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Abstract

Reduced-order models (ROMs) offer a promising approach for parametric analysis of en-

gineering fluid dynamics applications. The standard procedure consists of using solution

snapshots to produce a truncated POD basis, which is in turn used in a Galerkin projection

of the governing Navier-Stokes equations (NSE). Unfortunately, the standard POD approach

has well-known limitations for high Reynolds number flows that are largely attributable to

the lack of fine-scale structure in the low-rank POD bases, which tend to be spatially smooth

and therefore unable to generate sufficient small-scale dissipation to stabilize the solution

for a small number of modes, N . Even with stabilization, the required value of N is often

sufficiently large that these approaches are impaired by the O(N3) costs associated with

evaluation of the third-order advection tensor at each step of the ROM time-advancement.

We present a novel non-intrusive stabilization technique in the form of basis augmentation

that, in many cases, reduces the total number of modes required to produce a stable and

accurate ROM reconstruction for turbulent flows at modest Reynolds numbers. The approach

involves augmenting the standard POD modes with divergence-free projections of subsets

of POD-expanded terms originating from the advection term. Differing combinations of

these basis elements are considered. Bases that include interactions with lifting function and

self-interactions have proven to be quite effective for several challenging flow problems with

relatively low values of N̂ , where N̂ is the total number of basis including the augmentation

modes. We demonstrate this proposed basis set on several challenging problems and compare

its stability properties with alternative stabilization approaches for POD-based ROMs.
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Chapter 1

Introduction

Fluid-thermal analysis plays a critical role in understanding and prediction of many impor-

tant phenomena for engineering and science applications, including engine design, cooling

mechanisms in nuclear reactors, fundamentals of stellar convection, and cooling of biological

systems. In the early developmental phase of this discipline, rigorous mathematical models,

including the Navier-Stokes equations (NSE) were established and used in conjunction with

the energy transport equation to accurately represent the thermal states of the flow measured

in experimental setups.

A significant challenge with the mathematical formulation is that the governing equations

are nonlinear partial differential equations (PDEs) in three space-dimensions and time, which

makes their solution difficult to obtain, even in simple geometries. For problems involving

complex geometry and/or with variable material properties, it is generally necessary to resort

to numerical solution of the governing system of PDEs on a computer using numerical methods.

At elevated Reynolds numbers even simple configurations can require a numerical approach

if the flow transitions to turbulence. Numerical discretizations, including finite-difference,

finite volume, finite element, and spectral methods, have been demonstrated to provide

high-fidelity solutions of the NSE with geometry, properties, initial conditions, and boundary

conditions that are relevant to engineering applications. This field, known as computational
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fluid dynamics (CFD) has become ubiquitous to the point that it is widely accessible by

engineers, with a few caveats.

One of these caveats is the limitation in the problem size, which is measured in the number

of grid points or degrees-of-freedom (DoFs), N , required to accurately represent the velocity,

pressure, and temperature fields. While CFD was initially limited to small problem sizes

that could only describe flows with limited ranges of scales, advances in high-performance

computing (HPC) have led to significant increases in the computational capacity available

to solve a given CFD problem. These advances are illustrated by the problem of isotropic

turbulence in a box over the past four decades. In 1977, Orszag addressed this problem with

the Centicube code, which could advance the NSE at 20 seconds per timestep on a Cray

1 using a spectral method with N = 1283 Fourier modes [1, 2]. In 2019, Ravikumar et al.

[3] could advance the same problem at higher Reynolds numbers using N = 184323 Fourier

modes in 14 seconds per timestep on the GPU-based Summit platform at Oak Ridge National

Laboratory. This latter problem represents a three million-fold increase over the Centicube

results.

Hero calculations such as those mentioned previously serve multiple roles. First, algorith-

mic benefits are often manifest in a trickle-down effect since today’s supercomputers typically

become tomorrow’s professional workstations and personal computers. Second, cutting-edge

simulations can be used to gain insight into fundamental mechanisms of turbulence, much in

the same way as experiments, both of which can lead to turbulence models that might be

employed in less expensive (i.e., smaller) thermal-fluid calculations.

Conceivably, HPC could also be used for engineering design with large eddy simulation

(LES) or with Reynolds-averaged Navier-Stokes (RANS) turbulence models. Such approaches,

however, become challenging for large complicated domains when many design iterations are

required. Each expensive simulation incurs as much expense as its predecessor as there is no

information sharing between the two calculations. It is in this context where a relatively new

approach offers some opportunity. Reduced-order models (ROMs) are designed to leverage
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existing information (typically coming from a large HPC calculation, known as a full-order

model, or FOM) by building a low-rank approximation space that is derived from the FOM

solution. One then uses a suitable basis for this space in a Galerkin framework to approximate

the solutions of the parameterized NSE and energy equations. Possible parameterizations

include varying Reynolds or Rayleigh numbers or limited geometric variations.

To be useful as design tools, ROMs for unsteady flows must address two problems. First,

they must be able to solve the reproduction problem. That is, they must be able to accurately

reproduce quantities of interest (QOIs) that are generated by the originating FOM. Second,

they should be able to solve the parametric problem, in which they are used to evaluate QOIs

in the (parametric) neighborhood of the originating problem.

Parametric model-order reduction (pMOR) is a promising approach to leveraging high-

performance computing (HPC) for design and analysis in fluid-thermal engineering appli-

cations. The governing equations in this context are the time-dependent incompressible

Navier-Stokes equations (NSE) and the thermal transport equation,

∂tu+ u · ∇u = −∇p+ ν∇2u+ f , ∇ · u = 0, (1.1)

∂tT + u · ∇T = κ∇2T. (1.2)

where ν and κ parameterize the PDEs and the forcing function f can be the Boussinesq

approximation term, for example.1 The equations are assumed to hold in a suitable domain

Ω with appropriate initial and boundary conditions. The Galerkin statement is

Find (∂tu, p, ∂tT ) ∈ Y := [H1
0 ⊗ L2 ⊗H1

0 ] s.t. ∀ (v, q, S) ∈ Y ,

(v, ∂tu) + (v,u · ∇u) = (∇ · v, p)− ν(∇v,∇u) + (v,f), (q,∇ · u) = 0, (1.3)

(S, ∂tT ) + (S,u · ∇T ) = −κ(∇S,∇T ). (1.4)

1These equations are effectively in nondimensional form, which for forced conditions implies that ν = Re−1,
the inverse Reynolds number, and κ = Pe−1, the inverse Peclet number. For buoyancy-driven flows these
parameters typically scale with Rayleigh number (Ra) and Prandtl number (Pr), with the precise definition
dependent on the chosen scaling.
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Here, L2 is the space of square-integrable functions on Ω; H1 is the space of functions in L2

whose gradient is also in L2; and H1
0 is the space of functions in H1 that vanish on subsets of

the boundary, ∂ΩD ⊂ ∂Ω, where homogeneous Dirichlet conditions are imposed. H1
0 is the

vector counterpart to H1
0 .

To obtain a fully-accurate quantity of interest (QOI) such as friction factor, Nusselt

number, or Strouhal number, one formally needs to obtain a full-order model (FOM) solution

to the governing equations at discrete points in the parameter space of interest (e.g., spanned

by a range of ν and κ, of interest). Typically, the FOM constitutes a high-fidelity spectral- or

finite-element solution to the governing equations, which can be expensive to solve, particularly

for high Reynolds number cases that are typical of engineering applications. pMOR seeks to

develop a sequence of reduced-order models (ROMs) that capture the behavior of the FOM

and allow for parameter variation. For unsteady flows, the pMOR problem can be broken

down into two subproblems: reproduction, wherein the ROM captures essential time-transient

behavior of the FOM using the same parameter (anchor) point for each, and parametric

variation, wherein the ROM is run at a different parametric point in order to predict the

system behavior away from the anchor points at which the FOM simulation was conducted.

In this work, we focus primarily on the reproduction problem for challenging unsteady flows.

We do, however, also consider pMOR, which we illustrate with an example from Kaneko et

al. [4] in Chapter 2.

While pMOR is a promising approach for engineering analysis and design, it is well known

that even the reproduction problem is challenging for the classical POD-Galerkin approach

at high Reynolds numbers after the flow transitions to turbulence. One common issue with

this class of problems is that the ROM solution approaches an unphysical attractor. This

behavior is attributed to a lack of dissipation, given that the truncated POD space lacks

high-wavenumber modes that are capable of dissipating energy. One can induce additional

dissipation by including more modes but the cost is high. The convective tensor reduction

requires storage of N3 entries for the advection operator with a corresponding work of 2N3
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operations per timestep. While N = 100, with a cost of a two million operations per step and

a million words in memory, may be tolerable, N = 400 with a cost of 128 million operations

and 64 million words quickly makes pMOR less viable for running on a workstation, which is

typically the target for this type of analysis tool.

Existing techniques for addressing the computational cost for the online phase of POD-

ROM include the discrete empirical interpolation method (DEIM) [5–7], which can effectively

evaluate non-linear terms based on interpolation points, and tensor decomposition, which aims

to approximate the convective tensor by a low-rank tensor. We will show in our concluding

examples that these methods will not, on their own, address the unphysical ROM dynamics.

Stabilization of the ROM is critical and is the primary topic of this work. Several stabilization

strategies are introduced in Section 1.1 and a detailed description is given in Section 3. The

major contribution of this work is the development of a novel augmented-basis method (ABM)

[8], in which we add important modes to the standard POD bases. In many cases, the ABM

increases both the stability and accuracy of the ROMs at a cost equivalent to standard POD

approaches having the same total number of modes.

1.1 Historical Development

The POD-Galerkin technique in fluid flow emerged from Lumley’s application of POD to

identify dominant flow features [9]. Model-reduction using POD modes as basis functions

was introduced afterwards, with a comprehensive analysis appearing in a later monograph by

Holmes et al. [10].

Application of pMOR to more complex PDEs with non-affine parameter dependencies

were addressed by Barrault et al. [11] using decomposition of the nonlinearity based on

the empirical interpolation method (EIM). In this approach, successive interpolation modes

are chosen to eliminate the error between the targeted term in FOM and the ROM at

“magic points” designated as points in Ω where the error of the current interpolant (i.e.,
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the approximant of the next mode) is maximal. This method was further extended by

Chaturantabut & Sorensen [5–7] with a POD decomposition of the nonlinear term and

the choice of points restricted to discrete points produced by the spatial discretization of

the PDE, called discrete empirical interpolation method (DEIM). While these methods

enable application of pMOR to nonlinear problems, the issue of insufficient basis and feasible

stabilization methods for the NSE persists.

Due to its approach of treating nonlinear terms, DEIM has the potential to address

the high-cost issue of including more modes. DEIM replaces the third-order convective

tensor with a collocation-like decomposition at the discrete magic points, that can reduce

the computational complexity from O(N3) to O(N2) if the approximation is sufficiently

accurate for a small number of interpolation points. Accounting for the constants, evaluation

of advection using DEIM with N = 200 modes would be equivalent to using the full tensor

with N = 65 when fixing the number of interpolation points to N . For the same cost, DEIM

thus permits the use of a richer approximation space. In the context of solving the steady

Navier-Stokes equations, Elman & Forstall [12] has successfully applied DEIM.

To certify that the error in the ROMs that are produced is smaller than the acceptable

tolerance, error indicators have been developed based on the residual of the ROM solutions

in the full-order model (FOM) space. This factor in the pMOR methodology is crucial for

ensuring the error in the low-dimensional model of the ROM is sufficiently small. Error

indicators for coercive elliptic PDEs are described by Veroy et al. [13]. In this work, bounds

on the QOI from the ROM is established via a posteriori error indicator. The QOI in this

case is limited to those produced by a linear functional, but engineering application for which

that is the case is numerous (e.g., Nusselt number, velocity component values at particular

points, lift/drag, etc.).

An a posteriori error indicator for time-dependent NSE is described by Fick et al. [14]. By

breaking down the contribution of the error of the ROM in the FOM space at each time-step,

they were able to produce an error indicator whose factors are pre-computable in the offline
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processing stage and can be evaluated efficiently in the online stage. In the same work by

Fick et al., a constrained-optimization approach is also proposed which will be discussed later

in this section. We do not consider error indicators further in this dissertation, but they are

nonetheless an important component for efficient and accurate pMOR and are discussed by

Tsai & Fischer [15].

For addressing the issue of stability, several modifications to the original POD Galerkin

approach have been proposed. Iollo et al. [16] proposed a modification of the POD mode

generation in which the H1 inner-product is used to produce the Gramian, rather than L2

inner-product, to emphasize the importance of gradients in the FOM snapshots. Because the

velocity gradients are an important factor in the dissipation mechanism of the flow solution,

these modes contain more of these high-wavenumber components compared to the L2 based

POD modes.

Wells et al. [17] introduced Leray regularization in the context of ROM in which the ad-

vecting field is smoothed (conveniently, by truncation of the modes in the case of POD-ROM).

This regularization enhances the stability property of the dynamical behavior; however, the

optimal choice of regularization (e.g., number of modes to truncate or shape of transfer func-

tion) is not known a priori. This method has an attractive feature of ease of implementation

and also reduction of the cost of evaluating the convective term in the ROM, which is the

dominant cost of running the ROM, by a factor of 2 for a sharp cutoff of 50% of the modes.

An alternative stabilization approach, introduced by Fick et al. [14], is to replace the

discrete ODE system by a constrained minimization problem at each timestep. During the

evolution of the system, the basis coefficients are bound by the minimum and maximum

coefficient values observed in the snapshot projection onto the truncated POD space (if the

constraints are inactive, one recovers the standard Galerkin-based trajectory). With this

approach, the ROM tends to stay close to the dynamics of the FOM because each coefficient

is forced to evolve between the empirical bounds. A challenge, however, is that this approach

requires ad hoc modification of the bounds for parametric values where the FOM snapshots

7



are unavailable. Applications of several of these stabilization techniques may be found in

Kaneko et al. [4].

Furthermore, methods that address the stability issue by constructing basis functions that

satisfy the energy-balance that closely match the POD basis is introduced by Balajewicz [18].

In this work, existing work on stabilizing LTI systems by finding the optimal combination

of snapshots to produce dynamically stable ROM by Amsallem & Farhat [19] is combined

with the work by Cazemier et al. [20] in which the kinetic energy behavior is stabilized by

introducing an empirical turbulence closure term in the ROM. In this combined method by

Balajewicz, an a priori non-linear constrained optimization problem is solved that minimizes

the difference between the energy captured by the new modes and the energy captured by the

POD modes for a given N subject to constraints: the columns of the transformation matrix

are orthonormal and the empirical kinetic energy-balance is satisfied. The author found

that this approach offers some improvement upon the standard POD-Galerkin approach.

Also discovered was the fact that by ensuring the kinetic energy-balance is dissipative to

an arbitrary degree, the ROM solution becomes stabilized. Thus, by encapsulating the

method by this ROM training stage, the amount of appropriate dissipation to be prescribed

in the constrained optimization step can be found to produce a stable ROM with mean TKE

behavior close to that of the FOM.

Finally, a basis augmentation approach was introduced by Akkari et al. [21, 22] that use

combination of L2 POD modes and H1
0 POD modes so that a small number of L2 POD modes

capture the dominant features of the flow and the H1
0 POD modes containing small-scale

features will address the lack of dissipation in the former modes. They have found nominal

success in using this basis, using qualitative metrics. Although similar to our approach in

the sense that they are both an augmentation scheme upon the standard L2 POD basis,

our method can introduce new features that were not present in the snapshots of the FOM

solution by considering the dynamical system that drives the solution (i.e., the NSE). In this

way, even if there is a lack of snapshots to reproduce the FOM behavior, ABM can help
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improve the accuracy as demonstrated in 6.3.
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Chapter 2

Model-Order Reduction for Thermal

Fluid Analysis

High-performance computing and modern numerical algorithms have made high-fidelity

fluid-thermal analysis tractable in geometries of ever increasing complexity. Despite continued

advances in these areas, direct numerical (DNS), large-eddy (LES), and even unsteady

Reynolds-averaged Navier-Stokes (uRANS) simulations of turbulent thermal transport remain

too costly for routine analysis and design of thermal-hydraulic systems, where hundreds of

cases must be considered. Reduced-order models (ROMs) offer a promising approach to

leverage expensive high-fidelity simulations (referred to as full-order models or FOMs) by

extracting from these detailed simulations low-dimensional dynamical systems that capture

the principal features of the underlying flow fields [23, 24].

While FOMs for turbulent flows can require N = 107 − 1011 degrees-of-freedom, ROMs

offer the potential of representing the flow dynamics governing the behavior of quantities

of interest (QOIs) with only N ≈ 10–103 basis functions. The amplitudes of these basis

functions are typically evolved as a system of nonlinear ordinary differential equations (ODEs)

or through other mechanisms, for example, based on machine learning (e.g., [25]), or even

through linearized models such as the recently-developed Green’s function approach of
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Khodkar et al. [26]. For reasons of stability, Fick et al. [14] replace ODE integration with a

sequence of constrained-minimization problems that keep the ROM within observed basin of

attraction.

The overall objective of parametric model-order reduction (pMOR) is to build ROMs

from FOMs that are generated over a small set of anchor points Pα = {p∗1, . . . , p∗m} in the

parameter space and to subsequently use the ROMs to inexpensively explore the parametric

dependencies of the QOIs. To realize this goal, pMOR must address two problems: (i)

the reproduction problem, in which a ROM accurately recovers QOIs for a turbulent flow

simulation at a particular point in the parameter space (i.e., where the ROM and FOM are

evaluated at the same p∗j); and (ii) the parametric problem, in which the ROM provides

estimates of QOIs at points p 6∈ Pα. To make the overall process efficient, the ROM should

be equipped with error indicators to assess its fidelity at any given p, which allows one to

optimally choose the anchor points p∗j , thus minimizing the number of expensive FOMs

required for effective parametric analysis [14]. We typically choose the anchor points by

evaluating the error indicator over a set of training points, Pτ and selecting as the next

element of Pα the point that maximizes the error indicator in Pτ . In the present study, we

do not consider error-indicated selection of Pτ ; that topic is the focus of future work.

Here, we present some basic steps towards realizing pMOR for buoyancy-driven flows at

modest Rayleigh numbers. Initially, we consider the use of proper-orthogonal decomposition

(POD) bases in a Galerkin formulation of the momentum and energy equations for relatively

low Rayleigh-numbers. We show that ROM reconstruction and pMOR are viable and that

pMOR is significantly more accurate than parametric interpolation for nonlinear QOI examples

that follow. We will consider the closure problem for high Reynolds number cases, where

ROMs typically suffer from inadequate dissipation because of the lack of high-wavenumber

functions in the POD approximation space in Chapter 3. There we consider two known

stabilization strategies. The first is a Leray-type regularization [17, 27], in which we mollify

the nonlinear advection term by regularizing the advecting field (only). The second is based
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on the constrained-evolution approach of [14], in which the snapshot data (introduced below)

is reused to set limits on the basis coefficients in order to keep the dynamics of the system

near the observed attractor. We will demonstrate the relative success of these regularization

approaches for two-dimensional regularized lid-driven cavity problem which is the subject of

Fick et al. [14].

Before moving on to these examples, again in Chapter 3, we will focus on successful

examples to show the promise of MOR for engineering applications.

2.1 Galerkin-Based ROM

Our point of departure is the Boussinesq approximation for buoyancy-driven flow,

∂tu+ (u · ∇)u+∇p = ν∇2u+ η T ĝ, ∇ · u = 0, (2.1)

∂tT + (u · ∇)T = κ∇2T. (2.2)

subject to appropriate Dirichlet or Neumann boundary conditions for the velocity, u, and

temperature, T . Here p is the pressure, ĝ is the unit vector in the (positive) vertical direction,

and ν, η, and κ are problem parameters based on the nondimensionalization of the problem.

The ROM for the Boussinesq equations starts with a collection of K snapshots for

velocity, uk(x) := u(x, tk)− ub and for temperature, T k(x) := T (x, tk)− Tb corresponding

to numerical solutions of the full-order model (FOM) at well-separated timepoints, tk, minus

base states, ub(x) and Tb(x). The base states (typically time-averaged FOM solutions) satisfy

any prescribed inhomogeneous boundary conditions, which are presently assumed to be

time-independent.

The FOM is based on the spectral element method (SEM) in the open-source code,

Nek5000, and uses the lPN − lPN−2 velocity-pressure coupling where the velocity and pressure

are represented in different polynomial bases.1

1Nek5000 use two formulations lPN − lPN [28–30] and lPN − lPN−2 [31, 32] of which the lPN − lPN−2
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For any uk(x), we have a corresponding vector of basis coefficients uk = [uk1 . . .u
k
N ]T

such that uk(x) =
∑N

j=1 u
k
jφj(x), with φj(x) the underlying spectral element basis functions

spanning the FOM approximation space, XN0 ⊂ Y . Because the SEM is nodal-based, each

ukj represents the three velocity components at gridpoint xj in the spectral element mesh

at timepoint tk. Similarly, the temperature is given by T k(x) =
∑N

j=1 T
k
j φj(x) ∈ XN0 ⊂ Y .

Here, XN ⊂ Y is the finite dimensional SEM approximation space spanned by {φj(x)}. We

refer to equations ?? and 1.4 for the weak formulation and the definition of spaces.

2.1.1 Proper Orthogonal Decomposition

For the velocity, we collect the snapshots into the a matrix UK = [u1 . . .uK ]. From these,

one forms the Gramian, U ∈ lRK×K , with Uk,k′ := (uk,uk
′
)L2 , where (v,u)L2 :=

∫
Ω
v · u dV

is the L2 inner product. One could also consider the H1 norm and H1
0 semi-norm that have

been considered in [16] and [14].

Following standard POD methodology, the basis functions {ζ
n
} for the ROM derive from

the first N eigenmodes of U ,

Uzk = λkzk, zk ∈ lRK , λ1 ≥ · · · ≥ λK ≥ 0 (2.3)

ζ
n

:= UKzn, n = 1, . . . , N < K. (2.4)

The continuous functions in the SEM space corresponding to ζ
n

are ζn(x) :=
∑N

j=1(ζ
n
)jφj(x).

We perform a similar procedure for temperature, generating TK := [T 1 . . . TK ] and

associated Gramian, T, having entries Tk,k′ := (T k, T k
′
)L2 . We then solve the K × K

eigenproblem,

Tτ k = λkτ k, τ k ∈ lRK , λ1 ≥ · · · ≥ λK ≥ 0, (2.5)

formulation is used for the ROM operator generation
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and define

θn := TKτn, n = 1, . . . , N < K. (2.6)

The continuous functions in the SEM space corresponding to τn are θn(x) :=
∑N

j=1(θn)jφj(x).

Remark 1. We note that, the POD construction provides a set of basis vectors Z :=

{ζ
1
, . . . , ζ

N
} that minimizes the average distance between Z and UK in the chosen inner-

product (here, (·, ·)L2) for any rank-N subset of UK . Thus, the motivation for POD is its

approximation property, which uniformly distributes the error across the snapshot set. That

property is not dependent on the subsequent choice of time-evolution of the ROM nor on any

particular feature of the Navier-Stokes or Boussinesq equations. A major contribution of this

thesis is that we derive, from the POD basis, an augmented basis set that greatly improves

stability and convergence of the dynamics as generated by Galerkin ROM.

Remark 2. In the procedures that follow, we treat the velocity and temperature as

independent state vectors. One could alternatively work with snapshot sets that combine the

velocity and temperature into a single vector and thus form the Gramian from QK = [q1 . . . qK ],

where qk := [uk T k]. This approach reduces the online evaluation cost of the ROM by a factor

of two because one has one-half the number of variables to track. The principal drawback of

using a coupled system is that one then has no mechanism to ensure that the temperature is

bounded by its extremal boundary values (where such bounds are meaningful).
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2.1.2 Galerkin Formulation

With a given basis sets in hand, the Galerkin formulation follows by inserting the reduced-basis

expansions,

ũ(x, t) =
N∑

n=0

ζn(x)un(t) ∈ Zb (2.7)

T̃ (x, t) =
N∑

n=0

θn(x)Tn(t) ∈ Θb, (2.8)

into the weak form of (2.1)–(2.2). In order to set the boundary conditions, we have augmented

the trial (approximation) spaces ZN
0 and ΘN

0 with the base states, ζ0 := ub and θ0 := Tb.

The coefficients for these terms are prescribed: u0 ≡ T0 ≡ 1. The corresponding test spaces,

ZN
0 := {ζi}Ni=1 and ΘN

0 := {θi}Ni=1, satisfy homogeneous boundary conditions, as is standard

for Galerkin formulations.

In weak form, the problem can be stated as Find (ũ, T̃ ) ∈ ZN
b ∈ XN ∈ Y , s.t., ∀ (v, S) ∈

ZN
0 ∈ XN0 ∈ Y ,

∫

Ω

v · dũ
dt
dV + ν

∫

Ω

∇v : ∇ũ dV

= −
∫

Ω

v · (ũ · ∇) ũ dV + η

∫

Ω

v · (T̃ ĝ) dV, (2.9)

∫

Ω

S
dT̃

dt
dV + κ

∫

Ω

∇S · ∇T̃ dV

= −
∫

Ω

S (ũ · ∇) T̃ dV + κ

∫

∂Ωf

S∇T̃ · n̂ dA. (2.10)

First, we remark that dim(ZN
0 ) � dim(XN0 ), meaning these reduced problems are much

easier to solve numerically, and we also remark that the presence of the surface integral in

(2.10) admits the possibility of an inhomogeneous surface flux qs := κ∇T̃ · n̂ on some part

of the domain boundary ∂Ωf ⊂ ∂Ω. If ζ0 and θ0 satisfy the prescribed Dirichlet conditions,

then ũ and T̃ will satisfy these conditions as well. Note that the pressure term vanishes from
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(2.9) as a result of integration-by-parts because the test functions are weakly divergence-free

and they are all homogeneous on the boundary. The continuity equation of the Navier-Stokes

equations is also removed since ZN
b consists solely of weakly divergence-free basis functions.

For temporal discretization of (2.9)–(2.10), we use a semi-implicit scheme with kth-order

backward differencing (BDFk) for the time derivative, implicit treatment of the negative-

definite dissipation terms, and kth-order extrapolation (EXTk) of the advection and buoyancy

terms. We typically use k = 3, to ensure that the imaginary eigenvalues associated with skew-

symmetric advection operator are within the stability region of the BDFk/EXTk timestepper,

as discussed in [33].

When fully discretized in space and time, we get the following systems for the ROM basis

coefficients un and T n at timepoint tn,

(
β0

∆t
Bu + ν Au

)
un =−

k∑

i=1

αi
[
Cu ( ū ) ū − η BuTT

]n−i

−Bu

k∑

i=1

βi
∆t
un−i − νau,0, (2.11)

(
β0

∆t
BT + κAT

)
T n =−

k∑

i=1

αi
[
CT ( ū )T

]n−i

−BT

k∑

i=1

βi
∆t
T n−i − κ aT,0 + q

s
. (2.12)

Here, ū and T are the augmented basis vectors that include the base states for u and T ; αi

and βi are the respective BDFk/EXTk coefficients (e.g., for k=2, α1 = 2, α2 = −1, β0 = 3
2
,

β1 = −4
2
, and β2 = 1

2
). A, B, and C represent the respective stiffness, mass, and advection
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operators, with entries

Au,ij =

∫

Ω

∇ζi : ∇ζj dV (2.13)

Bu,ij =

∫

Ω

ζi · ζj dV (2.14)

Cu,ikj =

∫

Ω

ζi · (ζk · ∇)ζj dV (2.15)

AT,ij =

∫

Ω

∇θi · ∇θj dV (2.16)

BT,ij =

∫

Ω

θiθj dV (2.17)

CT,ikj =

∫

Ω

θi · (ζk · ∇)θj dV. (2.18)

BuT,ij =

∫

Ω

ζi · ĝθj dV (2.19)

q
s,i

=

∫

∂Ωf

θi qs dA (2.20)

Remark 3. The computational cost of time-advancing (2.11) and (2.12) is dominated

by the application of the third-order advection tensors, Cu and CT , which requires O(N3)

operations and memory references on each step. The remainder of the terms are O(N2) or

less. Unfortunately, O(N3) is a very steep cost and prohibits practical consideration of, say,

N > 500. While not considered in this work, strategies to mitigate this cost are of paramount

concern. Instead of work reduction, ABM, to be introduced later, will reduce the number of

modes by considering the dynamics (from NSE) in conjunction with the empirical basis from

the snapshots.

We have applied the Galerkin-ROM formulation (2.11)–(2.12) for several cases, including

the basic test problem of two-dimensional flow past a cylinder at Reynolds number ReD = 100,

for which N ≈ 20 provides a sufficient number of modes for accurate reproduction of the

flow field with the drag and lift history to four significant digits. As stated earlier, however,

our objective is not reconstruction of the flow field. Rather, we aim to predict QOIs at

parameter points p that are not in the set Pα from which we draw our approximating
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bases. In section 2.2, we illustrate use of the Galerkin ROM for both the reproduction for

the aforementioned cylinder problem and pMOR problems in the case of a axisymmetric

Rayleigh-Bénard convection.

2.2 Reproduction Problem

We first demonstrate reproduction using the POD-Galerkin ROM on the problem of 2D

flow past a cylinder. This is a canonical test case for ROMs because of its robust and

low-dimensional attractor, which is manifest as a von Karman vortex street for Re =

UD/ν > 34.37 [34]. The Reynolds number in our test case is Re = 100 and the domain is

Ω = [−2.5 : 17]D × [−5 : 5]D, with the unit-diameter cylinder centered at [0, 0].

We take the drag on the cylinder to be the QOI. Here, we describe only the pressure

component, which is more challenging to compute than the viscous component because the

pressure solution is not explicitly solved for. Pressure is often solved for in the ROM systems,

especially when the QOI includes pressure contributions. Examples of this approach are

Stabile et al. [35] and Bergmann et al. [36]. The challenge for our approach is to compute

the contour integral of the pressure without explicitly solving for the pressure field in the

ROM. We start from the Incompressible Navier-Stokes Equations:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, (2.21)

∇ · u = 0 (2.22)

Rearranging the terms, the pressure gradient is

∇p = −∂u
∂t
− (u · ∇)u+ ν∇2u (2.23)

Now, if we know the pressure gradient along the cylinder surface Γ, we can find the force
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exerted by pressure via the following Fourier representation for the pressure

p(s) =
∞∑

k=1

(Ak cos(2πks) +Bk sin(2πks)) , s ∈ [0, 1) (2.24)

where s is the parameterization of Γ. Then, the derivative along Γ is:

dp

ds
=
∞∑

k=1

(−2πkAk sin(2πks) + 2πkBk cos(2πks)) (2.25)

If dp
ds

(s) is known, we can find the coefficients by evaluating integrals:

Ak = − 1

kπ

∫ 1

0

sin(2πks)
dp

ds
(s)ds, (2.26)

Bk =
1

kπ

∫ 1

0

cos(2πks)
dp

ds
(s)ds (2.27)

Once Ak and Bk are known, we can evaluate the contour integral via the above expression.

Because ∇p can be evaluated from the momentum equation, dp
ds

= ∇p(s) · t̂(s) can be

established, where t̂ is the unit tangent vector along Γ.

F̃ (∇p) = −
∮

Γ

p dA (2.28)

= −L
∫ 1

0

p(s) n̂(s) ds (2.29)

= −L
∫ 1

0

∞∑

k=1

(Ak cos(2πks) +Bk sin(2πks)) n̂(s) ds (2.30)

= −L
∞∑

k=1

(
Ak

∫ 1

0

cos(2πks)n̂(s) ds+Bk

∫ 1

0

sin(2πks)n̂(s) ds

)
(2.31)

= −L
∞∑

k=1

(AkIk,1 +BkIk,2) (2.32)

where L is the arc-length of Γ. Ik,1 and Ik,2 must be pre-computed once. Therefore, if we

find the Fourier coefficients corresponding to ∇p, we find the force on the cylinder due to the

pressure. But because we can calculate the pressure gradient field from the velocity field, we
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can calculate the pressure drag without knowing the pressure solution i.e.,

F = F̃ (∇p) ≈ −L
N∑

k=1

(AkIk,1 +BkIk,2), (2.33)

Ak = − 1

kπ

∫ 1

0

sin(2πks)

(
−∂u
∂t
− (u · ∇)u+ ν∇2u

)
· t̂ ds, (2.34)

Bk =
1

kπ

∫ 1

0

cos(2πks)

(
−∂u
∂t
− (u · ∇)u+ ν∇2u

)
· t̂ ds (2.35)

For the specific case of flow past a cylinder with u = 0 on the cylinder surface Γ, the problem

can be further simplified

∇p
∣∣∣
Γ

= ν∇2u
∣∣∣
Γ

(2.36)

⇒ F = −L(AkIk,1 +BkIk,2) (2.37)

= −2πr 〈Ak, Bk〉 , (2.38)

Ak = − ν

kπ

∫ 1

0

sin(2πks)
(
∇2u

)
· t̂ ds, (2.39)

Bk =
ν

kπ

∫ 1

0

cos(2πks)
(
∇2u

)
· t̂ ds (2.40)

After application of the above methodology, we obtain an accurate behavior of the pressure

component of drag shown in Fig. 2.1, where the projection of the initial condition for the

developed FOM was used for the ROM. The error for this ROM reproduction is shown in

Fig. 2.2.
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Figure 2.1: Circular cylinder pressure drag force comparison between FOM and ROM.
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Figure 2.2: Circular cylinder ROM pressure drag force error.

The experimental setup was as follows. Starting with a fully-developed FOM, 200

snapshots (64-bit data) were collected over 200 convective time units (D/U). The tolerance

for the pressure solve is 10−7 and the tolerance for the velocity solve is 10−9. The number

of POD modes in the basis is N = 20. The ROM initial condition is based on the POD

projection of the initial condition of the FOM. We see that the ROM accurately captures the

phase and period of the FOM. Moreover the ROM QOI accurately tracks the pressure drag

of the FOM. The relative error of the ROM compared to the FOM in the mean pressure drag

value is 4.1× 10−7 and the relative error in variance is 2.8× 10−3. The maximum relative

error (based on the mean value) between the two data set is 3.1× 10−5.

To demonstrate this methodology on non-trivial cylinder geometry, we will consider
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the flow past an elliptic cylinder. Using the same mesh topology, the domain has been

stretched in the stream-wise direction by factor 2. Other specifications of the experiments

such as the the time-step size, tolerances, number of snapshots, and the snapshot collection

time-window are consistent with those of the circular cylinder case. For this problem we

see similar success of capturing the pressure drag behavior without solving for the pressure.

Figure 2.3 shows the pressure drag history and Fig 2.4 shows the error. For this problem the

relative error in the mean drag value is 1.4× 10−5 and the relative error in the variance is

8.6× 10−4. The maximum relative error (based on the mean value) between the two data set

is 2.4× 10−5. Although these two examples are a trivial cases for MOR, it demonstrate a

significant reduction in the degrees of freedom.
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Figure 2.3: Elliptic cylinder pressure drag force comparison between FOM and ROM.
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Figure 2.4: Elliptic cylinder ROM pressure drag force error.

2.3 Parametric Model-Order Reduction

Here, we demonstrate that the ROM techniques of the preceding section can be effective

for the ultimate goal of parametric model-order reduction. Given that the parameters and

QOIs for thermal-fluids applications are highly case specific, we introduce the process in the

context of a particular model problem. Specifically, we consider the temporal-behavior of the

Nusselt number in axisymmetric Rayleigh-Bénard convection, which was studied by Barkley

& Tuckerman [37, 38].
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2.3.1 Axisymmetric Rayleigh-Bénard Problem

The thermal-fluids problem is the axisymmetric Rayleigh-Bénard configuration depicted in Fig.

2.5(a), which was studied by Tuckerman & Barkley [37, 38]. The problem is parameterized by

ε = Ra−Rac
Rac

, where Rac = 1734 is the critical Rayleigh number. The 2D axisymmetric domain

has an aspect ratio of Γ = 5, shown in Fig. 2.5(a). For ε > 1.3843, traveling waves move

towards the centerline axis with a period that depends on ε. We perform FOM calculations at

two anchor points, ε = 1.6 and ε = 2.6, from which we collect snapshots (full flow/temperature

fields). We apply proper orthogonal decomposition (POD) to the snapshot sets from each of

the FOMs and use 20 POD modes from each to form a reduced-order subspace ZN comprised

of N = 40 basis functions. These modes are used in the weak- (Galerkin-) formulation of

the governing equations, where the solution is restricted to ZN ⊂ Y . The low-dimensional

ROM is able to capture short- and long-time behavior as shown in the Nusselt number

reproduction traces in Fig. 2.5(b). Moreover, as shown in Fig. 2.5(c), the ROM is able to

accurately predict the period of the traveling wave solutions both inside and outside the ε

range spanned by the anchor points. Note that as ε −→ 1.3843, the period goes to infinity

and FOM simulations near this limit become intractable. The ROM, however, is able to

predict this critical value of ε to within a few percent.

Figure 2.5: ROM application to axisymmetric Rayleigh–Bénard
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The spatial domain is a low aspect-ratio cylinder and, following [37], the problem is

cast in cylindrical coordinates with [r, z] ∈ [0, R] × [0, H] (R = 5, H = 1), so the flow is

effectively two-dimensional. For velocity, we have u = 0 on the upper, lower, and side walls.

For temperature, we have T = 1 − z on those surfaces. At r = 0, the radial component

of the velocity is zero while the vertical component and temperature have homogeneous

Neumann conditions. The problem is nondimensionalized with a viscous timescale, resulting

in parameters ν = Pr, η = Ra Pr, and κ = 1, where Ra is the Rayleigh number and Pr is

the Prandtl number.

Above a critical Rayleigh number, Rac, this flow exhibits an unsteady phenomenon in

which vortex rings formed at the outer edge of the cylinder push the interior vortex rings

inwards and squeeze out the one at the center. The orientation of the vortices thus periodically

flips, with the net effect being that a traveling wave of inward moving rings is observed.

For Ra > Rac, the period of this phenomenon increases as Ra −→ Rac. Our goal is to

reproduce the FOM results as a function of ε = (Ra − Rac)/Rac over a range of Rayleigh

numbers by performing FOM simulations at only one or two Rayleigh numbers. We take

as our parametric domain ε ∈ [1.60, 2.60] and as our QOI the transition period, indicated

by fluctuations in the Nusselt number. By performing this study, we wish to establish the

feasibility of pMOR for thermally-driven flows.

Our FOM is based on the axisymmetric formulation in Nek5000 using a 4×1 array (r× h)

of 15th-order spectral elements. The FOM is based on 3rd-order semi-implicit timestepping

with timestep size ∆t = 4× 10−4. The physical parameters are Rac=1734, Pr = 10, domain

radius R = 5, and height H = 1. From the FOM, the Nusselt number period is 41.200 for

ε = 1.60 and 15.984 for ε = 2.60, in accord with the results in [37]. One snapshot from the

problem for ε = 2.60 is shown in Fig. 2.5 (a).
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2.3.2 pMOR Setup

Our pMOR set for the axisymmetric Rayleigh-Bénard problem follows the p-refinement

algorithm described in [14] in which we combine basis sets from two points in the ε-parameter

space to form one large approximation space.

We first start by running FOM simulations using ε = 1.60 and ε = 2.60 to obtain

two sets of snapshots, taken over 200 Time-Units and spaced equally by 0.1 Time-Units.

Then, for each set, we form the velocity Gramian matrix by taking the inner product of the

velocity snapshots and form the temperature Gramian matrix by taking the inner product

of the temperature snapshots. For each set, using these Gramian matrices, we can obtain

20 dominant velocity modes and 20 dominant temperature modes. We use a total of 40

combined velocity modes and 40 combined temperature modes from this procedure as the

basis functions for the Galerkin projection. Once the basis functions for the velocity and

temperature are generated, the various operators in the systems can be formed as shown in

(2.13)–(2.20). (Note that the integrands must be modified to account for the axisymmetric

coordinates. This modification is straightforward in Nek5000 because the operator interfaces

are independent of the number of space dimensions or type of domain.)

Although the physics is fully coupled, semi-implicit time-stepping of the ROM allows

the velocity and temperature fields to be advanced without implicit coupling. Thus, the

third-order tensors CT and Cu are created with basis functions for each field; resulting in 403

entries2 in each of the advection tensors. In short, although we are using 80 total velocity and

temperature basis functions, the total cost of evaluating the convection for both equations is

2× 403 multiplication operations, instead of 803 multiplications.

With this setup, we adjust the parameters in (2.11)–(2.12) to run the ROM for ε ∈

{1.6, 1.65, ..., 2.6}. The endpoint data, ε = 1.6 and 2.6, are used to generate the parametric

model while the interior points are used for verification of the pMOR procedure. Presently,

2The full CT contains 40 × 40 × 41 elements, with the extra elements arising from the inhomogeneous
boundary term
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we use the same timestep size for the ROM as for the FOM, but this choice is not strictly

necessary. For each ε, we obtain Nusselt number vs. time behavior after first having let the

flow settle to a steady-periodic state for 100 time units. We extract the period from the

subsequent 100-unit time interval.

2.3.3 Computation of the Nusselt Number

The Nusselt number for this problem is defined as:

Nu =
2H

R2∆T

∫ R

0

Tz(r, 0, t) r dr, (2.41)

where ∆T = 1 is the temperature differential between the upper and lower surfaces. Calcu-

lation of Nu by reconstructing the FOM temperature field from the basis coefficients will

result in a heavy computational cost of O(N ×N) where N is the total number of degrees of

freedom for the FOM.

Fortunately, because Nu is a linear functional in T , it can be calculated indirectly

by computing the contribution from each basis function to the sum in the offline (FOM)

phase without reconstruction of the solution at each timestep in the online (ROM) phase.

Specifically,

Nu(t) =
2H

R2∆T

∫ R

0

N∑

i=0

Ti(t) θi,z(r, 0) r dr (2.42)

=
2H

R2∆T

N∑

i=0

Ti(t)

∫ R

0

θi,z(r, 0) r dr (2.43)

=
2H

R2∆T

N∑

i=0

Ti(t) Ii (2.44)

We calculate the Ii in the offline phase so we can determine the Nusselt number in the online

phase without any knowledge of the FOM (i.e., SEM) basis. Thus, the computational cost of

evaluating the Nusselt number at each timestep in the ROM is only O(N).
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To calculate the period of the Nusselt number, we subtract the mean value from the

data and measure the average time between successive downward zero-crossings over the

final 100 time units. We note that the period is not a linear functional of the solution but is

nonetheless accessible via an accurate ROM.

2.3.4 pMOR Results

Figures 2.6-2.8 show the Nusselt number histories for the FOMs and ROMs at ε = 1.60, 2.35,

and 2.60. The 1.60 and 2.60 cases correspond to anchor points in the pMOR study—the

ROM bases derive directly from FOMs at these parameter values. The 2.35 case derives from

projection onto the 40×2 basis vectors and is thus truly the result of pMOR-driven analysis.

We remark that, even at the anchor points (e.g., ε = 1.60), the histories are not perfect. This

discrepancy arises because the time-dependent ROM is not a perfect reconstruction of the

FOM. Despite the variation in period, the ROM is able to reproduce both short and long

timescale variations in Nu with reasonably high fidelity, as evidenced by the small kinks in

the Nu history curves in Fig. 2.5 (b) and Fig. 2.9.

In Fig. 2.9, we see good agreement between the FOM data and the ROM data. The

largest error is found at ε = 1.60, with a difference of 1.08 (i.e., ≈2.6% relative error). Thus,

for this problem, instead of running a FOM simulation for all 21 points, we can obtain

fairly accurate results by running 2 FOM simulations and running pMOR on all the points,

resulting in an accurate representation of the parameter dependence that is shown in Fig.

2.5 (c). Furthermore, if a period value for an additional ε within the range is desired, the

ROM, without any modification, can obtain that value fairly accurately.

We note that the potential value of the pMOR procedure is clearly evident in this example.

If one only had knowledge of the period at the points ε = 1.6 and 2.6, there would be little

recourse but to estimate the periods at interior points through linear interpolation, which

leads to ≈20% overestimate of the period at ε ≈ 2. The low-rank dynamical system of the

ROM does a remarkably good job of improving upon this estimate.
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Figure 2.6: Nusselt number behavior for ε = 1.60
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0 20 40 60 80
1.8

1.9

2.0

2.1

2.2

2.3

Time

N
u

ROM
FOM

Figure 2.8: Nusselt number behavior for ε = 2.60
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2.4 Discussion

In this section, we have presented several technical components towards the development of a

reduced-order modeling (ROM) capability that aims to harness the output of high-fidelity

simulations on leadership computing facilities for thermal-hydraulic design studies.

For the parametric problem, we have presented results for a two-anchorpoint model-order

reduction procedure applied to the problem of buoyancy-driven flows. We have demonstrated

that the technique is capable of accurately predicting a challenging QOI—the period of

roll-reversal—as a function of Rayleigh number for the highly nonlinear problem of Rayleigh–

Bénard convection in a low aspect-ratio cylindrical domain.

Despite the success of the methods shown here, several developments remain to make

pMOR viable for engineering design. The first of these is a need to incorporate more (or

better) modal information. Presently, the O(N3) costs in the ROM reconstruction phase

prohibit consideration of N much larger than 200. There are several possible mitigation

strategies. One idea is the discrete empirical interpolation method [5–7], which leads to

low-rank approximations of the advection operator. For example, one can split the velocity

as u = U + u′ and then account for U · ∇U , U · ∇u, and u · ∇U , but model the u · ∇u

term (again giving rise to the classic turbulence closure problem). In our discrete model, this

separation would lead to modeling the convective term by a interpolation function on the
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velocity coefficients in equation (2.11). (In some sense, sharp-cut-off Leray regularization is

an example of this approach.) Another approach is to develop ROM and pMOR strategies

that are optimized for the quantities of interest. In this work, however, we will introduce

ABM in section 4 that reduced the N required for ROM.

As indicated in the introduction, error indicators are of paramount importance for efficient

pMOR design tools as they allow one to optimally select anchor points. We have initiated

development of error indicators following the approach described in [14]. From the results of

Section 5, it seems clear that error indicators that focus on the QOIs will be important for

overall efficiency. Another concern is that the p-greedy pMOR strategy leads to an increase

in N . In [14], an h-greedy strategy is proposed in which one changes the approximation

space, rather than augmenting the space, as the parameter p moves through the range of

anchor space, Pα.

2.5 Efficient Parallel ROM Generation

The ROM/pMOR procedure requires a significant amount of software above and beyond

that of a standard code used for the full-order models. Many of the offline steps, such as

forming the Gramian, require manipulation of the FOM vectors of length N � N , which are

generally not practical on a laptop. On the other hand, it is inconvenient if one is forced to

use a supercomputer to perform all of the requisite offline tasks. It is therefore desirable to

have a set of memory-efficient offline tools that could be run on a modest-sized workstation.

To get a sense of the offline-online procedure in which the FOM snapshots are produced

and processed (offline) and ROM advancement (online), we have gathered the timings for

a pipe flow (Re = 5300) FOM-ROM in the style of Fick et al. [14] in Table 2.1. Here, the

FOM snapshot generation (64 compute-nodes) and post-processing ROM generation (16

compute-nodes) were performed on the OLCF Summit supercomputer (CPU-only), and the

ROM was run on a workstation with an Intel Xeon E5-2620 CPU with 2 threads with ROM
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simulation time being 10 times longer than the FOM.

DNS + snapshot acquisition (∆t = 5× 10−4, K = 1000) 6658.46s
POD space construction (N = 200, K = 1000) 340.60s
Construction of Galerkin structures (N = 200) 1550.48s
POD-Gal: online evaluation (N = 60) 200.57s

Table 2.1: FOM & ROM Timings for pipe flow (Re = 5300)

Although the process for generating the ROM operator is straightforward when run on the

same machine that produced the snapshots, it lacks the portability property that is attractive

for pre-existing snapshots sets. Therefore, we propose that the data be processed as they are

being read in. This way, the snapshots and the POD basis functions need not be fully stored

in the same instance. In order to produce the correct inner-products, we break them up into

subdomains.

GA
ij =

Ne∑

e=1

∫

Ωe

∇ · u(x, τ i) : ∇ · u(x, τ j) dV (2.45)

GB
ij =

Ne∑

e=1

∫

Ωe

u(x, τ i) · u(x, τ j) dV (2.46)

GC
ijk =

Ne∑

e=1

∫

Ωe

u(x, τ i) ·
(
u(x, τ k) · ∇

)
u(x, τ j) dV (2.47)

Then, these inner-products can be evaluated by accumulating the integrals amongst the

subdomains. In practice the subdomains correspond to the spectral elements in the domain.

Figure 2.10 shows the reading process in more detail: we read a full-width block of the

snapshot matrix and perform a transpose so that each mpi-rank has access to a subdomain

data of all the snapshots. Thus, the inner-products can be performed independently in each

rank until the very end of the reading loop at which the inner-products are summed together

to produce the full GA, GB, and GC . The notation used to illustrate the process are:
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Ns := Number of Snapshots, (2.48)

Ne := Number of Total Elements, (2.49)

N ′e := Number of Elements to be Read Incrementally, (2.50)

Np := Number of MPI Ranks. (2.51)

Normally, in Nek5000, the elements in the domain are distributed evenly throughout the

mpi-ranks. To evaluate the inner-products, Nek5000 will load the snapshot fields and every

mpi-rank will have direct access to all the snapshot solutions in it’s own subdomain. By

integrating the inner-products locally in the subdomain and summing the local contributions,

the total integral value can be evaluated. This method is efficient in the use of computational

resources, but requires that the information of all the snapshots (Ne × Ns) be stored in

memory at the same time.

In our proposed approach, a subdomain’s worth of data (N ′e ×Ns) is read that can be

stored to the memory of a workstation, where each mpi-ranks can load a chunk of data

N ′e × (Ns/Np) which is contiguous for each snapshot. Then, we transpose the data so each

mpi-rank has a sub-subdomain’s worth of field data for every snapshot. This way, the

inner-products between different snapshots can be evaluated and accumulated internally

in the mpi-ranks then at the end of the process, the global summation is performed. This

does not significantly increase the total amount of computational work and IO (because the

read-time of the snapshots dominate the transpose operation by crystal router in gslib [39,

40]) of all mpi-ranks. Figure 2.10 shows how this process of evaluating the inner-products

can be performed by limiting the communication between the MPI ranks.
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Figure 2.10: Demonstration of data transpose

Once the inner-products are evaluated, we can generate the ROM operators by applying

the W matrix, whose columns are the eigenvectors of GB to the inner-products:

A = ZTANZ = W T (UTANU)W = W TGAW (2.52)

Likewise,

B = W TGBW (2.53)

C = W TGC(W )W (2.54)

Following a similar procedure, QOIs that are linear, bilinear, or trilinear forms of the fields

can be evaluated as a function of the coefficients of the POD basis.

Overall, this efficient process (in terms of memory footprint) allows a user to apply

the POD-ROM methodology to existing high-fidelity snapshot data without needing access

to HPC centers as long as the total computational work can be feasibly be performed

on a local workstation or other accessible systems. This process significantly reduces the

memory footprint of the ROM operator generation step while only slightly increasing the

total computational cost and inter-rank IO (not disk IO).
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Chapter 3

ROM Stabilization

A significant issue with the standard Galerkin-based ROM at higher Reynolds numbers is that

(2.11)–(2.12) can deviate substantially from the projection of the FOM behavior on to the

reduced basis due to the presence of potentially spurious attractors. This unstable behavior

is an artifact of modal truncation (often manifest as energy pile-up in the high wavenumber

modal coefficients) and relates to the well-known closure problem in LES and other turbulence-

modeling scenarios [14, 41]. The smoothness of the approximating modes {ζn} prevents

generation of adequate dissipation (through ν(ζj, ζj)A ) unless the corresponding coefficients

have large amplitude. One can potentially resolve this issue by increasing N to the point

where the reduced bases include modes capable of dissipating the energy. For turbulent flows,

however, the number of required modes can be quite high, particularly in light of the O(N3)

costs associated with the advection operators Cu and CT . Hence, for engineering applications,

some sort of closure model is typically required to dissipate energy or otherwise stabilize the

ROM.

In this chapter we consider two stabilization approaches introduced by other authors.

The first is a relatively simple Leray-type regularization introduced in the ROM context by

Wells et al. [17]. The second is the constraint-based ROM of Fick and co-workers [14]. We

first introduce both methodologies, then show an application of these stabilization methods
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on a ROM example. Further examples will be presented in Chapter 5 in comparison with

augmented basis method introduced in Chapter 4.

3.1 Leray Regularization

For the Navier-Stokes equations, Leray regularization amounts to filtering the advecting field,

such that the momentum equation reads

∂u

∂t
+ (ū · ∇)u+∇p = ν∇2u+ η T ĝ, (3.1)

where ū = F (u) is the result of some sort of smoothing or regularization of the current

velocity field. As noted by Guermond et al. [42], even just a small amount of regularization

suffices to make gains in proving existence and uniqueness of the solution in the continuous

case, a task that remains insurmountable for the full Navier-Stokes equations. Thus, Leray

regularization is of interest both from a numerical (and physical) stabilization viewpoint and

from a theoretical perspective.

Guermond et al. [27] discuss a Helmholtz filter of the form

ū = (1− δ2∇2)−1u (3.2)

which is a 2nd-order filter that suppresses modes of wavenumber k > 1/δ at a rate ∼ O(k2) and

which can be implemented in general geometries (e.g., [43]). For Fourier-based discretizations,

filtering is particularly simple as one can simply scale the wavenumber coefficients, ˆ̄uk = σkûk,

where σk −→ 1 as k −→ 0 and σk −→ 0 as k −→∞.

For the Galerkin-based ROM, the modification equivalent to (3.1) would be to replace ũ

by ū in the energy equation (2.10) and to similarly replace the advector in the momentum
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equation (2.9) to yield

∫

Ω

v · dũ
dt
dV + ν

∫

Ω

∇v : ∇ũ dV = −
∫

Ω

v · (ū · ∇) ũ dV + η

∫

Ω

v · (T̃ ĝ) dV. (3.3)

Wells et al. [17] consider several possible filters to map ũ to ū. The simplest one, suggested by

one of the authors , is to treat the POD modes as one would do with Fourier bases (personal

communication, 2019). That is, one can simply damp out the amplitudes of the higher modes

when constructing ū in (3.3). In the following Leray-ROM examples, we do precisely that.

We use a sharp cut-off filter in which we set a few of the highest-numbered basis coefficients

to zero when constructing the advector, ū. Notice that this approach, while blunt, also has

the advantage of reducing the leading-order O(N3) cost of evaluating the advection terms.

As seen in the examples at the end of this section, simple Leray regularization is remarkably

effective and merits further development. One improvement is to use the differential filter

(3.2), which is readily implemented in the POD-ROM by using (2.13) and (2.14). This

approach was shown in [17] to be superior to simple modal damping for the example of

three-dimensional flow past a cylinder at Re = 1000.

3.2 Constrained Optimization

Fick et al. [14] proposed a novel stabilization procedure that ensures that the trajectory of

the ROM stays bounded within the range of values observed in the snapshot space of the

FOM. In this way, if there is an instability due to a lack of sufficient dissipation in the ROM,

this constraint keeps the ROM trajectory closer to the FOM trajectory.

To introduce the method, we initially consider only the ROM momentum update (2.12),

which can be written as

Hun = bn, (3.4)
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where H = β0
∆t
Bu + νAu and bn is the right-hand side of (2.11). Rather than solving (3.4),

Fick et al. propose to solve the constrained minimization problem,

un = argmin
v∈lRN

‖Hu− b‖2 s.t. mi < ui < Mi (3.5)

where the constraint bounds are mi = minuj∈UK
(ζi,uj) and Mi = maxuj∈UK

(ζi,uj). These

bounds amount to the ranges observed in the snapshot space. Hence, (3.5) is making further

use of the snapshot information.

The minimization problem must be solved at each timestep, which can be done, for

example, using or standard optimization techniques such as BFGS with barriers to enforce

the inequality constraints. While the resulting ROM is still much faster than the equivalent

FOM, the cost of this approach is relatively high compared to the standard POD-Galerkin

ROM as it requires multiple solutions in the SPD H-matrix for each BFGS iteration. (BFGS

has updates because of the nonlinear barrier functions.)

The alternative procedure described in Kaneko et al. [4] seeks to transform the coordinate

system such that the evaluation of f(u) becomes less costly. That is, we transform the system

such that the forward operator is diagonal, reducing the evaluation cost from O(N2) to O(N)

for each iteration. While this is much more efficient, especially for a large N , the non-linear

iterative solver has undesirable characteristics such as variable number of iterations, higher

cost than a standard solve.

A further simplification of the above transformation can be made by understanding the

diagonalization as re-orientation of the principal axis of the energy bowl aligned with the

coordinates of the ROM system. With this understanding, we can simply solve the discrete

system in a transformed coordinates than apply the constraints derived in the new coordinates.

This can be done because the energy isocontours are tangent to the bounding box on the

principal axis. With this new approach, we can further reduce the cost to O(N2) per timestep,

applying the transformation to and from the old coordinates to the new coordinates, which
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is less expensive than a single solve of the original system dominated by O(N3) convective

evaluation. With the BFGS algorithm for the constrained optimization, the cost per iteration

of the nonlinear optimization is O(N2) so this reduction in cost is significant as well as

reducing the need to set tolerances and other parameters for the optimization step.

3.3 Results for Stabilized Methods

Here, we present results for two examples in which we compare stabilized and unstabilized

methods. First, we reproduce work done by Fick et al. [14] with the Lid-Driven Cavity

Problem. Then we add the advection-diffusion equation to the NSE to show the effect of

the constrained optimization on a relevant QOI which is the Nusselt number. We also apply

Leray regularization to compare the effectiveness of the two stabilization techniques.

Following [14], we consider the following unsteady lid-driven cavity problem using param-

eter ν = 1
Re

and η = 0 subject to steady boundary conditions.





u = ub on Γtop ×R+,

u = 0 on ∂Ω\Γtop ×R+,

u = 0 on Ω× {0},

(3.6)

where u : Ω×R+ → R2 is a two-dimensional vector field, Ω = [−1, 1]2, Γtop = {x ∈ Ω̄ : x2 =

1}, the Dirichlet datum is given by

ub(x) =




(1− x2
1)2

0


 . (3.7)

The FOM results were produced using Nek5000 [44] with 256 spectral elements of order

N = 7 at Re = 30, 000. In order to generate the ROM solution, we collect 500 snapshots at

the sampling times {tks = 500 + ∆tsk}Kk=1 with ∆ts = 1 and K = 500, where the data are
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(a) FOM (b) Galerkin ROM

(c) Leray ROM (d) Constrained ROM

Figure 3.1: Velocity magnitude comparison at t = 1740 between the FOM, and the Galerkin,
Leray, and constrained ROMs with N = 20.

taken from the statistically steady state solution. For the lid-driven cavity problem, we also

apply the Leray regularization for the ROM. The velocity magnitude at time t = 1740 is

shown in Fig. 3.1 for the FOM, and for the Galerkin, Leray, and constrained ROMs, each

using N = 20.

Figure 3.2 shows the sample mean and variance for the FOM, Galerkin ROM, Leray

ROM, and constrained ROM. We observe that the results for the Leray regularization and

the constrained ROM are superior to those of the Galerkin ROM.
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Figure 3.2: Behavior of the sample mean and variance of the coefficients {ujn}j for the
lid-driven cavity with N = 40.

Figure 3.3 shows the estimated velocity variance,

Varu(t) =
1

2

∫

Ω

‖u(x, t)− 〈u〉(x)‖2
2, (3.8)

where ‖ ·‖2 is the Euclidean norm. The Galerkin, Leray, and constrained ROMs using N = 40

are compared with the FOM. For the Leray regularization, the last 50% of the modes are

set to zero. Note that the percentage of modes to be filtered is not known beforehand. For

this problem, we have experimented with filtering out 10%, 20%, 30%, 40% and 50% of the

modes, and found that 50% filtering produced the most accurate results. The question of

optimal filter choice depends on the number of POD modes and on the problem and will be

a topic of future study.

1800 1850 1900 1950 200010−4

10−3

10−2

10−1

100

Time

TK
E

Galerkin ROM
Leray Regularized ROM
Constrained ROM
FOM

Figure 3.3: Velocity variance behavior comparison for FOM, Galerkin ROM, Leray ROM
and constrained ROM with N = 40.
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Figure 3.4: Comparison of the first mode behavior for various stabilization techniques with
N = 40.

To further demonstrate the effects of stabilization, we plot the coefficient behavior versus

time. Figure 3.4 clearly shows that, without regularization, the coefficient for the first POD

basis function ventures out of the range observed in the data. Other spurious phenomena

include effects such as false stable steady flows.

As thermal transport is one of our principal motivators, we consider an energy transport

problem using parameter κ = 1
Re

with the solution to the lid-driven cavity problem as the

advecting field. The thermal boundary conditions are:





T (x,−1, t) = 0,

T (x, 1, t) = 1,

T (x,−1, t) = T (x, 1, t) = 1.

(3.9)
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Figure 3.5: Heated lid-driven cavity Nusselt number vs. time for Galerkin ROM with various
N .
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Figure 3.6: Heated lid-driven cavity Nusselt number vs. time for ROM with Leray regulariza-
tion for various N

The QOI of choice is the Nusselt number, which is the mean temperature gradient on the

lid

Nu =

∫
Γtop
∇T · n̂dS
∫

Γtop
dS

. (3.10)

Figure 3.5 shows the Nu history for the FOM and Galerkin ROM for different values of N .

We observe that, even with the unconstrained Galerkin approach, the accuracy of the QOI

can be recovered as the number of modes increases from N = 10 to 80. Figure 3.6, however,

illustrates that the stabilized Leray and constrained approaches are able to produce accurate

Nu with much lower N (as low as 10) than the standard Galerkin approach.
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Chapter 4

Augmented Basis Method

In prior sections, we have outlined some mitigation strategies to ensure proper dynamics in

the ROM evolution. Although effective in appropriate settings, these methods do not possess

qualities that are desirable for general use: non-intrusive, highly effective, and amenable to

pMOR. Non-intrusive methods such as the use of H1
0 POD basis [16] follow the Galerkin

statement without any modeling or modifications, but offers modest improvement. The

constrained optimization approach is highly effective for the reproduction problem, but in

the pMOR setting, it’s guarantee in the coefficient behavior is only accurate at the anchor

point from which the ROM was produced. Therefore, we will introduce a method that have

all three characteristics: the augmented basis method (ABM) [8].

4.1 Methodology

To motivate the ABM, we consider the Leray-projected form of the NSE, in which the velocity

field evolution is described as:

∂tu = P[−u · ∇u+ ν∇2u]. (4.1)
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Here, the pressure has been formally eliminated and its effects are represented by an abstract

operator, P, sometimes called the Leray projector, which will project the operand onto a space

of divergence-free fields. While the Leray projector is a projection using the H1
0 inner-product,

we will use the L2 inner-product for our definition. For the discretized system, particularly

with the lPN − lPN−2 spectral element discretization, this operator is well-defined [31].

4.1.1 Space of Solutions

For the full-order model, we look for the solution in the finite-dimensional space XN spanned

by the spectral element method basis functions. This space consists of P th-order tensor-

product polynomial bases mapped from a reference unit cube to each of E spectral elements,

for a total of N ≈ EP 3 degrees-of-freedom per field (in 3D). For the POD-Galerkin approach

we restrict our attention to solutions ZN ⊂ XN , where the basis is generally formed from a

proper orthogonal decomposition of a sequence of SEM solution snapshots, using the method

of snapshots introduced by Sirovich [45].

The method of snapshots forms a basis from a linear combination of FOM solution fields

(each involving O(N ) spectral element basis coefficients). One forms the Gramian matrix,

whose first N eigenvectors (ranked by eigenvalues from largest to smallest) are used to

determine the linear combination of the snapshots that forms the N -dimensional basis for the

ROM approximation space, ZN . Because the snapshots are (weakly) divergence-free, so are

all elements of ZN , which means that pressure term drops out of the equation that governs

the ROM. Recall, the velocity POD modes are denoted as ζi, and the thermal POD modes are

denoted as θi. For both of these collections of modes, the i = 0 modes correspond to a lifting

function that satisfies the boundary conditions and is always associated with a coefficient

value of u0 = 1 and T0 = 1. The choice of the lifting function may be a solution to the Stokes

problem, the Poisson equation, or the time-averaged solution. For the examples in Section

5, the lifting function is based on time-averaged FOM solutions. For the POD-ROM, the

hierarchy of the spaces of interest is ZN ⊂ XN ⊂ Y . We assume that the FOM discretization
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is well-resolved such that the projection error from Y to XN is minimal. We next show how

the ZN space derived by the classical POD-Galerkin method can be augmented such that the

time-evolution of the solution in the extended space better approximates the time-evolution

of the solution in XN .

4.1.2 Time-Evolution of NSE

Assuming that the solution to (4.1) exists near t∗, we can describe the local temporal behavior

through a Taylor-series expansion involving a linear combination of all time-derivatives.

u(x, t∗ + ε) = u(x, t∗) + ε ∂tu(x, t∗) + . . . (4.2)

= u(x, t∗)︸ ︷︷ ︸
Snapshot

+ εP
{
−u · ∇u+ ν∇2u

}
+ . . . (4.3)

Therefore, in addition to capturing the dominant modes of the snapshots, we propose to

augment the POD basis set ZN with modes that can accurately represent the order ε terms

on the right-hand side of (4.3) in order to construct u(x, t∗ + ε). The consequence of not

representing the O(ε) term is deviation in the trajectory of the physical solution and the

projected (Galerkin) solution.

Consider a solution u that lives in ZN , meaning u =
∑N

i=0 ui ζi. Using (4.1), we can

describe the time-derivative of the solution as

∂tu = P[−u · ∇u+ ν∇2u] = −
N∑

i,j=0

uiuj P[ζi · ∇ζj] +
N∑

i=0

ui νP[∇2ζi] (4.4)

Thus, we can accurately describe the time-derivative with (N + 1)2 terms for the nonlinear

term and (N + 1) terms for the viscous term.

We consider an example with Fourier basis to highlight this issue. When the solution is

band-limited with the highest wavenumber k, the convection term would produce a solution at

the next timestep of highest wavenumber 2k, which does not live in the original space. Thus,
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the wavenumber 2k behavior is never observed in the evolution of the projected Galerkin

system. With an augmentation of the basis with the high-wavenumber modes, we will face

the same issue through lack of 4k mode representation. This issue is of course recursive. We

are helped, however, by the fact that the higher wavenumber modes have higher rates of

dissipation. Continuation of this process will therefore eventually yield only marginal returns

in improved solution fidelity. We shall see, however, that addition of just a few modes can

have a significant impact on the overall ROM performance.

Because of nonlinear interaction through advection, the solution will evolve outside the

N -dimensional span of ZN . We note that as the basis includes more fine-scale components,

the convective contribution becomes small relative to the diffusive contribution; thus, the

solution becomes closed as the minimal grid-size approaches 0, as is the case in FOM solvers

(i.e., the exact solution is band-limited). In the POD-ROM, however, the basis is typically far

from completing the relevant approximation space and the addition of the modes P[ζi · ∇ζj]

and P[∇2ζi] can provide an important first-order correction to ZN .

For advection dominated problems, we can focus on the nonlinear contributions,

∂tu ≈ P[u · ∇u] =
N∑

j,k=0

ujukP[ζk · ∇ζj] (4.5)

Whenever we evolve the solution in the space Y , where the current solution lies in the

truncated POD space ZN , we see that the time derivative be reasonably represented with an

additional (N + 1)2 basis functions of the form φl=j+k(N+1) = P[ζk · ∇ζj]. Obviously, this

process is not closed, since more basis functions are required in the next timestep. Worse

still, even starting with u ∈ ZN , the required number of additional basis functions will be

O(N2) if we include all terms in (4.5), which comes with an O(N6) computational cost that

is untenable, even for a small number of POD modes, N . We therefore seek to augment

the original POD basis with subsets of these evolution basis that are most relevant to the

dynamics.
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The first subset captures the interaction between the lifting function, ζ0, and all other

modes. This choice ensures that both the Taylor dispersion induced by the lifting function

and the transport of the mean momentum by the POD modes are accurately captured. This

choice is also rationalized by the fact that the lifting function is ever-present in the solution

so its convective interaction is important in accurate reproduction of the time-evolution by

the ROM. Thus, we add the modes P[ζ0 ·∇ζj + ζj ·∇ζ0]. Note that the two interactive terms

can be combined because it is linear in each POD basis, ζj, meaning we only add N + 1

modes, which is still an O(N) augmentation.

Next, we extract the diagonal entries, P[ζj · ∇ζj ]. This choice is justified by the fact that

for each mode, ζj, the mode that is the most correlated with it is itself (i.e., when other

modes might have a phase-shift, or different temporal frequencies associated with it, the

auto-correlation dominates other interactions). So we consider addition of these N modes

with the total additional modes being 2N + 1.

For a thermal system with an advection-diffusion equation to describe its state, we can

follow the same procedure as above for the lifting function interaction in the form of ζ0 · ∇θj ;

however, the auto-interaction modes are not obvious. For this work, we will choose ζj · ∇θj,

but there is no one-to-one correspondence between the dominant thermal modes and dominant

velocity modes. One may come up with a more coherent substitute, but this choice remains

an open question.

In summary, the ABM starts with N standard POD modes in ZN and adds 2N + 1 modes

corresponding to advection by the lifting function, P[ζ0 · ∇ζj + ζj · ∇ζ0] and auto-advection,

P[ζj · ∇ζj + ζj · ∇ζj ], resulting in a total of N̂ = 3N + 1 basis functions, which are used in a

standard Galerkin formulation. We will use N̂ for the comparison against other (classic or

stabilized) methods so that we have a fair cost comparison. The standard POD Galerkin

ROM and ABM differ only in the choice of the underlying basis set.
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Chapter 5

Applications of ABM-ROM

Here, we demonstrate the effectiveness of the proposed augmentation method on several

examples, including flow in a 2D Lid-Driven cavity (Re = 30, 000), 2D flow past baffles

(Re = 800), 3D lid-driven cavity flow (Re = 10, 000), flow over a hemisphere (Re = 2, 000),

turbulent pipe flow with forced convection for Re = 4000−10, 000, channel flow (Re = 10, 000),

and turbulent pipe flow with wire-coil insert.

We denote the FOM solution with (ũ, T̃ ) and the various ROM solutions with (u, T ). Time

averages are defined as 〈·〉 = 1
τ

∫ τ
t0+τ
· dt with integration times, τ , prescribed on a case-by-case

basis. In these cases, we compare different ROM strategies: Standard POD Galerkin (L2-Glk),

Galerkin with H1
0 POD basis (H1

0 -Glk), Leray-filtered (L2-Lry), Constrained Optimization

(L2-Cst), ABM with lifting function interaction (Aug0), ABM with auto-interaction (AugD),

and ABM with both interactions (AugC).

For each case, we track the convergence by increasing the number of modes, N̂ , that

are used in the ROM. (This count excludes the 0-mode, which is the lifting function.) For

the standard cases, N̂ = N , corresponding to the number of active POD modes. For the

ABM, N̂ is total number of modes including the base POD modes and their augmentation

counterparts. For example, if we are using N = 3 with both 0- and diagonal-interaction

modes, we would have N̂ = 10.
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Figure 5.1: FOM snapshot (velocity magnitude) of 2D LDC (Re = 30, 000), |ũ(x, 1000)|,
used to produce the initial condition for all ROMS.

5.1 2D Lid-Driven Cavity (LDC)

We begin with the regularized lid-driven cavity problem. This problem is identical to what

was used by Fick et al. in Chapter 3, save that we have increase the number of elements

from uniform 16× 16 array to 32× 32 array with a Chebyshev distribution. The spectral

element polynomial order is 7 with time-step size ∆t = 2× 10−3. The boundary condition

is kept the same with: u(Γ) = (1− x2)2δ(1− y). We ran the simulation starting with the

Stokes solution to the problem with the same boundary condition for 2000 CTUs and will

use 1000 snapshots collected over the last 1000 CTUs. A velocity snapshot at time 1000 with

the spectral element discretization is shown in Fig. 5.1.

Aside from the constrained case, all the ROMs are advanced in an identical manner:

Galerkin method with BDF/EXT3 time-discretization using the projection of ũ(x, 1000) to

each of the solution space as the initial condition. Furthermore, they all use 〈u(x, t)〉, the

mean solution from time 1000 to 2000, as the lifting function. Each ROM is advanced from

1000 CTUs and the time-average of the coefficients and the outer-product of the coefficients

are collected so we calculate the mean and variance for each case.
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5.1.1 Comparison of the modes

An example is illustrated in Figs. 5.2–5.4, which shows the first 14 L2–AugC modes for

the case of a lid-driven cavity at Re = 30, 000 (based on the cavity width, equivalent to

Re = 15, 000 in [14]). For j = 0, . . . , 4, the first five POD modes, ζj ∈ ZN , are in the top

row; the first five 0-modes, P {u0 · ∇uj + uj · ∇u0}, are in the center row; and the first five

diagonal-modes, P {uj · ∇uj}, are in the lower row.

(a) i = 0 (b) i = 1 (c) i = 2 (d) i = 3 (e) i = 4

Figure 5.2: Magnitude of first 5 L2 POD modes, ζi.

(a) i = 0 (b) i = 1 (c) i = 2 (d) i = 3 (e) i = 4

Figure 5.3: Magnitude of first 5 augmentation of P[ζ0 · ∇ζi + ζi · ∇ζ0].

(a) i = 0 (b) i = 1 (c) i = 2 (d) i = 3 (e) i = 4

Figure 5.4: Magnitude of first 5 augmentation of P[ζi · ∇ζi].

We note that the diagonal augmentation in Fig. 5.4 in particular have high wavenumber

content compared to the original POD basis. This will contribute to additional dissipation

and we can expect a more stable solution. This predicted stable behavior is shown in the

mean and variance results.
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5.1.2 Convergence and Stability Study using Mean and Variance

Metric

Now we look at how the various approaches, including the ABM, compare in a dynamic

context. We begin with the error in the mean field prediction shown in Fig. 5.5. We see that

the augmented approach performs consistently better than all other cases, hovering around

2× 10−2 or lower. The other methods converge as N̂ is increased, particularly the H1
0 basis,

however, ABM is the clearly better.
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Figure 5.5: 2D LDC (Re = 30, 000): Comparison of ROM velocity field accuracy w.r.t. N̂ .

For the velocity variance (labeled as TKE in Fig. 5.5, right), we see remarkably consistent

agreement between the ABM and FOM starting with as few as N = 9 modes. As with

the mean error behavior, all the other approaches converge for the TKE metric, but the

augmented approach is again clearly better. Thus, we see that simply capturing the most

amount of energy in the snapshots per given number of modes, as is done by POD, is not the

optimal choice of basis for capturing the highly nonlinear dynamics described in the Navier–

Stokes equations. Furthermore, we emphasize the fact that the constrained optimization

shows fairly good result, but once the Reynolds number is moved away from 30, 000, for
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Figure 5.6: Velocity magnitude plot of FOM Snapshot of 2D baffle flow (Re = 800).

pMOR application, we expect that the empirical bounds will be less relevant.

5.2 2D Baffle Flow

As a surrogate for turbulent channel flow, we consider the challenging problem of 2D flow in

a channel with baffles, as illustrated in Fig. 5.6. This flow features periodic shedding and

transport of large-scale vortices in the wake of each baffle whose snapshot is shown in Fig.

5.6. 1000 snapshots are taken from a 2D baffle problem with Re = 800 over 100 CTUs after

steady statistical state is reached. The flow is then reconstructed over the same time.

All the means converge to the same magnitude with N = 80, shown in Fig. 5.7; however,

they reach a non-zero value of ≈ 0.1. This may indicate they all got stuck near the same

unphysical attractor or simply the chaotic nature of the flow configuration requires a longer

integration time for the mean to fully converge. However, the variance converges to the

correct value for all three cases with the augmented basis showing much better stability

properties with low values of N , shown in Fig. 5.8.
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Figure 5.7: 2D Baffle flow (Re = 800): Mean error comparison.
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Figure 5.8: 2D Baffle flow (Re = 800): Variance (TKE) comparison.

5.3 3D Lid-Driven Cavity

We next consider a 3D problem with moderate Reynolds number. We choose the non-

regularized 3D lid-driven cavity problem of Reynolds number 10,000. The FOM mesh consists

of a tensor-product array of E = 163 elements with a Chebyshev distribution with polynomial

order 7 (2 million DoFs). We take 2000 snapshots over the span of 1000 CTUs (with initial

condition being the Stokes solution). We use the latter half of the snapshots from t0 = 500

to tf = 1000 to generate the POD modes and run the ROM from in [tf , tf + 500]. One of

these snapshots is shown in Fig. 5.9.

As is the case in the 2D problems, we see that the ABM outperforms standard POD bases
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for the mean field and TKE quantities shown in Fig. 5.10 and Fig. 5.11. This is a promising

result which establishes the merits of the proposed approach on this class of problems.

Figure 5.9: FOM snapshot (velocity magnitude), ũ(x, 500), for the 3D LDC problem (Re =
10, 000).
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Figure 5.10: 3D LDC: Mean error comparison.

Figure 5.11: 3D LDC: Variance (TKE) comparison.
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Figure 5.12: FOM Velocity magnitude snapshot of flow over hemisphere (Re = 2, 000) with
overlaid λ2 contour.

5.4 3D Flow over a Hemisphere

Figure 5.12 shows a snapshot of flow past a wall-mounted hemisphere of height D/2 at

ReD = DU/ν = 2000. This problem was studied experimentally by Arcalar and Smith [46]

to understand the role of hairpin vortices in transition to turbulence. In these numerical

simulations, the FOM uses a Blasius profile with boundary-layer thickness δ99 = 0.6D,

prescribed at the inlet that is 3.2D units upstream of the hemisphere center. Periodic

boundary conditions are prescribed at ±3.2D units in the spanwise direction and a stress-free

condition is applied on the top surface, 3.2D units above the wall. Under these conditions,

the flow exhibits periodic shedding of hairpin vortices, evidenced by the velocity distribution

and λ2 contours [47] in the hemisphere wake. The FOM, based on a spectral element mesh

with N ≈ 2 million gridpoints was run for 100 convective time units (1 CTU = D/U) and

1000 snapshots we collected to form the ROM POD bases. The mean-velocity error as a

function of N̂ is shown in Fig. 5.13 (left) for the five different ROMS. The unstable L2

and H1 Galerkin results have several drop-outs for conditions that did not converge for this

relatively high-Reynolds number application. Given enough basis functions, however, all

cases converge, with the constrained case (L2–Cst) being the best performer for N̂ < 120.
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Figure 5.13: Flow over hemisphere (Re = 2, 000): Mean error (left) and TKE (right)
comparison, curve broken by blowup solution.

Both L2–Cst and L2–AugC yield mean-field errors < .01 for the majority of the cases, with

L2–Cst generally being the best performer. Similar conclusions hold for the TKE results,

shown in the right panel of 5.13.

5.5 3D Flow Past a Cylinder

We follow the procedure by Wells et al. [17] and compute 3D flow past a a cylinder for

Reynolds number 1000. The mesh has 4.3 million DoFs (544 elements in the x-y plane and 8

elements in the spanwise direction, each element of order 9). The domain size is 19.5 by 10 by

4 where the cylinder axis is placed 2.5 diameters from the inlet and centered in the x-z plane.

The results are shown in Fig. 5.15. Again, broken curves correspond to cases did not

converge. In this case, constrained ROM (L2-Cst) has the best performance. The ABM

also performs well, particularly for the TKE. In this case, however, the ABM convergence

is slower than is observed for other cases. One hypothesis to be verified is that this slow

convergence is due to the lack of resolution in the mesh used for the FOM.
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Figure 5.14: λ2 contour plotted over a slice of the velocity magnitude plot for a 3D cylinder
flow Re = 1, 000 snapshot.
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Figure 5.15: Mean velocity error (left) and TKE (right) for the 3D cylinder problem (Re =
1000, broken curves indicate solution blowup.

5.6 Forced Convection in Turbulent Pipe Flow

The next example is that of forced convection in turbulent pipe flow with Reynolds number

Re = 4000, 5300, and 10000 (based on pipe diameter), and Prandtl number Pr = 1. All

the cases use the same spectral element distribution with differing polynomial orders. The

mesh consists of 12.5 million grid points for Re = 4000 and 5300, and 24.5 million points for

Re = 10, 000. The periodic domain length is L = 4D, which is generally inadequate for a full

DNS of turbulence but deemed sufficient for the numerical tests in this study. For Re = 4000,

5300, and 10000, the respective FOM Nusselt numbers are Nu = 16.38, 21.42, and 36.14,

which is in good agreement with the Dittus-Boelter relationship, Nu = 0.023 Re4/5Pr2/5. For

all cases, the FOM is run until the solution is relaxed to a statistically steady state prior

to gathering statistics or snapshot data. For each case, 1000 snapshots are collected over

50 CTUs to form the Gramian, from which the POD basis is generated. Figure 5.16 shows

typical snapshots of velocity magnitude and temperature that reveal the variation in range of

scales for the different cases.
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Figure 5.16: FOM velocity (top) and temperature (bottom) snapshots of 3D pipe flow.

The governing equations for the FOM are the incompressible Navier–Stokes equations

and the thermal advection-diffusion equation. Because of the constant-flow rate and periodic

restriction on the solutions, we provide a brief discussion of modifications to the standard

equations for the FOM and their effect on the ROM formulation. We start with the Navier–

Stokes equations:

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ f(u), ∇ · u = 0 (5.1)

Here, f(u) is a uniform forcing vector field function in the streamwise direction, ẑ, that

enforces a time-constant flow-rate. In the time-discrete problem, the forcing term effectively

adds an impulse-response streamwise velocity field with boundary layer thickness proportional

to
√
ν∆t. This impulse response is scaled appropriately at each time step to ensure that the

mean velocity at each timestep conforms to the prescribed flow-rate [48, 49].
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5.6.1 FOM Prescription of Constant Flowrate

The semi-implicit Navier-Stokes update has the form



H −DT

−D 0






ũ

p̃


 =



f

0


 , (5.2)

where the right-hand side vector



f

0


 has contributions from the convection term and

boundary conditions. We note that (5.2) is linear and superposition therefore applies. When

solved, the flowrate of the solution, Q̃, may not satisfy the prescribed flow-rate, Q. To fix

the discrepancy, we can solve an auxiliary system,



H −DT

−D 0






u′

p′


 =



g

0


 , (5.3)

where g is the vector field filled with a unit-vector in the intended stream-wise direction. We

can find the volumetric flow rate of the solution, Q′, to this system, scale it by the difference

between the flow rate and the intended flow rate then add it to the solution

u = ũ+
Q− Q̃
Q′

u′ (5.4)

Using this method, the solution u can be guaranteed to satisfy the prescribed flowrate at

each timestep, meaning all the snapshots satisfy the prescribed flowrate.

5.6.2 ROM Prescription of Constant Flowrate

In the case of the ROM, the lifting function has the prescribed flow-rate and the remaining

POD basis functions have zero flow-rate, meaning that the test-space ZN
0 only contains
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members with zero flow-rate. In the weak-form, the ROM forcing term therefore becomes

(v,f) =

∫

Ω

v · f dV = fz

(∫

Ω

vz dV

)
= 0. (5.5)

Thus, the forcing term in the ROM formulation is zero, meaning there is no additional forcing

term that needs to be added to the existing ROM formulation.

5.6.3 Enforcing Periodicity in the Thermal Solution

Because the computational domain is finite and the fluid problem is solved with periodic

boundary condition, the thermal solution should also be periodic. To impose periodicity, we

follow [48, 49]. Because constant flux is applied through the outer surface and there is net

transport of heat from the z = 0 plane to the z = L plane, the physical temperature cannot

be at z = 0 and z = L. Therefore, we introduce another variable, TLift so that T satisfy the

periodic boundary condition and T + TLift satisfy conservation of energy. For this purpose we

define

TLift = γz (5.6)

where γ is a constant that is proportional to the total flux through the domain boundary. By

substituting the expression into the original equation, we get

∂T

∂t
+ (u · ∇)T = κ∇2T − uzγ (5.7)

where uz is the z-component of the velocity vector field. In effect, by applying a periodic

boundary condition on this arbitrary variable, an additional sink term is introduced. To

ensure that thermal energy is conserved in the domain we must set the net energy transported

by the fluid equal to the energy injected through thermal flux. Therefore,
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∫

∂Ωout

uz(T + γ(L)) dS −
∫

∂Ωin

uz(T + γ(0)) dS =

∫

∂Ωwall

κ∇T · n̂ dS (5.8)

γL

∫

∂Ωout

uz =

∫

∂Ωwall

(1) dS (5.9)

γ =
P

Q
(5.10)

where P is the perimeter of the z cross-section of the domain, where the flux is applied. Thus,

for a circular pipe-flow of unit diameter, we have γ = P
Q

= 4.

5.6.4 ROM Results for Pipe Flow

The results for the ROMs are presented in Figs. 5.17 – 5.19, which show the error and variance

for the velocity and temperature as well as the Nusselt number behavior as a function of the

total number of modes. The mean Nusselt number definition is based on the time-averaged

streamwise velocity and temperature,

Nu =
1

α(Ts − Tb)
, Ts =

∫

∂Ω

〈T 〉 dS, Tb =

∫
Ω
〈T 〉 〈uz〉 dV∫
Ω
〈uz〉 dV

. (5.11)

A common observation for Figs. 5.17 – 5.19 is nominal convergence for the Re = 4000 case

for the L2, H1
0 , and Leray regularization methods, albeit to relatively large asymptotic values.

As the Reynolds number increases, more modes are required for the L2 and H1 formulations to

converge, with the required number of modes apparently exceeding N̂ = 200 for Re = 10, 000.

Clearly, Leray outperforms standard L2 and H1
0 , but is inferior to L2–Cst and L2–AugC,

with the latter two having mean velocity error of just a few percent at Re = 10, 000 (Fig.

5.17, top right). The thermal behavior is similar, save that the mean-field error (Fig. 5.18,

top) is above 10% with the exception of L2–AugC for Re = 10, 000. Remarkably, this same

case exhibits too little thermal variance, as seen in the lower right frame of Fig. 5.18. (We

explore this anomalous behavior in the next section.) On the other hand, the error in Nu for

L2–AugC at Re = 10, 000 is uniformly less than 1% (Fig. 5.19).
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Figure 5.17: Pipe flow mean velocity error (top) and TKE results (bottom), for Re = 4000,
5300, and 10000. (FOM: τ = 50, ROM: τ = 500).
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Figure 5.18: Pipe flow mean temperature error (top) and thermal variance results (bottom),
for Re = 4000, 5300, and 10000. (FOM: τ = 50, ROM: τ = 500).
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Figure 5.19: Pipe flow error in Nusselt number for Re = 4000, 5300, and 10000.
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5.7 Forced Convection in Turbulent Channel Flow

The next example is that of forced convection in turbulent channel flow with Reynolds number

Re = 10000, (based on channel height), and Prandtl number Pr = 1. The physical domain is

L = 8H, W = 4H, where

H := Channel Height, (5.12)

L := Streamwise Length, (5.13)

W := Spanwise Width. (5.14)

The spectral elements are in a [88 × 48 × 22] regular mesh with a uniform distribution in

stream-wise and span-wise directions and Chebyshev distribution in wall-normal direction

with a total of N = 32 million. For this problem a periodic boundary condition is applied

in the stream-wise and span-wise directions with constant-flow rate prescription of mean

velocity of 1. For this problem, γ = P
Q

= 2. The FOM is run until the solution is relaxed

to a statistically steady state prior to gathering statistics or snapshot data. 2000 snapshots

are collected over 50 CTUs to form the Gramian, from which the POD basis is generated.

Figure 5.20 shows typical snapshots of velocity magnitude and temperature that reveal the

range of scales for this flow and thermal fields.
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Figure 5.20: FOM velocity (top) and temperature (bottom) snapshots of 3D channel flow
(Re = 10, 000).

The results for the ROMs are presented in Figs. 5.21 – 5.23, which show the error

and variance for the velocity and temperature as well as the Nusselt number behavior as a

function of the total number of modes. The mean Nusselt number definition is based on the

time-averaged streamwise velocity and temperature.
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Figure 5.21: Mean velocity error (left) and TKE results (right), for channel flow, Re = 10, 000.
(FOM: τ = 50, ROM: τ = 500).
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Figure 5.22: Mean thermal error (left) and thermal variance results (right), for channel flow,
Re = 10, 000. (FOM: τ = 50, ROM: τ = 500).
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Figure 5.23: Mean Nusselt number error for channel flow, Re = 10, 000. (FOM: τ = 50,
ROM: τ = 500).

A common observation for Figs. 5.21 – 5.23 is non-convergent behavior for the standard

(L2) and H1
0 POD basis. The Leray regularization approach show nominal convergence, but

not adequate even at N̂ = 200. The constrained optimization and ABM appear to produce

accurate mean velocity and thermal solutions, but the TKE and thermal variance behavior

appears too dissipative for ABM. There are possible explanation for this behavior including

one discussed in Section 6.3. Another factor may be the size of the domain compared to the

characteristic length (the channel height) of this problem since for the turbulent pipe-flow,

this issue is not prevalent in the result. This possible dependence on the domain size (for

spatially periodic problems) will be investigated in future work.

5.8 Heated Pipe-Flow with Wire Coil Insert

In [50], Collins and co-authors measured the effects of wire coil inserts on heat transfer in

low-Reynolds number pipe flow. Because of reduced fouling concerns, wire coils were preferred
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to, say, copper-mesh inserts, for heat transfer enhancement in the target application of cooling

Joule-heated copper blocks that are part of Argonne’s advanced photon source (APS). The

authors explored a wide range of wire diameters and pitches to maximize the heat transfer

coefficient for a fixed flow rate, which is appropriate for any system where flow resistance in

the critical region (e.g., the copper blocks) is small compared to the overall resistance in the

coolant-supply loop. For the medium (optimal) wire shape, they found a three- to five-fold

increase in Nusselt number over a range of Reynolds numbers ReD = DU/ν = 2000–50,000.

5.8.1 FOM Study of Wire Coil and Other Inserts

In this section, we numerically revisit several of the flow configurations considered in [50] in

an effort to understand the mechanisms of heat transfer enhancement. We consider straight

pipe, optimal and off-optimal wire-coil configurations, and configurations that do not induce

a mean swirl such as a “meandering” wire and rings.

We first validate this approach by reproducing several of the data points from [51] for both

wire-coil inserts and straight pipe results. We then investigate variations on the experiment

including replacing the copper coils with glass, with copper rings, and with meandering wires.
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Domain and Governing Equations

(a) (b) (c)

Figure 5.24: Wire-coil domain: (a) copper pipe with wire-coil insert used in [50]; (b) snapshot
of temperature distribution in spectral element simulation for medium (optimal) wire pitch
at Re = 5300; (c) spectral element surface-mesh mesh distribution for the same simulation.

The flow domain consists of internal pipe flow with a wire-coil insert, as illustrated in Fig. 5.24.

In this study, we consider conjugate heat transfer with water as a coolant, finite-thickness

copper tubing on the outside, and either glass or copper inserts. Figure 5.24 (a) shows a

typical insert configuration for the experiments in [50], (b) shows the temperature for a

simulation at ReD = UD/ν = 5300, and (c) shows the boundary of the fluid domain for

the spectral element mesh used for (b). For all cases the outer diameter of the tube is

Do = 1.33D, where D is the internal diameter. The wire diameter is d = 0.2507D, and the

wire pitches are p = .4454D (short), .5867D (medium), and 2.667D (long). The results for

other configurations, including wire rings and a meandering wire, are included in Table 5.2

and Fig. 5.27.

By including the copper tubing, we can determine the average temperature at the interior

wall in a manner consistent with the experiments. Specifically, we integrate the temperature

at the outer surface of the pipe, where we apply a uniform heat flux, and compute the inner

wall temperature as the solution to the solid conduction problem that would be obtained
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in the axisymmetric case without the wire-coil insert. For a uniform thermal flux q̃′′ on the

outer surface, ∂Ω, we define the mean inner-wall temperature,

Tw =

∫
∂Ω
〈T 〉 dS∫
∂Ω
dS

− q̃′′Do ln(Do/D)

2kcopper

, (5.15)

where 〈T 〉 indicates a time average of the field over tens of convective time units and kcopper is

the thermal conductivity of copper. This approach gives a consistent definition of Tw across

all configurations and is relevant to the copper-block cooling problem as it provides a direct

measure of the temperature in the device.

For the computations, we denote the domain as Ω = Ωf

⋃
Ωs, where Ωf is the coolant

passageway and Ωs represents the conducting solid including the tubing and the wire insert.

In all cases, Ω is streamwise periodic, meaning that the velocity satisfies

u(x, t) = u(x+ Lzẑ, t), (5.16)

where ẑ is the unit vector in the streamwise (z) direction and Lz is the domain length. As

in the pipe flow cases described in Section 5.6, periodic boundary condition in velocity and

lifted temperature solution is applied. For this problem, since the outer diameter, where the

thermal flux is applied, is 4
3
, γ = 16

3
. Because constant flow rate is prescribed for all problems

instead of mean streamwise velocity, the definition of Re is well-defined regardless of the

amount of channel blockage caused by the wire coils or the rings. This definition of Re is

consistent with that of the experiments. The flow rate Q is fixed to be a time-independent

constant by a Green’s function approach described in Section 5.6.

Nondimensionalization of the energy equation is less straightforward than that of the

Navier-Stokes equations because of the conjugate heat-transfer formulation, so we review the

75



material k ρ Cp α̂ σ̂
Water 0.58 1000 .004180 1.0 1.0
Copper 400 8900 .000385 690 0.82
Glass 1.2 2800 .000840 2.06 0.56

Table 5.1: Material properties for conjugate heat-transfer simulations. MKS units are:
[k] = W/mK, [ρ] = kg/m3, [Cp] = J/kg◦K.

steps here to clarify notation. The dimensional energy equation in Ω× [0, tf ] is

[ρCp]

(
∂T

∂t̃
+ u · ∇̃T

)
= ∇ · k(x̃)∇̃T, (5.17)

where x̃ represents the dimensional position vector and ∇̃ represents the dimensional gradient.

The constant-flux boundary condition on the outer surface of the pipe is

k∇̃T · n̂
∣∣∣
∂Ω

= q̃′′, (5.18)

where n̂ is the outward point normal on the domain surface, ∂Ω. The volumetric heat capacity,

ρCp, and conductivity, k, are functions of space because of the material differences between

the fluid and solid domains. Within a given material they are taken to be constant with

values listed in Table 5.1.

To nondimensionalize (5.17), we first define

σ̂(x̃) =
[ρCp]

[ρCp]H2O

(5.19)

α̂(x̃) =
k

kH2O

, (5.20)

which are unity in Ωf and constant in Ωs. (For the glass wire cases, σ̂ and α̂ will differ

between the wire and the outer pipe.) Dividing (5.17) by [ρCp]H2O yields

σ̂

(
∂T

∂t̃
+ u · ∇̃T

)
= αH2O∇ · α̂∇T, (5.21)
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where αH2O is the molecular diffusivity of water. We next rescale with respect to length (D)

and time (D/U) scales to arrive at the nondimensional form,

σ̂

(
∂T

∂t
+ u · ∇T

)
=

1

Pe
∇ · α̂(x)∇T, (5.22)

where x = x̃/D and ∇ is the gradient with respect to x. The Peclet number is defined with

respect to the fluid properties,

Pe =
UD

αH2O

= RePr. (5.23)

We take the Prandtl number for water to be Pr = 5.858 in all cases. Equation (5.22) is

homogeneous and we can therefore choose a thermal scale corresponding to a unit surface

flux, q′′ ≡ 1, which is prescribed on ∂Ω,

q′′ =
α̂

Pe
∇T · n̂

∣∣∣∣
∂Ω

. (5.24)

The physical flux is recovered as q̃′′ = [ρCp]H2OUq
′′. Note that u ≡ 0 in Ωs. No further

modification of (5.22) is required to accommodate the conjugate heat transfer problem.

Our quantity of interest is the Nusselt number, Nu, which is the the nondimensional

heat-transfer coefficient

Nu =
Dh

kH2O

, (5.25)

where h is the heat-transfer coefficient defined by the relationship

q̃′′ = h(Tw − Tbulk). (5.26)
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Here, Tbulk is the bulk-mean temperature,

Tbulk =

∫
Ω
〈uzT 〉 dV∫

Ω
〈uz〉 dV

, (5.27)

where 〈·〉 indicates a temporal average of the integrand over long time, as specified in Table

5.2. The wall temperature, Tw is meant to represent the average temperature at the interior

wall of the pipe. Because of the presence of the wire coil, this temperature is difficult to

quantify directly and we therefore estimate this value from the solution of the conduction

problem in the copper tubing. The nondimensional equivalent of (5.28) is

θw =

∫
∂Ω
〈T 〉 dS∫
∂Ω
dS

− q′′Pe

2α̂copper

log(Do/D). (5.28)

Figure 5.25 shows the scale of the flow for the long helix case with Re = 10, 000.

(a) (b) (c)

Figure 5.25: Velocity magnitude (a), temperature (b), and λ2 contour (c) for pipe flow with
wire-coil insert (Re = 10, 000).

Geometry

Collins et al. has experimentally studied the effects of varying the pitch of the wire-coil inserts

in a tube on the Nusselt number. Experiments have been performed for non-dimensional

pitches p/D =(2.67, 2.00, 1.33, 1.00, 0.667, 0.587, 0.533, 0.445), and have found that

p/D = 0.587 maximizes the average Nusselt number of the flow. For our numerical simulations,

we have chosen to study the pitches p/D = (2.67, 0.587, 0.445) corresponding to the longest,
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medium (optimal), and shortest pitches for Re = (5300, 10000). We have also performed a

study of pipe-flow with an array of rings with spacing lengths equivalent to the pitches of

the wire-coil geometries. Finally, we performed a study of a meandering coil-insert: the coil

volume is determined by sweeping a ball through a path with sinusoidally dθ
dz

behavior.

Results

Table 5.2 contains the summary of the DoFs, domain length, transient time and integration

time. For the averaging process, all of the invariance of the flow in the domain was used for

each of the cases.

Table 5.2: Run information for all configurations, Re=5,300.

Type DoFs Length Pitch VF τtrans τinteg

(D) (D) (CTU) (CTU)

Straight Pipe 3.7× 107 15 N/A 1.00 100+ 40

Straight Wire 2.3× 108 15 N/A 50 100

Short Helix 2.6× 107 0.891 0.445 0.66 200+ 50

Medium Helix 1.1× 107 1.17 0.587 0.74 40 50

Long Helix 8.8× 107 2.67 2.67 0.92 200+ 100

Meandering Helix 2.5× 107 6.3 6.3 0.92 200+ 100

Short Ring 8.2× 106 0.891 0.446 0.67 200+ 50

Medium Ring 2.0× 107 1.17 0.585 0.74 200+ 200+

Long Ring 2.9× 107 2.67 2.67 0.94 150 50
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(a) Short-pitch case (p/D = 0.445). (b) Medium-pitch case (p/D = 0.587).

(c) Long-pitch case (p/D = 2.67).

Figure 5.26: λ2 contours for pipe flow wire-coil (Re = 10, 000) for three pitches.

The following is an alternative view of the previous plots shown in Fig. 5.27. As shown,

the numerically experiments is in good agreement with physical experimental results where it

exists.
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Figure 5.27: Nusselt number vs. Reynolds number comparison between numerical result and
experiment.

We observe that ring inserts spaced at equivalent pitches as the wire-coils is more

performant that the wire-coil devices.

For the helical cases studied by Collins et al. [50], we see fairly good agreement between

our numerical result and the experimental result. We have performed an additional set of

numerical simulations of flow through uniformly spaced rings in a pipe. The rings show a

significant increase in the Nusselt number compared to their wire-coil counterparts. This

increase seems to suggest that the recirculation created by the cavity-like geometry is a

major factor in the heat-transfer efficiency of the wire-coil geometry. In contrast to the

ring cases, the meandering wire-coil case did not show significant increase in the Nusselt

number, indicating that the swirling motion that is prevalent in this case does not contribute

significantly to the high Nusselt number. In other words, the Taylor dispersion from the
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shearing motion is likely not the dominant heat transfer mechanism, thereby showing that

the thermal transport from the recirculation is the likely candidate for the heat transfer

efficiency of these wire-coil cases compared to the standard pipe flow.

5.8.2 ROM Result for Hydrodynamics of Pipe with Wire-Coil

In the first step of applying the ABM-ROM methodology to this engineering problem, we

look to reproduce the hydrodynamics of the long-pitch wire-coil case with Reynolds number

5300. 2000 snapshots were collected over 50 CTUs. The computational domain consists of

44.3 million DoFs with wire-coil pitched at p/D = 2.67. One snapshot obtained from the

FOM calculation is shown in Fig. 5.28.

Figure 5.28: Velocity magnitude of a pipe flow with wire-coil insert (Re = 5, 300) snapshot.

We produced both the standard Galerkin POD and ABM ROMs and ran them for 500

CTUs with the projection of the FOM initial condition on to the ROM basis. The result
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shown in Fig. 5.29 display accurate solutions for both the ABM-ROM and POD-ROM with

constrained optimization, a result consistent with previous examples. From all the examples

that we have shown with ABM-ROM, it was successful in reproducing stable behavior that

is consistent with the FOM with regard to the mean and TKE metrics. With the adoption

of ABM-ROM for challenging flows, we anticipate success in many more problems than is

outlined in this document.
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Figure 5.29: ROM mean velocity error (a) and TKE (b) for Wire-coil flow (Re = 5, 300).
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Chapter 6

Investigation of ABM Stabilization

Mechanism

In this section, we explore and discuss potential mechanisms for the success of the ABM-ROM

and apply these findings to a higher Reynolds number case of pipe flow at Re = 15, 000.

6.1 Convective Energy-Transfer

In many chaotic flows, the POD truncation can result in issues where the ROM solution is

attracted to an unobserved attractor. We suspect a contributing factor of this phenomenon

stems from the inability for the existing modes mimic the energy-transfer mechanism of

the analytical flow solution. One remedy to this problem is to add more and more POD

modes, but this may be costly since there may be many small-scale modes that need to be

represented in ordered to fully diffuse the large-scale energy. Therefore, we consider the

energy transfer between the resolved and unresolved modes and show how they are related to

the ABM modes.

Previous analysis on convective energy-transfer of POD modes have been performed

by Couplet et al. [52]. In this work, they have studied the POD modes of a flow past a

backward-facing and the convective transfer of energy between these modes. In a similar
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manner, we will consider the transfer of energy between the resolved scales (originally the

POD modes) and the unresolved scales via a variational multi-scale (VMS) like decomposition.

First, we write the weak form of the equation with known solution ũ(x, t), x ∈ Ω, t ∈

[t0, tf ]

(ṽ, ∂tũ) = −c(ṽ, ũ, ũ)− νa(ṽ, ũ), ∀ ṽ ∈ Ṽ =
{
〈α(t) ũ(x, t)〉

∣∣α ∈ L2
}

(6.1)

We can now introduce the truncated POD series to form a space and its complement.

V = {ζi} , V ′ = Ṽ \ V . We also introduce projection operators

Π(·) =
N∑

i=1

(·, ζi)V
(ζi, ζi)V

ζi (6.2)

Π′(·) = (·)− Π(·) (6.3)

s.t. V = ΠṼ and V ′ = Π′Ṽ . Now, we can restrict the space to get additional equations that

describe the evolution of the POD resolved modes and the unresolved modes:

(v, ∂tu) = −c(v, ũ,u)− c(v, ũ,u′)− νa(v,u)− νa(v,u′), ∀v ∈ V (6.4)

(v′, ∂tu
′) = −c(v′, ũ,u′)− c(v, ũ,u)− νa(v′,u)− νa(v′,u′), ∀v′ ∈ V ′ (6.5)

The next step is to consider the energy evolution in each space

∂tE = −c(u, ũ,u)− c(u, ũ,u′)− νa(u,u)− νa(u,u′) (6.6)

∂tE
′ = −c(u′, ũ,u′)− c(u′, ũ,u)− νa(u′,u)− νa(u′,u′) (6.7)

85



where

E =
1

2
(u,u) (6.8)

E ′ =
1

2
(u′,u′) (6.9)

so that we can track the energy evolution of the resolved part of the solution and the

unresolved part of the solution independently.

The terms in red in equations (6.6–6.7) evaluate to 0 given ∇· ũ = 0 and
∫
∂Ω
ṽ ·∇ũ ·dA =

0, ∀ ṽ ∈ Ṽ . Thus, the terms that quantify the convective energy transfer between the resolved

and unresolved modes are

c(u, ũ,u′) and c(u′, ũ,u) (6.10)

which consequently sum to 0 since c(ũ, ũ, ũ) = 0 i.e., these terms do not represent a net

source or sink of energy, but rather a transfer of energy between the resolved scales and the

unresolved scales.

One observation is that when the resolved solution space becomes larger and consequently

the unresolved space becomes smaller, the magnitude of these terms become smaller. This

reduction in energy-transfer between the two spaces can be understood as the resolved solution

space becoming self-contained, indicating that the dynamics of the autonomous evolution of

the resolved scale should approach the dynamics of the projection of the real solution on to

the resolved scales, at least in the global energy sense.

Therefore, when considering augmenting the current basis, we would like to choose modes

such that the receiving part of the energy-transfer is well-represented by these additional

modes i.e., we want to force the unresolved scales to be more orthogonal to ũ · ∇u. In the

case of ABM, our hypothesis is that the additional basis functions contain significant parts

of this term such that the unresolved scales become more orthogonal to this term. In this

way, ABM can be understood to approximately augmenting the space by selecting pockets of
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the energy-cascade that are the receiving end of the energy transfer of the POD modes.

In this framework, ABM can be described as a turbulence-closure model of sorts. Instead

of introducing additional transport equations to be solved, as is the case in the k− ε or k−ω

models, we model the action of unresolved scales by an low-dimensional auxiliary system

which we can be described as additional modes in the velocity basis so that this auxiliary

system can be solved concurrently with the original POD-ROM system.

A more careful study on this subject may reveal more insight into the ABM mechanism

and perhaps more optimal basis augmentation that can be employed in the ROM of turbulent

flows.

6.2 Time Evolution of Individual ROM Coefficients

Our initial hypothesis for the development of the ABM was that it would provide a mechanism

to capture the quadratic interactions of the advection term in the NSE. A similar approach was

taken by Akkari and co-workers [21, 22], who develop an alternative to POD basis-extraction

that nonetheless uses linear combinations of the FOM snapshots to generate H1
0 POD modes

which is more capable of absorbing (and dissipating) the energy arising from the quadratic

interactions. They show nominal success in applying this method to a 3D turbulence problem

and track some of the coefficient behavior.

The energy-transfer stabilization hypothesis is supported by the graphs of Fig. 6.1, which

show the amplitudes of the basis coefficients for POD and ABM-ROM solutions to pipe

flow at Re = 5300 as a function of time and mode number. The coefficient evolutions are

shown over three time windows, [0, 10], [0, 100], and [0, 500], which reveal the growth and

saturation of the amplitudes. We see that for the ABM (in the lowest row), the coefficients

are all smaller than unity, save for the ζ0 coefficient, which is unity. (All modes have unit

L2-norm, so the coefficients represent the true amplitude of each scaled mode.) The ABM

results also show that most of the energy is in the POD bases, corresponding roughly to
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Figure 6.1: Temporal behavior of basis coefficients for standard POD (Glk), Leray-filtered
(Lry), Constrained (Cst), and ABM-ROM solutions of turbulent pipe flow at Re = 5300 over
(convective) time intervals t ∈ [0, 10], [0,100], and [0,500].
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the lower third of the mode indices. By contrast, the coefficients for the standard POD

Galerkin modes (top row) quickly saturate to amplitudes in excess of 100, and all modes

are excited. As is well known from under-resolved Navier-Stokes simulations, there is an

energy pile up—manifest as high amplitude modal coefficients—when the representation

lacks high wavenumber bases capable of dissipating energy. The Leray-regularized coefficients

(second row) exhibit a behavior similar to the standard Galerkin approach, save that the

coefficients are much more controlled, which peak amplitudes much closer to unity. The

constrained approach (third row) also exhibits chaotic coefficient behavior but at much more

controlled amplitudes than either the standard or Leray cases. Remarkably, the evolution on

the t = [0, 100] window indicates that the ABM coefficient behavior is nearly time periodic.

This indicates a playback of a solution evolution loop or rather a stable attractor that is close

to that of the FOM.

6.3 Accuracy Dependency on the Size of Snapshot Set

For the application of the ABM, we have used a fine sampling time of the snapshots to produce

the POD modes. In particular, for the pipe-flow case for varying Reynolds number, we have

used the same number of snapshots within the sampling interval of the same time-length.

We suspect this may be a contributing reason why the high-Reynolds number cases suffer

from over-dissipation. That is, the sampling frequency required for the low Reynolds number

cases and high Reynolds number cases are different. To test this hypothesis, we have applied

subsampling to the set of 1000 snapshots for the Re = 5, 300 case to see how the ROMs

perform with fewer snapshots taken in the same time-interval. The subsampling comparison

was performed for both the standard POD procedure and the AugC procedure. An experiment

on the relationship between snapshot sampling interval and POD convergence was performed

by Brenner [53]. This only considers convergence in a static sense: projecting the snapshot on

to the POD basis generated by different number of snapshots. Unsurprisingly, more snapshots
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Figure 6.2: Mean error result from subsampled snapshot set, pipe flow (Re = 5300).

resulted in reduction of projection error. Here, we consider dynamical evolution of the POD

modes vs. number of snapshots and in particular for the L2 POD-Galerkin system, we found

the opposite is true for the dynamics of these modes.

The results of the subsampling study are show in Figs. 6.2–6.3. We focus initially on 6.2

(a) which shows the mean-flow error for the standard POD-ROM case as a function of the

number of modes N̂ = N . The modes are drawn from a set of POD bases functions based

on K snapshots, where K = 125, 250, 500, or 1000. Whenever N = K it’s clear that ZN is

equivalent to the snapshot space, which implies that the modes contain all the high frequency

content present in the snapshots of a turbulent flow solution. We see that these cases have a

lower error than cases where the number of modes is a relatively small fraction of the number

of snapshots. The same trends are indicated in the TKE plots for the POD-ROM in Fig. 6.3

(a). By contrast, the ABM-ROM needs very few total modes to yield a better estimate of the

mean flow Fig. 6.2 (b) and the best TKE predictions are obtained when the snapshot set is

large (e.g., K ≥ 500 in the 6.3 (b)). If we have too few modes in the snapshot space, along

with the nonlinear augmentation modes, the ABM-ROM appears to be overly dissipative.
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Figure 6.3: TKE result from subsampled snapshot set, pipe flow (Re = 5300).

Therefore, we suspect that using more snapshots to produce a more accurate POD series may

ensure an accurate ROM reproduction for high Reynolds number pipe flow cases.

6.3.1 Serial Snapshot Selection Experiment

We also show the same experiment as described above except the snapshots are selected

serially for the smaller snapshot size cases e.g., for the 125-snapshot case, the first 125

snapshots are used out of the 1000 total to produce the POD modes. Figures 6.4 and 6.5

show the result for the mean velocity error and TKE comparison, respectively.

For the standard L2 POD-ROM result, we see a similar behavior as before, except there

appears to be a higher floor for the lower snapshot count result, although the 500 snapshot

case appears to start a convergent behavior earlier on, at about N̂ = 80. We also note that

the 125 snapshot case produced a blowup solution throughout the range of N̂ considered.

This may suggest that accurately capturing the turbulent flow behavior for a short time (6.25

CTUs for the 125 snapshot case) is not a sufficient condition for long-time stability.

For the ABM approach, we see inconclusive results for the mean metric, but for the
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Figure 6.4: Mean error result from serially selected snapshot set, pipe flow (Re = 5300).

TKE comparison, we see that 500 evenly-spaced snapshots perform slightly better compared

to 500 serial snapshots. For lower number of snapshots, 250 and 125, we see less of the

overly-dissipative behavior.

6.4 Towards Higher Reynolds Number

We have seen promising success in the three Reynolds number that we have considered for

the heated pipe flow configuration in Section 5.6, especially for the flow solution. The obvious

question is: Are there any limitations or shortcomings to this methodology? One possible

limitation is the range of Reynolds number where this method applies. We predict that for a

very high Reynolds number solution which have a large range of scales represented, it would

still require a large number of base POD modes to capture the large-scale motion which

would make the cost prohibitive, even with ABM. Another possibility is that ABM is only

effective in the moderate or lower Reynolds number regime. To understand the limitation,

we extend the pipe flow case to Re = 15, 000. We show the velocity magnitude of the flow

field and temperature field of one snapshot of this new FOM case in Fig. 6.6.
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Figure 6.5: TKE result from serially selected snapshot set, pipe flow (Re = 5300).

Figure 6.6: Velocity (left) and temperature (right) snapshots for pipe flow Re = 15, 000.
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We start with the same setup as the other three cases: time-stepping up to 50 CTUs and

taking 1000 snapshots to be post-processed to generate the ROMs. The mesh consists of

130,048 spectral elements with polynomial order 7 resulting in 62 million DoFs. Figure 6.7

shows the result of the ROM run.

Figure 6.7 shows over-dissipative behavior both for the velocity field and thermal field at

Reynolds number 15,000. One hypothesis for the increased error for the velocity evolution

is that the higher Reynolds number flows have solution components that have a smaller

timescale associated with it than the smallest timescales in the low Reynolds number flows.

Thus, if we increased the number of snapshots in the same time-span, we may be able to

capture that fast timescale events in the POD modes. Another possibility is that the fidelity of

the dominant POD scales are important for the ROM dynamics to match the FOM dynamics.

Both of these hypotheses can be addressed by a set of experiments laid out in Section 6.3.

These experiments showed that ABM-ROM is successful when there is a large number of

snapshots that are processed to produce the POD modes. Thus, we suspect that increasing

the number of snapshots for this higher Reynolds number pipe flow case may alleviate the

issue. Therefore, we re-ran the simulation and gathered 2000 total snapshots in the same 50

CTU timespan. The resultant ABM-ROM result are shown in Fig. 6.8. Note that the results

other than the AugC curves are carried over from the previous plot i.e., they were produced

by ROM generated from 1000 snapshots.

We see a significant improvement in the ABM accuracy, especially in the TKE metric.

Here, we have demonstrated the snapshot dependency of ABM and this phenomenon must be

fully investigated in a future study in order to establish firm conditions for a successful ABM.

With this result in mind, we anticipate that higher Reynolds number flows require a larger

number of snapshots i.e., for Re = 30, 000 flow, more than 2000 snapshots will be required

for a successful ABM-ROM to be generated. We do note, however, that this increase did not

result in improvement of accuracy for the thermal field evolution.
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Figure 6.7: From left to right, top to bottom: mean velocity error, TKE, mean temperature
error, thermal variance, and Nusselt number result with the new ABM-ROM constructed
using 2000 snapshots, pipe flow (Re = 15, 000).
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Figure 6.8: From left to right, top to bottom: mean velocity error, TKE, mean temperature
error, thermal variance, and Nusselt number result with the new ABM-ROM constructed
using 2000 snapshots, pipe flow (Re = 15, 000)
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Chapter 7

Discussion

ABM has been remarkably successful in advancing our ability to apply ROMs to high-Reynolds

number flows. Several observations point to the stabilization properties of the ABM, rather

than its approximation quality, as the principal driver for its success. Inspection of the modes

for several cases indicate that the augmenting modes in the ABM have high wavenumber

content that is localized in Ω to regions of active flow dynamics. We again note that An

example is illustrated in Figs. (5.4–5.4), which shows the first 14 L2–AugC modes for the

case of a lid-driven cavity at Re = 30, 000. For j = 0, . . . , 4, the first five POD modes,

ζj ∈ ZN , are in the top row; the first five 0-modes, P {u0 · ∇uj + uj · ∇u0}, are in the

center row; and the first five diagonal-modes, P {uj · ∇uj}, are in the lower row. (The 0–0

mode is of course not used twice when forming the augmented basis.) We see that the

auto-interaction modes in particular feature high wavenumber content in regions of Ω where

the POD modes have significant amplitude. Although it is not shown here, the augmented

bases develop high wavenumber content at a much faster rate (i.e., lower mode number)

than their high mode-number POD counterparts, which explains why it takes so long for the

standard POD Galerkin method to stabilize in the Re = 4000, 5300, and 10000 pipe flow

cases of the preceding section. In this sense, the augmenting modes are more wavelet-like

than Fourier-like and therefore quite efficient in providing a localized dissipation mechanism
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for quadratic interactions. Using these bases thus makes some sacrifice on approximation

properties (because we use fewer POD modes, which are optimal in generating low-rank

approximations to the snapshot space in the same spirit as low-rank SVD-based matrix

decompositions) in favor of better stabilization. Despite this trade-off, the ABM generally

yields a much better overall approximation of the dynamics than even its stabilized POD

counterparts, as is evident in the turbulent pipe flow case.

This stabilization hypothesis is supported by the graphs of Fig. 6.1, which shows the

amplitudes of the basis coefficients for POD and ABM Galerkin ROM solutions to pipe flow

at Re = 5300 as a function of time and mode number. The coefficient evolutions are shown

over three time windows, [0, 10], [0, 100], and [0, 500], which reveal the growth and saturation

of the amplitudes. We see that for the ABM (in the lowest row), the coefficients are all

smaller than unity, save for the ζ0 coefficient, which is unity. (All modes have unit 2-norm,

so the coefficients represent the true amplitude of each scaled mode.) We reiterate that the

ABM results also show that most of the energy is in the POD bases, corresponding roughly

to the lower third of the mode indices. By contrast, the coefficients for the standard POD

Galerkin modes (top row) quickly saturate to amplitudes in excess of 100, and all modes

are excited. As is well known from under-resolved Navier-Stokes simulations, there is an

energy pile up—manifest as high amplitude modal coefficients—when the representation

lacks high wavenumber bases capable of dissipating energy. The Leray-regularized coefficients

(second row) exhibit a behavior similar to the standard Galerkin approach, save that the

coefficients are much more controlled, which peak amplitudes much closer to unity. The

constrained approach (third row) also exhibits chaotic coefficient behavior but at much more

controlled amplitudes than either the standard or Leray cases. Remarkably, the evolution on

the t = [0, 100] window indicates that the ABM coefficient behavior is nearly time periodic.

We have seen over-dissipative effects that hinder the accuracy of the thermal solution for

the pipe-flow cases. When the dissipative effect in the velocity field for the Re = 15, 000 case

has been addressed by a large snapshot set, but the thermal issue remained. One contributing
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factor may be the ad hoc nature of the combination of thermal POD modes and velocity

POD modes that were used to produce the augmented basis. For the momentum equation,

the velocity POD modes are all correlated with itself in the self-interaction modes, but that

is not the case for the thermal problem. Since there is no obvious one-to-one correlation,

between the two POD basis, it is difficult to establish an appropriate augmented basis. One

such idea maybe to use the coordinates associated with each snapshot to create a discrete

trajectory of each POD-ROM coefficient for each field. Then find the linear combination of

the discrete thermal coefficient evolution to find the best match.

For the present work, we have shown that there exists scenarios in which the ABM-ROM

system is too dissipative. We can consider applying the constrained optimization approach

on top of ABM, but we anticipate that there will not fully resolve the problem because the

optimal mean value of individual coefficients is 0 if the lifting function was the time-averaged

solution. Thus, the maximum coefficient value should be a positive number and the minimum

value should be a negative number. Therefore, if the dynamical system was maximally

dissipative, meaning the coefficients were all 0, the constraints will activate. In this sense the

constrained approach may fail.

As an alternative, we can look at the range of TKE of the time-dependent FOM solution

and use that as a new constraint metric. Because the TKE in the ROM system can be

computed by a sum of the squares of the coefficient values,

TKE =
1

2

∫

Ω

u′ · u′ dV =
1

2

N∑

i=1

u2
i (7.1)

we can apply a spherical shell constraint on the ROM solution at each time-step. This way,

we can ensure that the TKE observed in the ROM is within the observed range. Although

this may mitigate the short-comings of the standard constrained optimization procedure for

the NSE-ROM, again, this method will not apply in a p-greedy algorithm.

We close with a remark about an alternative strategy to addressing high Reynolds number
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flows, namely, approximation approaches that enable one to use large numbers of modes,

N . Based on the results of Figs. 5.17–5.19, we can see that the naive brute-force approach

of increasing the number of POD basis functions is doomed to fail: the number of modes

required increases rapidly with increasing Reynolds number and even in the converged limit

the accuracy is low. It seems unlikely that these shortcomings could be averted even if one

could reach, say, N = 500 in an economic way.

We close with a remark about other reduction algorithm (e.g., DEIM) as a possible

alternative to ABM. Approximation methods such as DEIM [5–7] and tensor-decomposition

address the O(N3) costs (for the advection operator, and other high-order costs for other

operators), but do not directly address the slow convergence of POD-Galerkin to the dynamics

of the NSE. Although DEIM allows for larger number of modes in the ROM for a given cost,

its accuracy will not surpass that of the underlying ROM formulation on which it is based. So,

for a classic L2– or H1–based formulation, DEIM will not yield an acceptable reconstruction

result even at N = 200, whereas the constrained and ABM formulations realize convergence

at much lower values of N̂ and much lower costs.
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Chapter 8

Conclusion

We introduced a novel stabilization method, ABM, for ROM-based simulations of incom-

pressible turbulent flows that augments the standard POD basis with approximate temporal

derivatives. For a space of POD basis functions, ZN = {ζi}, i = 0, . . . , N , we include and

additional 2N + 1 functions that are the Leray (divergence-free) projections of the nonlinear

interactions with the lifting mode, {ζ0 · ∇ζi + ζi · ∇ζ0}, and nonlinear auto-interactions,

{ζi · ∇ζi}. With these basis functions, the ROM proceeds in the standard Galerkin fashion

and is seen to dramatically outperform standard L2- and H1
0 -POD Galerkin ROM approaches

as well as Leray-stabilized methods introduced by Wells et al. [4, 17]. ABM performs compa-

rably to the constraint-based stabilization approach of [14], but the latter is restricted to the

ROM reproduction problem (i.e., running at the same parameter points as the originating

FOM) because, in a pMOR setting, the correct basis-coefficient limits are not known at

training points other than the anchor points.

We showed that the auxiliary modes of the ABM have high wavenumber content that is

localized to regions in Ω where flow gradients are large and thus provide efficient dissipation

mechanisms that are lacking in standard POD bases. We further demonstrated that, for

standard POD methods, having a more complete POD space (i.e., incorporating N ≈ K

modes from a relatively small snapshot space of rank K) yields lower errors than having
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N ′ > N POD modes from a larger snapshot space of rank K ′ > N ′. The reasoning is the

same—the more complete space includes high wavenumber content in the ROM basis set

that provides dissipation and hence stability. Analysis of the ROM coefficient time-traces for

turbulent pipe flow at Re = 5300, illustrated that the the amplitudes of all the modes for

non-stabilized POD-ROM are orders of magnitude larger than their stabilized counterparts.

While Leray-based stabilization mitigates this behavior, it still yields coefficient amplitudes

that are roughly a factor of ten greater than observed in either the constrained or ABM-based

formulations.

The ABM was also shown to be effective for predicting thermal QOIs such as Nusselt

numbers. It was, however, a slightly over-dissipative at Re = 10, 000. The study of the

interplay between N and K indicates that this dissipation can be controlled with these two

parameters and one might therefore use these parameters to gain insight to the root cause

of the over-dissipation. Future work will include application of the ABM to even higher

Reynolds number flows and to more complex domains.
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