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ABSTRACT

Large-scale computing systems rely on many control and decision-making algorithms.
Classical approaches to designing and optimizing these algorithms are poorly suited to the
diverse and demanding requirements of modern systems and emerging applications. The state
of the art paradigm for building these control algorithms often devolves into painstakingly
built, handcrafted, average-case heuristics. However, as systems and applications have grown
in complexity and heterogeneity, designing fixed algorithms that work well across a variety of
conditions has become exceedingly difficult and costly. Moreover, we are reaching the limits of
conventional approaches of generating heuristics, which involve recurring human-expert-driven
engineering efforts. Such an approach will be untenable in the future.

In this thesis, we investigate a new paradigm for solving large scale system management and
optimization problems. We develop systems that can learn to optimize the performance on
their own using modern machine learning techniques. As a result, in the proposed approach,
the system designer need not develop specialized heuristics for low-level design goals. Instead,
the designer architects a framework for measurement, estimation, experimentation, and learn-
ing that discovers the low-level actions that achieve high-level resource management objectives
automatically. We use this approach to build a series of practical intelligent controllers for
the management and optimization of large-scale data-parallel and data-processing workloads
on heterogeneous computer systems. Our contributions encompass building mathematical
models (e.g., for denoising telemetry data), policies (e.g., for scheduling), optimizations to
enable real time inference, and the design and implementation of practical software and

hardware that provides efficient, scalable, and composable system management solutions.
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CHAPTER 1: INTRODUCTION

1.1 OVERVIEW

Emerging applications powered by deep learning demand increased computational capacity
to achieve the performance and high resiliency needed to ensure uninterrupted operations
in the presence of accidental failures and malicious attacks. Computer systems are rapidly
evolving to meet those application demands by incorporating innovations in hardware
architecture, operating systems, network interconnects, and storage, leading to increased
heterogeneity. The problem of integrating such innovations into a single coherent computing
stack has a long history and solutions of drawing upon many areas across computer science
and applied mathematics. However, in practice, solutions often devolve into painstakingly
built, handcrafted, average-case heuristics (or static policies). For example, hardware makes
decisions on voltage scaling and cache prefetching; compilers make decisions about which
routines to inline; networking stacks make decisions about when to adjust the congestion
window; and operating systems choose which processes and threads to schedule next.

Heuristic generation is already a fundamental challenge. The typical heuristic design flow
involves: (i) constructing a simplified model of the system optimization problem; (ii) breaking
down high-level optimization objectives (e.g., tail latency of a web service) into low-level
design goals (e.g., minimizing resource contention between co-located tasks); (iii) coming up
with heuristics to achieve these design goals under the simplified model and extensively tune
the heuristics to reach good performance in real-world systems. Variations across machine
configurations, workloads, and deployment environments can make the above heuristic
generation painful and costly. We are reaching the limits of conventional approaches of
generating heuristics, which involve recurring human-expert-driven engineering effort. It
is evident that existing approaches that focus on individual pieces of the system stack are
untenable.

The state of the art is heavily predicated on solving fixed, well-defined and semantically
self-contained problems. Unfortunately, it is becoming increasingly difficult to design highly
performant and robust systems using this approach. First, the underlying components in
many modern applications interact in complex, non-linear ways and are often extremely
difficult to model accurately. For example, in cluster scheduling, the runtime of a task varies
with data locality, hardware capabilities and characteristics, interactions with other tasks,
and interference on shared resources. Second, practical optimization algorithms must operate

in a wide range of heterogeneous and potentially unknown conditions which are impossible



to captured by fixed and simplified models completely. Finally, it is often infeasible to find
a correct set of low-level design goals that perfectly add up to the high-level optimization
objectives; practical solutions must combine and jointly tune several heuristics to optimize
performance. As a result, system designers are often forced to sacrifice performance for
simplicity and universality, or be forced to develop point solutions and specialized heuristics
for each environment and application.

In this dissertation, we take a step back and ask what is the most natural way for machines
to optimize complex computing systems. Rather than explicitly design and tune fixed
algorithms for each problem, we seek to enable systems that efficiently learn to optimize the
performance on their own. In our proposed approach, the system operator does not design
specialized heuristics for low-level design goals using a simplified model of the system. Instead,
he architects a framework for data collection, experimentation, and learning to discover the

low-level actions that achieve a high-level optimization objective automatically.

1.2 GENERAL APPROACH: INTELLIGENCE AUGMENTED SYSTEMS

This dissertation addresses complexity brought on by heterogeneity (across processing
fabrics, interconnection networks) and rapidly changing applications without compromising
performance using data-driven optimizations. In particular, we focus on building “system
policies”!. Given a software or hardware component (e.g., a compiler pass, branch predictor,
memory allocate) that makes decisions related to the execution of computer programs, a
system policy describes how these decisions are made. While the classical paradigm of building
such policies has been successful in some homogeneous settings, where we can model the
system quite accurately and design algorithms with strong performance (e.g., datacenter
transport), we currently lack design techniques for high-performance networked systems
across heterogeneous environments and application requirements.

This work augments the computer system with data-driven learning techniques at different
levels of the computing stack to overcome the two fundamental challenges of intelligent
system management. The first is complexity: modern hardware and system software expose
diverse configurable parameters whose complicated interactions have surprising effects on
performance and reliability. The second is dynamics: computing systems must reliably adapt
to unpredictable changes in operating environment, input workload, and even user needs.
This work combines the use of black-box deep learning techniques—to handle complexity—

with domain-knowledge-driven (in this case, knowledge about the system’s software and

1'We refer to these system policies as policies.



hardware architecture) Bayesian probabilistic models—to handle dynamics—to produce
hybrid machine learning (ML) models that are easier/faster to train and can be more easily
debugged, making them more amenable for production deployments. These ML models are
incorporated into agents that define policies (i.e., control algorithms) for the well-defined
semantically self-contained tasks (e.g., scheduling, controlling cache allocations). The agent
starts knowing nothing about the task at hand and learns by reinforcement-a reward signal
that it receives based on how well it is doing on the task. Over time, the agents learn to make
decisions directly from the experience of interacting with the environment. As multiple agents
are deployed in the system to control different aspects of the computing stack, the underlying
policies of the agents are jointly optimized by having multiple agents share a common reward
signal. In a sense this enables a kind of cross-stack optimization of control policies of a
computer system that simply cannot be done using the traditional heuristic based approach.
Further, the data-driven nature of the proposed approach enables the system to achieve
optimal results and continuously stay in optimal states, by taking full advantage of contextual
information (i.e., telemetry data?) collected from multiple layers of the system stack and
adapting rapidly to the deployment environment, workloads, and application requirements.
Finally, we believe that system management decisions are often highly repetitive, making it
easy to collect an abundance of training data to train reinforcement learning (RL) models.
This fact largely negates one of the potential drawbacks of RL approaches in practice — their
high sample-complexity (i.e., need for a large amount of training data).

At a high level, we believe that several benefits of the proposed approach that are particularly
well-suited to for management of future large-scale computing systems. These benefits leverage
many inherent system properties and provide a data-driven solution for the underlying

optimization problems that traditional approach struggle to tackle:

1. Tailor policies for a specific environment: By continuously learning from the real
experiences of interacting with a system environment, the agents directly optimize
for the actual workload and operating conditions as opposed to relying on inaccurate

system models.

2. Handle hard-to-model system dynamics: With the use of general purposed and powerful
function approximators such as deep neural networks, the agents can incorporate a rich
set of latent relationships from raw observations (e.g., interference between workloads

on shared resources like CPU caches).

2The monitoring data include (i) performance counters from processors and interconnects, (ii) probes
and tracing data from operating systems and file systems, (iii) detailed error logs collected across the stack,
and (iv) application-level tracing data.



3. Optimize for high-level system objective directly: The agents can learn to optimize a
variety of high-level optimization objectives (e.g., tail latency) without prior knowledge

of how low-level metrics (e.g., cache hit ratio) impact the objective.

4. Learn data-driven heuristics for hard algorithmic problems: The underlying problem
structures of many systems involve combinatorial optimization problems (e.g., job
scheduling), which generally lack a generic optimal solution. The reinforcement driven
technique can help improving the optimization solution for individual systems (as

demonstrated in other complex combinatorial optimization problems like [1, 2]).

1.3 SUMMARY OF CONTRIBUTIONS: METHODS & SYSTEMS DEVELOPED

This dissertation develops a set of novel, transformative inflight analytics techniques for
controlling, managing, and optimizing large-scale heterogeneous computer systems across the
hardware and software stack (including processors, interconnects, storage, operating systems,
and software infrastructure). The inflight analytics leverage the abundance of monitoring
and telemetry data available across the stacks to model different aspects of heterogeneous
systems using partially observable Markov decision processes (POMDPs) augmented with
domain knowledge. This leads to fundamental improvements to the performance, reliability,
and security of large-scale, distributed, and heterogeneous systems. Fig. 1.1 provides an
overview of the proposed approach. Broadly, the dissertation will tackle the following research

problems.

1.3.1 Dealing with Noisy Telemetry Data

The challenge is to accurately estimate the system state using rich telemetry data from the
monitors available across the software and hardware stack. The collected data are often noisy,
incomplete and inconsistent in terms of semantics, modalities, time granularities, levels of
abstraction, and propagation effects, making the system only partially observable. Hardware
performance counters (HPCs) that measure low-level architectural and microarchitectural
events are one such category of telemetry data. HPC measurements are error-prone due to
non determinism (e.g., undercounting due to event multiplexing, or OS interrupt-handling
behaviors). In this thesis, we present BayesPerf (labeled 1 in Fig. 1.1), a system for quantifying
uncertainty in HPC measurements by using a domain-driven Bayesian model that captures
microarchitectural relationships between HPCs to jointly infer their values as probability

distributions. We provide the design and implementation of an accelerator that allows
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Figure 1.1: The proposed system architecture for integrating inflight analytics in networked
systems.

for low-latency and low-power inference of the BayesPerf model for x86 and ppc64 CPUs.
BayesPerf reduces the average error in HPC measurements from 40.1% to 7.6% when events

are being multiplexed.

1.3.2 Learning Scheduling Policies for Heterogeneous Clusters

The challenge is to develop a decision framework that can take actions based on the
estimated system state across the system stack to jointly enhance system performance,
reliability, and security. The problem of scheduling of workloads onto heterogeneous processors
(e.g., CPUs, GPUs, FPGAs) is of one such decision problem that is fundamental importance
in modern data centers. Current system schedulers rely on application/system-specific
heuristics that have to be built on a case-by-case basis. Recent work has demonstrated
ML techniques for automating the heuristic search by using black-box approaches which

require significant training data and time, which make them challenging to use in practice.



This thesis presents Symphony, a scheduling framework that addresses the challenge in two
ways: (i) a domain-driven Bayesian reinforcement learning (RL) model for scheduling, which
inherently models the resource dependencies identified from the system architecture; and (ii) a
sampling-based technique to compute the gradients of a Bayesian model without performing
full probabilistic inference. Together, these techniques reduce both the amount of training
data and the time required to produce scheduling policies that significantly outperform
black-box approaches by up to 2.2x. The Symphony system and related training procedures
are labeled 2 in Fig. 1.1.

1.3.3  Accelerated and Real-Time Inference

Both training and inference for the proposed ML models are latency-critical and can
negatively impact application performance, thereby significantly impacting the practical
adoption of inflight analytics. They have been shown to successfully integrate structural prior
information about data and effectively quantify uncertainty to enable the development of
more powerful, interpretable, and efficient learning algorithms. This thesis presents AcMC?
(labeled 1 in Fig. 1.1), a compiler that transforms deep Bayesian models into optimized
hardware accelerators (for use in FPGAs or ASICs) that utilize Markov chain Monte Carlo
methods to infer and query a distribution of posterior samples from the model. The compiler
analyzes statistical dependencies in the PM to drive several optimizations to maximally
exploit the parallelism and data locality available in the problem. We demonstrate the use
of AcMC? to implement several learning and inference tasks on a Xilinx Virtex-7 FPGA.
AcMC2-generated accelerators provide a 47 — 100x improvement in runtime performance
over a 6-core IBM Power8 CPU and a 8 — 18x improvement over an NVIDIA K80 GPU.
This corresponds to a 753 — 1600x improvement over the CPU and 248 — 463 x over the
GPU in performance-per-watt terms. We will design a domain-specific compiler and runtime
framework to automatically synthesize model-specific accelerators that support rapid, low-
overhead analytics. The framework will take high-level declarative deep probabilistic programs
(i.e., the POMDPs), automatically compile them onto customized accelerators, and deploy
them across our customized accelerators (FPGAs and ASICs) and existing CPUs/GPUs.

The accelerated probabilistic programming framework is labeled 3 in Fig. 1.1.

1.3.4 Framework for Learning Augmented Computing Systems

Modern large-scale computing systems need to solve several crucial and complex resource

management problems in maintaining quality-of-service requirements while sustaining low



performance and cost overheads. Recent research has demonstrated data-driven machine
learning (ML) can significantly outperform empirically and hand-tuned policies and heuristics
in such problems. In this thesis, we ask a different question: what OS extensions are required
to enable ML-driven control at different levels of the computing stack? To answer this
question, we build IntelliKernel, a system to integrate reinforcement learning (RL) agents
to build optimal resource management policies. The IntelliKernel provides functionality
to (i) the RL-agent’s lifecycle management, (ii) ensure safety and liveness properties for
decisions made by the agents, and (iii) enable cross-agent optimization when multiple agents
are deployed in a cooperative or competitive environment. We demonstrate the efficacy of
the IntelliKernel in serving requests made to accelerated web-services, where, by using RL to
control thread/accelerator scheduling, PCle transaction scheduling, cache partitioning, and
early request dropping, we observe a 12.3x increase in throughput of a Linux+DPDK server

with a 12% improvement in tail latency.

1.4 ORGANIZATION

The remainder of the document is organized as follows. First, we describe background and
related work in this area in Chapter 2. Then, Chapter 3 describes the models, analytics,
and optimizations to deal with noisy and incomplete telemetry data which forms the input
based on which the proposed systems can make control decisions. Chapter 4 describes
a model, design, training and validation of a scheduling policy which makes used of the
demonised telemetry data to dispatch data-parallel data-processing tasks to a heterogeneous
cluster of processors. Chapter 5 describes methods to enable near real-time training and
inference on the probabilistic and deep learning models. In particular, we demonstrate
our prior work in using sampling based approximation techniques to accelerate and enable
backpropagation based training of deep Bayesian ML models, and our prior work in building
a high-level synthesis compiler for generating FPGA and ASIC implementations of Markov
chain Monte-Carlo-based inference procedures on probabilistic programs. Chapter 4 describes
how the parts of the proposed system described in Chapters 3 to 5 are brought together into
a unified framework for intelligence augmented computing systems, that can jointly disparate
high-level objectives across the computing stack. Finally, in Chapter 6, we conclude this
dissertation by summarizing our contributions and discussing exciting open problems and

promising research directions in this field.



CHAPTER 2: BACKGROUND, CHALLENGES AND RELATED WORK

This dissertation takes a first step towards building computer systems that can learn to
efficiently optimize performance and resilience on their own through modern data-driven
machine learning techniques. The implementation and deployment of such intelligent system
management has the potential to make the process of programming complicated systems
much easier, leading to reduced development time and greater efficiency. However, in order
to build such systems, one has to tackle the two fundamental challenges of intelligent system

management.

1. Complexity: Modern hardware and system software expose diverse configurable pa-
rameters whose complicated interactions have surprising effects on performance and

reliability:.

2. Dynamics: Computing systems must reliably adapt to unpredictable changes in operat-

ing environment, input workload, and even user needs.

In this chapter, we first discuss in §2.1 the role of heterogeneity in exasperating the two
challenges described above. Then, in §2.2, we describe the opportunities for innovations in
data-driven optimizations and machine learning (ML) techniques in addressing the challenge
of complexity and dynamics. We reflect on the related work and describe the research gap
addressed in this dissertation. We briefly introduce several multidisciplinary concepts with

the intention of making this work accessible to readers from multiple disciplines.

2.1 COMPLEXITY & DYNAMICS: THE ADVENT OF HETEROGENEITY

The unprecedented scale and complexity of today’s datacenter applications present tremen-
dous challenges to the design of systems infrastructure. A primary driver for this increasing
complexity has been the advent of statistical- and machine-learning applications. Traditionally
homogeneous datacenters are progressively shifting to heterogeneous designs to accommodate
the needs of these emerging applications. For example, GPGPU, special purpose chips/ASICs,
like Google’s TPUs [3], reconfigurable fabrics using FPGAs, like Microsoft’s Catapult [4], or
a combination of the two are becoming increasingly common. Performance variability has
been widely reported in such contexts from hardware-induced variability [5], to stragglers in
batch analytics [6], variability in VM network performance [7, 8|, and tail request latencies

in microservices [9].



Below we discuss the reasons behind this increasing heterogeneity, and how its increased
prevalence is handled by the state of the art systems. We define the shortcomings of these
systems and how how our approach deals with these shortcomings.

Homogeneous Datacenters. Datacenters have achieved their prevalence in large en-
terprise and high-performance computing settings by offering resource flexibility and cost
efficiency. Cost efficiency, specifically, comes from leveraging the economies of scale of buying
thousands of the same type of servers. The benefits of this homogeneity, however, go beyond
cost efficiency. Managing a homogeneous system is also much easier from the perspective of
the operating system, the cluster manager (the datacenter-wide resource manager/scheduler),
the compiler, and the application design itself. Further, large scale application deployment
also becomes much simpler when all servers look the same, and the main placement decision
has to do with resource availability.

Application Demands & Hardware Heterogeneity. This increasing popularity of
large datacenters has coincided with the slowdown of technology scaling (i.e., end of Moore’s
law), and the significant increase in on-chip power densities (i.e., end of Dennard scaling) [10].
Hence emerging applications which require significantly more compute have required ex-
ploration of special-purpose hardware designs, to maintain the same power and/or cost
trade-offs. The specific implementations of such processors has varied across applications
depending on the maturity of the target application (i.e., lack of algorithmic churn), the
user’s emphasis on programmability, and the cost of fabricating a new chip. ASICs work
better for stable applications, whose core computation does not fundamentally change and
the chip fabrication cost is tolerable, while FPGAs are better suited for applications where
accommodating algorithm /logic changes is important or where the overheads of chip fabrica-
tion may be undesirable. For example, the advent of large-scale genomic datasets and their
enormous applicability to drive research breakthroughs in the clinical setting [11] has led
to proliferation of custom accelerators to quickly, efficiently, and cheaply process this data
(e.g., [12, 13, 14, 15, 16, 17, 18|). In this dissertation, we use large scale genome processing
(and the custom accelerators used therein) as an benchmark application to validate our
results (see 77).

Heterogeneity in Application Architecture. Further, the (software) architecture of
datacenter applications has also changed. In place of large monolithic services, modern
applications have increasingly adopted fine-grained, modular designs with thousands of short-
lived functions, each of which has strict latency requirements (often in microseconds) [19].
Missing these requirements does not only affect the offending function itself, but, can cause
cascading performance issues across a cluster [20, 21|. By default, traditional general-purpose

servers are not designed to achieve such low and predictable latency. Instead, they are



designed for compatibility to any application a user may launch on them thereby leading to
unpredictable performance jitters.

Complexity and Dynamics. As a result of the increased heterogeneity in the hardware
and software architectures of emerging datacenters, these systems becoming more complicated.
The increasing diversity of hardware and software configurations has led to an increase in
the number of configuration parameters for these components. Further, interactions between
changes in such configuration parameters becomes incredibly complex, and modeling those
interactions is increasingly difficult. Even a few different resources can present a large search
space which is infeasible to explore exhaustively at run-time. This has not only resulted in
reduced performance, but also in reliability issues like hard-to-replicate bugs (22, 23, 24, 25|.
At the same time, evolving computing systems must also reliably adapt system dynamics,
i.e., to unpredictable changes in operating environment, input workload, and even user needs.
Such changes arise out of the need to efficiently run an ever changing mix of traditional
and emerging applications (as highlighted above), or due to the emergence of new classes of
applications that in turn drives heterogeneity and complexity [26]. In the context of efficient
and intelligent system policies, this implies that policies must not be set in stone after they
have been designed, rather, be constructed to evolve over time to capture important aspects
of the system dynamics. Hence complexity and dynamics has deep implications across the

system stack. Below we discuss a few of them in the context of this dissertation.

1. Datacenter Resource Management: Despite the performance and power benefits of
heterogeneity, when it comes to resource management in modern datacenters, it can also
introduce complexity. Where previously every server could be expected to yield similar
levels of performance, as heterogeneity becomes more prevalent, the range of performance
and power behaviors across hardware platforms becomes more diverse. OS and cluster
schedulers need to be aware of the different profiles of heterogeneous machines when
allocating resources to applications, to avoid exacerbating performance unpredictability,
especially in latency-critical services. Today, system schedulers generally rely on
application- and system-specific heuristics with extensive domain-expert driven tuning
of scheduling policies, e.g., 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42].
Such heuristics are difficult to generate as variation across applications and system
configurations lead to significant time and money being spent in painstaking heuristic
search. That is, these techniques do not satisfactorily handle complexity nor dynamics.
Recent work has demonstrated ML techniques [39, 40, 41, 42] for automating heuristic
searches by using black-box approaches which require significant training data and

time, making them challenging to use in practice. These ML-based systems are able to
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handle complexity to a degree, but are not able to handle dynamics as they require
enormous amounts of training data and time to achieve their goals. In this dissertation
(in Chapter 4) we will show how complexity and dynamics can be jointly addressed using
hybrid Bayesian-deep reinforcement learning (RL) agents that are trained end-to-end

using back-propagation.

2. Programmability: The lack of programmability in hardware accelerators has been one
of the main roadblocks towards a more widespread adoption of heterogeneous platforms.
So far, programming accelerators has been limited to expert developers, with deep
understanding of both the application and hardware platform. There have been efforts
to provide higher-level constructs for that can be used to declare and annotate the
parallelism available in a program thereby lowering the expertise required to build
accelerators (e.g., [43, 44, 45, 46, 47|). However, these innovations are still not for the
end-user, they are meant to increase productivity of the previously mentioned expert
developers. The techniques and systems presented in this dissertation creates new
class of user (akin to, but not the same as the system operator) of the system: one
who collects telemetry data, experiments and learns/constructs system policies using
the RL agents described above. This new user has stringent latency constraints and
often requires access to the hardware accelerators in order to execute and train their
system policies. This dissertation demonstrates (in Chapters 3 and 5) the design and
implementation of high-level synthesis compilers for the generation of efficient hardware

accelerators for the RL agents described above.

2.2 MACHINE LEARNING FOR SYSTEMS

One promising way forward is abstracting away the complexity that hardware heterogeneity
introduces by leveraging automated, data-driven techniques in the design and management
of future datacenter systems. Computer systems are full of sequential decision-making
tasks that can naturally be expressed as bandits or Markov decision processes (MDP) and
hence RL. ML has long been used in areas such as branch prediction [48]. Recent work
has shown promising results of using ML in automated hardware design [26, 49, 50, 51, 52],
code generation [53, 54, 55|, network-level QoS and congestion management |56, 57, 58, 59],
database indexing and querying [60, 61, 62, 63|, distributed scheduling [39, 40, 41, 56|, and
software engineering [21, 64, 65| among many others. This has become possible because
(i) advances in tracing/monitoring systems have increased the availability of large datasets,

and (ii) recent surge in ML model research has improved their quality and practicality.
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However, it is important to note that the use of ML for systems is not a departure from
traditional systems research. Rather, ML only provides a new set of automated tools for
systems research. One interpretation is that systems researchers have used a “real-life version
of gradient descent” to move the system to a local optimum, not unlike what ML would do.

From a ML perspective, computer systems present many challenging problems. The
landscape of decision-making problems in systems is vast, ranging from centralized control
problems (e.g., a scheduling agent responsible for an entire computer cluster) to distributed
multi-agent problems where multiple entities with partial information collaborate to optimize
system performance (e.g., network congestion control with multiple connections sharing
bottleneck links). Further, the control tasks manifest at a variety of timescales, from fast,
reactive control systems with sub-second response-time requirements (e.g., admission/eviction
algorithms for caching objects in memory) to longer term planning problems that consider a
wide range of signals to make decisions (e.g., VM allocation/placement in cloud computing).

Pitfalls In Applying ML to Systems. The successes described above often hide the
fact that ML does not always lead to the immediate wins that its popularity promises. This
aspect is often obscured in the discussion of ML for Systems, in part due to the popularity of
end-to-end learning. Modern ML techniques can learn complex behavior, and it is therefore
possible to train models that learn complex policies end-to-end. While these approaches

often work, they are

1. not always data efficient,
2. consume large amounts of resources, and

3. sometimes do not conclusively outperform strong baselines.

Further, there is an operational trade-off is often between accuracy and interpretability, i.e.,
at the end of training we are left with large deep learning models that produce good results,
but it is difficult to elucidate their internal mechanisms. As a result, these models can fail
in unintuitive and embarrassing ways, or worse, fail silently. As a result, the models require
significant safety harnesses.

Many systems problems have a known structure. However, end-to-end learning has to
learn this structure from scratch and may re-learn known facts, at the cost of maximizing
performance on the otherwise intractable part. In this dissertation, we therefore argue that

effectively applying ML to systems requires

1. incorporating our knowledge of the systems’ hardware and software architecture into
the ML model as an inductive bias to prevent it from having to re-learn known details

about a system (i.e., well-understood models and rules of execution).
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2. intelligently identifying which part of a systems policy requires ML, and developing
specific ML techniques for this part.

Hence, this dissertation advocates the use of ML to solve fixed, well-defined and semantically
self-contained problems as opposed to build systems with end-to-end learned policies. We
demonstrate that such models and rules of execution can be encoded into the proposed
Bayesian deep learning-based RL agents, in essence making them white-box models that are
sample-efficient, scalable, interpretable (debuggable), transferable between deployments, and
generalizable to large numbers of workloads.

Resource Constraints for Learned Policies. Another key challenge in evaluating the
the benefit of learned policies is that even if ML improves a particular performance metric,
its resource cost does not always justify the improvement in production. For example, OSs
and runtimes often need to make decisions in micro/nanoseconds. In contrast, even small
neural networks often take hundreds of microseconds. Further, models can often also can
consume significant resources like the memory required to store model parameters, and as a
result significantly affect application performance. A common pitfall in other related work,
is that the proposed ML models are trained, tested and validated offline, or in simulators
(e.g., [66]). As a result, these techniques often fail to consider the real-time nature of the
problems and hence fail to provide benefits in production deployments [67].

This dissertation addresses the above challenge in a fundamental way, starting with
mathematical models and ending with real software and hardware (i.e., that is deployed
in situ) that provides efficient, scalable, and composable system management solutions. In
particular, we address the latency criticality of the proposed Bayesian-deep RL agents by
providing algorithmic approximations for inference using sampling techniques (in Chapter
4), and by building custom accelerators to rapidly sampling the models for both training
and inference (in Chapter 5). Further, in 7?7, we show how these custom accelerators can be
pooled /multiplexed between multiple machines (at the rack-scale) to mitigate the cost of
deploying a ML for systems accelerator across an entire fleet of servers in a datacenter.

Challenges in Applying RL to Systems Policies. Computer systems give rise to
new challenges for learning algorithms that are not common in other domains. For example,
time-varying state or action spaces (e.g., dynamically varying number of jobs and machines
in a computer cluster), structured data sources (e.g., graphs to represent data flow of jobs).
Such complexities often prevent off-the-shelf RL methods from achieving strong performance
in different computer system problems. Here, we primarily focus on the common challenges

that arise across many systems in different stages of the RL design pipeline.

1. Needle-in-the-haystack Problem: In some computer systems, the majority of the state-
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action space presents little difference in reward feedback for exploration. This provides
no meaningful gradient during RL training, especially in the beginning, when policies
are randomly initialized. Random exploration is not effective at learning here because
any random action can easily overshadow several good actions, making it difficult to
distinguish good action sequences from bad ones. Here using domain-knowledge to
confine the search space helps to train a strong policy. In this dissertation we use the
Bayesian component of the proposed RL-agents to incorporate this domain knowledge:
effectively reducing the probability of taking certain random steps thereby confining

the search space.

. State-Action Space Encoding: In some systems, the action space grows exponentially
large as the problem size increases, e.g., in scheduling to map tasks to processors. In
this case, the number of possible mappings and thus, actions increases with the number
of new tasks in the system. Encoding such a large action space is challenging and makes
it hard to use off-the-shelf RL agents. Here, using domain specific representations that
capture inherent structure in the state-action space can significantly improve training
efficiency and generalization. In this dissertation we deal with such issues leveraging
lower dimensional graph embeddings and Graph network layers to significantly improve

generalization [68].
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CHAPTER 3: DEALING WITH NOISY TELEMETRY DATA

3.1 INTRODUCTION

Hardware performance counters (HPCs) are widely used in profiling applications to char-
acterize and find bottlenecks in application performance. Even though HPCs can count
hundreds of different types of architectural and microarchitectural events, they are limited
because those events are collected (i.e., multiplexed) on a fixed number of hardware reg-
isters (usually 4-10 per core). As a result, they are error prone because of application,
sampling, and asynchronous collection behaviors borne out of multiplexing. Such behavior
in HPC measurements is not a new problem, and has been known for the better part of a
decade (69, 70, 71, 72, 73, 74, 75|.

Targeted Need. Traditional approaches of tackling HPC errors have relied on collecting
measurements across several application runs, and then performing offline computations to
(i) impute missing or errored measurements with new values (e.g., [71]); or (ii) dropping
outlier values to reduce overall error (e.g., [74]). Both of these require time and compute
resources for collecting training data and inference, thus are suitable for offline analysis
(like profiling). These techniques are untenable in emergent applications that use HPCs
as inputs to complete a feedback loop and make dynamic real-time decisions that affect
system resources using a variety of machine learning (ML) methods. Examples include
online performance hotspot identification (e.g., [21]), userspace or runtime-level scheduling
(e.g., [29, 39, 70, 76, 77|), and power and energy management (e.g., [78, 79, 80, 81]), as well
as attack detectors and system integrity monitors [82]. In such cases, the HPC measurement
errors propagate, get exaggerated, and can lead to longer training time and poor decision
quality (as illustrated in §3.6.3). This is not surprising because ML systems are known to be
sensitive to small changes in their inputs (e.g., in adversarial ML) [83, 84, 85]. As we will
show in §3.2, HPC measurement errors can be large (as much as 58%); hence they must be
explicitly handled.

This chapter presents BayesPerf, a system for quantifying uncertainty and correcting
errors in HPC measurements using a domain-driven Bayesian model that captures micro-
architectural relationships between HPCs. BayesPerf corrects HPC measurement errors
at the system (i.e., CPU and OS) level, thereby allowing the down-stream control and
decisions models that use HPCs to be simpler, faster and use less training data (if used
with ML). The proposed model is based on the insight that even though individual HPC

measurements might be in error, groups of different HPC measurements that are related to one
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another can be jointly considered—to reduce the measurement errors—using the underlying
statistical relationships between the HPC measurements. We derive such relationships by
using design and implementation knowledge of the microarchitectural resources provided by
CPU vendors [86, 87]. For example, the number of LLC misses, the size of DMA transactions,
and the DRAM bandwidth utilization are related quantities,’ and can be used to reduce
measurement errors in each other.

Approach & Contributions. The key contributions are:

1. The BayesPerf ML Model. We present a probabilistic ML. model that incorporates
microarchitectural relationships to combine measurements from several noisy HPCs to
infer their true values, as well as quantify the uncertainty in the inferred value due to

noise. Hence allowing:

(a) improving decision-making with explicit quantification of HPC measurement
uncertainty.

(b) reduced need for aggressive (high-frequency) HPC sampling (which negatively
impacts application performance) to capture high-fidelity measurements, thereby

increasing our observability into the system.

2. The BayesPerf Accelerator. To enable the use of BayesPerf ML model in latency-critical,
real-time decision-making tasks, this chapter presents the design and implementation
of an accelerator for Monte Carlo-based training and inference of the BayesPerf model.

The accelerator exploits

(a) high-throughput random-number generators.
(b) maximal parallelism based on the statistical relationships mentioned above, to

rapidly sample multiple parts of the BayesPerf model in parallel.

3. A Prototype Implementation. We describe an FPGA-based prototype implementation
of the BayesPerf system (on a Xilinx Virtex 7 FPGA) for Linux running on Intel
x86_ 64 (Sky Lake) and IBM ppc64 (Power9) processors. The BayesPerf system is
designed to provide API-compatibility with Linux’s perf subsystem [88|, allowing it
to be used by any userspace performance monitoring tool for both x86_64 and ppc64
systems. Our experiments demonstrated that BayesPerf reduces the average error in
HPC measurements from 40.1% to 7.6% when events are being multiplexed, which is

an overall 5.28 x error reduction. Further, the BayesPert accelerator provides an 11.8x

n a simple processor, DRAM Bandwidth = (LLC misses x Cache line size+ # DMA Transactions x
Transaction size)/Clocks.
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reduction in power consumption, while adding less than 2% read latency overhead over

native HPC sampling.

4. Increasing training and model efficiency of decision-making tasks. We demonstrate
the generality of the BayesPerf system by integrating it with a high-level ML-based
IO scheduler that controls transfers over a PCle interconnect. We observed that the
training time for the scheduler was reduced by 37% (~ 52 hr reduction) and the average

makespan of scheduled workloads decreased by 19%.

The remainder of the chapter is organized as follows. First in §3.2, we discuss the sources
of HPC measurement errors. Then in §3.3 we provide an overview of the design of the
BayesPerf system. §3.4 describes the formulation, training and inference of the ML model
used to correct errors. §3.5 describes the accelerator that allows inference on the ML model
in real-time. Then in §3.6 we discuss a prototype implementation and it’s evaluation. Finally,
in §3.7 and §3.8, we put BayesPerf in perspective of traditional methods, and describe future

challenges, respectively.

3.2 BACKGROUND: HPC ERRORS

Every modern processor has a logical unit called the Performance Monitoring Unit (PMU),
which consists of a set of HPCs. An HPC counts how many times a certain event occurs
during a time interval of a program’s execution. The number and configurability of the HPCs
vary across processor vendors and microarchitectures. For example, modern Intel processors
have three fixed HPCs (which measure ISA-related events) and eight programmable HPCs
per core (which measure microarchitectural events and are split between the SMT threads
on the core) [89]. The events measured by an HPC are vendor-specific and microarchitecture-
dependent, and vary with processor models within the same microarchitecture. For example,
an Intel Haswell CPU has 400 programmable events, compared to the 1623 events on a
HaswellX CPU; both have the same number of HPC registers per core (three + eight) [70].
Therefore, one must carefully pick and configure which events to monitor with the available
registers.

Reading HPCs. Performance counters can be read using;:

1. Polling: The HPCs can be read at any instant by using specific instructions to write
(to configure the HPC) and read (to poll the value of an HPC) model-specific registers
(MSRs) that represent HPCs. For example, x86_64 uses specific instructions to read

(i.e., rdmsr) from and write (i.e., wrmsr) to MSRs, respectively; both instructions
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require OS-level access privilege, and hence are performed by the OS on behalf of a
user. Here, one HPC is programmed to count only one event during the execution
of a program. Hence, polling is ineffective, as the number of events that can be

simultaneously measured is limited by the number of available hardware registers.

2. Sampling: HPCs also support sampling of counters based on the occurrence of events,
thereby letting multiple events timeshare a single HPC [72, 90|. This feature is enabled
through a specific interrupt, called the Performance Monitoring Interrupt (PMI), which
can be generated after the occurrence of a certain number of events (i.e., a predetermined
threshold). The interrupt handler then polls (i.e., samples) the HPC. The multiplexing
of events occurs through a separate scheduling interrupt that is triggered periodically
to change the configuration of the HPCs and swap events in and out. The collected
measurements are generally scaled to account for the time they were not scheduled to a
HPC [73], and that can lead to making erroneous measurements. Sampling is necessary
due to the severe disparity between the numbers of events types and the number of

counters.

Sources of Errors. In addition to the errors due to event multiplexing, HPCs demonstrate
other modalities of measurement error. For example, HPC measurements can vary across runs
because of OS activity, scheduling of programs in multitasking environments, memory-layout,
and memory-pressure, and varied multi-processor interactions may change between different
runs. Nondeterminism in OS behavior (e.g., servicing of hardware interrupts) also plays a
significant role in HPC measurement errors [75]. Performance counters have also been shown
to over count certain events on some processors [75|. Finally, the implementation of userspace
and OS-kernel-level tools can cause different tools to provide different measurements for the
same HPCs in strictly controlled environments for the same application. The variations in
measurements may result from the techniques involved in acquiring them, e.g., the point at
which they start the counters, the reading technique (polling or sampling), the measurement
level (thread, process, core, multiple cores), and the noise-filtering approach used.

Measurement Errors. As a result of this non-determinism, quantifying error in HPCs is
difficult as there is no way to get “ground truth” measurements because of inherent variations
in measurements. In this chapter, we define HPC error as magnitude of difference between
corresponding HPC measurements made in two runs of a workload, one in polling and other in
sampling mode. The correspondence between the two HPC traces (time-series) is established
by dynamic time warping |91] that calculates an “alignment” between the two time series

datasets using edit-distance.?

2This definition of error is based on prior work on HPC errors |74].
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Figure 3.1: Errors due to event multiplexing in HPC measurements across ten application
runs.

Fig. 3.1 illustrates the net effect of measurement errors on the fidelity of an HPC counter
using Linux’s perf subsystem. In this case, the baseline dataset is collected using polling,
and the target dataset is collected using sampling, each on 10 independent application runs
capturing both variations in a single run, and variations across runs. We observe a 58 + 9.3%
average error in HPC measurements when 35 on-core events are being multiplexed on an
Intel processor, compared to the baseline of polling 4 events at a time.?

Errors in Derived Events. Such high error is particularly troubling, as it is quite
conceivable to count 35 events simultaneously, particularly for measuring derived events.
Derived events are obtained by combining individual HPC measurements in a mathematical
expression. Consider for example, the “Backend_Bound_SMT” derived event on Intel Broad-
wellX processor. It measures the fraction of pops issue slots utilized in a core, and alone
takes measurements from 16 HPCs to compute [86]. This information might be valuable
in a OS-level scheduler that controls an SMT processor, with the objective of minimizing
interference between CPU-bound processes/threads. Often such information would be con-
flated with other derived metrics like “Memory_Bound” and “Frontend_Bound_SMT”, which
together would require the use of 29 unique counters. That according to Fig. 3.1 would
incur an average error of ~ 45%. This is further exasperated by the fact that the HPCs
need to be counted per-SMT thread, per-core, and per-socket. For example, in an average
2-socket server system this would imply collecting thousands of counters (i.e., 2784 HPCs =
29 counters x 24 cores X 2 sockets).

Adding More Registers? A relevant question to ask is whether the HPC-error problem
will disappear if more HPC registers are added into future CPUs. The short answer is that it
will not, because as we continue to add more monitors, the system complexity increases which
is untenable in commercial CPUs that are often driven by other practical considerations.

Hence, HPC counters will eventually always end up introducing the sampling-based error.

3The experimental setup is described in detail in §3.6.1.
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Figure 3.2: Overview of the BayesPerf ML model.

3.3 APPROACH OVERVIEW

Key Insight. The key insight that drives this work is that microarchitectural invariants
(e.g. [86, 87, 92]) can be applied to measured HPC data to estimate whether it is, in fact, in
error (i.e., a detector). Further, we can quantify the “uncertainty” of an HPC measurement by
quantifying the probability of deviation from that invariant (i.e., its egregiousness). When the
above is applied to a group of HPC measurements, each targeting different microarchitectural
units, the underlying invariants can be composed, encoded as statistical relationships, i.e.,
joint probability distributions, which can then be composed into larger probabilistic graphical
models. We then use a Bayesian inference approach to integrate the data and prior knowledge
of the system to effectively attenuate the high error measurements and significantly amplify
correct measurements, all in real-time. This works in practice as the number of HPCs with
lower errors are generally more numerous than those with higher error (also verified by our
observations), hence they bias the aggregate results to the lower errored values. As a result,
BayesPerf significantly outperforms traditional purely data-driven statistical approaches for
outlier detection.

BayesPerf ML Model. Below, we provide a high-level description of the model, using
the example illustrated in Fig. 3.2. In this example, the goal is to measure (by multiplexing)
a set of events {e,,...,es}, on a set of HPCs {c1, 2, c3}.

Deciding Schedules of HPCs: BayesPerf first determines a schedule of how the events
are multiplexed on the HPCs. The schedule consists of a set of HPC' configurations that
are collected over time. We define an HPC configuration as a mapping between counters
and events, that defines which counters are collected at an instant of time. The notation
{c1, ¢a,c3} = {eq, e, €.} is used to define such a configuration, and imply that ¢; counts e,.
The scheduling process is driven primarily by the microarchitectural considerations of the

available HPCs and the types of events that each one can measure, i.e., as not all HPCs
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can measure all events. Traditional HPC measurement tools, like the Linux perf subsystem
trigger HPC configuration changes in a round-robin manner, based on a periodic hardware
timer-driven interrupt (see Fig. 3.2). BayesPerf uses a similar interrupt driven approach, but
does not use round-robin to build a schedule of configurations. It creates configurations of
overlapping counters, such that each set of counters have “statistical relationships” to other
events in preceding and subsequently scheduled configurations. For example, in Fig. 3.2, e, and
e. are such overlapping events. As we will show in §3.4, these “statistical relationships” can
be derived based on microarchitectural invariants (i.e., domain knowledge) that tie together
the resources underlying the measurements. BayesPerf encodes those invariants as generative
joint- and conditional-probability distributions for the processors used in our experiments.
Inferring Unscheduled Events: At each instant of time, BayesPerf then uses sampled data
from the overlapping events to compute a full posterior distribution (i.e., the likely values and
their associated uncertainties) of the unscheduled events using a Bayesian inference approach.
Consider e, in the second time slice of Fig. 3.2. It is calculated using its’ own samples from
the previous time slice and the samples of e, (which is the event repeated across time slice
one and two) in the current time slice. The result of the Bayesian inference using the sampled

data is a probability distribution Pr(ef|ei !, e!) at time ¢; this distribution not only gives us

)Y a

an estimate of e, (i.e., by finding the most likely value of e, under the distribution), but also
quantifies uncertainty (i.e., using the probability value Pr(ey|...)) in that estimate. The
compositional nature of Bayesian inference allows chain events across multiple time slices, if
the overall set of events to be measured is large, albeit at the cost of larger uncertainty in the
estimate. For example, in Fig. 3.2 the chain of events (e, — €,) ~ (e, — €¢) ~> (€. — €4) can
be used directly estimate e, from samples of e,, but also transitively estimate it from samples
of e.. Here “—” describes the above statistical relationships between events in a configuration
(i.e., in a single time slice), and “~~” describes data collected between overlapping events
across time slices.

The BayesPerf system then allows an user to poll the posterior probability distributions of
any of the events being collected. These distributions can be passed along (i.e., integrated)
into higher-level ML /control frameworks or used directly to compute error bounds of HPC
measurements.

BayesPerf Accelerator. Though the BayesPert ML model is able to provide significantly
higher-quality samples from the raw HPC measurements, it introduces the additional runtime
overhead of performing Bayesian inference on every new measurement polled by the user.
Consider Fig. 3.3; it shows the average overhead (over 100 reads) of reading a HPC value
using the Linux kernel’s (perf subsystem) read () system call (i.e., polling), the x86 64 rdpmc
instruction to read HPCs in userspace, a purely CPU implementation of the BayesPerf ML
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Figure 3.3: Latency overhead of reading counters with BayesPerf compared to traditional
methods on an x86 CPU.

model (using TensorFlow Probability [93, 94]), an FPGA accelerated version of BayesPerf
(described later in §3.5), and CounterMiner|74] (described later in §3.6 and used as a baseline
in our evaluation). We observe that a single HPC read when the CPU implementation of
BayesPerf is being used has approximately 9x longer latency than native polling of the HPC.
In order to reduce the latency, we introduce an accelerator that parallelizes the process of
computing posterior inference on the BayesPerf ML model. The accelerator largely builds
upon our prior work [95] in building MCMC accelerators that treats a lack of statistical
dependencies between variables as a scope for parallel execution. Using the accelerator,
BayesPerf adds less than 2% overhead in read latency compared to the native solution. Our
implementation of the accelerator on a PCle-attached FPGA device can take advantage of
modern cache-coherent accelerator-processor communication protocols like CAPI [96], and
essentially provide users with the same interface and same performance characteristics they

could get if they were natively polling the OS for HPC measurements.

3.4 THE BAYESPERF ML MODEL

In this section we first discuss formalization of the HPCs and events for a generic CPU.
Then, in §3.4.1, we discuss the problem of scheduling sets of performance counters onto
available HPCs. Finally, in §3.4.3, we discuss an inference strategy to compute the posterior
distribution of a single event based on generated schedule and HPC measurement samples.

Formalism. We assume that every processor has a pre-determined number of fixed and
programmable HPCs. We refer to them as ny and n,, respectively. The HPCs themselves are
indexed and referred to as f; ... f,, for the fixed HPCs and ¢; ... ¢,, for the programmable
HPCs. The processor as a whole has a set E = {ej,...,e, } of n. architectural and
microarchitectural events that are measured using f, and c,. At any point in time, the

programmable HPCs are configured to count any one of the events in £. The instantaneous
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mapping between counters and events is called a configuration. Fixed HPCs are not considered
in a configuration, as they cannot be programmed. Not all programmable HPCs will be able to
count all events (i.e., all configurations might not be valid), depending on microarchitectural
and implementation considerations. For example, an Intel off-core response event requires one
HPC and one MSR register, and the L1D_PEND_MISS.PENDING event can be only counted on
the third HPC on Haswell /Broadwell systems. Configuration validity constraints are known
ahead of time, can be dynamically checked, and must always be satisfied. BayesPerf uses the
Linux’s builtin validity checker.

A sample s; is generated from an HPC ¢; (i.e., an interrupt is fired to read the value
of a counter and store it in memory) when a particular threshold 7, is reached on one of
the fixed HPCs f,.* That process is denoted by sj ~ ¢; if fr > 7. In addition to the
value of the counter, the sampling process also records two time measurements, ¢ and ¢,
where ¢/ < t'!. They correspond to the total time the application has been running, and
the total time for which an event has been sampled (i.e., it has been enabled), respectively.
Traditional approaches (e.g., one that is used in Linux) use these times to correct HPC
undercounting errors and assume that the true value of a performance counter is scaled
according to s; > s; X /.

Statistical Dependencies. Some subsets of events in F have statistical relationships
between them. Those statistical relationships are described by joint probability distribution
functions. For example, if e; and ey share such a relationship, then it is represented by
their joint probability distribution Pr(eq, es; ). Where, O refers to all tunable or learnable
parameters of the distribution.

We assert that if nothing is known about the statistical relationships between the events,
then Pr(e;,...) can be approximated by a neural network and trained using data from HPCs.
However, for most real systems, knowledge about the underlying microarchitectural resources
being counted in a HPC can be correlated together to describe Pr(e;,...). To do so, we use
algebraic models of the composition of HPC measurements by using information about the
CPU microarchitecture found in processor performance manuals [86, 87, 97|. For example, in
an Intel x86 Sandy Bridge microarchitecture [97, 98|, the fraction of cycles a CPU is stalled
because of DRAM access is given by (1 —Mem_L3_Hit_Frac) x STALLS_L2_PENDING/crxs. Those stalls
can be caused by either DRAM bandwidth issues or DRAM latency issues, which in turn can
be measured as ORO-DRD_BW_Cycles/crxs and ORO-DRD_Any_Cycles/ciks — ORO_DRD_BW_Cycles/crks respectively.
Here, ORO_DRD_Any_Cycles, ORO_DRD_BW_Cycles, Mem_L3_Hit_Frac, STALLS_L2_PENDING,

and CLKS correspond to a set of fixed and programmable events, which are related to each other

4In general, this triggering event occurs based on the number of clock cycles or number of instructions
executed.
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via the algebraic relations described above. Given the equivalence of those three computed
quantities, we can compute one, given values of the other. When some of these events
are reported with measurement errors, the equivalence relationship becomes statistical (i.e.,
capture randomness because of errors). We then define a distribution function for individual
events, where only valid combinations of the event values have a non zero probability of

occurrence.

3.4.1 Scheduling

Problem. Given statistical dependencies between events, we need to ensure that the
configurations created for two consecutive time slices (i.e., scheduler quanta) have at least
one overlapping event in order to establish either a first-order or a transitive statistical
relationship between consecutive time slices. For example, if we have four events e; to e4 that
are related by f(ey, es) and g(eq, e3,€4), we must ensure that samples of e; occur repeatedly
across multiple time slices. Given (from a profiling application) an original schedule of
configurations C7 — Cy — - -+ — (), where C; executes in time slice 7, into another schedule
of Cls such that transitive statistical relationships hold, such that the validity criteria holds
on each C]. In the case when it is not possible ensure the validity criteria on every C!, we
break the chain of repeated events, and start over again from a valid configuration.

Solution. The first step of the scheduling process is to aggregate all the statistical
dependencies available for the processor in question into a graphical structure. The graph is
produced by expanding the scheduled chain C; — --- — ), using the statistical relationships
between the events in the chain. In the ML /statistics community, such a graph commonly
referred to as probabilistic graphical model, and more specifically identified as a factor graph
(FG) [99]. Remember from above that the statistical dependencies between the events are
specified as joint probability functions Pr(S;),> where S; C E. Using those functions, we
generate a bipartite FG G = (E'U {Pry,...Pr,}, {(e,Pr;)|e € S;Vi}). The FG represents the
joint distribution of all the events in the schedule, composed together from every individual
joint distribution.

Now, given the FG and two consecutive configurations from a schedule Cy and C;; (with
events Fy, Fyy1 C E respectively), our scheduling problem reduces to (i) finding whether E;
and E;, share an event such that the transitive statistical dependency is met; and (ii) if
they do not share such a dependency, producing the shortest sequence of C” such that
Cy — C’él) — -+ — Cpy1. Solution of the first of the two problems is straightforward. We
do it by computing the Markov blanket |99 of the sets F; and E;,; under the factor graph.

®We use the shorthand Pr; = Pr(9;).
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The Markov blanket B, of a variable x; in the factor graph defines a subset of x_; such
that z; is conditionally independent of x_; given B,.. If the Markov blankets of E; and F;
overlap (i.e., Bg, N Bg,,, # @), then we are guaranteed that there exists at least one event
that shares transitive dependencies between the time slices. The second problem is a little
more involved. It can be solved by finding the shortest path (assuming unit cost for each
edge traversed) from each e € F; to each ¢ € F;,y in the FG. That can be accomplished
using Djikstra’s algorithm, checking validity of the path at every step. In addition to the

graph traversal, one must also apply the following optimizations to prune unnecessary C's.

1. Removing Common Steps: If an intermediate step C] exists such that the Markov
blankets B.,, Be.,, ... B., of events ej,es,...e, overlap, the next transition state of
the schedule can be condensed. That is, if there exists an e, € B, N...B,,, then
composition of statistical relationships can happen through e,, instead of through the

larger set of events, i.e., C/,; — (Ci; \ {e1,...en}) Ues

2. Removing Redundant Steps: If there exists two steps Cj and Cj  such that there is

no change in the Markov blanket (i.e., Bg, = Bg,,,), then we can skip the transition

i+l)
Ci,, and instead transition to Cj ,. That situation can occur because the Markov
blankets in individual traversals e ~ ¢’ will change at every step; however, the union of
all such blankets might not change. If it does not change, we have enough statistical

information to skip the i + 1'® step and go directly to i + 2.

Checking Validity of the Configuration. A key challenge in determining a valid
transformation of a schedule is that of identifying the configurations that do not satisfy the
microarchitectural constraints placed on HPCs. We check the validity of a new schedule
using Linux’s perf event subsystem. It allows us to iterate over all HPCs in a configuration
until it reaches an event that it fails to schedule, thereafter notifying the user of validity
failure. To maximize the use of available counters, the perf iteration strategy starts with the
most constrained events and goes to the least constrained events in a configuration. Linux’s
native scheduling for a group of events happens independently per PMU and per logical core.
As some PMUs are shared between threads of the same core or package, their availability

may change depending on what events are being measured on the other cores.

3.4.2 Modeling Errors in Event Samples

The first step to computing the full posterior distribution is to model errors in the capture

of samples from HPCs. Recall that we listed sources of such errors in §3.2. For a single
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event e programmed in an HPC ¢, if the error in measurement e. can be modeled, then the
measured /sampled values m, can be modeled in terms of the true value v, plus measurement
noise e, i.e., m. = v.+e.. Here, we focus only on random errors, by assuming zero systematic
error. That is a valid assumption because the only reason for systematic errors will be hardware
or software bugs. We assume that the error can be modeled as e. ~ N(0, ) for some unknown
variance o, hence Pr(m, | v.) = N (me, o) [71]. Now, given N samples of HPC, we compute
their sample mean p and sample variance S. A scaled and shifted Student’s ¢-distribution
describes the marginal distribution of the unknown mean of a Gaussian, when the dependence
on variance has been marginalized out [100], i.e., v. ~ u + 5/vN Student(v = N —1). In all
our experiments, the confidence level of the t-distribution was set to 95%. Now, since the
measurement error model for an HPC is stochastic, when samples from these models are
used in the algebraic relationships described above, they too become stochastic in nature.
The FG becomes one unified graphical representation of all of these statistical relationships,
i.e., between the errored samples and true values of events, as well as among different events

that measure related aspects of the CPU’s microarchitecture.

3.4.3 Inference Strategy

Once we have computed a schedule that ensures that events with statistical dependencies
between them are measured in consecutive time slices, the next goal is to utilize the measure-
ments to produce a posterior distribution for an event. Recall Fig. 3.2. In each scheduling
time slice, we have measurements/samples from the current slice and the preceding slice.
However, because of the transitive statistical dependencies, we would like to jointly compute
inference for the FG (i.e., compute the posterior probability of some event in the FG given
the sampled data) for some k time slices into the past.

Our approach to performing this computation with low-latency guarantees utilizes the idea
that one can break the larger problem into £ smaller parts, performing inference on each of
the k parts, and then put the results together to get an approximate posterior inference, i.e.,
similar to map-reduce. There are two difficulties with such algorithms, as they are usually
constructed. First, each of the k£ pieces has only partial information; as a result, for any of the
pieces, a lot of computation is wasted in places that are contradicted by the other k — 1 pieces.
Second, the partial results from the & pieces must be carefully combined together to ensure
that the prior (which is embedded into the FG model) is not counted multiple times. We use
the Expectation Propagation (EP) algorithm [101, 102, 103] to overcome those difficulties to
perform the inference. The EP algorithm naturally lends itself to distributed inference on

partitioned datasets [103]. Hence we can perform inference on partitions of data, i.e., each
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Algorithm 3.1 General EP algorithm.
Input: Target distribution f(0) =[] fx(6)
Output: Global approximation g(6) =[] gx(0)
1: Choose initial g (6)
2: for k € {0,... K — 1}A until gy converges do

3: g—1(0) x 90)/g,(0) > Cavity distribution
4 guw(®) o< Pr(yp|6)g—i(9) > MCMC
5: g (0) o< g\ (0) > Local update
6: Agr(0) =~ 9" (0)/4(0)

& 9(0) < g(0)Agx(0) > Global update
8: end for

9: return {g;(0)|k € [0, K)}

scheduled configuration of the HPCs. In contrast, other techniques for Bayesian inference
would require us to explicitly change the inference algorithm depending on the schedule
of HPCs and the structure of the FG. Such changes might not be feasible for all possible
schedules or all CPU architectures. The EP algorithm works by computing an effective
region of overlap over our k pieces, i.e., for each piece, we use an approximate prior computed
over the other £ — 1 pieces. The outline of the EP algorithm is illustrated in Alg. 3.1. The
algorithm iteratively approximates a target density f(-) (in our case the FG) with a density
g(+) that admits the same factorization, and uses a Gaussian mean field approzimation [99].

Training. Training is not explicitly required for the proposed BayesPerf model. The
advantage of using Bayesian models like FGs is that training on such models can be reduced
to inference on the models’ parameters. At runtime, for each time slice, we compute (infer) a
full posterior distribution over the variables (i.e., E) and parameters (i.e., ©) of the FG, and
then use maximum likelihood estimation to pick the set of parameters (i.e. ©MLE)) that can

explain a data trace generated by the system.

3.5 THE BAYESPERF IMPLEMENTATION

In this section we describe the software and hardware components in which BayesPerf
is deployed. Further, we describe the architecture and implementation of the BayesPerf
accelerator that targets the execution of Alg. 3.1. Fig. 3.4 shows the architecture of the
BayesPerf system, which works as follows.

Setup. BayesPerf is used by one or more “monitoring processes/threads” (labeled “Mon-
itoring Application” in Fig. 3.4) to monitor hardware threads of a “Target Process.” The

BayesPerf user API is identical to the the Linux perf subsystem, and hence any user space
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Figure 3.4: High-level architecture of the BayesPerf system.

program that uses the standard Linux interface can transparently use BayesPerf. Using
this API, the monitoring process registers events of interest (labelled as 1 in Fig. 3.4%) with
the userspace component of the BayesPerf system, labelled “BayesPerf Shim.” The shim
represents a userspace driver [104] that replicates the API of the Linux perf subsystem.

Linux perf. The shim registers HPCs on behalf of the user process with the Linux kernel.
(labelled as 2). The kernel then manages the scheduling of performance counters onto the
CPU (using the scheduling algorithm described in §3.4.1). This step is labelled as 3. When
the target process raises performance monitoring interrupts (PMIs; labelled as 4), the Linux
perf subsystem is responsible for reading the corresponding HPC and writing out the sampled
value into a “ring buffer” (labelled as 5) that represents a segment of memory that is mapped
into the address space of both the shim and the perf subsystem. The ring buffer represents a
FIFO in which new samples are enqueued by the kernel and read from the userspace process.
The ring buffer automatically provides a mechanism for managing backpressure between the
shim and kernel as new samples are dropped if the ring buffer is full.

Interfacing with the Accelerator. As we will discuss in §3.6.1, we have prototyped
the BayesPerf system on two different architectures: an Intel x86 64 and an IBM Power9
processor. The protocol for communication between the software and the BayesPerf accelerator

(labelled as 6; described later) differ for the two architectures. On the Power9 system, we

6% refers to annotations in Fig. 3.4 if not otherwise specified.
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Figure 3.5: Architecture of the BayesPerf accelerator.

leverage CAPI 2.0 [96], a protocol that extends the processor’s cache coherence protocol to
PCle-attached devices. In that case, as the accelerator can directly access the host memory, it
can consume samples enqueued onto the ring buffer by the kernel (labelled as 5). It does so by
snooping on cache invalidation messages for the cache lines corresponding to the ring buffer.
Similarly, outputs of the accelerator are directly written back to the shim’s virtual memory
space. For Intel systems, the accelerator uses the base PCle protocol and IOMMU-mediated
PCIe DMA to read HPC samples and write the computed posterior distributions. Here, the
shim must actively poll writes from the kernel to the ring buffer, and once the write has been
made, initiate transfer of the samples to the FPGA. Similarly, the shim polls for interrupts
from the accelerator that signify completion of computation, and initiates DMA transfers
for the results. This added software interaction adds some latency overhead to the entire
computation.

Polling Results. Finally, the monitoring application reads (polls) the results of the
posterior computation in BayesPerf (labelled as 7) from ring buffers in the BayesPerf shim.
These reads are always reads to the host memory of the CPU and do not need to initiate
DMA requests with the accelerator. This design is able to mask almost all the latency that
is added because of the added computation in BayesPerf (see Fig. 3.3).

Multi-Threaded Applications. OS-level monitoring contexts, like processes or threads
are dealt with at the level of BayesPerf shim. Hence, when an OS context switch occurs, the
memory references of the perf ring buffers are changed by setting configuration registers on
the accelerator using MMIO. When the new references are written, the accelerator begins
pulling data from a different buffer in memory. As a result, the accelerator can be shared
across threads that are concurrently executing on the host CPU.

The Accelerator. Fig. 3.5 illustrates the architecture of the BayesPerf accelerator. The
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accelerator exploits parallelism in the structure of Alg. 3.1 in two ways. First, we execute
posterior inference on each of the k time-slices in parallel (recall §3.4.3). These parallel
execution engines are labeled as “EP 1”7 through “EP k” and “Controller” in Fig. 3.5. The
EPs execute lines 3-6 of Alg. 3.1 in parallel, and communicate their results to the global
controller, which synchronously updates g(f) and dispatches the new value to the idle EP.
The values of the measurements from the HPCs (i.e., inputs) as well as the latest values of
g(0) are stored in the on board DRAM. Our target FPGA board (which we will describe
in §3.6.1) supports 4 channels of 16GB LPDDR4 memory each. The input data and the
current values of g(f) (which together comprise ~ 100 MB of data) are replicated across
those modules to allow concurrent reads from different EPs to progress simultaneously.
The second level of parallelism exploited by the model is in the computation of MCMC
inference in each of the EPs. Those are represented by the “MCMC Sampler” blocks in
Fig. 3.5. They execute line 4 of Alg. 3.1 in parallel, by using MCMC to estimate Pr(yx|6)
(i.e., the likelihood that the data y, is drawn from the local approximator g;). Here we
leverage our prior work, AcMC?[95](see Chapter 5), a high-level synthesis compiler for MCMC
applications, to generate IPs that can generate samples from the target distributions of the
HPC measurements. The HPC statistical relationships (i.e., the FG) are fed into the compiler
as a probabilistic program, i.e., a program in a domain specific language that can represent
statistical dependencies between program variables. AcMC? then automatically generates
efficient uniform random number generators, and automatically synthesizes other statistical
constraints in FG. Instead of using the AcMC?-generated controllers for the MCMC samplers,
we use the EPs to directly control the pipelines of MCMC samplers. That is, (i) to set and
update configuration parameters like seed values; and (ii) to update the state of the sampler
with one which passes the rejection sampling test criteria for each random-walk. Allotment
of the samplers to EPs, and all subsequent communication between the EPs and samplers,
happen over a network-on-chip (NoC) generated with CONNECT [105]. This approach
enables us to use samples from previous iterations as starting points for Markov-chain random
walks. This optimization is possible only because we are using MCMC inside an EP algorithm,
instead of by itself [106]. The NoC uses a butterfly topology to allow communication between
EPs and samplers, as well as between the samplers themselves (as is required by AcMC?).
All our experiments use a 16 port NoC, with 4 of those ports being connected to the EPs,
and the remaining 12 to the MCMC samplers. This is the maximal configuration for which

we were able to meet timing requirements on the FPGA for a 250 MHz clock.
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Table 3.1: Area & Power for components of the BayesPerf FPGA for the x86 64 and ppc64
configurations.

Component Utilization (%) Power (W)
BRAM DSP FF LUT URAM Vivado Measured

x86-PCle 62 78 52 81 o8 11.2 17.2

ppc64-CAPI 71 66 49 79 o8 10.5 16.1

3.6 EVALUATION & DISCUSSION

This section discusses our experimental evaluation of the BayesPerf system and is organized
as follows. First, in §3.6.1, we describe the experimental setup and explore the performance,
power, and area requirements of BayesPerf accelerators when programmed onto an FPGA.
Then, in §3.6.2 we evaluate the capabilities of the BayesPerf system in correcting measurement
errors in HPCs. Finally, we demonstrate the integration of BayesPerf with ML-based resource

management systems to improve their outcomes.

3.6.1 Experiment Setup

We evaluate BayesPerf on two system configurations: (i) an IBM AC922 dual-socket Power9
system (which we will refer to as the “ppc64” configuration), and (ii) a dual-socket Intel
Xeon E5-2695 system (which we will refer to as the “x86” configuration). Both the systems
are populated with two NVIDIA K80 GPUs, a single FDR Infiniband NIC, and a directly
attached FPGA board (which we describe below). Both systems ran Ubuntu 18.04 with
kernel version v4.15.0.

Accelerator: FPGA. The FPGA accelerator was based on the architecture in §3.5. All
experiments were performed on an Alpha-Data ADM-PCIE-9V3 FPGA board (with Xilinx
Virtex UltraScale+ VU3P-2 FPGA) clocked at 250 MHz. For the Power9 systems, the FPGA
board was configured to use the CAPI 2.0 interface [96]. For the x86 configuration, the
FPGA board was configured to use PCle3 x16 along with the Xilinx XRT drivers. The power
and FPGA utilization metrics for the two configurations of the BayesPerf accelerator are
listed in Table 3.1. In comparison to a 100W TDP of the Intel processor and a 190W TDP
Power9 processor, the FPGA performs 5.8x and 11.8x better, respectively, in terms of power
consumption. The BayesPerf-ppc64 FPGA read latency is shown in Fig. 3.3. We observe
that a single HPC read using the CPU implementation of BayesPerf has approximately
9x longer latency than native polling of the HPC. However, when the accelerator is being

used, BayesPerf adds less than 2% overhead in read latency compared to the native solution.
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Table 3.2: Area & Power for components of the BayesPerf ASIC for the x86 64 and ppc64
configurations.

Component Type Area (mm?) Power (W)
x86-PE Logic 19.2 1.14
x86-PE SRAM 66.0 3.39

ppc64-PE Logic 18.6 1.12
ppc64-PE SRAM 66.0 3.39
DRAM  LPDDR4 (4x32GB) . 1.64

Compared to the BayesPerf-ppc64 implementation that uses CAPI, the BayesPerf-x86 has
on average 15.8% larger latency. We can attribute that slowdown to the requirement that
a userspace driver actively initiates DMA transfers to the FPGA accelerator, whereas the
CAPI configuration snoops for cache invalidation messages.

Accelerator - ASIC. In addition to the experiments we perform on an FPGA to demon-
strate the utility of BayesPerf, we provide a whole-chip performance and energy model for the
design to demonstrate feasibility of integrating BayesPerf in future CPUs designs (in package
or as an SoC component). The FPGA and ASIC designs differ in that the ASIC design does
not consider the power and area requirements of the CAPI/PCle IP. The design is evaluated
in a 32 nm process, assuming a 1 GHz clock. For the energy model, energy numbers for
arithmetic units are taken from [107] and scaled to 32 nm. SRAM energies are taken from
CACTI [108]. We assume all SRAMs are itrs-lop as this decreases energy per access, but still
yields SRAMs that meet timing at 1 GHz. DRAM energy is counted at 20 pJ/bit [107]. NoC
energy is extrapolated based on the number and estimated length of wires in the design (using
our PE area and L2 SRAM area estimates from CACTT). We assume the NoC uses low-swing
wires [109], which are low power, however consume energy each cycle (regardless of whether
data is transferred) via differential signaling. Ramulator [110] and DRAMPower [111] (using
a LPDDR3 model, which should be a conservative estimate for LPDDR4 memory in our
FPGA implementation) to estimate DRAM timing and power respectively. Table 3.2 shows
the result of the analysis. The ASIC implementations perform 2.7 and 2.6x better than the
FPGA accelerators respectively (see Table 3.1), in terms of power consumption. Using the
cycle counts from the FPGA implementation, the ASIC throughput was estimated by scaling
to ASIC frequency, resulting in near linear scaling. As a result, there is a significant drop
(nearly 4x) in latency for the accelerator, and the performance bottleneck in terms of the

architecture presented in Fig. 3.4 is in the round trip time over the PCle interconnect.
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3.6.2 Error Reduction Due to BayesPerf

To demonstrate the efficacy of BayesPerf in correcting HPC measurement errors, we
employed the 29 workloads from the HiBench suite [112], which span microbenchmarks,
machine learning, SQL, web search, graph analytics, and streaming applications. They
represent real-world application workloads used in a cloud environment. We used the two
machines in our experiment to simulate a cluster. Each of the machines hosted 32 workers,
and the Spark master was deployed on the x86 node. We measured 10 derived events for
each of the microarchitectures, where each derived event corresponded to a group of HPCs to
be measured and aggregated using a mathematical relationship. We do not detail the events
here for lack of space. The metadata corresponding to the events for the x86 configuration
can be found in the Linux kernel source tree [92] for both the x86 and ppc64 configurations.
In both cases, we measured all HPCs corresponding to the first 10 metrics.

Baselines. We use three baselines for comparison. First, we use Linux’s inbuilt correction
mechanism that uses enabled time and total time (recall from §3.4) to correct for measurement
errors. This is the most realistic baseline for users who would use the default configuration
available in Linux. Second, we use a variance reduction technique called CounterMiner |74]
(CM), a state of the art HPC correction technique used in profiling analysis. Note that
CM was originally meant to be used for offline analysis. As we will show in the remainder
of this section, this requirement manifests as low average correction accuracy, with large
variance, when used for online corrections. Third, we use the online technique by Weaver
et. al. [71] (referred to as “WM+Pin”) for correcting instruction counts in x86 processors.
WM-+Pin only corrects the number of instructions executed and was originally meant to
correct core performance metrics like IPC or CPI. Further, it requires intercepting instructions
through Pin [113] to collect opcodes for every dynamic instruction. This causes performance
degradation of up to 198.2x across our benchmarks.

Error Correction. Fig. 3.7 shows the significant improvement in measurement val-
ues compared to the baseline. The average error across all benchmarks dropped from
39.25% and 40.1% for the “Linux (x86)” and “Linux (ppc64),” respectively, to 8.06% (i.e.,
4.87x=3925%/3.06%) and 7.6% (i.e., 5.28x=40-1%/7.6%). Similarly, when “BayesPerf (x86)” and
“BayesPerf (ppc64)” are compared to “CM (x86)” and “CM (ppc64),” the average error dropped
by 3.63x (=2928%/3.06%) and 3.73x (= 28:31%/7,6%), respectively. Similar improvements were
observed in the CM configuration. That corresponds to a nearly 40% improvement in the
quality of the result of the ppc64 configuration. The normalized improvement in average
error for each of the benchmark applications when using BayesPerf, compared to the two

baselines is shown Fig. 3.8. Recall from §3.3, that error in measurement is computed as the
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Figure 3.6: Scaling errors with the number of events sampled.

similarity between two time series sequences of performance counter samples [91]. In the
case of the BayesPerf counters, we used a maximum likelihood estimator to provide the most
likely value of the performance counter at a point in time. We normalize the similarity scores
using an average similarity score between two runs of the application, with the application
running in polling mode. That way, we could correct for any OS-based nondeterminism
in the result. Just like in §3.2, where the magnitude of the error is a comparison between
“polling” mode and “sampling” under Linux and CM (see Fig. 3.7).

Scaling. Fig. 3.6 shows the scaling behavior of the BayesPerf method with increasing
numbers of counters for the “KMeans” workload in the HiBench suite. We observe that
BayesPerf consistently reduced error by as much as 34% as the number of counters scaled up
from 10 to 35 (for Linux). Further, WM+-Pin performs worse than CM as it only corrects
instruction counts. This justifies our choice of using CM as the main baseline for the
evaluation. Interestingly we find that floating point initialization, which is a major source of
errors in |71, doesn’t result in overcounts, indicating that the issue is resolved in modern
CPUs.

Latency Overhead. Since BayesPerf, performs significantly more compute than either
Linux or the CM configurations, it is expected to be a significantly higher latency. Recall
from Fig. 3.3 that the difference in latency between BayesPerf (when implemented in software)
and the Linux correction is nearly 9x. The BayesPerf accelerator is designed to mitigate the
effects of this increased latency. Again, from Fig. 3.3, we see that it successfully does so,
reducing the 9x difference to 2%. This is on par with native HPC reads using rdpmc as well

as kernel-assisted HPC reads.
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Figure 3.9: Topology of test system in §3.6.3 as well as the effect of the resource contention.

3.6.3 Case Study: BayesPerf in Feedback Loop

The core value of the BayesPerf approach in terms of it’s error correction capability has
been demonstrated in the previous section. Here we demonstrate the downstream value of
BayesPerf to applications that use HPCs as inputs to control system resources. Examples
of such applications include online performance hotspot identification (e.g., [21]), userspace
or runtime-level scheduling (e.g., |29, 39, 70, 76, 77]), and power and energy management
(e.g., [78, 79, 80, 81]), as well as attack detectors and system integrity monitors [82]. Further
they often use as many as 45 HPCs in the case of [29, 76, 114].

The Problem. We now look at a situation in which BayesPerf measurements can be
integrated into higher-level decision-making frameworks to perform resource management
decisions. In this part of the experiment, we used HPC measurements to augment an Apache
Spark Executor [115] that needed to run a distributed shuffle operation (which is part of
the HiBench TeraSort benchmark [112]). Fig. 3.9 illustrates the rich dynamic information
that can be extracted from HPC measurements, and how they can be used in higher-level
controllers. Consider the case of a PCle interconnect which is populated with NIC and GPU
devices. Here, the Spark executor uses two GPUs to perform a halo exchange (for training
a deep neural network). Fig. 3.9 shows the performance (in this case, bandwidth) of the
exchange as “isolated” performance. If, at the same time, the application were to perform
a distributed shuffle (across nodes in a cluster) using the NIC, we would observe that the
original GPU-to-GPU communication is affected because of PCle bandwidth contention at
shared links. That phenomenon is shown as “contention” performance in Fig. 3.9, and it can
cause as much as a 0-1.8x slowdown, depending on the size of the PCle transactions. Online

bandwidth and transaction size monitoring (which is enabled by HPCs) can be used by a

36



higher-level software framework to optimally schedule such transfers, so that the performance
impact of shared resource contention is minimized. While the example is simple, it illustrates
how errors in measurements can affect the ML algorithm, and hence the overall system
performance.

We use two ML-based scheduling algorithms broadly based on those presented in [39] and
in our prior work |76]. The first used collaborative filtering as the core ML algorithm, and the
second used deep reinforcement learning. The goal of our ML-based scheduler was to decide
which of the two NICs it would use to perform the shuffle operation, given that the GPUs
were communicating with each other and contending for PCle bandwidth. We simulated the
GPU communication by using Tensorflow to train YoloNet on the ImageNet dataset.

The Models. The goal of this case study was to show the sensitivity of ML models to
errors in their inputs (especially coming from HPCs). The inputs to the models included:
(i) sampled HPC measurements corresponding to the numbers of allocating, full, partial,
and non-snoop writes, (ii) sampled HPC measurements corresponding to demand code reads
and partial/ MMIO reads, (iii) DRAM Channel bandwidth utilization, (iv) memory-bus
bandwidth utilization, and (v) the size of data to be shuffled (in or out), and the NUMA
node on which the data would be resident. Note that all of the above are derived events,
computation of which required us to capture 32 unique HPC events. Out of which, 12 were
collected for each physical core (i.e., used 432 HPCs = 12 events x 18 cores x 2 sockets),
and 20 were off-core events being collected per-socket (i.e., used 40 HPCs = 20 events x 2
sockets).

The first model, used collaborative filtering to impute values of application performance
(in this case throughput) with data coming in from the inputs above, as well as data from
training workloads of the SparkBench suite in HiBench. It is based on the technique presented
in [39]. The second model used a straightforward neural network: a 4-layer, fully connected
ReL.U-activated neural network with 36 neurons in layer 1, 16 neurons in each of layers
2 & 3, and 2 neurons in the last layer. The two neurons in the last layer chose between
the two NICs that were decided between as part of this task. The model was trained with
actor-critic reinforcement learning based on the approach described in [76]. The loss function
used for training the model minimized the total time taken to complete the shuffle. The
model was trained on the HiBench benchmark suite without the TeraSort benchmark, and
then evaluated using the TeraSort benchmark. When BayesPerf was used, the MLE estimate
from the posterior distribution of the HPC was passed into the network. The GPU marked
“Training GPU” was used to perform the collaborative filtering and reinforcement learning as
well as runtime inference on the system. It did not contend for the same PCle resources as
the workloads that was being scheduled GPUs.
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Figure 3.10: Decrease in training time due to BayesPerf.

Implementation Details: Training. Recall from §3.4 that the BayesPerf model in itself
does not require training. However, the two models described above require training. The
model from [76] learns by reinforcement. Hence, it does not have specific training and testing
phases. The net epochs of data used to train the model are shown in Fig. 3.10. For the
model in [39], which has specific training and test datasets, we calibrate against bias by using
threefold cross-validation (i.e., across applications in Fig. 3.7).

Implementation Details: Hyperparameters. The hyperparameters used in the model
are taken directly from [76] and [39]. These parameters include learning rate, LSTM-unroll-
length, and epoch lengths, among others. In addition, we follow the procedure set out in [39]
to determine the optimal value of sparsity. We sweep over the range between 30% and 80%.
All results in this chapter uses the optimal (found from our sweep) value of 75% sparsity.

Results. We compare the results of using the above model with BayesPerf and without,
using two metrics.

Results: Training Time. The collaborative filtering model does not have an explicit
training phase. For the deep learning model, Fig. 3.10 illustrates the difference in training
time when error-corrected measurements are used. In the figure, the loss is normalized
using the time taken to run the same shuffle operation in a completely isolated system.
We observed a nearly 37% reduction in the number of iterations before convergence. Each
training iteration in Fig. 3.10 takes 63s; therefore, the overall saving of 37% corresponds to
~52 hr. The reason for the reduction is apparent: a 40% error in the inputs of the neural
network is slowing down the optimization process. Moreover, we observe that the time to
convergence is effected by (i) the magnitude of error reduction, as seen by the difference
between the Linux—CM (12.5% decrease) and —BayesPerf (37% decrease) configurations; and
(ii) the timeliness of the error reduction, as seen by the difference between the CPU and
accelerated versions of BayesPerf (28.5% decrease).

Results: Decision Quality. We observe that use of the ML-based scheduler (i.e., that
makes Spark PCle aware) leads to a 15.1 + 2.2% and 22.3 + 7.9% improvement in average
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shuffle completion time for the two models respectively. Addition of BayesPerf to the model

results in a further 8.7+ 0.9% and 19 £ 3.4% reduction in average shuffle latency, respectively.

3.7 RELATED WORK

Error Correction in HPCs Measurement errors due to sampling in HPCs have been
observed and reported on for the past decade [69, 70, 71, 72, 73, 74, 75|. Methods for
correction of sampled HPC values can be broadly grouped into two separate approaches.
The first group of methods artificially imputes data in the collected samples by interpolating
between two sampled events using linear or piece-wise linear interpolation (e.g., [92]). The
advantage of such interpolation methods is that they can be run in real time: however, they
might not provide good imputations [70]. The second group of methods correct measurements
by dropping outlier values, instead of by adding new interpolated values. Such methods are
at the other extreme: they cannot be run in real time, as they need the entire trace of an
application before providing corrections. For example, Lv et al. [74]| use the Gumbel test for
outlier detection, and Neill et. al. [116] use fork-join aware agglomorative clustering to remove
outlier points. These methods are not suitable for dynamic control situations that need online
HPC correction. Further, the core statistical technique used by these variance reduction
approaches assume that the underlying distribution of the data remains unchanged, however,
most workload exhibit distinct stages where workload behavior and thus the underlying
distribution of the HPCs will change.

In contrast to those techniques, BayesPerf corrects measurements by using statistical
relationships between events. For well-documented processors, such relationships can be
known ahead of time, and the entire correction algorithm can be executed without any need
to pre-collect data. The BayesPerf system (with its accelerator) allows nearly native latency
access to the corrected HPCs, thereby enabling their use in dynamic control processes.

Using HPCs in Control. Several recent papers have explored the use of HPCs to
perform higher-level resource management problems. Examples include online performance
hotspot identification (e.g., [21]), userspace or runtime-level scheduling (e.g., [20, 29, 39, 70,
76, 77, 117|), power and energy management (e.g., |78, 79, 80, 81]), and attack detectors
and system integrity monitors [82]. Most of the methods mentioned above do not explicitly
use any techniques to correct for errors in HPC measurements. Further, while it is not
impossible that some of the ML techniques can inherently correct for HPC errors, there are

no guarantees that it does so.
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3.8 SUMMARY

It is crucial to have reliable instrumentation/measurement in commercial CPUs, as exem-
plified by the inclusion of the PEBS (precision event-based sampling) and LBR (last branch
record) technologies in modern Intel processors. However, as we showed in this chapter, such
technology alone falls short of correcting errors in the values of HPCs accrued because of
nondeterminism and sampling artifacts. This chapter presented the design and evaluation
of BayesPerf, an ML model and associated accelerator that allows for correction of noisy
HPC measurements, reducing the average error in HPC measurements from 42.11% to 7.8%
when events are being multiplexed. BayesPerf is the first step in realizing a general-purpose
HPC-error-correction system for real x86 and ppc64 systems today and potentially for future
processors. We believe it will form the basis for performing large-scale measurement /char-
acterization studies that use HPC data (i.e., offline analysis), but also enable a slew of
applications that can use the HPC data to make control-decisions in a computer system (i.e.,

online analysis).
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CHAPTER 4: LEARNING SCHEDULING POLICIES FOR
HETEROGENEOUS CLUSTERS

4.1 INTRODUCTION

The problem of scheduling of workloads on heterogeneous processing fabrics (i.e., accelerated
datacenters including GPUs, FPGAs, and ASICs, e.g., [10, 118]), is at its core an intractable
NP-hard problem [119, 120]. System schedulers generally rely on application- and system-
specific heuristics with extensive domain-expert-driven tuning of scheduling policies (e.g., [28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38]). Such heuristics are difficult to generate, as variations
across applications and system configurations mean that significant amounts of time and
money must be spent in painstaking heuristic searches. Recent work has demonstrated
machine learning (ML) techniques [39, 40, 41, 42| for automating heuristic searches by
using black-box approaches which require significant training data and time, making them
challenging to use in practice.

This chapter presents Symphony, a scheduling framework that addresses the challenge in
two ways: (i) we use a domain-guided Bayesian-model-based partially observable Markov
decision process (POMDP) [121, 122] to decrease the amount of training data (i.e., sampled
trajectories); and (ii) a sampling-based technique that allows one to compute the gradients
of a Bayesian model without performing full probabilistic inference. We thus, significantly
reduce the costs of (i) running a large heterogeneous computing system that uses an efficient
scheduling policy; and (ii) training the policy itself.

Reducing Training Data. State-of-the-art methods for choosing an optimal action
in POMDPs rely on training of neural networks (NNs) [123, 124]. As these approaches
are model-free, training of the NN requires large quantities of data and time to compute
meaningful policies. In contrast, we provide an inductive bias for the reinforcement learning
(RL) agent by encoding domain knowledge as a Bayesian model that can infer the latent state
from observations, while at the same time leveraging the scalability of deep learning methods
through end-to-end gradient descent. In the case of scheduling, our inductive bias is a set of
statistical relationships between measurements from microarchitectural monitors [125]. To the
best of our knowledge, this is the first work to exploit those relationships and measurements
to infer resource utilization in the system (i.e., latent state) to build RL-based scheduling
polices.

Reducing Training Time. The addition of the inductive bias, while making the training
process less data-hungry (i.e., requiring fewer workload executions to train the model), comes

at the cost of additional training time: the cost of performing full-Bayesian inference at every
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Figure 4.1: Performance degradation due to PCle contention between GPU and NIC
(averaged over 10 runs).

training step [126, 127, 128]. It is this cost that makes the use of deep RL techniques in
dynamic real-world deployments (which require periodic retraining) prohibitively expensive.
To address that issue, we have developed a procedure for computing the gradient of variables
in the above Bayesian model without requiring full inference computation, unlike prior
work [127, 128]. The key is to calculate the gradient by generating samples from the model,
which is computationally simpler than inferring the posterior distribution.

Need for New Scheduler. Current schedulers prioritize the use of simple generalized
heuristics and coarse-grained resource bucketing (e.g., core counts, free memory) to make
scheduling decisions. Hence, even though they are perceived to perform well in practice, they
do not model complex emergent heterogeneous compute platforms and hence leave a lot to be
desired. Consider the case of a distributed data processing framework that uses two GPUs to
perform a halo exchange.! Fig. 4.1 shows the performance (here, bandwidth) of the exchange
as “isolated” performance. If the application were to concurrently perform distributed network
communication, we would observe that the original GPU-to-GPU communication is affected
because of PCle bandwidth contention at shared links (i.e., a “hidden” resource that is not
often exposed to the user). Such behavior is shown as “contention” in Fig. 4.1, and can
cause as much as a 0 — 1.8x slowdown, depending on the size of the transmitted messages.
Traditional approaches would either have such a heuristic manually searched and incorporated
into a scheduling policy, or would expect it to be found automatically as part of the training of
a black-box ML model, and both approaches can require significant effort in profiling/training.
In contrast, our approach allows the utilization of architectural resources (in this case, of the

PCle network) as an inductive bias for the RL-agent, thereby allowing the training process to

LA halo exchange occurs due to communication arsing between parallel processors computing an overlap-
ping pieces of data, called halo regions, that need to be periodically updated.
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automatically hone in on such resources of interest, without having to identify the resource’s
importance manually.

Results. The Symphony framework reduces the average job completion time over hand-
tuned scheduling heuristics by as much as 32%, and to within 6% of the time taken by an
oracle scheduler. It also achieves a training time improvement of 4x compared to full Bayesian
inference based on belief propagation. Further, the technique outperforms black-box ML
techniques by 2.2x in terms of training time. We believe that Symphony is also representative
of RL applied to several other control-related problems (e.g., industrial scheduling, data
center network scheduling) where data-driven approaches can be augmented with domain

knowledge to build sample-efficient RL-agents.

4.2 BACKGROUND

4.2.1 Partially Observable Markov Decision Processes.

A POMDP is a stochastic model that describe relationships between an agent and its
environment. It is a tuple (S, A, T,Q,0, R,v), where S is the state space, A is the action
space, and 2 is the observation space. We use s; € S to denote the hidden state at
time t. When an action a; € A is executed, the state changes according to the transition
distribution, s;y1 ~ T (sir1]st,a¢). Subsequently, the agent receives a noisy or partially
occluded observation o1 € € according to the distribution 0,41 ~ O(0441|8141,a;), and a
reward r;41 € R according to the distribution 711 ~ R(ri1|Si41, at).

An agent acts according to its policy m(a|s;), which returns the probability of taking
action a; at time t. The agent’s goal is to learn a policy 7 that maximizes the expected
future reward J = E.p7) [Zthl vt =1r,] over trajectories T = (so, ag, - .., ar_1, s7) induced by
its policy, where 7y € [0,1) is the discount factor. In general, a POMDP agent must infer
the belief state b, = Pr(s;|o1, ..., 04, a0,...,a;-1), which is used to calculate 7(a;|$;) where

$; ~ b;. In the remainder of the chapter, we will use 7(a;|$;) and 7(a;|b;) interchangeably.

4.2.2 Related Work.

Finding solutions for many POMDPs involves (i) estimating the transition model 7" and
observation model O, (ii) performing inference under this model, and (iii) choosing an action
based on the inferred belief state. Prior work in this area has extensively explored the
use of NNs, particularly recurrent NNs (RNNs), as universal function approximators for (i)

and (iii) above because they can be easily trained and have efficient inference procedures
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(e.g., [129, 130, 131, 132, 133, 134, 135]). Neural networks have proven to be extremely
effective at learning, but usually require a lot of data (for RL-agents, sampled trajectories,
which may be prohibitively expensive to acquire for certain classes of applications, such as
scheduling). The ability to incorporate explicit domain knowledge (which in the case of
scheduling, is based on system design invariants) could significantly reduce the amount of data
required. To that end, other work [1, 134, 136 has advocated the integration of probabilistic
models (including Bayesian filter models) for (i) above. The significant computational
cost of learning and inference in such deep probabilistic models has spurred the use of
approximation techniques for training and inference, including NN-based approximations of
Bayesian inference [134, 135] and variational inference methods [136].

In this chapter, we too advocate the use of a domain-driven probabilistic model for b,
that can be trained through end-to-end back-propagation to compute a policy. Specifically,
the technique handles the gradient descent procedure on a Bayesian network (BN) with
known structure and incomplete observations without performing inference on the BN, only
requiring generation of samples from the model. That approach is different from to prior
work on learning BNs using gradient descent [127, 128] or expectation maximization, both of

which require full posterior inference at every training step.

4.2.3 Actor-Critic Methods.

Actor-Critic methods [137]| have previously been proposed for learning the parameters p of
an agent’s policy m,(a;|s;). Here (i) the “Critic” estimates the value function V'(s), and (ii) the
“Actor” updates the policy 7(als) in the direction suggested by the Critic. In this chapter, we
use n-step learning with the asynchronous advantage actor-critic (A3C) method [123|. For n-
step learning, starting at time ¢, the current policy performs n, consecutive steps in n. parallel
environments. The gradient updates of 7 and V' are based on that mini-batch of size n.n;.
The target for the value function V, (s¢44), @ € [0, ns), parameterized by 7, is the discounted
sum of on-policy rewards up until ¢ + n, and the off-policy bootstrapped value K]*(stms).
If we use an advantage function A%’ = (E;ﬁgi*l Vriyivg) + 77V (Sten.) — Va(si41), the

value function is

Ne—1ng—1

1

Lip) = - D0 Bainillogmo(anlsii) A (sivi, args)] (4.1a)
€8 e=0 =0
1 Nne—1ns—1
EX(U) = n.n E3t+ith+i [Af]ﬂ(sﬂria at+i)2} : (4'1b>
€7 e=0 i=0
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Figure 4.2: The proposed RL architecture for integrating Bayesian and deep learning
models.

4.3 TRAINING THE POMDP RL-AGENT WITH BACK-PROPAGATION

We consider a special case of the POMDP formulation presented above (illustrated in
Fig. 4.2). We assume that the domain knowledge about the environment of the RL-agent is
presented as a joint probability distribution Pr(s;, a;_1,0;; ©pn) that can be factorized as a
BN (with parameters ©py). A BN is a probabilistic graphical model that represents a set
of variables and their conditional dependencies via a directed acyclic graph (DAG). We use
probabilistic inference on the BN to calculate an estimate of the belief state Bt. l;t is then used
in an NN f,,(lA)t; ©,) (with parameters ©,) to approximate the RL-agent’s policy, and an NN
fv(bi; ©) (with parameters ©y) to approximate the state-based value function. We refer to
all the parameters of the model as ® = (OpN, O, Oy) = (p,n). The model is then trained by
propagating the gradient of the total loss Ve L'l = Ve L' (p) + Ve L} (n). Estimating this
gradient requires us to compute V@BNBt. Traditional methods for computing the gradient
require inference computation [127, 128]. However, even approximate inference in such
models is known to be NP-Hard [126]. Below we describe an algorithm for approximating
the gradient without requiring computation of full Bayesian inference. All that is required
is the ability to generate samples from the BN. Only the subset of the BN necessary for
generation of the samples is expanded. The samples are then used as a representation of the
distribution of the BN. As a result, the proposed method decouples the training of the BN

from the inference procedure used on it to calculate by.

4.3.1 The Bayesian Network & Its Gradient
Let the BN described above be a DAG (V) E), and let X = {X,|v € V} be a set of

random variables indexed by V. Associated with each node X is a conditional probability
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density function Pr(X|p(X)), where p(X) are the parents of X in the graph. We assume
that we are given (i) an efficient algorithm for sampling values of X given p(X), and (ii) a
function fx(z,y;0x) = Pre, (X = z|p(X) = y) whose partial derivative with respect to
fx is known and efficiently computable. The BN can also have deterministic relationships
between two random variables, under the assumption that the relationship is a differentiable
diffeomorphism. That is, for random variables X, Y, and diffeomorphism F, Pr(Y = y) =
Pr(X = F~'(y))|DF~(y)| where DF~! is the inverse of the Jacobian of F.

Computing Gradient. For a random variable X in the BN, we define its parents as
©(X), its ancestor set as Z(X) = {Y|Y ~» X A Y & p(X)} (where ~ represents a directed
path in the BN). We now define a procedure to approximately compute the gradient of X with
respect to ©gn. We do so in two parts: (i) 9Pr(X=zl¢=a)/goy and (ii) Ve, y\0x Pr(X = z|€ = a)
for £ C Z(X). First,

OPr(X =z[(=a) 0
89)( B an

0
/Pr(p(X) =yl|¢ =a)fx(z,y; 0x)dy

~ 90x
;0
- / Pr{p(X) = yle = a) Y0 4y

ng(a yz ) Ofx(x,yi; 0x)
~ Z s . (4.2)

/ Pr(p(X) = y|¢ = a) x Pr(X = 2]p(X) = y.£ = a)dy

=1

Here, S samples are drawn from a variable(s) Z such that ng(j) is the number of times the

value j appears in the set of samples {2}, i.e., ng(j) = S5, 1{z = j}. Next,

Vesox Pr(X = 2|8 = a) = Vo, 0y /Pr(@(X) =yl€ = a) x Pr(X = z[p(X) = y,{ = a)dy

= /fX(iU,Y; Ox)Veynox Pr(p(X) = y|§ = a)dy

Nsly:
~Z SO b0y 0x) Vopmos Prp(X) = yile =a)  (43)

When |p(X)| > 1, variables in p(X) might not be conditionally independent given Z(X).
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Hence we find a set of nodes N such that I L J|Z(X)UN VI, J € p(X). Then,

Pr(p(X) = yilé = a) = / Pr(N = nf¢ = a)Pr(p(X) = y|N = n,¢ = a)dn

S m
ngla, Ilk)
v@BN\@X Pr(p(X) = y$|€ = a) ~ Z I"(ST X v@BN\HX HPI‘(P] = yi7j|N = nkaf = a)
k=1 j=1
s
_ Z ng(a, nk:) %
= ns(a)
Z ( H Pr(P, = yin|N = ny, § = a)) X
I=1 \h=1,h#l

VGBN\GX Pl”(Pz = yi,l|N =n;,§ = a)

NZ ﬂS(a) Z( H ﬂs(a,nk) )

k=1 I=1 \h=1,h#l
Expand by recursion using (4.2), (4.3) and (4.5)
Vopnox Pr(P =y [N =ng,§ = a). (4.5)

The term Ve, o5 Pr(P = yi1|N = ny, & = a) represents the gradient operator on a subset
of the original BN, containing only the ancestors (from the BN’s graphical structure) of X.
Hence that gradient term can be recursively expanded using (4.2), (4.3) and (4.5). Repeating
that process for all variables in b, allows us to calculate the Ve 5 NIA)t.

Computational Complexity. The cost of computing (4.2) and (4.3) is O(S). The
cost of computing (4.5) is O(mS). The cost of finding N is O(|p(s:)|*(|[V| + |E|)) (i.e., the
cost of running the Bayes ball algorithm [138] for every pair of nodes in p(X)). The total
computational complexity of the entire procedure hinges on finding the number of times
(4.2), (4.4) and (4.5) are executed, which we refer to as Q). @ depends on the size of N
and on the graphical structure of the BN. Hence, the total cost of computing V@BNl;t is
OQ(lp(s)P(IV] + | E|) + mS)) (where |p(s;)| < |V]| — 1), which is computed nsn,|b;| times
during training. Note that for a polytree BN (the graphical structure of the BN we will use
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in §4.4), N = @, and @ < |V/|. This is still better than belief propagation on the polytree
with the gradient computation technique from [127, 128|, which is O(|V| max,cy (dom(X,))),

where dom(X) is the size of the domain of X, which could be exponentially large.

4.4 SCHEDULING DATA CENTER WORKLOADS BY USING REINFORCEMENT
LEARNING

We now demonstrate an application of the POMDP model and training methodology
presented in §4.3 to the problem of scheduling tasks on a heterogeneous processing fabric
that includes CPUs, GPUs, and FPGAs. The model integrates real-time performance
measurements, prior knowledge about workloads, and system architecture to (i) dynamically
infer system state (i.e., resource utilization), and (ii) automatically schedule tasks on a

heterogeneous processing fabric.

4.4.1 Workload & Programming Model.

The system workload consists of multiple user programs, and each program is expressed
as a data flow graph (DFG). A DFG is a DAG where the nodes represent computations
(which we refer to as kernels, e.g., matrix multiplication), and edges represent input-output
relationships between the nodes. Prior work has shown that a large number of applications
can be expressed as compositions of such kernels [139, 140|. Prominent examples of such
compositions include modern data analytics and ML frameworks that describe workloads as
DFGs [141, 142, 143, 144]. We assume that the kernels are known ahead of time and have
multiple implementations available for different processors and accelerators. That assumption
is correct for many ML workloads; for other workloads, it is an area of active research wherein
accelerator designers and architects are trying to decompose larger applications into smaller
pieces. Once trained, our approach can schedule any composition (DFG) of the kernels, but

requires retraining when the set of available kernels change.

4.4.2 POMDP Architecture.

The overall architecture of the Symphony POMDP model is illustrated in Fig. 4.3. The

framework functions as follows.

1. The scheduler first makes measurements by using the available processor performance

counters (e.g., instructions retired, cache misses).
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Figure 4.3: Architecture of the Symphony ML model.

2. When a processor becomes idle (finishes running the current kernel), it invokes the

scheduler.

3. The measurements are fed into the scheduler’s POMDP model as input. Using those
measurements, the BN model computes the utilization of different levels of architectural
resources in the system (e.g., memory bandwidth utilization, PCle link utilization). We

refer to those utilizations as the state of the system.

4. The computed utilization numbers, user programs represented as a DFG, and a system
topology graph are fed into an NN. The NN produces a scheduling decision that is

actuated in the system. The action space consists of a kernel-processor pair.

5. Finally, the scheduler gets feedback from the system (i.e., the reward) in terms of the

time it took for the job to run as a result of its scheduling decision.

6. While in training mode, if an incorrect decision is made, Symphony enqueues an
update of the policy parameters using back-propagation on the A2C/A3C loss func-
tion. An incorrect decision is one where kernel input-output dependencies are not
respected, or a kernel-accelerator pair is picked where the accelerator does not provide

an implementation of the kernel.

The first part of the POMDP models the latent state b, of the computer system. For
the scheduling problem, b, corresponds to resource utilization of various components of the
computer system. Utilization of some of the resources can be measured directly in software

(e.g., the amount of free memory); however, the different layers of abstraction of the computer

49



[ Memory

-Memory Interconnect
Il System Interconnect
[J Interconnect Elements

[ Processing Fabric

(PCle Root Complex)

(PCle Switch)
—

O | (Accelerator memory
omitted)

Figure 4.4: Organization of a multi-CPU computer.

stack hide some others from direct measurement. For example, consider the example in
Fig. 4.1 in §4.1; here, PCle link (see Fig. 4.4 for PCle network organization) bandwidth
cannot be directly measured. However, it can be measured indirectly by using the number
of outstanding requests to memory from each PCle device and by using the topology of
the PClIe network. In essence, we statistically relate the back pressure of one resource on
another, until we can find a resource that can be directly measured via real-time performance
counter (PC) measurements (o0;) [125]. We refer to such resources whose utilization cannot be
directly measured as hidden resources. PCs are special-purpose registers present in the CPU
and other accelerators for characterization of an application’s behavior and identification of
microarchitectural performance bottlenecks. Specifically, we use a BN to (i) model aleatoric
uncertainty in measurements, and (ii) encode our knowledge about system architecture in
terms of invariants or statistical relationships between the measurements. Inference on that
BN then gives us an accurate estimate of the latent state of the system. Second, we use
an RNN (i.e., fz(:) and fy(-)) to learn scheduling policies for user programs that minimize
resource contention and maximize performance. Those two ML models effectively decouple
system-architecture-specific and measurement-specific aspects of scheduling (the BN) from
its optimization aspects (the NN). The compelling value of the above architecture (and its
two constituent models) is that it can automatically generate scheduling policies for the
deployment of DFGs in truly heterogeneous environments (that have CPUs, GPUs, and
FPGAs) without requiring configuration specifics, or painstakingly tuned heuristics. The
model improves overall performance and resource utilization, and enables fine-grained resource
sharing across workloads.

Performance Counters. PCs are generally relied upon to conduct low-level performance

analysis or tuning of performance bottlenecks in applications. As the source of such bottlenecks
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is generally the unavailability of system resources, the performance counter can naturally be
used to estimate resource utilization of a system. Another benefit of using PCs is that it is
not necessary to modify an application’s source code in order to make measurements. PCs
can be grouped into three categories: (i) those pertaining to the processing fabric (CPU core
or accelerators); (ii) those pertaining to the memory subsystem; and (iii) those pertaining to
the system interconnect (in our case, PCle). Figs. 4.4 and 4.5 illustrates the organization of
a computer system as well as the categories above. Fig. 4.6 shows a mapping between the
system organization and the PCs that are used in the BN model (described below).?

Performance counters’ configuration and access instructions require kernel mode privi-
leges, and hence those operations are supported by Linux: system calls to configure and
read the performance counter data. Symphony uses a combination of user-space tools, e.g.,
libPAPI [145], PMUTools [146], and perf that wrap around the system call interface to make
both system-specific and system-independent measurements. We configure the performance
counters to make system-wide measurements (i.e., for all processes). All kernel (i.e., computa-
tion) executions are non-preemptive in the context of the proposed runtime, however the OS
scheduler can preempt CPU threads. Further we prevent the OS scheduler from re-balance
tasks/threads once assigned to a particular CPU, so as to ensure re-balancing actions happen
only through the runtime. This is achieved by explicitly setting affinities of threads to cores
(i.e., pinning them).

Monitoring of performance counters without having to perform interrupts is almost free.
In our implementation, we capture on-core performance counters directly before and after
a single kernel invocation. Un-core performance counters are measured periodically (every
million dynamic instructions on a core) by using a performance monitoring interrupt. On an
IBM PowerPC processor, the interrupt handler initiates a DMA transfer of the performance
counters to memory [147], thereby incurring no performance penalty (other than the time to
service the interrupt). On Intel processors, the interrupt handler has to explicitly read the
performance counter registers and write them to memory. In our tests (on Intel processors),
we observed a ~3% performance penalty for applications with interrupts enabled. That
corresponds to an execution of a usermode interrupt with an average 900-ns latency.

Topology Information. Consider the example of standard NUMA based computing
system with PCle based accelerators shown in Figs. 4.4 and 4.5. The system contains
(i) multiple CPUs which have non-uniform access to memory, (ii) several accelerators (including
GPUs and FPGAs) each with their own memory, and (iii) a system interconnect which

connects all of the components of the system together. Symphony encodes the system topology

2A complete list of the PCs used in this chapter can be found in the supplementary material.
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as a graph T'= (P, N) (also shown in Fig. 4.5). The nodes of the graph P correspond to
the processing elements (and attached memory) and memory/system interconnects. Each of
the these nodes p € P have an attached resource utilization vector. For example, in an Intel
processor, the utilization vector would include utilization like that of micro-op issue ports,
floating point unit utilization etc. [89, 148|.

The scheduler queries the system topology and builds the topology graph T' (which is used
as an input to the RL agent) using hwloc [149]. hwloc provides information about CPU
cores, caches;, NUMA memory nodes, and the PCle interconnect layout (i.e., connections
between the PCle root complex and PCle switches), as well as connection information
on peripheral accelerators, storage, and network devices in the system. The scheduler
does not explicitly model the rack-scale or data center network (unlike some previous
approaches, e.g., [28, 150]), but the BN and RL model can be extended to do so. Our
measurements considers injection bandwidth at the network interface card (NIC) to be a
proxy for network performance, i.e., the NIC is modeled as an accelerator that accepts data
at min(PCle Bandwidth, Injection Bandwidth).

BN Model (see Fig. 4.6). Measurements made from PCs have some inherent noise [71].
The measurements can only be stored in a fixed number of registers. Hence, only a fixed
number of measurements can be made at any one point in time. As a result, one must
make successive measurements that capture marginally different system states. Particular
performance counters might become unavailable (or return incorrect values). Finally, if a

single scheduling agent is controlling a cluster of machines (which is common in data centers),

52



CPU Interconnect

Utilization Utilization Direct Attached

A DMA Utilization
Al #Sockets|

Switched
DMA Utilizatior] D
2l S Processing Fabric
O+—0 e

PCS Utilizatio

Core #Cores

Utilizayv
O/#Threads PER

pops issued Utilization
Backend Memory

Utilization — | Interconnect

T B L|Memory BW
EP Arithmeti Dividef Utilization D
fIthmetic DRAM Lat.
Utilization < Cache System

Interconnect

Utilization
FP Scalar P .
DRAM BW
Inst. Retired Q, o ‘e
FP Vector Po_r . Outstanding
Inst. Retired [ Util. e Requests

Figure 4.6: Bayesian network (uses the plate notation) used to estimate resource utilization.

measurements made on different machines will not be in sync and will often be delayed by
network latency. As a result, PCs are often sampled N times between successive scheduler
invocations to get around some of the sources of error. To maximize the performance
estimation fidelity, we apply statistical methods to systematically model the variance of
the measurements. For a single performance counter o;[c|, if the error in measurement e,
can be modeled, then the measured value m. can be modeled in terms of the true value
v, plus measurement noise e, i.e., m, = v, + e.. Here, we focus only on random errors,
and assume zero systematic error. That is a valid assumption because the only reason for
systematic errors is hardware or software bugs. We assume that the error can be modeled
as e, ~ N (0,0) for some unknown variance o; hence, Pr(m, | v.) = N (m,, o). That follows
from prior work based on extensive measurement studies [71]. Now, given N measurements of
the value of the performance counter, we compute their sample mean p and sample variance
S. A scaled and shifted t-distribution describes the marginal distribution of the unknown
mean of a Gaussian, when the dependence on variance has been marginalized out [100];
ie., v, ~ pu+ 5/vN Student(v = N — 1). In our experiments, the confidence level of the
t-distribution was 95%.

Now, given a distribution of v, for every element of o;, we describe the construction of the
BN model. Our goal is to model resource utilization (a number in [0, 1]) for a relevant set of
architectural resources R. To do so, we use algebraic models for composing PC measurements
(ve) by using algebraic (deterministic) relationships derived from information about the CPU
architecture. Processor performance manuals [86, 87, 97| and or vendor contributions in OS

codebases (e.g., in the perf module in Linux) provide such information. When available in
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the later format (which is indeed the case for all modern Intel, AMD, ARM, and IBM CPUs),
these relationships can be automatically parsed and be used to construct the BN.

As our error-corrected measurements are defined in terms of distributions, the algebraic
models that encode static information about relationships (based on the microarchitecture of
the processor or topology of the system) now define statistical relationships v.s (based on
the Jacobian relationships described in §4.3). Fig. 4.6 shows an example of the BN model.
However, the types and meanings of hardware counters vary from one kind of architecture to
another because of the variation in hardware organizations. As a result, the model defined by
the BN is parametric, changing with different processors and system topologies (i.e., across
all the different types of systems in a data center).

Consider the example of identifying memory bandwidth utilization for a CPU core. Ac-
cording to the processor documentation, the utilization can be computed by measuring the

number of outstanding memory requests (which is available as a PC), i.e.,

Outstanding Requests[> 05| 4

4.
Outstanding Requests[> 1] (4.6)

That is, identify the fraction of cycles in some time window that CPU-core stalls because of
insufficient bandwidth. Naturally, in order to sustain maximum performance, it is necessary
to ensure that no stalls occur. The value 6, is processor-specific and might not always
be known. In such cases, we use the training approach described in §4.3 to learn 6,,p.
The procedure is repeated for all relevant system utilization counters (marked as “Util.” in
Fig. 4.6), which together represent b;. Such a BN model for a 16-core Intel Xeon processor
(with all PClIe lanes populated) has 68 nodes, of which 32 are directly measured and the
remainder are computed through inference.

BN Retraining. The architectural information required to build the BN can be found
in processor manuals [86, 87, 147| as well as in machine-parsable databases in the Linux
kernel source code as part of the perf package. The only human intervention required in the
process of building the BN is for filtering out those resources that cannot be controlled with
software (because they change too quickly). The BN model should only be rebuilt when the
underlying hardware configuration changes, which [32] observe happens every 5-6 years in a
data center.

Implementation Details. We collect system-wide (for all processes) performance counter
measurements for a variety of hardware events (described in Table 4.1). The system wide

collection leads to occasional spurious measurements (e.g., from interrupt handlers), however,

3Here X[> t] counts cycles in which X exceeds threshold t.
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Table 4.1: Performance counters used in test evaluation. We have disambiguated the names
to ensure platform independence.

Performance Counters/Events

On-core Events
Core Clock Cycles, Reference Clock Cycles, Temperature, Instructions (pops for
Intel) issued, Instructions (pops for Intel) retired, Un-utilized slots due to
miss-speculation
Un-core & Memory Controller Events (per socket)
#Read/Write requests to DRAM (from all channels), #Local DRAM accesses, #Remote
DRAM Accesses, #Read/Write requests to DRAM (from all channels) from I0 sources,
#PCIe Read, #PCIe Write, QPI(for Intel)/Nest(for IBM) Transactions
OS/Driver Events
Free memory (CPU, GPU, FPGA), Total memory (CPU, GPU, FPGA)

this allows us to make holistic measurements (e.g., capture system calls or drivers that perform
memory and DMA operations). We make the minimum measurements to infer if a kernel
scheduled to a CPU-hardware thread is core-bound (floating point- and integer-intensive).
This allows us to make scheduling decisions on co-located kernels, i.e., those that get scheduled
to SMT /hyperthreads bound to a core. The majority of measurements are made at the level
of un-core events that captures performance of the memory interconnect and the system
bus: to identify kernels that are bandwidth bottle necked. We do not explicitly model GPU
performance counters as low-level scheduling decisions (e.g., warp-level scheduling) in GPUs
are obfuscated by the NVIDIA runtime/driver.

NN Model. The second part of the POMDP-based scheduling model uses an NN (see
Fig. 4.3) to learn the optimal policy with which to schedule user tasks given a belief state.
The NN takes two graphs as inputs. The first input is the belief state l;t, encoded as vertex
labels on a graph that describes the topology of a computer system (i.e., the organization
shown in Fig. 4.4), and input labels that correspond to the locations of inputs in the topology.
The color coding in Figs. 4.4 and 4.6 shows a mapping (i.e., vertex labels) between nodes in
the topology graph and b;. The second input is the user’s program expressed as a DFG. We
use graph network (GN) layers [68] to “embed” the graphs into a set of embedding vectors.
GNs have been shown to capture node, edge, and locality information. We chose small, fully
connected NNs for modeling the functional transformations in the GN layers. Prior work in
scheduling (e.g., [151, 152]) has shown the benefit of considering temporal information to
capture the dependencies of system resources over time as well as the time evolution of the
user DFG. We capture those relationships (between the embeddings of the input graphs) by
using an RNN; specifically an LSTM layer [153].
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Figure 4.7: Structure of the graph networks used in Fig. 4.3.

Table 4.2: Mapping of the graph network layer functions in Fig. 4.7. We use the nota-
tion FCNN/(a,b) to denote a 2-hidden fully-connected layers with a and b hidden units,
respectively.

Function in GN Function in 1 Function in 2

¢¢ FCNN(64,32) FCNN(64,32)
¢* FCNN(32,16) -
¢* FCNN(16,16) FCNN(32,16)
pe—w Ze _
pv—m ZU _
P - ReLU(e)

The action space A of the model is fixed as the number of kernels/processors available in
the system and is known ahead of time. The action space consists of the following types of
actions. (i) Ezecution actions correspond to execution of a kernel on a processor/accelerator.
(ii) Reconfiguration actions correspond to reconfiguration of a single FPGA context to a
kernel. (iii) No-Op actions correspond to not scheduling any task in a particular scheduler
invocation. No-Ops are useful when the system resources are maximally subscribed, and
execution of more tasks will hinder performance. The scheduler is invoked every time there
is an idle processor/accelerator in the system (i.e., every time a processor finishes the work
assigned to it), causing the system to take one of the above actions.

The structure of the graph network used in the proposed model is illustrated in Fig. 4.7.
The numbers of parameters used in the different layers of the graph network are listed in
Table 4.2.

Reward Function. The reward r; is based on the objective of minimizing the runtime of
a user DFG. At time ¢, r, = — Zfzo 1/1;,, where T; is the wall clock time taken to execute

the 7 actions executing in the system at time ¢. We picked r; as it represents the “makespan”
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of the schedule, a metric that is popularly used in the traditional scheduling literature and
accurately represents the user-facing performance of the system. Note that parallel actions
are not double-counted in this formulation. The BN and NN models are trained end-to-end

using minimization of (4.1) through back-propagation, as described in §4.3.

4.5 APPLICATION SPECIFIC FEATURES FOR SCHEDULING POLICIES

Current schedulers prioritize the use of simple online heuristics [151] and coarse-grained
resource bucketing (e.g., core counts, free memory) and require user labeling of commonly used
system resources [154, 155] to make scheduling decisions. Those approaches are untenable in
truly heterogeneous settings as (i) defining such heuristics is difficult over the combinatorial
space of application-processor/accelerator configurations; and (ii) user-based resource usage
labeling requires in-depth understanding of the underlying system. This section demonstrates
the use of ML to automatically infer such heuristics and their evolution over time as new

user workloads and/or new accelerators are added.

4.5.1 Dealing with Architectural Heterogeneity

We reiterate that state-of-the-art schedulers do not model the emergent heterogeneous
compute platforms that are being widely adopted in data centers and hence leave a lot to be
desired (as can also be seen in the performance of our baselines). Consider, for example, the
execution of the forward algorithm on PairHMM models [12], a computation that is commonly

performed in computational genomics workloads. Fig. 4.8 shows the significant diversity
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Figure 4.9: Degradation in runtime of co-located kernels due to shared resource contention.

(nearly 100x) in performance of this single workload across CPUs (from Intel and IBM),
GPUs (two models of GPUs from NVIDIA) and FPGA implementations. The increasing
heterogeneity necessitates rethinking of the design and implementation of future schedulers,
as the current approach will require an extraordinary amount of manual tuning and expertise
to adapt to the emergent systems. In contrast, the proposed technique eliminates that work
and automates the whole process of learning the right granularity of resources and scheduling
workloads in cloud-based, dynamic, multi-tenant environments, thereby improving application
performance and system utilization, all with minimal human supervision. Prior work uses
microarchitectural throughput metrics such as clock cycles per instruction |29, 31, 32, 39, 40|
as proxies for processor affinities. In our case, such metrics are not usable because of the
wide diversity in processors, i.e., CPU-centric units cannot describe the performance of
GPUs/FPGAs.

4.5.2 Dealing with Low-level Resource Contention

Traditional schedulers use coarse-grained resource bucketing, i.e., they schedule macro-
resources like CPU core counts and GBs of memory. That simplifies the design of the
scheduling algorithms (both the optimization algorithms and attached heuristics), resulting in
an inability to measure low-level sources of resource contention in the system. The contention

of such low-level resources is often the cause for performance degradation and variability.
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Table 4.3: Hardware specifications of test cluster.

Type +# Specifications

M1 2 CPU IBM Power8 (SMT 8); 870 GB RAM; GPU NVIDIA K80;
FPGA Alpha Data 7V3

M2 4 CPU IBM Power8 (SMT 4); 512 GB RAM; GPU NVIDIA KA40;
FPGA Nallatech 385

N 1 Mellanox FDR Infiniband

Consider, for example, the concurrent execution of several compute kernels on co-located
hyper-threads (i.e., threads that share resources on a single core) on an Intel CPU. If we
abstract the problem at the level of CPU threads and memory allocated, then those kernels
should execute in isolation. The normalized runtime variation is illustrated in Fig. 4.9. We
observe a slowdown of as much as 40% (i.e., the co-located runtime is 60% of the isolated
runtime) for some combinations of kernels, and almost no slowdown for others. That problem
is further exacerbated by the architectural diversity in processors that we described earlier.
The proposed technique accounts for such contention by explicitly collecting information
on low-level system state by using performance counter measurements, and by estimating

resource usage in the system by explicitly encoding the measurements in its POMDP model.

4.6 EVALUATION & DISCUSSION

We evaluated the Symphony along the following dimensions. (i) How well does Symphony
perform compared to the state of the art? (ii) How does the Symphony’s runtime affect
scheduling decisions? (iii) What are the savings in training time compared to traditional
methods? The evaluation testbed consisted of a rack-scale cluster of twelve IBM Power8
CPUs, two NVIDIA K40, six K80 GPUs, and two FPGAs (listed in Table 4.3). We illustrated
the generality of techniques on a variety of real-world workloads that used CPUs, GPUs, and
FPGAs: (i) variant calling and genotyping analysis [156] on human genome datasets using
tools presented in [12, 13, 140, 157, 158, 159, 160, 161, 162, 163, 164]|; (ii) epilepsy detection
and localization [165] on intra-cranial electroencephalography data; and (iii) in online security
analytics |166] for intrusion detection systems. Table 4.4 lists the exact implementations of
these workloads.

State of the Art. Traditional dynamic scheduling techniques (e.g., [28, 29, 30, 33, 37, 38])
use manually tuned heuristics (e.g., fairness, shortest-job-first) that prioritize simplicity and

generality over achieving the best-case workload performance, often allocating coarse-grained
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Table 4.4: Enumeration of workloads used to evaluate Symphony.

Application Processors Implementations

CPU GPU FPGA
Alignment (Align) v v v [13, 140, 157, 158, 159, 164,
Indel Realignment (IR) v/ X X [160, 161]
Variant Calling (HC) v v v [12, 160, 162, 163, 167|
EEG-Graph (EEG) v v v [165, 168]
AttackTagger (AT) v v v [166, 168]

resources (e.g., GBs of memory, CPU threads) and making simplifying assumptions about
the underlying workload. Several ML-based scheduling strategies have also been proposed,
wherein the above heuristics are learned from data. They use a variety of black-box ML models,
e.g., model-free deep RL in [41, 42|, collaborative filtering [39, 40|, and other traditional ML
techniques like SVMs (e.g., [31, 32, 35, 36]). A common theme in these techniques is that
of treating the system as a black-box and performing scheduling to optimize application
throughput metrics. The above approaches are not well-suited to heterogeneous, accelerator-
rich systems in which architectural diversity necessitates the use of low-level resources, which
cannot be measured directly and are not semantically comparable across processors. As
points of comparison to Symphony, we used Graphene [151], a heuristic-accelerated job shop
optimization solver?; Sparrow [33], a randomized scheduler; and Paragon [39], a collaborative
filtering-based scheduler.

Baseline for Comparison. We defined the oracle schedule to correspond to the best
performance possible for running an application on the evaluation system. It corresponds to a
completely isolated execution of an application. Here, different concurrently executing kernels
of the same application contend for resources and might cause performance degradation. For
the benchmark applications, we accounted for that by exhaustively executing schedules of

the application DFGs to find the one with the lowest runtime (i.e., the oracle run). We
oracle
i.j

and workloads. t%-ade serves as the baseline for assessing the performance of Symphony.

measured the runtime of kernel 7 in workload (in the oracle run) j as t across all kernels

Effectiveness of Scheduling Model. First, we quantified how well Symphony can
handle scheduling of kernels in a DFG taking into account of resource contention and
interference at (i) intra-DFG level; and (ii) when executing with an unknown co-located
workload utilizing compute and 1/0O resources. To do so, we measured the runtimes of each

of the kernels 7 in the workload j (as above) to compute #;; for each scheduler s under test.

4Graphene was not originally designed to execute on heterogeneous systems. In the supplementary
material, we explain modifications we made to the algorithm.
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Figure 4.11: Percentage of application executions that show a degradation in performance.

In Fig. 4.10, we illustrate the distribution of oracle-normalized runtimes for each of the
kernels in the workloads we tested, i.e., a distribution of #;/trs<te across 500 executions of the
three above workloads. In the figure, a distribution whose probability mass is closest to 1
is preferred, as it implies the least slowdown compared to the oracle. We observe that the
proposed technique significantly outperformed the state-of-the-art. In our experiments, the
median and tail (i.e., 99" percentile) runtime of Symphony outperformed the second best (in
this case, Paragon) by close to 32%. At the 99" percentile, the generated schedules performed
at a 6% loss relative to the oracle. Next, we quantified the performance of end-to-end user
workloads, shown in Fig. 4.11. Here, we calculated 1 — (it7;)/(3, tgrae) for all 500 runs
of the DFGs and grouped them into buckets of different kinds of normalized performance.
Symphony significantly outperformed the other scheduling techniques, running up to 60% of
the applications with no performance loss relative to the oracle execution, and the rest with
a performance loss of less than 20%.

Latency. There are two latencies to consider in comparing schedulers: the latency of the
entire user workload (“LW”, shown in Fig. 4.10), and the latency of the scheduler execution

(“LS”, shown in Fig. 4.12). In Fig. 4.12, we show two configurations of the Symphony
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scheduler: (i) “No-Opt” which uses a belief propagation-based update for the BN (and
MCMC-based inference); and (ii) “All-Opt” which uses the sampling technique described in
§4.3, accelerators® to perform inference, and task batching (described below). LW (> LS) is
the user-facing metric of interest. Symphony outperforms all baselines in terms of LW. In
terms of median LS, the Symphony is 1.8x and 1.6x faster than Paragon and Graphene,
respectively. In contrast, Sparrow, which randomly assigns tasks to processors, has 3.6 x lower
median latency than Symphony. However, the reduced LS comes at the cost of increased LW
(see Fig. 4.10).

Batching Task Execution. A key concern with Symphony is its large tail latency
(100x larger than its median; see Fig. 4.12) compared to the other schedulers (which have
deterministic runtime). This increased latency is brought about by Symphony having to
perform significantly more compute if the RL-policy-update is triggered. The scheduler
latency adversely affects LW as the time spent executing scheduler calls, is time not utilized

to make progress on the user workload. In order to deal with this issue, our evaluation

®The accelerators include an NVIDIA K80 GPU for NN inference and an FPGA for BN inference using
[168].
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Figure 4.14: Training time for Symphony. An iteration is 2 RL episodes of 20 steps.

executed Symphony on batches of tasks instead of single tasks, thereby amortizing the cost of
executing Symphony across the batch. Task batching works synergistically with the sampling
based gradient propagation technique to reduce the tail latency by as much 12x (see Fig. 4.3).
Fig. 4.13 demonstrates the average improvement in LW normalized to the oracle over a range
of batch sizes. We observe that the optimal value for batch size is about 128 tasks per batch.
This corresponds to the “All Opt” configuration in Figs. 4.12 and 4.14 as well as Figs. 4.10
and 4.11. The “No Opt” configuration in Fig. 4.12 is computed at a batch size of one.

Training Time. Finally, we quantified the improvement in training time offered by
Symphony using the sampling-based gradient computation methodology presented in §4.3.
We used the following baselines for evaluation: (i) model-free RNN (labeled “RNN” in
Fig. 4.14); and (ii) the “All Opt.” and “No Opt.” configurations from above. The RNN
model here replaces the BN (and inference) and system-topology-embedding GN (in Fig. 4.3)
with a 3-layer, fully connected NN to compute an embedding for o,. Fig. 4.14 illustrates
the differences in performance of the these configurations with respect to degradation in
performance of the user DFGs relative to the oracle schedule (i.e., 1 — (2iti;)/(x; teracte)).
We observe that the RNN is significantly less sample-efficient than the proposed POMDP
is; specifically, it is ~2.2x worse than Symphony. Further linearly extrapolating time to
convergence from iteration 12 x 10%, the RNN would need > 48 x 10% iterations to achieve
the same accuracy as Symphony.

The difference in training time for the “No Opt.” and “All Opt” in Fig. 4.14 can be
attributed to (i) time taken to perform back-propagation for policy updates; and (ii) effective
scheduler latency. Linearly extrapolating the training-loss, we observe that “All Opt” is at
least 4.3x more sample efficient than “No Opt” to reach a 30% mean loss relative to the
oracle. That reduction is significant because the continuous churn of user workloads and
machine configurations in a cloud, as pointed out in [31], would require that the scheduling

model be periodically retrained. In absolute terms, the “All Opt” configuration is able to
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achieve ~30% mean loss relative to the oracle scheduler in 700 hours of training and ~4400
iterations of workload execution. That corresponds to approximately 500 hours of system
execution; hence, the total process takes 1200 hours. Though this might appear to be over
7 weeks of time, in wall clock time this is approximately 2 week because we use parallel
A3C-based training. In fact, the limiting factor here is the availability of FPGAs, of which
we have only 2 in the evaluation cluster, hence limiting the number of RL episodes that can

be run in parallel.

4.7 SUMMARY

This chapter presents (i) a domain-driven Bayesian RL model for scheduling that captures
the statistical dependencies between architectural resources; and (ii) a sampling-based
technique that allows the computation of gradients of a Bayesian model without performing
full probabilistic inference. As data center architectures become more complex [10, 118],
techniques like the one proposed here will be critical in the deployment of future accelerated

applications.
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CHAPTER 5: ACCELERATED AND REAL-TIME INFERENCE

5.1 INTRODUCTION

Many statistical- and machine-learning (ML) applications automatically detect patterns
in data, and then use the uncovered patterns to predict future data, or to perform other
kinds of decision-making under uncertainty. Probabilistic models (PMs; e.g., Markov models
or Bayesian networks) and inference techniques have been shown to successfully integrate
prior and structural relationships to quantify this uncertainty [99]. This allows PMs to
naturally complement many ML methods (like deep learning [169]; DL) that (i) do not
quantify uncertainty in their outputs [170], (ii) seldom produce interpretable results, and
(iii) do not generalize well from small datasets or in cases with class imbalance. In fact, there
are ongoing efforts in the ML community to combine PMs and DL to produce a Bayesian DL
paradigm that can take advantage of both the flexibility of PMs in encoding model-related
information (e.g., uncertainty, interpretability) with the immense scalability of DL [169].

Creation of optimized accelerators for DL models is well-developed [3, 141, 171]. The
creation of accelerators that can execute infernence on PMs in real-time is substantially
nonexistent, or is done only on a very problem-specific, hand-optimized basis [172, 173, 174,
175, 176, 177, 178, 179]. Development of such accelerators is the focus of this chapter. They
will be fundamental not just to the addressing of PMs, but also to the integration PMs and
DL.

Development of accelerators for execution of inference on PMs requires (i) a high-level
language representation of PMs, and (ii) a method to map this representation into an
architecture and correspondingly synthesized hardware that meets the real-time constraints.
To address (1) above, we leverage prior work that proposes probabilistic programming languages
(PPLs) [180] as a way to represent complex PMs as programs (e.g., [181, 182, 183, 184, 185,
186, 187, 188]).

This chapter addresses (2) above by proposing AcMC?, a compiler that transforms general
PMs expressed in a PPL into optimized hardware accelerators to infer query distributions (i.e.,
quantities of interest) over the posterior samples of a PM. Inference over PMs is analytically
intractable in general [189]; therefore, we focus on methods that compute approximate answers,
in particular the sampling-based Markov-Chain Monte Carlo (MCMC) methods. The crux
of our approach is three fold. (i) We identify and accelerate common computational kernels
used across multiple models. In the case of MCMC-based inference, that corresponds to the

use of multiple types of random number generators. (ii) We use marginal and conditional
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independences to maximally exploit the parallelism and data locality available in the structure
of a PM for its inference. (iii) We integrate the above pieces with compositional MCMC
techniques, i.e., where different variants of basic MCMC algorithms can be integrated together
to solve an inference problem.! AcMC? then automatically generates HDL that corresponds
to system-on-chip (SoC) components that can be integrated into CPU-based SoCs, FPGAs,
or ASICs, which can then be used in both large servers and embedded devices.

Contributions. Our primary contributions are

1. We present a compiler workflow for generating hardware accelerators (both their

architecture and implementation) from PMs described in PPLs. The compiler uses:

(a) Conditional statistical independences (captured using Markov blankets) in a PM
to generate maximally parallel, deeply pipelined, problem-specific random number

generators.

(b) Speculative execution to execute several independent MCMC chains in parallel on

the generators above.

(c) Bounded approximation techniques that reduce off-chip bandwidth for storage of

intermediate results.

2. We describe an FPGA-based prototype (on a Xilinx Virtex 7 FPGA) for AcMC?-
generated accelerators that communicate to host CPUs (IBM POWERS) by using the
CAPI interface [96].

3. We demonstrate AcMC?’s performance using a set of PPL micro-benchmarks. The
AcM(C2-generated accelerators provided an average 46.8x improvement in runtime and
a 753.5x improvement in terms of performance-per-watt over CPU-based software

implementations.

4. We illustrate the generality of AcMC? by solving two real-world problems that require

real-time analytics.
(a) Precision Medicine: Identification of seizure-generating brain regions through
analysis of electroencephalograms (EEGs) [165].

(b) Datacenter Security: Detecting data-center-scale security incidents by analysis of

alerts generated from network- and host-level security monitoring tools [166].

For example, we use Gibbs sampling [190] for discrete variables, and Hamiltonian Monte Carlo
(HMC) [191] for continuous variables when gradient information is available.
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We demonstrate a 48.4 — 102.1x improvement in performance over a CPU baseline;
and a 8.6 — 18.2x improvement in performance over a NVIDIA K80 GPU.

Placing AcMC? in Perspective. Traditional methods have been unsuccessful at address-
ing the challenge of accelerating the execution of inference in PMs. (i) Optimizing compilers
and high-level synthesis engines [192] (HLS; C/C++ to HDL compilers) have used control
and data dependences in programs to drive parallelism and SIMD optimizations [193, 194].
That approach is inherently limited because it analyzes only the inference procedure (i.e.,
the program that is executed), and not the dependence (and hence the parallelism) available
in the PM. (ii) General-purpose accelerators like GPUs have limited success with MCMC
algorithms that are inherently sequential (i.e., compute as a chain of steps) and present
significant branch divergence across multiple chains. (iii) The use of domain-specific languages
(DSLs) to describe parallel patterns |44, 45] that generate efficient code/accelerators have not
shown much promise, as they do not offer the abstractions required to easily represent PMs.
As a result, accelerated applications for PMs have generally required manual optimization
on a problem-by-problem basis, e.g., [172, 173, 174, 175, 176, 177, 178, 179|. In contrast,
AcMC? effectively analyzes statistical properties of the PM at compile time and is able to
achieve significant parallelism that the traditional methods described above are not designed

to accomplish.

5.2 BACKGROUND

5.2.1 DBayesian Modeling

AcMC? considers PMs with joint distribution factorization

p(0,zp) = p(0)p(zplf), (5.1)
where p(0) is a distribution over parameters § = {01, ...,0,,} called the prior, and p(zpl|d) is
the conditional distribution of the dataset zp = {[x00, ..., Znol;---,[To.D,---,Tn ]} given
the parameters §. Given observed data point z = [xg,...,,], the goal of an AcMC?

accelerator is to compute the posterior distribution,

(0)p(x]0)

B o
plfle) = p(x) — [pO)p(x]6)ds’

(5.2)

A user can then query this distribution (called an inference) to obtain required information
about the model/data.
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For example, consider the use of a commonly used PM to solve the problem of clustering
a set of points into K clusters. Here, the PM models how we believe the observations are
generated. For instance, one explanation might be (i) that there are K cluster centers chosen
randomly according to some distribution, and (ii) that each data point (independent of all
other data points) is normally distributed around a randomly chosen cluster center. That
explanation describes what is known as a Gaussian mizture model (GMM). We can then
query this model to ask, “What is the number of clusters for a given dataset under this
model?” or “What is the most likely cluster assignment for a data point under the model?”"

Application characteristics often bring additional latent structure to the density factoriza-
tion shown in (5.1). In the example above, the explanation of the generative process defines
this latent structure. Prior work at the conjunction of graph theory and probability theory
has developed a powerful formalism called factor graphs (FGs) [99]. An FG factorizes (5.1)

into C' sets of dependent variables:

_ [ecc fo(o)
f chEc fe(z)doy ... db,,’

p(T1, . @, 01, ..., 00) (5.3)
where we use the shorthand z. = {z;|i € C'}, and f, represents factor functions describing
the statistical relationships between different z.s. Overall, FGs provide an intuitive and
compact representation to parse out the independences.

Inference. Probabilistic inference is the task of deriving the probability that one or more
random variables will take a specific value or set of values. Inference tasks are generally
structured as in (5.2), where a set of variables 6 are being queried over a PM described by
p(0, ). Inference is analytically intractable for general PMs [189]. Therefore, approximate
Bayesian inference methods have become popular. These approximations can be divided into
two categories: variational inference and Monte Carlo methods. In this paper, we focus on

the second method.

5.2.2 MCMC Methods & Hastings Samplers

MCMUC presents a direct method for simulating samples from the posterior distribution in
(5.1) or estimating other properties of the distribution. The idea behind MCMC is to have a
Markov chain whose stationary distribution is the target distribution; then, samples can be
generated by simulating the chain until convergence. In practice, it is common to discard

samples from the chain before it converges. This stage is referred to as the burn-in stage.

2Fig. 5.2 shows the AcMC? workflow of the model described above.
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Algorithm 5.1 Generic Hastings sampler.

Input: (i) Initial distribution D, (ii) Proposal distribution ¢, (iii) Number of samples N,
(iv) Number of burn-in samples b
Output: Samples from target distribution p

1: Initialize Xo = {X{,..., X} from some distribution D
2: for i < [1, N] do
3: Generate X ~ ¢(X|X;-1)
4: v <= min {17p(X)q(Xifl‘X)/P(Xi—l)Q(X\Xi—l)}
5. X, X with probability a
X,_1 with probability 1 — «
6: end for
7. return (Xpiq,..., Xy)

In particular, we consider the Hastings sampler [195] (described in Algorithm 5.1) that
generates sample candidates from a proposal distribution ¢ that is generally different from
the target distribution p (above). The algorithm then decides whether to accept or reject

candidates based on an acceptance test («).

L el x (el
‘- {1’19 XQ(SC’Ix)} (54)

Here x and 2’ represent the current and proposed values, respectively. The choice ¢ and the

acceptance test produce a variety of MCMC methods, e.g., Gibbs sampling and HMC.

We consider three variants of the Hastings sampler. The simplest variant is the Metropolis-
Hastings algorithm [195, 196], which combines a Gaussian random walk proposal with an
accept-reject test as described above. In general this method scales poorly with increasing
dimension and complexity of the target distribution. The Gibbs sampling variant [190] utilizes
the structure of the target distribution by taking its element-wise conditional distribution as
the transition proposal, forcing the conditionals (in Line 3 of Algorithm 5.1) to be analytically
computable. The third variant, called HMC [191]| uses Hamiltonian dynamics [197| (H)
to define a continuous-time transition (i.e., p(0, p|r)) and the stationary distribution of
the corresponding Markov chain. To sample from p(f|z), HMC introduces an auxiliary
momentum variable p with the same dimensionality as 6, and effectively samples from the
joint distribution p(6, p|z) = p(f|z) exp{—3p" M~'p}, where M is called the mass matriz.

Samples are generated by simulating

a0 op
S = VoH and 25 = V. (5.5)
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Figure 5.1: Overview of the AcMC? approach. Boxes shown in gray represent third-party
components integrated into AcMC?.

5.3 APPROACH OVERVIEW

The §5.3-§5.7 describe the AcMC? system. The key optimizations that drive the system

are:

1. Identification of dependences between variables in a PM by constructing and identi-
fying non-intersecting Markov blankets, and use of this information to build parallel

multidimensional random number generators.

2. Use of the dependences from (1) and MCMC update strategies to enable concurrent
speculative execution of multiple proposal distribution samples and acceptance tests,

thereby creating a maximally parallel execution plan.

3. Finally, use of bounded approximation provided by counting bloom filters to optimally

utilize the on-chip memory for staging intermediate results.

Fig. 5.1 illustrates the workflow that integrates the above optimizations. We briefly describe
each of its components below.

Compiler Frontend (1 in Fig. 5.1). The compiler frontend converts a high-level PPL
program (in our case, PMs expressed in the BLOG programming language [181]) into an
FG that is used in the following steps of the workflow. FGs [198] allow the description of
general probability distributions and subsume all other probability-modeling formalisms [199].
AcMC? is decoupled from the choice of frontend PPL language through the use of this IR.
We describe this stage further in §5.4.

Sampling Element Builder (2 in Fig. 5.1). Using the IR generated from the PPL
program, AcMC? first computes a partition of the input FG such that different MCMC
update strategies (e.g., Gibbs sampling, HMC) are applied to different portions of the PM.

The partition strategy is based on a heuristic approach, unless otherwise specified by the
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user. For each partition, we separately optimize an accelerated sampling element (SE)
by identifying the parallelism that is available in the model through the identification of
statistical independences. We describe this process in detail in §5.5.

Hardware Templates (4 in Fig. 5.1). Several components of the hardware accelerators
are reused across PMs. They include random number generators (RNGs; e.g., following
uniform, Gaussian and exponential distributions); arithmetic operators (e.g., floating point
adders and multipliers); interfaces to off-chip memory; and host memory. We call those
components templates, and pre-design them to make optimal trade-offs between on-chip
resource utilization and performance. In this chapter, we consider optimizations of these
templates for Xilinx FPGA devices. We describe these templates in §5.5.2.

Controller Builder (3 in Fig. 5.1). We construct Controllers to synchronize the actions
of SEs. For example, to ensure maximal parallelism in the sampling process, we execute
several chains of MCMC samplers in parallel, as well as speculatively sample propsal dis-
tributions in a single MCMC chain. Aggregation (mixing) of these results identifies the
probability distribution (i.e., a histogram) corresponding to a user’s query. We describe these
optimizations further in §5.6.

Hardware Generation (5 in Fig. 5.1). In the final step of the AcMC? workflow, the
above statistical relationships and hardware templates are combined together in an execution
schedule for an accelerator. A statically generated schedule significantly simplifies the gener-
ated hardware. We then use the Chisel [43] to automatically generate HDL corresponding
to the computed schedule. The Chisel-generated Verilog can then be fed into a traditional

hardware synthesis workflow. We describe the hardware synthesis process in detail in §5.7.

5.4 COMPILER FRONT-END

5.4.1 The BLOG Language

BLOG [181] represents a strongly typed first-order programming language that can be
used to define probability distributions over worlds with unknown numbers of variables.
Fig. 5.2 illustrates the mapping from a statistical model describing a Gaussian mixture model
(GMM; used for clustering data) in BLOG to the underlying FG representation, and its
correspondence to the final accelerator generated by AcMC?2.

Why BLOG? Research into PPLs has resulted in the development of several languages
(e.g., [181, 182, 183, 184, 185, 186]) that allow users to describe PMs as programs. These
PPLs can be categorized into two groups. The first is DSLs that are embedded in higher-level
languages like Lisp (for Church [182]) or Python (for PyMC3 [187]). The second group (which
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Figure 5.2: Example of the end-to-end workflow: A Bayesian Gaussian mixture model
described as a as a BLOG PPL program, converted into an HDL-based hardware module
that van be integrated as SoC components.

includes BLOG) consists of essentially standalone languages (with their own interpreters and
compilers). The first group of languages is unsuitable for hardware synthesis, as solutions to
the PPLs’ synthesis must necessarily include solutions to the “high-level synthesis” problems of
the higher-level language in which they are embedded (e.g., dealing with unbounded recursion,
unbounded loops, and library calls). That was the primary motivation for selection of BLOG
as the front-end language for AcMC2. Further, among the second group of languages, BLOG
is one of the few PPLs that can represent PMs that contain both discrete and continuous
random variables.

Extensions to BLOG. The BLOG language (and compiler [200]), however, has one
drawback. It has no method for describing abstract inputs without binding them to particular
values. For example, in Fig. 5.2, the obs keyword is used to describe both the input and its
value. We have extended the language by adding an input keyword to define formally named
inputs that will be made available at runtime. These inputs correspond to input ports on

the AcMC?-generated SEs. Outputs are defined using the query keyword.

5.4.2 FG Generation

AcMC? uses the lexer and parser of the BLOG compiler presented in [200] to generate an
abstract syntax tree (AST) of the input BLOG program.?> We then proceed as follows:

1. Identify query statements in the AST, replacing them with new variables. We will use

these new variables to define named outputs in later steps of the workflow.

31t does so after adding the extension keyword input mentioned above.
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2. Search the AST for subtrees for arithmetic expressions that can be statically evaluated

(i.e., deterministic code containing constant values) and evaluate them.

3. The AST is traversed to find a list of deterministic variables/functions (i.e., those which
are not randomly generated) in the model. This identification is done based on the type
of the variable or the return type of the function. AcMC? statically composes these
deterministic variables/functions with other random functions, so as to build an FG

with only random components.

4. Convert the AST into an FG by associating each BLOG function with a factor function,

and its inputs and outputs with associated random variables.

5. Apply variable elimination |99] to the FG to reduce the size and complexity of the
FG. This method is roughly equivalent to static function execution and dead code
elimination in traditional compilers. Note that variable eliminations that lead to

marginal probability distributions that cannot be directly sampled are dropped.

Note that the optimizations listed above resemble traditional compiler optimizations that
most PPL compilers should perform. The FG conversion is specific to the problem at hand,
as the downstream steps of AcMC? expect an FG as input. The inputs and outputs of
the overall process are illustrated in Fig. 5.2. Note that we keep track of repetitions of
variables and factor functions in the model that correspond to repeated or indexed variables
in the original BLOG program. Dynamic PMs (i.e., which express time varying behavior of
variables) are expressed in two parts: (i) the FG corresponding to one instant of time, and
(ii) factor functions corresponding to statistical relationships across timesteps.

The process described above (specifically, Step 4) converts a directed graphical model
into an undirected one (i.e., an FG). Both of them provide a formalism for representing
independences; however, each of them can represent independence constraints that the other
cannot. The conversion process occurs by the construction of a moral graph [99] from the
original directed acyclic graph. If the original PM is moral, then the converted PM is a perfect
map. The moralization process can cause loss of conditional independence if it introduces
new edges. In AcMC? such a loss does not change the accuracy of the MCMC, merely the

effective amount of parallelism (described in §5.5).

5.5 SAMPLING ELEMENT DESIGN

This section describes an algorithm (“SE Builder” from Fig. 5.1) for generating the design
of a single SE (see Fig. 5.3) based on the input FG. The process has the following steps.
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Figure 5.3: Architecture of sampling element: The SE design is based on a compositional
Hastings sampler (see Algorithm 5.1) that uses Gibbs sampling and HMC updates. X is the
state of the sampler in its i*" iteration.

1. Depth-first traversal of the FG identifies (i) variables that will be provided as runtime
inputs, (ii) variables that will have to be generated by random sampling, and (iii) output

variables corresponding to a user’s query.

2. Variables that need to be generated through sampling are identified and partitioned
into sets corresponding to their MCMC proposal and update strategy.

3. AcMC? then constructs samplers corresponding to the proposal distributions ¢. This
step identifies conditional independences in FG that can be used to extract the maximal

parallelism in each of the partitions.

4. Using the set of template components available to it, AcMC? generates samplers for
each of the FG partitions.

After those samplers are executed for their burn-in phases, the values corresponding to
the query variables are extracted, tabulated, and stored as histograms (as described in
§5.5.3). Each SE generates a fixed number of samples, which represents one execution of
an MCMC chain. The output of the “SE Builder” stage is a data-flow graph corresponding
to the high-level schematic in Fig. 5.3. This data-flow graph does not incorporate timing
information among the different blocks shown in the figure. Timing is described further in
§5.7.

5.5.1 Compositional MCMC

Often the high dimensionality of the vectors x and density ¢(z'|z) being estimated in

a Hastings sampler make the sampling process difficult (and, in some cases, intractable).
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Figure 5.4: Conditional independences of an FG node can be utilized to identify strategies
for parallel execution when a Gibbs-sampling-based Hastings sampler is used.

However, it has been shown that it is possible to find MCMC updates for z’ that consist
of several sub-steps, each of which updates one component or a group of components in
x |99, 201]. Finding the optimal division of an FG into partitions for an arbitrary PM is still
an open problem.

AcMC(C? relies on a straightforward heuristic to find those partitions. First, it identifies
the variables on which it can perform Gibbs sampling. This set consists of discrete random
variables in the model, along with continuous variables that exhibit conjugacy relationships.
A conjugacy relation implies that a conditional distribution p(f|x) takes the same (or an
equivalent) functional form as p(f). AcMC?’s list of conjugacy relationships are built based
on [202]. The remaining continuous variables are sampled with HMC. We do not explicitly
use the Metropolis-Hastings sampler, because of its bad scaling behavior in high-dimensional
spaces. A user can override this heuristic and manually specify partitions.

Gibbs Sampling. Recall that a Gibbs sampler utilizes the target distribution as its
proposal distribution ¢ and also takes compositional steps, where each step targets the
sampling of element-wise conditional distributions. Hence in each sub-step, where z; is
updated with 2z, the sampler uses q(z}|z;) = p(x;|z1,. .., T 1, Tix1,. .., ) = p(zi]x_;).
That means that in an arbitrary PM, every sub-step must proceed sequentially. However, in
the case of AcMC? since the FG already encodes latent structure in the distribution p(z;|z_;),
we can extract conditional independences encoded in the model to relax the dependency of
x; on the set x_;. We do so through the computation of a Markov blanket B,, on the FG.
B,, defines a subset of x_; such that z; is conditionally independent of z_; given B,, (see
Fig. 5.4). Hence q(z}|z;) = p(x;| By,), which implies that the sub-steps corresponding to x;
can be executed in parallel with z_; \ B,,.

One can generalize that observation to all nodes in the FG by studying the graphical
structure of the FG. Variables that are in each other’s Markov blankets (i.e., that share a
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common factor function) cannot be sampled in parallel. Hence, computation of a k-coloring
of the FG (i.e., solving a graph coloring problem on the FG), where variables that share a
factor function are not given the same color, will give us the maximal parallelism available
during the Gibbs sampling process. Here, k will represent the number of synchronization
points in the sampling process. [203| provides a proof of correctness of the technique. Fig. 5.4
demonstrates the property on a factor graph. The coloring is synthesized into a state machine
that drives the “Controller” in Fig. 5.3.

Hamiltonian Monte Carlo. AcMC? uses reverse-mode automatic differentiation [204]
to automatically compute the gradients required in (5.5) from the joint distribution of the
FG. The current implementation of AcMC? performs a source-to-source translation of the
symbolic gradients to OpenCL for high-level synthesis through Xilinx SDAccel [205]. That

allows us to generate optimized data-paths corresponding to the HMC proposal distribution.

5.5.2 Template-Based Elements

SE components that are reused across a range of PE models are provided to AcMC? as a
library of manually designed template patterns that provide low latency, high throughput, and
low on-chip resource utilization. In our implementation, all of the template-based components
are specialized for FPGAs (which we use as a prototyping platform). However, AcMC? can
also be used to generate ASICs by replacing the template components. We describe these
components below.

Random Number Generators. AcMC?’s RNG library provides three types of generators:
(i) uniform RNGs, (ii) discrete RNGs corresponding to particular probability mass function
definitions, and (iii) RNGs for general probability distributions (e.g., Gaussian, Exponential).
Our minimum requirement for these RNGs is that they be high-quality generators that
pass common statistical tests; they are not required to be cryptographically secure. The
composition of RNGs across complex PMs ensures that even though we might exhaust the
period of a single RNG, we will never exceed the period of all the RNGs used in an SE. Further,
large PMs require many RNGs, so they have to use on-chip resources optimally. Finally, we
are interested in RNGs that have deterministic performance. For example, rejection-sampling-
based RNGs [206], which might retry an indefinite number of times before generating a
random number, are not suitable in our use case, because the hardware generation step in
the AcMC? requires definite latency characteristics to produce a static schedule of SEs.

The Uniform RNG (see Fig. 5.5) is the simplest type of random number generator available
in AcMC?. Our implementation draws heavily from [207], and represents a modified XOR-
shift [208| generator that is optimized for low resource usage on FPGAs. The 4-bit RNG

76



P 1P b 1P |
Yyvyyy

(Seed Initialization)\ ! ;E

Carry Chain XOR

Figure 5.5: XOR-shift-based FPGA-optimized uniform random number generator.

Duplicated ALIAS Tables

Uniform RNG 410257 RAM
/'
Uniform RNG —/ RAM
Ujo,255]
Address Generator
Controller

Figure 5.6: Alias-table-based RNG to generate arbitrary discrete random variables with
static distributions.

completely utilizes a single logic cell available on an FPGA: it utilizes a 4-input look-up table
(LUT), the XOR-~gates from a carry chain adder, and the output registers to buffer output.
Overall it produces a single 4-bit random number per clock cycle, utilizing only a single LUT
and a single shift register. These RNGs are used as a source of randomness for the other
types of RNGs.

The second type of generator in AcMC? uses an alias-table-based strategy [209] to generate
discrete random numbers whose probability distribution is provided at compile time. Fig. 5.6
shows the schematic layout for this RNG. It reuses two uniform RNGs to generate addresses
and store them into a locally stored alias table, which is accessed to retrieve the value of
the random number. The address lookup happens in two clock cycles; hence, the memory
element is duplicated to ensure a throughput of 1 operation per cycle. The dynamic range of
the probability values in the alias table is set to a 32-bit floating-point number.

The final type of RNG used in AcMC? generates values from well-known distributions by
using the inverse transform method [210]. Fig. 5.7 shows a schematic of the generator. This

method transforms integer uniform random numbers into fractional numbers in [0, 1] and
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Figure 5.7: Inverse-transform-based RNGs.

then uses the inverse of the target distribution’s cumulative density function to generate
the required random numbers. The method is computationally intensive, as computing the
inverse transform often requires several floating-point operations, leading to higher latencies
and lower throughputs than the other RNGs mentioned above. AcMC? provides support for
exponential, Poisson, Gaussian, and binomial distributions.* One can add more RNGs to

AcMC? using template implementations.

5.5.3 Storing Sampled Results

The final step of the SE pipeline (see Fig. 5.3) corresponds to saving the values generated

by the SE into Histogram Memory. It is implemented using on-chip memory as follows.

e When output variables take a finite number of values (i.e., types corresponding to the
output variable are defined over finite sets), AcMC? generates counters corresponding
to each of the values. The counters are incremented when a corresponding sample is

produced.

e When the output variables” domain corresponds to large sets, the user is required to

annotate a binning criterion corresponding to each query.

e Binning provides only a partial solution, as there is a limited amount of on-chip memory
for storing histogram information. Off-chip DRAM provides an attractive alternative for
storing the histograms; however, write latencies to DRAM, as well as write contention
across multiple SEs, make the use of DRAM intractable from the point of view of
performance. In order to remove this bottleneck, we allow for an approximate solution

by using counting Bloom filters [211] (see Fig. 5.8). The core idea is to allow for storage

4The binomial distribution is generated through a look up-table-based approximation of the distribution’s
inverse density function.
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Figure 5.8: Counting Bloom-filter-based approximate memory for storing histogram outputs
of an SE.

of the histograms in an approximate fashion whereby counts corresponding to some
bins can be larger than their true values, in order to trade off the amount of memory
required to store the values. Counting Bloom filters provide bounded approximations
for storage that allow us to tune the parameters of the Bloom filters to stay within the
noise margins of the MCMC simulations. A problem with the Bloom filter approach is
that they eventually fill up over time when they must deal with a large stream of data.
As a result, at some point the Bloom filter becomes unusable due to its high error rates.
Hence we need to periodically checkpoint the state of the Bloom filter (by storing it to
DRAM), and reset it to avoid such problems.

AcMC? requires a user to actively opt in to any of the above storage types, annotating an FG
model with information about histogram binning and Bloom filter size. Our implementation

of the counting Bloom filter uses MurmerHash [212].

5.5.4 Handling Infinite Models

Plate-based models, like the GMM example in Fig. 5.2, in which portions of the model get
repeated multiple times are handled by synthesizing SEs that correspond to the plates in
the PM. These SEs are then repeatedly executed based on the plate specification in the PM.
This repetition is encoded into state machines (in the “Controller” block in Fig. 5.3), which
control the execution of the proposal distributions across partitions. Broadly speaking, there
can be two types of plates in a model: plates that repeat based on user input at runtime
(e.g., a plate corresponding to N in Fig. 5.2), and plates that correspond to repetitions due to
model variables (e.g., a plate corresponding to K in Fig. 5.2). AcMC? automatically handles

the second type, and requires explicit human annotation of the number of repeats in the first

type.
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Figure 5.9: Architecture of the generated accelerator, including SEs, controllers, and
host-accelerator communication.

5.5.5 Importance of RNG Efficiency

RNG efficiency does indeed play a significant role in overall performance. However, the
latency throughput characteristics of these RNGs have to be tuned with other components
of the system to ensure the best performance. We describe these trade-offs below.

Throughput. Accelerators generated by AcMC? leverage data-flow between the RNGs
and computational elements (e.g., adders, multipliers) and matches throughput between
these elements. In most cases, Xilinx-provided IPs for computational elements execute at 1
op/cycle, which is matched by the template-based RNGs described in §5.5.2. Thus we can
generate MCMC samples at throughputs close to 1 sample/cycle for a single SE. Using worse
RNGs could impact the overall throughput of the accelerator and result in SE stalls.

Latency. We prefer high-throughput high-latency RNGs. Note that there is a trade-off
point after which the latency negatively affects performance: the assumption in this argument
is that a single RNG latency is significantly lower than DRAM write latency. Guaranteeing
high throughput (1 sample/cycle) often results in increased RNG latency. The trade-off
between sample latency and overall performance has to be tuned to the performance of the
memory system. For example, the time taken to generate the output histogram of an SE
has to be greater than the time taken to write that histogram to onboard DRAM (i.e., the
accelerator is not memory-bound). In fact, we use double buffering of histogram writes (see
Fig. 5.8) to effectively hide the increased RNG latency. An improved memory system on the
FPGA board could alleviate these problems.
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5.6 CONTROLLER DESIGN

AcMC? uses multiple independent instances of the Hastings sampler executed in parallel to
generate several target distributions. The final results can then be aggregated from individual
samplers. Further, multiple SEs can be used to speculatively execute future steps of Hastings
chains in parallel. The “Controller Builder” block from Fig. 5.1 identifies the scope of that
parallelism and constructs a controller that can coordinate the execution of SEs to enable
the above optimizations. Fig. 5.9 illustrates the integration of the controller and SEs into a
single accelerator.

Ensemble Samplers. Individual MCMC chains have internal serial dependence; however,
multiple chains can be computed in parallel to generate several independent estimates of
the target PM posterior distribution. The final result is calculated by pooling the results of
these different chains (i.e., by aggregating the output sample histograms from all the chains).
This corresponds to exploiting the embarrassingly parallel nature of the MCMC process.
Overall, this optimization improves throughput and accuracy of the inference process. The
only drawback is that each sampler has an independent burn-in phase, so that the number of
redundant burn-in samples grows linearly with the number of ensemble samplers employed.
We achieve this optimization in the generated accelerator by generating multiple instances of
the single-Controller and multiple-SE block (see Fig. 5.9).

Speculative and Predictive Evaluation. Hastings samplers show branching behavior,
i.e., possible random walks explored by the samplers form a branch tree. An MCMC chain
will traverse several paths (corresponding to the proposal distributions) in this branch tree,
but will eventually take only a single path (corresponding to a successful acceptance test).
That provides a scope for exploiting parallelism through speculation. For example, in depth-
first traversal, a generated sample is assumed to be accepted, and its subtree is generated
speculatively. Similarly, in breadth-first traversal, a sample is assumed to be rejected, and
other samples from the same level are generated speculatively. In contrast to prior work in
statistics (e.g., [213, 214]) that adopted the depth-first approach presented above, AcMC?
uses the breadth-first approach, as the generated hardware is much simpler. All SEs are
set to start with one initial state; thereafter, each SE explores individual samples from the
proposal distribution. When an SE generates a value that passes the acceptance test, it
broadcasts the new state value to all other SEs, and proceeds with the next step in its own
pipeline. The controller arbitrates the bus and ensures race-free executions. Some aspects
of the depth-first approach are captured in each individual SE’s pipeline, where, as soon as
a proposal value is generated, the next level of the branch tree can start execution in the

pipeline.

81



Other auxilliary functions of the controller include:

1. Initialization: The controller initializes all SEs with the seeds required to start random
number generation, and computes the initial starting state of the Hastings sampler

(which is generated from a Gaussian distribution).

2. Bus Scheduling: The controller acts as an arbiter to give individual SEs the ability to
write data to the multicast bus (described further in §5.7.2).

3. Batching: If a dataset is being used that is larger than the available memory on the
accelerator, the data have to be divided into batches, and the inference has to be run
one batch at a time. The controller is responsible for copying input batches from the

host memory to the accelerator.

4. Moving Results to Host Memory: The controller is responsible for moving the final
outputs of the MCMC chains (i.e., histograms generated over the user query) from the
on board DRAM on which it is stored to the host memory space. Doing so involves

aggregating the counting Bloom filters from each of the ensemble samplers.

Communication between the controller and SEs is encapsulated in an AXI-Stream protocol.
That protocol allows us to decouple the controller from the SEs and synthesize them separately,

relying on the communication protocol between them to ensure synchronization properties.

5.7 ACCELERATOR SYNTHESIS

The final step of the AcMC? workflow converts the data flow graph corresponding to an
SE into a synthesizable Chisel model, which can then be fed into traditional FPGA /ASIC

synthesis flows.

5.7.1 Scheduling

The scheduler is responsible for converting the SE data-flow graph into a cycle-by-cycle
schedule for a given set of resource constraints. AcMC? uses this schedule to generate
synchronization between inputs and outputs of stages of the compositional MCMC SE (see
Fig. 5.3). AcMC? uses the As-Soon-As-Possible scheduling algorithm (based on [215]) to
compute such schedules. The scheduling algorithm works by scheduling an operation as soon
as all of its predecessor operations (in the data-flow graph) have completed. The maximum

number of parallel operations permitted are defined by resource constraint parameters fed in
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by the user. AcMC? generates the design for a single SE that accommodates this schedule.
Note that the scheduling procedure in AcMC? does not consider resource limitations or
routing issues between SE components — these decisions are left to the subsequent synthesis
flow (recall from §5.3).

5.7.2  Overall Accelerator Design

The SE data-flow graph, along with its static schedule, is converted into a Chisel HDL-based
description of an SE pipeline. Through the use of the cycle counts for operations in the
SE design, a Chisel HDL description of the Controller (described in §5.6) is also generated.
These units then interface with off-chip DRAM and host-memory interfaces to produce the
final probabilistic inference accelerator. The overall architecture of the accelerator is shown
in Fig. 5.9. We describe the remaining components of the accelerator next.

Broadcast-Based NoC for SEs. AcMC? uses a template-based, bus-based network-on-
chip (NoC) design to enable point-to-point and broadcast messaging between the Controller,
SEs, and DRAM controllers. The bus uses an AXI-Stream-based communication protocol for
data transfer. Fig. 5.9 shows the design of the routers used in the network. To read from
the bus, a router matches its local identifier to that of the stream being sent on the bus
and connects the SE to the bus if there is a match. Writing to the bus is mediated by the
controller in a single-writer, multiple-reader protocol.

Host-Accelerator Communication. AcMC? uses the IBM Coherent Accelerator Proces-
sor Interface (CAPI) [96] for Power8 processors to facilitate host-accelerator communication.
CAPI is layered over PCle and provides low-latency, high-speed device-to-host memory
transfers. In particular, CAPI simplifies the generated host CPU code, reduces dependency
on DMA drivers, and eliminates the need for page-pinning and bounce buffering to extract
high performance from the underlying PCIe bus. A DMA and MMIO controller for the
IBM Power Service Layer (PSL; the IBM IP component that interfaces with the accelerator)
is provided as a template for the accelerator. This interface is used to send inputs to the
accelerator, receive inputs from the accelerator, and initialize the accelerator with seed values
for RNGs. The PSL and DMA/MMIO interfaces are clocked at 250 MHz, and the remainder
of the accelerator is clocked at 400 MHz.

Host-accelerator communication can be of the following types. (i) In the batch data transfer
mode, the host loads the input dataset into host memory, from which the accelerator reads
data in batches. Similarly, outputs are transferred to a host buffer. (ii) In the streaming
data transfer mode, the host and accelerator share circular buffers corresponding to inputs

and outputs. Synchronization between host and accelerator is ensured using CAPI’s atomic
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Figure 5.10: Comparison of runtime performance for AcMC?-generated accelerators with
PM inference on other PPLs (normalized to Blog(Swift) [200| compiler).

operations. In both cases, the accelerator is initialized with the addresses of the input/ouptut
buffers. The accelerator actively prefetches new data (in cacheline-sized 128-byte chunks)

and adds it into the input FIFOs (see Fig. 5.9) for further processing.

5.8 EVALUATION AND DISCUSSION

Experimental Setup. AcMC? has been implemented in ~ 2k lines of Scala. The
templates used in the compiler were developed in System Verilog and use IPs from Xilinx to
implement single-precision floating-point math operators, BRAM blocks, an off-chip DRAM
interface, and shift registers. The accelerator communicates with the host through the IBM
CAPI interface [96, 216]. All generated accelerators (and CPU baselines) were evaluated
on an IBM Power8 S824L system with an Alpha-Data ADM-PCIE-7V3 FPGA board (with
Xilinx Virtex 7 XC7VX690T FPGA) and an NVIDIA K80 GPU.

5.8.1 Comparison With CPU-Based PPLs

As a first-level comparison, we compared the runtime of accelerators generated through
AcMC? with common benchmarks that are used to evaluate PPLs. We used the set of
benchmarks from [181, 200], which represent tests over a wide set of PPL features available
in BLOG. They are indicative of performance, as they compare the performance of AcMC?-
generated accelerators to that of accelerators generated by CPU-based PPL compilers.
However, these benchmarks do not represent complex the PMs that a user would encounter
in the real world. We consider such real-world problems (and their implementations on GPUs

and HLS compilers) in §5.8.2.
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A performance comparison of the techniques is shown in Fig. 5.10, and a comparison of peak
power usage is presented in Table 5.1. Power usage estimates of the generated accelerators
are collected from the Xilinx Vivado tools and via the S824L’s in-built “system-level” power

5 Power estimates for CPU-based code were made based on

measurement infrastructure.
publicly available TDP values. In all cases, the programs were instrumented to run 2 million
samples before stopping. Overall, we observed an average speedup of 46.8x and an average
reduction in power of 16.1x (which corresponds to an overall improvement of 753X in terms of
performance-per-watt). We observe that FPGA BRAM utilization was the dominant resource
used, as seen in Table 5.1. Note that all performance measurements presented above were
collected over 1000 runs of each of the programs, to amortize OS costs in process creation and
setting up of communication through CAPI. The GMM benchmark uses the counting Bloom
filter approximation described in §5.5.3. It infers the distribution of the number of mixture
components, as well as the distribution of means and variances for each mixture component.
The histograms corresponding to the means and variances are stored in the Bloom filter;
in each case, a 1000-bin histogram was stored in 100 counters and checkpointed /refreshed
every 10000 samples. All benchmarks used the batch data-transfer model for host-accelerator
communications. The number of ensemble samplers was limited to 4 to ensure that each
sampler was mapped to a single onboard memory DIMM.

Overall, Fig. 5.10 and Table 5.1 suggest that when there is no unbounded repetition in the
PM, AcMC?-generated accelerators fare better (with respect to both runtime performance and
power usage) with discrete variable PMs. That is expected, because (i) the use of continuous
distributions (even if they have conjugacy relationships) requires expensive floating-point
computations to compute inverse transforms, which significantly increases the latency of the
RNGs and results in higher resource cost; and (ii) unbounded worlds require re-execution
of the MCMC chain (i.e., the SE) with different (sampled) initial worlds. It is important
to note that the performance comparison across Church, BLOG, and Swift also compares
the overhead of the language runtimes: Church uses Lisp [182], BLOG uses Java [181], Swift
uses C++ [200]. AcMC? does not have any of these overheads.

5.8.2 Real-World Case Studies

Case Study 1: Epilepsy SoZ Localization. We applied AcMC? to a PM [165] (see
Fig. 5.11) that is used to infer characteristics of human-brain activity by using electroen-

cephalogram (EEG) sensors, with the goal of identifying brain regions responsible for the

5The system reports power measurements averaged over 30s intervals. We measure a distribution of
power consumption when the system was idling, and when the accelerator was being used.
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Table 5.1: Power and resource utilization for benchmark BLOG programs. Numbers of SEs
are described as x x y: x is the number of controllers and y is the SEs per controller.

Power (Watts)
Benchmark CPU Vivado Measured # of SEs BRAM %

Burglary 190 10.1 16.3+2.1 4 x4 35%
Hurricane 190 10.3 16.8+1.9 4 x4 31%
Tug of War 190 12.5 194+ 3.1 4 x4 38%
Ball 190 12.9 19.3£2.6 4 x4 41%
GMM 190 14.1 15.3+34 4 x4 46%
EEG-Graph 190 11.8 15.8 3.8 4x8 64%

Figure 5.11: AcMC? generated accelerator targeting a Bayesian neurology model for
epilepsy [165].

onset of epilepsy. [165] presents a generative FG model that estimates brain activity and
localizes it to a particular EEG sensor, allowing clinicians to identify regions of the brain
(called seizure onset zones or SoZs) that show pathological behavior like epileptic seizures.
This application represents a typical use of PMs in the field of precision medicine, where
data are obtained from medical sensors in a streaming fashion and used to make decisions in
real time.

Case Study 2: Network Security. The second real-world problem for which we show
the application of AcMC? is in the domain of network security. Here, a PM [166] is used
to describe the relationships between user intent (i.e., whether a user is benign, suspicious,
or malicious and represents a threat to the integrity of a networked computer system) and
events observed by security monitors (e.g., network monitors like Bro [217]). Using these

statistical relationships, [166] aims to infer the user state given real-time data from the
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Figure 5.12: Accuracy (in terms of precision and recall) of the EEG-GRAPH energy
minimization method (labeled Original) vs. the MCMC accelerator generated by AcMC?.

security monitors. This application represents the typical use of PMs to build “intelligent”
compute-embedded network devices like network interface cards (NICs) or switches that can
automatically detect and preempt malicious intrusions.

For each of the case studies described above, we constructed (i) a BLOG program and
(ii) an OpenCL program corresponding to the model. The OpenCL program was hand-tuned
to use the model-specific optimizations presented in §5.5 and §5.6. Two separate versions of
this program were created, using compiler-specific attributes targeting NVIDIA’s OpenCL
and Xilinx’s SDAccel compilers. In both cases, the CPU baseline corresponds to software
obtained from the original authors. Note that the CPU baselines represent research software,
which, as such, might not be perfectly tuned to the system architecture. However, that is
a common situation for research software for which an underlying compiler is expected to
perform meaningful performance optimizations.

Why these models? (i) These models represent real-world applications of PMs in
performance-critical applications across varied application domains. (ii) These models use
a large subset of the PPL language features: discrete and continuous random variables,
distribution conjugacy relationships, and unbounded dynamic models that obey the Markov
property. (iii) Further, they represent challenging situations for AcMC? because they use
multivariate factor functions in relatively small FGs. The PM is relatively densely connected
so that the generation of random samples in the Gibbs sampling-based SE is almost completely
serialized.

Comparisons to CPU: Case Study 1. The generated accelerator can infer the query

posterior distribution for a 3s chunk of input EEG data in an average of ~ 41.8 ms compared
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to the CPU baseline, which uses 4.3s (i.e., it does not meet the 3s real time requirement of
the applications). Following Little’s Law, a single FPGA accelerator would be able process
71 ~ 3s/41.8ms patients in parallel in real-time. That is the largest accelerator configuration
we have successfully fit onto the FPGA. Fig. 5.12 shows the difference in accuracy between
the original EEG-GRAPH technique and the AcMC? accelerator. Overall there is a drop in
accuracy from an f-score® of 0.47 to one of 0.465. That can be attributed to the approximate
nature of the MCMC procedure. The method proposed in [165] uses exact inference procedures
based on energy minimization, which might produce marginally more accurate answers.

Comparisons to CPUs: Case Study 2. The AcMC?-generated accelerator performed
the inference at the rate of 0.4 ms/event. That is ~ 48.4x faster than the CPU-based
implementation in [166]; here, an event corresponds to the output security monitor. The
CPU implementation uses threading as well as high-performance math libraries that are
optimized for the SIMD and memory locality. In this case, the approximate Bloom filter
optimization did not affect the statistical correctness of the output (i.e., 74.2% true-positive
rate, 98.5% true-negative rate, 1.5% false-positive rate, and 25.8% false negative rate).

All our experiments were setup to use the same number of accepted samples. The number
of samples was chosen in each case to ensure that the MCMC procedure would be close to
convergence. However, the approximate nature of MCMC implies that independent runs
do not give the same answers. To verify the correctness of our generated acclerators, we
performed a Kolmogorov-Smirnov test across the CPU, GPU, and AcMC? implementations
to ensure that the sampled distributions were identical with high probability. Tables 5.2
and 5.3 show a comparison of power and FPGA resource utilization for the case studies
presented above.

OpenCL Comparison: Code Complexity. Table 5.4 shows a comparison of the
complexity of the AcMC? and OpenCL accelerators in terms of lines of code (LoC). For
example, in Case Study 1, compared to the AcMC? accelerator, which is described in 183
LoC. The GPU and FPGA OpenCL require 622 and 961 LoC, respectively. Their added

6The f-score is two times the harmonic mean of precision and recall. An F-Score can take values between
[0,1], with 1 being the best possible score.

Table 5.2: Performance & Power consumption improvements when using AcMC?.

Power (Watts)
Benchmark Perf. CPU CPU Vivado Measured +# of SEs

Case Study 1 102.1x 190 11.8 19.3 £3.7 4 x8
Case Study 2 48.4x 190 10.4 11.2£0.8 4 x8
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Table 5.3: Summary of FPGA resource utilization when using AcMC?.

BRAM DSP FF LuT
Avail. % Avail. % Avail. % Availl %

Case Study 1 1470 64% 3600 49% 866400 22% 43200 50%
Case Study 2 1470  83% 3600 29% 866400 34% 43200 61%

Table 5.4: Comparing complexity and performance of AcMC?-generated accelerators with
that of OpenCL accelerators.

NVIDIA K80 GPU FPGA
Implementation LoC Perf. Power (W) LoC Perf. Power (W)

AcM(C2- Case Study 1 — — — 183  18.2x 11.8
OpenCL - Case Study 1 622 1x 300 (TDP) 961  0.2x 14.2
AcMC2- Case Study 2 — - - 146  8.6x 10.4
OpenCL - Case Study 2 586 1x 300 (TDP) 8984 0.8x 15.6
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Figure 5.13: Comparison of runtime performance and power consumption for AcMC?-
generated accelerators for two real-world applications [165, 166].

complexity is derived from writing memory and synchronization code on the GPU. In the case
of the FPGA, explicit code annotation (e.g., __attribute__ directives), statically bound
loops and other code snippets is used to force effective pipelining. In addition to LoC, the
expertise (of the underlying hardware system) required to construct the OpenCL version
clearly emphasizes the superiority of AcMC2.

OpenCL Comparison: Performance (GPUs & FPGAs). Table 5.4 further shows
a comparison between performance and power requirements for the four configurations. For
each case study, performance has been normalized to that of the GPU. We observe that the
AcMC2-generated accelerators performed 8 — 18x better than the K80 GPU and 248 — 462x
better in performance-per-Watt terms. We speculate that the reduced performance resulted

from (i) control divergence between threads that were exploring separate parts of the MCMC

89



search space, and (ii) throughput-optimized RNG libraries that perform better when they
have to generate a batch of values rather than the single values used in MCMC’s inherently
sequential random walks. We drew these conclusions based on the rejection-sampling-based
algorithms used in the GPU implementations; i.e., the kernels generate several RNs and
accept /reject a fraction of them, which means that the control flow is different on different
threads. Further, the GPU libraries for RNGs work by generating batches of RNs; they are
later consumed to generate samples for the MCMC. Thereby maximizing the throughput
of RNG but not the throughput of the MCMC computation. The exact measurement of
divergence in this case is difficult to make as the mapping between PTX and SASS is unknown
on NVIDIA devices. Measurement on a microarchitectural simulator might not lead to exact
results.

The HLS-generated FPGA accelerator performs an order of magnitude worse than the
AcMC? and GPU implementations, in terms of absolute performance terms. There are
multiple reasons: (i) the accelerator can attain a maximum clock speed 163 MHz, while
the AcMC?-generated accelerator can achieve 400 MHz; and (ii) the automatically gener-
ated XOR-shift RNGs are higher-latency and lower-throughput than the 1-RNG-per-cycle
generators described in §5.5.

Choice of CPU Baseline. In our measurements Intel Xeon E5 CPUs performed less
than 6 — 8% better than the IBM Power8. Our choice of that baseline did not change our
conclusions. However, the use of the CAPI-based interface for host-accelerator communication
significantly simplified the implementation (recall §5.7.2). The Power8 and Xilinx FPGA
use different process technologies, i.e., 22nm and 28nm respectively, and hence it might not
be completely fair to compare their results. However, the decision to use CAPI limits us
to using FPGA boards that are supported by IBM (with their PSL IP components). We
believe that changing the FPGA technology will not change our performance (as the 250
Mhz clock should be replicable on even newer FPGA parts); however, performance-per-Watt
measurements will change with the design of the FPGA routing network.

Performance Implications of CAPI. All the microbenchmarks correspond to transmi-
sion of 100 — 960 KB of input data to the accelerator for computation. The total time for
these transfers (in streaming mode) is included in the results presented in the paper and
contribute < 10% of the runtime. We observe in Case Study 2 that the runtime in is bound
by the PCle messaging latency (which is on the order of 100 ns for the 128-byte cache-line
transferred over PCle in CAPI). A real deployment of this accelerator would involve at
least 3 such messages over PCle, i.e., network interface card (NIC) to CPU, CPU to the
accelerator on the FPGA, and, finally, returning the result to the CPU. We will address this

communication latency issue in future work.
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5.9 RELATED WORK

Parallelization of Probabilistic Inference. Low et al. [218| present a distributed
computing framework for machine learning algorithms. They demonstrate the distributed
parallelization of probabilistic inference using belief propagation [99]. Gonzales et al. [203]
provide a proof of correctness for parallelization of Gibbs sampling through the use of
conditional independences; this motivated our use of Markov blankets in §5.5. Recht et
al. [219] suggest asynchronous Gibbs sampling, whereby conditional independences are not
honored by the sampler; [220] provides bounds on the asymptotic correctness of such a
sampler. [213, 214] provide methods for speculative execution (called dynamic prefetch) using
biased proposal distributions. We use the approximation from [197| to generate samples in
HMC. Homan and Gelman [221] present a further-optimized algorithm (which converges more
quickly than traditional HMC with [197]) to generate samples from the proposal distribution
of an HMC. [186] provides an implementation of [221] in a PPL.

Accelerated Probabilistic Inference. Several prior FPGA /ASIC efforts solve some
form of probabilistic inference; however, they cannot be generalized to apply to all PMs. For
example, [172] proposes an architecture for LDPC code encoding/decoding; [173, 178, 179|
propose architectures for several bioinformatics applications; [174] proposes an architecture
for image segmentation; and [176] proposes an architecture for inference on a class of state
space models. In comparison, AcMC? has the ability to generate accelerators for general
PMs expressed in the BLOG language. The use of GPUs in MCMC has been explored, but
only for particular applications, e.g., in [222, 223, 224]. [177] comes closest to AcMC?. Tt
describes the design of an FPGA-based accelerator and a compiler to target the acceleration
of belief propagation in Bayesian networks. In contrast, AcMC? can be applied to a much
larger set of PMs. [225] explores the use of analog circuits to perform statistical inference.

Hardware Generators. AcMC? uses the Chisel HDL [43] to generate RTL corresponding
to the accelerator. Other HDL generators, e.g., |44, 45|, provide higher-level constructs that
can be used to declare and annotate the parallelism available in a program; they cannot be
used directly with PMs as PPLs.

Programming Language Design. [226] proposes Edward, a PPL for Bayesian neural
networks (BNN) probabilistic inference that uses variational inference techniques with MCMC
methods. It utilizes Tensorflow’s [141] GPU-based tensor operations, and potentially Google’s
TPUs [3]. [171] provides an optimized architecture for inference (which includes both
variational inference and MCMC) on BNNs with Gaussian priors. In comparison, AcMC?

only targets MCMC applications and cannot handle variational inference.
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5.10 SUMMARY

This chapter presented the design and evaluation of AcMC?, a compiler that can transform
PMs expressed in the BLOG PPL into optimized accelerators that compute inference queries
by using an ensemble of MCMC methods. We believe that AcMC? significantly simplifies
the process of constructing workload-optimized accelerators for executing inference on PMs,
making the benefits of such optimization available to a larger group of researchers. As a
result, AcMC? forms the basis for creating future high-performance SoCs for Al applications
that can be deployed as edge devices or in clouds.

Future Work. The design of AcMC?-generated accelerators in this paper assumes that
the PM models being compiled fit on a single FPGA. It is not impossible to conceive of a
PM for which that assumption would fail. We believe a solution will involve the distributed

execution of the ensemble samplers over multiple FPGAs and unreliable network links.
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CHAPTER 6: CONCLUSIONS

This thesis takes a first step towards building computer systems that can learn to efficiently
optimize performance on their own through reinforcement learning. We demonstrate that
learning-based systems are able to achieve superior performance than human-engineered
heuristics in a wide range of environments, from to cluster scheduling for complex data
processing jobs, to online error correction in performance counter measurements. The
key advantage of these data-driven approaches is their ability to tailor for the specific
deployment settings (e.g., network types, workload patterns, etc.) and to automatically
adapt to challenging environments, especially those for which the fixed heuristics were not
custom-designed in advance. Moreover, we have identified several key problem structures and
scalability issues that are unique to learned-computer-systems and have proposed solutions
to address these problems. First, that measurements, which drive the learned policies
in computer systems are intrusive, and can affect the overall performance of the system.
Majority of techniques that address measurement overheads, suggest limiting the number
of simultaneous measurements in some way. Hence, these techniques do not allow us to
consistently capture the state of the system, often leading to the collection of noisy or
imprecise state-data. Moreover, the noise increases as more parallel measurements are made.
A key contribution of this thesis is to demonstrate a Bayesian denoising (filtering algorithm
that can take support of coincident measurements to quantify the uncertainty (error) in a
measurement, and using this information, predict the correct value of the measurement. We
demonstrate how such a Bayesian filtering algorithm can be composed with downstream
deep reinforcement learning agent (for scheduling tasks to accelerators) that are trained
jointly through backpropagation. This composition technique is general, thereby allowing it
to be used across measurement modalities and controller/agent types. Second, we identify
the issue that as the number of learned-policies in a system increases, these policies can
interact with each other in complex, non-linear ways, leading to less than optimal (and less
than isolated) performance. The traditional approach for dealing with this issue requires the
ML-developer to jointly design and optimize all the policies that are deployed on a system.
A key contribution of this thesis is to demonstrate that each of these individual policies
can be automatically combined in a multi-agent reinforcement learning setting to alleviate
this challenge. We show that the functionality of modern OSs can be extended to provide
“virtualization” to ML-developers, where they can focus on building one model at a time,
and the OS can automatically integrate all of these individual models into a single large

system-level policy.
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To conclude this thesis, we outline some important research directions for extending the

ideas presented in this thesis.

6.1 LOOKING FORWARD

6.1.1 ML Models

Safe exploration and deployment. RL fundamentally requires the agent to explore
different actions in order to compare the empirical returns and learn. Context-free random
explorations, such as entropy-based policy randomization, can bring the system into an unsafe
region and lead to catastrophic outcomes. For example, when load balancing among several
heterogeneous servers, random workload assignment can systematically overwhelm some
servers while leaving others idle, which effectively reduces the service capacity. Moreover,
future data-driven systems should ideally train in a live system — in order to avoid inaccuracies
of a offline simulator [227]. Random exploration thus becomes a critical danger to a running
system and may even inhibit further learning (e.g., by creating an insurmountable backlog of
work that halts the generation of new learning experience). Moreover, learning methods that
can provide provable guarantees on system behavior and runtime performance, can be central
to future learned systems. The fundamental challenge in achieving this goal in deep RL is
that the agent’s superior performance often comes at the cost of using complex and not (yet)
interpretable neural network. Following this thesis’ line inquiry, of using assertions as a way
to capture poor RL decisions and falling back to the original policy, many research questions
are still open. For example, fallback policy can often dominate the system and prevent RL
exploration (e.g., when initial RL policy is weak and easily triggers safety violation), how
can we leverage the fallback policy experience for RL training as well? Can we robustly learn
the system dynamics and find a safeguarding policy when the dynamics of the system is not
unknown a priori?

Model-based learning. In this thesis, we mostly focus on model-free RL where we assume
the complex dynamics (i.e., state transition map) is unknown or hard to model. However,
system operators often do understand most parts of the system dynamics very well; it is
usually only a small component that creates all the uncertainty and complexity. Intuitively,
only learning the dynamics or response of the unknown component, rather than learning the
control policy for the entire system end-to-end, should have lower sample complexity (i.e.,
need a smaller amount of data to train). Therefore, efficient model-based RL is viable to
train in slow-to-interact environments (e.g., waiting to download a real video chunk without

simulation, executing the actual job binary in a cluster). In general, however, it is yet unclear
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how to optimally integrate a learned prediction model — which may be inherently inaccurate
— with the end-to-end system control.

Adapting to changing workloads. The high level promise of RL is to automatically
adapt and optimize for different kinds of system dynamics. In practice, however, the RL-
trained agent can only generalize to a narrow set of environments that are share similar
characteristics as the training environment. Hierarchical RL seeks to co-train a high-level
planning agent with a low-level action-taking agent [? ? |. Traditionally researchers apply
this approach to tasks that require sequential planning in a long time horizon (e.g., complex
games with multiple sub-tasks to solve). Based on different stage of a task, the planner
adaptively decides how to activate or tune the action-maker at the low level. This separation
of controller may be applicable to dealing with the change in workloads. Further, this can
help separate aspects of the decision making process that need to proceed at different rates of
incidence. For example, controlling low-level hardware processes as well as high-level cluster
level processes and policies. In principle, one can imagine a high-level agent that builds a
model for different families of workload patterns and adaptively tunes the low level agent to

adjust its policy for different actions.
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APPENDIX A: ACCELERATED LEVENSHTEIN DISTANCE
COMPUTATION

A.1 INTRODUCTION

The advent of high-throughput next-generation sequencing technology (NGS) has created
a deluge of genomic data for computational analysis [11]. Efficiently processing this data
requires the development of a new generation of high-performance computing systems that can
efficiently handle such data. This new generation of application-specific and accelerator-rich
computing systems are expected to gain performance, power, and energy improvements over
traditional systems [10].

A crucial step in a significant number of NGS data analytics applications (e.g., variant
discovery, genome-wide association studies, and phylogeny creation) is the mapping of
short fragments of sequenced genetic material (called reads) to their most likely points of
origin in the genome, popularly called the short-read alignment problem. This chapter
presents the design and implementation of ASAP, an accelerator for computing Levenshtein
distance [228, 229] (LD; used interchangeably with edit-distance) in the context of the short-
read alignment problem. LD is a measure of the similarity between strings, which is computed
by counting the number of single-character edits required to change one string into the other.
LD computation is a prominent underlying mathematical kernel that is common to a large
number of short-read alignment algorithms and tools (e.g., BLAST [230], Bowtie [159, 231],
BWA [232], and SNAP [164]), and is responsible for 50% — 70% of their runtime [140].

ASAP represents a novel approach to accelerate the LD computation, in that it uses
algorithmic approximations, and maps these approximations into hardware to significantly
improve overall performance (~ 200x compared to the CPU baseline). The core algorithm
in ASAP leverages two key observations about the computation and datasets involved in the

short-read alignment problem:

1. Although all the tools mentioned above calculate the exact value of LD between pairs
of nucleotide strings, they use them only to build a total ordering (i.e., an ordered list)
of the most likely points of origin in the genome. The best alignment is the pair of
strings corresponding to the minimum LD in the ordered list. Hence, it is sufficient to
only calculate the total ordering (in this instance, returning the pair that corresponds
to the minimum LD), and not essential to compute the exact value of the LD. This
distinction enables approximation in the computation of LD to gain performance, while

preserving the overall accuracy of the alignment algorithm (which comes from the total
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ordering).

2. Modern sequencing platforms (like the Illumina HiSeq 2500) represent a very low
sequencing error regime (< 1%) [233, 234], and modern alignment tools (mentioned
above) have accurate candidate region-matching algorithms (described in Appendix A.2).
Hence, LD computations process significantly more “matches” than “mismatches,” in
the majority of sequencing experiments.! The ASAP architecture uses this heuristic to

accelerate LD computation (described in Appendices A.3.1 and A.3.2).

To take advantage of these observations, ASAP augments RaceLogic [235]% using application
heuristics, as well as hardware architectural optimizations to realize the design on FPGAs. In
particular, this chapter proposes (i) a mechanism to encode LD computation parameters (e.g.,
gap-penalties; described further in Appendix A.2) into the ASAP architecture, making it
possible to map the time taken to process a “match” exactly as a circuit delay. This mapping
gives us the ability to tune the performance of ASAP to match data characteristics; and
(ii) the use of “zero delay” circuit elements to explore large portions of the search space (LDs
of substrings of the strings being compared) in parallel within one clock cycle, and to ignore
parts of the search space that do not contribute to an answer, thereby saving energy. Overall,
ASAP can compute alignments quickly (~ 200x faster than the CPU baseline and ~ 50x
faster than an equivalent RaceLogic design), and with the same accuracy as traditional
software- or hardware-based alignment tools. We leverage reconfigurable FPGA devices to
prototype ASAP, thereby allowing us to reconfigure the accelerator based on user decisions
on input parameters (described in Appendix A.2), as well as to adapt the accelerator to input
NGS datasets of varying read lengths.

Contributions. To summarize, the primary contributions of this chapter are as follows:

1. Presents a measurement-driven study that demonstrates that computation of LD

represents a significant portion of the runtime of several short-read alignment programs.

2. Builds on top of the delay-based computation paradigm presented in [235] to encode gap-
penalties as “zero delay” circuit elements. This allows us to calculate approximate the
LD between strings by using combinational circuit elements. We prove the correctness
of this encoding and demonstrate that the result of the approximation can be used as a

proxy for computing LD in short-read aligners. That is, a tool using the approximation

IThis is a facet of the accurate sequencing process and the thoroughly validated reference genome for
human subjects. This observation will also apply to most model organisms whose genome has been extensively
studied.

2RaceLogic uses propagation delay of circuit elements to perform computations.
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and the accelerator produces alignments identical to those of tools based on traditional

methods (e.g., BWA-MEM [232]).

3. Presents an FPGA-based implementation of the accelerated LD computation in the
ASAP accelerator that leverages the coherent accelerator-processor interface (CAPI) (96,

236] for communication between the host and accelerator.

4. Demonstrates that ASAP on an FPGA is able to accelerate the runtime of the LD
computation by 200x compared to a Smith-Waterman-based and 40 — 60x compared
to a Landau-Vishkin based IBM Power8 CPU execution. As well as 5x better that
competing FPGA implementations.

5. Demonstrates that integration of the ASAP accelerator into a short-read alignment
frameworks SNAP and BWA-MEM. In both cases this results in a 2x, 1.9x perfor-
mance improvement respectively, which is close to the Amdahl’s law limits for these

applications.

Other Applications. Our approach can be adapted to a variety of other problems in
which a total ordering of LDs is computed. For example, in signal processing, where similarity
between signals is computed [228]; in text retrieval, where misspelled words have to be
accounted for in a dictionary [237]; and in computer-security where virus- and intrusion-
detection requires comparison of signatures [238|.

Organization. The remainder of this chapter is organized as follows. Appendix A.2
describes LD computation and its use in popular short-read alignment tools. Appendix A.3
briefly describes (i) a mathematical formalism for encoding computation in circuit delays;
(ii) the approximation at the core of ASAP and prove its correctness; and (iii) presents
the hardware architecture of ASAP leverages this approximation algorithm. Appendix A.4
presents the evaluation of the accelerator. Appendix A.5 compares the ASAP approach
to other hardware accelerated approaches for computing LD, and, finally, we conclude in
Appendix A.6.

A2 LEVENSHTEIN DISTANCE COMPUTATION AND SHORT-READ ALIGNMENT

Traditional methods for aligning reads to a reference genome find the position (locus)
of a single read in the reference by minimizing the maximum edit distance between the
short read being aligned (called the query, and denoted by @) and the reference genome
sequence. The Smith-Waterman algorithm (SW) [239] and Needleman-Wunsch algorithm

(NW) [240] utilize a dynamic programming-based algorithm to calculate the alignment score
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(Levenshtein distance) between the read and a particular section R of the reference genome,
accounting for base pair substitutions, insertions, and deletions. Both of these algorithms
work by constructing a matrix S (which is used interchangeably with lattice) of size lg X g,
where lg and [ are the lengths of the two strings, between which the edit distance must
be calculated. Consider a matrix S in which the (i, j)™ entry, S(i,7), is the minimum edit

distance between the sub strings Q[1 : j] and R[1 : 4. S(i,7) is recursively defined as

S(i—1,7) + A(=, Ry),
Si—1,7—1)+ A(Qi, R))

where A corresponds to input parameters called gap penalties. These A-parameters assign
scores for insertion, deletion, match,® or mismatch between the sequences such that a
more desirable outcome has a smaller score associated with it. The parameters A(Q;, R;),
A(—, R;) and A(Q;, —) correspond to the match/mismatch, deletion, and insertion penalties
respectively. These parameters are chosen to optimize the accuracy of alignments based on
prior information about the sequences being compared (e.g., evolutionary information about
mutations in a population [241, 242, 243]). This chapter describes the use of constant gap

penalties (i.e., a fixed score is assigned to every gap between nucleotides). That is,

A(Qi,R;)) = A(Match) if Q; = R;

A(Q;, Rj) = A(Mismatch) if Q; # R; VRO, (A.2)
A(—,R;) = A(Delete) s '
A(Qi,—) = A(Insert)

Such gap penalties are are commonly used in DNA alignment (e.g., in NCBI-BLASTN, or
WU-BLASTN [241]).

The NW algorithm computes a global alignment in which the entirety of the query is
matched to the reference, as shown in Fig. A.1. It does so by computing the value of S(m,n).
The SW algorithm computes a local alignment and matches the largest (substring) of the
query to the reference, and, hence, needs to calculate the minimum value in the row S(m, —).
For example, when the strings AGCACACA and ACACAACT are compared with constant penalties
A(Match) = 0, A(Mismatch) = 2, and A(Insert) = A(Delete) = 1, we get the matrix
described in Fig. A.1. The optimal alignment is then calculated from this matrix by finding
the minimum weighted path (in S) from (m,n) to (0,0) in the NW algorithm and (m, ) to

3Gap penalties traditionally do not have match scores. We group them together for simplicity in our
notation.
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Figure A.1: The matrix S for the strings AGCACACA and ACACAACT, assuming A(Match) = 0,
A(Mismatch) = 2, and A(Insert) = A(Delete) = 1. The colored paths from S(8,8) and
S(8,6) to S(0,0) show the optimal alignments produced by the NW and SW algorithms,
respectively.

(0,0) in the SW algorithm. A corresponds to the largest substring of the reference to which
the query string maps with the lowest LD.

Although these methods are guaranteed to produce the optimal alignment, they are
prohibitively expensive for whole-genome alignments because of O(lg X lr) space and time
complexity. Therefore, a large number of alignment tools are designed to heuristically reduce
the search space required to find the optimal match of a query in the reference. An extensive
amount of research, e.g., [159, 164, 230, 231, 232, has been conducted, focusing on indexing
strategies for the reference genome to rapidly reduce the number of candidate locations
that have to be searched. Most of these tools use some variant of a backwards search
algorithm utilizing an FM-index [244| or a hash-table-like data structure. As a result of
this reduction in the search space, linear-time heuristic algorithms like the Landau-Vishkin
algorithm (LV) [245] (in addition to traditional algorithms like SW and NW) can be applied
to the sequence alignment problem in SNAP [164], to compute edit distance accurately
up to a particular number of mismatches (assuming that correct alignments have lower
numbers of mismatches). Alg. A.1 describes the skeleton of these heuristic accelerated
algorithms for single-ended read alignment [246|. The definitions of the Build_Index,
Candidate_Locations, Edit_Distance, and Find_Config functions define different variants
of these algorithms. For example, Table A.1 defines the BWA-MEM and SNAP alignment
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Table A.1: Mathematical formulation of different aligners to fit them into the structure of
Alg. A.1.

Function BWA-MEM [232] SNAP [164]

Build_Index Burrows-Wheeler transform [247] of prefix trie Ukkonen’s algorithm [248]
Candidate_Locations Prefix trie traversal Hash table lookup
Edit_Distance Smith-Waterman algorithm [239] Landau-Vishkin algorithm [245]
Find_Config Smith-Waterman algorithm [239] Landau-Vishkin algorithm [245]

Table A.2: Distribution of runtime across the steps of Alg. A.1 for the SNAP tool aligning
an in-sillico human genome with 50x coverage.

Lines in Alg. A.1 % of runtime # of calls

Line 5 6.79 1.5 x 101
Line 6 18.59 6 x 1010
Line 7 59.22 8.3 x 10"
Line 8 9.25 1 x 100
Misc 6.15 —

tools by substituting these placeholder functions with specific algorithms.

We performed a profiling study of the SNAP aligner on an in-sillico (from an Illumina
HiSeq 2500) whole human genome [249] with 50x coverage (i.e., each nucleotide of the
reference is backed by an average of 50 reads that align to that base) on the Blue Waters|250]
supercomputer. We chose the SNAP aligner in particular because it is significantly faster
than other alignment tools like BWA and Bowtie. Also, as the LV algorithm used in SNAP

has a linear time complexity, its comparison to ASAP as the CPU baseline is much more

Algorithm A.1 Algorithmic skeleton for single-ended short-read-alignment algorithms.

Input: NGS Read Dataset, Reference Genome
Output: Aligned positions and mapping of reads in Reference Genome
ngsdata < Set of reads
reference < String(s) corresponding to a reference
index < Build_Index(reference)
alignment <+ ()
for read € ngsdata do
locs +— Candidate_Locations(read, index)
opt < arg min;,.c;,..(Edit_Distance(read, loc))
config < Find_Config(read, opt)
alignment < alignment U config
end for
: return alignment

—_ =
—- O
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challenging. Table A.2 describes the distribution of runtime across for the SNAP aligner for
corresponding steps of Alg. A.1.* These measurements, along with static analysis of Alg. A.1,

show the following:

1. The LD computation corresponds to nearly 60% of the running time of the SNAP

aligner.

2. The LD computation is one of the most frequently called algorithmic kernels in the

alignment process (on average called 54.1 times per read).

3. The LD kernel is used to build a total ordering of all candidate locations for a read in
the reference; refer to Line 7 of Alg. A.1.

4. The backtrack-based alignment [239, 240] is computed only for the best-matched

location in the reference.

5. The remaining portion of SNAP’s runtime (after the LD computation) is spent in either
memory or 10 bound computation (e.g., hash table look-ups and reading/writing files).
This part is unsuitable for acceleration on PCle-based devices because of the time-cost

associated with performing data transfer over the bus.

A.3 DESIGN OF THE ASAP ACCELERATOR

This section describes the approximation algorithm that drives the design of ASAP,
provides a proof for its correctness, and describes its implementation in programmable
hardware. Appendix A.3.1 briefly summarizes the RacelLogic chapter [235], describing
an formalizing the encoding the computation of LD scores into circuit propagation delay.
Appendix A.3.2 describes the approximation at the heart of ASAP: using the ability to
directly tune the performance of the algorithm to input-data characteristics (i.e., using
circuit propagation delays encode both the algorithm and its computation time), we show a
method to chose appropriate propagation delays to compute approximate answers for LD
while maintaining their total ordering (i.e., satisfy the application invariant for correctness).
Finally, Appendices A.3.3 and A.3.4 describes the ASAP FPGA implementation.

4Note that some steps of the SNAP aligner implementation includes a variety of other miscellaneous tasks,
e.g., memory allocation, IO. These are collectively described in the “Misc” category. Also note, the SNAP
aligner is optimized to perform asynchronous pre-fetch based disk 10. Hence wait time for IO is minimized.
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Figure A.2: Computing with propagation delays: Delay-based proxy for the addition
operator is a series connection, and the proxy for the min operator is the OR gate.

A.3.1 Encoding LD Computation as Propagation Delays

The core idea is to map addition and minimization, the two mathematical operators
necessary for the recursive computation defined in (A.1), to particular topologies of circuit

elements. Fig. A.2 illustrates the mapping explained here:

1. If circuit elements are combined in series, the net propagation delay of a signal is the
sum of the propagation delays for all of the individual elements. This construction is a

proxy for addition.

2. If two circuit elements are connected to an OR gate, the signal that emerges out of the

OR gate corresponds to the signal that arrived first at the gate. This construction is a
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1
1
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Figure A.3: Example of the encoding, computation, and decoding phase for computing
“min(X +2, X +3)” using the circuit-delay proposed in RaceLogic [235]. Note that we present
this example using shift-registers for delay elements as opposed to comparators proposed
in [235].
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proxy for the minimization operator (in particular, the rising edge of the OR gate’s

output computes a minimization in time).

For example, Fig. A.3 demonstrates the computation of “min(X + 2, X + 3)” using the
aforementioned delay based computing. In the example, X corresponds to an arbitrary input
signal that is represented in the delay encoding, the 2- and 3-length shift register serving as
the delay element implementing the - 4+ 2 and - 4+ 3 operator respectively, the OR gate serves
as the minimization operator and the counter serving as the decoder.

We formalize this delay based computation succinctly in the following lemma.

Lemma A.1. Propagation-delay-based computation can occur on a tropical semiring struc-
ture T over {0} UZ™ (i.e., time measured in clock ticks) that defines a binary addition
operation, a minimization operator (using an OR gate), and a maximization operator (using

an AND gate).

The delay-based proxies for the addition and minimization operators can be used by
replacing the LD values S(7,j) in (A.1) with the equivalent propagation delays. The
resulting circuit represents the application of the addition and minimization operators in
the computation of S(i,7). Fig. A.4 shows the structure of the circuit that produces this
computation. It is composed of a lattice of lg x [g delay elements (DEs). The connections in
the lattice build on the recursive definition of S: each DE D(i, j)’s inputs are connected to
the outputs of the preceding elements D(i — 1,5 — 1), D(i — 1,7), and D(i,j — 1), and its
outputs are connected to the input of D(i + 1,5+ 1), D(i 4+ 1,75), and D(i, 7 + 1). At a high
level, each DE is composed of three delay blocks: (i) Dy, (delay due to match or mismatch at
(1,7)), (ii) Dy (delay due to insertion at (4, 7)), and (iii) Dp (delay due to deletion at (i, j)).
This design is specialized for FPGAs in Appendix A.3.3)

The computation can be started by injecting a high signal (logic value 1) at the inputs of
index D(0,0) in the array. The time-encoded value of the LD is then found by measuring the
propagation delay of the signal exiting the array of delay elements. Note that the delay-based
computation can be applied to all variants (SW, NW, and LV) of the LD computation as

follows.

1. The delay-based version of the SW variant can be computed by measuring the delay
between the introduction of the input signal in the lattice, and its emergence at any
of the delay elements on the last row, i.e., (Ig,—)" DE. Fig. A.4 illustrates this

configuration.

2. The delay-based version of the NW variant can be computed by measuring the delay
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Figure A.4: High-level design of the ASAP accelerator to compute the minimum edit
distance between two strings. The accelerator lattice is of size g X {r, where lg and [y are
the sizes of the query and reference, respectively.

between the introduction of the input signal in the lattice, and its emergence at the

(Ir,lo)™ DE. This configuration is also shown in Fig. A 4.

3. The delay-based version of the LV variant can be computed by assigning the maximum
permissible LD as the result of the computation. This represents the “timeout” with
which the signal wavefront will emerge from the DE lattice. If the timeout is triggered,
the maximum value of LD, as set by the user, is used as the result of the computation.
One delay element and one AND gate (not shown in the Fig. A.4) suffice to implement

the timeout.

A.3.2 Approximating LD Computations in ASAP

A key aspect of the aforementioned method is the mapping of gap-penalty parameters
(A-parameters) to their corresponding circuit delays. The ASAP accelerator uses this mapping
both to encode the approximation (mentioned in Appendix A.1), and to reduce the time

taken to do the “match”™based computation. Both actions are formally stated below.

Definition A.1. A Delay Encoding Function € : R — 7T is a mapping between the set of
real numbers and its propagation-delay-based representation. £ is constrained to obey the
Cauchy functional equation (€(x +y) = E(z) + E(y)).
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More general delay encoding functions can be considered, for example in analog circuits,
where circuit elements do not exhibit linear behavior for all inputs. We constrain ourselves to
those that satisfy the Cauchy functional equation (CFE) because of simplicity in proving of
correctness of the transformation. Although the domain of £ can be the set of real numbers
R, the ASAP implementation presented in this chapter uses integer or rational gap penalties
which can be easily mapped to integer delay values (which can further be represented as a
multiples of the clock width).

Definition A.2. A j)-parameter is the time-encoded representation of a user-inputted A-

parameter. That is

d(Insert) = E(A(Insert))

) (A(
d(Delete) = E(A(Delete))
d(Match) = E(A(Match))
d(Mismatch) = &(A(Mismatch)) (A.3)

These parameters are used to define the delays in the D,;, D;, and Dp blocks. Note
that we have assumed that A(Match) = 0, and thus 6(Match) = £(0) is also 0 based on
Definition A.1.

Based on definitions A.1 and A.2, we now show that any encoding of §-parameters based

on & produces the same ordering of LDs as the original algorithm.

Lemma A.2. When a query string ) and a reference string R are compared under the
traditional (see (A.1)) and delay-based algorithm for computing LD at loci Iy, ..., [, of the
reference, to produce LDs eq,...,e, and propagation delays di,...,d,, respectively, then

d; = £(e;), and consequently
e; < e; <= 5(61) < S(ej) — d; < dj VZ,j (A4>

Lemma A.2 is sufficient to show that using the ASAP accelerator to compute LD in the
context of Alg. A.1 (in line 7; i.e., using an “arg min” operator over the results of multiple
executions of the ASAP accelerator) produces the same result as the traditional algorithm
(without requiring the computation of the inverse for £). A key observation in the formalism
of £ is that the choice of the numerical values of § can be tuned to directly change the
performance of the accelerator, as they corresponds to circuit propagation delays. That is,

the parameters and inputs to the accelerator jointly define the net propagation delay of

106



the circuit. Below we demonstrate one such transformation, which forms the core of the

approximation used in ASAP.

Lemma A.3. When a query string () and a reference string R are compared at loci [y, ..., [,
of the reference, they produce LDs e, ..., e, for gap penalties A, and LDs €,..., e, for gap
penalties A + k, for some number k. The €} obey the relationship: ¢, = e; + n;k, for some

n; € Z such that (n; > 0) A (e; <e; <= n; <n;), and consequently
ei <ej = ¢ <€) Vi,j. (A.5)

Our algorithm for the approximation at the core of ASAP uses Lemmas A.2 and A.3 to
select values of the delay-encoded parameters that correspond to minimizing the time taken
to process a dataset. For example, to optimize performance for our observed case of most
nucleotides corresponding to “matches,” we modify the gap-penalties to set the match penalty
(i.e., 6(Match)) to 0 cycles®. This transformation uses a two-step process to convert (encode)

user-inputted A-parameters into d-parameters:
1. A — A+ k, choosing k so that A(Match) = 0 after the transformation;
2. A+kw E(A+E), with £(z) = mz to produce the required delay value.®

As a result, the parameters in the LD algorithm are tweaked to better suit the delay-based
computation hardware. The answer (i.e., the exact values of LD) produced by this approximate
version of the algorithm is not identical to that produced by the original algorithm. However,
based on the aforementioned lemmas, we can see that the total ordering created by the
approximated LDs is identical to that of the original algorithm. Furthermore, assuming
that most nucleotide comparisons are matches (which is true for the indexed reference-based
techniques described in Appendix A.2), this encoding ensures that (almost) zero time is taken
to explore large portions of the search space that correspond to matches. We explore the
relation of this optimization to timing closure on the FPGA design in Appendix A.3.3. In
other re-sequencing experiments, where “matches” do not represent the common computation,
a user can set 6(k) = 0 for k € {Insert, Delete, Mismatch}. Note that in our formulation
of the problem (as described in Appendix A.2), A(Match) is required to be the minimum

positive value amongst all the A-parameters.

5True “0 cycle” propagation delay is not possible because of finite combinational and wire delays in the
circuit. Here we imply that the computation is done in combinational logic, whose propagation delay is much
much lower than the clock width of the circuit (i.e., 0 time). This is explained further in Appendix A.3.3.

6The choice of k and m has to ensure that none of the encoded gap penalties are negative. As the encoded
values represent circuit propagation delays, negative numbers are meaningless.
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Figure A.5: An example of the ASAP accelerator processing the same inputs used in
Fig. A.1. The signal wavefront is shown progressing through the ASAP lattice until the
outputs of the SW and NW algorithms are produced in 2 and 4 clock cycles, respectively.
The values in the matrix represent the clock cycles in which the corresponding DEs were
enabled.

Consider the example of computing the LD between the strings AGCACACA and ACAACAACT,
presented in Appendix A.2. Based on our encoding mechanism (k = 0,m = 1), we compute
the d-parameters of the ASAP accelerator as 6(Match) = 0, §(Mismatch) = 2, and 6 (Insert) =
d(Delete) = 1. Fig. A.5 illustrates the propagation of the signal wavefront through the ASAP
accelerator for that example. The accelerator produces an output for the SW notion of
LD (local alignment) in two clock cycles and the NW notion of LD (global alignment) in
four clock cycles. The figure shows the portion of the array explored and the value of the
propagation delay at each element D(i, 7) of the lattice. Note that some portions of the array
are not explored at all (e.g., for SW and NW, only 25 and 53 DEs out of a total of 81 are
triggered, respectively). This design thus provides a large savings in both time (using “zero
delay” circuit components for the most commonly used computation) and power (clock-gating
unused DEs with their input signals ensures minimal power usage) compared to traditional
methods.

To summarize, using the encoding of J-parameters described in this section, the ASAP

accelerator has two clear advantages over traditional techniques:

1. Faster Processing: One can explore large portions of the search space in a small amount

of time by setting delay parameters appropriately.

2. Energy Savings: DEs in the ASAP lattice are used only when their output can contribute
to the answer; otherwise, they are switched off to save energy. This can be accomplished

by clock-gating the DEs with their input signal.
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Figure A.6: Design of a single delay element D in ASAP. The DE is composed of three
separate delay units corresponding to D, Dy, and Dp in Fig. A.4.

A.3.3 ASAP: The FPGA Implementation

Why FPGA?

The techniques discussed so far in the chapter represent an approximation technique and
architecture, one which can be implemented ASICs, FPGAs, or any other platform. The
original RaceLogic design was demonstrated in simulation as an ASIC [235|. However, some
key characteristics of the short-read alignment problem and the ASAP architecture make
ASAP particularly suitable for FPGAs, as they offer programmability and reconfiguration.
The ASAP accelerator is runtime-programmable only for changing the values of gap penalties.
The input data size, which defines the size of the accelerator lattice, is fixed at compile
time. To allow users to sweep experiment such “meta-parameters”’ (i.e., input data size,
gap-penalty bit-width, and input encoding), ASAP is designed to be re-synthesized and
re-programmed on an FPGA. Potentially, the use of partial reconfiguration can allow users
to change these parameters on the fly. We leave this possibility for future work. We discuss
the advantages of the ASAP design compared to the commonly used systolic array based
design (e.g., [251, 252, 253, 254, 255]) in Appendix A.5.

Design of a Delay Element

The overall architecture of the ASAP accelerator is shown in Fig. A.4. Fig. A.6 shows the
design of a single DE. A DE utilizes sequential logic in the form of a shift-register to add
a user-specified amount of delay. Each DE has (i) three input signals (representing input
wavefront) that connect it to its preceding DEs in the grid, (ii) two input signals representing
the nucleotides being compared by the element, and (iii) three input signals representing
the d-parameters. Each DE has one output signal representing the propagated wavefront

after the delay has been added. The match, mismatch, insertion, and deletion delay penalties
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are defined in terms of multiples of the clock period. When the input signal wavefront first
reaches an element, it is propagated through a shift register to create delay. Based on the gap
penalty specified for match/mismatch, insertion and deletion, the DE propagates the input
signals to the output. The output of each flip-flop in the shift register is muxed to allow for
the selection of the bit corresponding to the gap-penalty of the block (illustrated in Fig. A.6).
The ASAP array allows the user to program (i.e., dynamically set at runtime) the values of
the select lines of these MUXs. This provides the ASAP array with a degree of programmability,
allowing it to be reused across computations that merely require re-parameterization of the
gap-penalties. Changes in input-sizes, or the dynamic range of the gap penalties (i.e., number
of bits required to represent the gap-penalties) requires a re-synthesis and reconfiguration of
the accelerator on the FPGA.

As described in the motivating example for the ASAP accelerator given in Fig. A.5, the
power of the ASAP accelerator is that it can explore a large portion of the search space of
possible mappings between the query string and the reference within a clock cycle by setting
d(Match) = 0. This improvement in computational speed can be coupled with a decrease in
energy consumed by the accelerator by clock-gating the DE (illustrated in Fig. A.6) with the
input signal.

The approach mentioned above has problems with long chains of combinational logic and
may lead to timing violations on large lattices of DEs. To get around this problem, larger
lattices of delay elements are composed by using the smaller tiles of ASAP accelerators (for
which the timing violations do not occur) and by adding a sets of clock-triggered flip-flops
between the tiles to break the chains of combinational logic (see Fig. A.7). Further, the

diagonal tile crossing (i.e., the flip-flops at the lower right corner of the tile) corresponds
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to a 2 cycle delay (i.e., two flip-flops in serial). Although the additions of the tile flip-flops
changes the results of ASAP from what was described in the last section, the overall total-
ordering is preserved, as this constitutes a constant addition of delay to all outputs of the
ASAP accelerator. Each tile is synthesized, optimized, and placed-and-routed separately by
defining separate design partitions. This approach prevents the compiler from performing
optimizations across partition boundaries [256]. This approach also ensures that unintended
wiring delays do not creep into the netlist of the ASAP accelerator.

The counter that decodes the delayed signal output from the ASAP lattice (shown in
Fig. A.4) is designed based on a computation of the number of clock cycles for the signal
wavefront to emerge from the lattice. The bit-width of this counter, N,, is calculated from

the sizes of the input strings and the user-input gap-penalty parameters, and is given by

Srlo + 6pl
N, = {bggmin{ 1tQ + onth, H (A.6)

dmlo + op(lr —lg)

This expression is an upper bound (albeit a loose one) on the maximum delay caused by a
DE.

Scalability Issues in the ASAP Accelerator

There are challenges involved in scaling the ASAP accelerator to large input sizes and

large gap penalties. Those challenges can be addressed as follows:

1. Large Input Sizes. The size of the reference and read strings being compared in the
ASAP accelerator plays a role in the size of the lattice defined by the ASAP accelerator.
The size of the accelerator grows as O(lg x s) with the input size”. The tile size
parameter defines a tunable knob to control the critical combinational path in the
circuit. It can be used to trade off performance against meeting timing closure as the
size of the accelerator grows to a significant portion of the resources available on the

FPGA. Appendix A.4 demonstrates our scaling experiments with the accelerator.

2. Large Gap Penalties. A large dynamic range of the gap-penalty values negatively affects
the ASAP accelerator, as it increases the size of the shift-registers and multiplexers
in the DE (see Fig. A.6). We work around this problem by using BRAM-based shift

registers, which can be ~ 10% bits long (without intermediate routing). In general, we

"This corresponds to quadratic growth in size of the ASAP lattice (i.e., O(n?)) when lg = s = n.
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Figure A.8: Elimination of unused tiles from the ASAP lattice in the case of LV variant of
the LD algorithm

do not expect large gap penalties to be a problem for genomic sequences (as opposed

to protein sequences), for which the dynamic range in gap-penalties is low.

3. Potentially Unused Tiles. Fig. A.5 shows that a large part of the ASAP array is not
involved in computation when the input strings have low LD (which is indeed the case
in the short read alignment problem). There are several ways to tackle the problem
of unused tiles across the three variants of the LD computation (i.e., SW, NW and
LD). As mentioned earlier, in the case of SW or NW, clock-gating individual delay
elements ensures minimal power consumption. Further, in the LV case, as a the worst
case LD is specified, we can use this information at compile (in this case synthesis) time
to eliminate part of the ASAP lattice that will not contribute to an answer. Fig. A.8
illustrates such an elimination on an 18 x 18 lattice with a maximum of 6 insertions or

deletions permitted, resulting in a 56% (= 20/36 x 100) reduction in area.

Issues with Timing Closure

Computing with propagation delays is disadvantaged by the fact that thermal dissipation
and temperature variations at different parts of the FPGA chip to change the physical time
associated with unit delay. However, the ASAP accelerator is resilient to these thermal

changes up to the maximum operating temperature of the FPGA (i.e., timing violations
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Figure A.9: The design of the interface between the host Power8 processor and the FPGA
running the ASAP accelerator using the CAPI interface. The diagram assumes an ASAP
accelerator that computes on input strings that are 64 nucleotides long and encoded as 2 bits
per nucleotide.

do not occur). Further, only delays that are multiples of the clock period can affect the
computed LD. The tile length serves as a tunable knob between runtime performance and
worst case negative slack for the circuit. This slack is enforced by the compiler (e.g., Xilinx
Vivado, Altera Quartus) as only values of tile length for which timing closure can be met can
be used in the FPGA. Furthermore, the counters in Fig. A.4 that measure edit distance are
synchronously triggered by the clock, thereby ensuring that all delay-based LDs are computed

as multiples of the clock cycle.

Encoding Input Sequences

The implementation of the ASAP accelerator assumed use for genomic data, implying that
the entire alphabet can be represented in two bits (i.e., A, C, G and T). The bases N, -, R,
Y, K, M, S, and W (which represent an unknown or ambiguous nucleotide) are removed from
the alphabet. Our design could potentially be extended to larger alphabets, e.g., for protein

sequence alignment.

A.3.4 Host-to-Accelerator Communication via CAPI

Communication between the host and accelerator is implemented using the CAPI inter-
face [96, 236] provided on an IBM Power8 CPU. The CAPI interface gives an accelerator
(a PCle-attached FPGA) coherent access to the virtual address space of a process running
on the host CPU, with all address translations from virtual to physical memory done in the

CPU. Fig. A.9 shows the interface and mechanism by which the host CPU communicates
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with the ASAP accelerator. The PowerS8 is a superscalar symmetric multiprocessor, that has
12 cores per chip, with up to 8 hardware threads per core. All cores have access to shared
memory through a PowerBus (shared memory bus). The Coherent Attached Processor Proxy
(CAPP) enables the interface (CAPI) by maintaining a directory of cache lines held by the
processor and providing coherency by snooping the PowerBus on behalf of the accelerator (or
any other PCle device). The PCle host bridge provides connectivity between the CAPP and
the Power Service Layer (PSL) on the FPGA over the PCle bus. The PSL on the accelerator
acts as a proxy for the CAPI protocol on the FPGA, communicating between the CAPP and
the Accelerator Functional Unit (AFU). The AFU contains the custom acceleration logic and
reads/writes coherent data across the PCle. The PSL unit runs at the same speed as the
PCle bus (250 MHz). It contains a memory management unit (MMU) to handle address
translation on the accelerator side on its copy of the processor’s cache directory.

The AFU interacts with the PSL to provide word-level read and write commands. If these
requests are made to cache lines (which are 1024 bits long) in a shared or exclusive state on
the device, they are served locally. Otherwise the PSL interacts with the CAPP over the
PCle bus to attempt virtual to physical address translation, loading of the cache line from
main memory (if it is already not present in the processor’s cache), moving (or copying of)
the cache line to the PSL, and changing the coherence of the cache line in the processor’s
directory (236, 257]. We use the AFU in dedicated mode, meaning only one MMU context is
supported by the accelerator. That is, only one user-space process can use the accelerator at
one time.

Fig. A.9 shows the configuration of the interface to the PSL for an ASAP accelerator
that computes on two 64-bp strings, with each nucleotide encoded by two bits. Hence
the accelerator takes 256-bit inputs (64 bp x 2 bits/bp x 2) and produces a propagation
delay measurement encoded in 32 bits (to keep with the signed integer implementation in
short-read aligner), which is the number of clock cycles for the signal to emerge from the
ASAP accelerator (depending on whether the SW or NW algorithm is used). There is an
internal 32 kB cache, which has a 1024-bit input port connected to the PSL, and a 1024-bit
output port that is connected to the input of the ASAP accelerator. This cache is configured
in a modified FIFO configuration; each entry in the FIFO contains multiple input cases (in
this case, four). A 4 x 1 MUX controlled by the AFU control unit is responsible for producing
256 bits at a time from the 1024-bit input. The AFU packs the 32 bit outputs from the
ASAP array into 1024 bit cache-lines before writing them back to the address space of the
host over DMA. The AFU uses the work element descriptor (WED; [236]) to communicate

the pointer to the input and output, as well as the progress of the accelerator.
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Figure A.10: Layout of the accelerator on the Xilinx Virtex 7 XC7VX690T FPGA. The
design implemented above has 4 instances of the ASAP accelerator and the IBM CAPI
interface for host-accelerator communications.

A4 EVALUATION AND DISCUSSION

Experimental Setup. The ASAP accelerator is implemented in Chisel [43| and can
potentially be compiled across FPGAs by Xilinx and Altera. The host-accelerator interface
(which utilizes IBM CAPI) is implemented in VHDL and is specific to an IBM Power8 S824L
system with an Alpha-Data ADM-PCIE-7V3 board (that uses a Xilinx Virtex 7 XC7VX690T
FPGA) clocked at 250 MHz. All measurements (baseline CPU as well as FPGA-based) were
done on this machine. Fig. A.10 illustrates the layout of four ASAP lattices and the CAPI
based interface on the Virtex 7 FPGA mentioned above.

Input Data & Validation. All inputs for the experiments presented in this section
are derived from the human reference genome hg38 by simulating [249] 100 million reads
of appropriate length. The read simulation introduced random mutations and simulated
sequencing-error models from an Illumina HiSeq 2500 with a 0.1% sequencing error rate.
We verified the correctness of our implementation through comparison with (i) answers
generated from the software tools (i.e., BWA [232] or SNAP [164]); (ii) the ground truth
values generated by the simulator.

The remainder of this section is organized as follows. In Appendix A.4.1 we discuss mi-

crobenchmark performance (in terms of runtime, communication bottlenecks, FPGA resource
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Table A.3: Comparison of median run-time for LD computation on CPU and ASAP (SW
& LV configurations). Rows marked with “*” are simulated results. The LV configuration
uses k = 1/axRead Size.

SW Configuration LV Configuration
Read Size CPU ASAP Speedup CPU ASAP Speedup
64 1890 pus  10.3 us 183 x 238 us 6.8 us 34.8 %

128 2083 us 10.7 us  194x 49T pus 10 ps  49.7x
192%* 3326 us 16.4 us 203 % 729 us 163 s 44.7x
256* 3906 pus  17.2 ps 219x% 944 ps  17.2 us 54.9%
320%* 4484 pus  18.9 ps 237x 1190 ps  18.8 us 63.3 %

utilization, and energy consumption) of various configurations of the ASAP accelerator. Then
in Appendix A.4.2 we discuss the end-to-end performance of integrating the ASAP accelerator
into the SNAP [164] and BWA-MEM |[232] aligners.

A.4.1 Microbenchmark Performance

Performance of the Accelerator

In this section we compare the performance of ASAP-accelerated LD computation against
their respective CPU baselines. Here we do not account for time taken to perform disk 10,
serialization /de-serialization (i.e., parsing inputs, writing in-memory data structures to disk),
and reference lookups (see Appendix A.2) that are required as a part of the end-to-end
computation. These other factors are described in Appendix A.4.2.

SW Configuration. The ASAP accelerator is approximately 200x faster than the
baseline C implementation of the SW algorithm for computing LD that is optimized to
use single instruction multiple data (SIMD; e.g., Intel AVX instructions) and simultaneous
multi-threading (SMT; e.g., Intel Hyperthreads) based multi-threading [258]. The baseline
implementation exploits inter-task parallelism (i.e., data parallelism) by processing multiple
reads across threads. Table A.3 describes the comparison of the performance of a single
lattice ASAP accelerator. Having multiple cores on the CPU or multiple ASAP lattices on
the FPGA does not change this comparison, as each core/lattice is expected to be computing
a separate unrelated instance of the LD computation. The performance of ASAP depends
not only on the size of the inputs, but on the inputs themselves (i.e., more mismatched
inputs mean a higher computation time). Hence we present all ASAP measurements as the

median across all the randomly generated reads. We observe that a single ASAP lattice
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shows ~ 200x speedup relative to a single CPU core (containing 8 SMT threads and SIMD
units), with potential improvements in performance with growing input size (see Table A.3).
Overall, a Power8 CPU chip contains six such cores, whereas our implementation of ASAP
can scale to four lattices (see Fig. A.10). Hence a chip-to-chip comparison yields a 133x
improvement in performance.

Fig. A.11(a) illustrates the latency of the accelerator (without the overhead of commu-
nication between the host and device) in computing LD (in the SW sense) for a single
read-reference pair. In contrast to traditional systolic-array-based accelerators, ASAP needs
to update only the cells (DEs) that can contribute to the LD computation (i.e., corresponding
to the colored cells in Fig. A.5). Hence, throughput of the ASAP accelerator can be computed
in two ways: we can compute it either by considering the total number of cells in the LD
lattice, or by considering only the cells updated by ASAP. The first method which we refer
to as effective-GCUP/s is directly comparable to traditional techniques as they too consider
updating all elements in the LD lattice. In terms of the first method, ASAP achieves an
average of 609.6 GCUP/s (10° cell updates per second) for 128-bp reads; the second method,
it achieves an average of 204.8 GCUP/s. This implies that in the median case, ASAP is
approximately 5x better than an equivalent systolic-array-based FPGA implementations
(e.g., 122 GCUP/s were physically achieved on an FPGA in [259]%). Fig. A.11(b) shows the
effect of changing tile-length on the latency of the accelerator. It is evident that there are
diminishing returns for increasing the tile length, with almost no improvement beyond tile
size 16.

LV Configuration. Table A.3 shows a comparison of the ASAP accelerator running in the
LV configuration to the C++-based LV implementation in the SNAP alignment software [164]
(which is multi-threaded and uses SIMD instructions). Overall, LV has a lower computational
complexity than SW (i.e., O(nk) compared to O(n?) for SW). This difference in performance
is apparent in the baseline CPU implementations shown in Table A.3. Further, we observe
that ASAP-accelerated LV is 40 — 60x faster than the baseline for representative input sizes.
This corresponds to a ~ 4x better performance of the LV configuration compared to the SW
configuration of the ASAP accelerator. Note that this difference is input-dependent, with the
LV variant performing significantly better (as the maximum delay in the ASAP LV lattice is
upper-bounded by k) for string pairs that have larger degrees of mismatches.

Input-Dependence. Another point to note about Fig. A.11 is that ASAP represents
a method to trade-off worst-case performance and average-case performance. The approx-

imations that we present may be slower than the baseline performance for the worst-case

8The comparison to [259] is made based on numbers presented in their chapter, and has not been
re-implemented by us.
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Figure A.11: Latency of the ASAP-SW accelerator as a function of the input string
length. The shaded area in both the graphs show 25 and 75" percentile measurement from
simulation.

Table A.4: Measured CAPI-based memory access performance. Latency measurements
includes round-trip latency to shared memory as seen from the accelerator.

Interface Payload (B) Type Measurement
PCle 128 Mean read/write latency 0.87 us
CAPI 128 Mean read/write latency 126 ns
CAPI 128 Mean read/write bandwidth 3.88 GB/s

(i.e., when read mismatches reference completely). However, we see that for representative
data sets, the median performance as well as the 75" percentile performance are significantly
better than the baseline. For the short read alignment problem, we observe that matches
occur more frequently than insertions, deletions or mismatches. The ASAP accelerator can
also be applied to other cases where insertions or deletions are more frequent by dealing with

those cases in combinational logic.

Performance of the CAPI Interface

The ASAP accelerator benefits from the use of the CAPI interface, because CAPI (i) sig-
nificantly simplifies, and (ii) significantly streamlines the process of initializing and communi-
cating with the accelerator. We benefit from using a unified virtual memory space across
the PCle bus with hardware-supported address translation, compared with the traditional

model, which requires significant hand-holding by an OS. For example, a typical device driver
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Figure A.12: Mean host-accelerator bandwidth over the CAPI interface and its effect on
the performance of the ASAP accelerator.

would execute approximately 20k instructions, PCle bounce-buffering, and page-pinning to
perform communication between host and accelerator. We performed measurements on the
CAPI interface using a loopback accelerator [257] (i.e., an accelerator reads a cache-line and
writes it back to a different location). We observed that (see Table A.4 and Fig. A.12(a)) the
CAPI interface can perform random reads and writes with (i) sub-us latency, and (ii) 4 GB/s
bandwidth which are both close to the measured native PCle latency /bandwidth for the
FPGA board used in the evaluation. The one disadvantage that we observe with the CAPI
interface is that it allows an AFU to use only 50% of the available peak-theoretical PCle
bandwidth. Our measurements of PCle goodput (i.e., bandwidth for user data to and from
the accelerator) are similar to those from CAPI (see Fig. A.12(a)).? Bandwidth is currently
not a limitation for the accelerator. Fig. A.12(b) shows the fraction of the runtime of the
accelerator spent in stall over the execution of a large number of reads. However, moving
to a larger FPGA that supports larger ASAP lattices or multiple smaller ASAP lattices
(executing in parallel), or clocking the ASAP accelerator higher than 250 MHz will require

larger bandwidth for the host-accelerator interface.

FPGA Resource Utilization

This section describes the overall on-chip resource utilization to implement the CAPI
interface and multiple ASAP lattices on the FPGA. Fig. A.13 illustrates this utilization

with the increasing number of lattices for two implementation styles for the ASAP delay

9We speculate that this limitation occurs because of non-optimal interactions between the OS-modules
(e.g., CAPI cache misses trigger TLB/ERAT or page misses) and the PCle-endpoint ASIC (e.g., dealing with
out-of-order packet delivery) on the FPGA board. We leave the optimization of such direct memory access
(DMA) issues to future work.
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Figure A.13: Comparison of on-chip resource utilization of the CMP and SR implementations
of the ASAP design. Each ASAP lattice is of size 128 x 128.

element. First, the comparator based design that was presented in the original RacelLogic
chapter [235] (referred to as CMP in the figure), and second, the shift-register based design
(presented in Appendix A.3) that has been optimized for FPGAs (referred to as SR-SW
and SR-LV in the figure). Fig. A.13(a) demonstrates the significant reduction (nearly 15%)
in number of logic elements (i.e., slice resources) required to implement SR compared to
CMP. This further translates to a ~ 1.9x reduction in power consumed by the SR design
(shown in Fig. A.13(b)). In the SW configuration, the proposed design is nearly 18.8x more
power efficient than the IBM Power8 CPU (~ 10.1 W compared to 190 W). This implies
an overall 3,760x (= 200 x 18.8; based on Appendix A.4.1) improvement over the CPU in
performance/Watt terms. The LV configuration of the accelerator utilizes 19% less FPGA
resources and consumes 10% less power than the SW configuration. The diminished returns
from the LV optimizations are a result of the IBM PSL module’s occupying ~ 30% of the
FPGA area, thereby dominating the relative decrease in resource utilization and power.
Note that the power consumption for the chip is calculated from the synthesis tool (i.e.,
Xilinx Vivado) and represents worst-case power consumed by the accelerator. However,
the real power consumption is input-dependent and lower than that mentioned above, as
clock-gating on off-diagonal delay elements will be enabled differently based on inputs (recall
Fig. A.5). We computed this difference in power consumption using the S824L’s on-board

power meters on the Flexible Service Processor (FSP).!° The FSP measurements report power

10The FSP is an auxiliary processor on the S824L that is an always-on management processor enabling
out-of-band management of the server.
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Figure A.14: Scaling of FPGA resource utilization (accelerator size) with increase in input
string size for the ASAP lattice in SW configuration.

consumption of the entire computer system averaged over 30 s intervals. To calculate the
power consumption of the ASAP accelerator, we measured the difference in power consumed
by the system when executing the 4-lattice instance of the ASAP accelerator shown in
Fig. A.10, and when idling. We observed an average difference (i.e., the ASAP accelerator’s
average power consumption) over 100 executions (of the entire benchmark dataset) of 6.9
W + 2.8 W (error is expressed as standard deviation) for the SW configuration and 6.8 W
+ 1.6 W for the LV configuration. These measurements support our claim that the actual
power consumption of ASAP is lower than that reported by the synthesis tool.

Area-based Scaling. The resource utilization of the ASAP accelerator scales quadratically
with the lengths of the sequences being compared. For example, Fig. A.14 shows the number
of flip-flops (including those used in shift registers) used by the ASAP accelerator with
increasing string length, based on a 16x 16 square tile size''. In comparison, an FPGA-based
systolic array implementation of the LD computation [251] (described in Appendix A.5)
scales linearly (i.e., 2N + 1, where N is the length of the strings being compared). It is
apparent that for larger sequences, ASAP quickly exhausts the FPGA resources.

However, ASAP is able to compute LD for short-read sequences (e.g., the 100-150 bp
sequences that are typically obtained from an Illumina HiSeq 2500) which are popularly
used in resequencing experiments. In addition, we leave approximately 20% of the area
of the FPGA free, to allow the CAD tools to place-and-route the circuit without timing

violations due to wiring delays.!? As a result, we are able to fit a maximum 128 bp read

HThis example does not include flip-flops required for the CAPI interface.
12There is no simple analytical method to derive the optimal tile size, sequence size and free area on the
FPGA, as the synthesis tools are a black box.
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accelerator on our FPGA. Fitting larger blocks leads to timing violations because of delays
introduced by the on-chip interconnect. Given the industry trend towards FPGAs with larger
programmable area, in the future it should be possible to extend ASAP to read sizes that
are potentially thousands of nucleotides long.

Handling Inputs Larger Than Lattice Size. Currently, the ASAP accelerator can be
used to compute LD for larger strings by adding a special software-based control algorithm
in software to compute LD between sub-strings of the original queries, and combine them to
compute the result. The algorithm works by measuring (and storing) the time at which the
signal wavefront leaves the extremal DEs of the ASAP lattice, and reintroducing this signal
wavefront in the same lattice after updating the nucleotides to be another disjoint substring
of the queries. We leave the hardware implementation of this approach for future work.

NW Configuration. Note that the NW and SW configurations of the ASAP accelerator
are identical in terms of performance and FPGA-resource utilization. Appendix A.3.1
describes how the NW and SW configurations differ in how delay between the input and

output are measured.

A.4.2 Integration Into End-to-End Alignment Software

In this section, we compare ASAP-accelerated versions of end-to-end alignment software
tools with their baseline CPU versions. This comparison includes time taken for LD compu-
tation as well as other auxiliary functions like, disk 10, and marshaling and un-marshaling
of data (from disk and from accelerator). As a result, improvements in LD computation
provide diminishing returns (i.e., asymptotic behavior similar to Amdahl’s law); we show
that the current ASAP represents a speedup that is very close to the asymptotic limits for
this computation. We use two alignment tools, SNAP [164] (which uses ASAP in the LV
configuration) and BWA-MEM [232] (which uses ASAP in the SW configuration).'® These
results are described below.

Host-Accelerator Communication. The baseline SNAP & BWA aligners exploit
parallelism in the alignment problem by dividing the work of aligning a set of reads among
all of the 192 threads available on the system. We use the same communication algorithm to
dispatch LD computations to the accelerator in both cases. Since our current implementation
of ASAP allows for only one calling context on the host-side, accelerator executions are
dispatched by maintaining a pool of memory shared among all threads to communicate with
the accelerator. The procedure for each thread communicating with the accelerator is as

follows: (i) picks a read from the set it was assigned; (ii) queries the reference index for

13We used version 1.0 of the SNAP tool and version 0.7.17 for BWA.
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Figure A.15: Performance comparison of the ASAP-accelerated SNAP and BWA-MEM
alignment tools (called ASAP-LV-SNAP and ASAP-SW-BWA-MEM, respectively) with their baseline
CPU versions (called SNAP (Software) and BWA-MEM (Software), respectively).

candidate locations for the read; (iii) contends for a lock, then writes nucleotides for the read
and the candidate locations into shared memory; (iv) at this point, the accelerator reads
from the shared memory and writes out the results to another shared segment of memory;
and (v) polls for results from the accelerator using a test and test-and-set based locking
protocol [260], then consumes the output. This algorithm exemplifies CAPT’s benefit, as we
can make use of cache coherence between the CPUs and FPGA to easily implement mutual
exclusion.

The SNAP & BWA-MEM Aligners. Fig. A.15 shows the distribution of time taken
per read by the baseline and the ASAP accelerator for all LD computations. We see that
there is a large spread for total time spent in computing LD because some reads map to
more regions of the reference than others. This variation is an artifact of both the nature
of the human genome and the read simulator’s practice of picking reads at random from
the genome. We observe that the SNAP aligner is accelerated by 2x (i.e., 185 ht/g.92 hr) and
that the BWA-MEM aligner is accelerated by 1.86x (i.e., 264 hr/1.42 1), respectively. These
results are representative of the mean time spent in processing a single read. Fig. A.15 shows
the long-tailed behavior of some of the input pairs in the datasets that are significantly
mismatched (for the accelerated implementations). The long-tailed behavior of the CPU
baselines stem from non-determinism in the IO and thread scheduling subsystems of the
host. The LV upper-bound for maximum time spent in computing LD ensures that the
ASAP-accelerated SNAP version (called ASAP-LV-SNAP in Fig. A.15) has a significantly
shorter tail than the SW configuration in BWA (called ASAP-SW-BWA-MEM in Fig. A.15).

The performance measurements presented above are close to the Amdahl’s law limit of
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the SNAP algorithm based on our measurements presented in Table A.2. In the case of
the BWA-MEM aligner, we observe that we achieve a lower absolute improvement, that
is expected, as the asymptotic limit for improvement is lower. The BWA-MEM algorithm
performs larger amounts of non-LD computation compared to SNAP, i.e., Burrows-Wheeler
transform based index lookup while SNAP computes hashes for a hash table lookup. Both
baselines are measured with huge-page support turned on in the host’s Linux-kernel to negate
effects of ERAT-misses (TLB-misses in Intel parlance).

Gap Penalty Models. A subtlety to be noted in the comparison presented above is that
BWA-MEM’s default behavior uses affine gap-penalties in addition to the SW local-alignment
algorithm (instead of the constant gap-penalties used by ASAP). Hence we have to use the
tool’s command line arguments to set the gap-penalty parameters such that they replicate a
constant gap-penalty model (i.e., set the requisite parameters to 0). We discuss handling of

affine gap-penalties in ASAP as part of our future work in Appendix A.6.

A.5 RELATED WORK

The sequence alignment problem has been addressed by an extensive body of work that
looks at algorithms and their high-performant implementations on CPUs and on accelerators
like GPUs and FPGAs. This section focuses on comparing ASAP to other implementations
of the LD computations. Refer to Appendix A.2 for a discussion of algorithms.

On CPUs and GPUs. The LD computation and sequence-alignment problem has been
studied on SIMD and MIMD processors that exploit parallelism in the problem at two levels.
Inter-task parallelism [261]| (using multiple cores to independently compute alignments of
different short reads), and intra-task parallelism [262, 263| (using SIMD instructions and
efficient use of the memory hierarchy to effectively compute (A.1)). Most of the popular SW
or NW implementations exploit the use of both of these techniques. These techniques have
also been applied to GPUs [264, 265, 266]. One such example is NVIDIA’s NVBIO [267|
library and the accompanying set of tools nvBWT, nvFM-server. These look at accelerating
the construction and look-up of data structures that index the reference genome. The major
disadvantages of this approach is the large power consumption of these processors, and their
restrictive lock-step parallelism based programming models.

On FPGAs and ASICs. Custom hardware acceleration of the problem on FPGAs and
ASICs has also been widely studied. Most of the popular hardware architectures are based
on systolic arrays [251, 252, 253, 254, 255]. These architectures like the SIMD and MIMD
approaches, are limited by the amount of parallelism they can exploit. It has been shown in

[268], that exploiting deeper pipelines with much larger inter-task parallelism can potentially
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enable more efficient use of FPGAs. We may be able to use this optimization to futher
increase the throughput of the accelerator, particularly on larger FPGAs that can sustain
larger off-chip bandwidth. Kaplan et al. [269] present an ASIC design for a Processing-
in-Memory accelerator for the SW algorithm that leverages resistive content-addressable
memory to compute matches/mismatches of nucleotides. ASAP represents a significant
improvement over [269] in throughput/Watt terms, i.e., ASAP achieves 61 GCUP/s/W
(= 609-6/10.1) compared to their 53 GCUP /s/W. Turakhia et al. [14] present an accelerator
to perform long-read assembly, one step of which includes a SW-based alignment (through
a seed-and-extend approach). Alser et al. [270] present an FPGA based accelerator to
efficiently filter candidate locations to calculate LD. This accelerator is targeted at Line 6
of Alg. A.1, as opposed to ASAP which targets Line 7, hence the accelerator can be used in
addition to ASAP to accelerate the end-to-end alignment process. More recent work [271]
has also shown the benefit of distributing the compute intensive LD computation across
multiple accelerators (including CPUs, GPUs, FPGAs, Xeon Phis). We observe that ASAP
significantly outperforms such multi-accelerator systems both in terms of performance and
performance per-Watt. The Host + 2x FPGA design presented in [271] only achieves
a 441.6 GCUP/s performance at 1.51 GCUP/s/W. In comparison ASAP achieves 609.6
effective GCUP/s at 61 GCUP/s/W on a single FPGA.' Other work, e.g., [178, 179, 272],
has demonstrated the use of systolic-array-based designs to accelerate computations on
Pair-HMM models, where gap-penalties are replaced by probability distributions. That may
be a future direction for the extension of the ASAP design.

ASAP’s design philosophy is most closely related to Madhavan et. al.’s RaceLogic [235]
ASIC design, which also encodes LD computations as circuit delay. However, ASAP builds
on this basic model to further optimize the design by using (i) approximation algorithms
for the LD computation which maintains the total ordering of LDs, and (ii) accelerating
the most common computation (in this case the processing of “matches”) in combinational
circuitry thereby spending minimal runtime in its computation. This is demonstrated by the
fact that ASAP is ~ 50x faster than a RaceLogic implementation. Further, the nature of
the alignment problem and the rapidly evolving sequencing technology (i.e., read lengths),
implies that fixed function ASICs are not favorable because of the large monetary investment
required and the inability of the accelerator to adapt to new input sizes. ASAP circumvents
these problems by using reconfigurable FPGAs. Of course, an ASIC will almost always
outperform an FPGA in energy efficiency because of its customized layout. Hence going
forward, a design with a fixed function (i.e., ASIC-based) IO interface (i.e., CAPI) with a

14The comparison is made across an equivalent generation of Altera and Xilinx FPGAs, using effective-
GCUP/s (described in Appendix A.4.1).
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configurable substrate for ASAP accelerators might present an ideal trade-off.
Comparison to Systolic Arrays. Relative to the related work described above, ASAP

has some decided advantages:

1. The systolic array based approaches require each element of the array to compute on
as many bits as the maximum LD computed. Our approach requires only as many bits

per delay element as the maximum delay between inputs at that point in the lattice.

2. The earlier accelerators have to explore the entirety of the lattice before computing the
LD. We show that the ASAP accelerator explores only the portions of the lattice that
is reachable before the final result is produced. This represents a significant savings in

run time and energy expended for computation.

3. The ASAP accelerator can explore multiple elements in the lattice in under one clock
cycle by setting 6(Match) = 0. Systolic array based architectures cannot perform this
optimization, as this creates large combinational chains which make timing closure
difficult to obtain.

On Neuromorphic Computers. Neuromorphic computing is modeled on biological
neurons that communicate and compute using temporal-encoding of information as voltage
pulses, or spikes. This is similar in principle to the delay based computation outlined in this
chapter, however it is still an open research question [273, 274].

On sequencing technologies. Recall that the alignment computation (shown in Ap-
pendix A.2) is composed of the LD computation as well heuristics to identify candidate
reference regions. The use of novel sequencing technologies (e.g., PacBio, Nanopore which
are based on single-molecule sequencing), introduces new sequencing error regimes which
will change the heuristic components of the alignment computation, but not the LD. As
ASAP targets the LD computation, we believe it can be applied to data generated from
these long-read sequencing machines. Turakhia et al. [14] present one such accelerator for
long reads. Their accelerator targets the acceleration of the entirety of Alg. A.1 and uses
LD computation as a submodule. ASAP can replace that module and provide significant

performance and energy benefits as shown in this chapter.

A.6 SUMMARY

This chapter proposed ASAP, an accelerator for rapid computation of LD, in the context
of the short-read alignment problem. ASAP builds upon the idea that the LD between

strings can be approximated for the short-read alignment problem by encoding gap penalties
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in propagation delays of circuit elements. We show that by effectively setting these delays,
it is possible to accelerate performance significantly, and at the same time ensure that the
accuracy of alignment is maintained. ASAP significantly outperforms (both in performance
and performance-per-Watt terms) purely CPU/GPU-based as well as sytolic array-based
accelerator implementations of LD computation in the all the SW, LV and NW configurations.

The ASAP accelerator, and the approach (based on heuristic approximations) presented in
this chapter, can also be adapted to a variety of other problems in which a total ordering of
LDs is computed. For example, in signal processing, where different instances of a signal have
to be aligned to compute similarity [228]; in text retrieval, where misspelled words have to be
accounted for in a dictionary [237]; and in virus- and intrusion-detection, where signatures
have to be aligned to a baseline [238].

Future Work. Our future work will primarily look to extend ASAP to handle more
complex gap-penalty models. This chapter describes the use of constant gap penalties (i.e., a
fixed score is assigned to every gap), which are commonly used in DNA alignment (e.g., in
NCBI-BLASTN, or WU-BLASTN [241]). We can extend ASAP to handle linear, affine, and
convex gap penalties by letting each DE track the propagation of the signal wavefront in the
portion of the lattice before it. We can do so by dynamically resizing the length of the shift
registers on off-diagonal DEs depending on their positions (i.e., i, j coordinates). Further,
re-using the lattice for input strings larger than the lattice dimensions would involve dynamic
reconfiguration of the FPGA to allow for different taps in the shift registers. Further, ASAP
can also be extended for use in the alignment of proteins by using substitution matrices, like

BLOSUM [230], which assign unique scores to each pair of residues.
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APPENDIX B: ACCELERATED PAIRHMM FORWARD ALGORITHM

B.1 INTRODUCTION

An important computation (and a critical bottleneck) in medical sequence analysis per-
taining to the analysis of variants (mutations) in sequenced genomic data is the forward
algorithm |275] (FA) on Pair-Hidden Markov Models [276] (PHMMs) (see Appendix B.2).
The FA algorithm, which is generally viewed as one of the best ways to compute the statistical
similarity between two sequences, is widely used in genomic data analysis workflows for
gene prediction, functional similarity analysis between protein sequences, multiple sequence
alignment, phylogeny, and germline- and somatic-variant calling [277]. This chapter addresses
the problem of accelerating the GATK HaplotypeCaller [160], a popular and trusted variant
calling and genotyping tool® that incorporates a PHMM model (described in Appendix B.2.2)
and is widely used in clinical settings (e.g, in the diagnosis of critical diseases like cancer).
The FA constitutes the most computationally complex phase of this application, accounting
for nearly 70-80% of the runtime while processing human clinical datasets.

The FA algorithm is inherently parallelizable at two levels: (i) at the level of the algorithm,
i.e., intra-task parallelism through the anti-diagonal recurrence pattern in a single FA execu-
tion; and (ii) at the level of the data, i.e., inter-task parallelism by computing independent
instances of FA in parallel. Prior efforts to address this problem [178, 272, 279, 280, 281, 282,
283, 284] used some form of a systolic array (SA) architecture. These architectures optimize
only for intra-task parallelism, and thus underutilize on-chip resources and waste energy
when input sizes are not multiples of the number of processing elements.? As a consequence,
such designs cannot efficiently handle realistic data where input sizes (i.e., the lengths of the
query DNA fragments) can vary significantly (see Appendix B.3.1). A common thread of
research in this area has been to utilize control algorithms and data placement strategies to
overcome these shortcomings, thereby leading to increased algorithmic complexity (for CPUs
and GPUs) and larger on-chip areas for FPGAs [178, 272, 279, 284].

This chapter proposes (in Appendix B.3) the design of an accelerator for the FA algorithm
that overcomes the aforementioned shortcomings. Unlike previous approaches, our approach
uses it’s entire resource budget optimizing for inter-task parallelism (thereby exploiting the
embarrassingly parallel nature of the problem). Intra-task parallelism is addressed by deep

pipelining to maximize temporal sharing (reuse) of computational resources. We demonstrate

Tt is a part of the Broad Institute Best Practices Workflow [278] for variant-calling.
2For example, a 32 processing element systolic array performs 1568 (56 x 28) unnecessary computations
when processing two sequences of lengths 100, and 200.
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Figure B.1: Comparing this chapter with related work based on throughput (MCUP/s) and
throughput-per-watt (MCUP /s/Watt). Values are normalized to our CPU baseline running
on a Power8 CPU.

that this design maximizes overall throughput by optimally using parallelism, and minimizes
control related hazards and stalls. Our accelerator produces a speedup of 14.85x over an 8-
core Power8 processor executing the baseline software implementation, and is 147.49x better
in speedup-per-unit-energy terms. Fig. B.1 demonstrates this speedup compared to the related
work available on this problem (explained further in Appendix B.6). In our initial design
implementation on an IBM Power8 system and using an FPGA attached over the CAPI [96]
interface, we observe that the key performance-limiting factors are (i) latency overhead in
accelerator invocation through the software stack, and (ii) redundant computation done across
multiple unrelated instances of the FA. To alleviate these performance bottlenecks, we propose
(in Appendix B.4) two additional algorithmic optimizations that span the hardware-software
interface. These techniques prune the inputs of the FA algorithm and memoize its output
(i) to reduce the number of invocations of the FA kernel, and (ii) to reduce the size of the
sequences being compared. The result is an effective reduction in the amount of data that has
to be transferred from the host to the accelerator to complete a batch of FA computations,
which contributes a further 2.8 x improvement in performance.

The main contributions of this chapter are as follows:

1. Identifies the performance-limiting issue with today’s CPU/GPU and systolic-array-

based FA accelerators.

2. Presents the architecture of an ensemble of processing elements that maximizes inter-
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task parallelism and uses aggressive pipelining to address intra-task parallelism, thereby

overcoming the inefficiencies of the SA architectures.

3. Evaluates the proposed design on an FPGA, and couples it with a coherent interface

to the CPUs memory, allowing work-sharing between the CPU and accelerator.

4. Presents two pruning strategies to memoize results to reduce the input data-set size as

well as the number of invocations of the FA accelerators.

5. Demonstrates that integration of the accelerator and pruning techniques into the GATK
HaplotypeCaller can accelerate it by 3.287x (close to the Amdahl’s law limit) over the

baseline CPU implementation.

6. Evaluates the potential impact of several emerging high-bandwidth memory technologies
to alleviate the host-accelerator bandwidth limitations in PCle/CAPI.

B.2 BACKGROUND

B.2.1 Pair-HMM Model

PHMM models are instances of Bayesian multinets that allow for a probabilistic interpre-
tation of the alignment problem [276]. An alignment models the relationship (homology)
between two sequences via a series of mutations (M), insertions (/), and deletions (D) of
nucleotides. The FA algorithm of the PHMM allows the computation of statistical similarity
by considering all alignments between two sequences and computing the overall alignment
probability by summing over them. These divergent sets of alignments are caused by evo-
lutionary mutations or sequencing errors. Specifically, given two sequences S; and Sy of
lengths n and m respectively, the FA algorithm defines the computation of three proba-
bilities, fu(7,7), f1(i,7), and fp(i,j) (see Fig. B.2). The value fi(i,7) corresponds to the
combined probability of all alignments for substrings S;[0 : ¢] and 53[0 : j] that end in state
ke {M,I,D}. The FA algorithm can be recursively defined as follows:

(i, j) = Plammfu(i—1,5— 1)+ )

Qi f1(1 — 1,5 — 1)+

aam fp(t — 1,7 — 1)) ¢ (B.1)
fr(i 7)) = amifu(i—1,j) +aiufr(i — 1,7)
fo(i,5) = amafm(i,j —1)+agafp(i,j—1) )
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Figure B.2: The PHMM model describes the pairwise alignment of two sequences. The
plates and class-nodes in the figure indicate the presence or absence of a symbol.

The parameters amm, Gim, Qdm, Gmi, iy Gmd, Agq and P are derived from the values of base-
quality scores, map-quality scores, and the values S;[i] and S3[j]. They represent a statistical
model that jointly describes (i) dependence between adjacent nucleotides, (ii) dependence
between hidden and observed sequences that describes a multi-nucleotide mutation model,
a point mutation model, and (iii) sequencing and alignment errors using an affine gap
score model [276]. Patcher et al. [275] describes the rationale behind using these quality
metrics in the PHMM model to set the a, parameters. Finally, the overall similarity metric
between the sequences is the sum of the probabilities across the states M, I, and D when
comparing the entire strings S, and Sy, i.e., fas(n,m) + fr(n,m) + fp(n,m). Hence, each
FA needs to compute the recursion stated in (B.1) n x m times. That corresponds to a total

computational-time complexity of O(nm) and a total space complexity of O(max(n,m)).

B.2.2  Germline Variant Calling

In this work, we accelerate the germline variant-calling and genotyping tool called the
GATK HaplotypeCaller (or GATK), which statistically infers differences between sequenced
genomes and reference genomes, where reference genomes represent “average” genomes for a
population of the candidate species. The base algorithm of variant calling and genotyping is
straightforward: input sequence fragments are aligned to a reference sequence, and at every
position the number of mismatches are counted. However, this process is complicated by
the fact that data from sequencing machines are inherently noisy (from sequencing errors),

alignments are often incorrect (from mapping errors) and polyploidy of an organism (i.e.,
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Algorithm B.1 Algorithmic skeleton of the GATK HaplotypeCaller. The functions
EnumerateHaplotypes, Align, and Genotype are described in [140].

—_

alignment < Aligned set of reads in an active region
re ference <— Reference genome for an organism in an active region
n < Number of ploids in the organism
haplotypes < EnumerateHaplotypes(alignment.reads)
for h € haplotypes do

for r € reads do

score[h,r| < Pair HM M (h, )

end for
end for
best _haplotypes < Find n-best haplotypes
. new _align < ()
. for r € alignment.reads do

new align < argmax Align(r, h)
hebh

[ S e S S
AR el

14: end for
15: variants < ()
16: for haplotype € best _haplotypes do

17: for loc € haplotype do > Every position in the haplotype
18: variants <— variants U Genotype(new _align.at Locus(loc))

19: end for

20: end for

21: return variants

there are many copies of a genome per individual). The PHMM model is applied in this
context to model the aforementioned errors (e.g., sequencing errors, alignment errors, or
mutations) statistically and to assign sequenced DNA fragments to their corresponding ploids.
GATK computes the variants in a sequenced genome by filtering the genome into active
regions that might contain possible mutations. Alg. B.1 is then applied in parallel to all
active regions in order to reconstruct haplotypes (using DeBruijn graphs |[285|) for the ploids
for each active region. The FA algorithm is then used to compute the probability that a
sampled sequence fragment originated from a certain haplotype. These probabilities are used
to weight each haplotype to find a candidate set that might best represent a ploid. Finally,
the reads are realigned to their best haplotype. A count of the number of mismatches to the
haplotype (instead of the reference) is then used to determine the presence of a variant and
its genotype [286]. GATK uses single-precision floating-point numbers to compute (B.1). In
the case of an underflow, double precision floating-point numbers are used to recompute the
result. The FA algorithm constitutes the bulk (nearly 70%; see Table B.1) of the runtime of
GATK on the popular NA12878 sample from the GIAB consortium [287], and as such is a
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Table B.1: Distribution of runtime between the phases of Alg. B.1 in the GATK Haplotype-
Caller for the NA12878 sample executing on the baseline hardware configuration described
in Appendix B.5.

Stage Absolute Time (hr) Percentage Time Line Number
Assembly 2.87 13.8 1-4
PHMM FA 14.78 71.1 59
Realign + Misc 3.13 15.1 10-21

good candidate for acceleration. Banerjee et al. [140| shows that GATK and transitively the
FA computation also forms a significant portion of the runtime of sequencing data-analytics

workflows on modern compute infrastructures (e.g., clouds and supercomputers).

B.3 ACCELERATOR

B.3.1 Design Philosophy

Based on our analysis of the algorithms and input datasets, we offer a set of insights that

drove our design philosophy:

Insight 1. Diversity in input size. Haplotypes generated by the HaplotypeCaller show great
diversity in size (see Fig. B.3). Traditional SA-based architectures for accelerating
the FA algorithm are often not able to handle this diversity effectively because of the
cycles wasted when the size of the recursion lattice is not divisible by the number
of PEs (processing elements) in the SA, resulting in holes in the processor’s pipeline.
Traditional SA-based architectures deal with these issues by using complicated control
mechanisms [178, 272, 284 that improve pipeline utilization. CPU- and GPU-based
architectures that exploit SIMD instructions [279, 280| also experience this issue, albeit

to a lesser degree.

Insight 2. Ezxploiting inter-task parallelism. Systolic array architectures exploit anti-diagonal
parallelism to minimize latency for a single task. However, given that the FA algorithm
itself demonstrates several orders of magnitude greater parallelism across tasks than
within tasks, we believe that it is more prudent to exploit inter-task parallelism. Such
an approach also addresses the problem of input diversity, as we can exploit the data-
parallel nature of the problem without data dependencies between PEs. As we show in
our results (Appendix B.5), the increased data set size needed for inter-task parallelism

does not limit our implementation.
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Figure B.3: Distribution of active region (haplotype) sizes in a sample of the NA12878
dataset.

Insight 3. Why not GPUs, and why FPGAs? Insights 1 & 2 discourage the use of GPUs
because of the prevalence of lock-step parallelism in their programming models. Previous
efforts of using GPUs in the context of this problem have successfully extracted intra-
task parallelism at the warp-level. However, input diversity leads to control divergence
when inter-task parallelism is exploited. In contrast, FPGAs provide the flexibility
to build a processing pipeline that is tailored to the computation at hand and its
input characteristics. We explore the difference in performance between GPUs and our
method in Appendix B.6. We demonstrate that the our design is unmatched in the
performance-energy trade-off space, but concede that the GPU represents a different
(and in some cases a preferable) point on the performance-developer-productivity

spectrum.

Fig. B.4 illustrates the overall design and implementation of the accelerator. The accelerator
is organized as an array of independent processing elements (PEs; see Appendix B.3.2), which
asynchronously pull inputs from the CPU’s memory space over a cache-coherent CAPI bus
(see Appendix B.3.4). Reads and writes to the host processor’s memory space are made in
a streaming fashion to overlap computation of haplotype-read pairs on the host with the

accelerator.

B.3.2 Processing Element (PE)

Fig. B.4 also shows the design of a single PE. The nucleotide inputs to the PE are encoded

as 4-bit unsigned numbers. These correspond to nucleotides A, C, G, T, and the ambiguous
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Figure B.4: Architecture of the data-path and the control-path of the proposed accelerator
comprising the 1) host-accelerator interface over CAPI, and 2) input parsing and load
balancing.

nucleotides N, -, R, Y, K, M, S and W. The remaining symbols can be used to accommodate FA on
protein sequences. The quality-score inputs are in their standard ASCII encoding [276]. These
are used to compute the FA algorithm parameters. Each PE has: (i) a table-lookup-based
function to compute floating-point parameter (probability) values from input quality scores;
(ii) a data-path consisting of single-precision floating-point adder and multipliers; (iii) a
scratchpad buffer to store intermediate values of the fj matrices (where k € {M, I, D});
and (iv) scheduling circuitry that generates a valid sequence of read-write addresses for the
scratchpad buffer. Using table-lookup allows us to use 8-bit encoding of quality scores as
opposed to their 32-bit floating-point encoding when transferring inputs to the accelerator,
thereby reducing I/0O bandwidth requirements. Each PE is fed from a BRAM bank that
stores the values of each of its inputs. We now briefly describe the design of the data-path
and the scheduler.

Data-Path

The data-path of the PE has to implement the recurrence relations in (B.1). Each step
of this recurrence has 8 multiplication operations and 4 addition operations. Our design
finds the optimal trade-off point between latency/throughput and resource utilization on
the chip to implement this computation. We use a Xilinx intellectual property (IP) that
provides a 5-cycle latency and 1-op/cycle throughput for the float-multiplier and a 10-cycle
latency and 1-op/cycle throughput for the float-adder. Both the adders and multipliers run
at 400 MHz. Our design utilizes two multipliers and one adder for a 32-cycle latency and

0.25-recursion-step/cycle throughput schedule. Fig. B.5 demonstrates the utilization of the
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Figure B.6: Circuit diagram for the PE data-path shown in Fig. B.4.

two multipliers and the adder in the 32-cycle period to compute one step of the recurrence.
The circuit representation corresponding to this schedule is shown in Fig. B.6. The inputs of
the circuit elements, labeled A through L are shown in both Figs. B.5 and B.6, where the
subscripts represent the step of the recurrence currently being computed. For example, A;
and L; ¢ (in Fig. B.5) represents that the i'" recurrence step for A and the i — 6" recurrence
step for L is computed in the same 32-cycle window. We achieve synchronization in this
scheme by using shift registers attached to the muxed inputs of the adder and multipliers, as
shown in Fig. B.6. The lengths of these registers can be derived from Fig. B.5. The outputs
of this data-path is fed back into the inputs of the following stages via the scratchpad buffer
(implemented as a BRAM block) shown in Fig. B.4.
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Memory Scheduler

To minimize the size of the scratchpad buffer (in Fig. B.4) we compute steps of the
recurrence (i.e., (B.1)) in an anti-diagonal fashion, as shown in Fig. B.7. In the figure, we
illustrate the antidiagonal pattern by dividing the entire recurrence lattice into four parts as

follows:

1. Completed Blocks. Blocks for which the value of the recurrence has been computed and

is no longer required.

2. Stored Blocks. Blocks for which the value of the recurrence has been computed and is

required in subsequent steps of the computation.
3. Current Block. Block whose inputs have been produced and can start computation.
4. Remaining Blocks. Blocks whose inputs have not yet been generated.

Here each block refers to the three tuple (fa/(4,7), f1(4,7), fp(i,7)). We observe that that
limiting the maximum size of the buffer to 2L, where L is the size of the largest anti-diagonal,
is sufficient to compute the FA algorithm. Fig. B.7 demonstrates that once this buffer is
full, simply starting over at the beginning only overwrites data that is no longer required
for the computation. Our current implementation supports matrices up to L = 512. This
limit is sufficient to accommodate the largest haplotype (500 bases) generated by GATK, as
well as reads from the popular Illumina HiSeq sequencing platforms (150-250 bases long).
The scheduler generates a pattern of read and write addresses into the memory for the
aforementioned data-path. The scheduler deals with the upper and lower triangles in the

recurrence lattice (e.g., i + j < 8 where 8 x 1/0.25 is the latency of the pipeline), when a PE’s
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pipeline cannot be kept full because of the dependencies between the inputs and outputs of

the recurrence.

B.3.3 On-Chip Bus-Scheduing and Load-Balancing

On the accelerator side, we multiplex inputs from the CPU (1024-bit cache lines) among
the array of processors by parsing the input stream through a “Serializer” and storing the
FA executions in FIFOs to be fed to idle processors over a bus (see Fig. B.4). We observed
that using cache line aligned inputs significantly reduces the complexity of parsing the input
stream on the accelerator side, though this alignment incurs memory overhead on the CPU
side. Our experimental system (described in Appendix B.5) had 1TB of RAM attached
to the CPUs and hence this trade-off is acceptable. This design decision can be revisited
for other machine configurations. Note that this choice does not affect performance of the
accelerator, merely the complexity of the “Serializer.” We use a straightforward arbitration
mechanism for the bus described in Fig. B.4. In the case of ties, the bus scheduler arbitrates

inputs in a round-robin fashion. Outputs are handled in a similar fashion.

B.3.4 Host-Accelerator Interface

Communication between host and accelerator is implemented using the CAPI interface [96]
with an IBM Power8 CPU. The CAPI interface allows an accelerator (a PCle-attached
FPGA) coherent access to the virtual address space of a process running on the host CPU.
Our accelerators pull data directly from three circular buffers in the processor’s memory
space. These correspond to the reads, haplotypes, and quality scores. The CPU generates
new tasks (new instances of the FA algorithm to be computed) by executing Alg. B.1 and
enqueues inputs to the accelerator into the respective circular buffers. The accelerator and
other threads on the CPU then consume these inputs from the buffers. CAPI is beneficial in
this instance, as we can make use of the cache coherency between the CPUs and FPGA to

easily implement mutual exclusion.

B.4 ALGORITHMIC OPTIMIZATIONS

In building the accelerator as described in Appendix B.3, we noticed that batch size
(number of tasks streamed to the accelerator at a time) has a particularly dominant effect
in the performance. Fig. B.8 illustrates this loss in performance as a function of batch

size. We attribute this behavior to the software overheads (e.g., system calls, IRQ handlers)
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Figure B.8: Quantifying the accelerator call and data transfer overhead.

that initiate the accelerator. Our observations can be explained by the fact that simply
batching tasks amortizes this cost over several individual accelerator invocations. To further
improve (i) batching efficiency (latency amortization), (ii) host-accelerator data transfer
bottlenecks (PCle limitations), and (iii) reuse of precomputed results (across multiple tasks),
we developed two algorithmic methods for pruning inputs and memoizing outputs of the
FA algorithm when it is used in conjunction with the HaplotypeCaller. Both optimizations
reduce the throughput of the FPGA accelerator, but improve end-to-end performance by

reducing the total number of computations.

B.4.1 Common Prefixes in Reads

We observe that when Alg. B.1 is invoked on active regions of high-coverage, high-quality
datasets, a large number of reads share a common prefix. This property is an artifact of the
alignment process, of having similar reads start close to each other, and of repeats in the
reference genome. According to the formulation of the FA algorithm, for the same haplotype,
reads with common prefixes produce exactly same results under (B.1). We exploit this
observation by reusing values of the recurrence relation for common prefixes. This reuse is
done by constructing a compressed trie [288] of the reads in an active region, and computing
the longest common prefix (LCP) in the trie. The accelerated FA algorithm is then computed
on the LCP and the answer is memoized. All substrings of the LCP in the trie can then
use the lattice values computed in the LCP as a starting point for further computation. In

fact, this optimization can be reapplied once the LCP is removed from the trie. Though
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Figure B.9: Exploiting common subsequences between reads in an active region to memoize
the computation of the FA

straightforward, this heuristic significantly reduces the amount of computation required
in the HaplotypeCaller (by 20 — 30% for human clinical datasets). For example, consider
the read sequences AAACGCA, AAACGCC and AAACGCG; they share a common prefix AAACGC.
Fig. B.9 illustrates a compressed trie consisting of these reads as well as the use of the LCP
to memoize the result of the FA algorithm. We see that the LCP can be reused across the
three reads and the computation can be reduced to (i) FA on the LCP, and (ii) Computing 3
rows corresponding to A, C and G. This optimization is carried out on the host-side (CPU
side). The CPU schedules the LCP lattices on to the FPGA accelerator, and the remaining
computations are carried out on the CPU using the SIMD (AVX or AltiVec instructions).
This optimization significantly reduces: (i) the number of invocations of the accelerator,
(ii) the amount of data that has to be moved to the accelerator, and (iii) the amount of

redundant computation that is performed on the accelerator.

B.4.2 FA on DeBruijn Graphs

In addition to the reads that share common prefixes, the haplotypes generated by the
assembly process in Alg. B.1 also share large common subsequences. The DeBruijn graph [285]
produced as a result of the assembly on an active region encodes these common subsequences
in a graphical format much like the compressed trie in the previous section. Computing
the FA of a read and the DeBruijn graph potentially allows us to reuse these values as
well as reduce the number of invocations of the FA algorithm from the number of reads x
the number of haplotypes to just the number of reads (when executing independent of the
optimization in Appendix B.4.1). The FA algorithm has to be modified to allow computing

similarity between a DeBruijn graph and a read. Given that the graph represents a partially
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ordered set of strings (haplotypes), we first compute a topological sort of the graph to
convert it into a total order. Then, we follow the same FA algorithm as described in
(B.1), with one major difference: dependencies between lattice elements now incorporate
the DeBruijn graph. Fig. B.10 gives an example of conflating graph dependencies with
FA dependencies. As the quantities being added in (B.1) represent probabilities, and the
branches on the DeBruijn graph represent mutually exclusive subsequences of haplotypes,
this transformation produces the correct answer. This approach is a generalization of Lee et
al.’s POA algorithm [289] to PHMM models. The software controller is augmented with the
ability to dispatch subsequences of haplotypes to the FA accelerator, instead of traversing
the DeBruijn graph and dispatching entire haplotypes. The final reduction (addition), of
the various topologically sorted subsequences is computed on the CPU. This reduction

corresponds to the additional dependencies shown in Fig. B.10.

B.5 EXPERIMENTAL RESULTS

The accelerator is implemented in mixed-language HDL. We used IPs from Xilinx to
implement the single-precision floating point adder and multipler and BRAM blocks. We
implemented the accelerator on an IBM Power8 S824L system with an Alpha-Data ADM-
PCIE-7V3 board (that uses a Xilinx Virtex 7 XC7VX690T FPGA). All the IO interfaces were
clocked at 250MHz, and the PEs were clocked at 400MHz. All measurements (baseline CPU
as well as FPGA based) were done on this system. Our input data-set for this section was
derived from sample G15512.HCCI954.1 (same as used in [272, 283]) and the hg38 reference

human genome. We verified the correctness of our FPGA implementation by comparing it
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Figure B.11: Resource utilization on the FPGA as a function of the number of PEs.

Table B.2: Comparing the power and performance of the proposed design to that of a
Power8 CPU

Throughput (MCUP/s) Power (W)
Static Dynamic Total
Power8 Core 100.8 - - -
Power8 Chip 806.6 - - 190
Single PE on FPGA 296.1 0.5 4.686 8.437
44 PEs on FPGA 11983.6 2.448 13.485  19.139

to the CPU-only version of the GATK HaplotypeCaller (v3.6 - Provides SIMD optimized
and multi-threaded implementations of the algorithm). We use the C++ implementation
of the FA on the Power8 CPU as a baseline [290]. This version has been optimized using
AltiVec SIMD instructions and multi-threading. Appendix B.6 describes a comparison of
this implementation to one [279] that uses AVX256 SIMD for x86 processors.

B.5.1 Resource Utilization

We observed near-linear scaling of the utilization of on-chip resources for the accelerator
with the number of PEs (see Fig. B.11). Even though the figure shows a high utilization of
logic slices on the FPGA, the actual numbers of LUTs and FFs are much lower. For example,
in the 32 PE case, even though we used 60.47% of the slices, we used only 46.85% of LUTs
and 26.64% of FFs on the FPGA. Fig. B.12 and Table B.2 report the power consumption of

the accelerator. These reports were generated by the Vivado Design Suite.
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Figure B.12: Power consumption of the accelerator as the number of PEs is increased.

B.5.2 Performance of the Accelerator

Compared with a C++4 implementation optimized by IBM for their 8-core Power8 archi-
tecture, the proposed accelerator increases aggregate throughput by 14.85x% (i.e., 11983.6/306.6)
in terms of throughput. We quantify throughput using the popular MCUP /s measure. A
MCUP or mega cell update represents the computation of 10° steps of the recursion in
(B.1) (traditionally each recursion step is called a cell). Further, adding the algorithmic
optimizations from Appendix B.4, we observe a 41.59x% (i.e., 14.85 x2.8) improvement in
performance. Table B.2 demonstrates that the proposed accelerator significantly outper-
forms the Power8 CPU in terms of power and performance. A single PE outperforms a

Power8 core and a 44-PE accelerator outperforms an 8-core Power8 processor by 147.49x (i.e.,

Acc - |deal sm===  Acc - Measured emmfjmms
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Figure B.13: Mean throughput of the accelerator as a function of the number of PEs.
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Figure B.14: Mean end-to-end speedup of the HaplotypeCaller when applying the accelera-
tor (ACC) and algorithmic optimizations (AO).

11983.6/306.6 X 190/19.139) in terms of performance per unit energy (i.e., MCUP /Joule). Fig. B.13
describes the performance scaling of the accelerator with the number of PEs. At 44-PEs
we observe some non-linearities (the difference between ideal and measured performance)
because of insufficient off-chip bandwidth and limitations with the round-robin bus scheduling

strategy in Appendix B.3.3.

B.5.3 Integration into GATK

Use of the proposed accelerator and algorithmic optimizations inside the GATK Haplo-
typeCaller demonstrated a maximum acceleration of 3.287xin runtime when using 44 PEs
(see Fig. B.14). The algorithmic optimizations presented in Appendix B.4 account for approx-
imately 2.8 xreduction in runtime of the FA algorithm. Fig. B.14 shows this improvement
as it applies to end-to-end GATK application. It is to be noted that the optimizations
from Appendix B.4 are input-dependent and can produce varying results for other datasets.
Furthermore, Fig. B.14 demonstrates diminishing returns from adding more processors in
GATK because of Amdahl’s law (3.44xasymptotic limit from Table B.1). After using the
accelerator and optimizations presented in this chapter, the Align function in Alg. B.1

dominates the runtime.

B.5.4 High-Bandwidth Memory Interfaces

With the industry trend of increasing the FPGA area in each successive generation, the

number of PEs that fit into an FPGA will also grow. However, simple scaling of the number
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Figure B.15: Simulated throughput when replacing the CAPI-based interface with a DRAM
interface.

of processors leads to sub-linear performance scaling, as performance is limited by off-chip
bandwidth for the FPGA through the PCle/CAPI interconnect. To test the scalability of
our accelerator, we replaced the CAPI interface with that of a simulated memory controller
through the trace-driven simulation framework called Ramulator [110]. We observe that
changing effective bandwidth can lead to significant non-linearities in scaling behavior (see
Fig. B.15). For example, using HBM (which is already commercially available on flagship
Xilinx Ultrascale+ FPGAs) leads to near-linear scaling of performance up to 256 PEs, after
which non-linear scaling is observed. This performance scaling, though significant in terms
of the FA algorithm, has almost no impact in the GATK HaplotypeCaller because of the

diminished returns from Amdahl’s law (as seen in Fig. B.14).

B.6 RELATED WORK

In this section, we briefly describe related work (see Table B.3) that has accelerated the FA
algorithm on a variety of processors (e.g., CPU, GPU, and FPGA devices). The accelerators
in Table B.3 are generally based on SA architectures, which suffer from the shortcoming of
inefficient use of hardware resources for handling varied input sizes of real sequence data.
Fig. B.1 is a graphical representation of Table B.3. Some of the related work does not clearly
mention throughput and power measurements. In all such cases the Intel AVX implementation
of the FA algorithm [279, 280] is used to normalize performance stated in the respective
papers to that of our baseline. In the situation that power measurements are not provided in
cited papers, we assume the publicly stated TDP for the device used in the implementation.
Our results demonstrate that the design proposed in this chapter outperforms all the previous
designs in terms of both the PHMM micro-benchmark, and transitively to the GATK
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Table B.3: List of related high-performance implementations of PHMM. We use the best
result presented in the respective paper to compare performance.

Paper HLS SA Platform Speedup  Speedup / Power
C+-+ Baseline [290] - —  Power8 CPU 1x 1x
[279, 280] - —  Intel Xeon CPU 0.91x 1.33%
|281] v V' Convey HC2 NA3 NA®
282] vV Stratix V D8 NA“ NA“
[283] X V' Power8 & Xilinx 2.35x 33.24x
KU060
[178] X+ V' Arria 10 6.32x  60.04x (TDP = 20
[284] - —  Power8 & NVIDIA  15.51x  12.80X (TDP = 235W)
K40
272] X V' Power8 & Xilinx  6.27x 79.74x
XC7VX
This chapter X X Power8 & Xilinx 14.85x 147.49x
XC7VX

HaplotypeCaller on representative datasets. Our performance results in Table B.3 do not
contain the algorithmic optimizations (from Appendix B.4) that further improves performance
by 2.8x (i.e., we compare only the design of the accelerator). The GPU implementation in
[284] demonstrates marginally higher absolute performance (i.e., 1.04x = 15:51/1485), but our
design represents a significant improvement (i.e., 11.5x = 14749/12.80) in terms of performance-
per-energy consumed. Furthermore, the K40 GPU has x16 PCle connections compared to our
x8, and on-board GDDR5 memory, use of which will also benefit our design (see Fig. B.15).

Similarity to Smith-Waterman and other Levenshtein distance (LD) algorithms. The
PHMM computation is an generalization of edit-distance formulation proposed by Levenshtein
in [228] to probabilistic gap penalties [275]|. Several LD variants have been accelerated in
ASICs and FPGAs (e.g., [235, 251, 259]). However the key point of difference between the
LD and the PHMM computations is in the use of floating point math which produces a
significantly more complicated data-path. Furthermore, LD computations have been shown
to be memory-bound for large lattices, whereas PHMM computations are significantly more

compute intensive [288].

B.7 SUMMARY

This chapter presented an approach to accelerating the computation of the FA algorithm

in hardware. Our key insight of using input data characteristics to inform architectural
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design patterns allows our design to outperform traditional architectures in terms of both
energy per operation and runtime performance. The use of this accelerator in genomic data
analysis represents a significant acceleration in terms of time spent in computation. The
proliferation of sequencing platforms and the resulting explosion in genomic data [11] will
make this accelerator even more important in the future. Though most of the techniques
presented in this chapter are applicable only to the FA algorithm and transitively only in
bioinformatics applications, the general design philosophy of using input data characteristics,
in addition to the algorithmic definition, for design specialization of accelerators can be

broadly applied across a large number of domains.
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