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ABSTRACT

As FPGAs become ubiquitous compute platforms, existing research has fo-

cused on enabling virtualization features to facilitate fine-grained FPGA

sharing. We employ an overlay architecture which enables arbitrary, in-

dependent user logic to share portions of a single FPGA by dividing the

FPGA into independently reconfigurable slots. We then explore scheduling

possibilities to effectively time-multiplex and space-multiplex the virtualized

FPGA by introducing Nimblock. The Nimblock scheduling algorithm bal-

ances application priorities and performance degradation to improve response

time and reduce deadline violations. Unlike other algorithms, Nimblock ex-

plores preemption as a scheduling parameter to dynamically change resource

allocations. In our exploration, we evaluate five scheduling algorithms: a

baseline, three existing algorithms, and our novel Nimblock algorithm. We

demonstrate system feasibility by realizing the complete system on a Xilinx

ZCU106 FPGA and evaluating on a set of real-world benchmarks. In our

results, we achieve up to 9× lower median response times when compared

to the baseline scheduling algorithms. We additionally demonstrate up to

21% fewer deadline violations and up to 2.1× lower tail response times when

compared to other high-performance algorithms.
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CHAPTER 1

INTRODUCTION

Field-programmable gate arrays (FPGAs) are quickly becoming common-

place in both edge and data-center computing, enabling acceleration of wide

classes of applications [1, 2, 3, 4, 5, 6] more flexibly and at lower power than

CPUs and GPUs [7, 8, 9]. The flexibility of FPGAs enables users to design

application specific solutions in an efficient and cost-effective manner while

meeting desired quality of service (QoS) standards. Thus, FPGAs are a cov-

eted resource in commercial cloud platforms such as Amazon AWS [10] or

Microsoft Azure [11].

CPU compute resources have traditionally been virtualized through vir-

tual machines or an operating system, allowing multiple programs or users

to run on the CPU simultaneously. This is accomplished through space-

multiplexing, by assigning a subset of cores to a user, or time-multiplexing,

by assigning timeslots on cores to an application. Unlike CPUs, FPGAs are

generally programmed with a single bitstream requiring independent users

to cooperate to program the device [12] or wait their turn in line. Time-

multiplexing of FPGAs is blocked by the large overhead of a context switch,

involving a long reconfiguration of the programmable logic in addition to

data management. Because of these multiplexing issues, increased demand

for FPGA compute resources in the cloud is satisfied by increasing the num-

ber of FPGAs and implementing queues—AWS EC2 F1 instances [10], for

example, provide FPGAs in totality to the end user.

FPGA virtualization strives to bring virtualized features to FPGAs by

designing overlays, tool-flows, and hypervisors. Notably, a virtualized FPGA

would support:

1. Fine-grained multi-tenancy, allowing multiple, independent applica-

tions to share the FPGA simultaneously

2. Scale-out, allowing applications to spread across multiple FPGAs
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3. Operating system-like features such as virtual memory support or a

networking stack

Combined, these features present the illusion of an infinite, homogeneous,

and reconfigurable fabric to the end user.

Canonical solutions for FPGA virtualization [13, 14] create a custom FPGA

overlay that splits the fabric into slots, independently reconfigurable blocks

(or tiles) that are able to host arbitrary logic in the system. Surrounding

the reconfigurable slots is the static region of the overlay which facilitates

coordination and slot management. The reconfigurable nature of an FPGA

supports fine-grained sharing in the virtualized system through a technique

known as dynamic partial reconfiguration (DPR); DPR enables portions of

the fabric to be reconfigured independently and in a fraction of the time of

regular reconfiguration [15].

Once infrastructure for FPGA virtualization is in place, a complemen-

tary scheduling problem must be solved to efficiently extract performance.

The hypervisor must select from a pool of applications to determine start

times and select slot allocations to determine application placement. Fur-

ther complicating the scheduling problem, the system will be limited by the

reconfiguration overhead and the inability to configure more than one tile

simultaneously on a single device.

Searching for an optimal scheduling solution in this space is challenging

and often infeasible under real-time constraints, so heuristic scheduling ap-

proaches are often taken [16, 17, 18, 19]. Moreover, the heuristic sched-

uler should make practical considerations for FPGA sharing. First, in some

sharing contexts, applications are not known ahead of time and arrive in

unpredictable intervals. Second, in a datacenter or real-time system, ap-

plications often have different priorities or deadlines to meet. Finally, the

scheduler should consider performance optimizations within an application

such as pipelining across batches and hiding reconfiguration time behind ac-

tive computation. At its core, effective FPGA sharing for virtualization must

be able to schedule arbitrary applications in an efficient manner, while hiding

the reconfiguration latency and managing priority levels and deadlines.

In this work, we present Nimblock, an exploration of fine-grained sharing

techniques on FPGAs with considerations for arbitrary real-time workloads

and priority levels. Nimblock employs an overlay architecture with reconfig-
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urable slots to split an FPGA into independent virtual tiles. The Nimblock

runtime can extract performance by sharing the FPGA among applications

that arrive in real-time with varying batch sizes and priority levels. We

summarize our contributions as:

1. We present a novel scheduling algorithm that considers applications

with arbitrary arrival times and priorities and enables pipelining and

preemption. We evaluate our algorithm on a ZCU106 FPGA and vali-

date its efficacy on real workloads.

2. We demonstrate up to a 9× median response time improvement over

a baseline scheduling approach and up to a 2.1× lower tail response

times compared to other high-performance algorithms.

3. We achieve up to a 21% lower deadline violation rate than previous

algorithms.
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CHAPTER 2

SYSTEM ARCHITECTURE

2.1 Nimblock System

2.1.1 Overlay

The Nimblock overlay, inspired by the overlay used in [20], consists of two

components that enable fine-grained sharing and DPR on the target FPGA:

a software element and an FPGA tiling scheme. Depending on the target

device, the software element can run on the processing system (PS) or other

embedded processor. In FPGA devices without embedded CPUs, the host

CPU would manage communication and control over a PCIe interface. A

simplified view of the overlay is given in Figure 2.1.

At the core of the PS portion of the overlay is the embedded ARM core,

which runs the Nimblock hypervisor and manages accelerator data, appli-

cation bitstreams, and reconfiguration. Partial bitstreams for each slot are

stored on the SD card and loaded into memory by the ARM core on demand.

The ARM core can then access the partial bitstream and send a request to

the aonfiguration access port (CAP) which reconfigures the defined portions

of the FPGA. Reconfiguration speed is constrained by the internal bandwidth

of the CAP interface (dictated by the device) and the size of the reconfig-

urable portion (dictated by the overlay structure). Communication between

the PS and FPGA is handled by memory-mapped interfaces enabling con-

trol registers to be written by the PS and reconfigurable regions to access

the shared system memory.

The FPGA portion of the Nimblock overlay is split into a static region,

programmed once at system start-up, and multiple reconfigurable slots which

are programmed dynamically by user logic. The static region consists of in-

terconnects which connect the slots to the PS and the system memory as well
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Figure 2.1: Nimblock overlay. Static elements are in green, reconfigurable
elements are in orange.

as decoupling resources to isolate configurable logic during reconfiguration.

The reconfigurable slots are floorplanned to have the same resource size and

can host arbitrary user logic. For our purposes, the logic is configured to have

a single memory-mapped interface for control and second memory-mapped

interface for data—easily achievable through high-level synthesis flows using

interface pragmas.

2.1.2 Hypervisor

As system manager, the Nimblock hypervisor runs on the embedded ARM

core, driving reconfiguration, managing application data, and running the

scheduling algorithm outlined in Section 2.3. The process of preparing an

application and adding it to the hypervisor proceeds as follows.

Before sending a request to the hypervisor, the application is partitioned

into slot sized tasks—each task is a portion of the application with an in-

put and an output. In turn, these tasks are composed into a task-graph,
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a directed acyclic graph with nodes representing tasks and edges represent-

ing dependencies. For example, if the application is Lenet, it could be split

into three tasks, each a grouping of two layers, and two edges linking the

three nodes in a chain. The Nimblock compilation flow is agnostic to par-

titioning method, and would function with automatic task partitioning and

compilation methodologies [14, 21, 22] or with manual partitioning.

The partitioned application is then placed in a partial reconfiguration flow

to generate partial bitstreams for each of the tasks in the application. For the

purpose of this work, the flow generates a partial bitstream for each task for

each slot. Partial bitstream relocation can reduce the number of bitstreams

we need to store and generate, but exploration of this concept [23, 24, 25] is

beyond the scope of this work. The bitstreams are added to the hypervisor

with a header to provide interface information, application batch size, HLS

performance estimates, and priority level. The interface information and

performance estimates are parsed from the HLS output, while the batch

size and priority level are user specified parameters. Our testbed compiles

this information as part of C header files, but a deployed system can easily

parse the information from a JSON file. For the purpose of this work, we

define batch as the number of independent application inputs requested to

be executed by a single user at once. Note this definition is the same as the

one used in [20].

When the bitstreams arrive at the hypervisor, they are placed in the filesys-

tem (the SD card in our system) and the pending application is added to

an application queue to wait for scheduling. When a task of the application

is selected by the scheduler, the bitstream is loaded from the SD card to

system memory and the hypervisor requests a reconfiguration through the

CAP APIs on the system. After reconfiguration is complete, the hypervisor

allocates buffers and launches the task. When the task is complete, the hy-

pervisor relinquishes the unneeded data buffers and marks the slot as open

for use. When all tasks in an application are complete, the hypervisor sends

a response with the result data.
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2.2 Motivation

2.2.1 Scheduler Goals

The primary metric to measure system performance in a real-time sharing

scenario is the response time of an application. The response time of ap-

plication i, Ti, is defined as the difference between the application’s arrival

time, Ai, and the application’s retirement time, Ri. As a general objective,

our scheduling algorithm should seek to minimize the average response time

of the N pending applications.

Equally important is the scheduling algorithm’s ability to meet applica-

tion QoS guarantees; a system which makes QoS guarantees for high-priority

applications should uphold its promise even under heavy loads and resource

contention. Therefore, our co-objective is to reduce the number of deadline

violations and demonstrate a tighter deadline guarantee than other schedul-

ing algorithms. These two goals inform the design of our scheduling algorithm

and are impacted by the ways that we share and schedule on the FPGA.

2.2.2 Sharing Modes

Figure 2.2: Sharing modes for multiple FPGA slots. Arrows represent
dependencies across pipeline stages.

In a naive system with only temporal multiplexing, an application’s tasks
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are simply scheduled in sequential order as they arrive, requiring little schedul-

ing overhead, but causing serialization as applications arrive to a full system

as seen in Figure 2.2(a). By partitioning the FPGA into slots, task-level

parallelism is extracted from independent tasks. This approach overlaps re-

configuration time with computation and enables multiple applications’ tasks

to execute simultaneously as seen in Figure 2.2(b). In the two previous cases,

elements of an application’s batch are bulk processed—tasks will be executed

multiple times between reconfiguration.

A final use for fine-grained sharing is to allow tasks within the same ap-

plication to pipeline across slots. In this mode, an application’s tasks can

co-exist on the FPGA while working on different batch items. For example,

when Task 1 finishes processing the first input, Task 2 can start processing

its first input while Task 1 processes the second input. This mode enables

a single application to further reduce its response time at the cost of slot

monopolization as seen in Figure 2.2(c).

Pipelining allows us to extract additional performance and reduce the re-

sponse time of applications, but requires a single application to consume

multiple slots simultaneously. Rampart pipelining can choke performance

for later arriving applications, causing resource starvation and deadline vio-

lations. For example, if a long-running (whether through application latency

or batch size) application with many tasks arrives at the system first and

aggressively pipelines across slots to minimize its own response time, it mo-

nopolizes resources. Later arriving applications will be left with no resources

available until the long-running application completes.

To prevent this, we need a method to reverse this scheduling decision and

roll back the later pipeline stages. We can accomplish rollback by pausing

execution of the long-running application’s task and configuring the newly

arriving application in its place. When additional resources are available, the

preempted tasks will be rescheduled and run to completion. By preempting

applications in this way, we introduce an additional reconfiguration as over-

head but are able to reverse scheduler decisions that are obsolete due to new

information.

The decision to add preemption is not easy. Schedulers must already select

tasks to schedule and select slots to schedule them to while considering pri-

orities and waiting times. Preemption can result in a performance decrease

if implemented poorly and is unpopular among current approaches [18, 17].
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Moreover, checkpointing arbitrary FPGA state is required for preemption,

but checkpointing is challenging—user state includes stateful logic blocks in

the FPGA which are difficult to capture [18]. Despite these challenges, the

Nimblock scheduling algorithm employs fine-grained sharing, pipelining, and

preemption to improve application performance.

2.3 Scheduling Algorithm

Figure 2.3: Block diagram of the Nimblock scheduling algorithm. Green
denotes elements borrowed from PREMA [16].

Figure 2.3 presents a block diagram showing the major operational steps

of our scheduling algorithm. First, all arriving applications are added to

the scheduler and initialized. Second, applications accumulate tokens and

the candidate application pool is updated (Section 2.3.1). Third, we update

the slot allocation for each candidate application (Section 2.3.2). We then

select a task to schedule (Section 2.3.3) and a slot to reconfigure (Section

2.3.4). Lastly, the selected task is launched and we retire any completed
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applications.

2.3.1 Candidate Applications

In order to reduce response times, we need to schedule applications that have

waited the longest to execute, but we must also ensure that high-priority ap-

plications execute quickly. To balance these factors, we utilize the token

accumulation strategy from the PREMA scheduling algorithm [16, 17]. Con-

sistent with previous work, our implementation uses three priority levels of

increasing priority: 1, 3, 9. As applications wait to be scheduled, they accu-

mulate tokens proportional to the application performance degradation and

the application priority level. Applications accumulate tokens at set schedul-

ing intervals, when new applications are added, and when an application com-

pletes. Existing implementations using PREMA target DNN computation

and use models to estimate performance; we leverage performance estimates

from high-level synthesis (HLS) EDA tools. From the HLS output, we ob-

tain a latency estimate for each task. We then serialize the application’s

task-graph and sum task latency estimates to obtain an application latency

estimate.

Algorithm 1 Candidate selection

initialization
for application a ∈ arrival queue A do
a.token← a.priority

end for
for application a ∈ pending queue R do
a.token← a.token+ α× a.priority × degradationnorm

end for
threshold← max([floorprio(a.token) for a ∈ R])
candidates← [a for a ∈ R if a.token > threshold]
return candidates

When an application arrives, it moves from the arrival queue to the pend-

ing application queue and accumulates tokens as described in Algorithm 1.

As applications accumulate tokens, they increase the candidate threshold us-

ing the PREMA thresholding method. The threshold is the maximum token

number in the pending application queue rounded down to the nearest pri-

ority level from the priority levels in the system. Applications with token

10



numbers greater than the threshold are considered candidates.

2.3.2 Slot Allocation

Whenever the candidate application pool changes and at periodic scheduling

intervals, the Nimblock scheduling algorithm triggers a reallocation where

it decides how to allocate slots in a way that reduces response times and

ensures deadlines are met. Our slot allocation algorithm, shown in Algorithm

2, is motivated by two observations. First, it is beneficial to ensure that all

candidate applications have access to at least one slot to ensure forward

progress and prevent additional waiting time from damaging response time

numbers. Second, applications that were added to the candidate application

pool first have experienced the most performance degradation and should

receive resources first. Therefore, we first allocate one slot to each candidate;

if there are more candidates than slots in the system, we first allocate slots

to the oldest applications.

Algorithm 2 Slot Allocation

candidates ← sortage(candidates)
for candidate c ∈ candidates do
c.slots← 1

end for
for candidate c ∈ candidates do
if slots available then
c.slots← min(c.goal, c.incomplete tasks)

end if
end for
if slots available then
for candidate c ∈ candidates do
c.slots← c.incomplete tasks

end for
end if

Depending on the number of candidates, there may be additional slots

available for allocation. In order to allocate these slots fairly, we introduce the

goal number, derived from the concept of independent-scheduling identified

in DML [20]. The authors of DML noted that applications intuitively have

a limit to the number of slots they can effectively utilize, determined by the

maximum level of parallelism that can be extracted from the application.
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While they used this information to reduce ILP scheduling time, they also

used it to allocate slots for applications. We will use similar analysis to

identify the saturation point of an application, the point at which allocating

additional slots results in no or marginal performance improvements.

To identify the saturation point of an application, we need to generate

performance estimates across batch sizes and slot allocations. To accomplish

this, we leverage the ILP formulation from DML [20] which accounts for

pipelining and reconfiguration time. We then generate a task-graph, insert-

ing nodes for partial reconfiguration between compute nodes. The task-graph

is transformed into an ILP using Python and solved using Gurobi [26]. We

sweep the number of slots from one to the number of slots in the system, and

identify the point where adding additional slots provides little performance

improvement. Because the ILP solver relies only on early performance esti-

mates of the application, saturation point analysis may happen in parallel

with synthesis, place and route, and bitstream generation, keeping it firmly

off the critical path of the user flow.

We then inspect the saturation points and identify common trends to set

static goal numbers for each application. Across all applications, we note that

allocating a second slot provides the greatest benefit—a second slot enables

multiple batches to execute in parallel for a single application. Applications

with additional parallelism in their task-graphs further benefit from slots

up to the number of parallel paths in the graph. For the purposes of this

work, we found that a static, unified goal number of 3 effectively balanced

individual application performance and device-sharing. We validated this by

sweeping across potential goal numbers and identifying the best performing

solution.

If additional slots remain after increasing all candidates’ slot allocation to

the goal number, we assign additional slots to any application that can make

use of them in order of application age. This enables older applications to

maximize performance to meet their deadlines.

2.3.3 Task Selection

Since only one slot can be reconfigured on a single FPGA at a time, Nim-

block provides a method to select a task from a candidate application to
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Algorithm 3 Task Selection

candidates ← sortage(candidates)
for candidate c ∈ candidates do
if c.occupancy < c.allocation then
for task t ∈ c.incomplete tasks do
if t.ready or t.can pipe then
return t

end if
end for

end if
end for

schedule at each timestep as shown in Algorithm 3. We prioritize the oldest

application in the candidate pool to minimize additional performance degra-

dation. Pipelining between batches is begun automatically if an application

has slots available to opportunistically take advantage of excess resources.

If no task is ready to be scheduled, nothing is done. On the other hand,

if there is a task ready to be scheduled, but no available slots, we consider

preempting an existing application.

2.3.4 Preemption

Algorithm 4 Preemption

overconsumption ← 0
for slot s ∈ slots do
a← s.application
consumption ← a.slots used− a.slots allocated
if s.waiting and consumption > overconsumption then
overconsumption ← consumption
overconsumer ← a

end if
end for
tasks ← topological sort(overconsumer.running tasks)
preempt task ← tasks.end()
if preempt task.slot.waiting for batch then
return preempt task.slot

end if

As we saw in Section 2.3.2, slot allocations are modified as the candidate

application pool changes. As additional applications arrive, we note that
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some applications will be reassigned fewer slots than they are currently using.

Without a method to intervene, the overconsumers will continue to utilize

their slots until completion—in the worst case, this could delay the execution

of other applications and increase the number of violated deadlines. To

avoid resource monopolization, Nimblock introduces preemption for FPGAs,

enabling both fine-grained time- and space-multiplexing in our runtime.

In the case of an application being ready to execute and there being no

available slots to schedule it to, we begin our preemption algorithm as seen in

Algorithm 4. Our algorithm iterates over every currently running application

and evaluates its ability to be preempted. In order to facilitate consistent

state checkpointing, we elect to preempt only at batch breakpoints (when a

task is waiting to have its next batch launched). This addresses the check-

pointing issues for FPGA by requiring us to capture only application state.

We select the candidate application that has surpassed its slot allocation by

the most for preemption; this is the application that will experience the least

performance impact from removing a slot. After selecting the application to

preempt, we find the task in that application’s task-graph that is latest in

topological order and select that task to remove; this eliminates the chance

of removing a task that is acting as a pipelined dependency for another

currently running task. If this task is currently in the middle of executing a

batch, we delay preemption until it reaches a batch boundary.
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CHAPTER 3

EVALUATION

3.1 Methodology

We evaluate our scheduling algorithm on a ZCU106 FPGA from Xilinx par-

titioned into ten slots, and we run our hypervisor as a baremetal application

on the embedded ARM core. To emulate real-time application arrival on a

single FPGA, we create a testbed environment.

The testbed reads in a sequence of events, where an event contains an

application name, batch information, priority level, and arrival time, which

it releases to the hypervisor after the event’s arrival time has passed. We

select applications from the suite used in [20]: 3D-rendering, digit recogni-

tion, optical flow, image compression, Lenet, and Alexnet. The former three

are from the Rosetta benchmark suite [27], and the later three are custom

benchmarks. We manually partitioned the benchmarks into optimized tasks

that fit in a single slot on the FPGA and generated bitstreams using Vivado

2019.1. When the events are released to the hypervisor, they are placed into

the hypervisor’s pending application queue and the hypervisor executes as

described in Section 2.1.2. When an application is completed, the hypervisor

stores application metadata until the entire test sequence is completed for

result collection.

We evaluate five scheduling algorithms. Our baseline algorithm is a “no-

sharing” algorithm where only one application is able to use the board at a

time; applications wait in a pending application queue until it is their turn

to execute. In this scheme, when an application is selected to run, it is

able to make use of all slots on the board to execute parallel branches of its

task-graph or pipeline across batches. In addition to the no-sharing baseline

algorithms, we implement three task-based heuristic algorithms to compare

against.
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The first is a naive first-come, first-served (FCFS) scheduling algorithm

where all tasks that are ready to execute from all applications are selected

from in the order that they were made ready. Applications are able to pipeline

and execute parallel paths simultaneously, but may not have access to as

many resources as in the baseline. On the other hand, applications may see

response time reduction due to reduced waiting times.

The second is a task-based PREMA algorithm. Existing implementations

of PREMA scheduling algorithms [16, 17] are tuned for their target systems

and do not map directly to our sharing scheme. To account for these differ-

ences, we make the following modifications to the approach in [16]. We keep

the token accumulation scheme as well as the candidate selection methodol-

ogy of choosing the shortest candidate to execute next. Because we target

multiple slots instead of the single monolithic device used in [16], we remove

the preemption scheme like the authors of [17] did. Furthermore, we allow

tasks to pipeline across batches for this PREMA version. It does not include

techniques that are unique to Nimblock as shown in Figure 2.3.

The third algorithm is a queue-based round-robin (RR) scheduling algo-

rithm adapted from the implementation in [18]. Using their open-source code

as a starting point, we port the algorithm to a baremetal platform and mod-

ify it to enable pipelining optimizations. In their algorithm, tasks from all

pending applications are issued to per-slot priority queues in a round-robin

fashion; the tasks are issued to the priority queue with the fewest waiting

tasks. Within the priority queues, tasks are sorted by their priority level.

Lastly, we evaluate our Nimblock scheduling algorithm.

All algorithms are evaluated on the same set of stimuli, each consisting of

20 randomly selected events with randomized arrival times and batch sizes.

In order to evaluate our algorithm under different congestion conditions, we

run two sets of tests. In the first set of tests, we generate events that arrive

with moderate delay between them; this case emulates low-demand behavior

where tasks have great opportunity to leverage additional resources. In the

second set of tests, we assess our algorithm under stressful conditions, evalu-

ating a rapid-stream of events with little delay between them. To account for

variation in random stimuli, we run each algorithm through many distinct

event sequences. Response time performance numbers are measured from

the moment an application enters the pending application queue to the mo-

ment the application exits the candidate application queue using the CPU
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clock. Because these numbers are from the hypervisor’s perspective, they

may include additional overhead from scheduler actions if the hypervisor is

busy when an application completes.

3.2 Analysis

3.2.1 Response Time Reduction

Figure 3.1: Standard test relative response time, normalized to the baseline.
Median response time reduction is the orange line, with the bottom and top
of the box representing the first and third quartiles respectively. The
average is represented by the green triangle.

In order to demonstrate response time reductions on a per-application

basis, we compare an event’s response time against its baseline response time

and calculate the relative reduction. Combining the response time reductions

from all events from the testing stimuli produces a dataset we can draw

performance conclusions from. We analyze the data using two measures of

central tendency, the mean and median, and a measure of consistency or

spread, the interquartile range (IQR).

17



Figure 3.2: Stress test relative response time, normalized to the baseline.
Median response time reduction is the orange line, with the bottom and top
of the box representing the first and third quartiles respectively. The
average is represented by the green triangle.

As seen in Figure 3.1, Nimblock and PREMA demonstrate nearly 8× lower

response times at the median, outperforming the 5× lower from RR and

FCFS under standard testing conditions compared to the baseline. On aver-

age, Nimblock provides 2.7× lower response times, outperforming all other

evaluated approaches as seen by the green triangles. Nimblock, PREMA, and

FCFS demonstrate the most consistent results, with IQR values between 0.53

and 0.58. Round robin, on the other hand, demonstrates a larger spread with

an IQR of 0.68.

When we consider the stress test in Figure 3.2, algorithmic impact becomes

increasingly clear. Under this test, the FCFS algorithm reduces median

response time by only 2.5×, while the RR algorithm performs slightly better

with 3.3× lower response times compared to the baseline. Both Nimblock

and PREMA demonstrate performance consistent with their performance

on the standard test, demonstrating 9× lower median response times. On

average, Nimblock demonstrates 2.3× lower response times while PREMA,

RR, and FCFS only lower average response time by 2.1×, 1.3×, and 1.5×
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respectively. Moreover, the Nimblock scheduling algorithm is able to provide

this reduction with more consistency than other algorithms, with an IQR of

only 0.43 compared to the 0.54 of PREMA, 0.66 of RR, and 0.62 of FCFS.

3.2.2 Tail Response Time

Figure 3.3: Tail response time, normalized to the baseline

Another important metric to explore response time improvements is the

tail response time. We capture this by looking at the 95th and 99th percentile

response time reduction numbers for all scheduling algorithms as seen in

Figure 3.3. In the standard test, Nimblock demonstrates 95th percentile tail

response times 1.5× lower than PREMA and 1.3× lower than RR. While at

the 99th percentile, Nimblock demonstrates tail response times 2× lower than

PREMA and 2.1× lower than RR. In the stress test, Nimblock provides 95th

percentile response times equivalent to PREMA and 1.3× lower than RR. At

the 99th percentile, Nimblock demonstrates response times 1.1× and 1.9×
lower than PREMA and RR respectively. Overall, Nimblock provides the

lowest 99th percentile response time and performs comparably to or better

than PREMA and RR at the 95th percentile.
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When comparing to FCFS, we note that Nimblock outperforms at the

99th percentile with tail response times 1.3× lower and 1.2× lower during

the standard test and stress test respectively. However, at the 95th per-

centile, Nimblock performs comparably during the standard test and 1.17×
worse during the stress test. Because FCFS is not deadline aware and does

not consider priorities, it can perform well on tail response times by always

scheduling the oldest application. While FCFS is better in this particular

case, it is consistently worse in the average case and is incapable of correctly

managing deadlines.

3.2.3 Deadline Analysis

Figure 3.4: Standard test deadline failure rate.

In addition to exploring average, median, and tail response time, we explore

the deadline violation rate of the scheduling algorithms. To perform deadline

analysis, we first generate an application’s single-slot latency, the latency

of the application when given a single slot to execute on with no resource

contention or waiting times. We then define an application’s deadline as

the deadline scaling factor, Ds, multiplied by the application’s single-slot
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Figure 3.5: Stress test deadline failure rate.

latency. Because there are a variety of deadlines that could be set for a given

application, we sweep Ds values from 1 to 20 at 0.25 intervals. This approach

is consistent with the service-level agreement analysis performed by Choi and

Rhu [16]. An application fails to meet its deadline if its response time is

greater than the deadline time. For the purposes of this study, we consider

high-priority applications to have tight deadlines and focus our analysis there.

Nimblock’s preemption mechanism has a significant impact in reducing the

amount of deadline violations for high-priority applications. When execut-

ing the standard test, we can achieve a 21% reduction in failure rate when

compared to PREMA and a 11% reduction when compared to RR as seen

in Figure 3.4. RR initially performs well at tight deadlines, but its high tail

response time prevents it from achieving zero violations as Ds increases—

RR reaches the 10% error point at Ds = 18.25 compared to Ds = 4.5 for

Nimblock and Ds = 6.0 for PREMA. Note that as Ds increases, meeting

deadlines becomes increasingly easy and we expect any effective algorithm

to reach 0 failure rate as a saturation point.

When we consider the stress test, Nimblock continues to produce fewer

deadline violations than competing algorithms as shown in Figure 3.5. At

tight deadlines, Nimblock provides 19% fewer deadline violations than PREMA—
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consistent with its performance in the standard test. On the other hand, RR

performs significantly worse under the stress test, and Nimblock provides

30% fewer errors at tight deadlines. As Ds increases, Nimblock continues to

outperform PREMA, reaching the 10% error point at Ds = 3.75 compared

to Ds = 4.75 for PREMA. In both test scenarios, Nimblock offers the lowest

deadline violation rate at tight deadlines, and reaches the 10% error point

earlier than competing algorithms.
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CHAPTER 4

RELATED WORK

4.1 FPGA Virtualization

There have been numerous works pursuing FPGA virtualization in recent

years. The authors of AMORPHOS [12] proposed a novel system which

combines bitstreams server-side to enable sharing of FPGAs and reduce re-

sponse times. Their approach places bitstream generation on the critical

path and only explores coarse-grained FPGA sharing. Other works such as

ViTAL [14] and Hetero-ViTAL [28] allow for fine-grained resource sharing in

a comprehensive flow, but do not explore scheduling opportunities through

preemption and pipelining. Hetero-ViTAL extends ViTAL by scaling out to

heterogeneous classes of devices through a two-level ISA.

Additional works have explored adding operating system-like capabilities

to FPGAs [18, 29, 19], adding support for shared memory access, networking,

or peripheral access. Of these approaches, Coyote [18] also employs tiling,

and enables full networking and virtual memory stacks. Coyote explores sim-

ple round-robin scheduling schemes but does not seek to extract additional

performance from the virtualized system. The Optimus system [19], employs

tiling and explores scheduling optimizations including preemption. However,

its version of preemption time-multiplexes a single shared application among

multiple users while our work enables arbitrary applications from different

users to preempt.

4.2 Scheduling

Leveraging DPR to improve performance and task scheduling on FPGAs has

been explored in many paradigms to find optimal, often ILP-based solutions
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to the scheduling problem [30, 31, 32]. Building on this, DML [20] demon-

strated that pipelining and fine-grained sharing can hide reconfiguration time

on multiple FPGA devices and works on a variety of real-world workloads.

In general, these approaches explore specific optimizations or improvements

of the ILP formulation or solver; only DML explores optimizations around

pipelining and batching. However, DML uses an expensive ILP solver on

the critical path to find an optimal scheduling solution, minimizing scaling

to large numbers of applications with larger batch sizes. Moreover, DML

relies on prior knowledge of applications and their arrival times, and it disre-

gards application priority levels. Combined, these factors make it ill-suited

to real-time scheduling.

Similarly, a great deal of work has been done in the real-time scheduling

space, particularly when considering priorities. PREMA[16] considers time-

multiplexing of NPU accelerators in the cloud to reduce application response

time in the face of varying priority levels. Unlike our approach, they do not

consider reconfigurable hardware or fine-grained space-sharing within their

scheduling algorithm. Another study [17] uses PREMA scheduling tech-

niques to reduce response time for FPGA-based DNN accelerators in a cloud

setting. Their approach uses PREMA to select tasks to run and then solves

an optimization problem to assign slots on FPGAs. Unlike our approach,

their approach relies on accelerating only DNN layers with known and con-

sistent computation patterns, and does not consider preemption as a resource

sharing technique. Our approach allows for arbitrary logic in reconfigurable

regions and explores preemption to reduce deadline violations.
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CHAPTER 5

CONCLUSIONS

As FPGA virtualization techniques become more common across the cloud

and edge, it is important to leverage the fine-grained sharing capabilities to

improve application response times and increase the efficiency of hardware

utilization. We demonstrate up to a 9× performance improvement in me-

dian application response time when compared to non-sharing techniques

when evaluated on actual hardware with a varied, real-world benchmark

suite. Moreover, we make a case for enabling preemption on reconfigurable

hardware to enable aggressive optimizations with the ability to roll back.

Preemption enables improvements on existing scheduling solutions, and we

demonstrate up to a 2.1× lower tail response times and up to a 21% re-

duction in deadline violations when compared to other real-time scheduling

algorithms.
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