et al. 2011, Clare et al. 2017, Louvrier et al. 2019).  

While the impact of multiple detection types has been studied for occupancy modeling, 

there has been little research on landscape-level effects of multiple data types on habitat 

modeling, particularly for chiropteran species (Clement et al. 2014, Banner et al. 2018, Rojas et 
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al. 2019). Common detection methods for bats includes passive detection (acoustics) or active 

(mist-netting or wind turbine mortalities) (Barnhart and Gillam 2014, Ford et al. 2016, Hohoff 

2016). Varying life histories and behaviors among species result in differential detection 

probabilities among sampling methods (O’Farrell and Gannon 1999, Flaquer et al. 2007, Hohoff 

2016). For example, high-flying bats (e.g. hoary bat) are rarely caught in mist-nets but are 

frequently detected by acoustic monitoring (O’Farrell and Gannon 1999, Menzel et al. 2005). 

Unfortunately, North American bat populations are threatened by pesticide use, wind-energy 

development, white-nose syndrome, and habitat loss and as such landscape-level research is 

necessary to identify critical habitats, patches, and corridors to target management interventions 

(Bellamy et al. 2013, Rodhouse et al. 2019, Sandoval-Herrera et al. 2020, Cheng et al. 2021). 

Using two different data types and mindful of their biases, I tested if data type (combined, 

passive, or active) impacts HSMs for three focal bat species (Lasiurus borealis, Lasiurus 

cinereus, Perimyotis subflavus). My research questions were: (1) Does sampling type result in 

differences in HSMs? (2) Do differences in species’ ecology result in differential HSMs derived 

from different sampling type? I hypothesize that the consistency across models from different 

data types will vary by species and their life history traits, i.e. that species that have larger 

disparities between passive and active detection will have greater model inconsistency.  

 

METHODS 

Study Area 

Illinois is a habitat mosaic with 76% of the land classified as agriculture, 12% as forest, 

6% as urban, 3% as wetland, and 2% as other (Luman et al. 2004). The northern thirds of Illinois 
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is dominated by agriculture and an urban/suburban/exurban interface, while the southern third is 

home to the Shawnee National Forest; 280,000 acres of protected forest managed by the U.S. 

National Forest Service (Iverson 1988, Luman et al. 2004, Rey 2004). The middle third of the 

state is primarily row crops (corn and soy) with small, isolated forest fragments, riparian 

corridors, degraded prairie, and urban areas. Across the state, Illinois forests are primarily 

composed of hardwood deciduous trees with major riparian zones along the Illinois and 

Mississippi rivers.  

Study Species  

There are diverse life history traits across Midwestern bat species. The eastern red bat, 

Lasiurus borealis (Müller 1776) is a common generalist forager that primarily roosts solitarily in 

foliage and tree bark (Limpert et al. 2007, Perry et al. 2007). Their longer, narrow wings are 

adapted for fast flying over long distances and foraging in forest gaps, edges, and openings 

(Walters et al. 2007, Amelon et al. 2014, Starbuck et al. 2015). The hoary bat, Lasiurus cinereus 

(Palisot de Beauvois 1796), migrates long-distances and primarily forages in open spaces, both 

behaviors linked with high wind-turbine mortality (Hayes et al. 2015, Weller et al. 2016, 

Friedenberg et al. 2021). The tri-colored bat, Perimyotis subflavus (Cuvier 1832) has the longest 

hibernation time in Illinois, contributing to devastating losses from white-nose syndrome and 

prompting its candidacy for listing under the U.S. Endangered Species Act (ESA) (Turner et al. 

2011, Center for Biological Diversity and Defenders of Wildlife 2016, Cheng et al. 2021). They 

are foliage roosters choosing mature stands and forage above the trees and in partially open 

habitat (Veilleux et al. 2003, O’Keefe 2009, Farrow and Broders 2011).  
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Active Detection Data  

Historic capture data was acquired via a data sharing agreement with the Illinois 

Department of Natural Resources (IDNR) and the U.S. Fish and Wildlife Service for both mist-

netting and summer wind farm mortalities from 1999-2021. Since IDNR primarily maintains 

records for threatened and endangered species, the historic capture data was incomplete for non-

listed species. Thus, I contacted IDNR’s list of Illinois mist-netting permittees requesting mist-

netting records for the three focal species between 1999-2021. Eight additional sources 

responded augmenting 46 mist net sites from 2015-2019 generated by the Illinois Bat 

Conservation Program (IBCP). I combined windfarm mortality and mist-net records, reducing 

the number of individual records to one per site. For all data, I removed sites with low positional 

or temporal accuracy, or no data associated with captures. 

Passive Detection Data 

Acoustic data were collected by IBCP, following the NABat protocol for 20 NABat 

GRTS cells surveyed annually since 2016 (Illinois Bat Conservation Program 2021, U.S. 

Geological Survey 2021). A Song Meter SM4+ detector was deployed in 2-4 of the quadrants in 

each GRTS cell with a SMM-U1 or U2 microphone (Wildlife Acoustics). Sites in each quadrant 

were chosen to represent habitat diversity in each cell. Monitors were deployed for a minimum 

of four good weather nights (i.e. no rain, temperatures > 60 degrees, and sustained wind < 8 

mph). The same protocol was used for all years, and sites remained largely unchanged, with 

some exceptions due to landowner permissions or personnel changes. Data were recorded from 

19:00 to 7:30 each night. IBCP also generated acoustic monitoring sites across Illinois that were 

surveyed with a similar acoustic protocol as the GRTS cells. These data are considered presence-
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only; the survey effort at some sites (i.e. four nights) was insufficient to determine absence 

(Moreno and Halffter 2000, Skalak et al. 2012).  

I used the NABat protocol to process the acoustic data (Reichert et al., 2018). 

Specifically, I processed all files recorded in the field through Sonobat 4 (Arcata, CA) using the 

medium filter to reduce noise files (Szewczak 2010). Due to time and data storage constraints, I 

ran Kaleidoscope Pro 5.4.0 as the auto-identifier (Kaleidoscope Pro n.d.). Kaleidoscope is a 

powerful auto-classifier that, in addition to identification, provides maximum likelihood 

estimates of species occupancy. I considered below 𝛼 = 0.05 to be present and above 𝛼 = 0.05 

to be absent following standard conservative protocols (Nocera et al. 2019, U.S. Fish & Wildlife 

Service and U.S. Geological Survey 2019). These acoustic data were not manually vetted since 

NABat does not require manual vetting for their data upload. All data was re-processed in 2021 

to ensure that the classifier’s conditions were the same through all analyses. 

Data Cleaning  

Active and passive data were combined and processed in R 4.1.2 (R Core Team 2021). 

To reduce spatial autocorrelation, I removed records within 1 km of each other. Records were 

also temporally restricted from May 15 - Aug 15 to ensure that no records were from migration 

time periods following the U.S. Fish and Wildlife Guidelines (U.S. Fish & Wildlife Service 

2020).  After data cleaning and quality control, there were 264 occurrences for eastern red bats, 

116 occurrences for hoary bats, and 106 occurrences for tri-colored bats spread across Illinois.  

Environmental Layers 

I used sixteen landcover variables (Table 4) (per Cable, 2020) created from the Illinois 

Geospatial Clearing house land cover layer (Illinois Department of Natural Resources et al. 
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2003). Cable et al (2020) used parallel methods to create a statewide HSM for the Indiana bat 

(Myotis sodalis).  Cable used Fragstats (McGarigal and Marks 1995) to find the number of 

patches of four landcover types, total area of eight landcover types, and total edge of two 

landcover types. Each metric was calculated at three different scales state-wide (0.1km, 0.5km, 

and 1km) representing roosting, foraging, and landscape distances.  

An additional nine variables were also considered based on the top models of published 

chiropteran HSMs or occupancy models (Table 4). Many of these variables were forest stand 

structure metrics or topographical landscape metrics, gathered from publicly available GIS layers 

and resampled in ArcGIS for 100m resolution to match layers (Esri Inc. 2021). Both temperature 

and precipitation layers were taken from a 30-year normal and averaged across May-Aug to 

represent the summer average (PRISM Climate Group 2021).  

Modeling 

For all variables, I created single-predictor models in MaxEnt v3.4.4 using both data 

types to optimize spatial scale for variables and chose the top 15 variables for each species by 

AUCtest scores (Phillips et al. 2006, 2021). For univariate models, I used the default parameters 

with 20 replicates, and 10% random test percentage (Phillips et al. 2021). Using AUCtest scores, I 

determined the best spatial scale for each species for each landcover variable. I ranked the top 

scaled landcover variables among the non-scaled variables, selecting the top 15 variables for 

each species with AUCtest >0.5. The top 15 variables for each species were carried on throughout 

the analysis. A correlation matrix was created in ArcGIS for the fifteen variables for each species 

and highly correlated variables (>0.7) were removed based on their univariate rank. With the 

remaining non-correlated variables, a global model was created for each species. 
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Using the global model, I tested differing regularization multipliers ranging from 1-12 

using the same default parameters of 20 replicates and 10% as a random test percentage. The 

regularization multiplier with the top AUCtest scores was carried out through the rest of the 

analysis. Each species had three models run with the same global model for each data set: 

passive-only occurrences, active-only occurrences, and combined passive and active detections. 

This yielded nine models across all species. All models were identically run in MaxEnt using 

presence-only data, the top regularization multiplier, 20 replicates, 10% of datapoints withheld 

for testing from the dataset, and 5000 maximum iterations. For pseudo-absence points, MaxEnt 

randomly sampled 10,000 background points across the state using bootstrapping.  

Model Analysis 

Model goodness-of-fit was assessed via AUCtest scores and omission rates. AUCtest scores 

predict the discriminatory ability of the model to tell occurrence points from background points 

with a score 0.5 indicating that the model is no better than random chance and a score of 1 

indicating perfect discriminatory ability (Jiménez-Valverde 2012). The dataset from the opposite 

data types was used to test the omission rate. I used the following function in the Raster 

Calculator in ArcGIS to convert models from raw to log format, standardizing the suitability 

scale from 0 to 1 (Hammond et al. 2016).  

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 = (𝑟𝑎𝑤 ∗ 𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦)/(1 + 𝑟𝑎𝑤 ∗ 𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 

To create binary models, I created a threshold of omission for each species based on the bottom 

10% of suitability scores for true presences in the test datasets (Hovick et al. 2015). For a 

comparison of the binary models, I ran a niche overlap function in ENMTools, using the 
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Schoener’s D value to calculate niche equivalence by the proportion of shared pixels between the 

two models (Schoener 1968, Warren et al. 2010).  

 

RESULTS  

There was a range in the number of occurrences for each detection type among species 

(Table 6). Hoary bats, high-flying open foragers, had almost three times as many passive 

detections (n = 86) than active detections (n = 30), whereas tri-colored bat, a declining forest 

obligate, passive detections (n=27) were much less frequent than active detections (n = 77). The 

eastern red bat, a forest generalist, has the highest number of occurrences (n=264) with a third of 

them being passive (n=88) and two-thirds being active (n=176).  

Suitable habitat for both tri-colored and eastern red bats was dominated by forest-related 

variables, while hoary bat was dominated by open variables. (Table 5). Specifically, elevation, 

distance to water, existing vegetation height, quadratic mean diameter, total area of agriculture in 

100m, total area of bottomland forest in 1km, total area of forest in 100m, total area of water in 

1km, total edge of forest in 100m, and total edge of water in 1km defined core eastern red bat 

habitat (Table 6). Similarly, the global model for the tri-colored bat included elevation, distance 

to roads, existing vegetation height, number of patches of forest in 100m, number of patches of 

water in 500m, quadratic mean diameter, stand density index, total area of agriculture in 500m, 

total area of bottomland forest in 1km, and total area of water in 500m. By contrast, the hoary bat 

global model included aspect, distance to roads, distance to water, existing vegetation height, 

number of patches of forest in 100m, stand density index, solar radiation, total area of agriculture 
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in 100m, total area of bottomland forest in 100m, total area of open canopy deciduous forest in 

1km, total area of urban in 100m, and total area of water in 1km.  

Model outputs differed greatly between data types, however active detection recovered 

the highest AUCs for all species. For eastern red bat, active detection had the highest AUC 

(0.86), highest number of occurrences and projected the most conservative HSM (Table 6). Only 

32.6% of the state was considered suitable habitat compared to 43.3% with passive detection and 

50.9% with a combined dataset. The omission rate between the two data types (53-54%) was 

high for the eastern red bat. The active HSM recovers suitable habitat in southern IL and 

following the forested riparian areas and major river corridors, while the passive HSM revealed 

most suitable habitat near the Chicago region and in large contiguous agricultural patches in the 

central western part of the state (Fig. 6). The combined model merges these agricultural patches 

with forested/riparian suitability but predicts Chicago as unsuitable habitat.  

For hoary bats, the active model had the highest AUC value (0.84) and the most 

conservative HSM with only 25% of the state as suitable habitat (Table 6). While the combined 

and passive models had AUC values very close to the active model (0.80 and 0.82 respectively), 

the amount of modeled suitable habitat nearly doubled, with 47% of the state comprised of 

suitable habitat in both models. While the number of active detections was one third of the 

overall number of detections, the omission rate of the active model was high at 72% of passive 

occurrences being modeled in unsuitable habitat. The passive model had a lower omission rate of 

46.7% which is still impractically high.  

The hoary bat’s active HSM reveals small suitable patches distributed across north-

western Illinois with a large habitat patch in the southern forests (Fig. 7). In addition, major 

roads, highways, and waterways stand out in this model as unsuitable habitat. The passive HSM 
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recovers much larger-scale, evenly distributed and contiguous patches, particularly in 

agricultural areas. The southern third of the state include more fine-scale suitable habitat, but the 

influence of roads and waterways are less pronounced than in the active model. The combined 

detection model includes both the larger-scale patches and greater distribution of the passive 

detection model with the smaller scale suitability of the active model. 

The top model for the tri-colored bat was the active model with a high AUC value of 

0.9212 and 19.8% of the state modeled as suitable habitat (Table 6). The passive model yielded 

the lowest AUC value of 0.75 with 33% of the state as suitable habitat while the combined model 

had an AUC value of 0.85 with 28.3% of the state as suitable habitat. Both omission rates of the 

tri-colored bat were impractically high with over 61% of occurrences omitted in the passive 

model and over 78% of passive occurrences omitted in the active model.  

The tri-colored bat’s HSMs are dissimilar in predicted suitable habitat (Fig. 8). The active 

HSM confines the suitable habitat to forested and major riparian zones throughout the state, but 

particularly in and around Shawnee National Forest. Conversely the passive model reveals no 

obvious forest association and an even distribution throughout the state, with a slight increase in 

suitable habitat in the northern third. The wide distribution from the passive model is not 

reflected in the combined model in areas of dense agriculture.  

Comparing niche overlap values for different model types showed a maximum of 45% 

(range: 22-45%) overlap between active and passive detection types across all species (Table 7), 

indicative of substantial disparity between the two data types among species. In fact, >50% of 

the entire state of Illinois was modeled differently when active and passive models were 

compared. Comparing passive detection to combined detection resulted in a higher degree of 

overlap (range: 48-83%) as well as active detection to the combined (range: 43-63%). For all 
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species, the data type with larger sample size had greater overlap with the combined model. This 

is expected as the larger sample size would have a higher influence on the distribution.  

 

DISCUSSION 

As technological advances have introduced efficiencies and opportunities for measuring 

and monitoring biodiversity, understanding the trade-offs and biases compared to more 

conventional, active sampling approaches is critical to ensure the quality of conclusions made 

from this analysis (Barnhart 2014, Ford et al. 2016, Clare et al. 2017). As eDNA, acoustic 

monitoring, camera trapping and other passive methods are deployed at scale, researchers must 

be confident in the data to ultimately inform management decisions. Here I compared passive 

and active sampling for bats. Across all species, the difference in HSMs between passive and 

active was striking with no more than 45% overlap between the models, indicating that sampling 

bias between data types influences HSMs, with important implications for how they inform 

management decisions (Table 7). For each species, the active model recovered the highest 

AUCTest value and the most conservative amount of suitable habitat, independent of how many 

occurrences there were for that data type (Table 6). This indicates that active data may create the 

most robust HSM for chiropteran species on a landscape scale, even for species that are more 

difficult to capture, contradicting previous studies (Barnhart and Gillam 2014, Ford et al. 2016). 

Overall, this emphasizes that considerations should be made regarding the influence of data type 

on HSMs in three key ways: the sampling bias, biological bias during detection, and the species 

bias from their life history and ecology.  
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Sampling Bias  

Hallmarks of sampling bias for each data type are visible in the models as efficacy of 

different detection types varies between locations (Gu and Swihart 2004, Zwart et al. 2014, 

Fisher-Phelps et al. 2017). For effective mist-netting for chiropteran and bird species, nets need 

to be placed in flyways and corridors that funnel animals into the net (O’Farrell and Gannon 

1999, MacCarthy et al. 2006, Geluso and Geluso 2012). Forests and riparian zones provide these 

‘funnels,’ and consequently are frequent netting sites (Geluso and Geluso 2012, Coleman et al. 

2014). As such, mist-net derived occurrences are necessarily distributed primarily in riparian and 

forested zones and lacking in residential and open fields such as prairie or row crop agriculture. 

This creates a sampling bias with higher numbers of active occurrences within forested and 

riparian zones, which is reflected in our active models and illustrated by the majority of suitable 

habitat falling along Illinois’ big rivers. This may be the reason for active data having the lowest 

percentage of the state as suitable for all focal species, as only 12% of Illinois is forested (Luman 

et al. 2004). This bias may diminish with increasing cell size and landcover type homogenizes.  

Conversely, passive data are easily collected, including in urban environments, open 

fields, row agriculture, forests, and riparian habitats. While distance to detection of acoustics and 

camera trapping are impacted by vegetation, other passive methods such as eDNA and fecal 

sampling are less impacted by land cover type (O’Keefe et al. 2014, Leempoel et al. 2020, Moll 

et al. 2020). As such, passive sampling was distributed more broadly in our study and evenly 

throughout the landscape, though with a critical disparity in Illinois’ southern forests. This is 

manifest in greater distribution of suitable habitat, not strictly confined to forested areas as in the 

active models. This may reflect, to a degree, the habitat proclivities of generalist species (e.g. 

eastern red and hoary bat), which has been supported by previous habitat modeling  (Menzel et 
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al. 2005, Vanausdall et al. 2018, Wieringa et al. 2021). For specialists, such as the tri-colored bat, 

the passive model does not reflect their forest requirements, potentially because of a lack of 

sampling in the predominantly forested region of the state (Farrow and Broders 2011, Schaefer 

2017, Cox 2019).  

In addition to landcover type, sampling bias can occur in other ways. Both types of 

sampling are typically completed closer to roads than not, although some of the roads used for 

conventional (i.e. mist net) active sampling may be unmaintained rural roads or roads closed to 

public use on protected lands. Many species such as mesocarnivores, bears, and some species of 

bats (eastern red and tri-colored) use roads as linear openings for foraging and commuting (Mace 

et al. 1996, Hein et al. 2009, Barja and List 2015). However, both data types may have been 

under sampled in undisturbed natural areas further from roads.  

Biological Bias on Modeling  

Previous studies on using multiple data types for chiropteran HSMs found a significant 

difference among data types as well as among species. Ford et al (2016) modeled a HSM for the 

northern long eared bat (Myotis septentrionalis) (Trouessart 1897) at a local scale and strongly 

recommended against combining three data types, (i.e. acoustics, mist-netting, and roost 

locations), as it masked ecological trends of roosting vs. foraging (Ford et al. 2016). While this 

model was at a local scale and using an additional data type (roost sites), their concerns about 

defining the model objective and using data to reflect that model objective remain true for all 

model analyses. Including roosting locations constricts occurrence locations to suitable roosting 

habitat and may sway the model from a generalist model to a more ecologically specific one, 

ostensibly limiting the inferential efficacy of a general, landscape-level model.  
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Our model created a general summer use HSM from passive and active sampling, as both 

types of detection utilized are evidence of general bat use on the landscape. For bats and for 

many other species, it can often be unclear what the animal is doing when it is detected either 

passively or actively (e.g. migrating, looking for a mate, foraging, or commuting to and from 

dens, drinking, and/or foraging locations) (Ford et al. 2016). Even using a single data type leaves 

uncertainty as to what, biologically or ecologically speaking, the species are doing at time of 

detection, and as such these models reflect broad habitat associations. Without a clear association 

of the animal’s biological context at each occurrence, incorporating multiple detection types can 

generalize the ecological utility of the model which the utility of depends on the goal of the 

model. For other species, where occurrence type may reflect a specific biological need (e.g. 

roosting or nesting locations, or a species that vocalizes only during mating season), this may not 

be the case. In these contexts, utilizing that data type would result in a specific ecologically 

focused HSM.  

Species Bias  

Barnhart and Gilliam (2014) modeled landscape scale HSMs for six species of bats in 

North Dakota with paired passive and active sampling at 17 sites total. They found that the best 

data type was species-specific, and suggested researchers should carefully consider the life 

history and ecology of each species to select appropriate sampling methods for optimizing 

HSMs, even if that meant combining data sets (Barnhart and Gillam 2014). I used a larger 

occurrence data set with over 100 sites for each species, giving better representation of a 

landscape-scale sampling protocol and, as a result, recover different trends than Barnhart and 

Gilliam (2014). The difference between our findings and their results may be attributed to 

different genera, as none of our focal species were Myotis, which were the only species in which 
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passive did better than active in Barnhart and Gillam (2014). I echo their findings that species 

life history and ecology should be strongly considered when building a sampling design and 

creating HSMs, as the impact of detection differences varied between our three focal species.  

One example of the impact of species ecology is the potential difference in the number of 

occurrences between common species that are easily detected and cryptic species, as increasing 

sample size has been shown to improve model performance (Hirzel and Guisan 2002). For 

cryptic species that are hard to detect with one method, I can increase HSM robustness by using 

multiple methods and increasing sample size (Hohoff 2016, Clare et al. 2017, Coxen et al. 2017). 

Another example is the difference in detection between developmental stages of species (Smith 

et al. 2006, Pirtle et al. 2019, Moss et al. 2022). For example, in amphibians the efficacy of using 

eDNA in occupancy modeling decreased as amphibians metamorphosed, underperforming 

conventional, active sampling (Moss et al. 2022). For bats, altricial pups do not fly and thus 

cannot be detected via conventional mist-netting or acoustics (Kunz and Hood 2000). Species 

life history plays an important role in detection and the best data type may fluctuate among 

species as well as across species life stages.  

A major drawback of passive sampling that was unaccounted for in this study were false-

positives, which may be particularly important for eastern red and tri-colored bat. False-positive 

and false-negative rates in acoustics vary by species and are lower for species with distinctive 

call shapes and frequencies (e.g. hoary bat) and higher for species with similar calls (e.g. Myotis) 

(Clement et al. 2014, Russo and Voigt 2016, Rojas et al. 2019). While manual vetting may 

reduce false positive rates, subjectivity among various call ID software and specialists remains 

(Russo and Voigt 2016). This extends beyond acoustics to include misidentification of feces, 

incorrect track identification, and blurry camera trap photos, where genetic analyses provides 
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confidence for some detection methods (Clare et al. 2017, Louvrier et al. 2019, Guan et al. 

2020).  For species with high false identification rates, occupancy models have now begun 

incorporating false-positive parameterizations, thus improving model estimation (Miller et al. 

2011, Clement et al. 2014, Rojas et al. 2019). Incorrect species identification may contribute to 

poor model performance for passive sampling data. Therefore, accounting for false positives and 

negatives is a critical consideration in modeling exercises leveraging these data types.  

Management Considerations 

From a management perspective, the difference between models is striking and cause for 

careful consideration when using to inform decision making. Such HSMs are often utilized in 

management interventions and conservation planning, including setting restoration objectives, 

purchasing land for protection, identifying potential areas to improve connectivity, or siting 

future wind energy developments (Vanausdall et al. 2018, Stevens and Conway 2020, Cable et 

al. 2021). Additionally, HSMs are frequently used to predict the potential effects of climate 

change on species distributions (Davis et al. 2015, Razgour et al. 2016, Coxen et al. 2017). 

Comparing HSMs based on different data types or combined data sets that are heavily skewed 

towards one data type over another, may highlight differences that are due to sampling bias and 

detection probabilities, rather than true climate impacts. Thus, different management decisions 

might be made based on passive vs. active HSMs. Caution is warranted when comparing HSMs, 

and model biases must be considered when drawing inferences, especially when used in a 

management context. While this study focuses on bats, passive and active detections are a 

common difference in surveying many species leading to the broad applicability of this study. 

The three factors discussed; sampling bias, behavior at time of detection, and species life history, 
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are inextricably linked. As such, consideration of each will create more biologically relevant and 

robust models.  
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TABLES AND FIGURES 

Table 4. Variables tested in univariate models. The X in variable name represents the scales at which it was tested.   

Variables Spatial 

Scale (km) 

Variable 

Name 

Original Data Source Creator 

Aspect 0.1 aspect (U.S. Geological Survey 2018) Gaulke 

Canopy Cover 0.1 canopy_c

over 

(U.S. Geological Survey 2018) Gaulke 

DEM 0.1 dem (U.S. Geological Survey 2018) Gaulke 

Distance to Roads 0.1 dist_road

s 

(Illinois Department of 

Transportation 2018) 

(Cable et al. 

2021) 

Distance to Water 0.1 dist_wate

r 

(U.S. Geological Survey n.d.) (Cable et al. 

2021) 

Existing Vegetation Height 0.1 evh (U.S. Department of Interior et al. 

2013) 

Gaulke 

Number of Patches of Agriculture 0.1, 0.5, 1 np_ag_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Forest 0.1, 0.5, 1 np_for_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Urban 0.1, 0.5, 1 np_urb_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Water 0.1, 0.5, 1 np_water

_x 

(Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Null 0.1 null (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Precipitation (30-year average of monthly summer 

precipitation) 

0.1 precip (PRISM Climate Group 2021) Gaulke 

Quadratic Mean Diameter 0.1 qmd (U.S. Forest Service 2012) Gaulke 
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Table 4 (cont.). 

Stand Density Index 0.1 sdi (U.S. Forest Service 2012) Gaulke 

Solar Radiation 0.1 solar_rad (Solargis 2019) Gaulke 

Total Area of Agriculture 0.1, 0.5, 1 ta_ag_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Bottomland Forest 0.1, 0.5, 1 ta_bot_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Closed Canopy Deciduous Forest 0.1, 0.5, 1 ta_ccd_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Coniferous Forest 0.1, 0.5, 1 ta_conif_

x 

(Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Forest 0.1, 0.5, 1 ta_for_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Open Canopy Deciduous Forest 0.1, 0.5, 1 ta_ocd_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Urban 0.1, 0.5, 1 ta_urb_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Area of Water 0.1, 0.5, 1 ta_water

_x 

(Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Edge of Forest 0.1, 0.5, 1 te_for_x (Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Total Edge of Water 0.1, 0.5, 1 te_water

_x 

(Illinois Department of Natural 

Resources et al. 2003) 

(Cable et al. 

2021) 

Temperature (30-year average of monthly 

minimum summer temperature) 

0.1 temp (PRISM Climate Group 2021) Gaulke 
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Table 5. Univariate model results ranked by AUCtest values. The top 15 variables were used in 

the multivariate models. 

Rank Eastern red AUC Hoary AUC Tri-colored AUC 

1 ta_ag_100 0.7231 ta_ag_100 0.6376 dist_roads 0.9056 

2 ta_for_100 0.7206 dist_roads 0.6172 sdi 0.8071 

3 evh 0.7193 ta_urb_100 0.6038 ta_bot_1km 0.8033 

4 sdi 0.7169 dist_water 0.5968 ta_for_500 0.798 

5 np_for_100 0.7016 np_for_100 0.5871 evh 0.7959 

6 qmd 0.6999 ta_water_1km 0.586 ta_ag_500 0.7858 

7 canopy_cover 0.6985 solar_rad 0.5819 dem 0.7721 

8 te_for_100 0.6967 evh 0.5812 qmd 0.7719 

9 ta_bot_1km 0.6548 ta_for_100 0.579 canopy_cover 0.7678 

10 te_water_1k 0.647 te_for_100 0.5741 ta_water_500 0.762 

11 dem 0.6434 sdi 0.573 temp 0.7502 

12 ta_water_1km 0.6412 aspect 0.57 te_for_500 0.7444 

13 np_water_1km 0.6355 np_urb_100 0.5611 np_for_100 0.7362 

14 temp 0.6258 ta_ocd_1km 0.5568 np_wat_500 0.7313 

15 dist_water 0.6243 ta_bot_100 0.5554 te_water_500 0.7134 

16 np_ag_500 0.6186 te_water_1k 0.5509 ta_ccd_1km 0.7124 

17 ta_ccd_1km 0.6126 temp 0.5501 ta_ocd_1km 0.6996 

18 dist_roads 0.611 ta_ccd_100 0.5447 np_ag_1km 0.6993 

19 solar_rad 0.6039 precip 0.5421 solar_rad 0.6782 

20 ta_ocd_1km 0.5914 canopy_cover 0.5418 precip 0.6563 

21 precip 0.5723 np_ag_1km 0.5271 dist_water 0.637 

22 aspect 0.5719 qmd 0.5261 ta_conif_500 0.6255 

23 ta_conif_1km 0.5475 np_wat_100 0.5259 aspect 0.5804 

24 null_ 0.5388 dem 0.5244 np_urb_1km 0.5566 

25 ta_urb_100 0.5278 ta_conif_1km 0.5136 ta_urb_100 0.5504 

26 np_urb_500 0.52 null_ 0.4507 null_ 0.5279 
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Table 6. Global model ran for each species and each data type. AUCtest values show model’s 

goodness-of-fit. The percent of suitable habitat is the percent of Illinois that has been found as 

suitable after the binary threshold. The omission rate is the percent of opposite data type points 

modeled in unsuitable habitat in the binary model with the number of occurrences omitted in 

parentheses- i.e. the active data type’s omission rate is the percent of passive occurrences that 

were omitted.  

Global Model Variables Data 

Type 

Total 

Number of 

Occurrences 

AUCTest 

Value 

% 

Suitable 

Habitat 

in 

Illinois 

Omission 

Rate 

(number of 

occurrences 

omitted) 

Eastern Red bat 

dem + dist_water + evh + 

qmd + ta_ag_100 + 

ta_bottomland_1km + 

ta_forest_100 + 

ta_water_1km + 

te_forest_100 + 

te_water_1k 

Active  176 0.864 32.6% 54.6% (48) 

Passive 88 0.812 43.3% 53.4% (94) 

Combined 264 0.791 50.9% - 

Hoary bat 

aspect + dist_roads + 

dist_water + evh + 

np_for_100 + sdi + 

solar_rad + ta_ag_100 + 

ta_bot_100 + 

ta_ocd_1km + 

ta_urb_100 + 

ta_water_1km 

Active 30 0.839 25.4% 72.1% (62) 

Passive 86 0.817 47% 46.7% (14) 

Combined 116 0.803 46.9% - 

Tri-colored bat 

dem + dist_roads + evh + 

np_for_100 + 

np_wat_500 + qmd + sdi 

+ ta_ag_500 + 

ta_bottomland_1km + 

ta_water_500 

Active 77 0.921 19.8% 78.6% (22) 

Passive 27 0.755 33% 61.5% (48) 

Combined 104 0.852 28.3% - 
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Table 7. Niche overlap matrix for the three focal species with Schoener’s D calculating niche 

similarity from 0-1 between each model.  

Species 

Data Types 

Active vs. Passive Active vs. Combined Passive vs. Combined  

Eastern red bat 0.4507 0.6245 0.7141 

Hoary bat 0.3400 0.4385 0.8355 

Tri-colored bat 0.2233 0.6327 0.4898 
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Figure 6. Habitat suitability models for the eastern red bat with detection types; active, combined, and passive.    
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Figure 7. Habitat suitability models for the hoary bat with detection types; active, combined, and passive.    



108 
 

 

Figure 8. Habitat suitability models for the tri-colored bat with detection types; active, combined, and passive.    
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CHAPTER 4: ASSESSING THE EFFICACY OF THE NORTH AMERICAN BAT 

MONITORING PROGRAM FOR HABITAT SUITABILITY MODELING 

ABSTRACT  

Landscape-level research and thus landscape-level monitoring programs are essential to 

identify critical habitat and prioritize conservation measures. The North American Bat 

Monitoring Program is a long-term continental-wide monitoring protocol that was established in 

2015 to monitor the effect of a disease, white-nose syndrome, on bat populations. This protocol 

standardizes acoustic sampling across the continent, creating terabytes of data available for 

agencies to understand species populations, distributions, and trends through multiple modeling 

analysis. Many states are creating habitat suitability models (HSM) to identify critical habitats 

and prioritize conservation measures. Here we sought to understand how this standardized 

acoustic protocol influences models for three species. We created HSM from the NABat acoustic 

protocol to see if it yielded a robust HSM for three focal species (eastern red bat, hoary bat, and 

tri-colored bat). We found that each species had different distributions and habitat useage across 

Illinois. Creating a model with solely NABat acoustic data varied among species with eastern red 

bat having 83% overlap compared to a combined model while the tri-colored bat had only 47% 

overlap. Across all species, NABat predicted more suitable habitat in agricultural zones while the 

combined models predicted more habitat in forested zones. The NABat protocol encourages 

sampling in areas that may be otherwise overlooked, however 20 sampling cells may be 

insufficient to properly monitor all species in Illinois.  
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INTRODUCTION 

As habitat loss continues unabated (Brooks et al. 2002, Powers and Jetz 2019, 

Eichenwald et al. 2020, Williams et al. 2022) and the sixth biodiversity crisis proceeds apace 

(Pimm et al. 1995, Singh 2002), landscape-level research is essential to identify critical habitat 

and prioritize global conservation measures (Jones 2011, Noon et al. 2012, Bellamy et al. 2013). 

As such, landscape-level monitoring programs are being instituted to provide long-term 

occurrence data that transcends geopolitical boundaries (Sauer et al. 2003, Jones 2011, Loeb et 

al. 2015). Standardizing a protocol that both spatially and temporally maximizes statistical power 

and the data’s potential to make comparisons and identify change (Noon et al. 2012, Banner et 

al. 2019). In addition, collaborative monitoring promotes international species conservation 

across jurisdictions and can provide best available knowledge for policy making (Donald et al. 

2007, Plummer and Hashimoto 2011, Reichert et al. 2021). Examples of range-wide international 

programs include the Audubon Society’s Breeding Bird Surveys (Sauer et al. 2003, Ziolkowski 

et al. 2010) and the Integrated Tiger Habitat Conservation Programme (International Union of 

Conservation for Nature 2022). 

Collecting long-term occurrence data is important for monitoring spatio-temporal change 

via modeling (e.g. occupancy models, habitat suitability, etc.) (Magurran et al. 2010, Law et al. 

2015, Rodhouse et al. 2019). Occupancy models estimate species’ presence/absence based on 

detection probabilities and environmental covariates (MacKenzie et al. 2002). Habitat suitability 

models (HSMs) leverage presence-only occurrences and environmental variables to identify 

habitat preferences and predict suitable habitat at the landscape-scale (Elith et al. 2006, 2011, 

Phillips and Dudík 2008). Both models give researchers and managers the means to target future 
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sampling, prioritize restoration, and identify core habitat (Crall et al. 2013, Stevens and Conway 

2020, Cable et al. 2021).  

One collaborative monitoring program collecting long-term occurrence data is the North 

American Bat Monitoring Program, (NABat), which was established in 2015 to create a long-

term continental monitoring program for bat species (Loeb et al. 2015, Reichert et al. 2021, U.S. 

Geological Survey 2021). The need for NABat became apparent in the wake of disease called 

white-nose syndrome (WNS), that was first discovered in 2007 and began decimating bat 

populations and driving extirpations in North America (Frick et al. 2010, Cheng et al. 2021). In 

addition to WNS, compounding factors (including increasing wind energy development, 

pesticide use, and habitat loss) threaten bat populations (Barré et al. 2018, Rodhouse et al. 2019, 

Sandoval-Herrera et al. 2020), rendering bats among the most threatened taxonomic groups 

(Frick et al. 2020). NABat combines both top-down and bottom-up strategies to implement an 

international and multiagency standardized protocol, while also allowing flexibility and ease for 

agencies to concurrently collect necessary data (Reichert et al. 2021). NABat has three primary 

goals: (1) create a consensus on monitoring for the effect of WNS on bats, (2) monitor different 

species vulnerability to WNS, and (3) establish best practices for range-wide population 

monitoring of species of concern (Loeb et al. 2015). Currently NABat is in the process of 

releasing range-wide occupancy models and population trends for seven species to inform 

management decisions and species listings under the Endangered Species Act (Udell et al. 2022).  

Advancements in acoustic technology decreases the cost and skill level necessary for bat 

surveys. NABat’s basic monitoring protocol allows for community scientists to collect the data at 

a local level for biologists to later analyze (Neece et al. 2019, Seguin 2019). NABat uses a 

generalized random-tessellation stratified (GRTS) system to create a 10km x 10km grid across 
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North America and identify priority cells composed of four quadrants (Stevens and Olsen 2004, 

Larsen et al. 2008, Loeb et al. 2015). While NABat has created a list of priority cells for each 

state, states can substitute cells based on feasibility and ownership, allowing states sampling 

flexibility. Ideally, each state surveys 30 GRTS cells with 2-4 stationary points per quadrat and 

one mobile transect through the entire cell (Loeb et al. 2015). The collection of stationary 

quadrant points should reflect the diversity of habitat in the GRTS cells, while the mobile 

transect can estimate bat abundance, as the car will be moving faster than bats can fly (Fisher-

Phelps et al. 2017, Neece et al. 2019). After sampling, acoustic files are analyzed with an 

acoustic identification software and uploaded to the NABat website (Loeb et al. 2015, Reichert et 

al. 2018, U.S. Geological Survey 2022). The website facilitates data submission and download, 

allowing researchers, scientists, and land managers to request data that other entities collect, 

creating unparalleled data accessibility (U.S. Geological Survey 2022).  

The Illinois Bat Conservation Program (IBCP) has been following the NABat sampling 

protocol in 20 GRTS cells across Illinois since 2016. With these data, we seek to answer the 

following question: does NABat’s acoustic protocol create comparable HSMs when compared to 

a HSM with increased data types and sampling occurrences? HSMs have been a common 

method for modeling suitable bat habitat as bats are highly mobile and have habitat requirements 

at multiple scales; roosting, foraging, and migrating (Bellamy et al. 2013, Cruz and Ward 2016, 

Cable et al. 2021). We predict that NABat will provide a broad and large resolution HSM but 

will not provide the precise and fine scale accuracy of a HSM with additional data. 
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METHODS 

Study Species  

There are diverse life history traits across Midwestern bat species. The eastern red bat, 

Lasiurus borealis (Müller 1776) is a common generalist forager that primarily roosts solitarily in 

foliage and tree bark (Limpert et al. 2007, Perry et al. 2007). Their longer, narrow wings are 

adapted for fast flying over long distances and foraging in forest gaps, edges, and openings 

(Walters et al. 2007, Amelon et al. 2014, Starbuck et al. 2015). The hoary bat, Lasiurus cinereus 

(Palisot de Beauvois 1796), migrates long-distances and primarily forages in open spaces, both 

behaviors linked with high wind-turbine mortality (Hayes et al. 2015, Weller et al. 2016, 

Friedenberg et al. 2021). The tri-colored bat, Perimyotis subflavus (Cuvier 1832) has the longest 

hibernation time in Illinois, contributing to devastating losses from WNS and prompting its 

candidacy for listing under the U.S. Endangered Species Act (ESA) (Turner et al. 2011, Center 

for Biological Diversity and Defenders of Wildlife 2016, Cheng et al. 2021). They are foliage 

roosters choosing mature stands and forage above the trees and in partially open habitat 

(Veilleux et al. 2003, O’Keefe 2009, Farrow and Broders 2011).  

Capture Data  

Historic capture data was acquired via a data sharing agreement with the Illinois 

Department of Natural Resources (IDNR) and the U.S. Fish and Wildlife Service for both mist-

netting and summer wind farm mortalities from 1999-2021.  Since IDNR primarily maintains 

records for threatened and endangered species, the historic capture data was incomplete for non-

listed species. Thus, we contacted IDNR’s list of Illinois mist-netting permitees requesting mist-

netting records for the three focal species between 1999-2021. Eight additional sources 
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responded augmenting 46 mist net sites from 2015-2019 generated by the Illinois Bat 

Conservation Program (IBCP). We combined windfarm mortality and mist-net records, reducing 

the number of individual records to one per site. For all data, we removed sites with low 

positional or temporal accuracy, or no data associated with captures. 

Acoustic Data 

Acoustic data was collected by IBCP, which has been following the NABat protocol 

since 2016 for 20 NABat GRTS cells annually (Illinois Bat Conservation Program 2021, U.S. 

Geological Survey 2021). A Song Meter SM4+ detector was deployed in 2-4 of the quadrants in 

each GRTS cell with a SMM-U1 or U2 microphone (Wildlife Acoustics). Sites in each quadrant 

were chosen to represent habitat diversity in each cell. Monitors were deployed for a minimum 

of four good weather nights (i.e. no rain, temperatures > 60 degrees, and sustained wind < 8 

mph). The same protocol was used for all years, and sites remained largely unchanged, with 

some exceptions due to landowner permissions or personnel changes. Data was recorded from 

19:00 to 7:30 each night. IBCP also generated acoustic monitoring sites across Illinois that were 

surveyed with a similar acoustic protocol as the GRTS cells. These data are considered presence-

only; the survey effort at each site (i.e. four nights) is not enough to determine absence (Moreno 

and Halffter 2000, Skalak et al. 2012).  

We used the NABat protocol to process the acoustic data (Reichert et al., 2018). 

Specifically, we processed all files recorded in the field through Sonobat 4 (Arcata, CA) using 

the medium filter to reduce noise files (Szewczak 2010).. Due to time and data storage 

constraints, we ran Kaleidoscope Pro 5.4.0 as the auto-identifier (Kaleidoscope Pro n.d.). 

Kaleidoscope is a powerful auto-classifier that, in addition to identification, provides maximum 

likelihood estimates of species occupancy. We considered below 𝛼 = 0.05 to be present and 
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above 𝛼 = 0.05 to be absent following standard conservative protocols (Nocera et al. 2019, U.S. 

Fish & Wildlife Service and U.S. Geological Survey 2019). These acoustic data were not 

manually vetted since NABat does not require manual vetting for their data upload. All data was 

re-processed in 2021 to ensure that the classifier’s conditions were the same through all analyses. 

Data Cleaning  

Active and passive data were combined and processed in R 4.1.2 (R Core Team 2021). 

To reduce spatial autocorrelation, we removed records within 1 km of each other. Records were 

also temporally restricted from May 15- Aug 15 to ensure that no records were from migration 

time periods following the U.S. Fish and Wildlife Guidelines (U.S. Fish & Wildlife Service 

2020).  After data cleaning and quality control, there were 264 occurrences for eastern red bats, 

116 occurrences for hoary bats, and 106 occurrences for tri-colored bats spread across Illinois.  

Environmental Layers 

We used sixteen landcover variables (Table 8) (per Cable, 2020) created from the Illinois 

Geospatial Clearing house land cover layer (Illinois Department of Natural Resources et al. 

2003). Cable then used Fragstats (McGarigal and Marks 1995) to find the number of patches of 

four landcover types, total area of eight landcover types, and total edge of two landcover types. 

Each metric was calculated at three different scales (0.1km, 0.5km, and 1km) representing 

roosting, foraging, and landscape distances.  

An additional nine variables were also considered based on the top models of published 

chiropteran habitat suitability or occupancy models (Table 8). Many of these variables were 

forest stand structure metrics or topographical landscape metrics, gathered from publicly 

available GIS layers and resampled in ArcGIS for 100m resolution to match layers (Esri Inc. 
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2021). Both temperature and precipitation layers were taken from a 30-year normal and averaged 

across May-Aug to represent the summer average (PRISM Climate Group 2021).  

Modeling 

For all variables, we created univariate models in MaxEnt to optimize spatial scale for 

variables and chose the top 15 variables for each species by AUCtest scores. For univariate 

models, we used the default parameters with 20 replicates, and 10% random test percentage 

(Phillips et al. 2021). Using AUCtest scores, we determined the best spatial scale for each species 

for each landcover variable. We ranked the top scaled landcover variables among the non-scaled 

variables, selecting the top 15 variables for each species with AUCtest >0.5. The top 15 variables 

for each species were carried on throughout the analysis. A correlation matrix was created in 

ArcGIS for the fifteen variables for each species and highly correlated variables (>0.7) were 

removed based on their univariate rank. With the remaining non-correlated variables, a global 

model was created for each species. 

Using the global model, we tested differing regularization multipliers ranging from 1-12 

using the same default parameters of 20 replicates and 10% as a random test percentage. The 

regularization multiplier with the top AUCtest scores was carried out through the rest of the 

analysis. Each species had two models run with the same global model for each data set: all 

combined occurrences and NABat-only acoustic model. This yielded six models across all 

species. All models were identically run MaxEnt using presence-only data, using the top 

regularization multiplier, 20 replicates, 10% of datapoints withheld from the dataset, and 5000 

maximum iterations. For pseudo-absence points, MaxEnt randomly sampled background points 

across the state using bootstrapping.  
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Model Analysis 

Model goodness-of-fit was assessed via AUCtest scores and omission rates. AUCtest scores 

predict the discriminatory ability of the model to tell occurrence points from background points 

with a score 0.5 indicating that the model is no better than random chance and a score of 1 

indicating perfect discriminatory ability (Jiménez-Valverde 2012). The dataset from the opposite 

data types was used to test the omission rate. We used the following function in the Raster 

Calculator in ArcGIS to convert models from raw to log format, standardizing the suitability 

scale from 0 to 1 (Hammond et al. 2016).  

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 = (𝑟𝑎𝑤 ∗ 𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦)/(1 + 𝑟𝑎𝑤 ∗ 𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 

To create binary models, we created a threshold of omission for each species based on the 

bottom 10% of suitability scores for true presences in the test datasets (Hovick et al. 2015). For a 

comparison of the binary models, we ran a niche overlap function in ENMTools and used the 

Schoener’s D value for comparison which calculates the proportion of shared pixels between the 

two models (Schoener 1968, Warren et al. 2010, Suárez-Mota and Villaseñor 2020).  

 

RESULTS  

Based on life history traits affecting detection probabilities, there was a range in the 

number of occurrences among species (Table 10) (Gorresen et al. 2008, Coleman et al. 2014, 

Hohoff 2016). Most hoary bat occurrences (n = 116 occurrences) came from NABat detections 

(n = 81), whereas NABat detections (n=27) for the tri-colored bat were far less, despite 

combined occurrences (n = 104) being approximately the same. The eastern red bat had the 

highest number of occurrences (n=264) with a third of them being from NABat (n=82).  
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The top 15 variables for each species were similar for the tri-colored and eastern red bat, 

while more open habitat variables defined the hoary bat (Table 9). After removing correlated 

variables, the eastern red bat’s global model included elevation, distance to water, existing 

vegetation height, quadratic mean diameter, total area of agriculture in 100m, total area of 

bottomland forest in 1km, total area of forest in 100m, total area of water in 1km, total edge of 

forest in 100m, and total edge of water in 1km (Table 10). Similarly, the tri-colored bat’s global 

model included elevation, distance to roads, existing vegetation height, number of patches of 

forest in 100m, number of patches of water in 500m, quadratic mean diameter, stand density 

index, total area of agriculture in 500m, total area of bottomland forest in 1km, and total area of 

water in 500m. Contrary to the other two, the hoary bat’s global model included aspect, distance 

to roads, distance to water, existing vegetation height, number of patches of forest in 100m, stand 

density index, solar radiation, total area of agriculture in 100m, total area of bottomland forest in 

100m, total area of open canopy deciduous forest in 1km, total area of urban in 100m, and total 

area of water in 1km. 

For the eastern red bat, the NABat model and the combined model reveal diverging 

suitable habitat between forested and urban areas. However, highest degree of overlap (83%) and 

the lowest omission rate of 37% between all three focal species was recovered (Fig. 10, Table 

10). The NABat model revealed dense, contiguous suitable habitat in the urban and suburban 

areas of Chicago, while the combined model finds dense suitable habitat in and around the 

Shawnee National Forest of southern Illinois. Both models similarly project suitable habitat in 

the central regions where row crop agriculture is the predominant land cover. Between the two 

models, the NABat model overall projects suitable habitat in urban areas across the state while 

the combined sampling method projects suitable habitat in forested regions of the state. Despite 
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the discrepancy, both models predicted an equal percentage of suitable habitat in the state (51%). 

In addition, both models had lower AUC values (AUC < 0.8) indicating poor model fit for 

eastern red bats.  

For the hoary bat, model projections recover less overlap (72%) with a significantly 

higher omission rate of 60% (Fig. 11, Table 10). Model comparison reveals a divergence among 

landcover types as well, as NABat projects more suitable habitat in row crop agriculture, while 

combined sampling projects more suitable habitat in forested regions of the state. The combined 

model overall predicted more suitable habitat (46.9% for combined, 39.9% for the NABat 

model) across the state, while the NABat model had a higher AUC value (0.819) than the 

combined (0.803).  

Lastly, the tri-colored bat had the least amount of suitable habitat across the state between 

all species with the combined model projecting 28.3% suitability and the NABat model 

projecting 31.3%. These models also had the highest AUC values among all species with 0.832 

for the NABat model and the 0.852 for the combined model. The two models had an overlap 

value of 47%, lowest among focal species. Similar to the eastern red bat, the tri-colored NABat 

model projects a larger amount of suitable habitat in northern Illinois, while the combined model 

projects a larger amount of suitable habitat in the forested southern part of Illinois. Most of the 

combined model’s suitable habitat is constrained to the riparian corridors along Illinois’ big 

rivers while there is no riparian association seen in the NABat model.   
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DISCUSSION 

The difference between the combined model and the NABat HSM varied among species. 

The two generalist species, eastern red bats and hoary bats, exhibited greater niche overlap 

values relative to the forest specialist tri-colored bat (Ford et al. 2005, Menzel et al. 2005, Cox 

2019). Across all three species, the difference between the two models is highlighted by different 

habitat predictions based on land use type. The NABat model projects more suitable habitat in 

agricultural areas, while the combined model projects more suitable habitat in the forested 

regions. This discrepancy is an artifact of sampling biases between acoustic and conventional 

(i.e. mist netting) sampling methods especially as acoustic microphones have a farther range in 

open habitat vs. forested habitat. NABat GRTS cells are chosen based on a stratified random 

sampling design, meaning that cells are not prioritized based on quality of habitat (Loeb et al. 

2015). Given this, many of the NABat GRTS cells in Illinois are in or very close to row-cop 

agriculture. Moreover, no NABat GRTS cells were sampled in the heavily forested southern 

extent of the state. By contrast, mist-netting sites are disproportionately concentrated in forested 

areas, as stand structure, proximity to water, and other factors improve chances of catching bats 

(O’Farrell and Gannon 1999, MacCarthy et al. 2006, Geluso and Geluso 2012). Wind turbine 

mortalities, another form of capture, are often sited in row crop agriculture, and 

disproportionately affect migratory species like the eastern red and hoary bats (Grodsky et al. 

2011, Frick et al. 2017, Rodhouse et al. 2019). Between the two models, the increased number of 

occurrences in agricultural settings reflects an increased suitability in those habitat types, while 

underemphasizing the suitability of forested habitat. Further discussion of the difference between 

acoustic vs. capture is in Chapter 2.  
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With the dichotomy of suitable habitat between models, the definition of suitable habitat 

calls for clarification. For forest-dependent species such as tri-colored and eastern red bats, 

detections in agricultural areas may be a result of commuting between forested patches (Farrow 

and Broders 2011, Trubitt et al. 2019). If a bat commutes through an agricultural area once or 

twice per night, should this habitat still be classified as suitable?  Removing or degrading those 

commuting habitats can be as detrimental as altering habitat patches where bats spend more time 

(Roscioni et al. 2014, Barré et al. 2018). Considering these patches as valuable, which at face 

value are not highly beneficial for forested species, is important (Elmore et al. 2005, Rainho and 

Palmeirim 2011). Generalist species, such as the hoary bat and big brown (Eptesicus fuscus), 

also use agricultural patches for foraging, so many species may find these patches as valuable 

(see stacked HSM in Chapter 1) (Trubitt et al. 2019).  

The robustness of NABat models compared to combined models is species-specific. 

While the eastern red bat has the highest overlap between our focal species, the dichotomy 

between the northern urban and southern forested areas is striking enough to warrant discretion 

in model interpretation. The hoary bat exhibited considerable overlap, yielding perhaps the most 

robust of the models with similar distributions. The tri-colored bat has less than 50% overlap 

between the two models indicating that the NABat model is insufficient for informing 

management decisions. Generally, all easily accessible occurrences are used for HSMs, however 

these models show that acquiring additional occurrence points of different data types can 

substantially influence model outputs which may be extremely beneficial depending on the 

model’s purpose (Chapter 2). Ultimately, these results indicate that, at present, NABat sampling 

in Illinois is insufficient to make a robust HSM, although the degree of robustness is species-

specific.  
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A Case Study of the Tri-Colored Bat and NABat Models 

In 2022, NABat achieved one of the main programmatic objectives and released their 

first summer occupancy models for several species, including the tri-colored bat (Fig. 13) (Loeb 

et al. 2015, Udell et al. 2022). Occupancy models and HSMs utilize two different data sets and 

model two different distributions; i.e. occupancy models calculate the probability that a species 

is present/absent at the site while incorporating imperfect detection, while HSMs only model the 

suitability of a location based on species’ relationships with the environment (MacKenzie et al. 

2002, Elith et al. 2006). Therefore, these models cannot be directly compared, especially 

considering NABat’s occupancy model is a larger-resolution range-wide model. However, one 

would expect some overlapping distributions, as sites with a higher probability of occupancy 

should be expected to occur more often in suitable habitat (Larson et al. 2004, Martin et al. 2010, 

Iglecia et al. 2012).  

In comparing NABat’s tri-colored occupancy model to the combined HSM created 

herein, the difference between the two models is striking. Higher occupancy regions are nearly 

opposite the suitable habitat regions. The combined HSM largely comports with expected tri-

colored bat habitat preferences (see Chapter 1), as they are known to be forest specialists, while 

the NABat occupancy model recovers higher occupancy in Illinois’ agroecosystem and lower 

occupancy in forested zones, contrary to species biology/ecology (Farrow and Broders 2011, 

Schaefer 2017, Cox 2019).  

Differences between these models further underscores the biases associated with different 

sampling techniques utilized in models (Chapter 2). Both the NABat HSM and NABat 

occupancy model project strikingly different results than one would expect for each model type 

based on tri-colored biology and habitat preferences (Chapter 1). Utilizing only acoustic data 
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creates biased models (Chapter 2). One of the major objectives of NABat is to create a 

continental monitoring protocol that is accessible to states, however this inherently limits the 

amount of sampling to acoustic-only data as mist-netting is too time-intensive, expensive, and 

skilled for the average non-bat biologist (Loeb et al. 2015, Reichert et al. 2021). Models created 

with only NABat data are affected by this sampling bias and, as illustrated here, differ from what 

conventional (Chapter 1) and/or combined-data (Chapter 2) models may show. NABat allows for 

and highly encourages the input of mist-netting records, however data accumulation is slow and 

many states have yet to upload records.  

This case study emphasizes the cautionary tale of modeling. Models approximate reality 

and utilizing different data types, distributions, and time periods introduces biases with each 

approximation (Phillips et al. 2009, Merow et al. 2013, Barnes et al. 2014). Managers need to be 

cautious in the way that they utilize and interpret models (Lozier et al. 2009, Barnes et al. 2014, 

Anderson et al. 2016). Both the occupancy and HSM may be used in management decisions as 

they are provided to forest managers in Illinois, however these diverging models require careful 

analyses and consideration, as they could lead to different management decisions and 

interventions that could, in fact, be detrimental to target species. As time passes and the 

continental NABat implementation continues apace, the accumulation of data will contribute to 

creating more robust models with larger data sets and broader geographic sampling. 

Nevertheless, continued caution should be exercised in the interpretation of these models. 

Conclusion 

While the current NABat sampling reflects a broad distribution across Illinois, there are 

no GRTS in the southern extent of the state, which may underrepresent the importance of 

forested habitat for Illinois bat species. In range-wide modeling, GRTS cells in other states may 
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be able to provide sufficient forested sampling, yet the management decisions are often made on 

ecologically irrelevant political boundaries creating a need for state-specific HSMs. In the 

summer of 2022 and beyond, IBCP and the Midwest Bat Hub will be adding an additional 20 

GRTS cells throughout the state, increasing sampling overall, but especially by adding GRTS 

cells in predominately forested regions of the state (Fig. 9). Illinois will then exceed NABat’s 

recommended 30 GRTS cells per state (Loeb et al. 2015). As Illinois is among the leading states 

for NABat implementation in the Midwest, these results further emphasize that states with lesser 

data may have less robust models, that models derived from these scant data should be carefully 

assessed, and data expansion will be necessary to update and improve modeling efforts.   

NABat is an incredible continental-wide initiative that standardizes, organizes, and facilitates an 

open, extensive, continental chiropteran dataset (Loeb et al. 2015, Neece et al. 2019, Reichert et 

al. 2021). While the importance and magnitude of this program cannot be understated, the 

applications and outputs of this dataset must be thoroughly vetted for biases. Given that these 

initial NABat HSMs have too large of a discrepancy compared to the combined model to make 

management decisions, doubling the number of GRTS cells on the landscape and/or merging 

with conventional sampling data may create much more robust models with higher 

discriminatory power, ultimately providing greater value to forest managers interested in or 

required to manage for imperiled bat populations.  
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TABLES AND FIGURES 

Table 8. Variables tested in univariate models. The X in variable name representing the scales at which it was tested.   

Variables Spatial 

Scale (km) 

Variable 

Name 

Original Data Source Creator 

Aspect 0.1 aspect (U.S. Geological Survey 2018) Gaulke 

Canopy Cover 0.1 canopy_cover (U.S. Geological Survey 2018) Gaulke 

DEM 0.1 dem (U.S. Geological Survey 2018) Gaulke 

Distance to Roads 0.1 dist_roads (Illinois Department of Transportation 2018) (Cable et al. 

2021) 

Distance to Water 0.1 dist_water (U.S. Geological Survey n.d.) (Cable et al. 

2021) 

Existing Vegetation Height 0.1 evh (U.S. Department of Interior et al. 2013) Gaulke 

Number of Patches of Agriculture 0.1, 0.5, 1 np_ag_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Forest 0.1, 0.5, 1 np_for_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Urban 0.1, 0.5, 1 np_urb_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Number of Patches of Water 0.1, 0.5, 1 np_water_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Null 0.1 null (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Precipitation (30-year average of 

monthly summer precipitation) 

0.1 precip (PRISM Climate Group 2021) Gaulke 

Quadratic Mean Diameter 0.1 qmd (U.S. Forest Service 2012) Gaulke 

Stand Density Index 0.1 sdi (U.S. Forest Service 2012) Gaulke 

Solar Radiation 0.1 solar_rad (Solargis 2019) Gaulke 
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Table 8 (cont.). 

Total Area of Agriculture 0.1, 0.5, 1 ta_ag_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Area of Bottomland Forest 0.1, 0.5, 1 ta_bot_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Area of Closed Canopy 

Deciduous Forest 

0.1, 0.5, 1 ta_ccd_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Area of Coniferous Forest 0.1, 0.5, 1 ta_conif_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Area of Forest 0.1, 0.5, 1 ta_for_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Area of Open Canopy 

Deciduous Forest 

0.1, 0.5, 1 ta_ocd_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Area of Urban 0.1, 0.5, 1 ta_urb_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Area of Water 0.1, 0.5, 1 ta_water_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Edge of Forest 0.1, 0.5, 1 te_for_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Total Edge of Water 0.1, 0.5, 1 te_water_x (Illinois Department of Natural Resources et 

al. 2003) 

(Cable et al. 

2021) 

Temperature (30-year average of 

monthly minimum summer 

temperature) 

0.1 temp (PRISM Climate Group 2021) Gaulke 
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Table 9. Univariate model results ranked by AUCtest values. The top 15 variables were used in the multivariate models. 

Rank Eastern red AUC Hoary AUC Tri-colored AUC 

1 ta_ag_100 0.7231 ta_ag_100 0.6376 dist_roads 0.9056 

2 ta_for_100 0.7206 dist_roads 0.6172 sdi 0.8071 

3 evh 0.7193 ta_urb_100 0.6038 ta_bot_1km 0.8033 

4 sdi 0.7169 dist_water 0.5968 ta_for_500 0.798 

5 np_for_100 0.7016 np_for_100 0.5871 evh 0.7959 

6 qmd 0.6999 ta_water_1km 0.586 ta_ag_500 0.7858 

7 canopy_cover 0.6985 solar_rad 0.5819 dem 0.7721 

8 te_for_100 0.6967 evh 0.5812 qmd 0.7719 

9 ta_bot_1km 0.6548 ta_for_100 0.579 canopy_cover 0.7678 

10 te_water_1k 0.647 te_for_100 0.5741 ta_water_500 0.762 

11 dem 0.6434 sdi 0.573 temp 0.7502 

12 ta_water_1km 0.6412 aspect 0.57 te_for_500 0.7444 

13 np_water_1km 0.6355 np_urb_100 0.5611 np_for_100 0.7362 

14 temp 0.6258 ta_ocd_1km 0.5568 np_wat_500 0.7313 

15 dist_water 0.6243 ta_bot_100 0.5554 te_water_500 0.7134 

16 np_ag_500 0.6186 te_water_1k 0.5509 ta_ccd_1km 0.7124 

17 ta_ccd_1km 0.6126 temp 0.5501 ta_ocd_1km 0.6996 

18 dist_roads 0.611 ta_ccd_100 0.5447 np_ag_1km 0.6993 

19 solar_rad 0.6039 precip 0.5421 solar_rad 0.6782 

20 ta_ocd_1km 0.5914 canopy_cover 0.5418 precip 0.6563 

21 precip 0.5723 np_ag_1km 0.5271 dist_water 0.637 

22 aspect 0.5719 qmd 0.5261 ta_conif_500 0.6255 

23 ta_conif_1km 0.5475 np_wat_100 0.5259 aspect 0.5804 

24 null_ 0.5388 dem 0.5244 np_urb_1km 0.5566 

25 ta_urb_100 0.5278 ta_conif_1km 0.5136 ta_urb_100 0.5504 

26 np_urb_500 0.52 null_ 0.4507 null_ 0.5279 
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Table 10. Global model ran for each species and each data type. AUCtest values show model’s goodness-of-fit. The percent of suitable 

habitat is the percent of Illinois that has been found as suitable after the binary threshold. The omission rate is the percent of opposite 

data type points modeled in unsuitable habitat in the binary model with the number of occurrences omitted in parentheses- i.e. the 

active data type’s omission rate is the percent of passive occurrences that were omitted.  

Global Model Variables Data 

Type 

Total Number 

of Occurrences 

AUCTest 

Value 

% Suitable 

Habitat in 

Illinois 

Omission Rate 

(number of 

occurrences) 

Niche 

Overlap 

Indices 

Eastern Red bat 

dem + dist_water + evh + qmd + 

ta_ag_100 + ta_bottomland_1km + 

ta_forest_100 + ta_water_1km + 

te_forest_100 + te_water_1k 

NABat 82 0.7652 51% 36.8% (67) 0.8334 

Combined 264 0.7914 50.9% - - 

Hoary bat 

aspect + dist_roads + dist_water + evh 

+ np_for_100 + sdi + solar_rad + 

ta_ag_100 + ta_bot_100 + ta_ocd_1km 

+ ta_urb_100 + ta_water_1km 

NABat 81 0.819 39.9% 60% (21) 0.7247 

Combined 116 0.8025 46.9% - - 

Tri-colored bat 

dem + dist_roads + evh + np_for_100 + 

np_wat_500 + qmd + sdi + ta_ag_500 + 

ta_bottomland_1km + ta_water_500 

NABat 27 0.8316 31.3% 69.6% (59) 0.4763 

Combined 104 0.8522 28.3% - - 
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Figure 9. Current (black) and future (purple) NABat GRTS cell locations in Illinois 
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Figure 10. Habitat suitability models for the eastern red bat using a combined sampling method and just NABat cells. The far right 

map shows the difference between the two models with habitat that was only modeled as suitable by the combined model in purple 

and habitat that was only modeled as suitable by the NABat model in orange.  
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Figure 11. Habitat suitability models for the hoary bat using a combined sampling method and just NABat cells. The far right map 

shows the difference between the two models with habitat that was only modeled as suitable by the combined model in purple and 

habitat that was only modeled as suitable by the NABat model in orange.  
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Figure 12. Habitat suitability models for the tri-colored bat using a combined sampling method and just NABat cells. The far right 

map shows the difference between the two models with habitat that was only modeled as suitable by the combined model in purple 

and habitat that was only modeled as suitable by the NABat model in orange.  
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Figure 13. A summer occupancy model by the NABat program for the tri-colored bat in 2019 with darker areas indicating less 

occupancy. Screenshot taken from their interactive occupancy map web portal (Udell et al. 2022).  
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CHAPTER 5: CONCLUSION 

In an effort to conserve species across the landscape due to increasing pressures from 

habitat loss, urbanization, and other factors, researchers and managers looks for ways to identify 

quality habitat for restoration, conservation, and education (Noon et al. 2012, Zellmer et al. 2019, 

Stevens and Conway 2020). One method that researchers use to accomplish this is through 

habitat suitability modeling (HSM) which predicts habitat suitability across various scales based 

on occurrence data and environmental variables (Elith et al. 2006, Phillips et al. 2006). HSM 

have gained popularity since they were first introduced and are now a common methodology 

(Phillips et al. 2009). However, models are inherently impacted by the data provided to them and 

sampling biases within the data can impact the outcome and validity of the model (Flaquer et al. 

2007, Clare et al. 2017, Risch et al. 2021). My research adds to the growing literature about the 

impact of sampling biases and species-specific ecologies on HSM. Passive and active detection 

are common methods of detection for many species, beyond just bats (Coxen et al. 2017, Watts 

et al. 2019, Mehdi et al. 2021). Considering the impacts of detection is important to creating 

robust HSM for conservation and management (Barnhart and Gillam 2014, Ford et al. 2016, 

Risch et al. 2021).  

In addition, bats populations are under growing concern as numerous factors such as 

disease, wind energy development, and habitat loss contribute to the decline of many bat species 

(Bellamy et al. 2013, Rodhouse et al. 2019, Sandoval-Herrera et al. 2020, Cheng et al. 2021). 

Bats play an essential role in ecosystem services across the nation and especially in Illinois with 

reducing disease vectors and agricultural pests (Feldhamer et al. 2009, Kunz et al. 2011, Maslo et 

al. 2022). These habitat suitability models contribute to landscape scale research around 

predicted habitat and important environmental covariates for three species of bat which can be 
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used to conduct beneficial conservation and management interventions (Bellamy et al. 2013, 

Cooper-Bohannon et al. 2016, Cable et al. 2021). While these maps only predict suitable habitat 

in Illinois, the important environmental covariates and suitable habitat patterns may reflect 

range-wide for many species, and especially in states across the Midwest with similar landcover 

types.   
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APPENDIX: SUPPLEMENTAL MATERIALS  

Table A.1 Scaled variables and the Area Under the Curve (AUC) values from the univariate 

model for each species sampled across Illinois from 1999-2021. Eastern red bats had 264 total 

occurrences: 17 from wind turbines, 159 from mist-netting, and 88 from acoustics. The hoary bat 

had 116 total occurrences for hoary bats; 9 from wind turbines, 21 from mist-netting, and 86 

from acoustics, while the tri-colored bat had 106 total occurrences for tri-colored bats with 77 

from mist-netting, and 27 from acoustics.   

Variable Resolution 

(km) 

Eastern red Hoary Tri-colored 

AUC AUC AUC 

Number of patches of agriculture 0.1 0.6072 0.4995 0.6257 

0.5 0.6186 0.4959 0.6673 

1 0.6173 0.5271 0.6993 

Number of patches of forest 0.1 0.7016 0.5871 0.7362 

0.5 0.6148 0.5774 0.6858 

1 0.5874 0.5211 0.5968 

Number of patches of urban  0.1 0.5172 0.5611 0.5147 

0.5 0.52 0.5577 0.5275 

1 0.5197 0.5442 0.5566 

Number of patches of water 0.1 0.5508 0.5259 0.6026 

0.5 0.6334 0.4946 0.7313 

1 0.6355 0.4872 0.7188 

Total area of agriculture 0.1 0.7231 0.6376 0.77 

0.5 0.652 0.5588 0.7858 

1 0.6777 0.559 0.7709 

Total area of bottomland forest  0.1 0.63 0.5554 0.7244 

0.5 0.6474 0.5221 0.7329 

1 0.6548 0.5361 0.8033 

Total area of closed canopy 

deciduous forest 

0.1 0.5953 0.5447 0.611 

0.5 0.6037 0.4818 0.6802 

1 0.6126 0.5406 0.7124 

Total area of coniferous forest 0.1 0.5167 0.5056 0.5375 

0.5 0.5394 0.5002 0.6255 

1 0.5475 0.5136 0.6185 

Total area of forest 0.1 0.7206 0.579 0.7408 

0.5 0.7046 0.5141 0.798 

1 0.6587 0.5701 0.7679 

Total area of open canopy 

deciduous forest 

0.1 0.5008 0.4932 0.5223 

0.5 0.5428 0.5037 0.55 

1 0.5914 0.5568 0.6996 
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Table A.1 (cont.). 

Total area of urban 0.1 0.5278 0.6038 0.5504 

0.5 0.4994 0.5852 0.5187 

1 0.5233 0.5666 0.5371 

Total area of water 0.1 0.5506 0.5315 0.5878 

0.5 0.6176 0.513 0.762 

1 0.6412 0.586 0.701 

Total edge of forest 0.1 0.6967 0.5741 0.7418 

0.5 0.6482 0.5565 0.7444 

1 0.6262 0.5392 0.7166 

Total edge of water 0.1 0.5741 0.5456 0.6314 

0.5 0.6295 0.5141 0.7134 

1 0.647 0.5509 0.6981 
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Table A.2 Multivariate models for the eastern red bat ranked by the AICc values from 264 

occurrences sampled from 1999-2021 across Illinois. AUCtest values show model’s goodness-of-

fit. AICc values is Akaike’s Information Criterion for small sample size which ranks the model 

selection. The difference between the top AICc value and that model’s AICc value is the ∆AICc. 

The AICc wi is the models’ weight.  

Model Rationale Variables AUCTest AICc ∆AICc AICc 

wi 

(Amelon et al. 

2014) 

Access to 

water, high prey 

availability, and 

commuting by 

topographic 

features 

elevation + 

total area of ag 

in 0.1km + 

total area of 

forest in 0.1km 

+ total area of 

water in 1km + 

total edge of 

forest in 0.1km 

+ total edge of 

water in 1km 

0.7837 8423.76 0 0.5151 

(Limpert et al. 

2007) 

Preferred 

roosting habitat 

and foraging 

habitat in 

riparian zones  

canopy cover + 

distance to 

water + 

quadratic mean 

diameter + 

total area of ag 

in 0.1km + 

total area of 

bottomland 

forest in 1km + 

total area of 

forest in 0.1km 

+ total area of 

water in 1km + 

temperature 

0.7927 8424.4 0.6417 0.3737 

Global Model   elevation + 

distance to 

water + 

existing 

vegetation 

height + 

quadratic mean  

0.7922 8426.83 3.0681 0.1111 
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Table A.2 (cont.). 

  diameter + 

total area of ag 

in 0.1km + 

total area of 

bottomland 

forest in 1km + 

total area of 

forest in 0.1km 

+ total area of 

water in 1km + 

total edge of 

forest in 0.1km 

+ total edge of 

water in 1km 

    

(Starbuck et al. 

2015) 

Open forest to 

commute with 

enough roost 

opportunities in 

tree canopies 

distance to 

water + total 

area of ag in 

0.1km + total 

area of forest 

in 0.1km + 

total edge of 

forest in 0.1km 

0.7789 8443.58 19.8184 0 

Goldilocks Where there is 

more 

agriculture, 

more forest 

edge, closer to 

water, and less 

forest density 

distance to 

water + stand 

density index + 

total area of ag 

in 0.1km + 

total edge of 

forest in 0.1km 

0.7731 8453.26 29.505 0 

(Hutchinson and 

Lacki 2000) 

Lower 

susceptibility to 

terrestrial 

predators 

canopy cover + 

elevation + 

quadratic mean 

diameter 

0.7337 8462.31 38.5546 0 

Fragmentation Where the 

available forest 

is more 

fragmented 

number of 

patches of 

forest in 0.1km 

+ number of 

patches of 

water in 1km +  

0.782 8464.9 41.1437 0 
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Table A.2 (cont.). 

  total area of ag 

in 0.1km + 

total area of 

bottomland 

forest in 1km 

    

(Limpert et al. 

2007) 

Preferred 

roosting and 

foraging habitat 

in riparian 

zones where 

closed canopies 

provide 

protection from 

elements, while 

open understory 

allows less 

predation and 

easier flying   

canopy cover + 

distance to 

water + total 

area of water 

in 1km + total 

edge of forest 

in 0.1km + 

total edge of 

water in 1km 

0.769 8468.92 45.1631 0 

(Starbuck et al. 

2015) 

Open forest to 

commute with 

enough roost 

opportunities in 

tree canopies 

distance to 

water + 

number of 

patches of 

forest in 0.1km 

+ stand density 

index + total 

area of ag in 

0.1km 

0.7669 8470.97 47.2116 0 

(Walters et al. 

2007) 

  total area of ag 

in 0.1km + 

total area of 

forest in 0.1km 

+ total area of 

water in 1km 

0.7695 8472 48.247 0 

Riparian Where there are 

more riparian 

areas and closer 

to water 

distance to 

water + 

number of 

patches of 

water in 1km +  

total area of 

0.7462 8475.93 52.1721 0 
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Table A.2 (cont.). 

  bottomland 

forest in 1km + 

total area of 

forest in 0.1km 

    

(Limpert et al. 

2007) 

Preferred 

roosting and 

foraging habitat 

in riparian 

zones where 

closed canopies 

provide 

protection from 

elements, while 

open understory 

allows less 

predation and 

easier flying   

distance to 

water + total 

area of forest 

in 0.1km + 

total area of 

water in 1km + 

total edge of 

forest in 0.1km 

+ total edge of 

water in 1km 

0.7469 8481.15 57.3958 0 

Open areas Where there is 

more open 

space 

stand density 

index + total 

area of ag in 

0.1km + total 

area of water 

in 1km 

0.7357 8496.01 72.2521 0 

(Mager and 

Nelson 2001) 

Large trees for 

protection and 

thermal cover 

for roosting that 

are located 

close to 

preferred 

foraging areas. 

existing 

vegetation 

height + 

quadratic mean 

diameter + 

total edge of 

forest in 0.1km 

0.7416 8503.37 79.6092 0 

Insects Where there 

should be more 

insect 

abundance  

number of 

patches of 

water in 1km + 

total area of ag 

in 0.1km + 

total edge of 

forest in 0.1km 

+ temperature 

0.7329 8504.16 80.4074 0 
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Table A.2 (cont.). 

Stand metrics Where the 

forest is older, 

taller, and 

denser 

existing 

vegetation 

height + 

number of 

patches of 

forest in 0.1km 

+ quadratic 

mean diameter 

+ stand density 

index 

0.7489 8509.18 85.4268 0 

(Loeb and 

O’Keefe 2003) 

Small gaps and 

openings within 

stands and may 

be related to 

greater insect 

availability, 

proximity to 

roosts, or 

decreased 

structural 

complexity 

existing 

vegetation 

height + 

quadratic mean 

diameter + 

stand density 

index 

0.7272 8512.65 88.8964 0 

Forest 

Complexity 

Where there is 

more complex 

forest landcover 

total area of 

forest in 0.1km 

+ total edge of 

forest in 0.1km  

0.7248 8514.69 90.9284 0 

(Limpert et al. 

2007) 

Preferred 

roosting and 

foraging habitat 

in riparian 

zones where 

closed canopies 

provide 

protection from 

elements, while 

open understory 

allows less 

predation and 

easier flying  

canopy cover + 

quadratic mean 

diameter 

0.7416 8516.52 92.7645 0 
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Table A.2 (cont.). 

(O’Keefe 2009) Proximity to 

commuting 

corridors for 

decreased 

commuting 

costs to forage 

in open spaces 

elevation + 

distance to 

water + total 

edge of forest 

in 0.1km 

0.7332 8517.09 93.3303 0 

(Mager and 

Nelson 2001) 

Large trees for 

protection and 

thermal cover 

for roosting that 

are located 

close to 

preferred 

foraging areas. 

existing 

vegetation 

height + 

quadratic mean 

diameter 

0.7254 8517.59 93.8295 0 

(Vanausdall et al. 

2018) 

Forests, 

particularly 

forest edges or 

gaps, may be 

important for 

roosting, 

traveling, and 

some foraging 

opportunities 

within a small 

spatial scale 

total area of 

forest in 0.1km 

+ total edge of 

forest in 0.1km 

0.7138 8519.96 96.2032 0 

(Perry et al. 

2008) 

Partially 

harvested areas 

with mature 

overstory pines 

and hardwoods 

for roosting and 

reduced vertical 

clutter 

 number of 

patches of 

forest in 0.1km 

+ stand density 

index 

0.7221 8528.8 105.046 0 

Forest 

Availability 

Where more 

forest is 

available  

total area of 

forest in 0.1km 

0.686 8535.05 111.289 0 
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Table A.2 (cont.). 

(Loeb and 

O’Keefe 2003) 

Small gaps and 

openings within 

stands and may 

be related to 

greater insect 

availability, 

proximity to 

roosts, or 

decreased 

structural 

complexity 

quadratic mean 

diameter + 

stand density 

index 

0.6954 8539.11 115.354 0 

Agriculture Where more 

agriculture is 

available 

total area of ag 

in 0.1km 

0.7214 8545.96 122.204 0 

Water Where there is 

more water 

available  

distance to 

water + total 

area of water 

in 1km + total 

edge of water 

in 1km 

0.6678 8618.29 194.536 0 

(O’Keefe 2009) Proximity to 

commuting 

corridors for 

decreased 

commuting 

costs to forage 

in open spaces 

elevation + 

distance to 

water 

0.6651 8627.88 204.122 0 

Basic 

landscape/climate 

Elevational 

gradient 

elevation 0.6502 8650.83 227.071 0 

Null   null 0.5098 8715.03 291.271 0 
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Table A.3 Multivariate models for the hoary bat ranked by the AICc values. AUCtest values show 

model’s goodness-of-fit. AICc values is Akaike’s Information Criterion for small sample size 

which ranks the model selection. The difference between the top AICc value and that model’s 

AICc value is the ∆AICc. The AICc wi is the models’ weight.  

Model Rationale Variables AUCTest AICc ∆AICc AICc 

wi 

Land Use 

History 

Bias 

Where most 

historical human 

impact has 

occurred 

distance to roads + 

total area of ag in 

0.1km + total area 

of urban in 0.1km 

0.7444 3742.44 0 1 

(Veilleux et 

al. 2009) 

Roosts close to 

open foraging areas  

distance to roads + 

total area of ag in 

0.1km + total area 

of forest in 0.1km 

0.744 3768.3 25.8605 0 

Insects Areas with more 

insect abundance 

distance to water + 

total area of ag in 

0.1km + total area 

of urban in 0.1km 

+ total edge of 

forest in 0.1km 

0.7021 3770.88 28.4397 0 

Land Cover 

Type 

Areas of different 

land cover types  

total area of ag in 

0.1km + total area 

of bottomland 

forest in 0.1km + 

total area of forest 

in 0.1km + total 

area of open 

canopy deciduous 

forest in1km + 

total area of urban 

in 0.1km + total 

area of water in 

1km 

0.7744 3774.2 31.7557 0 

Agriculture 

& Urban 

Areas with 

agriculture and 

higher human 

impact 

number of patches 

of urban in 0.1km 

+ total area of ag 

in 0.1km 

0.6817 3784.6 42.1566 0 

Goldilocks  Less dense forest, 

closer to water and 

roads, more solar  

distance to roads + 

distance to water + 

number of patches  

0.7239 3790.15 47.7043 0 
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Table A.3 (cont). 

 radiation, and more 

ag and urban areas 

of urban in 0.1km 

+ stand density 

index + solar 

radiation + total 

area of ag in 

0.1km + total area 

of open canopy 

deciduous forest in 

1km 

    

(Morris et 

al. 2010) 

Edges serve as 

windbreaks for 

large densities of 

insects 

distance to roads + 

distance to water + 

number of patches 

of forest in 0.1km 

+ total area of 

water in 1km 

0.646 3795.73 53.2834 0 

(Hayes et 

al. 2015) 

Avoid areas of heat 

that might threaten 

energy, water 

balance, and reduce 

reproductive 

success 

solar radiation + 

total area of forest 

in 0.1km 

0.615 3796.49 54.0443 0 

Patches Most patches of 

habitat types  

number of patches 

of forest in 0.1km 

+ number of 

patches of urban in 

0.1km 

0.6625 3798.1 55.6571 0 

(Willis and 

Brigham 

2005) 

Thermal benefits to 

minimize heat loss 

and easy flights  

aspect + number 

of patches of forest 

in 0.1km + stand 

density index 

0.6293 3801.95 59.5021 0 

(Veum 

2017) 

Generalist foraging 

bats prefer opening 

and edges 

distance to roads 0.6287 3804.62 62.1815 0 

Basic 

Landscape 

  aspect + solar 

radiation 

0.6078 3806.69 64.2465 0 

(Willis and 

Brigham 

2005) 

Minimize heat loss 

& flyway concept 

aspect + stand 

density index +  

0.6249 3809.25 66.8049 0 
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Table A.3 (cont.). 

  total edge of forest 

in 0.1km 

    

Forest 

Availability 

Areas with more 

forest  

total area of 

bottomland forest 

in 0.1km + total 

area of forest in 

0.1km + total area 

of open canopy 

deciduous forest in 

1km  

0.5851 3811.45 69.0066 0 

(Owen et al. 

2004)  

Forages in open 

areas away from 

forest structure and 

clutter, where 

highly 

maneuverable 

flight is less critical 

number of patches 

of forest in 0.1km 

+ stand density 

index + total area 

of forest in 0.1km 

0.5898 3813.73 71.2872 0 

(Menzel et 

al. 2005) 

Open-adapted bats 

forage as high as 

they can in all other 

habitat types 

distance to water + 

stand density 

index + total area 

of bottomland 

forest in 0.1km + 

total area of open 

canopy deciduous 

forest in 1km 

0.6462 3814.93 72.4892 0 

Water Areas where there 

is more water 

distance to water + 

total area of water 

in 1km 

0.6023 3815.06 72.6172 0 

(Veum 

2017) 

Generalist foraging 

bats prefer opening 

and edges 

distance to roads + 

total area of open 

canopy deciduous 

forest in 1km + 

stand density 

index 

0.6802 3815.76 73.3162 0 

(Ford et al. 

2005) 

Forested areas for 

foraging are a 

premium among 

agriculture and 

urban land 

distance to water + 

existing vegetation 

height + total area 

of forest in 0.1km  

0.6515 3818.35 75.9113 0 
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Table A.3 (cont.). 

(Jung et al. 

1999) 

Open canopy with 

a high density of 

large trees for open 

foragers and 

foliage roosters 

existing vegetation 

height + stand 

density index + 

total area of open 

canopy deciduous 

forest in 1km 

0.5883 3824.56 82.1208 0 

(Menzel et 

al. 2005) 

Open-adapted bats 

forage as high as 

they can in all other 

habitat types 

stand density 

index + total area 

of bottomland 

forest in 0.1km + 

total area of open 

canopy deciduous 

forest in 1km 

0.5527 3825.72 83.2721 0 

(Klug et al. 

2012) 

Minimizing energy 

spent on 

thermoregulation 

allows for more 

energy on lactating, 

increasing 

reproductive 

output, and fitness 

aspect + stand 

density index 

0.5967 3827.91 85.4647 0 

(Veum 

2017) 

Generalist foraging 

bats prefer opening 

and edges 

total area of open 

canopy deciduous 

forest in 1km 

0.5624 3828.45 86.0114 0 

(Veum 

2017) 

Generalist foraging 

bats prefer opening 

and edges 

stand density 

index 

0.5805 3830.05 87.604 0 

(Willis and 

Brigham 

2005) 

Thermal benefits & 

easy flight  

aspect + stand 

density index + 

total area of open 

canopy deciduous 

forest in 1km 

0.6143 3837.23 94.7899 0 

Global   aspect + distance 

to roads + distance 

to water + existing 

vegetation height 

+ number of 

patches of forest in 

0.1km + stand  

0.766 3889.14 146.702 0 
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Table A.3 (cont.). 

  density index + 

solar radiation + 

total area of ag in 

0.1km + total area 

of bottomland 

forest in 0.1km + 

total area of open 

canopy deciduous 

forest in1km + 

total area of urban 

in 0.1km + total 

area of water in 

1km 

    

(Wieringa 

et al. 2021) 

North-south 

migration 

movement  

solar radiation 0.6231 3890.46 148.019 0 

Open Area More open forest  stand density 

index + total area 

of open canopy 

deciduous forest in 

1km + total edge 

of forest in 0.1km 

0.6078 3806.69 64.2465 0 
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Table A.4 Multivariate models for the tri-colored bat ranked by the AICc values. AUCtest values 

show model’s goodness-of-fit. AICc values is Akaike’s Information Criterion for small sample 

size which ranks the model selection. The difference between the top AICc value and that 

model’s AICc value is the ∆AICc. The AICc wi is the models’ weight.  

Model Rationale Variables AUCTest AICc ∆AICc AICc 

wi 

(O’Keefe 

2009) 

Minimize 

commuting 

costs as a 

smaller bat and 

prefer riparian 

habitats for 

roosting and 

maximizing 

foraging costs 

canopy cover + 

elevation + 

distance to roads + 

number of patches 

in 0.1km + total 

edge of forest in 

0.5km + total edge 

of water in 0.5km 

0.8832 3261.34 0 0.56 

(O’Keefe 

2009) 

Minimize 

commuting 

costs as a 

smaller bat and 

prefer riparian 

habitats for 

roosting and 

maximizing 

foraging costs 

canopy cover + 

elevation + 

distance to roads + 

total edge of forest 

in 0.5km + total 

edge of water in 

0.5km 

0.8704 3261.8 0.4658 0.44 

Land Use 

History 

Bias 

Areas that have 

been more 

historic human 

impact  

elevation + 

distance to roads + 

total area of ag in 

0.5km 

0.8466 3282.18 20.8446 0 

Goldilocks Areas with more 

water, more 

forest edge and 

patches of 

forest, more 

agricultural 

land, more 

bottomland 

forest  

number of patches 

of forest in 0.1km 

+ total area of ag in 

0.5km + total area 

of bottomland 

forest in 1k + total 

area of water in 

0.5km + total edge 

of forest in 0.5km 

0.8772 3285.38 24.0455 0 

Global 

Model 

  elevation + 

distance to roads + 

existing vegetation  

0.8784 3287.55 26.2146 0 
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Table A.4 (cont.). 

  height + number of 

patches of forest in 

0.1km + number of 

patches of water in 

0.5km + quadratic 

mean diameter + 

stand density index 

+ total area of ag in 

0.5km + total area 

of bottomland 

forest in 1km + 

total area of water 

in 0.5km 

    

(Ford et al. 

2005) 

Favors larger 

watercourses at 

lower elevations 

with open 

spaces and is 

probably more 

related to 

overall prey 

abundance and 

foraging ease   

elevation + existing 

vegetation height + 

quadratic mean 

diameter + total 

area of bottomland 

forest in 1km 

0.8378 3301.19 39.8577 0 

(Morris et 

al. 2010) 

Linear forest 

edges may 

improve 

connectivity 

between 

foraging areas 

and increase 

insect 

abundance  

distance to roads + 

stand density index 

+ total edge of 

forest in 0.5km + 

total edge of water 

in 0.5km 

0.8416 3315.4 54.064 0 

Stand 

Metrics 

Areas with 

denser, older, 

taller forests  

existing vegetation 

height + number of 

patches of forest in 

0.1km + quadratic 

mean diameter + 

stand density index 

+ total area of  

0.8434 3327.98 66.6414 0 
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Table A.4 (cont.). 

  bottomland forest 

in 1km + total edge 

of forest in 0.5km 

    

(Starbuck et 

al. 2015) 

Landcover 

variables 

represent large 

areas for 

different uses 

from foraging to 

roosting 

total area of ag in 

0.5km + total area 

of bottomland 

forest in 1k + total 

area of water in 

500 

0.8335 3328.581 67.24437 0 

(Farrow and 

Broders 

2011) 

Abundant 

roosting 

opportunities 

and avoiding 

energetically 

expensive 

cooler areas 

with less insect 

abundance 

total area of ag in 

0.5km + 

temperature 

0.8118 3339.9 78.5663 0 

(Morris et 

al. 2010) 

Linear forest 

edges may 

improve 

connectivity 

between 

foraging areas 

and increase 

insect 

abundance  

distance to roads + 

total edge of forest 

in 0.5km + total 

edge of water in 

0.5km 

0.8596 3344.68 83.34 0 

Riparian More forested 

areas closer to 

riparian zones 

number of patches 

of water in 0.5km 

+ total area of 

bottomland forest 

in 1km + total area 

of water in 0.5km 

0.758 3351.54 90.2035 0 

(Perry and 

Thill 2007) 

Older taller trees 

to reduce 

predation and 

fires while 

having  

existing vegetation 

height + quadratic 

mean diameter + 

stand density index 

0.8062 3360.83 99.4953 0 
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Table A.4 (cont.). 

 improved young 

rearing 

     

(Starbuck et 

al. 2015) 

Basic landcover total area of forest 

in 0.5km + total 

area of water in 

0.5km 

0.8268 3363.58 102.244 0 

Basic 

Landscape 

Elevational 

gradient 

elevation 0.7453 3374.42 113.084 0 

Agriculture More 

agricultural 

areas 

total area of ag in 

0.5km 

0.7542 3390.97 129.629 0 

Forest 

Complexity 

Areas with more 

forest edge and 

patches of forest 

number of patches 

of forest in 0.1km 

+ total edge of 

forest in 0.5km 

0.7615 3393.51 132.172 0 

Insects Areas with more 

insect 

abundance  

number of patches 

of water in 0.5km 

+ total area of ag in 

0.5km + total edge 

of forest in 0.5km 

+ temperature 

0.8704 3393.58 132.242 0 

Forest 

Availability 

More forest 

available 

total area of forest 

in 0.5km 

0.7874 3395.76 134.42 0 

(Loeb and 

O’Keefe 

2003) 

Higher 

vegetation 

density means 

increased prey  

stand density index 0.7785 3395.92 134.587 0 

Water More water 

available  

number of patches 

of water in 0.5km 

+ total area of 

water in 0.5km 

0.7331 3407.65 146.313 0 
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Table A.4 (cont.). 

(Farrow and 

Broders 

2011) 

Abundant 

roosting 

opportunities 

and avoiding 

energetically 

expensive 

cooler areas 

with less insect 

abundance 

total area of ag in 

0.5km + total area 

of water in 0.5km 

+ temperature 

0.8182 3410.78 149.445 0 

Null   no variables 0.5332 3503.18 241.842 0 
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Table A.5 Variable importance based on summing the AICc weights of all models in which the 

variable was used.  

 

 

Variable Importance 

L. borealis 

Canopy cover 0.3737 

Elevation 0.6262 

Distance to water 0.4848 

Existing vegetation height 0.1111 

Quadratic mean diameter 0.4848 

Total area of ag in 0.1km 1 

Total area of bottomland forest in 1km 0.4848 

Total area of forest in 0.1km 1 

Total area of water in 1km 1 

Total edge of forest in 0.1km 0.1111 

Total edge of water in 1km 0.1111 

Temperature 0.3737 

L. cinereus 

Distance to roads 1 

Total area of ag in 0.1km 1 

Total area of urban in 0.1km 1 

P. subflavus 

Canopy cover 1 

Elevation 1 

Distance to roads 1 

Number of patches of forest in 0.1km 0.56 

Total edge of forest in 0.5km 1 

Total edge of water in 0.5km 1 


