
© 2022 Xinheng Liu



RESOURCE-EFFICIENT FPGA ACCELERATION FOR MACHINE
LEARNING APPLICATIONS THROUGH HLS

BY

XINHENG LIU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Doctoral Committee:

Professor Deming Chen, Chair
Assistant Professor Jian Huang
Associate Professor Steven Lumetta
Teaching Assistant Professor Zuofu Cheng



ABSTRACT

The rapidly growing machine learning development has demonstrated its

great capability and effectiveness in handling complicated real-world prob-

lems such as computer vision and natural language processing. However,

normal CPU-based implementations cannot deliver sufficient performance for

deep neural networks (DNNs) that are used in many machine learning appli-

cations due to their intensive computation and memory bandwidth require-

ments. As a result, application developers seek other hardware platforms to

boost up the performance of deep learning workloads. Field programmable

gate arrays (FPGAs), famous for their ability to maximize parallelism, flexi-

bility to explore different hardware architectures, and high energy efficiency,

have been widely employed to accelerate the DNN applications. Meanwhile,

the higher productivity and better design space exploration features of High-

Level Synthesis (HLS) have granted this design methodology wider accep-

tance for hardware design. In recent years, HLS techniques and design flows

have also advanced significantly, and many new FPGA designs are devel-

oped with the HLS design flow. In this dissertation, we present several novel

design methodologies for high-performance and resource-efficient DNN accel-

erator designs and implementations on FPGAs leveraging commercial HLS

design flows. Summarizing the design methodologies explored in these works,

we conclude that designing high-performance and resource-efficient FPGA-

based DNN accelerators requires both novel architectural design honoring

resource and bandwidth constraints and the algorithmic optimization for the

DNN computation.

ii



To Professor Chen, for his patience and guidance.

To my friend, for their love and support.

iii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Definition and Research Objectives . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . 5
2.1 FPGA Architecture . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 HLS Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 DNN Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 3 HLS-BASED OPTIMIZATION FOR VIDEO CON-
TENT ANALYSIS ACCELERATOR1 . . . . . . . . . . . . . . . . 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Implementation and Comparison . . . . . . . . . . . . . . . . 24
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 4 RESOURCE AND DATA OPTIMIZATION FOR
HARDWARE IMPLEMENTATION OF DEEP NEURAL NET-
WORKS TARGETING FPGA-BASED EDGE DEVICES . . . . . 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Algorithm and Methodology . . . . . . . . . . . . . . . . . . . 32
4.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . 37
4.5 Experiment Result and Analysis . . . . . . . . . . . . . . . . . 43
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 5 WINOCNN: KERNEL SHARING WINOGRAD SYS-
TOLIC ARRAY FOR EFFICIENT CONVOLUTIONAL NEU-
RAL NETWORK ACCELERATION ON FPGAS . . . . . . . . . . 48
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Background and Design Challenges . . . . . . . . . . . . . . . 50
5.3 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 System Architecture and Modeling . . . . . . . . . . . . . . . 62
5.6 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

CHAPTER 6 HIKONV: HIGH THROUGHPUT QUANTIZED
CONVOLUTION WITH NOVEL BIT-WISE MANAGEMENT
AND COMPUTATION . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Multiplier for Convolution . . . . . . . . . . . . . . . . . . . . 75
6.4 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . 91

CHAPTER 7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

v



CHAPTER 1

INTRODUCTION

Recently, the area of deep learning has regained popularity due to various

factors, such as affordable high-performance computing, new breakthroughs

in deep learning algorithms and a massive amount of credible data for train-

ing. Deep learning, a subfield of machine learning, is a class of multi-layer

algorithms to extract high-level features from the raw data input. The multi-

layer algorithms are typically in the format of neural networks with weight

parameters learned from standard training process such as backward propa-

gation. The input entry of deep learning algorithms is usually raw real-world

data such as image, text, or sound waveform. Each layer in a specific deep

learning algorithm extracts features from its input and forms the output with

a higher abstraction level [1]. The features relevant to concept discrimination

are enhanced as the algorithm proceeds to the deeper layers, and irrelevant

variations are suppressed.

Deep neural networks (DNNs), the major architecture of deep learning

algorithms, have been adopted by designers and researchers to deal with

problems which were considered as challenging in the past. This class of

problems covers many aspects of the real world including image classification

[2], automated driving [3], object detection [4], face recognization [5] and

natural language processing [6], etc.

The exploration of the DNN model can be traced back to the last century.

Early in 1990, Y. Lechun et al. proposed a neural-network-based training

algorithm for handwritten digit recognition, which can achieve 99% accuracy

[7]. Later on, after 2000, the establishment of public datasets contributes

to the emerging of DNN models. In 2009, the famous image classification

dataset ImageNet [8] was first presented in the Conference on Computer Vi-

sion and Pattern Recognition (CVPR). The dataset contains more than 14

million labeled images and is adopted by many DNN models as the training,

testing, and evaluation dataset. In 2012, Krizhevsky et al. proposed the

1



AlexNet [9] and won the ImageNet large-scale vision recognition challenge

(ILSVRC) [10] with a top-5 accuracy of 84.7%. The accuracy of image clas-

sification on ImageNet was pushed up to 96.4% [11] by the newly proposed

DNN models in the next few years.

FPGAs, well known with both high computation efficiency and low power

consumption, are the ideal platforms to implement and accelerate machine-

learning applications. Much work has been done on the exploration of suit-

able FPGA implementations of DNN algorithms. In 2018, Zhang et al.

implemented efficient inter-layer pipe-lined architecture to enable the par-

allelism of execution among different layers [12]. Meanwhile, more and more

FPGA designers started to choose High-Level Synthesis (HLS) as a primary

design methodology in their hardware development procedure. The automa-

tion in HLS design flow sharply reduces the length of the development cycle

in hardware design and allows the FPGA designers to explore the efficient

and effective implementation for state-of-the-art deep learning algorithms.

With the consideration of the development efficiency and the platform cus-

tomizability, the machine-learning hardware design through HLS for FPGA

is an important research area.

1.1 Motivation

DNN algorithms have been proven to be difficult for hardware acceleration.

The number of operations required in a typical DNN algorithm is usually at

the level of several Giga floating point operations (GFLOP) and the number

of data parameters can reach tens of millions. The VGGnet [13] DNN model,

for instance, contains 19.6 GFLOPs and 138 million trainable parameters.

Meanwhile, the real-time DNN applications usually demand high throughput

and low latency solutions to fulfill the time requirement. The fast changing

DNN models also increase the difficulty of designing flexible hardware accel-

erators. Various DNN micro-structures such as residual layers and inception

layes have been proposed. Such micro-structures require unique optimiza-

tion strategies in hardware accelerator design. Although FPGAs are suit-

able hardware platforms of DNN applications to accommodate the changing

requirement of the fast evolving DNN applications, the fixed hardware re-

sources and off-chip data communication bandwidth restrict the performance

2



of FPGA-based DNN accelerators. Considering the above-mentioned chal-

lenges in hardware accelerator design for DNN applications, it is of great

interests to explore the methodology of resource-efficient FPGA acceleration

for DNN applications.

1.2 Problem Definition and Research Objectives

In this dissertation, we focus on the exploration of various design method-

ologies to maximize the resource efficiency and performance for FPGA-based

DNN accelerators honoring the memory bandwidth and the hardware re-

source constraints. Specifically, we target to achieve the following research

goals:

1. Finding the resource allocation strategy in DNN hardware accelerator

design targeting optimal performance.

2. Developing the scheduling algorithm of DNN IPs to minimize the idle

time of computation units.

3. Exploring the DNN-specific computation algorithm to reduce the num-

ber of computations and increase the computation efficiency.

To achieve the above goals, we explored several efficient architectures and

algorithms to accelerate DNNs on FPGA platforms through HLS design flow

and the related optimization. Our works are summarized below:

1. We implemented a high-performance deep-learning-based video content

recognition application. Meanwhile, we proposed a resource balancing

algorithm to allocate proper computation resources to different DNN

layers and achieved minimized latency.

2. We developed a fine-grained inter-layer pipeline architecture to enable

the overlapping of execution of DNN layer operations.

3. We proposed a high-efficiency Winograd systolic architecture for con-

volution layers and explored the memory banking optimization in the

Winograd systolic architecture.

4. We proposed a novel algorithm that maximizes the computation unit

efficiency of the hardware platform in DNN-related applications.

3



1.3 Thesis Outline

This thesis is organized in the following way. In Chapter 2, we will briefly

introduce the background information about the FPGA architecture and the

DNN structures. In Chapter 3, we discuss the resource allocation algorithm

for FPGA-based DNN applications. In Chapter 4, we discuss the schedul-

ing algorithm for DNN hardware IPs with pipelining. In Chapter 5 and

Chapter 6, we explore several algorithmic and architectural optimizations

to increase the effective efficiency of computation units. Chapter 7 summa-

rizes the above-mentioned works and draws the conclusion on optimization

strategies of FPGA-based DNN accelerators.

4



CHAPTER 2

BACKGROUND

This chapter provides background information for our proposed works. Firstly,

an overview of FPGA with details in architecture and components is demon-

strated. Secondly, traditional HLS design methodology is introduced. The

third part reviews fundamentals of the major layers in DNNs.

2.1 FPGA Architecture

FPGAs are programmable silicon devices that can be configured into a logic

circuit with required functionality. The overall architecture of FPGAs is

generally composed of functional blocks, inter-block routing fabric, and in-

put/output pins, as shown in Figure 2.1. The functional blocks usually con-

tain general logic, arithmetic logic, or on-chip memories depending on the

type of the block. The routing fabric allows programmable interconnection

among the functional blocks. The I/O pins connect the on-chip logic into

peripheral hardware such as off-chip DRAM memory, PCIe interface, or host

processing system.

The functional blocks for the logic circuit are implemented as Configurable

Logic Blocks (CLB), which provide the primary resource for implementing

combinatorial circuits and registers. The CLB contains basic logic elements

that are connected into slices by the internal route. The main basic logic el-

ements include Look Up Tables (LUT), Multiplexers (MUX), and Flip-Flop

registers (FF). The CLBs can be configured as simple combinatorial logic cir-

cuits, registers, or small volume memories for required purposes. The arith-

metic logic blocks in FPGA are usually instantiated as DSP slices. Typical

DSP slices contain fabricated integer multipliers and accumulators, and these

DSP slices can perform complex arithmetic operations such as integer/float-

point multiplication, logarithmic operation, and exponential operations. The

5



Figure 2.1: FPGA architecture

memory function blocks are Block Random Access Memory (BRAM) slices,

which can be configured as on-chip address-access RAMs. Specifically, the

BRAMs in typical modern FPGAs can be configured as dual-port RAMs,

where data from two addresses can be accessed simultaneously. The pre-

fabricated functional blocks usually have different hardware configurations

such as register size, BRAM depth, and bit-width according to vendors and

FPGA series.

The reconfigurability of FPGA devices entitle them with compelling ad-

vantages: on the one hand, compared with the fixed-function Application

Specific Integrated Circuit (ASIC) which usually requires long time and high

cost for design and fabrication, the FPGA devices can be reconfigured within

a short time for many times and the cost can be much lower for suitable ap-

plications; on the other hand, compared with CPU, the flexibility of FPGA

devices allows the hardware designer to implement efficient task-specific logic

circuits which usually have much better performance and much lower power

consumption. However, FPGA designers must consider the configuration and

limitations of the functional blocks and corresponding resources on FPGA

to generate the optimal and efficient implementation of applications.

6



2.2 HLS Design Flow

High-Level Synthesis (HLS) is the automated process that synthesizes the

high-level, untimed behavior specification (C or SystemC for example) into

efficient application-specific hardware designs in the format of low-level reg-

istration transfer language (RTL) specification which can be implemented in

ASICs and FPGAs. The HLS flow usually contains three main steps: Control

and Data Flow Graph (CDFG) extraction, Optimization and RTL genera-

tion. The CDFG is a directed acyclic graph in which a node can be either an

operation node or a control node (such as a branch and loop). Each directed

edge in a CDFG represents the transfer of value or control from one node

to another. With the control flow and data transfer information embeded in

the CDFG, the HLS tool can perform resource and latency optimization and

finally generate the RTL hardware design. In the step of CDFG extraction,

the source code from high-level language is converted into intermediate rep-

resentation (IR) and the CDFG is generated based on the IR. The loops in

the original source code are often unrolled or auto pipelined to accommodate

the resource and latency optimiztion step. HLS will perform three steps of

optimization: allocation, scheduling and binding. Allocation specifies the

necessary functional unit. Scheduling determines the occurring cycle of each

operation while honoring the dependence and timing constraint. Binding

maps each operation and variable from the source code to a specific function

unit or storage device respectively. In the last step, the RTL code with spec-

ified behavior is generated based on the allocation, scheduling and binding

result. The datapath is composed by the function units and registers spec-

ified by allocation and binding. The control flow is turned into finite state

machine specified by the scheduling.

Many previous works have discussed the optimization algorithms. The tra-

ditional “As Soon as Possible” (ASAP) [14] scheduling algorithm incremen-

tally assigns each operation instantly when its data dependency is fulfilled.

The “As Late as Possible” (ALAP) [14] scheduling works similarly but in

a reverse order. The “Force Directed Scheduling” (FDS) [15] is a heuris-

tic aiming at better scheduling solutions by distributing the operations into

scheduling steps in a balanced way. The “Integer Liner Programming” (ILP)

[16] converts the scheduling problem into an ILP optimization problem and

can find solutions with the minimum scheduling latency and minimum re-

7



quired resources. Also, module libraries can be used for resource allocation.

The choice of the optimization and module library have different effects re-

garding quality of solution thus providing opportunities for domain-specific

HLS.

2.3 DNN Structures

2.3.1 Basic Neural Network

The basic building block of a neural network is termed as neuron. Figure

2.2 shows the typical structure of a neuron which accepts a group of input

signals x1-xm and generates the output yk. The neuron has different levels of

sensitivity from each input signal xj which are characterized by the param-

eters termed as weight (denoted by wkj in the figure). The weighted signals

are combined linearly in a summing junction and with one additional bias

parameter. The activation function ϕ limits the neuron’s output within a

finite range. In summary, a neuron k may be described using the following

equation:

yk = ϕ(
m∑
j=1

wkjxj + bk) (2.1)

Figure 2.2: Nonlinear model of a neuron

8



y1

y2

y3

x1

x2

x3

x4

Figure 2.3: A feed forward-layer with neurons

In the DNN structure, the neurons are organized in the form of layers.

Figure 2.3 shows the structure of a neuron layer. All the layer neurons use

the same group of input signals, and the output signals of the neurons in

the layer form an output signal group. The input and output group may be

organized as tensors and neurons may have different patterns of selection of

inputs, forming layers with different functionalities, such as convolution layer

and fully connected layer.

A DNN model consists of a sequence of neuron layers with different func-

tionalities. For example, the structure of AlexNet is show in Figure 2.4.

The model of AlexNet includes five convolution layers, three max-pooling

layers and three fully connected layers. The input and output of a layer are

usually multidimensional tensors. Specifically, the input and output of con-

volutional neural networks are usually tensors of three dimensions of channels

(or depth), height and weight. We provide brief introductions to major layer

types in DNN models next.

Figure 2.4: AlexNet structure [2]

9



2.3.2 Activation Layer

The activation function ϕ in the neurons is usually a monotonous differen-

tiable function which limits the output signals into a certain value range and

may form an independent layer. Equation 2.2 shows several commonly used

activation functions. One of the function types is the sigmoid function. The

sigmoid function limits the output into the range of (0, 1) and is used for DNN

models with probability prediction as the output. The hyperbolic tangent

function, or tanh for short, is a nonlinear activation function that outputs

values between -1.0 and 1.0 and is mainly used in classification between two

classes. The tanh function was preferred over the sigmoid activation func-

tion previously, as models that used it were easier to train and often had

better predictive performance. However, both the sigmoid and tanh function

require the exponential operation which is computationally expensive. Also,

the gradient of sigmoid and tanh functions lies among (0, 1] and the gra-

dient decreases exponentially as the neural network becomes deeper, which

causes the low convergence rate with low gradient error feedback in the back

propagation training process. The Rectified Linear Unit (ReLU) activation

function has a much simpler form with only comparison and linear opera-

tions which is far more hardware friendly compared with sigmoid and tanh

functions. The ReLU activation function also suffers less from the vanishing

gradient problem [17]. The gradients of the ReLU activation function at the

activation region (positive input interval) become constant and do not vanish

as the network goes deeper. The ReLU activation function is commonly used

in modern DNN models.

sigmoid: f(x) =
1

1 + e−x

hyperbolic tangent: f(x) =
e2x − 1

e2x + 1

ReLU: f(x) = max(x, 0)

(2.2)

2.3.3 Fully Connected Layer

If all the neurons in a neural network layer are connected to all the input

signals, then the layer is termed as a fully connected layer. Denoting the

weight from input xi to output yj as wij with the assumption that there

10



are m input signals and n output signals, we may represent all the weight

parameters as an m× n matrix Wm×n. According to Equation 2.1, the fully

connected layer may be expressed as Equation 2.3 where ~x, ~b and ~y denote

the input signals, neuron bias and output signals respectively. As mentioned

before, the activation function usually forms an independent activation layer,

leaving the fully connected layer in the form of matrix-vector multiplication

together with the bias vector summation shown in Equation 2.4. Fully con-

nected layers are usually appended at the end of typical DNN models to

extract the final classification scores.

~y = ϕ(W~x+~b) (2.3)

~y = W~x+~b (2.4)

2.3.4 Convolution Layer

DNN application uses convolution layers to deal with pattern recognition

and classification problems. The input and output signals are organized as

feature-maps which are 3D tensors that can be viewed as many channels of

2D arrays. The convolution layer convolves the input feature-maps with the

weight parameters to generate the output feature-map. The weight parame-

ters are organized as a sequence of K ×K filters.

Following the conventional notation of tensors, we represent anN -dimension

tensor t as tX1×X2..XN with the n-th dimension size equal to Xn. A certain el-

ement with dimension index x1, x2...xN in the tensor is denoted by tx1,x2...xN
.

Then we use the following symbols to represent the involved tensors in a

convolution layer.

• xCi×Hi×Wi for input signal tensor with Ci channels of Hi ×Wi feature-

maps.

• yCo×Ho×Wo for output signal tensor with Co channels of Ho×Wo feature-

maps.

• WTCo×Ci×K×K for weight tensor with filter size K ×K.

• bCo for bias tensor.

11



And the computation of the output signal tensor is specified in Equation 2.5.

yco,h,w=

Ci-1∑
ci=0

K-1∑
kh=0

K-1∑
kw=0

xci,h+kh,w+kw ·WTco,ci,kh,kw + bco (2.5)

During the convolution, each channel of the input feature-map is convolved

by one of the k×k filters, and all the filtering results are summed up in-place

to form one channel of the output feature-map. The convolution layer aims

to extract and augment specific feature patterns represented by the filters in

the weight parameters.

2.3.5 Pooling Layer

The pooling layer computes the maximum or average value of the region

covered by a sliding window on each channel of the input feature-map to

generate a output feature-map. The pooling layers down sample the feature-

maps by summarizing the regional information in the feature-map so that the

convolution kernel may cover a larger region of feature information in deeper

layers after each pooling. DNN models include pooling layers at periodic

positions to reduce the size of the feature-map and thereby to reduce the

number of computations and weight parameters.

12



CHAPTER 3

HLS-BASED OPTIMIZATION FOR VIDEO
CONTENT ANALYSIS ACCELERATOR1

FPGA is a promising candidate for the acceleration of Deep Neural Net-

works (DNN) with improved latency and energy consumption compared to

CPU-based and GPU-based implementations. DNNs use sequences of layers

of regular computation that are well suited for HLS-based design for FPGA

which features convenient and configurable IP-based design flow. However,

accelerating large neural networks under resource constraints is still a key

challenge. HLS must manage on-chip computation, buffering resources, and

off-chip memory accesses to minimize the total latency. In this chapter, we

present a design framework for DNNs that uses highly configurable IPs for

neural network layers together with a new design space exploration engine

for Resource Allocation Management (REALM). We also carry out efficient

memory subsystem design and fixed-point weight re-training to further im-

prove our FPGA solution. We demonstrate our design framework on the

Longterm Recurrent Convolution Network for video inputs. We are the first

to implement the LRCN DNN accelerator on the FPGA platform. Our im-

plementation on a Xilinx VC709 board achieves 3.1× speedup compared to

the NVIDIA K80 and 4.75× speedup compared to the Intel Xeon with 17.5×
lower energy per image.

3.1 Introduction

Recent years have seen rapid development of DNNs deployed on FPGAs

[18, 19, 20, 21, 22, 23, 24]. DNNs are composed of layers of regular com-

putations such as convolution and pooling. High-level synthesis (HLS) is

well suited to optimize the regular computations of network layers. How-

1 This is a joint work with equal contribution by co-author Xinheng Liu and Xiaofan
Zhang.

13



ever, there are significant challenges in managing computational complexity,

on-chip memory limitation, and external memory bottlenecks. Each layer

in a DNN features different computational and memory bandwidth demand;

effective design of a network demands both different optimization strategies

based on layer type as well as different optimization parameters between

different instances of the same layer. To produce optimal network implemen-

tations under resource constraints, we must determine best on-chip memory

usage and external memory access patterns, explore layer implementation

options and determine how to best allocate limited FPGA resources among

the layers in order to minimize overall latency. In this chapter, we develop the

Resource Allocation Management (REALM) framework to analyze resource

requirement and perform resource allocation among the layers in order to

minimize total network latency. We demonstrate our framework using the

Long-term Recurrent Convolutional Network (LRCN) [25]. LRCN is among

the most complex tools available today aiming to achieve cognitive intel-

ligence in the context of video/image analysis. To summarize, the main

features of this chapter are:

1. A flexible HLS IP for designing Recurrent Neural Network (RNN) and

Convolutional Neural Network (CNN) optimally for a range of IP pa-

rameterizations. We use instances of this IP to implement the LRCN.

2. A resource partitioning solution that provides guidelines for resource

allocation per layer for minimum overall latency. We call this solution,

REALM.

3. An implementation of LRCN on the Xilinx VC709 board. We demon-

strate the effectiveness of REALM and our HLS IP in the design process

and achieve better performance than GPU and CPU solutions.

4. We demonstrate an efficient implementation of LRCN on the Xilinx

Virtex-7 VC709 evaluation platform and achieve significant accelera-

tion. Also, comprehensive comparison study among FPGA, CPU, and

GPU is provided.

The rest of this chapter is organized as follows. In Section 3.2, the LRCN is

briefly introduced, and existing FPGA-based acceleration schemes for DNNs

are discussed. In Section 3.3, the main challenges encountered in mapping

14



the LRCN to the FPGA are presented. Section 3.4 describes our REALM

framework, the HLS IP, and additional techniques for optimizing the design.

The overall system implementation and comparison study are presented in

Section 3.5. In Section 3.6, we conclude this chapter.

3.2 Background

3.2.1 LRCN

A typical LRCN is implemented using AlexNet [9] for CNN and LSTM [26]

for RNN. A LRCN uses 2.22 billion floating-point operations and 86.56M

synapse weights for processing just one video frame. Video frames are entered

sequentially into the system and first processed by CNN (the left side in

Figure 3.1) for the extraction of visual features and the output is a vector with

1000 dimensions with each dimension representing a category of objects. This

vector is passed to the RNN module (the right side in Figure 3.1) to generate

proper descriptions (RNN produces a separate word in each iteration). By

combining these different neural networks together, LRCN becomes an end-

to-end model for video content description.

Figure 3.1: LRCN structure

15



3.2.2 Related Work

FPGA-based acceleration has achieved very high performance for DNNs. The

work presented in [18] explores the design space of loop optimizations in a

CNN implementation. In [19], an efficient design is presented with a weight

quantization method. An OpenCL-based design method and an associated

design-space exploration for system-level throughput optimization is carried

out in [20] to produce a CNN implementation. Memory access times are

considered in [21] to achieve comprehensive optimization goals. The paper

[22] exhaustively analyzes loop optimizations and data movement patterns

in CNN loops. An FPGA accelerator for LSTM is designed in [23] which

explores both computation and communication optimizations. In [24], LSTM

model compression and an associated accelerator design are presented and

the results surpass CPU and GPU solutions. Compared to these methods,

we design a parameterized HLS IP for implementing neural networks and

we introduce a resource allocation strategy called REALM, for achieving

minimizing overall latency.

3.3 Design Challenges

The memory space and computational complexity of LRCN are very high.

Table 3.1 summarizes the detailed requirement with CNN (AlexNet) and 15

iterations of RNN representing 15 output words. In total, 2.22 Giga (bil-

lion) floating-point operations are necessary during inference while 411970

inputs are distributed to different layers and 659290 outputs are generated.

The video description requires 86.56 million weight parameters which oc-

cupy 346.24MB of the memory. Layers in LRCN show different characteris-

tics regarding computation and memory requirements. The computational

demand of convolutional layers, fully connected layers and RNN are respec-

tively 60.06%, 5.29% and 34.65% while the memory space requirements are

2.69%, 67.73% and 29.58% respectively. The complex structure and large

variation in the computation and communication characteristics of different

layers in LRCN present the following challenges.

1. Resource allocation and partitioning. Currently, HLS relies heav-

ily on pragmas. Although using HLS pragmas can improve the perfor-

16



mance of loops of DNN layers, it is not straightforward to relate such

HLS pragmas directly to the performance because of the possible data

dependencies. Second, LRCN consists of multiple loop structures across

different layers, a homogeneous resource allocation for these layers will

not produce the best results.

2. Memory limitation. The large size of the LRCN weight data forces

us to use external memory to store these weights. The frequent access

of external memory easily becomes a bottleneck, which means that the

performance of a critical loop is not affected so much by its computa-

tion demand and resource allocation, but by how frequently it needs to

access weights from the memory. While modeling the performance, it

is much simpler if this memory bottleneck can be dealt with so as to

reduce its impact on the system’s performance. In this chapter, we ex-

plore techniques in order to improve memory performance, simplify the

overall performance model, and enable an effective resource allocation

scheme for minimizing overall latency.

Table 3.1: Space and computation complexity of LRCN

Layers
# of

Weights
GFLOP

# of
Input data

# of
Output data

Conv1 0.03 M 0.21 150.53 K 290.40 K
Conv2 0.31 M 0.45 69.98 K 186.62 K
Conv3 0.89 M 0.30 43.26 K 64.90 K
Conv4 0.66 M 0.22 64.90 K 64.90 K
Conv5 0.44 M 0.15 64.90 K 43.26 K
FC1 37.76 M 0.08 9.22 K 4.10 K
FC2 16.79 M 0.03 4.10 K 4.10 K
FC3 4.10 M 0.01 4.10 K 1.00 v
RNN

15 iterations
25.61 M 0.77 1.00 K 0.015 K

Total 86.56 M 2.22 411.99 K 659.29 K

17



Algorithm 1 Loop structure for convolution

1: for h→ OutHeight, h++ do
2: for w → OutWidth,w++ do
3: for Co → OutChannel, Co++ do
4: for Ci → InChannel, Ci++ do
5: for i→ KernelHeight, i++ do
6: for j → KernelWidth, j++ do
7: Out[Co][h][w]+=
8: weight[Co][Ci]× In[Ci][h+i][w+j]
9: end for

10: end for
11: end for
12: end for
13: end for
14: end for

3.4 Design Methodology

3.4.1 IP for LRCN Design

The IP-based design methodology provides the opportunity to quickly imple-

ment a high-quality FPGA design with customized IPs. In order to leverage

its benefits, the proposed HLS IP covers the most critical and universal op-

erations (multiply-accumulations) in DNNs. With this parameterized IP, we

can fit it into the LRCN implementation.

Figure 3.2: (a) The parameterizable HLS IP design and (b) computation in
blue, green, and orange blocks carried out by a single IP

The HLS flow automatically turns high-level language code describing the

behavior of the target hardware design into hardware descriptive language

code. In this work we adopt the Xilinx’s Vivado HLS flow which accepts

C++ code as the input. Since the optimization strategy of FPGA-based

design differs greatly from the one of CPU-based design, it is more efficient

to start from the original code instead of the code specifically optimized

18



for CPU. Algorithm 1 shows the pseudo-code for the convolution algorithm

without any optimization. Although the HLS tool is able to perform elegant

register-level resource allocation and operation scheduling for the code, the

designer still needs to provide guiding information such as pragmas and loop

reconstruction to achieve the desired hardware architecture. The original

convolution loop structures in Algorithm 1 are inefficient for the FPGA device

considering the on-chip resource constraint and off-chip bandwidth limit. For

the purpose of hardware efficiency, we perform the following optimization for

the original code:

1. We tile the loop 3 and loop 4 in Algorithm 1 with configurable factor

Coo and Cii. In the critical loops representing the LRCN layers, we

moved the loop iterations with minimal dependency inwards, so that

the inner loops in the transformed source code may be unrolled for

maximum parallelization and resource utilization.

2. We instantiate double buffers by declaring ping-pong arrays and use

pragmas to guide the HLS tool to sytheisize the double buffer architec-

ture. In such a way, the computation and data loading processes run

concurrently.

We abstracted the optimized loop structure shown in Algorithm 1 as an

HLS IP, and use it to construct the network. As shown in Figure 3.2a, the

IP consists of Coo multiply accumulate units of dimension Cii each. It can

represent a 2D, unrolled, loop tile of multiply-accumulate operations. The

proposed IP source code is shown in Algorithm 2. Figure 3.2 helps visualize

how a complete convolutional layer is built using the IP. One blue block and

sixteen green blocks are processed by the IP which generates partial sum of

the orange block (one eighth of the layer’s output). In Figure 3.2b, Cii = 24

and Coo = 16, and this tile is reused 27× 27× 8× 2 times to obtain all the

outputs of the layer. The optimized code following Algorithm 2 is fed into the

HLS flow for automated hardware IP generation and FPGA implementation.

3.4.2 Resource Allocation for Minimal Latency

To design a resource allocation strategy targeting minimal latency, we pro-

pose a latency model with the following assumptions:

19



Algorithm 2 Pseudocode of proposed IP

1: for Ci → InChannel, Ci+=Cii do
2: for Co → OutChannel, Co+=Coo do
3: for i→ KernelHeight, i++ do
4: for j → KernelWidth, j++ do
5: #pragma HLS dataflow //Load from ping-pong buffer
6: Load Data Func()
7: for h→ OutHeight, h++ do
8: for w → OutWidth,w++ do
9: #pragma HLS pipeline // HLS IP starts below

10: for coo→ C00, coo++ do // Output traversal
11: for Sel→ 1, 2 do //Select ping-pong buffer
12: for cii→ Cii, cii++ do // Input traversal
13: Out[Sel][Co+coo][h][w]+=
14: weight[Sel][coo][cii]× In[SelBuf ][Ci+cii][h+i][w+j]
15: end for
16: end for
17: end for
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for

1. Each layer in the DNN has a fixed computation amount Ci.

2. The proposed accelerator architecture instantiates a hardware IP for

each layer with allocated resource Ri. And the total computation re-

source is constrained by on-board computation resource Rtotal.

3. The latency of each layer is proportional to Ci/Ri, the ratio between

the layer computation amount and the allocated resource of the layer

IP.

4. All the IPs perform layer computation in serial and the total latency

is the sum of the latency of each layer.

With the above assumptions, we may conclude the proper choice of re-

source for each layer to achieve minimal latency. Equation 3.1 and Equation

3.2 demonstrate the calculation for latency and resource usage for the design

with α as a constant obtained empirically.

latency = α
∑
i

Ci

Ri

(3.1)

20



Rtotal =
∑
i

Ri (3.2)

According to Cauchy inequality, Equation 3.3 holds.[∑
i

(

√
Ci

Ri

)2

][∑
i

(
√
Ri)

2

]
≥

[∑
i

√
Ci

]2
[∑

i

Ci

Ri

][∑
i

Ri

]
≥

[∑
i

√
Ci

]2
[∑

i

Ci

Ri

]
≥
[∑

i

√
Ci

]2∑
iRi

α

[∑
i

Ci

Ri

]
≥ α

[∑
i

√
Ci

]2∑
iRi

latency ≥ α

[∑
i

√
Ci

]2∑
iRi

(3.3)

Also, the Cauchy inequality achieves equality under the condition specified

in Equation 3.4 which indicates that the minimal latency is achieved.

REALM:
Ri

Rj

=

√
Ci√
Cj

(3.4)

Equation 3.4 is hence the essence of REALM (Resource Allocation Man-

agement), which can be used to budget resources among different layers in

the network. Once we obtain the ratio of resource allocation per layer from

REALM, we can set the tile-sizes of the HLS IP appropriately to reflect this

ratio and reach minimum latency. Table 3.2 shows the allocated DSP for

convolution layers in our LRCN application guided by REALM with Rtotal

set as 20%, 40% and 60% of total on-chip DSP resources.

3.4.3 Network Pruning and Quantization

One of the conditions that can invalidate the assumptions behind REALM

is that memory access time dominates the layer latency instead of compu-

tations. This can happen in the case of FC layers and LSTM which have a

very low computation-to-communication ratio. Second, FPGAs perform fa-

vorably with fixed-point DSP units but not as well when using floating-point

21



Table 3.2: DSP allocation scheme generated by REALM

Layer Operations
20%

DSP#
40%

DSP#
60%

DSP#
Conv1 105415200 130 261 391
Conv2 223948800 190 380 570
Conv3 149520384 155 311 466
Conv4 112140288 134 269 403
Conv5 74760192 110 220 329
Total# 665784864 720 1440 2160

data.

To address these concerns, we prune the original LRCN network to reduce

the number of output nodes in the fully connected layers, FC1 and FC2,

from 4096 to 256. In addition, two LSTM layers with 1000 hidden units

each are converted to one LSTM layer with 256 hidden units. We then

change the weights, bias and intermediate data to use fixed point numbers

(shown in Table 3.3) to improve DSP utilization and reduce the memory

bandwidth pressure. We re-train the modified LRCN network using Caffe

for maintaining accuracy. The accuracies of the networks are summarized

in Table 3.4. After pruning and quantization, the LRCN network occupies

11.08 million weight and requires 1.45 G operations. These updated numbers

are used for setting up REALM.

Table 3.3: Layer-wise bit-width quantization

Layers
Output and

intermediate data
(total bits, frac. bits)

Weight and
bias data

(total bits, frac. bits)
Conv1 16, 4 12, 11
Conv2 16, 7 12, 11
Conv3 16, 8 12, 11
Conv4 16, 9 12, 11
Conv5 16, 10 12, 11

FC1-FC3 16, 11 12, 11
RNN 16, 12 12, 11

22



Table 3.4: Accuracy after re-training

Network Accuracy
LRCN - original (AlexNet + 2 LSTM layers) 43.0%

LRCN pruned (AlexNet + 1 LSTM layer) 41.8%
LRCN pruned, fixed-point (AlexNet + 1 LSTM layer)

Implemented on FPGA
42.0%

3.4.4 Memory Management

In addition to network pruning and quantization, we take further action to

maintain the validity of the assumptions under REALM by reducing the

impact of communication costs. Using a 12-bit format means that for a bus-

width of 512 bits (this applies also to other bus-widths which are usually

power-of-2), a few bits in each access may have to be discarded (512 is not

divisible by 12). To prevent this, we collect bits from three bus accesses

for regrouping into weights. The scheme is shown in Figure 3.3. To further

improve the memory access efficiency, we need to ensure that the data access

patterns exploit the maximum DDR memory bandwidth. We re-order the

multidimensional weight data into a linear sequence that follows the order

of computation. This ensures that data locality is exploited when the HLS

IP instance accesses weight data thus to improve the throughput of access.

With such a weight loading interface, the hardware accelerator is able to fetch

128 12-bit weight parameters in every three cycles without additional buffers

inside the computation IP. To further reduce the memory access latency, we

instantiate FIFOs outside the LRCN layers in the path connecting the layers

to external memory. In addition, we use Vivado HLS to synthesize ping-pong

buffers at the input of each layer. This is intended to hide memory latency

between the layer’s computational unit and the FIFO feeding the layer.

Figure 3.3: Memory-bus organization for minimizing wastage

23



3.5 Implementation and Comparison

3.5.1 Overall System Setup

Xilinx Virtex-7 VC709 evaluation platform with XC7VX690T FPGA is used

for our design with optimizations mentioned in Section 3.4 , and Vivado HLS

2016.2 is used for high-level synthesis.

We build an end-to-end, real-time, video content description system that

can directly process frames from a commercial webcam. We use Tegra TK1

and a Logitech C920 full-HD webcam as the front-end. We down-sample the

captured frames to the size that fits the LRCN network and stream the image

frame over the internet. On the backend side, the host PC receives the frames

and pre-process the image, including re-ordering of pixels and fixed-point

conversion, before off-loading the data to our LRCN kernel implemented on

the FPGA. After computation, the kernel sends back an index vector which

is used for dictionary lookup to produce a sentence. The complete system is

shown in Figure 3.4.

Figure 3.4: Left: Front-end (Tegra TK1 and webcam); Right: Back-end
(Xilinx VC709 FPGA board, host PC)

3.5.2 Comparison

Resource consumption of proposed LRCN is shown in Table 3.5, and the

maximum frequency is 100 MHz in our board level implementation. We

compared the performance of the pruned LRCN model on CPU, GPU, and

FPGA. The floating-point version of the pruned LRCN was run on GPU and

CPU and the fixed-point version of the pruned LRCN was run on the FPGA.

24



Since there is no previous works that recorded the performance of the LRCN

application on GPU or CPU platform, we implemented LRCN on GPU and

CPU under the Caffe [27] framework which provides optimized DNN libraries

for both CPU (based on BLAS [28]) and GPU (based on cuDNN [29]) as our

comparison target. We map the GPU solution into two Nvidia K80 graphic

cards and the CPU solution into an Intel XeonE5-2630 processor.

Table 3.5: Resource consumption

BRAM DSP Flip-flop LUT
1508 3130 321165 316250
51% 87% 37% 73%

The performance and power comparisons are provided in Table 3.6. For

the FPGA version, a power meter was used to measure the consumption

of the entire evaluation board during the execution of the kernel. For the

GPU version, power was measured using the command nvidia-smi, and for

the CPU version, power was measured using a power meter.

Table 3.6: LRCN performance comparison

Frequency Latency Speedup Power Efficiency
This work 100 MHz 0.040 s 4.75× 23.6 W 0.94 J/frame

Nvidia K80 562 MHz 0.124 s 1.53× 133 W 16.49 J/frame
Intel Xeon
E5-2630

2.6 GHz 0.19 s 1.00× 88 W 16.72 J/frame

3.6 Conclusion

In this chapter, we presented an implementation of LRCN and explored the

methodology in HLS-based design flow for FPGA. We introduce a resource

allocation strategy called REALM, which drove theoretical guidelines for

per-layer resource allocation for minimum overall latency. We implemented

methods including network pruning, weight quantization, and retraining, as

well as efficient memory system design. Using our resource allocation guide-

lines, we tuned the parameters of the proposed HLS IP instances to imple-

ment the LRCN to obtain a design whose power and latency performance

surpassed those of GPU and CPU implementations. Our implementation

25



proves to be efficient in LRCN-related applications which require low power

consumption and high FPS throughput.

26



CHAPTER 4

RESOURCE AND DATA OPTIMIZATION
FOR HARDWARE IMPLEMENTATION OF
DEEP NEURAL NETWORKS TARGETING

FPGA-BASED EDGE DEVICES

Targeting convolutional neural networks (CNNs), we adopt the high-level

synthesis (HLS) design methodology and explore various optimization and

synthesis techniques to optimize design on an FPGA. Our motivation is to

target embedded devices that operate as edge devices. Recently, as machine

learning algorithms have become more practical, there have been much effort

to implement them on devices that can be used in our daily lives. However,

unlike server devices, edge devices are relatively small and thus have much

more limited resources and performance. Therefore, control of resource us-

age and optimization plays an important role when we implement machine

learning algorithms on an edge device. The key idea explored in this chapter

is backward pipeline scheduling which optimizes the pipeline between CNN

layers. This optimization technique is especially useful to utilize the limited

on-chip memory resource for classifying an image on an edge device. We have

achieved latency of 175.7 µs for classifying one image in the MNIST dataset

using the LeNet and 653.5 µs for classifying one image in the Cifar-10 dataset

using the CifarNet. For the LeNet we were able to maintain high accuracy

of 97.6% for the MNIST dataset and 83.4% for the Cifar-10 dataset. We

achieved the best single-image latency, 5.2× faster for the LeNet and 1.95×
faster for the CifarNet, compared with NVIDIA Jetson TX1.

4.1 Introduction

In recent years, we see the booming of deep convolutional neural networks

in solving artificial intelligence tasks. Some of these deep learning methods

have surpassed human-level performance and enabled new applications, such

as machine translation, AI medical diagnosis, and autonomous driving. In

27



order to deliver machine intelligence to more people, we need to find ways

to deploy such well-trained highly accurate deep learning models to Internet

of Things (IoT) devices, which require edge computing platforms. Edge de-

vices usually denote mobile or embedded systems, including phones, drones,

security cameras, or any other computing or sensing devices that connect

to a network and transfer data. These devices have tight energy/thermal

constraints and offer limited hardware resources/computing power, but are

often required to accomplish latency-critical tasks such as object detection

tracking for unmanned vehicles, facial recognition for security cameras, and

control mechanism for smart manufacturing.

Advances in high-level synthesis (HLS) during the last decade have led

to its increased adoption as a primary design methodology. HLS offers im-

portant advantages in higher design productivity, better design space explo-

ration, friendly debugging of high-level specifications, and automation of test

generation infrastructure. There are many active academic and commercial

HLS projects and tools that continue to improve both design quality and

productivity [30, 31, 32, 33, 34, 35]. Due to HLS, practical applications are

embedable on IoT devices easily and quickly. In [36], several design solu-

tions including long-term recurrent convolution network (LRCN) for video

captioning, inception module for the FaceNet face recognition, as well as long

short-term memory (LSTM) for sound recognition are discussed. These and

other similar design solutions are ideal implementations to be deployed in

vision or sound based IoT applications.

Although HLS provides various advantages for FPGA designs, optimiz-

ing the FPGA performance through HLS remains challenging. Applying the

right set of HLS techniques can prove complicated. The work in [37] demon-

strates that the HLS solution quality can range from very slow all the way

to 200× speedup compared to the CPU solution. Optimizing CNN through

HLS faces similar challenges because there are many parameters that can be

designed and controlled within CNN.

In this chapter, we explore different strategies and methodologies to opti-

mize CNN on an FPGA. As some of dataset does not require a large CNN

structure, it is efficient to use smaller CNN architecture, and replicate the

CNN many times to improve both latency and throughput of the applica-

tion. However, since on-chip memory is very precious for FPGA, we need to

develop techniques to share the weight data among replicated CNNs while

28



they are processing different images in the same batch. Since all the images

involve the same weight data, data sharing between the same CNN tasks on

the loop-level is implemented to avoid replicated weight data storage.

As CNN is a sequential architecture in which the output of one layer be-

comes the input for the next layer, it is very important to pipeline between

each layer to reduce the waiting time for the next layer. In order to achieve

efficient pipelining, we apply our novel method, backward pipeline schedul-

ing, resulting in dramatic latency improvement of processing an image, which

is considered to be critical for an edge device. Due to the backward pipeline

scheduling algorithm, data that is computed in one layer does not have to

wait for all other data in the same layer to be computed. As data is com-

puted from one layer, the data is used immediately for the next layer and this

process propagates in the pipeline. Furthermore, along with the backward

pipelining, to increase the throughput, we applied batch processing to our

work. We process 10 K images, where each time we process 5 or 25 images as

a batch, and complete the whole application with hundreds of batches. Since

all the images that are in the same batch involve the same filters, computa-

tion can be further optimized. In summary, our work makes the following

contributions:

•We propose backward pipeline scheduling in designing the CNN acceler-

ator to achieve deep pipelining among layers in the neural network.

•We propose an implementation of CNN handwriting digits and Cifar-10

object recognition through HLS for embedded FPGAs as edge devices. The

single image performance is 5.2× faster than NVIDIA Jetson TX1 for the

LeNet and 1.9× faster for the CifarNet.

•We implement a data sharing method to save limited on-chip memory

resource on the FPGA while enabling effective batch parallel processing.

The rest of the chapter is organized as follows. Section 4.2 presents the

background of CNN and HLS. In Section 4.3, our algorithm and methodol-

ogy for optimizing CNN through HLS on an FPGA are discussed in detail.

Section 4.4 discusses hardware architecture implementation of the design.

Section 4.5 presents and analyzes our experimental results, and Section 4.6

29



concludes the chapter.

4.2 Background

4.2.1 FPGA-based CNN Optimization

FPGA has become a promising platform for hardware acceleration because

of its high performance, low power consumption, shorter development cycle

and the reconfiguration flexibility compared to ASIC solutions. With such

advantages, recently several research works have used FPGAs to accelerate

CNN computations [19, 38, 39, 40, 18, 41]. Specifically discussed in [40] is a

multistage data-flow implementation of CNN, which takes efficient utilization

of the computation resources to achieve high performance in object classifi-

cation. In [18], an FPGA-based CNN network accelerator is proposed. The

paper discussed two main types of constraints of CNN designs: communi-

cation rate and computation capacity. Their design faced the constraint of

limited communication rate between the FPGA and the external memory.

In our work, we are able to overcome such a limitation through effectively

reducing external data transfers and layer combinations.

4.2.2 High-level Synthesis Design Flow

HLS brings about such advantages by providing automated code trans-

formations from high-level languages (such as C, C++, SystemC, etc.) to

hardware description languages (HDL). HLS also provides automated opti-

mization options through compiler pragmas, which can control the HLS en-

gine to generate the RTL code following specific implementation styles. For

example, these pragmas can guide the generation of loop and tiling struc-

tures, function interfaces, pipelining and inlining, and various resource in-

stantiations. In this chapter, we leverage Xilinx Vivado HLS to facilitate

our CNN design and report unique design techniques with the HLS design

methodology. This automated code transformation provided by HLS enables

designers to implement more delicate work easily onto FPGAs [42, 43]. Y.

Guan et al. proposed an efficient FPGA-based LSTM-RNN accelerator with

30



Figure 4.1: LeNet & CifarNet architecture

the HLS tool in 2017 [44]. R. Zhao et al. also adopted HLS as the design

tool in their work of binarized convolutional neural network in 2017 [45].

4.2.3 CNN Structure

Figure 4.1 shows the CNN architectures we used to classify handwritten

digits in the MNIST dataset [46] and 10 objects in the Cifar-10 dataset [2].

For the Cifar-10 dataset, we have pre-processed the images to train better

and faster. While pre-processing the images, we discard their boundaries

in order to make the network focus more on actual pixels that display the

object to classify. Also, by distorting the images, by for example rotating and

re-scaling, we can have more input data than given by the Cifar-10 dataset.

Therefore, the network can learn fast as it can converge faster and generate

higher accuracy. The inputs are pre-processed to have size of 24 × 24 × 3

instead of the original size of 32× 32× 3. The detailed layer configurations

of the LeNet and the CifarNet are shown in Table 4.1 and Table 4.2.

31



Table 4.1: LeNet configuration

Type Input size Output size # Params
Convolution 28×28 24×24×8 5×5×8
ReLU 24×24×8 24×24×8 NA
Pooling 24×24×8 12×12×8 NA
Convolution 12×12×8 8×8×16 5×5×16
ReLU 8×8×16 8×8×16 NA
Pooling 8×8×16 4×4×16 NA
Fully connected 256 128 256×128
ReLU 128 128 NA
Fully connected 128 10 128×10
Softmax 10 10 NA

Table 4.2: CifarNet configuration

Type Input size Output size # Params
Convolution 24×24×3 24×24×32 5×5×3×32
ReLU 24×24×32 24×24×32 NA
Pooling 24×24×32 12×12×32 NA
Convolution 12×12×32 12×12×32 5×5×32×32
ReLU 12×12×32 12×12×32 NA
Pooling 12×12×32 6×6×32 NA
Fully connected 1152 192 1152×192
ReLU 192 192 NA
Fully connected 192 48 192×48
ReLU 48 48 NA
Fully connected 48 10 48×10
Softmax 10 10 NA

4.3 Algorithm and Methodology

In this section, we introduce our algorithm to perform the backward pipeline

scheduling which achieves optimal data dependency relation among consec-

utive 2D-window operation layers. We use the LeNet and the CifarNet as

examples to demonstrate the algorithm and method. However, the method-

ology can be applied to any other neural networks.

32



4.3.1 Data Dependency Analysis

A regular CNN network usually consists of convolutional layers, activation

layers, and pooling layers. Such layers typically have a mesh-like layout and

have a window-structured data dependency on the output from their previous

layers. The input and output of a typical CNN network layer are configured

in the format of feature-map with multiple channels. The output of a CNN

layer is obtained through a particular type operation based on a 2D window

of size F on the feature-map with fixed moving stride S. We define input to

be feature-maps of size H ×W and C channels. We use Ii,x,y and Oi,x,y to

denote the pixel value in the ith channel and location (x, y) of input and out

array.

Equation 4.1 gives the computation of output in the convolutional layer

with Ki,o,h,w representing the the filter element.

Oi,x,y =
C∑

o=1

F∑
h=1

F∑
w=1

Ki,o,h,wIo,xS+h,yS+w (4.1)

Equation 4.2 provides the computation of a max-pooling layer with window

size W and stride S.

Oi,x,y = max({Ii,xS+h,yS+w|h ∈ [0, F ), w ∈ [0, F )}) (4.2)

For simplicity, we consider all the data with the same location in feature-

map through the channel dimensions to be combined in one data chunk. To

compute a certain data chunk in output with feature-map coordinate 〈x, y〉,
we need a set of data chunks from the input array. We define the set of

coordinates of required data chunks to be the dependency set Dep(〈x, y〉) of

coordinate 〈x, y〉. We can write the data dependency set as Equation 4.3.

The equation works for all the layers with 2D window-structured on feature-

map dimensions. Considering the factor of padding, we improve Equation

4.3 to Equation 4.4 with Z as the padding size.

Dep(〈x, y〉) = {〈i, j〉|xS < i ≤ xS + F, yS < j ≤ yS + F} (4.3)

33



Dep(〈x, y〉) = {〈i, j〉|xS − Z ≤ i < xS + F − Z, 0 ≤ i < H,

yS − Z ≤ j < yS + F − Z, 0 ≤ j < W}
(4.4)

4.3.2 Backward Pipeline Scheduling

To achieve optimal pipeline and reduce the waiting time caused by data

dependency, we develop an algorithm to arrange the order of data request

in the current layer to fulfill the data requests in the following layer. We

implement this algorithm by finding the data dependency set of each pixel

coordinate in the computation order of the next layer.

Figure 4.2 illustrates an example of generating data request list for a max-

pooling layer of window size 2 and stride 2. The output feature-map size is

2× 2 with the order of data request labeled in the corresponding mesh block

in the Figure 4.2.

Figure 4.2: Data request list generation

The algorithm is described in Algorithm 3. For each coordinate in the data

request list of the next layer (nextList), the data dependency set is com-

puted. Then following the order of data request list, the coordinates in each

dependency set are scheduled to a new data request list of the current layer

(curList). Interleaved coordinates are only scheduled once during the first

dependency set to which they belong. This (curList) becomes (nextList)

of the previous layer. The current layer shall assume that its preceding layer

feeds output data chunks following the order specified by the data request

list of the current layer (curList or nextList of the previous layer) and the

current layer is implemented to compute its output data following the data

request list of its next layer (nextList or curList of the next layer).

34



Algorithm 3 Algorithm for data request list generation

1: function(nextList)
2: Input nextList: the data request coordinate 〈x, y〉 list of the next layer
3: Output curList: the data request coordinate 〈x, y〉 list of the current

layer
4: Output curCompList: the list which stores the index of data after the

transmission of which the data dependency is fulfilled
5: curList=[], curCompList=[], Outputindex=0
6: for i = 0 to nextList.length-1
7: 〈x, y〉 = nextList[i]
8: for all 〈m,n〉 in Dep(〈x, y〉)
9: if 〈m,n〉 /∈ curList

10: curList.append(〈m,n〉)
11: Outputindex++
12: curCompList.append(Outputindex);
13: return curList, curCompList

Algorithm 3 generates the data request list and computation index list for

the current layer using the data request list of the next layer. Therefore, the

overall scheduling algorithm proceeds in a backward manner: we initialize the

output order of the last layer in the row-major order and perform Algorithm

1 in reverse order to the first layer. After the scheduling process, each layer

will have its own request list and computation index list which stores the

required number of inputs needed to calculate the output (curCompList).

A typical CNN structure usually consists of several convolutional layers and

pooling/activation layers followed by fully connected layers. Since the algo-

rithm only works for layers based on 2D-window operations, we only schedule

the pipeline behavior of layers before the last several fully connected layers.

Figure 4.3 provides the comparison between the non-pipelined design and the

design with our algorithm. The example in the figure includes one 3×3 stride

1 convolution layer and one 2×2 stride 2 pooling layer. For a non-pipelined

design, the pooling layer can only start working after the input of convo-

lution and pooling layers is entirely computed. For the backward pipeline

scheduled design, the pooling layer can begin computing its first output pixel

when the first 16 pixels of the convolution layer’s input are calculated. The

waiting latency for the pooling layer is reduced to the computation time for

the dependent data in the input of the convolution layer and the pooling

layer.

35



Figure 4.3: Backward pipeline scheduling flow

4.3.3 Layer Behavior

The data request list and the computation index list provide a fixed sched-

ule that each layer must follow to compute its output data. Each layer holds

a buffer matrix to store its input data generated by its previous layer. The

data is sent in the unit of data chunks following the current data request list.

Each time a layer receives a data chunk from the previous layer, it stores the

data chunk in the buffer matrix at the coordinates indicated by the current

data request list. Also, the computation index list monitors whether the data

in the buffer matrix is enough to compute the output that is requested by

next layer. The current layer enqueues the generated data chunk into the

FIFO connecting the current layer and next layer. The algorithm is specified

in Algorithm 4. In the algorithm, the function window operation denotes

the compute process of the 2D-window operation of the current layer such as

Equation 4.1 or Equation 4.2. We denote the enqueue operation as symbol

� and the dequeue operation as symbol �.

4.3.4 Latency Balancing

Considering the application environment as edge devices, we balance the

latency for each layer to achieve optimal resource utilization under the same

performance. We assume the computation resource area to be proportional

to the computation capability of the module window operation. The data

consumption rate of the current layer should match the data production rate

of the previous layer. We conclude the average data consumption rate (R)

for one layer as Equation 4.5 where F and L represent the total latency to

36



Algorithm 4 Algorithm for layer behavior

1: module(fifo in, fifo out)
2: Input Port fifo in: the FIFO port to which the previous layer feed data

chunks
3: Output Port fifo out: the FIFO port to which the current layer feed

computed data chunks
4: const curList, const curCompList, const nextList
5: matrix buffer
6: ComputeIndex = 0
7: for i = 0 to curList.length-1
8: 〈x, y〉 = curList[i]
9: fifo in � buffer[x][y]

10: while( i = curCompList[ComputeIndex])
11: 〈i, j〉=nextList[ComputeIndex]
12: fifo out � window operation(〈i, j〉,buffer)
13: ComputeIndex++

complete lines 8-10 and lines 11-13 in Algorithm 4 respectively. With the

same notation, the average data production rate (P ) is shown in Equation

4.6.

R =
curList.length

curList.length · F + curCompList.length · L
(4.5)

P =
nextList.length

curList.length · F + curCompList.length · L
(4.6)

To achieve an efficient pipeline between two consecutive layers A and B,

we need to set the production rate of A to match the consumption rate of B.

Note that curList.length equals the size of input feature-map HI×WI while

nextList.length and curCompList.length equal the size of input feature-map

HO×WO. We have Equation 4.7 to constrain the latency F and latency L

and eliminate the bottleneck effect in the pipeline.

Constant ≈ HIA ·WIA · FA +HOA ·WOA. · LA

≈ HIB ·WIB · FB +HOB ·WOB · LB

(4.7)

4.4 Hardware Implementation

This section introduces the hardware architecture details for implementing

CNN structure with backward pipeline scheduling. We use the LeNet-5 and

37



the CifarNet as our benchmark to test our design methods. However, the

method is general and can be applied to other types of DNNs as well.

Figure 4.4: Block structure of the design

4.4.1 Architecture Overview

The CNN design consists of two main convolution layer groups and several

fully connected layers. Each convolution layer group contains one convolu-

tion layer, one ReLU layer and one max-pooling layer as shown in Figure 4.4.

These groups are instantiated as 2D-window modules which will be further

discussed in Section 4.4.2. The fully connected layers are implemented using

paralleled matrix multiplication module. Apart from the computation mod-

ules, the CNN accelerator also contains an on-chip memory module, which

stores the weight data frequently requested by the modules while process-

ing. The hardware design communicates with external memory through the

AXI4 stream DMA interface. The AXI4 stream interface is a FIFO stream-

ing interface which transfers data from or to external memory sequentially.

Weight and image data will be fed into the FPGA hardware through the

AXI4 stream interfaces while the result label sequence from classification

computed by computation module is sent out to the external memory by

the AXI4 stream interfaces. Each AXI4 stream interface contains a FIFO

38



buffer which continuously reads data from external memory. In this design,

we use two AXI4 stream interfaces for input and output streaming. The

overall structure is shown in Figure 4.4. The AXI4 interface first streams in

the weight data as shown in step 1 in Figure 4.4. Then the image data is fed

in frame by frame to the computation module and goes through convolution

groups and fully connected layers to perform the corresponding computation

as shown in step 2. Meanwhile, the output labels will be sent back to the

external memory.

This design is built in such a way for the following purposes. First, it

avoids the transfer operations of weight and inter-layer data between FPGA

and external memory compared to conventional CNN hardware implementa-

tion. According to the calculation in [18], the bottleneck for CNN designs is

usually the communication rate instead of computation capacity. The com-

munication rate refers to how fast the FPGA can communicate with external

memory. By reducing the data transfer operations, the limitation of perfor-

mance caused by the bandwidth is removed. Therefore, better performance

can be achieved by full usage of computation resources. Second, pipelining re-

quires modules accessing weight data simultaneously. By storing weight data

on-chip, the computation modules can access corresponding weight value in-

dependently without interfering with other computation modules.

Figure 4.5: General block structure of 2D-window operation modules

39



4.4.2 2D-Window Modules

The convolution and pooling layers are implemented as 2D-window oper-

ation modules. The 2D-Window operation modules are designed to behave

as described in Algorithm 4. Figure 4.5 shows the general structure of a 2D

window. The structure consists of three major parts: the control unit, the

memory block group, and window operation module.

The control unit includes the state-machine that controls the loop itera-

tion and condition flow. All the scheduling lists are instantiated as constant

ROMs inside the control unit for quick index access. The control unit also

handles the input data fetching and arbitrates the service of the RAM which

acts as the buffer matrix. The control unit fetches data from the input stream

port and stores the data at the address referenced from the List ROM. If the

counter matches the current output of computation index list ROM, the con-

trol unit passes the output coordinate 〈x, y〉, transfers the RAM service and

initializes the operation of the window operation module.

In the pooling layers, the 2D-window module is instantiated as a max-

pooling module. The pooling module decodes the vector 〈x, y〉 into RAM

addresses mapped by coordinates in Dep(〈x, y〉). Through the decoded ad-

dress, the max-pooling module loads in the data chunk from the RAM buffer.

The data chunk is unpacked into a partitioned array of feature-map value

along channel dimension. The pooling module then performs pooling and

ReLU operations on the data arrays to generate pooling and ReLU results.

The pooling results are repacked to a data chunk and fed into the output

FIFO.

In the convolution layers, the 2D-window module is instantiated as a

convolution module. The data chunk in dependency set is read in and un-

packed in the same way as in the pooling module. A paralleled and pipelined

convolution is performed with the weight and bias data fetched from the

on-chip memory modules. This process is shown in Listing 4.1. The pseudo

code performs the computation process in Equation 4.1 with a fixed 〈x, y〉
pair and varying index i. The two innermost loops are unrolled to achieve

parallel computation. The convolution result Oarray is packed back to a

data chunk and fed into output FIFO.

40



1 conv_tile( xS, yS,

2 Buffer[HI][WI],weight[CO][CI][F][F]){

3 Iarray[CI];//ARRAY_PARTITION

4 Oarray[CO];//ARRAY_PARTITION

5 //clear array Oarray

6 for(int h=0; h<F,h++){

7 for(int w=0; w<F; w++){

8 #pragma HLS pipeline

9 unpack(Buffer[iS+h][jS+w], Iarray);

10 for(int co=0;co<CO;co++){

11 #pragma HLS unroll

12 for(int ci=0;ci<CI;ci++){

13 #pragma HLS unroll

14 Oarray[co]+=

15 weight[co][ci][h][w]* Iarray[ci];

16 }}}}

17 return pack(Oarray);

18 }

Listing 4.1: Tiled convolutional layer pseudo code

4.4.3 Batch Processing

In [18], the authors discuss how to use loop unrolling and loop pipelining

to achieve better performance for a single convolution layer. However, the

method discussed in [18] does not give much performance increase for smaller

CNN due to the smaller number of filters in those CNNs. Therefore, even

though the maximum unrolling factor has been chosen, the computation re-

source is still not fully utilized. In order to take full advantage of computation

resources and achieve much better performance, batch processing methods

can be applied.

With streaming input data, the batch processing will fetch a set of im-

ages and complete their processing simultaneously. Similar techniques are

used in GPU domain as well [47]. We first stream in the images and store

them in the image batch which is instantiated using on-chip memory. Then

each image in the batch goes through an independent computation module.

Finally, the generated labels are also stored in batch and then streamed out.

This procedure is shown in Figure 4.6 with N as the batch size.

41



Figure 4.6: Batch processing computation module

Figure 4.7: Structure for batch mode 2D-window array

However, naively duplicating the modules is inefficient and wastes re-

sources. All the computation module copies require access to the same weight

data stored in on-chip memory while the on-chip memory port can only serve

one module at the same time, which causes racing and latency of the waiting

time for RAM service among modules. Also, the control logic of the mod-

ules in the same batch has the same behavior pattern: multiple copies cause

unnecessary resource occupations. To avoid the problem caused by direct

duplication, we only copy the necessary components. We combine the mod-

ule batch into one single module with only one copy of the control module as

shown in Figure 4.7. Since different images generate different input/output

feature-maps, the FIFOs between layers and matrix buffers are widened by N

times to transmit and store N data chunks at the same time. For the pooling

layer, the widened data chunk goes through the same process to generate

a widened pooling result chunk in the window operation module. For the

42



convolutional layer, the behavior of the convolution module is modified to

accommodate batch mode as shown in Listing 4.2. Variable BufferWIDE

represents the widened matrix buffer. The modified unpack/pack function

transfers the widened data chunk from or to N data arrays along the channel

dimensions. The N input arrays are processed in parallel to generate results

on the N output arrays with share weight data from on-chip memory module

as shown in the fully unrolled for-loop in lines 15-19 of the code listing.

1 conv_tile( xS, yS,

2 BufferWIDE[HI][WI],//ARRAY_PARTITION dim=1,2

3 weight[CO][CI][F][F]//ARRAY_PARTITION dim=1,2

4 ){

5 Iarray[N][CI];

6 Oarray[N][CO];

7 //clear array Oarray

8 for(int h=0; h<F,h++){

9 for(int w=0; w<F; w++){

10 #pragma HLS pipeline

11 unpack(BufferWIDE[iS+h][jS+w], Iarray);

12 for(int co=0;co<CO;co++){

13 #pragma HLS unroll

14 for(int ci=0;ci<CI;ci++){

15 for(int cb=0; cb<N; cb++){

16 #pragma HLS unroll

17 Oarray[cb][co]+=

18 weight[co][ci][h][w]*Iarray[cb][ci];

19 }}}}}

20 return pack(Oarray);

21 }

Listing 4.2: Batched convolutional layer pseudo code

4.5 Experiment Result and Analysis

To get experimental results for our algorithm we have implemented both

the LeNet and the CifarNet on an FPGA and a GPU. Since we want to

target embedded devices, we have selected NVIDIA Jetson TX1 and Xilinx

ZYNQ-7000 SOC ZC706. The platform specifications are shown in Tables

4.3 and 4.4. All the computations are fully parallelized to effectively and

quickly generate output.

43



Table 4.3: Xilinx ZC706 device spec

LUT 218600
Flip-Flop 437200
BRAM 1090
DSP 900
Clock Sources Fixed 200 MHz LVDS oscillator

Table 4.4: Jetson TX1 device spec

Global memory 3995 MBytes
GPU Max Clock rate 72 MHz
Max constant memory 65536 bytes
Max shared memory 49152 bytes
Max Block Dimension (1024, 1024, 64)
Max Grid Dimension (2147483647, 65335, 65335)

4.5.1 Statistical Analysis

In the experiment, we use the design optimized by naive pipeline and unroll

pragmas as the baseline to illustrate the effectiveness of our algorithm and

strategy discussed above. Table 4.5 lists the latency, throughput and resource

utilization of designs after each optimization method. The backward pipeline

scheduling improves the latency by 1.6X by enabling interaction of request

lists among layers. After the backward pipeline scheduling, we notice that

convolution layer 1 has prominent latency among the pipelined layers as

shown in Figure 4.8. Meanwhile, convolution layer 2 occupies extra DSPs

and LUTs resources but makes little contribution to the performance. We

alter the unrolling factors in the operation module of convolution layer 1

and convolution layer 2 and reduce the bottleneck latency to 16,034 clock

cycles. The overall performance is improved by 1.53X after latency balancing.

Also, the DSP, flip flop and LUT usage are reduced by 3.24X, 2.22X and

2.25X respectively. Then we optimize our design with the batch method

which improves the throughput but makes no improvement on single image

latency. We can observe that the throughput increases proportionally to the

batch size while the latency remains almost the same. Overall, we implement

the LeNet digit classifier with the highest throughput of 130871.9 images/s

and best single image latency of 175.7 µs. We implement and optimize the

CifarNet using backward pipeline scheduling and latency balancing. Due to

44



the device constraint, we did not apply batch optimization on the CifarNet.

The resource and performance result of our final version of the CifarNet

are listed in Table 4.6. We achieve single image latency of 653.4 µs and

throughput of 1530.3 image/s in our implementation of the CifarNet.

Table 4.5: Resource utilization and performance statistic of LeNet

Version BRAM DSP FF LUT Latency
Clock
Period

Throughput
(img/s)

Baseline 144 162 27325 30056 447.3 µs 8.02 ns 2099.5
Backward
Pipeline
Schedule

144 162 28432 32467 278.4 µs 8.54 ns 3591.9

Latency
Balancing

144 50 12793 14392 175.7 µs 8.54 ns 5660.6

Batch(5) 247 170 41403 46573 176.4 µs 8.60 ns 28472.5
Batch(25) 762 850 202777 208612 191.0 µs 9.09 ns 130871.9
Resource
@ZC 706

1090 900 437200 218600 NA NA NA

Table 4.6: Area and performance for CifarNet

CifarNet Resource @ZC 706 Utiliazation
BRAM 492 1080 45%
DSP 162 900 18%
FF 59925 437200 13%
LUT 54017 218600 24%
Latency 653.4 µs NA NA
Throughput 1530.3 FPs NA NA

Table 4.7: Performance comparison for LeNet

Version Latency Throughput Accuracy
TX1(Batch 1) 0.91 ms 1098.9 img/s 98.8%
TX1(Batch 25) 0.945 ms 26455.0 img/s 98.8%
Ours. (Batch 1) 175.7 µs 5660.6 img/s 97.6%
Ours. (Batch 25) 191.0 µs 130871.9 img/s 97.6%

4.5.2 Performance Comparison

The tables comparing the performance of NVIDIA Jetson TX1 and our

design are shown in Table 4.7 and Table 4.8. For an image from the MNIST

45



Figure 4.8: Latency comparison for latency balancing

dataset, TX1 takes 0.91 ms to classify. The throughput of GPU for the

MNIST dataset is 26455 image/s if we set the batch size to be 25. For

an image from the Cifar-10 dataset, it takes 1.27 ms to classify and the

throughput is 787.4 image/s. Based on our experimental result we can see

that FPGA processes one image 5.2× faster than TX1 does. We see that even

if the algorithms are fully parallelized for the LeNet on TX1, the resources

of TX1 cannot be fully utilized for small batch size. As batch size gets much

larger, TX1 will be able to start processing many more images in parallel,

beating the speed of FPGA. However, since we are targeting edge devices,

we focus on the latency of classifying one image or a small batch of images.

The latency of classifying one or a small batch of images is more important

for an edge device as it has to process the input in real time and it usually is

not in a large batch mode as used in cloud computing [48]. We also compare

our LeNet single image latency with that of [49] and [50]. The result is listed

in Table 4.9. We achieve 11× and 7.5× speedup by enabling proper pipeline

among layers and further optimization in parallel computation architecture.

Table 4.8: Performance comparison for CifarNet

Version Latency Throughput Accuracy
TX1(Batch 1) 1.27 ms 787.4 img/s 86.7%
Our Design(Batch 1) 653.4 µs 1530.3 img/s 83.6%

46



Table 4.9: Performance comparison with previous work for LeNet

[49] [50] Our work
CNN model LeNet-5 LeNet-5 LeNet-5
platform ZC706 VC709 ZC706
Precision fixed(25) fixed(8-16) fixed(16)
Latency 2 ms 1.318 ms 175.7 µs

4.6 Conclusion

When applying machine learning algorithms on IoT devices, implementing

the algorithms on limited resources is important. The algorithm must work

fast on the embedded devices to achieve practicality. In this chapter, we

optimized the CNN structure for high-accuracy handwriting digits and Cifar

object recognition through a novel scheduling algorithm and high-level syn-

thesis. We explored methodologies such as parallel classifying operations with

batch processing, backward pipelining and latency balancing. We achieved

5.2× speedup compared to the GPU version. We believe the techniques pro-

posed and the HLS design methodology used should be applicable to other

types of convolutional neural networks and enable FPGAs to become strong

candidates for high throughput, high speed, yet low power/energy acceler-

ators for various types of IoT applications, which can lead to far-reaching

impact.

47



CHAPTER 5

WINOCNN: KERNEL SHARING
WINOGRAD SYSTOLIC ARRAY FOR

EFFICIENT CONVOLUTIONAL NEURAL
NETWORK ACCELERATION ON FPGAS

The combination of Winograd’s algorithm and systolic array architecture

has demonstrated the capability of improving DSP efficiency in accelerat-

ing convolutional neural networks (CNNs) on FPGA platforms. However,

handling arbitrary convolution kernel sizes in FPGA-based Winograd pro-

cessing elements and supporting efficient data access remain underexplored.

In this chapter, we are the first to propose an optimized Winograd process-

ing element (WinoPE), which can naturally support multiple convolution

kernel sizes with the same amount of computing resources and maintains

high runtime DSP efficiency. Using the proposed WinoPE, we construct a

highly efficient systolic array accelerator, termed WinoCNN. We also propose

a dedicated memory subsystem to optimize the data access. Based on the

accelerator architecture, we build accurate resource and performance mod-

eling to explore optimal accelerator configurations under different resource

constraints. We implement our proposed accelerator on multiple FPGAs,

which outperforms the state-of-the-art designs in terms of both through-

put and DSP efficiency. Our implementation achieves DSP efficiency up to

1.33 GOPS/DSP and throughput up to 3.1 TOPS with the Xilinx ZCU102

FPGA. These are 29.1% and 20.0% better than the best solutions reported

previously, respectively.

5.1 Introduction

Convolution neural networks (CNN) have been playing an essential role in

solving practical applications, and FPGAs have demonstrated their flexi-

bility, efficiency, and reconfigurability as an ideal platform for CNN accel-

eration [36, 51, 52, 53, 41]. Many previous works have proposed different

48



algorithms and architectures to achieve high performance for CNN acceler-

ation on FPGAs [52, 53, 12, 54, 41, 4]. Since DSPs in FPGAs are usually

the major computational resource, the runtime DSP efficiency, defined as

the average amount of effective convolution operations executed per DSP

per second (GOPS/DSP), is crucial for FPGA design performance and is

one of the most important factors to evaluate the quality of FPGA designs

[52, 41, 55, 56].

Meanwhile, Winograd’s minimal filtering algorithm has been widely adopted

in CNN acceleration [57]. It trades multiplications with additions to save

computational resources [57]. In FPGA, such a trade-off saves DSP re-

sources from massive number of multiplications in CNNs, and hence im-

proves the concurrency and efficiency of acceleration. However, due to the

inherent characteristics of the algorithm, existing Winograd convolution al-

gorithms are usually specifically designed for a fixed convolution kernel size,

e.g., 3 × 3 [58, 59]. When applied to other popular kernel sizes, i.e., 1 × 1

in lightweight CNNs, it becomes inefficient due to the overhead of kernel

padding [59]. In addition, the tile-based data pattern required by the Wino-

grad algorithm together with the concurrent processing requirement usually

result in high data transmission overhead [59].

Systolic array-based accelerator architectures are considered compelling to

deal with the massive number of computations and communications required

by CNNs [60, 61, 59], delivering the state-of-the-art performance. However,

the performance of the systolic array-based architecture largely relies on the

efficiency of the processing elements (PEs) inside the array, the data trans-

mission among PEs, as well as the data access from external memory, which

are all non-trivial to optimize.

In this chapter, to address the aforementioned issues and improve system

performance and DSP efficiency for Winograd-based CNN acceleration, we

make the following contributions:

• We design a novel Winograd-based processing element, WinoPE, us-

ing our generalized resource sharing mechanism that supports flexible

convolution kernel sizes with high DSP efficiency.

• Using the proposed WinoPEs, we construct a scalable systolic array-

based accelerator WinoCNN, which supports flexible configurations

with different parallelism levels honoring FPGA resource constraints.

49



• We design a fine-grained and highly efficient memory control system

that can deal with different memory access patterns and provide tile-

based data to our WinoPEs with high efficiency and throughput.

• We propose accurate models for resource and performance estimation,

which guide the design space exploration for the configurable parame-

ters of our WinoCNN accelerator.

5.2 Background and Design Challenges

5.2.1 Winograd Convolution on FPGA

Winograd convolution is based on the Winograd minimal filtering algorithm

that computes an m×m output matrix Y by convolving a (m+k−1)×(m+

k − 1) input matrix d with a k × k kernel g as described in Figure 5.1. The

input size is also treated as the Winograd filter size. It reduces the number

of multiplications at the cost of additions [57]. A 2D Winograd algorithm

F (m × m, k × k) includes a consecutive sequence of matrix transformation

and element-wise multiplication (represented as �). The G, B, and A are

constant transform matrices generated by Cook-Toom algorithm [57].

d(m+k-1)x(m+k-1)

gk x k

U(m+k-1)x(m+k-1)

V(m+k-1)x(m+k-1)

E(m+k-1)x(m+k-1)

Ym x m

BTdB

GgGT

ATEA

Winograd Domain

Figure 5.1: F (m×m, k × k) Winograd convolution

A convolution layer in CNN with k×k convolution kernel can be computed

using Winograd algorithm with a configuration of F (m × m, k × k). The

computation of each output feature-map O with size Ho × Wo is divided

into tiles with size m×m, resulting in dHo/medWo/me tiles in each output

50



channel. The computation of the output tile Oo,xo,yo starting at pixel (xo, yo)

in channel o can be completed by applying Winograd algorithm on input

tiles Ii,xi,yi starting at pixel (xi, yi) in all the C input feature-map channels

with kernel Ko,i and summing the results up, as shown in Equation 5.1.

Oo,xo,yo = AT (
C∑
i=1

[(BT · Ii,xi,yi ·B)� (G ·Ko,i ·GT )])A (5.1)

The transformation operations with B,G,A are matrix multiplications

with constant element values that can be completed by add/shifting op-

erations. So the total number of multiplications equals to the number of

element-wise multiplications of U and V , which is less than the required

multiplications in the conventional convolution [62]. Since the multiplica-

tions on FPGAs are conducted by DSPs, reducing required multiplications

in convolution helps to improve parallelism with a given number of DSPs and

hence improves computation performance.

However, there is a critical problem: The constant transformation matrices

(B, G, A) for a given convolution kernel size have fixed patterns; this results

in inefficient DSP utilization when using the hardware designed for one ker-

nel size to a different kernel size, where it has to either split/pad the input

data/kernels or to instantiate a new accelerator. For example, to compute

1×1 convolution kernel with a Winograd-based PE designed for 3×3 kernel,

we need to pad 1×1 convolution to 3×3 with zeros, which can only achieve 1
9

of the DSP efficiency of executing 3×3 convolution; or alternatively, instanti-

ating a dedicated accelerators for 1×1 kernel only, which occupies additional

resources. Hence, designing a Winograd-based PE with flexible support for

different kernel sizes while maintaining high DSP efficiency is essential but

remains unexplored.

5.2.2 Systolic Architecture

A systolic array [63] is typically composed of many interconnected identi-

cal PEs, where the intermediate data is computed by PEs and passed to

adjacent PEs. Systolic array architectures are efficient for parallel comput-

ing and is widely adopted by FPGA accelerators for matrix multiplications

and convolutions [41, 64]. One previous design [59] proposes a systolic ar-

51



ray architecture with Winograd algorithm to accelerate sparse convolution,

which achieves 5× higher performance compared to the normal dense convo-

lution accelerator. Another work [58] proposes a systolic array architecture

specifically designed for ResNet units.

In general, mapping the application to systolic array requires the data

buffering in the PEs and the short PE-to-PE data transmission pattern.

CNNs are not naturally providing such buffering and connections patterns,

which requires careful refinement of the orders of the operations and buffering

of the data.

5.2.3 Efficient Memory Access

Inefficient data access of the PEs downgrades the overall performance [65,

41, 66]. To support efficient data access with limited off-chip memory band-

width, the memory subsystem for the accelerator must be carefully designed

for specific data re-arrangements and access patterns [58], e.g., using mul-

tiple line-buffers [66]. However, it is difficult to create a universal design

that would be compatible with different CNN layer configurations. In ad-

dition, the systolic array of PEs requires the memory subsystem to provide

concurrent off-chip memory access and on-chip data reuse to fully utilize the

computational capacity of all PEs. Winograd algorithm further complicates

the memory access requirements due to the varied planar data access patterns

of the PEs.

5.3 Design Principles

To resolve the challenges discussed in Section 5.2, we design our WinoCNN

accelerator system with the following design principles.

5.3.1 Sharing in Winograd Algorithm

As discussed in Section 5.2, the low DSP efficiency of the Winograd algorithm

for varying convolutional kernel sizes is caused by the constant transforma-

tion matrices. The key solution is to provide flexible kernel size support

within the Winograd convolution PE without reloading the transformation

52



matrix and reorganizing the computation procedure. For a Winograd convo-

lution F (m×m, k × k), the transformation matrices B,A,G and the inter-

mediate Winograd filter sizes are fixed, as shown in Figure 5.1. The required

number of element-wise multiplications equals to the size of U and V , which

is (m+ k − 1)× (m+ k − 1).

The input transformation matrix B depends on the size of input tile d for

the input transformation (U = BTdB). For a set of Winograd algorithm

configurations with a Winograd filter size ω, denoted as Fω(m ×m, k × k),

where ω = m + k − 1 (ω ≥ k). As long as ω values are the same, the com-

putation patterns of input transformation and element-wise multiplication

are exactly the same. Matrices BT
ω (m×m, k× k) with same ω are identical.

An example for ω = 4 is shown in Figure 5.2. Meanwhile, U and V are all

ω × ω matrices. Therefore, the hardware resource to process U = BT
ω dBω

and E = U � V can be shared among all Fω(m×m, k × k).

The transformation matrices G and A will be different for different convo-

lutional kernel sizes under the same ω. We observe that there are numerous

repeated values for the G and A matrices across different m and k values

when ω is the same, and the different element(s) could be used as identi-

fier(s) for different kernel sizes and output sizes. As shown in Figure 5.2, a

single element s could be used to identify G4(4×4, 1×1) and G4(2×2, 3×3).

Also, this sharing property of the transformation matrix Aω and

Gω can be generalized to larger Winograd filter size ω such as F8

and F10 for larger convolution kernel sizes such as 5 × 5 and 7 × 7

with multiple identifiers. As shown in Figure 5.3, the transformation

matrices G6 and A6 with three identifiers s0, s1 and s2 can be shared for the

convolution kernel sizes 1 × 1, 3 × 3 and 5 × 5. This provides us a unique

opportunity to reuse the same computation resource (DSP) for different input

kernel sizes using a unified PE for Winograd convolution. The design details

of the PE and resource sharing are presented in Section 5.4.1.

5.3.2 Task Mapping for PEs

We assume a PE can perform the element-wise multiplication and output

transformation PE(U, V ) = AT (U � V )A for Fω(m × m, k × k) Winograd

convolution in one cycle. To properly map the convolution task into PEs,

we partition the computation process of a convolution layer into several it-

53



1 0 −1 0

0 1 1 0

0 −1 1 0

0 −1 0 1




� BT
4 (4× 4, 1× 1)

� BT
4 (2× 2, 3× 3)

1 0 0
1
2

1
2

1
2

1
2 −

1
2

1
2

s 0 1




� s=1: G4(4× 4, 1× 1)

� s=0: G4(2× 2, 3× 3)

1 1 1 0

0 1 −1 s

0 1 1 0

0 1 −1 1




� s=0: AT
4 (4× 4, 1× 1)

� s=-1: AT
4 (2× 2, 3× 3)

Figure 5.2: Winograd transformation matrix for F4

1
4 0 0 0 0

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1
6

−1
6

1
6

−1
6

1
24

1
12

1
6

1
3

2
3

1
24

−1
12

1
6

−1
3

2
3

s0 0 s1 0 s2




� s0s1s2 = 100: G6(6× 6, 1× 1)

� s0s1s2 = 010: G6(4× 4, 3× 3)

� s0s1s2 = 001: G6(2× 2, 5× 5)

1 1 1 1 1 0

0 1 −1 2 −2 s0

0 1 1 4 4 0

0 1 −1 8 −8 s1

0 1 1 16 16 0

0 1 −1 32 −32 s2




� s0s1s2 = 001: AT

6 (6× 6, 1× 1)

� s0s1s2 = 010: AT
6 (4× 4, 3× 3)

� s0s1s2 = 100: AT
6 (2× 2, 5× 5)

Figure 5.3: Winograd transformation matrix for F6

erations. In each iteration, RS consecutive rows of output feature-map are

computed. Figure 5.4a shows the pseudo-code to compute the output feature-

map of a convolution layer with k × k kernel size using one PE. The in-

put, weight and output are represented as C-style array in[ID][IH][IW],

w[ID][OD][k][k], and out[OD][OH][OW], respectively. However, loops

shown in the Figure 5.4a do not have the tiled structure to target the 2D

PE array. In order to map the computation to the 2D PE array and increase

the parallelism of data processing, we rearrange the loop as shown in Figure

5.4b and introduces two levels of tiling for the computation. Loop L0 iter-

ates through the output rows with a step of RS. Loop L1 iterates through

the output depth with a tile size of M . Loop L2 iterates through the input

depth. Loop L3 segments the RS output rows into Winograd output tile of

size m. Loop L4 partitions the output columns into segments containing N

size-m output tiles. After unrolling of L5 and L6, M ×N tiles of data will

be processed by an M×N PE array in one cycle (as shown in Figure 5.4b for

54



a 2× 2 array). In this way, all WinoPEs with the same row index or column

index share the same weights or the same input tile, respectively.

L0: for (r_c=0;r_c<OH;r_c+=RS)
L1: for (od=0;od<OD;od++)
L2: for (id=0;id<ID;id++)
L3: for (r=r_c;r<r_c+RS;r+=m)
L4: for (c=0;c<OW;c+=m){
    V=wtrans(w[id][od][0:k-1][0:k-1]);
    U=itrans(in[id][r:r+ω-1][c:c+ω-1]);
    Y=PE(U,V);
    out[od][r:r+m-1][c:c+m-1]+=Y; }

(a)

L0: for (r_c=0;r_c<OH;r_c+=RS)
L1: for (od=0;od<OD;od+=M)
L2: for (id=0;id<ID;id++)
L3: for (r=r_c;r<r_c+RS;r+=m)
L4: for (c=0;c<OW;c+=m*N)
L5: for (i=0;i<M;i++)
L6: for (j=0;j<N;j++) {
        cn=c+j*m;
        V=wtrans(w[id][od+i][0:k-1][0:k-1]);
        U=itrans(in[id][r:r+ω-1][cn:cn+ω-1]);
        Y=PE<i,j>(U,V);
        out[od+i][r:r+m-1][cn:cn+m-1]+=Y; }

PE0,0 PE0,1

PE1,0 PE1,1

itrans itrans

weight
[0][0]

weight
[0][1]

in[0][-1:2][-1:2] in[0][-1:2][0:3]
in[1][-1:2][-1:2] in[1][-1:2][0:3]

(b)

Figure 5.4: Loops of computation process

Note the direct mapping of the tiled computation to the PE array will

generate high fanout (as shown in the embedded figure for the 2 × 2 array)

and worsens the timing of the implementation. In order to address this issue,

we schedule the computation of the PEs following the structure of an M ×N
systolic array. The detailed design will be presented in the Section 5.4.2.

5.3.3 Efficient Memory Access

Efficient execution of Winograd-based PEs requires simultaneous data access

within a tile, as shown in Figure 5.5. This planar data access pattern (data

tiles) brings in a challenge for efficient memory control and data supply for

the PEs. When multiple PEs are instantiated as an array to process different

tiles of a CNN layer, there are also overlaps among the data tiles required by

55



the PEs. As shown in the example in Figure 5.5, the data tiles required by

adjacent PEs overlap with each other (marked with purple circle). Simply

assigning input buffers for all the PEs would cause high on-chip memory

usage [61]. However, line buffer based design [66] faces difficulties when

supplying multiple tiles for Winograd-based PEs under systolic architecture

that requires varied memory access patterns, i.e., varied window moving

steps. As shown in Figure 5.4b L4, the PE array requires N input tiles with

a horizontal moving step size of N · m each cycle. Meanwhile, the output

tile size m differs according to kernel size k, leading to a varied window

moving step. These motivate us to design a specialized memory system for

our WinoCNN architecture.

H

Input feature map Input tiles: F(2x2,3x3)

PE0 PE1

PE1PE0
Input tiles: F(4x4,1x1)

W

Figure 5.5: Planar data access pattern of PEs

To design an efficient PE array to work with such data access patterns,

we draw three design principles: First, to improve computation efficiency

with high parallelism, the data elements inside one tile must be fetched in

parallel and provided to the computational unit simultaneously; and second,

the overlapped data across tiles shall be fetched from external memory only

once and then reused to reduce memory access overhead. Third, the mem-

ory system should be able to supply data for Winograd convolutions with

different kernel sizes efficiently.

56



5.4 Implementation

We implement our WinoPE, systolic array and memory subsystem based on

the design principles from Section 5.3 to build our WinoCNN acceleration

system.

5.4.1 WinoPE: PE with Multiple Kernel Support

Our WinoPE is the basic processing unit of the Winograd systolic convolu-

tion accelerator system (WinoCNN), where each WinoPE is able to complete

the computation of an input kernel and a set of feature tiles in a single clock

cycle. WinoPE is featured with the flexible support for different convolu-

tion kernel sizes without the DSP overhead in a unified architecture. As

discussed in Section 5.3, the Winograd algorithm with the same Winograd

filter size ω can share the corresponding transformation matrices as well as

the expensive dot product module. We choose the design of sharing between

F4(4×4, 1×1) and F4(2×2, 3×3) as the example to present our kernel shar-

ing mechanism. Figure 5.6 shows the unified architecture to process a single

tile in our WinoPE. It contains an input tile register array (red block), a

weight tile register array (blue block), a matrix of multipliers (purple circle),

an output transformation module (green block), and an output tile (dark

and light yellow) toward an output buffer.

In each working cycle, the WinoPE reads in a tile of input data and a

tile of weights in parallel. Note here, the input tiles are transformed on-

chip when they are fetched from the input buffer and the convolution kernel

weights are transformed before they are stored into the on-chip memory

to reduce the resource usage for transformation logic. After fetching the

input and weight, the element-wise multiplication U � V is performed. The

output transformation module takes the results of U � V and generates the

output tile. The data fetching and element-wise multiplication modules can

be directly shared and fully utilized by different convolution kernel sizes.

To handle the different output caused by different kernel sizes, we design

a selectable output transformation matrix AT
sel, in which the selection bit

s in the matrix A is used as a matrix identifier, as shown in Figure 5.2

(Section 5.3). As an instance in F4, when s is set to 0, the WinoPE performs

F4(4 × 4, 1 × 1) algorithm, where the whole 4 × 4 matrix is the output of

57



the WinoPE (light yellow block in Figure 5.6). When s is set to -1, the

WinoPE performs F4(2×2, 3×3) algorithm, where the top left four elements

of the result matrix is the output (dark yellow block). In this way, our

WinoPE processes convolution layers with different kernel sizes without DSP

overhead. Finally, the computed outputs are stored in the output buffer

constructed with BRAMs. Note that such a selection bit design can be

easily extended to the Winograd algorithm with larger Winograd filter sizes

for larger convolution kernel sizes.

Furthermore, we partition the input tile register U and weight tile register

V into individual registers that each contains a single value from the input

channels, so that the multiplication for an entire tile is finished in a single

clock cycle. The processing efficiency of WinoPE is further increased by

instantiating Q input channels of batch size B of tile registers with the cor-

responding number of U � V multiplier matrices. An adder tree constructed

with LUT is used to accumulate the outputs from the multiplier matrices.

BRAMout,0
AT(U*V)A

AT
sel

U

V

PEx,y

V:PEx-1,y

PEx+1,y

U:PEx,y-1

PEx,y+1

Y

BRAMout,1

Figure 5.6: WinoPE processing logic

The selection bit design allows us to share the computation resources with-

out wasting the DSPs when processing convolutions with different kernel

sizes. However, it remains challenging to use Winograd convolution algo-

rithm for large kernel convolution and irregular kernel convolution. A prac-

tical limitation is the larger Winograd filter size requires more LUT resources

to conduct the addition operation during the constant matrix multiplication

for Winograd convolution algorithm. Also, recent DNN models adopt ir-

regular convolution kernels such as 1 × 7 and 7 × 1 sizes that are not well

supported by the Winograd algorithm.

58



To handle the large kernel convolution and irregular kernel convolution,

we design a split mechanism that splits the target convolution kernel into

supported kernel sizes as shown in the Equation 5.2 and Equation 5.3.

Ki,j
s [h][w] =

0, ik + h ≥ Ht or jk + w ≥ Wt

Kt[ik + h][jk + w], otherwise
(5.2)

Outputtarget =
∑
i,j

FM ik,jk ∗Ki,j
s (5.3)

Kt represents the target convolution kernel with size Ht ×Wt and Ks rep-

resents the supported convolution kernel with size k × k. The target kernel

is split into dHt

k
e × dWt

k
e supported kernels with unaligned elements padded

with zeros. The split kernel Ki,j
s is segmented from the target kernel with

ik, jk offset from the top left element. The targeted convolution (denoted

as ∗) is completed by applying convolution for each supported kernel Ki,j
s

on input features with the same 2D pixel offset (denoted as FM ik,jk) and

summing up the split results as shown in Equation 5.3.

5.4.2 Parameterized Systolic Array

Instead of sharing a single set of data tiles among different WinoPEs in the

same clock cycle (as shown in the Figure 5.4b), we construct the WinoPEs

as an M × N systolic array that shares the weight and input data among

WinoPEs by shifting them PE-to-PE to further utilize the on-chip registers

and reduce the high fanout and long connection caused by the flattened

implementation. To achieve this, we take advantage of the insensitivity of

the loop order and assign FIFOs to WinoPEs (as shown in Figure 5.7). Note

here, the PEs are called by an outside loop as L0 and the loops L1-L4

are the same as the ones in Figure 5.4b; however, the input Winograd tile

and the weight tile are fetched from the top and left FIFO interfaces which

connect to the top and left neighbors of the WinoPEs, respectively. In the

same iteration, the input and weight data are pushed into bottom and right

FIFO interfaces and passed to the bottom and right neighbors after one clock

cycle due to the blocking mechanism of the FIFO. Therefore, the WinoPEs

are constructed as a systolic array.

With the assigned FIFOs for our WinoPEs, we could easily instantiate the

59



module_PE (
    input FIFO: left_fifo, top_fifo
    output FIFO: right_fifo, bottom_fifo) { 
    L1 - L3: for (...)
    L4: for (c=0;c<OW;c+=m*N) {
        #pragma HLS pipeline
 cn=c+j*m;
        U=top_fifo.dequeue();
        bottom_fifo.equeue(U);
        V=left_fifo.dequeue();
        right_fifo.equeue(V);
        Y=PE(U,V);
        out[od+i][r:r+m-1][cn:cn+m-1]+=Y; }}

top_fifo

PE0,0

bottom_fifo

left_fifo right_fifo

Figure 5.7: Loop behavior for PEi,j

systolic WinoPE array by organizing the row and column FIFOs, denoted as

row fifo[M ][N ] and col fifo[N ][M ]. The M,N parameters are configurable

during the WinoCNN system generation.

5.4.3 Hierarchical Memory Subsystem

To provide the required data to the WinoPE array efficiently, we propose: (1)

a BRAM buffer matrix that has a unique addressing mechanism to support

efficient parallel data access, and (2) a pipelined planar data control and

scheduling to provide efficient on-chip data reuse and support the flexible

input tile access pattern.

BRAM buffer matrix To guarantee the parallel access of the input tiles,

we fold the input feature-maps into a matrix of BRAM buffers, denoted as

BRAMin[Hb][Wb][Db], which consists of Hb × Wb BRAM buffer instances

(or BRAM bank) of depth Db, as shown in Figure 5.8. Each BRAM buffer

instance has its individual address port and data port, hence total Hb ×
Wb entries can be accessed from the BRAM buffer matrix in each cycle at

different addresses. An address mapping mechanism is designed as shown in

Equation 5.4 to decide the location in the buffer as BRAMin[h][w][addr] for a

certain input pixel in the feature-map in[id][r][c], where ID, id, r, c represent

the number of input channel for a layer, channel index, row index and column

60



index for the pixel in the input feature-map:

h = r%Hb, w = c%Wb

addr = concat(br/Hbc , bc/Wbc · ID + id)
(5.4)

The BRAM banks in the same row share the same high address bits, while

the BRAM banks in the same column share the same low address bits. The

concatenation function ensures that the entries are accurately located with

the given index. With the sequence of input Winograd tiles denoted as TN ,

4,8

4,3 4,4 4,5 4,6 4,7

1,8
2,8
3,8

1,3 1,4 1,5 1,6 1,7
2,3 2,4 2,5 2,6 2,7
3,3 3,4 3,5 3,6 3,7

concat(0,0*ID) concat(1,0*ID)concat(0,1*ID) concat(1,1*ID)

BRAM matrix
Wb

Hb

Db

Plane tile

x x
x x
x x
x x

4,3 4,4 4,5 4,6 4,74,8
1,8
2,8
3,8

1,3 1,4 1,5 1,6 1,7
2,3 2,4 2,5 2,6 2,7
3,3 3,4 3,5 3,6 3,7 x x

x x
x x
x x

4,3 4,4 4,5 4,6 4,74,8

1,8
2,8
3,8

1,3 1,4 1,5 1,6 1,7
2,3 2,4 2,5 2,6 2,7
3,3 3,4 3,5 3,6 3,7

Row Plane tilemux sel[4]

1,3 1,4 1,5 1,6
2,3 2,4 2,5 2,6
3,3 3,4 3,5 3,6
4,3 4,4 4,5 4,6

1,5 1,6 1,7 1,8
2,5 2,6 2,7 2,8
3,5 3,6 3,7 3,8
4,5 4,6 4,7 4,8

mux sel'[8]

Input Tiles

Addr:

Figure 5.8: Hierarchical memory subsystem

where TN consists of N tiles with ω×ω size, defined in Equation 5.5, all the

elements in TN forms a continuous input data block, denoted as TU , with

size ω × ((N − 1)m+ ω):

TN [n] = in[id][r : r + ω − 1][c+ nm : c+ nm+ ω − 1] (5.5)

TU =
N−1⋃
n=0

TN [n] = in[id][r : r + ω − 1][c : c+ (N − 1)m+ ω − 1] (5.6)

As an instance in Figure 5.8, Hb = 4, Wb = 8, ω = 4, m = 2 and N = 2

and two data tiles are required to be accessed within input feature-maps

in data[0][1 : 4][3 : 6] and in data[0][1 : 4][5 : 8]. The union of the two input

tiles can be represented as TU = in data[0][1 : 4][3 : 8]. According to the

61



address mapping defined in Equation 5.4, the pixels in in data[0][1 : 4][3 : 8]

are accessed from four different regions of BRAM buffer matrix in one clock

cycle with different high address bits and low address bits.

Planar data access The input tiles are then passed through a three-stage

pipeline to ensure the data reuse and to provide the planar data to the

WinoPEs. As shown in Figure 5.8, The first stage stores the Hb×Wb output

from BRAM matrix buffer into registers. The second stage ensures the row

order of the planar data with a row plane multiplexer array. The third stage

splits the plane to tiles by a column multiplexer array. The mux selection

bits are generated on-the-fly regarding the values of r, c, and id. Since both

the BRAM bank addresses and the mux selection are generated on-the-fly,

the memory architecture is able to supply input tiles with varied window

moving steps regarding the kernel size for the current convolution layer.

5.5 System Architecture and Modeling

We construct our WinoCNN system and build the performance and resource

models for easy exploration of the architectural configurations.

5.5.1 WinoCNN Architecture Overview

The overall architecture of our WinoCNN accelerator system is shown in

Figure 5.9. Note here, the flexible convolution kernel size support is provided

by our WinoPEs. The convolution layers of the input models are computed

in output row stationary. The input reading, computation, and output data

offloading are scheduled to run in parallel.

5.5.2 System Modeling

As shown in Section 5.4, our system is built with performance and resource

sensitive architectural parameters, the corresponding models are built for

design space exploration.

62



DSP usage model The major instances of DSPs are occupied by the

WinoPEs. Each WinoPE computes the element-wise sum of the product

along Q input channels for input tiles Uω×ω of batch size B and weight tiles

V ω×ω. Thus, the total number of DSPs required by a WinoPE is ω2 · B ·Q.

The systolic WinoPE array contains M × N WinoPEs, so the total DSPs

required by our WinoCNN accelerator is:

DSPuse = ω2 ·M ·N ·B ·Q (5.7)

BRAM usage model The BRAM resource is mainly occupied by the

input, weight and output buffers. The BRAMs are in the form of 18-bit

width and 1024 depth blocks.

Figure 5.9: Overall architecture

The input buffer is a buffer matrix of size Hb ×Wb with buffer depth as

Din. Each bank should be capable of storing B input data with 8 bits. The

number of BRAMs for input is Hb ·Wb · d8 ·B/18e · dDin/1024e.
Each row of the systolic array requires ω2 · Q transformed and quantized

16-bit weight data, thus requires dω2 ·Q · 16/18e BRAM blocks with a fixed

depth of 1024 to provide enough weight access bandwidth. The total BRAM

required for weight buffer is M · d16 · ω2 ·Q/18e.
Each WinoPE has a ω×ω buffer matrix to store 18-bit temporary output

data of batch B and buffer depth Dout. With the requirement of two buffers

for ping-pong access, each WinoPE needs 2 · dω2 ·B · 18/18e · dDout/1024e

63



BRAMs as output buffer.

The total number of BRAM is the sum of the above:

BRAMuse =HbWbd
8 ·B
18
e · d Din

1024
e

+M · d16 · ω2Q

18
e+ 2 ·M ·N · ω2BdDout

1024
e

(5.8)

Latency model Communication latency tcomm and computation latency

tcomp in each phase of the convolution procedure are used to build the latency

model. The maximum value between these two in each phase dominates the

overall latency.

Since all weights are required once within each loop iteration, we have

Dweight = k2 ·ID ·OD. Each loop iteration includes a read input process and

a write output process with the corresponding data transmission amount of

Dinput = RS · ID · IW · B and Doutput = RS · OD · OW · B. Neglecting the

absence of output writing in the first iteration and the input reading in the

last iteration, we estimate the communication latency as:

tcomm = (Dweight +Dinput +Doutput)/BW (5.9)

To compute RS rows of outputs in each computation process, the WinoPE

array needs to sum up the convolution results through ID input planes to

generate RS×OW output data for OD output planes. In each cycle, M×N
WinoPEs sum up the convolution results of Q input planes for N ×m ×m
output pixels along M depth. Considering implementation frequency f , the

computation latency for each iteration is:

tcomp = dID/QedOD/Me dRS/me dOW/(N ·m)e /f (5.10)

The overall latency is estimated as:

tloop = dOH/RSe ·max(tcomm, tcomp) (5.11)

Parameter exploration For the convenience of hardware implementa-

tion, we fix the batch size at B = 2. To guarantee the access of the planar

data, we setHb as 4 or 8 for F4 or F6 respectively andWb = min 2k, s.t. Wb ≥
2ω. Note here, the row step RS is a variable during the processing and is

64



chosen as large as possible so that the input and output rows can fully uti-

lize the on-chip buffers. For a given CNN model, the M,N,Q,Din and Dout

are explored targeting min(
∑

l∈layerstloop,l) with the given DSP and BRAM

resources on the platform.

5.6 Evaluations

To validate the effectiveness of our design, we use Xilinx ZCU102 and Ul-

tra96 boards for evaluation, where both platforms are equipped with a quad-

core ARM Cortex-A53. The detailed resource specifications are shown in

Table 5.2. We use Vivado HLS design suit 2019.2 for accelerator implemen-

tation using C++.

5.6.1 WinoPE Evaluation

Resource effectiveness We first compare the resource utilization of our

WinoPE with the PEs without multiple kernel support, as shown in Table 5.1.

All PEs are configured with Q = 2 and B = 2. The same DSP utilization in

each PE type ensures that the maximum parallelism of the PEs is the same.

Using the same amount of DSP resources, our WinoPE consumes more LUT

and FF resources than each dedicated PE but with the benefit of supporting

different convolution kernel sizes without effecting the runtime efficiency.

Table 5.1: Resource utilization of different PEs

PE type LUT FF DSP PE type LUT FF DSP
F4(2× 2, 3× 3) 5328 2430 128 F6(4× 4, 3× 3) 21542 19235 288
F4(4× 4, 1× 1) 6495 9831 128 F6(6× 6, 1× 1) 24056 39126 288

WinoPE-F4 7852 10501 128 WinoPE-F6 33959 42793 288

Performance effectiveness Since the DSP efficiency without efficient

data supply will be lower than the theoretical performance, we evaluate our

WinoPE together with our memory subsystem and compare the results to

other PEs theoretical performance with the assumption of the data supply

is perfect. We first conduct experiments of synthetic convolution layers with

65



different kernel sizes and compare them to the theoretical performance val-

ues using the same configuration as shown in Figure 5.10. We measure the

DSP efficiency to exclude the impact of different platforms with a system

frequency at 100 MHz. The DSP efficiency of WinoPEs for different kernel

sizes is measured on board, and the maximum performance for other PEs

are calculated theoretically; both are shown in Figure 5.10. Compared to

the theoretical performance of F4 and F6, our implementations of WinoPE-

F4 and WinoPE-F6 under all kernel sizes achieve near-maximal theoretical

performance with the proposed memory subsystem.

1x1 1x3 3x3 5x5 1x7 7x7 9x9

0

0.2

0.4

0.6

0.8

Convolution kernel sizes

D
S

P
effi

ci
en

cy
(G

O
P

S
/D

S
P

) F4(4x4,1x1)

F6(6x6,1x1)

F4(2x2,3x3)

F6(4x4,3x3)
WinoPE-F4

WinoPE-F6

Figure 5.10: DSP efficiency of WinoPE to theoretical values

5.6.2 WinoCNN Evaluation

We adopt the most representative CNN models as benchmarks to demon-

strate the effectiveness of our WinoCNN system design, including VGG-16,

Inception-V4 (denoted as INet-V4), and YoloV2. The non-convolution layers

are executed in the processors with multi-thread optimization for end-to-end

model execution. All convolutional layers are executed on the WinoCNN

accelerator.

WinoCNN configuration We explore the optimal WinoCNN system con-

figurations for different platforms using our analytical model. The selected

values are shown in Table 5.2 together with resource utilization and runtime

performance on the different platforms for different models.

66



Table 5.2: WinoCNN configuration and performance on different platforms

Platform
Ultra96

(WinoPE-F4)
ZCU102

(WinoPE-F4)
ZCU102

(WinoPE-F6)

PE
Config.

M 2 8 4
N 1 2 2
Q 4 4 4
Din 4096 8192 4096
Dout 1024 1024 1024

Resource
Util. %

DSP 77.8(360) 82.8(2520) 93(2520)
BRAM 85.9(432) 95.5(1824) 87(1824)
LUT 60.8(70K) 76.3(274K) 81(274K)
FF 43.2(141K) 43.4(548K) 48(548K)

Freq.
(MHz)

250 250 214

Throughput
(GOPs)

VGG-16 265 1862 3120.3
INet-V4 127.2 820.3 857.2
YoloV2 157 1241 1717.7

The WinoCNN accelerator configurations for different platforms and dif-

ferent Winograd kernel sizes vary significantly because of the different DSP

and BRAM capacity of the platforms, where all configurations target to fully

utilize the on-chip DSP and BRAM resources. The achievable frequency un-

der each configuration for a certain platform is also shown together with the

final performance. Our WinoCNN system naturally supports better timing

due to the timing-friendly shorter data path between the WinoPEs. Notably,

for the networks with homogeneous convolutional layers, i.e., VGG-16, our

design achieves 3.12 TOPS throughput at 214 MHz clock frequency while

the performance drops to 857.23 GOPS when there are multiple divergent

convolutional layer configurations in Inception-V4, i.e., 1 × 7 kernel. This

is because of the varied efficiency of the Winograd algorithm for different

convolution kernel sizes.

Comparison with state-of-the-art designs We then measure the exe-

cution latency, throughput, and DSP efficiency of our implemented models

and compare them with the state-of-the-art implementations, as shown in

Table 5.3.

Since all the convolution layers are executed by our WinoCNN accelerator,

the DSP efficiency and latency data are calculated for the convolution layers.

67



Table 5.3: Comparison with state-of-the-art designs

Platform Model
Freq.

(MHz)
Prec.

Batch
size

DSP
Usage

Thro.
(GOPS)

Lat.
(ms)

DSP effi.
(GOPS/DSP)

[66] ZCU102 VGG-16 200
16 bit
fixed

32 2520 2601.31 10.431 1.031

[61]
Arria10
GT1150

VGG-16 232
8-16 bit

fixed
- 1500 1171.3 26.85 0.780

[58]
Stratix V
GSMD8

Resnet-18 160
16 bit
fixed

- 576 233 7.23 0.405

[59] XCVU095 VGG-16 150
8-16 bit

fixed
- 768 460 - 0.599

[67] Arria-10 VGG-16 250
16 bit
fixed

- 1344 1642 - 1.22

[68] ZCU102
VGG-16

281 8 bit 2 1926
1225.2 57.53 0.636

INet-V4 1390 35.26 0.722
YoloV2 1008 16 0.523

Ours. ZCU102
VGG-16

214 8-16 bit 2 2345
3120.3 19.67 1.33

INet-V4 857.23 49.7 0.388
YoloV2 1717.7 13.9 0.73

DSP efficiency of our design is 1.71× of the design in [61], which does not

use Winograd transformation. When compared to the designs with Winograd

algorithm [59] [66] together with additional model-specific optimizations, our

design shows a 1.2× and a 6.78× improvement of throughput compared to

that of [66] and [59], respectively. Notably, the design in [66] adopts a 32

batch size for FC layers, which is much larger than ours (fixed at 2) and

leads to a long latency for a single image to be processed completely. In the

comparisons, all the previous architectures containing model-specific designs

can not support flexible kernel sizes, while our WinoCNN supports multiple

convolution kernels without effecting the DSP efficiency. Our design also

provides slightly better achievable frequency due to the efficient systolic array

architecture on Xilinx platforms.

When comparing to the Vitis-AI implementations [68], our WinoCNN

shows better throughput and latency for both VGG-16 and YoloV2 even

with a lower clock frequency and without DSP double pumping. For the

Inception-V4 model which contains unique kernel shapes, i.e., 1 × 7, 7 × 1,

3×1 and 1×3, we use the less efficient F (4×4, 1×1) or F (6×6, 1×1) to pro-

cess them, which lead to a worse performance than the specially optimized

Vitis-AI processing cores.

Also, we compare the performance between Google’s Coral edge TPU USB

accelerator and our implementation. Table 5.4 shows the board parameter

comparison between our test platform and the edge TPU. We use the max-

imum achievable computation throughput expressed in TOPs to denote the

computation capability of the device. For edge TPU, this throughput repre-

sents the maximum 8-bit integer operations that can be achieved per-second.

For FPGA device, this throughput is calculated by the on-board DSP num-

68



bers and the achievable frequency of the proposed WinCNN architecture.

The edge TPU has a larger computation capability than our FPGA platform

due to its high working frequency and customized design. Table 5.5 lists the

performance comparison of VGG-16 and Inception-V4 models on edge TPU

device and the FPGA. For VGG-16 DNN model, both our solutions perform

better than the edge TPU with a 15.06× speed up for ZCU102 and a 1.28×
speed up for Ultra96 in terms of inference latency. For Inception-V4 DNN

model, our zcu102 solution still performs 1.74× faster than the TPU solu-

tion. However, due to the lower computation capability, our Ultra96 solution

has a 3.87× slower performance than the edge TPU solution.

Table 5.4: Board parameter comparison between FPGA and edge TPU

Device Frequency Computation Capability
Edge TPU 500 MHz 4 TOPs
ZCU102 214 MHz 1.095 TOPs
Ultra96 214 MHz 0.154 TOPs

Table 5.5: Performance comparison between FPGA and edge TPU

Model Device batch size
Freq.
(Mhz)

Prec.
Lat.
(ms)

Speed
Comp.

VGG-16
Edge TPU 2 500 MHz 8-bit 296.2 baseline
ZCU102 2 214 MHz 8-bit 19.67 15.06×
Ultra96 2 214 MHz 8-bit 231.6 1.28×

INet-V4
Edge TPU 2 500 MHz 8-bit 86.5 baseline
ZCU102 2 214 MHz 8-bit 49.7 1.74×
Ultra96 2 214 MHz 8-bit 334.9 0.258x

5.7 Conclusion

In this chapter, we present a systolic array-based convolution accelerator

design targeting the Winograd algorithm. Our accelerator, WinoCNN, is

constructed by unique Winograd convolution PEs (WinoPE) which support

flexible convolution kernel sizes without sacrificing DSP efficiency. WinoCNN

also has an efficient memory subsystem that is suitable for planar data access

for the array of WinoPEs. Our accelerator system is configurable for different

69



FPGA platforms with accurate resource and performance models. Overall,

our accelerator delivers high throughput and state-of-the-art DSP efficiency

comparing with previous accelerator implementations.

70



CHAPTER 6

HIKONV: HIGH THROUGHPUT
QUANTIZED CONVOLUTION WITH

NOVEL BIT-WISE MANAGEMENT AND
COMPUTATION

Quantization for Convolutional Neural Network (CNN) has shown signifi-

cant progress with the intention of reducing the cost of computation and

storage with low-bitwidth data inputs. There are, however, no systematic

studies on how an existing full-bitwidth processing unit, such as CPUs and

DSPs, can be better utilized to carry out significantly higher computation

throughput for convolution under various quantized bitwidths. In this study,

we propose HiKonv, a unified solution that maximizes the compute through-

put of a given underlying processing unit to process low-bitwidth quantized

data inputs through novel bit-wise parallel computation. We establish the-

oretical performance bounds using a full-bitwidth multiplier for highly par-

allelized low-bitwidth convolution, and demonstrate new breakthroughs for

high-performance computing in this critical domain. For example, a single

32-bit processing unit can deliver 128 binarized convolution operations (mul-

tiplications and additions) under one CPU instruction, and a single 27×18

DSP core can deliver eight convolution operations with 4-bit inputs in one

cycle. We demonstrate the effectiveness of HiKonv on CPU and FPGA for

both convolutional layers or a complete DNN model. For a convolutional

layer quantized to 4-bit, HiKonv achieves a 3.17× latency improvement over

the baseline implementation using C++ on CPU. Compared to the DAC-

SDC 2020 champion model for FPGA, HiKonv achieves a 2.37× throughput

improvement and 2.61× DSP efficiency improvement, respectively.

6.1 Introduction

Quantization is a frequently used technique in hardware implementation of

Deep Neural Network (DNN) models in order to reduce both the memory

71



consumption and execution time [69, 70, 71, 4, 12, 52]. It is typically done

by approximating high-precision floating-point numbers to low-bitwidth inte-

gers or fixed-point numbers. This is particularly important for modern DNN

models as many of them employ convolutional layers, which contain intensive

multiplication and accumulation (MAC) operations [53, 12, 52, 55]. There-

fore, many novel quantization methods have been proposed in the literature

to reduce the precision of weights, activations, and even gradients for DNNs

while retaining their high accuracy [70, 71, 52, 72].

The current hardware implementation of quantized DNNs is, however, not

ideal as there is no general support for quantized MACs without changing

the underlying hardware [73, 74, 75, 76, 77, 78]. Most hardware units have

a high-bitwidth (such as 32 or 64 bits) MAC for either floating-point num-

bers or integers [79]. When they are used for quantized MACs, most of

the bitwidths are left underutilized, wasting precious computing resources.

Even with the 8-bit multi-data processing of the Advanced Vector Extensions

(AVX) support in X86 64 architecture, processing a single 4-bit multiplica-

tion would still occupy the 8-bit data width with the remaining 4 bits simply

wasted [80]. The waste becomes even more severe when either processing

lower bitwidth (such as binary) data or utilizing a hardware unit with higher

built-in bitwidths.

Reconfigurable hardware such as FPGA may alleviate some of the waste

because of its bit-level flexibility for configuration, but it exhibits similar

drawbacks, especially for FPGAs with high-precision Digital Signal Process-

ing (DSP) units [79, 55, 51]. Without a careful bit-wise management of

inputs and outputs, deploying quantized DNNs onto FPGAs with the given

DSPs would still waste much of their computation capacity.

In this work, we propose a novel solution, HiKonv, that can significantly

improve the existing arithmetic units’ utilization efficiency when conduct-

ing quantized convolution, thus improving throughput for convolution and

reducing end-to-end DNN computation latency. Our solution is based on a

careful management of bitwidths used for quantized MACs and novel map-

ping of multiple parallelized MACs onto an existing arithmetic unit, such

that the arithmetic unit’s computation capacity is fully utilized. We further

show theoretically that such a management and mapping strategy is univer-

sal in the sense that it can be applied to arbitrarily quantized bitwidths and

high-bitwidth arithmetic units. For example, a single 32-bit processing unit

72



can deliver 128 binarized convolution operations using one instruction for

CPU, and a single 27×18 DSP core can deliver eight convolution operations

with 4-bit inputs in one cycle. Based on such a theoretical analysis, we show

that there are different optimal design points in choosing the quantization

bitwidth for a given arithmetic processing unit. Our experimental results

further validate our analysis and HiKonv’s general applicability. For exam-

ple, our CPU-based implementation of HiKonv achieves up to 3.17× latency

improvement for quantized convolution over existing methods on the same

CPU. We also apply HiKonv to an end-to-end quantized DNN model, Ultra-

Net [81], in an FPGA setting, and the measured on-board result outperforms

the state-of-the-art in terms of throughput and DSP efficiency by 2.37× and

2.61×, respectively.

Because of its generality, we believe HiKonv opens up a new venue for

further improving the hardware efficiency of DNN based inferences. It not

only improves the throughput and latency for existing quantized DNN models

on existing hardware, but also offers new opportunities for designing new

hardware-friendly quantized DNN models or co-designing both the hardware

and quantized DNN models.

6.2 Preliminary

Before we present our proposed HiKonv solution, we first review (1) input

slicing and data packing for concurrency improvement and (2) 1D convolu-

tion.

6.2.1 Input-Slicing for Concurrency Improvement

Input slicing and data packing are generally used by the current hardware

units to process low-bitwidth inputs [82, 83, 80]. The input bitwidth is split

into different pieces, each of which is called a slice to hold a low-bitwidth

data. It uses the available bitwidth space to hold a number of data slices to

improve the parallelism while still preserving the correct output. An example

of INT4 optimization for Xilinx DSP48E2 unit is shown in Figure 6.1, each of

the input contains two slices. It takes advantage of the multiple input ports

and the internal addition operation of the DSP to enable four multiplications

73



of data slices simultaneously.

Figure 6.1: INT4 optimization on DSP48E2 [82]

Since an INT4-UINT4 multiplication generates a result that needs at least

an 8-bit space, guard bits are added during the packing of the low-bitwidth

data to guarantee the correctness of the result. Here, we define the term

guard bit as the filling 1s or 0s between the packed data in the multiplicand

for the purpose of preventing computation overflow. The multiplication with

the sliced and packed inputs is represented as:

(A2 · 211 +A1) · (W2 · 222 +W1)

= A2W2 · 233 +A1W2 · 222 +A2W1 · 211 +A1W1

(6.1)

The output of Equation 6.1 is the concatenation of four multiplication

results with zeros between them due to the guard bits. This process accom-

plishes four multiplications within one operation cycle.

6.2.2 1D Convolution

The conventional 1D discrete convolution between an N -element sequence

f and a K-element kernel g (denoted as FN,K(f, g)) can be represented as

Equation 6.3. Here, we define the infinite length sequence h as the zero

extension of f with the index range of (−∞,∞). Meanwhile, y is the output

with N +K−1 non-zero elements. Alternatively, y can be represented as an

(N +K − 1)-element sequence with Equation 6.4. Each of the y[m] involves

a sequence of multiplication and addition operations.

h[n] =

f [n] , 0 ≤ n < N

0 , n < 0 or n ≥ N
(6.2)

y[m] = (h ∗ g)[m] =
K−1∑
k=0

h[m− k]g[k] (6.3)

74



Figure 6.2: Ideal process of Prod = A ·B

y[m] =
∑

k+n=m

h[n]g[k] (6.4)

We may also derive the total convolution operation number for both the

multiplications and the accumulations in each FN,K(f, g) convolution. For

the multiplication, there are total K rows of N product terms summed up

vertically to form the elements in output sequence y as illustrated by the light

green blocks in Figure 6.2. So the total number of multiplications performed

in the 1D convolution is N ·K. Meanwhile, each column of product terms are

summed up vertically to form one element in the output sequence and the

number of columns equals the length of the output sequence, which is N+K−
1. Each product term is associated with one accumulation operation except

for the product term at the bottom of each column. So the total number

of accumulations equals the number of product terms minus the number of

accumulation columns. Then we may conclude that the total convolution

operation number in one FN,K(f, g) convolution is shown in Equation 6.5.

# of Ops = # of Multiplications + # of Accumulations

= N ·K + (N ·K − (N +K − 1))

= N ·K + (N − 1) · (K − 1)

(6.5)

6.3 Multiplier for Convolution

Inspired by input slicing and data packing for novel bit management and high

processing concurrency, we generalize the solution for using a given hardware

unit to process the maximum amount of low-bitwidth convolution operations

concurrently with theoretical guarantees.

We first define the variables related to our exploration. As shown in Fig-

ure 6.2, we assume a given high-precision hardware unit that can multiply

75



BitA-bit integer input A with BitB-bit integer input B and generate the

product Prod. The bitwidths of A and B define the computation capability

of the hardware unit, or more specifically, the multiplier, and thus determine

the design setting of HiKonv specific to this unit. Convolution input f and

kernel g are the two sequences of low-bitwidth integer values quantized to p

and q bits, respectively.

To determine how to load A and B with multiple convolution operands

from f and g and perform the convolution between these operands, we define

an additional variable S to be the size of a slice of inputs for both A and B

as demonstrated on the left in Figure 6.2. The lower bits of each slice contain

one operand from f or g. To simplify the problem, we assume the N and K

are the maximum numbers of operands from f and g that can fit into A and

B, respectively. Hence, the polynomial representations of A and B are:

A =
N−1∑
n=0

f [n] · 2S·n, B =
K−1∑
k=0

g[k] · 2S·k (6.6)

Although the intermediate results of the multiplication are invisible to us,

we assume the processing unit takes the most ideal way for the multiplication

of two inputs, as shown in Figure 6.2. The entire multiplication is treated as

the multiplication of slices in A with the corresponding slices in B followed

by shifting the product left by S bits and accumulating the shifted results to

the previous result. There are always N ·K products between elements from

f and g that are computed and accumulated to form the output Prod.

6.3.1 From Multiplication to Convolution

To use the product Prod = A · B, we need to segment the output into

an effective format for convolution during the process. In order to segment

the intermediate results, we extend the guard bits Gb in [82]. The guard

bits are not only to prevent overlaps between the effective product of two

adjacent intermediate partial products but also to segment out the partial

accumulations of vertically stacked segments. Its length varies according

to the maximum number of multiplication terms f [n]g[k] that are summed

together. According to our settings for A and B, a maximum of min(K,N)

terms are summed together for each output segments. Therefore, to ensure

76



the correctness of the final result, each of the slicing should contain both the

guard bits Gb = dlog2min(K,N)e and the bits of the p-bit and q-bit inputs

for the production, respectively.

Theorem 1. Assuming guard bits, Gb, are properly decided according to the

specific multiplier setting, with given A and B constructed from N-element

sequence f and K-element sequence g, where f and g are quantized respec-

tively to p and q bits, we can obtain N + K − 1 segments from the product

Prod = A · B which are all short partial convolutions in the form of 1D

convolution.

Proof. Considering the guard bits, we can obtain:

S =


q +Gb, p = 1, q ≥ 1

p+Gb, q = 1, p ≥ 1

p+ q +Gb, otherwise

(6.7)

p+ (N − 1)S ≤ BitA (6.8)

q + (K − 1)S ≤ BitB (6.9)

Thereby, the intermediate stages are shifted left by S bits for every stage,

and the effective vertical accumulation of the partial products in the segments

from all the stages stacked together would not exceed the length of S bits,

as shown in Figure 6.2. Then, the multiplication is represented as:

Prod = A ·B = (
N−1∑
n=0

f [n] · 2S·n) · (
K−1∑
k=0

g[k] · 2S·k)

=
N+K−2∑
m=0

(
∑

n+k=m

(f [n] · 2S·n · g[k] · 2S·k))

=

N+K−2∑
m=0

(
∑

n+k=m

(f [n] · g[k]) · 2S·m)

(6.10)

Different from general multiplications, convolution consists of a sequence of

multiplications and accumulations. Referring to the form of 1D convolution

in Equation 6.4, the result of Prod can be represented as:

Prod =

N+K−2∑
m=0

y[m] · 2S·m (6.11)

77



where the intermediate accumulations form a 1D convolution of two se-

quences in each of the output segments, and the total number of convolution

segments is N +K − 1.

Per the above, we can use a high-bitwidth multiplier to process two inte-

gers A and B to form N +K − 1 convolutions of short sequences. However,

due to the two’s complement representation of signed values, directly pack-

ing negative values into A or B leads to wrong results for the intermediate

products. To guarantee the correctness of the products as the intermediate

results, we must consider the sign bit during the packing of the elements

from f and g into A and B as well as segmenting the result Prod.

If f and g are all unsigned integers, we can construct A and B as in-

tegers with bit-wise assignments and the zero extension without additional

operations:

A[S(n+ 1)− 1 : Sn] = f [n]

B[S(k + 1)− 1 : Sk] = g[k]
(6.12)

Meanwhile, each y[m] can be segmented out from Prod with:

y[m] = Prod[S(m+ 1)− 1 : Sm] (6.13)

However, if f and g contain signed integers, we need additional bit manage-

ment.

Figure 6.3: Input packing for signed integer f sequence

Figure 6.3 shows the packing of four elements of f into multiplicand A.

Taking the second S-bit segment as an instance, in 2’s complement expres-

sion, if f [0] is positive, the MSB is 0, and the sign extension part are all zeros.

78



On the other hand, if f [0] is negative, the sign extension part are all 1s in

binary expression and represents -1 in 2’s complementary representation. In

such condition, we decrement 1 from f [1] to form the second S-bit and per-

form the packing process with concatenation and 1-bit incrementer instead of

using a larger bitwidth adder. The packing process works recursively for all

the slices while slicing of the output works in a reversed manner. Equation

6.14 shows the packing and slicing formula for signed integer f and g. With

this bit management technique, we obtain N + K − 1 partial convolutions

from N ·K segments of intermediate results for a single multiplier to process

signed input data.

A[S(n+ 1)− 1 : Sn] =

f [0] , n = 0

f [n]−A[Sn− 1] , n > 0

B[S(k + 1)− 1 : Sk] =

g[0] , k = 0

g[k]−B[Sk − 1] , k > 0

y[m] =

Prod[S − 1 : 0] ,m = 0

Prod[S(m+ 1)− 1 : Sm] + Prod[Sm− 1] ,m > 0

(6.14)

6.3.2 Convolution Extension

Now we have presented an efficient algorithm to use the multiplication unit on

a hardware platform to perform the FN,K 1D convolution. However, the size

of N are limited by the bitwidth of the hardware multiplier whereas most

real-world applications have much larger input sizes. Moreover, the FN,K

1D convolution is often used as a unit building block for other larger-scale

convolution operations. Thus, we design a new algorithm to use the FN,K

1D convolution to complete arbitrarily large size 1D convolutions and any

arbitrary convolutions. As shown in Figure 6.2, the order of the elements for

these intermediate production is controlled by the order of elements packed

into the slices in A and B; it allows us to devise different accumulation

methods to provide flexibility to construct different convolutions beyond 1D

convolution.

1D Convolution Extension Regarding the FN,K as a basic operation,

we extend it to FX·N,K convolution of a longer sequence by summing up the

79



elements in output sequences of different FN,K convolutions.

Theorem 2. The output sequence y = FX·N,K of a 1D convolution between

an (X · N)-element sequence f and a K-element filter g can be represented

as the sum of index-shifted output sequences yx = FN,K(fx, g), as shown in

Equation 6.17. Here, fx = f [xN : (x+ 1)N − 1](x ∈ [0, X − 1]).

Proof. Following Equation 6.2, we extend f and fx sequences into zero exten-

sion sequences h and hx. Then h is represented as the sum of index-shifted

hx sequence:

h[n] =
X−1∑
x=0

hx[n− xN ] (6.15)

According to Equation 6.3, the convolution output y is calculated with:

y[n] =
K−1∑
k=0

h[n− k]g[k]

=
K−1∑
k=0

(
X−1∑
x=0

hx[n− xN − k])g[k]

=

X−1∑
x=0

(

K−1∑
k=0

hx[n− xN − k]g[k])

(6.16)

Given that yx[n] =
∑K−1

k=0 hx[n − k]g[k], we can represent sequence y as the

sum of index-shifted yx sequences.

y[n] =
X−1∑
x=0

yx[n− xN ] (6.17)

Equation 6.17 reveals that the extended FX·N,K 1D convolution is com-

puted by a shift-accumulation pattern with FN,K base operation results.

Figure 6.4 demonstrates how the elements in different yx sum up to the

elements in y. Each computed yx sequence is shifted xN indices and then

summed up to form the element of y, which is marked by the red square.

Still, we use existing adder unit of the given platform to complete multiple

additions by adding the bit slices from the product Prod as mentioned in

Section 6.3.1 as marked by the blue square. In such a case, the guard bit

of Gb = dlog2Ke is also adjusted with additional bits to prevent the partial

results from overflow.

80



y[0]y[1]y[xN]y[xN+K-2]

y0[0]y0[1]y0[N]

y1[0] N indices

yX-1[0]yX-1[N+K-2] (X-1)N indices

y1[K-2]

y0[N+K-2]

y1[N+K-2]

(N+K-1)S-1:NS

y0

Prod0

(K-1)S-1:0 NS bitsProd1

(X-1)NS bits

+

+

y[N]y[N+K-2]

ProdX-1

y1

yX-1

Figure 6.4: Computation of FXN,K 1D convolution

DNN Convolution The convolution layer in DNN computes a feature-

map array I[Ci][Hi][Wi] and a kernel array WT [Co][Ci][K][K] for output

feature-map array O[Co][Ho][Wo] which can be represented as:

O[co][h][w]=

Ci-1∑
ci=0

K-1∑
kh=0

K-1∑
kw=0

I[ci][h+kh][w+kw]WT [co][ci][kh][kw]
(6.18)

Here, we neglect the bias term and assume that the output feature-map is

computed with non-padding convolution. For padded convolution, we may

first merge the padding pixels into the original input feature-map to form

a new feature-map and then perform the non-padding convolution. In such

condition, the output feature-map size is related to the input feature-map

size and kernel size as shown in Equation 6.19:

Ho = Hi −K + 1

Wo = Wi −K + 1
(6.19)

With the inherent convolution computation pattern, we may also compute a

DNN convolution layer with FN,K 1D convolution as the base operation, as

shown in Theorem 3.

Theorem 3. For a DNN convolution, the output feature-map can be com-

puted by FX·N,K 1D convolution with the following equation:

O[co][h][w] =

Ci−1∑
ci=0

K−1∑
kh=0

yci,co,h,kh [w +K − 1] (6.20)

81



Here, the term yci,co,h,kh is a 1D convolution result with X = dWi

N
e − 1:

yci,co,h,kh = FX·N,K(f, g) (6.21)

where f and g are defined as:

f [w] =

I[ci][h+ kh][w], 0 ≤ h < Hi, 0 ≤ w < Wi

0, otherwise

g = WT [co][ci][kh][K − 1 : 0]

(6.22)

Proof. For abbreviation, we denote sequence yci,co,h,kh as y′. According to

the definition of 1D convolution, sequence y′ can be computed by Equation

6.23. Here, we use k as the summation index counter and the notation of h,

ci, co, kh and kw are the same as the ones in Equation 6.18.

y′[n] =
K−1∑
k=0

f [n-k]g[k]

=

K-1∑
k=0

I[ci][h+kh][n-k]WT [co][ci][kh][K-1-k]

=
K-1∑
k=0

I[ci][h+kh][n+(K-1-k)-K+1]WT [co][ci][kh][(K-1-k)]

=
0∑

(K-1-k)=K-1

I[ci][h+kh][n+(K-1-k)-K+1]WT [co][ci][kh][(K-1-k)]

=
0∑

kw=K-1

I[ci][h+kh][n+kw-K+1]WT [co][ci][kh][kw]

=

K-1∑
kw=0

I[ci][h+kh][n+kw-K+1]WT [co][ci][kh][kw]

(6.23)

Then by replacing n with w + K − 1 in Equation 6.23, we obtain Equation

6.24.

y′[w+K-1] =

K-1∑
kw=0

I[ci][h+kh][w+kw]WT [co][ci][kh][kw]

yci,co,h,kh [w+K-1] =

K-1∑
kw=0

I[ci][h+kh][w+kw]WT [co][ci][kh][kw]

(6.24)

With Equation 6.24, Equation 6.18 could be represented as:

82



O[co][h][w]=

Ci-1∑
ci=0

K-1∑
kh=0

K-1∑
kw=0

I[ci][h+kh][w+kw]WT [co][ci][kh][kw]

=

Ci-1∑
ci=0

K-1∑
kh=0

(
K-1∑
kw=0

I[ci][h+kh][w+kw]WT [co][ci][kh][kw])

=

Ci-1∑
ci=0

K-1∑
kh=0

yci,co,h,kh [w+K-1]

(6.25)

A convolution layer in DNN has multiple input and output channels, which

require accumulation of channel-wise features to form the final output. By

grouping the FN,K output sequences with different ci but same co,h,kh and

x indices, and accumulating the corresponding product Prod with adders,

we can perform the channel-wise accumulation of the feature-maps. In this

case, the required number of guard bits is Gb = dlog2(M ·min(K,N))e for

the accumulation of M feature-maps along input channel in a convolution.

Specifically, in the condition of DNN applications, the weight data can

be pre-processed prior to the inference. A certain K ×K DNN convolution

filter may be packed into K multiplicands following the Equation 6.12 and

Equation 6.14. Furthermore, the pre-processed weight multiplicands may be

compressed by discarding the guard bits which are always all 1s or all 0s as

shown in Figure 6.5. The compressed multiplicands can be decompressed

by filling up the guard bits without introducing additional computation re-

sources. Table 6.1 shows the number of LUTs saved by pre-processing the

weight under different weight bitwidths.

Table 6.1: LUTs reduction with pre-processed weight

Weight Bits 1 2 3 4 5 6 7 8
LUTs 226 100 78 21 57 26 29 32

6.3.3 Throughput Analysis

Based on the above discussions, the equivalent achievable throughput for

convolution of inputs with p and q bits quantized data by a given processing

83



Figure 6.5: Weight pre-processing and compression

unit is a function of both the supported bitwidth of A and B by the hardware

and the given bitwidth of the elements in f and g.

According to Equation 6.5 in Section 6.2.2, the total convolution operation

number in a FN,K 1D convolution is N ·K + (N − 1)(K − 1). For each set of

convolution and multiplier configuration parameters including p, q, BitA and

BitB, we can derive the N , K pairs that may achieve the maximum number

of equivalent convolution operations performed by each multiplication within

the constraint specified by Equation 6.8 and Equation 6.9. Also, in the

single multiplier condition, we have the Gb = dlog2min(K,N)e as discussed

before. In order to maximize the effective number of convolution operations

for HiKonv, we formulate it as a discrete optimization problem as follows.

maximize N ·K + (N − 1) · (K − 1)

subject to 0 < N

0 < K

p+ (N − 1)(p+ q + dlog2min(K,N)e) ≤ BitA

q + (K − 1)(p+ q + dlog2min(K,N)e) ≤ BitB

(6.26)

We may easily conclude the upper bound of the N and K as:

N ≤ BitA − p
p+ q + dlog2min(K,N)e

+ 1 <
BitA − p
p+ q

+ 1

K ≤ BitB − q
p+ q + dlog2min(K,N)e

+ 1 <
BitB − q
p+ q

+ 1

(6.27)

84



Then we may solve this optimization problem with a straightforward search

algorithm shown in Algorithm 5 by iterating all the possible N,K pairs to

find the optimal solution.

Algorithm 5 Optimal Throughput Search

1: MaxN = (BitA − p)/(p+ q) + 1, OptK = 0
2: MaxK = (BitB − q)/(p+ q) + 1, OptN = 0
3: MaxNK = 0
4: for k = 1, k < MaxK , k++ do
5: for n = 1, n < MaxN , n++ do
6: Cond1 = p+ (n− 1)(p+ q + dlog2min(k, n)e) ≤ BitA
7: Cond2 = q + (k − 1)(p+ q + dlog2min(k, n)e) ≤ BitB
8: CurNK = n · k + (n− 1) · (k − 1)
9: if Cond1 & Cond2 & CurNK > MaxNK then

10: OptN = n,OptK = k,MaxNK = CurNK

11: end if
12: end for
13: end for
14: Return OptN , OptK ,MaxNK

Figure 6.6 shows two examples of multipliers with different bitwidth con-

figurations. For a given high bitwidth processing unit and given p, q values,

we may obtain the maximum supported throughput (highest number of effec-

tive multiplications and additions) for a processing unit following Algorithm

5. For instance, when the bitwidths of the two inputs of a multiplier are

27 and 18 bits (Figure 6.6a), according to Equations 6.7, 6.8, and 6.9 and

the required guard bits, we could obtain S = 4, N = 9, K = 4 when the p

and q are both 1-bit binary values. The maximum supported throughput

for this set of parameters is equivalent to 60 ops per cycle, which include 36

multiplications and 24 additions that would be required for computing the

1D convolution if all the computation is carried out in a conventional way

without HiKonv. With HiKonv, all we need is one multiplication by the high

bitwidth multiplier with our specific slicing/packing solution. As another ex-

ample, when p and q are both four bits, the multiplier provides 8 equivalent

ops per cycle (6 multiplications and 2 additions). In Figure 6.6, we show the

configurations and equivalent number of operations for p and q from 1-bit to

8-bit, which are the common bitwidths of low-precision quantization. The

HiKonv design principle generally applies to all bitwidths. When the inputs

for the multiplier are both 32 bits, these values are further increased to 128

ops per cycle and 13 ops per cycle for 1-bit and 4-bit p and q respectively, as

shown in Figure 6.6b.

85



(a) A = 27 bits, B = 18 bits (b) A = 32 bits, B = 32 bits

Figure 6.6: Throughput of processing units with different bitwidth settings.
The number of operations (z-axis) can be calculated by solving for an
optimization problem specific to values of p, q, and the input bitwidths of
the processing unit (e.g., the high-bitwidth multiplier)

6.4 Evaluations

HiKonv is a general technique that can be adopted for both the general

purpose processor and reconfigurable hardware platform. We demonstrate

its efficacy on both platforms.

6.4.1 General-purpose Processors

We first evaluate HiKonv on both CPU-based desktop and mobile platforms

with an Intel Core i7-10700K CPU and i7-10710U CPU, respectively. We

measure the performance of both 1D convolution and a DNN convolution

layer. For 1D convolution, the baseline implementation has two-level nested

loops. The outer loop scans through the input vector, whereas the inner loop

scans through the kernel vector. We adopt the horizontal stacking strategy

proposed by HiKonv 1D convolution. The features are packed during run-

time, and kernels are packed offline before the processing starts. For the

output, we first shift the previous partial result to the right by S · 2 bits and

the current partial result to the left by S · (N − 2) bits. Then, we add them

together to form the whole result for this loop. In the end, we take the last

S ·N bits as the N outputs with the corresponding indices.

For a quantified analysis with a DNN layer, we pick the final layer of Ul-

86



traNet [81], which is the champion model for the DAC-SDC contest 2020 and

randomly generate feature and kernel vectors. We implement the DNN layer

by embedding the 1D convolution algorithm into the six-level nested loops

that scan through the input channel, output channel, output height, output

width, kernel height, and kernel width according to Theorem 3. Since CPU

hardware lacks bit-wise management capability, dealing with signed values

can cause unnecessary overhead from intricate bit operations. While we

can deploy the HiKonv solution with signed values, the hardware constraint

makes such optimization less efficient than unsigned values. Since modern

CPUs are equipped with 32-bit multipliers, without loss of generality, we use

A = B = 32 bits as the multiplication bitwidth, and pack p = q = 4-bit

unsigned values in each of the operands. According to Theorem 2, we obtain

N = 3, K = 3, Gb = 2, and S = 10 bits. Figures 6.7a and 6.7b show the 1D

and 2D convolution latency results, respectively. Both are compared to the

baseline implementation with nested loops without our HiKonv solution.

It is clear that our HiKonv solution is about three times faster than the

baseline implementations under all four combinations. The experimental

results are slightly slower than the theoretical speed-up shown in Section 6.3

because of the processing overhead. Despite the reduction in loop counts and

thus the total number of multiplications to generate all outputs, HiKonv has

additional bit-shifting and gating operations to prepare the operands and

segment the output. Since the ALU handles both multiplications and bit-

wise operations, the latency of bit-wise operations are not much faster than

multiplications and lead to extra overhead.

We further test the performance with low-precision bitwidths from one to

eight bits. Assuming p = q, we calculate the corresponding N , K, and Gb

and pack the quantized values into 32-bit accordingly. Figure 6.7c shows the

result of the 1D convolution with the same setting as before. It is clear that

when the bitwidth of the processed data reduces, the performance of our

HiKonv solution increases because of the increased slice number. When the

bitwidth is 1 bit, HiKonv solution provides a 8.6× performance improvement.

87



(a) 1D Convolution

(b) 2D Convolution (c) Speed-up for different bitwidths

Figure 6.7: HiKonv evaluation on CPU

6.4.2 Reconfigurable Hardware

We also conduct the evaluation of our HiKonv solution on the Xilinx Ultra96

MPSoC platform, which is equipped with 360 DSP48E2 units and a quad-

core ARM processor. Each of the DSP48E2 has one 27-bit, one 18-bit and one

45-bit input port. It can perform one (M0 ·M1 +Acc) MAC operation in one

clock cycle, where M0,M1, Acc are the inputs at the 27-bit, 18-bit, and 45-

bit port, respectively. Different from software implementation of HiKonv for

general-purpose processors, with reconfigurable hardware, the input packing

is conducted with small adders for each of the slices, and output segmentation

is conducted by bit-wise operations. These advantages on the hardware can

fully benefit the performance of our HiKonv solution.

Binary convolution layer We first evaluate the extreme case of quantized

convolution which is the Binary Neural Networks (BNN). A convolutional

layer in a BNN takes the binary inputs for both feature-maps and kernel

weights, processes the convolution between them, and generates the outputs.

Note that the outputs may not be binary due to the channel-wise accumu-

lation. We first implement a binary convolution layer with 4-bit outputs

without using the DSP resources, denoted as BNN-LUT; we then replace the

binary computations with our HiKonv solution with DSP, denoted as BNN-

HiKonv. In comparison, we evaluate the resource utilization of these two

designs under the setting of the same concurrency and same clock frequency,

88



as shown in Table 6.2.

Table 6.2: Comparison of resource util. of binary convolution

# of Concurrent MACs 336 576 960 1536 3072
BNN-LUT LUT 3371 4987 7764 12078 23607

BNN-HiKonv
LUT 2672 2536 3369 3587 9319
DSP 16 32 64 128 256

DSP Thro. 21 18 15 12 12
LUT/DSP 43.7 76.6 68.7 65.4 55.8

Clearly, compared to BNN-LUT, the LUT usage of BNN-HiKonv is re-

duced. However, the throughput for each DSP reduces when the concurrency

increases due to the reason that there is more vertical stacking, and it takes

more guard bits when the concurrency increases. The equivalent number

of LUTs replaced by one DSP (LUT/DSP) varies from 43.7 to 76.6 due to

the accumulation logic in the convolution operation. HiKonv creates oppor-

tunities to leverage DSPs for high-throughput BNN (or other low-bitwidth

models) convolution computations that would help map a larger BNN with

high concurrency into the same FPGA. It can also potentially increase the

design’s clock frequency since DSPs can run at a higher frequency than LUTs.

Complete model We apply our HiKonv solution to the entire UltraNet

model [81] on the Xilinx Ultra96 MPSoC FPGA. The weight and activation of

this model are quantized to 4-bit. We execute all the convolution layers on the

programmable logic and the other layers on the ARM processor in the FPGA

platform. We follow the same layer architecture and system architecture as

the original UltraNet design and only change the computation for convolution

with our HiKonv solution. Besides using DSPs, we also use small adders and

shifters constructed by LUTs, taking advantage of the flexible configuration

features of the FPGA.

In addition to resources utilization, we also measure the throughput in

frame-per-second (fps) and calculate the DSP efficiency in terms of Giga-

operations-per-second-per-DSP (Gops/DSP) for comparison as shown in Ta-

ble 6.3. All the testing data is first loaded into the DDR to leverage the full

capacity of the accelerators in our evaluations.

UltraNet-HiKonv uses more LUT resources than the original implemen-

tation due to the shifting and adding logic; however, it reduces the DSP

89



Table 6.3: UltraNet resource and performance

LUT DSP fps DSP Eff. (Gops/DSP)

UltraNet 4.3 K 360 248 0.289

UltraNet-HiKonv 4.8 K 327 401/588 0.514/0.753

utilization thanks to the dramatic improvements of the efficiency and the

throughput of the DSPs. The original implementation of the UltraNet uses

one DSP for two 4-bit MACs that is natively supported by the synthesis tool.

It only achieves 248 fps with a 0.289 Gops/DSP efficiency. With our HiKonv

solution, the on-board implementation of UltraNet achieves 401 fps with a

0.514 Gops/DSP DSP efficiency. This significant improvement is achieved

under the constraint that the software execution on the ARM core is not

fast enough to feed the input data to the FPGA accelerator to process, even

with our best software optimization of multi-threading and data buffering. If

this ARM core bottleneck is removed, the UltraNet-HiKonv accelerator can

reach an even higher performance of 588 fps with the DSP efficiency of 0.753

Gops/DSP.

6.5 Related Works

Existing solutions for low-bitwidth arithmetic [84] build their own compu-

tation units based on the inputs [73, 74, 75, 76, 77, 78] and benefit from

the control flexibility down to a single bit. Prior work for accelerating DNN

inference has also incorporated low-bitwidth computations. Tensor process-

ing units (TPUs) introduce 16-bit bfloats [85], and mobile GPUs and other

edge devices now support 8-bit computations. However, these improvements

focus only on homogeneous arithmetic requirements and do not allow flexible

arithmetic computations with varied bitwidths. Therefore, when processing

data with a bitwidth different from its targeted bitwidth, it either leaves

some precision unused with wasted resources or hurts the efficiency of the

overall process.

There are methods that simply pack short bitwidth values into longer

words and attempt to incorporate additional computations using the ex-

isting unit through bit shifting and packing [80, 82, 86, 87, 88] to further

improve processing efficiency. However, those studies are ad-hoc and do not

90



fully leverage the hardware’s capability as HiKonv does. Moreover, there

are no theoretical studies to guide the flexible management of low-bitwidth

quantized data. Our work fills the gap of processing low-bitwidth data under

theoretical guidance for the best computation efficiency and throughput on

either existing hardware architecture or any bit-efficient processing units in

the future.

6.6 Conclusion and Discussion

In this work, we present HiKonv, a general technique with theoretical guar-

antees for using a single multiplier unit to process multiple low-bitwidth con-

volution operations in parallel for significantly higher computation through-

put with flexible bitwidths. It is able to support convolutions in DNNs and

achieves the highest possible throughput for quantized convolution with novel

bit-wise management and computation.

As a demonstration of its general applicability and benefits, we show that

HiKonv has achieved 3.17× throughput improvement on CPU and 2.37× and

2.61× throughput and DSP efficiency improvements for the DAC-SDC 2020

champion model on FPGA. HiKonv suits for both software and hardware

optimizations and provides new opportunities for future hardware designs

for efficient DNN processing.

91



CHAPTER 7

CONCLUSION

In this concluding chapter we summarize the contributions of this thesis and

the possible impact. The key topics explored in this thesis are the methods

of delivering high-performance architecture for DNN applications on FPGA

platforms with fixed and limited resources.

In Chapter 3, we demonstrate the detailed implementation of a recurrent

neural network for video content recognition: LRCN. In this chapter, we

introduce a novel resource allocation strategy, REALM, which provides a

guideline for computation resource allocation for multi-layer DNNs. We de-

sign parameterized IPs for each layer in LRCN and configure the parameters

for each layer following the REALM strategy. Finally, we use the Xilinx’s

VC709 board as the hardware platform to demonstrate the effectiveness of

REALM and our HLS IP in the design process and achieve better perfor-

mance than GPU and CPU solutions.

In Chapter 4, we propose a novel backward pipeline scheduling algorithm

to schedule the computation tasks in DNN layers for DNN hardware IPs.

Through the scheduling algorithm, we achieve deep pipelining among layers

in the DNNs. Meanwhile, we provide the algorithm to balance the compu-

tation resources for DNN IPs to achieve optimal throughput and latency.

We test our scheduling algorithm and DNN IPs on Xilinx ZYNQ-7000 SOC

ZC706 and demonstrate better performance than GPU solutions.

In Chapter 5, we present a systolic array based convolution accelerator

design working together with the Winograd algorithm. In this chapter, we

propose a novel Winograd-based processing element, WinoPE, that supports

flexible convolution kernel sizes with high DSP efficiency, following a resource

sharing mechanism we explored in the Winograd algorithm. With the pro-

posed WinoPE as the basic computation element, we implement a scalable

systolic array-based accelerator WinoCNN. Also, we design a fine-grained

and highly efficient memory control system to handle the complex and in-

92



tensive data access pattern for the WinoCNN architecture. In this work,

our implementation demonstrates state-of-the-art performance and resource

efficiency in different DNN models compared with previous work.

In Chapter 6, we propose a novel solution, Hikonv, that can dramatically

improve the existing arithmetic units’ utilization efficiency in quantized DNN

applications. Our solution fully utilizes the computation capacity of existing

arithmetic unit in hardware platforms by enabling parallelized MACs for low

bit-width integers. Our experimental results further validate our analysis and

HiKonv’s general applicability. Both our CPU-based and FPGA-based im-

plementations present drastic performance improvement on DNN application

over the existing methods with the same testing platform.

After the summary of the specific contribution of each method, we may

draw several main conclusions as follows:

• The central factor that decides the final performance of a hardware

accelerator architecture is the average utilization rate of the on-chip

computation resources. The computation tasks in DNN applications

should be properly scheduled and assigned with balanced computation

resources to minimize the total idle time of each computation unit.

• The high-performance DNN hardware accelerator architectures usu-

ally demand efficient data transmission management which includes

the management of both the off-chip data loading/off-loading and the

on-chip data transmission. The characteristics of on-chip memory el-

ements and the data access patterns of the computation architecture

need to be carefully considered to design the memory system that can

fulfill the data requirement of a DNN accelerator.

• The DNN applications have specific computation patterns. Specifi-

cally, the convolution-like computation pattern allows us to boost up

the performance efficiency of on-chip computation resources through

algorithmic optimizations. This field is not fully explored and there

are still potential opportunities for performance improvement.

93



REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, May 2015. [Online]. Available:
https://doi.org/10.1038/nature14539

[2] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Tech. Rep., April 2009. [Online]. Available:
https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf

[3] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view
3D object detection network for autonomous driving,” Computing
Research Repository, vol. abs/1611.07759, 2016. [Online]. Available:
http://arxiv.org/abs/1611.07759

[4] X. Zhang, C. Hao, H. Lu, J. Li, Y. Li, Y. Fan, K. Rupnow, J. Xiong,
T. S. Huang, H. Shi, W. Hwu, and D. Chen, “Skynet: A champion
model for DAC-SDC on low power object detection,” Computing
Research Repository, vol. abs/1906.10327, 2019. [Online]. Available:
http://arxiv.org/abs/1906.10327

[5] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,” Computing
Research Repository, vol. abs/1503.03832, 2015. [Online]. Available:
http://arxiv.org/abs/1503.03832

[6] R. Collobert and J. Weston, “A unified architecture for natural
language processing: Deep neural networks with multitask learning,”
in International Conference on Machine Learning, ser. ICML ’08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
160–167. [Online]. Available: https://doi.org/10.1145/1390156.1390177

[7] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, “Handwritten digit recognition
with a back-propagation network,” in Advances in Neural Information
Processing Systems 2, D. S. Touretzky, Ed. Morgan-Kaufmann,
1990, pp. 396–404. [Online]. Available: http://papers.nips.cc/paper/
293-handwritten-digit-recognition-with-a-back-propagation-network.
pdf

94



[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “Imagenet: A
large-scale hierarchical image database,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, 2009, pp. 248–255.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25, 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F.-F.
Li, “ImageNet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Computing Research Repository, vol. abs/1512.03385,
2015. [Online]. Available: http://arxiv.org/abs/1512.03385

[12] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“DNNBuilder: An automated tool for building high-performance DNN
hardware accelerators for FPGAs,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018, pp. 1–8.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” Computing Research Repository, vol.
abs/1409.1556, 2015.

[14] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
McGraw-Hill Higher Education, 1994.

[15] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behav-
ioral synthesis of asics,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 8, no. 6, pp. 661–679, 1989.

[16] J. H. Lee, Y. C. Hsu, and Y. L. Lin, “A new integer linear programming
formulation for the scheduling problem in data path synthesis,” in 1989
IEEE International Conference on Computer-Aided Design. Digest of
Technical Papers, 1989, pp. 20–23.

[17] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in International Conference on Artificial Intelligence and
Statistics, vol. 15, Apr 2011, pp. 315–323. [Online]. Available:
https://proceedings.mlr.press/v15/glorot11a.html

95



[18] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Intl. Symposium on Field-Programmable Gate Arrays, 2015, pp. 161–
170. [Online]. Available: http://doi.acm.org/10.1145/2684746.2689060

[19] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with embedded
FPGA platform for convolutional neural network,” in International
Symposium on Field-Programmable Gate Arrays, 2016, pp. 26–35.
[Online]. Available: http://doi.acm.org/10.1145/2847263.2847265

[20] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula,
J. Seo, and Y. Cao, “Throughput-optimized OpenCL-based FPGA ac-
celerator for large-scale convolutional neural networks,” in International
Symposium on Field-Programmable Gate Arrays, 2016, pp. 16–25.

[21] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in Inter-
national Conference on Computer Design, 2013, pp. 13–19.

[22] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, “Optimizing loop operation and
dataflow in FPGA acceleration of deep convolutional neural networks,”
in International Symposium on Field-Programmable Gate Arrays, 2017,
p. 45–54. [Online]. Available: https://doi.org/10.1145/3020078.3021736

[23] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for
long short-term memory recurrent neural networks,” in Asia and South
Pacific Design Automation Conference, 2017, pp. 629–634.

[24] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, H. Yang, and W. B. J. Dally, “ESE: Efficient speech
recognition engine with sparse LSTM on FPGA,” in International
Symposium on Field-Programmable Gate Arrays, 2017, p. 75–84.
[Online]. Available: https://doi.org/10.1145/3020078.3021745

[25] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent
convolutional networks for visual recognition and description,”
Computing Research Repository, vol. abs/1411.4389, 2014. [Online].
Available: http://arxiv.org/abs/1411.4389

[26] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. Laurent,
Y. Bengio, and A. C. Courville, “Towards end-to-end speech
recognition with deep convolutional neural networks,” Computing
Research Repository, vol. abs/1701.02720, 2017. [Online]. Available:
http://arxiv.org/abs/1701.02720

96



[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” 2014.

[28] L. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Reming-
ton, and R. Whaley, “An updated set of basic linear algebra subprograms
(BLAS),” ACM Transaction on Mathematical Software, 2002.

[29] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “cuDNN: Efficient primitives for deep learning,”
2014.

[30] Xilinx, “Vivado high-level synthesis.” [Online]. Available: http:
//www.xilinx.com/products/design-tools/vivado.html

[31] CALYPTO, “Catapult C synthesis.” [Online]. Available: http:
//www.calypto.com/catapult-c-synthesis.php

[32] Altera, “OpenCL SDK.” [Online]. Available: https://www.altera.
com/products/design-software/embedded-software-developers/opencl/
overview.html

[33] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “LEGUP: High-level synthesis
for FPGA-based processor/accelerator systems,” in International
Symposium on Field Programmable Gate Arrays, 2011, pp. 33–36.
[Online]. Available: http://doi.acm.org/10.1145/1950413.1950423

[34] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong,
and W. M. W. Hwu, “FCUDA: Enabling efficient compilation of CUDA
kernels onto FPGAs,” in Symposium on Application Specific Processors,
July 2009, pp. 35–42.

[35] H. Zheng, S. T. Gurumani, K. Rupnow, and D. Chen, “Fast and effective
placement and routing directed high-level synthesis for FPGAs,” in
International Symposium on Field-programmable Gate Arrays, 2014, pp.
1–10. [Online]. Available: http://doi.acm.org/10.1145/2554688.2554775

[36] X. Zhang, A. Ramachandran, C. Zhuge, D. He, W. Zuo, Z. Cheng,
K. Rupnow, and D. Chen, “Machine learning on FPGAs to face the
IoT revolution,” in International Conference on Computer-Aided De-
sign, Nov 2017, pp. 819–826.

[37] Z. Sun, K. Campbell, W. Zuo, K. Rupnow, S. Gurumani, F. Doucet,
and D. Chen, “Designing high-quality hardware on a development effort
budget: A study of the current state of high-level synthesis,” in Asia and
South Pacific Design Automation Conference, Jan 2016, pp. 218–225.

97



[38] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A dynamically configurable coprocessor for convolutional neural
networks,” ACM SIGARCH Computer Architecture News, vol. 38,
no. 3, pp. 247–257, Jun. 2010. [Online]. Available: http://doi.acm.org/
10.1145/1816038.1815993

[39] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-based
processor for convolutional networks,” in International Conference on
Field Programmable Logic and Applications, 2009, pp. 32–37.

[40] N. Li, S. Takaki, Y. Tomiokay, and H. Kitazawa, “A multistage dataflow
implementation of a deep convolutional neural network based on FPGA
for high-speed object recognition,” in IEEE Southwest Symposium on
Image Analysis and Interpretation, March 2016, pp. 165–168.

[41] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang,
Z. Cheng, K. Rupnow, and D. Chen, “High-performance video content
recognition with long-term recurrent convolutional network for FPGA,”
in International Conference on Field Programmable Logic and Applica-
tions, Sept 2017, pp. 1–4.

[42] K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, “High level
synthesis of stereo matching: Productivity, performance, and software
constraints,” in International Conference on Field-Programmable Tech-
nology, Dec 2011, pp. 1–8.

[43] G. Lucas, S. Cromar, and D. Chen, “Fastyield: Variation-aware, layout-
driven simultaneous binding and module selection for performance yield
optimization,” in Asia and South Pacific Design Automation Confer-
ence, Jan 2009, pp. 61–66.

[44] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for
long short-term memory recurrent neural networks,” in Asia and South
Pacific Design Automation Conference, Jan 2017, pp. 629–634.

[45] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional
neural networks with software-programmable FPGAs,” in International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 15–24.
[Online]. Available: http://doi.acm.org/10.1145/3020078.3021741

[46] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[47] L. B. Costa, S. Al-Kiswany, and M. Ripeanu, “GPU support for batch
oriented workloads,” in IEEE Intl. Performance Computing and Com-
munications Conference, Dec 2009, pp. 231–238.

98



[48] S. Liu, A. Papakonstantinou, H. Wang, and D. Chen, “Real-time object
tracking system on FPGAs,” in Symposium on Application Accelerators
in High-Performance Computing, July 2011, pp. 1–7.

[49] S. Ghaffari and S. Sharifian, “FPGA-based convolutional neural net-
work accelerator design using high level synthesize,” in International
Conference of Signal Processing and Intelligent Systems, Dec 2016, pp.
1–6.

[50] Z. Liu, Y. Dou, J. Jiang, and J. Xu, “Automatic code generation of con-
volutional neural networks in FPGA implementation,” in International
Conference on Field-Programmable Technology, Dec 2016, pp. 61–68.

[51] D. Chen, J. Cong, S. Gurumani, W. Hwu, K. Rupnow, and Z. Zhang,
“Platform choices and design demands for IoT platforms: Cost, power,
and performance tradeoffs,” IET Cyber-Physical Systems: Theory &
Applications, vol. 1, no. 1, pp. 70–77, 2016.

[52] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow,
W. Hwu, and D. Chen, “FPGA/DNN co-design: An efficient design
methodology for iot intelligence on the edge,” 2019. [Online]. Available:
http://arxiv.org/abs/1904.04421

[53] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An open
framework for mapping dnn models to cloud FPGAs,” in International
Symposium on Field Programmable Gate Arrays, 2019.

[54] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high perfor-
mance FPGA-based accelerator for large-scale convolutional neural net-
works,” in International Conference on Field-Programmable Logic and
Applications, 2016.

[55] Y. Chen, K. Zhang, C. Gong, C. Hao, X. Zhang, T. Li, and D. Chen,
“T-DLA: An open-source deep learning accelerator for ternarized DNN
models on embedded FPGA,” in IEEE Computer Society Annual Sym-
posium on VLSI, 2019.

[56] X. Liu, Y. Chen, T. Nguyen, S. Gurumani, K. Rupnow, and D. Chen,
“High level synthesis of complex applications: An h.264 video decoder,”
in International Symposium on Field-Programmable Gate Arrays, 2016.

[57] S. Winograd, Arithmetic Complexity of Computations. Society for In-
dustrial and Applied Mathematics, 1980.

[58] X. Xie, F. Sun, J. Lin, and Z. Wang, “Fast-ABC: A fast architecture
for bottleneck-like based convolutional neural networks,” in IEEE Com-
puter Society Annual Symposium on VLSI, 2019.

99



[59] F. Shi, H. Li, Y. Gao, B. Kuschner, and S. Zhu, “Sparse Winograd
convolutional neural networks on small-scale systolic arrays,” in Inter-
national Symposium on Field-Programmable Gate Arrays, 2019.

[60] J. Cong and J. Wang, “Polysa: Polyhedral-based systolic array auto-
compilation,” in ICCAD, 2018.

[61] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,” in Design Automation Confer-
ence, 2017.

[62] A. Lavin, “Fast algorithms for convolutional neural networks,”
Computing Research Repository, vol. abs/1509.09308, 2015. [Online].
Available: http://arxiv.org/abs/1509.09308

[63] H. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in Sparse
Matrix Proceedings 1978, vol. 1, 1979, pp. 256–282.

[64] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An OpenCL™ deep learning accelerator on Arria 10,” in International
Symposium on Field-Programmable Gate Arrays, 2017.

[65] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in In-
ternational Symposium on Field-Programmable Custom Computing Ma-
chines, 2017.

[66] Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms
for convolutional neural networks on FPGAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 4, pp. 857–870, 2020.

[67] J. Yepez and S. Ko, “Stride 2 1-D, 2-D, and 3-D Winograd for con-
volutional neural networks,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 28, no. 4, pp. 853–863, 2020.

[68] Xilinx. (2021) Vitis-AI model zoo. [Online]. Available: https:
//github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo

[69] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” Computing Research Repository, 2021.

[70] C. Gong, T. Li, Y. Lu, C. Hao, X. Zhang, D. Chen, and Y. Chen,
“µl2q: An ultra-low loss quantization method for DNN compression,”
in International Joint Conference on Neural Networks, 2019.

100



[71] C. Gong, Y. Chen, Y. Lu, T. Li, C. Hao, and D. Chen, “VecQ: Minimal
loss DNN model compression with vectorized weight quantization,” in
Computing Research Repository, 2020.

[72] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” Computing Research Repository, 2016.

[73] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural networks,” in International Symposium on
Computer Architecture, 2018.

[74] S. Ryu, H. Kim, W. Yi, and J.-J. Kim, “BitBlade: Area and energy-
efficient precision-scalable neural network accelerator with bitwise sum-
mation,” in Design Automation Conference, 2019.

[75] D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An energy-
efficient deep-learning processor with heterogeneous multi-core architec-
ture,” in IEEE Micro, 2018.

[76] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,” in IEEE Journal of Solid-State Circuits, 2018.

[77] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom:
Exploiting weight and activation precisions to accelerate convolutional
neural networks,” in Design Automation Conference, 2018.

[78] S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. Leong, “PIR-DSP:
An FPGA DSP block architecture for multi-precision deep neural net-
works,” in International Symposium on Field-Programmable Custom
Computing Machines.

[79] X. Zhang, A. Ramachandran, C. Zhuge, D. He, W. Zuo, Z. Cheng,
K. Rupnow, and D. Chen, “Machine learning on FPGAs to face the
IoT revolution,” in IEEE/ACM International Conference on Computer-
Aided Design, 2017.

[80] A. Stojanov, T. M. Smith, D. Alistarh, and M. Püschel, “Fast quantized
arithmetic on x86: Trading compute for data movement,” in Interna-
tional Workshop on Signal Processing Systems, 2018.

[81] Z. Kang, “Ultranet: A FPGA-based object detection for the DAC-
SDC 2020,” 2020. [Online]. Available: https://github.com/heheda365/
ultra net

101



[82] Xilinx, “Convolutional neural network with INT4 optimization
on Xilinx devices,” 2020, accessed: 2020-06-24. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/white papers/
wp521-4bit-optimization.pdf

[83] ——, “Deep learning with INT8 optimization on Xilinx devices,” 2017,
accessed: 2017-04-24. [Online]. Available: https://www.xilinx.com/
support/documentation/white papers/wp486-deep-learning-int8.pdf

[84] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Survey of machine learning accelerators,” Computation
Research Repository, 2020. [Online]. Available: https://arxiv.org/abs/
2009.00993

[85] S. Wang and P. Kanwar, “Bfloat16: The secret
to high performance on cloud TPUs.” [Online]. Avail-
able: https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus

[86] G. Ottavi, A. Garofalo, G. Tagliavini, F. Conti, L. Benini, and D. Rossi,
“A mixed-precision RISC-V processor for extreme-edge DNN inference,”
in IEEE Computer Society Annual Symposium on VLSI, 2020.

[87] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “PULP-
NN: Accelerating quantized neural networks on parallel ultra-low-power
RISC-V processors,” Philosophical Transactions of the Royal Society A,
2020.

[88] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient neural net-
work kernels for ARM Cortex-M CPUs,” Computing Research Reposi-
tory, 2018.

102


